xref: /openbmc/linux/fs/f2fs/file.c (revision 025b3602b5fa216fb87bbfa4bff8bb378fe589a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return block_page_mkwrite_return(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 
217 	return cp_reason;
218 }
219 
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 	bool ret = false;
224 	/* But we need to avoid that there are some inode updates */
225 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 		ret = true;
227 	f2fs_put_page(i, 0);
228 	return ret;
229 }
230 
231 static void try_to_fix_pino(struct inode *inode)
232 {
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	nid_t pino;
235 
236 	f2fs_down_write(&fi->i_sem);
237 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 			get_parent_ino(inode, &pino)) {
239 		f2fs_i_pino_write(inode, pino);
240 		file_got_pino(inode);
241 	}
242 	f2fs_up_write(&fi->i_sem);
243 }
244 
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 						int datasync, bool atomic)
247 {
248 	struct inode *inode = file->f_mapping->host;
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	nid_t ino = inode->i_ino;
251 	int ret = 0;
252 	enum cp_reason_type cp_reason = 0;
253 	struct writeback_control wbc = {
254 		.sync_mode = WB_SYNC_ALL,
255 		.nr_to_write = LONG_MAX,
256 		.for_reclaim = 0,
257 	};
258 	unsigned int seq_id = 0;
259 
260 	if (unlikely(f2fs_readonly(inode->i_sb)))
261 		return 0;
262 
263 	trace_f2fs_sync_file_enter(inode);
264 
265 	if (S_ISDIR(inode->i_mode))
266 		goto go_write;
267 
268 	/* if fdatasync is triggered, let's do in-place-update */
269 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 		set_inode_flag(inode, FI_NEED_IPU);
271 	ret = file_write_and_wait_range(file, start, end);
272 	clear_inode_flag(inode, FI_NEED_IPU);
273 
274 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 		return ret;
277 	}
278 
279 	/* if the inode is dirty, let's recover all the time */
280 	if (!f2fs_skip_inode_update(inode, datasync)) {
281 		f2fs_write_inode(inode, NULL);
282 		goto go_write;
283 	}
284 
285 	/*
286 	 * if there is no written data, don't waste time to write recovery info.
287 	 */
288 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290 
291 		/* it may call write_inode just prior to fsync */
292 		if (need_inode_page_update(sbi, ino))
293 			goto go_write;
294 
295 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 			goto flush_out;
298 		goto out;
299 	} else {
300 		/*
301 		 * for OPU case, during fsync(), node can be persisted before
302 		 * data when lower device doesn't support write barrier, result
303 		 * in data corruption after SPO.
304 		 * So for strict fsync mode, force to use atomic write semantics
305 		 * to keep write order in between data/node and last node to
306 		 * avoid potential data corruption.
307 		 */
308 		if (F2FS_OPTION(sbi).fsync_mode ==
309 				FSYNC_MODE_STRICT && !atomic)
310 			atomic = true;
311 	}
312 go_write:
313 	/*
314 	 * Both of fdatasync() and fsync() are able to be recovered from
315 	 * sudden-power-off.
316 	 */
317 	f2fs_down_read(&F2FS_I(inode)->i_sem);
318 	cp_reason = need_do_checkpoint(inode);
319 	f2fs_up_read(&F2FS_I(inode)->i_sem);
320 
321 	if (cp_reason) {
322 		/* all the dirty node pages should be flushed for POR */
323 		ret = f2fs_sync_fs(inode->i_sb, 1);
324 
325 		/*
326 		 * We've secured consistency through sync_fs. Following pino
327 		 * will be used only for fsynced inodes after checkpoint.
328 		 */
329 		try_to_fix_pino(inode);
330 		clear_inode_flag(inode, FI_APPEND_WRITE);
331 		clear_inode_flag(inode, FI_UPDATE_WRITE);
332 		goto out;
333 	}
334 sync_nodes:
335 	atomic_inc(&sbi->wb_sync_req[NODE]);
336 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 	atomic_dec(&sbi->wb_sync_req[NODE]);
338 	if (ret)
339 		goto out;
340 
341 	/* if cp_error was enabled, we should avoid infinite loop */
342 	if (unlikely(f2fs_cp_error(sbi))) {
343 		ret = -EIO;
344 		goto out;
345 	}
346 
347 	if (f2fs_need_inode_block_update(sbi, ino)) {
348 		f2fs_mark_inode_dirty_sync(inode, true);
349 		f2fs_write_inode(inode, NULL);
350 		goto sync_nodes;
351 	}
352 
353 	/*
354 	 * If it's atomic_write, it's just fine to keep write ordering. So
355 	 * here we don't need to wait for node write completion, since we use
356 	 * node chain which serializes node blocks. If one of node writes are
357 	 * reordered, we can see simply broken chain, resulting in stopping
358 	 * roll-forward recovery. It means we'll recover all or none node blocks
359 	 * given fsync mark.
360 	 */
361 	if (!atomic) {
362 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 		if (ret)
364 			goto out;
365 	}
366 
367 	/* once recovery info is written, don't need to tack this */
368 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 	clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 		ret = f2fs_issue_flush(sbi, inode->i_ino);
374 	if (!ret) {
375 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 		clear_inode_flag(inode, FI_UPDATE_WRITE);
377 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 	}
379 	f2fs_update_time(sbi, REQ_TIME);
380 out:
381 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 	return ret;
383 }
384 
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 		return -EIO;
389 	return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391 
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 				pgoff_t index, int whence)
394 {
395 	switch (whence) {
396 	case SEEK_DATA:
397 		if (__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		if (blkaddr == NEW_ADDR &&
400 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 			return true;
402 		break;
403 	case SEEK_HOLE:
404 		if (blkaddr == NULL_ADDR)
405 			return true;
406 		break;
407 	}
408 	return false;
409 }
410 
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 	struct inode *inode = file->f_mapping->host;
414 	loff_t maxbytes = inode->i_sb->s_maxbytes;
415 	struct dnode_of_data dn;
416 	pgoff_t pgofs, end_offset;
417 	loff_t data_ofs = offset;
418 	loff_t isize;
419 	int err = 0;
420 
421 	inode_lock(inode);
422 
423 	isize = i_size_read(inode);
424 	if (offset >= isize)
425 		goto fail;
426 
427 	/* handle inline data case */
428 	if (f2fs_has_inline_data(inode)) {
429 		if (whence == SEEK_HOLE) {
430 			data_ofs = isize;
431 			goto found;
432 		} else if (whence == SEEK_DATA) {
433 			data_ofs = offset;
434 			goto found;
435 		}
436 	}
437 
438 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439 
440 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 		set_new_dnode(&dn, inode, NULL, NULL, 0);
442 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 		if (err && err != -ENOENT) {
444 			goto fail;
445 		} else if (err == -ENOENT) {
446 			/* direct node does not exists */
447 			if (whence == SEEK_DATA) {
448 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 				continue;
450 			} else {
451 				goto found;
452 			}
453 		}
454 
455 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456 
457 		/* find data/hole in dnode block */
458 		for (; dn.ofs_in_node < end_offset;
459 				dn.ofs_in_node++, pgofs++,
460 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 			block_t blkaddr;
462 
463 			blkaddr = f2fs_data_blkaddr(&dn);
464 
465 			if (__is_valid_data_blkaddr(blkaddr) &&
466 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 					blkaddr, DATA_GENERIC_ENHANCE)) {
468 				f2fs_put_dnode(&dn);
469 				goto fail;
470 			}
471 
472 			if (__found_offset(file->f_mapping, blkaddr,
473 							pgofs, whence)) {
474 				f2fs_put_dnode(&dn);
475 				goto found;
476 			}
477 		}
478 		f2fs_put_dnode(&dn);
479 	}
480 
481 	if (whence == SEEK_DATA)
482 		goto fail;
483 found:
484 	if (whence == SEEK_HOLE && data_ofs > isize)
485 		data_ofs = isize;
486 	inode_unlock(inode);
487 	return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 	inode_unlock(inode);
490 	return -ENXIO;
491 }
492 
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 	struct inode *inode = file->f_mapping->host;
496 	loff_t maxbytes = inode->i_sb->s_maxbytes;
497 
498 	if (f2fs_compressed_file(inode))
499 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500 
501 	switch (whence) {
502 	case SEEK_SET:
503 	case SEEK_CUR:
504 	case SEEK_END:
505 		return generic_file_llseek_size(file, offset, whence,
506 						maxbytes, i_size_read(inode));
507 	case SEEK_DATA:
508 	case SEEK_HOLE:
509 		if (offset < 0)
510 			return -ENXIO;
511 		return f2fs_seek_block(file, offset, whence);
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 	struct inode *inode = file_inode(file);
520 
521 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 		return -EIO;
523 
524 	if (!f2fs_is_compress_backend_ready(inode))
525 		return -EOPNOTSUPP;
526 
527 	file_accessed(file);
528 	vma->vm_ops = &f2fs_file_vm_ops;
529 
530 	f2fs_down_read(&F2FS_I(inode)->i_sem);
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	f2fs_up_read(&F2FS_I(inode)->i_sem);
533 
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 	filp->f_mode |= FMODE_CAN_ODIRECT;
553 
554 	return dquot_file_open(inode, filp);
555 }
556 
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 	struct f2fs_node *raw_node;
561 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562 	__le32 *addr;
563 	int base = 0;
564 	bool compressed_cluster = false;
565 	int cluster_index = 0, valid_blocks = 0;
566 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568 
569 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 		base = get_extra_isize(dn->inode);
571 
572 	raw_node = F2FS_NODE(dn->node_page);
573 	addr = blkaddr_in_node(raw_node) + base + ofs;
574 
575 	/* Assumption: truncation starts with cluster */
576 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 		block_t blkaddr = le32_to_cpu(*addr);
578 
579 		if (f2fs_compressed_file(dn->inode) &&
580 					!(cluster_index & (cluster_size - 1))) {
581 			if (compressed_cluster)
582 				f2fs_i_compr_blocks_update(dn->inode,
583 							valid_blocks, false);
584 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
585 			valid_blocks = 0;
586 		}
587 
588 		if (blkaddr == NULL_ADDR)
589 			continue;
590 
591 		dn->data_blkaddr = NULL_ADDR;
592 		f2fs_set_data_blkaddr(dn);
593 
594 		if (__is_valid_data_blkaddr(blkaddr)) {
595 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 					DATA_GENERIC_ENHANCE))
597 				continue;
598 			if (compressed_cluster)
599 				valid_blocks++;
600 		}
601 
602 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604 
605 		f2fs_invalidate_blocks(sbi, blkaddr);
606 
607 		if (!released || blkaddr != COMPRESS_ADDR)
608 			nr_free++;
609 	}
610 
611 	if (compressed_cluster)
612 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613 
614 	if (nr_free) {
615 		pgoff_t fofs;
616 		/*
617 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 		 * we will invalidate all blkaddr in the whole range.
619 		 */
620 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621 							dn->inode) + ofs;
622 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623 		f2fs_update_age_extent_cache_range(dn, fofs, len);
624 		dec_valid_block_count(sbi, dn->inode, nr_free);
625 	}
626 	dn->ofs_in_node = ofs;
627 
628 	f2fs_update_time(sbi, REQ_TIME);
629 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630 					 dn->ofs_in_node, nr_free);
631 }
632 
633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634 								bool cache_only)
635 {
636 	loff_t offset = from & (PAGE_SIZE - 1);
637 	pgoff_t index = from >> PAGE_SHIFT;
638 	struct address_space *mapping = inode->i_mapping;
639 	struct page *page;
640 
641 	if (!offset && !cache_only)
642 		return 0;
643 
644 	if (cache_only) {
645 		page = find_lock_page(mapping, index);
646 		if (page && PageUptodate(page))
647 			goto truncate_out;
648 		f2fs_put_page(page, 1);
649 		return 0;
650 	}
651 
652 	page = f2fs_get_lock_data_page(inode, index, true);
653 	if (IS_ERR(page))
654 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656 	f2fs_wait_on_page_writeback(page, DATA, true, true);
657 	zero_user(page, offset, PAGE_SIZE - offset);
658 
659 	/* An encrypted inode should have a key and truncate the last page. */
660 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661 	if (!cache_only)
662 		set_page_dirty(page);
663 	f2fs_put_page(page, 1);
664 	return 0;
665 }
666 
667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 	struct dnode_of_data dn;
671 	pgoff_t free_from;
672 	int count = 0, err = 0;
673 	struct page *ipage;
674 	bool truncate_page = false;
675 
676 	trace_f2fs_truncate_blocks_enter(inode, from);
677 
678 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679 
680 	if (free_from >= max_file_blocks(inode))
681 		goto free_partial;
682 
683 	if (lock)
684 		f2fs_lock_op(sbi);
685 
686 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
687 	if (IS_ERR(ipage)) {
688 		err = PTR_ERR(ipage);
689 		goto out;
690 	}
691 
692 	if (f2fs_has_inline_data(inode)) {
693 		f2fs_truncate_inline_inode(inode, ipage, from);
694 		f2fs_put_page(ipage, 1);
695 		truncate_page = true;
696 		goto out;
697 	}
698 
699 	set_new_dnode(&dn, inode, ipage, NULL, 0);
700 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701 	if (err) {
702 		if (err == -ENOENT)
703 			goto free_next;
704 		goto out;
705 	}
706 
707 	count = ADDRS_PER_PAGE(dn.node_page, inode);
708 
709 	count -= dn.ofs_in_node;
710 	f2fs_bug_on(sbi, count < 0);
711 
712 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713 		f2fs_truncate_data_blocks_range(&dn, count);
714 		free_from += count;
715 	}
716 
717 	f2fs_put_dnode(&dn);
718 free_next:
719 	err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721 	if (lock)
722 		f2fs_unlock_op(sbi);
723 free_partial:
724 	/* lastly zero out the first data page */
725 	if (!err)
726 		err = truncate_partial_data_page(inode, from, truncate_page);
727 
728 	trace_f2fs_truncate_blocks_exit(inode, err);
729 	return err;
730 }
731 
732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734 	u64 free_from = from;
735 	int err;
736 
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738 	/*
739 	 * for compressed file, only support cluster size
740 	 * aligned truncation.
741 	 */
742 	if (f2fs_compressed_file(inode))
743 		free_from = round_up(from,
744 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746 
747 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
748 	if (err)
749 		return err;
750 
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 	/*
753 	 * For compressed file, after release compress blocks, don't allow write
754 	 * direct, but we should allow write direct after truncate to zero.
755 	 */
756 	if (f2fs_compressed_file(inode) && !free_from
757 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759 
760 	if (from != free_from) {
761 		err = f2fs_truncate_partial_cluster(inode, from, lock);
762 		if (err)
763 			return err;
764 	}
765 #endif
766 
767 	return 0;
768 }
769 
770 int f2fs_truncate(struct inode *inode)
771 {
772 	int err;
773 
774 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775 		return -EIO;
776 
777 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778 				S_ISLNK(inode->i_mode)))
779 		return 0;
780 
781 	trace_f2fs_truncate(inode);
782 
783 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784 		return -EIO;
785 
786 	err = f2fs_dquot_initialize(inode);
787 	if (err)
788 		return err;
789 
790 	/* we should check inline_data size */
791 	if (!f2fs_may_inline_data(inode)) {
792 		err = f2fs_convert_inline_inode(inode);
793 		if (err)
794 			return err;
795 	}
796 
797 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798 	if (err)
799 		return err;
800 
801 	inode->i_mtime = inode->i_ctime = current_time(inode);
802 	f2fs_mark_inode_dirty_sync(inode, false);
803 	return 0;
804 }
805 
806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809 
810 	if (!fscrypt_dio_supported(inode))
811 		return true;
812 	if (fsverity_active(inode))
813 		return true;
814 	if (f2fs_compressed_file(inode))
815 		return true;
816 
817 	/* disallow direct IO if any of devices has unaligned blksize */
818 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819 		return true;
820 	/*
821 	 * for blkzoned device, fallback direct IO to buffered IO, so
822 	 * all IOs can be serialized by log-structured write.
823 	 */
824 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825 		return true;
826 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827 		return true;
828 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829 		return true;
830 
831 	return false;
832 }
833 
834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837 	struct inode *inode = d_inode(path->dentry);
838 	struct f2fs_inode_info *fi = F2FS_I(inode);
839 	struct f2fs_inode *ri = NULL;
840 	unsigned int flags;
841 
842 	if (f2fs_has_extra_attr(inode) &&
843 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845 		stat->result_mask |= STATX_BTIME;
846 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
847 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848 	}
849 
850 	/*
851 	 * Return the DIO alignment restrictions if requested.  We only return
852 	 * this information when requested, since on encrypted files it might
853 	 * take a fair bit of work to get if the file wasn't opened recently.
854 	 *
855 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856 	 * cannot represent that, so in that case we report no DIO support.
857 	 */
858 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859 		unsigned int bsize = i_blocksize(inode);
860 
861 		stat->result_mask |= STATX_DIOALIGN;
862 		if (!f2fs_force_buffered_io(inode, WRITE)) {
863 			stat->dio_mem_align = bsize;
864 			stat->dio_offset_align = bsize;
865 		}
866 	}
867 
868 	flags = fi->i_flags;
869 	if (flags & F2FS_COMPR_FL)
870 		stat->attributes |= STATX_ATTR_COMPRESSED;
871 	if (flags & F2FS_APPEND_FL)
872 		stat->attributes |= STATX_ATTR_APPEND;
873 	if (IS_ENCRYPTED(inode))
874 		stat->attributes |= STATX_ATTR_ENCRYPTED;
875 	if (flags & F2FS_IMMUTABLE_FL)
876 		stat->attributes |= STATX_ATTR_IMMUTABLE;
877 	if (flags & F2FS_NODUMP_FL)
878 		stat->attributes |= STATX_ATTR_NODUMP;
879 	if (IS_VERITY(inode))
880 		stat->attributes |= STATX_ATTR_VERITY;
881 
882 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883 				  STATX_ATTR_APPEND |
884 				  STATX_ATTR_ENCRYPTED |
885 				  STATX_ATTR_IMMUTABLE |
886 				  STATX_ATTR_NODUMP |
887 				  STATX_ATTR_VERITY);
888 
889 	generic_fillattr(idmap, inode, stat);
890 
891 	/* we need to show initial sectors used for inline_data/dentries */
892 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893 					f2fs_has_inline_dentry(inode))
894 		stat->blocks += (stat->size + 511) >> 9;
895 
896 	return 0;
897 }
898 
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct mnt_idmap *idmap,
901 			   struct inode *inode, const struct iattr *attr)
902 {
903 	unsigned int ia_valid = attr->ia_valid;
904 
905 	i_uid_update(idmap, attr, inode);
906 	i_gid_update(idmap, attr, inode);
907 	if (ia_valid & ATTR_ATIME)
908 		inode->i_atime = attr->ia_atime;
909 	if (ia_valid & ATTR_MTIME)
910 		inode->i_mtime = attr->ia_mtime;
911 	if (ia_valid & ATTR_CTIME)
912 		inode->i_ctime = attr->ia_ctime;
913 	if (ia_valid & ATTR_MODE) {
914 		umode_t mode = attr->ia_mode;
915 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916 
917 		if (!vfsgid_in_group_p(vfsgid) &&
918 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919 			mode &= ~S_ISGID;
920 		set_acl_inode(inode, mode);
921 	}
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926 
927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928 		 struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	int err;
932 
933 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934 		return -EIO;
935 
936 	if (unlikely(IS_IMMUTABLE(inode)))
937 		return -EPERM;
938 
939 	if (unlikely(IS_APPEND(inode) &&
940 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
941 				  ATTR_GID | ATTR_TIMES_SET))))
942 		return -EPERM;
943 
944 	if ((attr->ia_valid & ATTR_SIZE) &&
945 		!f2fs_is_compress_backend_ready(inode))
946 		return -EOPNOTSUPP;
947 
948 	err = setattr_prepare(idmap, dentry, attr);
949 	if (err)
950 		return err;
951 
952 	err = fscrypt_prepare_setattr(dentry, attr);
953 	if (err)
954 		return err;
955 
956 	err = fsverity_prepare_setattr(dentry, attr);
957 	if (err)
958 		return err;
959 
960 	if (is_quota_modification(idmap, inode, attr)) {
961 		err = f2fs_dquot_initialize(inode);
962 		if (err)
963 			return err;
964 	}
965 	if (i_uid_needs_update(idmap, attr, inode) ||
966 	    i_gid_needs_update(idmap, attr, inode)) {
967 		f2fs_lock_op(F2FS_I_SB(inode));
968 		err = dquot_transfer(idmap, inode, attr);
969 		if (err) {
970 			set_sbi_flag(F2FS_I_SB(inode),
971 					SBI_QUOTA_NEED_REPAIR);
972 			f2fs_unlock_op(F2FS_I_SB(inode));
973 			return err;
974 		}
975 		/*
976 		 * update uid/gid under lock_op(), so that dquot and inode can
977 		 * be updated atomically.
978 		 */
979 		i_uid_update(idmap, attr, inode);
980 		i_gid_update(idmap, attr, inode);
981 		f2fs_mark_inode_dirty_sync(inode, true);
982 		f2fs_unlock_op(F2FS_I_SB(inode));
983 	}
984 
985 	if (attr->ia_valid & ATTR_SIZE) {
986 		loff_t old_size = i_size_read(inode);
987 
988 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989 			/*
990 			 * should convert inline inode before i_size_write to
991 			 * keep smaller than inline_data size with inline flag.
992 			 */
993 			err = f2fs_convert_inline_inode(inode);
994 			if (err)
995 				return err;
996 		}
997 
998 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999 		filemap_invalidate_lock(inode->i_mapping);
1000 
1001 		truncate_setsize(inode, attr->ia_size);
1002 
1003 		if (attr->ia_size <= old_size)
1004 			err = f2fs_truncate(inode);
1005 		/*
1006 		 * do not trim all blocks after i_size if target size is
1007 		 * larger than i_size.
1008 		 */
1009 		filemap_invalidate_unlock(inode->i_mapping);
1010 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011 		if (err)
1012 			return err;
1013 
1014 		spin_lock(&F2FS_I(inode)->i_size_lock);
1015 		inode->i_mtime = inode->i_ctime = current_time(inode);
1016 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1018 	}
1019 
1020 	__setattr_copy(idmap, inode, attr);
1021 
1022 	if (attr->ia_valid & ATTR_MODE) {
1023 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024 
1025 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026 			if (!err)
1027 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028 			clear_inode_flag(inode, FI_ACL_MODE);
1029 		}
1030 	}
1031 
1032 	/* file size may changed here */
1033 	f2fs_mark_inode_dirty_sync(inode, true);
1034 
1035 	/* inode change will produce dirty node pages flushed by checkpoint */
1036 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1037 
1038 	return err;
1039 }
1040 
1041 const struct inode_operations f2fs_file_inode_operations = {
1042 	.getattr	= f2fs_getattr,
1043 	.setattr	= f2fs_setattr,
1044 	.get_inode_acl	= f2fs_get_acl,
1045 	.set_acl	= f2fs_set_acl,
1046 	.listxattr	= f2fs_listxattr,
1047 	.fiemap		= f2fs_fiemap,
1048 	.fileattr_get	= f2fs_fileattr_get,
1049 	.fileattr_set	= f2fs_fileattr_set,
1050 };
1051 
1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053 					loff_t start, loff_t len)
1054 {
1055 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 	struct page *page;
1057 
1058 	if (!len)
1059 		return 0;
1060 
1061 	f2fs_balance_fs(sbi, true);
1062 
1063 	f2fs_lock_op(sbi);
1064 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1065 	f2fs_unlock_op(sbi);
1066 
1067 	if (IS_ERR(page))
1068 		return PTR_ERR(page);
1069 
1070 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1071 	zero_user(page, start, len);
1072 	set_page_dirty(page);
1073 	f2fs_put_page(page, 1);
1074 	return 0;
1075 }
1076 
1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079 	int err;
1080 
1081 	while (pg_start < pg_end) {
1082 		struct dnode_of_data dn;
1083 		pgoff_t end_offset, count;
1084 
1085 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087 		if (err) {
1088 			if (err == -ENOENT) {
1089 				pg_start = f2fs_get_next_page_offset(&dn,
1090 								pg_start);
1091 				continue;
1092 			}
1093 			return err;
1094 		}
1095 
1096 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098 
1099 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100 
1101 		f2fs_truncate_data_blocks_range(&dn, count);
1102 		f2fs_put_dnode(&dn);
1103 
1104 		pg_start += count;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111 	pgoff_t pg_start, pg_end;
1112 	loff_t off_start, off_end;
1113 	int ret;
1114 
1115 	ret = f2fs_convert_inline_inode(inode);
1116 	if (ret)
1117 		return ret;
1118 
1119 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121 
1122 	off_start = offset & (PAGE_SIZE - 1);
1123 	off_end = (offset + len) & (PAGE_SIZE - 1);
1124 
1125 	if (pg_start == pg_end) {
1126 		ret = fill_zero(inode, pg_start, off_start,
1127 						off_end - off_start);
1128 		if (ret)
1129 			return ret;
1130 	} else {
1131 		if (off_start) {
1132 			ret = fill_zero(inode, pg_start++, off_start,
1133 						PAGE_SIZE - off_start);
1134 			if (ret)
1135 				return ret;
1136 		}
1137 		if (off_end) {
1138 			ret = fill_zero(inode, pg_end, 0, off_end);
1139 			if (ret)
1140 				return ret;
1141 		}
1142 
1143 		if (pg_start < pg_end) {
1144 			loff_t blk_start, blk_end;
1145 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146 
1147 			f2fs_balance_fs(sbi, true);
1148 
1149 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151 
1152 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 			filemap_invalidate_lock(inode->i_mapping);
1154 
1155 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156 
1157 			f2fs_lock_op(sbi);
1158 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159 			f2fs_unlock_op(sbi);
1160 
1161 			filemap_invalidate_unlock(inode->i_mapping);
1162 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163 		}
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 				int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 	struct dnode_of_data dn;
1174 	int ret, done, i;
1175 
1176 next_dnode:
1177 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179 	if (ret && ret != -ENOENT) {
1180 		return ret;
1181 	} else if (ret == -ENOENT) {
1182 		if (dn.max_level == 0)
1183 			return -ENOENT;
1184 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185 						dn.ofs_in_node, len);
1186 		blkaddr += done;
1187 		do_replace += done;
1188 		goto next;
1189 	}
1190 
1191 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192 							dn.ofs_in_node, len);
1193 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194 		*blkaddr = f2fs_data_blkaddr(&dn);
1195 
1196 		if (__is_valid_data_blkaddr(*blkaddr) &&
1197 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198 					DATA_GENERIC_ENHANCE)) {
1199 			f2fs_put_dnode(&dn);
1200 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201 			return -EFSCORRUPTED;
1202 		}
1203 
1204 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205 
1206 			if (f2fs_lfs_mode(sbi)) {
1207 				f2fs_put_dnode(&dn);
1208 				return -EOPNOTSUPP;
1209 			}
1210 
1211 			/* do not invalidate this block address */
1212 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213 			*do_replace = 1;
1214 		}
1215 	}
1216 	f2fs_put_dnode(&dn);
1217 next:
1218 	len -= done;
1219 	off += done;
1220 	if (len)
1221 		goto next_dnode;
1222 	return 0;
1223 }
1224 
1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226 				int *do_replace, pgoff_t off, int len)
1227 {
1228 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229 	struct dnode_of_data dn;
1230 	int ret, i;
1231 
1232 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233 		if (*do_replace == 0)
1234 			continue;
1235 
1236 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238 		if (ret) {
1239 			dec_valid_block_count(sbi, inode, 1);
1240 			f2fs_invalidate_blocks(sbi, *blkaddr);
1241 		} else {
1242 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1243 		}
1244 		f2fs_put_dnode(&dn);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250 			block_t *blkaddr, int *do_replace,
1251 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254 	pgoff_t i = 0;
1255 	int ret;
1256 
1257 	while (i < len) {
1258 		if (blkaddr[i] == NULL_ADDR && !full) {
1259 			i++;
1260 			continue;
1261 		}
1262 
1263 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264 			struct dnode_of_data dn;
1265 			struct node_info ni;
1266 			size_t new_size;
1267 			pgoff_t ilen;
1268 
1269 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271 			if (ret)
1272 				return ret;
1273 
1274 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275 			if (ret) {
1276 				f2fs_put_dnode(&dn);
1277 				return ret;
1278 			}
1279 
1280 			ilen = min((pgoff_t)
1281 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282 						dn.ofs_in_node, len - i);
1283 			do {
1284 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285 				f2fs_truncate_data_blocks_range(&dn, 1);
1286 
1287 				if (do_replace[i]) {
1288 					f2fs_i_blocks_write(src_inode,
1289 							1, false, false);
1290 					f2fs_i_blocks_write(dst_inode,
1291 							1, true, false);
1292 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293 					blkaddr[i], ni.version, true, false);
1294 
1295 					do_replace[i] = 0;
1296 				}
1297 				dn.ofs_in_node++;
1298 				i++;
1299 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300 				if (dst_inode->i_size < new_size)
1301 					f2fs_i_size_write(dst_inode, new_size);
1302 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303 
1304 			f2fs_put_dnode(&dn);
1305 		} else {
1306 			struct page *psrc, *pdst;
1307 
1308 			psrc = f2fs_get_lock_data_page(src_inode,
1309 							src + i, true);
1310 			if (IS_ERR(psrc))
1311 				return PTR_ERR(psrc);
1312 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313 								true);
1314 			if (IS_ERR(pdst)) {
1315 				f2fs_put_page(psrc, 1);
1316 				return PTR_ERR(pdst);
1317 			}
1318 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319 			set_page_dirty(pdst);
1320 			f2fs_put_page(pdst, 1);
1321 			f2fs_put_page(psrc, 1);
1322 
1323 			ret = f2fs_truncate_hole(src_inode,
1324 						src + i, src + i + 1);
1325 			if (ret)
1326 				return ret;
1327 			i++;
1328 		}
1329 	}
1330 	return 0;
1331 }
1332 
1333 static int __exchange_data_block(struct inode *src_inode,
1334 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1335 			pgoff_t len, bool full)
1336 {
1337 	block_t *src_blkaddr;
1338 	int *do_replace;
1339 	pgoff_t olen;
1340 	int ret;
1341 
1342 	while (len) {
1343 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1344 
1345 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1346 					array_size(olen, sizeof(block_t)),
1347 					GFP_NOFS);
1348 		if (!src_blkaddr)
1349 			return -ENOMEM;
1350 
1351 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352 					array_size(olen, sizeof(int)),
1353 					GFP_NOFS);
1354 		if (!do_replace) {
1355 			kvfree(src_blkaddr);
1356 			return -ENOMEM;
1357 		}
1358 
1359 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1360 					do_replace, src, olen);
1361 		if (ret)
1362 			goto roll_back;
1363 
1364 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1365 					do_replace, src, dst, olen, full);
1366 		if (ret)
1367 			goto roll_back;
1368 
1369 		src += olen;
1370 		dst += olen;
1371 		len -= olen;
1372 
1373 		kvfree(src_blkaddr);
1374 		kvfree(do_replace);
1375 	}
1376 	return 0;
1377 
1378 roll_back:
1379 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1380 	kvfree(src_blkaddr);
1381 	kvfree(do_replace);
1382 	return ret;
1383 }
1384 
1385 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1386 {
1387 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1389 	pgoff_t start = offset >> PAGE_SHIFT;
1390 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1391 	int ret;
1392 
1393 	f2fs_balance_fs(sbi, true);
1394 
1395 	/* avoid gc operation during block exchange */
1396 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1397 	filemap_invalidate_lock(inode->i_mapping);
1398 
1399 	f2fs_lock_op(sbi);
1400 	f2fs_drop_extent_tree(inode);
1401 	truncate_pagecache(inode, offset);
1402 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1403 	f2fs_unlock_op(sbi);
1404 
1405 	filemap_invalidate_unlock(inode->i_mapping);
1406 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1407 	return ret;
1408 }
1409 
1410 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412 	loff_t new_size;
1413 	int ret;
1414 
1415 	if (offset + len >= i_size_read(inode))
1416 		return -EINVAL;
1417 
1418 	/* collapse range should be aligned to block size of f2fs. */
1419 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420 		return -EINVAL;
1421 
1422 	ret = f2fs_convert_inline_inode(inode);
1423 	if (ret)
1424 		return ret;
1425 
1426 	/* write out all dirty pages from offset */
1427 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = f2fs_do_collapse(inode, offset, len);
1432 	if (ret)
1433 		return ret;
1434 
1435 	/* write out all moved pages, if possible */
1436 	filemap_invalidate_lock(inode->i_mapping);
1437 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438 	truncate_pagecache(inode, offset);
1439 
1440 	new_size = i_size_read(inode) - len;
1441 	ret = f2fs_truncate_blocks(inode, new_size, true);
1442 	filemap_invalidate_unlock(inode->i_mapping);
1443 	if (!ret)
1444 		f2fs_i_size_write(inode, new_size);
1445 	return ret;
1446 }
1447 
1448 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1449 								pgoff_t end)
1450 {
1451 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452 	pgoff_t index = start;
1453 	unsigned int ofs_in_node = dn->ofs_in_node;
1454 	blkcnt_t count = 0;
1455 	int ret;
1456 
1457 	for (; index < end; index++, dn->ofs_in_node++) {
1458 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1459 			count++;
1460 	}
1461 
1462 	dn->ofs_in_node = ofs_in_node;
1463 	ret = f2fs_reserve_new_blocks(dn, count);
1464 	if (ret)
1465 		return ret;
1466 
1467 	dn->ofs_in_node = ofs_in_node;
1468 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1469 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1470 		/*
1471 		 * f2fs_reserve_new_blocks will not guarantee entire block
1472 		 * allocation.
1473 		 */
1474 		if (dn->data_blkaddr == NULL_ADDR) {
1475 			ret = -ENOSPC;
1476 			break;
1477 		}
1478 
1479 		if (dn->data_blkaddr == NEW_ADDR)
1480 			continue;
1481 
1482 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1483 					DATA_GENERIC_ENHANCE)) {
1484 			ret = -EFSCORRUPTED;
1485 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1486 			break;
1487 		}
1488 
1489 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1490 		dn->data_blkaddr = NEW_ADDR;
1491 		f2fs_set_data_blkaddr(dn);
1492 	}
1493 
1494 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1495 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1496 
1497 	return ret;
1498 }
1499 
1500 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1501 								int mode)
1502 {
1503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504 	struct address_space *mapping = inode->i_mapping;
1505 	pgoff_t index, pg_start, pg_end;
1506 	loff_t new_size = i_size_read(inode);
1507 	loff_t off_start, off_end;
1508 	int ret = 0;
1509 
1510 	ret = inode_newsize_ok(inode, (len + offset));
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = f2fs_convert_inline_inode(inode);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1519 	if (ret)
1520 		return ret;
1521 
1522 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1523 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1524 
1525 	off_start = offset & (PAGE_SIZE - 1);
1526 	off_end = (offset + len) & (PAGE_SIZE - 1);
1527 
1528 	if (pg_start == pg_end) {
1529 		ret = fill_zero(inode, pg_start, off_start,
1530 						off_end - off_start);
1531 		if (ret)
1532 			return ret;
1533 
1534 		new_size = max_t(loff_t, new_size, offset + len);
1535 	} else {
1536 		if (off_start) {
1537 			ret = fill_zero(inode, pg_start++, off_start,
1538 						PAGE_SIZE - off_start);
1539 			if (ret)
1540 				return ret;
1541 
1542 			new_size = max_t(loff_t, new_size,
1543 					(loff_t)pg_start << PAGE_SHIFT);
1544 		}
1545 
1546 		for (index = pg_start; index < pg_end;) {
1547 			struct dnode_of_data dn;
1548 			unsigned int end_offset;
1549 			pgoff_t end;
1550 
1551 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1552 			filemap_invalidate_lock(mapping);
1553 
1554 			truncate_pagecache_range(inode,
1555 				(loff_t)index << PAGE_SHIFT,
1556 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1557 
1558 			f2fs_lock_op(sbi);
1559 
1560 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1561 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1562 			if (ret) {
1563 				f2fs_unlock_op(sbi);
1564 				filemap_invalidate_unlock(mapping);
1565 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1566 				goto out;
1567 			}
1568 
1569 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1570 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1571 
1572 			ret = f2fs_do_zero_range(&dn, index, end);
1573 			f2fs_put_dnode(&dn);
1574 
1575 			f2fs_unlock_op(sbi);
1576 			filemap_invalidate_unlock(mapping);
1577 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578 
1579 			f2fs_balance_fs(sbi, dn.node_changed);
1580 
1581 			if (ret)
1582 				goto out;
1583 
1584 			index = end;
1585 			new_size = max_t(loff_t, new_size,
1586 					(loff_t)index << PAGE_SHIFT);
1587 		}
1588 
1589 		if (off_end) {
1590 			ret = fill_zero(inode, pg_end, 0, off_end);
1591 			if (ret)
1592 				goto out;
1593 
1594 			new_size = max_t(loff_t, new_size, offset + len);
1595 		}
1596 	}
1597 
1598 out:
1599 	if (new_size > i_size_read(inode)) {
1600 		if (mode & FALLOC_FL_KEEP_SIZE)
1601 			file_set_keep_isize(inode);
1602 		else
1603 			f2fs_i_size_write(inode, new_size);
1604 	}
1605 	return ret;
1606 }
1607 
1608 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1609 {
1610 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 	struct address_space *mapping = inode->i_mapping;
1612 	pgoff_t nr, pg_start, pg_end, delta, idx;
1613 	loff_t new_size;
1614 	int ret = 0;
1615 
1616 	new_size = i_size_read(inode) + len;
1617 	ret = inode_newsize_ok(inode, new_size);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (offset >= i_size_read(inode))
1622 		return -EINVAL;
1623 
1624 	/* insert range should be aligned to block size of f2fs. */
1625 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1626 		return -EINVAL;
1627 
1628 	ret = f2fs_convert_inline_inode(inode);
1629 	if (ret)
1630 		return ret;
1631 
1632 	f2fs_balance_fs(sbi, true);
1633 
1634 	filemap_invalidate_lock(mapping);
1635 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1636 	filemap_invalidate_unlock(mapping);
1637 	if (ret)
1638 		return ret;
1639 
1640 	/* write out all dirty pages from offset */
1641 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1642 	if (ret)
1643 		return ret;
1644 
1645 	pg_start = offset >> PAGE_SHIFT;
1646 	pg_end = (offset + len) >> PAGE_SHIFT;
1647 	delta = pg_end - pg_start;
1648 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1649 
1650 	/* avoid gc operation during block exchange */
1651 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1652 	filemap_invalidate_lock(mapping);
1653 	truncate_pagecache(inode, offset);
1654 
1655 	while (!ret && idx > pg_start) {
1656 		nr = idx - pg_start;
1657 		if (nr > delta)
1658 			nr = delta;
1659 		idx -= nr;
1660 
1661 		f2fs_lock_op(sbi);
1662 		f2fs_drop_extent_tree(inode);
1663 
1664 		ret = __exchange_data_block(inode, inode, idx,
1665 					idx + delta, nr, false);
1666 		f2fs_unlock_op(sbi);
1667 	}
1668 	filemap_invalidate_unlock(mapping);
1669 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1670 
1671 	/* write out all moved pages, if possible */
1672 	filemap_invalidate_lock(mapping);
1673 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1674 	truncate_pagecache(inode, offset);
1675 	filemap_invalidate_unlock(mapping);
1676 
1677 	if (!ret)
1678 		f2fs_i_size_write(inode, new_size);
1679 	return ret;
1680 }
1681 
1682 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1683 					loff_t len, int mode)
1684 {
1685 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1687 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1688 			.m_may_create = true };
1689 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1690 			.init_gc_type = FG_GC,
1691 			.should_migrate_blocks = false,
1692 			.err_gc_skipped = true,
1693 			.nr_free_secs = 0 };
1694 	pgoff_t pg_start, pg_end;
1695 	loff_t new_size;
1696 	loff_t off_end;
1697 	block_t expanded = 0;
1698 	int err;
1699 
1700 	err = inode_newsize_ok(inode, (len + offset));
1701 	if (err)
1702 		return err;
1703 
1704 	err = f2fs_convert_inline_inode(inode);
1705 	if (err)
1706 		return err;
1707 
1708 	f2fs_balance_fs(sbi, true);
1709 
1710 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1711 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1712 	off_end = (offset + len) & (PAGE_SIZE - 1);
1713 
1714 	map.m_lblk = pg_start;
1715 	map.m_len = pg_end - pg_start;
1716 	if (off_end)
1717 		map.m_len++;
1718 
1719 	if (!map.m_len)
1720 		return 0;
1721 
1722 	if (f2fs_is_pinned_file(inode)) {
1723 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1724 		block_t sec_len = roundup(map.m_len, sec_blks);
1725 
1726 		map.m_len = sec_blks;
1727 next_alloc:
1728 		if (has_not_enough_free_secs(sbi, 0,
1729 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1730 			f2fs_down_write(&sbi->gc_lock);
1731 			err = f2fs_gc(sbi, &gc_control);
1732 			if (err && err != -ENODATA)
1733 				goto out_err;
1734 		}
1735 
1736 		f2fs_down_write(&sbi->pin_sem);
1737 
1738 		f2fs_lock_op(sbi);
1739 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1740 		f2fs_unlock_op(sbi);
1741 
1742 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1743 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1744 		file_dont_truncate(inode);
1745 
1746 		f2fs_up_write(&sbi->pin_sem);
1747 
1748 		expanded += map.m_len;
1749 		sec_len -= map.m_len;
1750 		map.m_lblk += map.m_len;
1751 		if (!err && sec_len)
1752 			goto next_alloc;
1753 
1754 		map.m_len = expanded;
1755 	} else {
1756 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1757 		expanded = map.m_len;
1758 	}
1759 out_err:
1760 	if (err) {
1761 		pgoff_t last_off;
1762 
1763 		if (!expanded)
1764 			return err;
1765 
1766 		last_off = pg_start + expanded - 1;
1767 
1768 		/* update new size to the failed position */
1769 		new_size = (last_off == pg_end) ? offset + len :
1770 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1771 	} else {
1772 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1773 	}
1774 
1775 	if (new_size > i_size_read(inode)) {
1776 		if (mode & FALLOC_FL_KEEP_SIZE)
1777 			file_set_keep_isize(inode);
1778 		else
1779 			f2fs_i_size_write(inode, new_size);
1780 	}
1781 
1782 	return err;
1783 }
1784 
1785 static long f2fs_fallocate(struct file *file, int mode,
1786 				loff_t offset, loff_t len)
1787 {
1788 	struct inode *inode = file_inode(file);
1789 	long ret = 0;
1790 
1791 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1792 		return -EIO;
1793 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1794 		return -ENOSPC;
1795 	if (!f2fs_is_compress_backend_ready(inode))
1796 		return -EOPNOTSUPP;
1797 
1798 	/* f2fs only support ->fallocate for regular file */
1799 	if (!S_ISREG(inode->i_mode))
1800 		return -EINVAL;
1801 
1802 	if (IS_ENCRYPTED(inode) &&
1803 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1804 		return -EOPNOTSUPP;
1805 
1806 	/*
1807 	 * Pinned file should not support partial truncation since the block
1808 	 * can be used by applications.
1809 	 */
1810 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1811 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1812 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1813 		return -EOPNOTSUPP;
1814 
1815 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1816 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1817 			FALLOC_FL_INSERT_RANGE))
1818 		return -EOPNOTSUPP;
1819 
1820 	inode_lock(inode);
1821 
1822 	ret = file_modified(file);
1823 	if (ret)
1824 		goto out;
1825 
1826 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1827 		if (offset >= inode->i_size)
1828 			goto out;
1829 
1830 		ret = f2fs_punch_hole(inode, offset, len);
1831 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1832 		ret = f2fs_collapse_range(inode, offset, len);
1833 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1834 		ret = f2fs_zero_range(inode, offset, len, mode);
1835 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1836 		ret = f2fs_insert_range(inode, offset, len);
1837 	} else {
1838 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1839 	}
1840 
1841 	if (!ret) {
1842 		inode->i_mtime = inode->i_ctime = current_time(inode);
1843 		f2fs_mark_inode_dirty_sync(inode, false);
1844 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1845 	}
1846 
1847 out:
1848 	inode_unlock(inode);
1849 
1850 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1851 	return ret;
1852 }
1853 
1854 static int f2fs_release_file(struct inode *inode, struct file *filp)
1855 {
1856 	/*
1857 	 * f2fs_release_file is called at every close calls. So we should
1858 	 * not drop any inmemory pages by close called by other process.
1859 	 */
1860 	if (!(filp->f_mode & FMODE_WRITE) ||
1861 			atomic_read(&inode->i_writecount) != 1)
1862 		return 0;
1863 
1864 	inode_lock(inode);
1865 	f2fs_abort_atomic_write(inode, true);
1866 	inode_unlock(inode);
1867 
1868 	return 0;
1869 }
1870 
1871 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1872 {
1873 	struct inode *inode = file_inode(file);
1874 
1875 	/*
1876 	 * If the process doing a transaction is crashed, we should do
1877 	 * roll-back. Otherwise, other reader/write can see corrupted database
1878 	 * until all the writers close its file. Since this should be done
1879 	 * before dropping file lock, it needs to do in ->flush.
1880 	 */
1881 	if (F2FS_I(inode)->atomic_write_task == current &&
1882 				(current->flags & PF_EXITING)) {
1883 		inode_lock(inode);
1884 		f2fs_abort_atomic_write(inode, true);
1885 		inode_unlock(inode);
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1892 {
1893 	struct f2fs_inode_info *fi = F2FS_I(inode);
1894 	u32 masked_flags = fi->i_flags & mask;
1895 
1896 	/* mask can be shrunk by flags_valid selector */
1897 	iflags &= mask;
1898 
1899 	/* Is it quota file? Do not allow user to mess with it */
1900 	if (IS_NOQUOTA(inode))
1901 		return -EPERM;
1902 
1903 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1904 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1905 			return -EOPNOTSUPP;
1906 		if (!f2fs_empty_dir(inode))
1907 			return -ENOTEMPTY;
1908 	}
1909 
1910 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1911 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1912 			return -EOPNOTSUPP;
1913 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1914 			return -EINVAL;
1915 	}
1916 
1917 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1918 		if (masked_flags & F2FS_COMPR_FL) {
1919 			if (!f2fs_disable_compressed_file(inode))
1920 				return -EINVAL;
1921 		} else {
1922 			/* try to convert inline_data to support compression */
1923 			int err = f2fs_convert_inline_inode(inode);
1924 			if (err)
1925 				return err;
1926 
1927 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1928 			if (!f2fs_may_compress(inode) ||
1929 					(S_ISREG(inode->i_mode) &&
1930 					F2FS_HAS_BLOCKS(inode))) {
1931 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1932 				return -EINVAL;
1933 			}
1934 			err = set_compress_context(inode);
1935 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1936 
1937 			if (err)
1938 				return err;
1939 		}
1940 	}
1941 
1942 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1943 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1944 					(fi->i_flags & F2FS_NOCOMP_FL));
1945 
1946 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1947 		set_inode_flag(inode, FI_PROJ_INHERIT);
1948 	else
1949 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1950 
1951 	inode->i_ctime = current_time(inode);
1952 	f2fs_set_inode_flags(inode);
1953 	f2fs_mark_inode_dirty_sync(inode, true);
1954 	return 0;
1955 }
1956 
1957 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1958 
1959 /*
1960  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1961  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1962  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1963  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1964  *
1965  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1966  * FS_IOC_FSSETXATTR is done by the VFS.
1967  */
1968 
1969 static const struct {
1970 	u32 iflag;
1971 	u32 fsflag;
1972 } f2fs_fsflags_map[] = {
1973 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1974 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1975 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1976 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1977 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1978 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1979 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1980 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1981 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1982 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1983 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1984 };
1985 
1986 #define F2FS_GETTABLE_FS_FL (		\
1987 		FS_COMPR_FL |		\
1988 		FS_SYNC_FL |		\
1989 		FS_IMMUTABLE_FL |	\
1990 		FS_APPEND_FL |		\
1991 		FS_NODUMP_FL |		\
1992 		FS_NOATIME_FL |		\
1993 		FS_NOCOMP_FL |		\
1994 		FS_INDEX_FL |		\
1995 		FS_DIRSYNC_FL |		\
1996 		FS_PROJINHERIT_FL |	\
1997 		FS_ENCRYPT_FL |		\
1998 		FS_INLINE_DATA_FL |	\
1999 		FS_NOCOW_FL |		\
2000 		FS_VERITY_FL |		\
2001 		FS_CASEFOLD_FL)
2002 
2003 #define F2FS_SETTABLE_FS_FL (		\
2004 		FS_COMPR_FL |		\
2005 		FS_SYNC_FL |		\
2006 		FS_IMMUTABLE_FL |	\
2007 		FS_APPEND_FL |		\
2008 		FS_NODUMP_FL |		\
2009 		FS_NOATIME_FL |		\
2010 		FS_NOCOMP_FL |		\
2011 		FS_DIRSYNC_FL |		\
2012 		FS_PROJINHERIT_FL |	\
2013 		FS_CASEFOLD_FL)
2014 
2015 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2016 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2017 {
2018 	u32 fsflags = 0;
2019 	int i;
2020 
2021 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2022 		if (iflags & f2fs_fsflags_map[i].iflag)
2023 			fsflags |= f2fs_fsflags_map[i].fsflag;
2024 
2025 	return fsflags;
2026 }
2027 
2028 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2029 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2030 {
2031 	u32 iflags = 0;
2032 	int i;
2033 
2034 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2035 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2036 			iflags |= f2fs_fsflags_map[i].iflag;
2037 
2038 	return iflags;
2039 }
2040 
2041 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2042 {
2043 	struct inode *inode = file_inode(filp);
2044 
2045 	return put_user(inode->i_generation, (int __user *)arg);
2046 }
2047 
2048 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2049 {
2050 	struct inode *inode = file_inode(filp);
2051 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2052 	struct f2fs_inode_info *fi = F2FS_I(inode);
2053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2054 	struct inode *pinode;
2055 	loff_t isize;
2056 	int ret;
2057 
2058 	if (!inode_owner_or_capable(idmap, inode))
2059 		return -EACCES;
2060 
2061 	if (!S_ISREG(inode->i_mode))
2062 		return -EINVAL;
2063 
2064 	if (filp->f_flags & O_DIRECT)
2065 		return -EINVAL;
2066 
2067 	ret = mnt_want_write_file(filp);
2068 	if (ret)
2069 		return ret;
2070 
2071 	inode_lock(inode);
2072 
2073 	if (!f2fs_disable_compressed_file(inode)) {
2074 		ret = -EINVAL;
2075 		goto out;
2076 	}
2077 
2078 	if (f2fs_is_atomic_file(inode))
2079 		goto out;
2080 
2081 	ret = f2fs_convert_inline_inode(inode);
2082 	if (ret)
2083 		goto out;
2084 
2085 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2086 
2087 	/*
2088 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2089 	 * f2fs_is_atomic_file.
2090 	 */
2091 	if (get_dirty_pages(inode))
2092 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2093 			  inode->i_ino, get_dirty_pages(inode));
2094 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2095 	if (ret) {
2096 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2097 		goto out;
2098 	}
2099 
2100 	/* Check if the inode already has a COW inode */
2101 	if (fi->cow_inode == NULL) {
2102 		/* Create a COW inode for atomic write */
2103 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2104 		if (IS_ERR(pinode)) {
2105 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2106 			ret = PTR_ERR(pinode);
2107 			goto out;
2108 		}
2109 
2110 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2111 		iput(pinode);
2112 		if (ret) {
2113 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2114 			goto out;
2115 		}
2116 
2117 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2118 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2119 	} else {
2120 		/* Reuse the already created COW inode */
2121 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2122 		if (ret) {
2123 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2124 			goto out;
2125 		}
2126 	}
2127 
2128 	f2fs_write_inode(inode, NULL);
2129 
2130 	stat_inc_atomic_inode(inode);
2131 
2132 	set_inode_flag(inode, FI_ATOMIC_FILE);
2133 
2134 	isize = i_size_read(inode);
2135 	fi->original_i_size = isize;
2136 	if (truncate) {
2137 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2138 		truncate_inode_pages_final(inode->i_mapping);
2139 		f2fs_i_size_write(inode, 0);
2140 		isize = 0;
2141 	}
2142 	f2fs_i_size_write(fi->cow_inode, isize);
2143 
2144 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2145 
2146 	f2fs_update_time(sbi, REQ_TIME);
2147 	fi->atomic_write_task = current;
2148 	stat_update_max_atomic_write(inode);
2149 	fi->atomic_write_cnt = 0;
2150 out:
2151 	inode_unlock(inode);
2152 	mnt_drop_write_file(filp);
2153 	return ret;
2154 }
2155 
2156 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2157 {
2158 	struct inode *inode = file_inode(filp);
2159 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2160 	int ret;
2161 
2162 	if (!inode_owner_or_capable(idmap, inode))
2163 		return -EACCES;
2164 
2165 	ret = mnt_want_write_file(filp);
2166 	if (ret)
2167 		return ret;
2168 
2169 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2170 
2171 	inode_lock(inode);
2172 
2173 	if (f2fs_is_atomic_file(inode)) {
2174 		ret = f2fs_commit_atomic_write(inode);
2175 		if (!ret)
2176 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2177 
2178 		f2fs_abort_atomic_write(inode, ret);
2179 	} else {
2180 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2181 	}
2182 
2183 	inode_unlock(inode);
2184 	mnt_drop_write_file(filp);
2185 	return ret;
2186 }
2187 
2188 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2189 {
2190 	struct inode *inode = file_inode(filp);
2191 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2192 	int ret;
2193 
2194 	if (!inode_owner_or_capable(idmap, inode))
2195 		return -EACCES;
2196 
2197 	ret = mnt_want_write_file(filp);
2198 	if (ret)
2199 		return ret;
2200 
2201 	inode_lock(inode);
2202 
2203 	f2fs_abort_atomic_write(inode, true);
2204 
2205 	inode_unlock(inode);
2206 
2207 	mnt_drop_write_file(filp);
2208 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2209 	return ret;
2210 }
2211 
2212 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2213 {
2214 	struct inode *inode = file_inode(filp);
2215 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2216 	struct super_block *sb = sbi->sb;
2217 	__u32 in;
2218 	int ret = 0;
2219 
2220 	if (!capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 
2223 	if (get_user(in, (__u32 __user *)arg))
2224 		return -EFAULT;
2225 
2226 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2227 		ret = mnt_want_write_file(filp);
2228 		if (ret) {
2229 			if (ret == -EROFS) {
2230 				ret = 0;
2231 				f2fs_stop_checkpoint(sbi, false,
2232 						STOP_CP_REASON_SHUTDOWN);
2233 				trace_f2fs_shutdown(sbi, in, ret);
2234 			}
2235 			return ret;
2236 		}
2237 	}
2238 
2239 	switch (in) {
2240 	case F2FS_GOING_DOWN_FULLSYNC:
2241 		ret = freeze_bdev(sb->s_bdev);
2242 		if (ret)
2243 			goto out;
2244 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2245 		thaw_bdev(sb->s_bdev);
2246 		break;
2247 	case F2FS_GOING_DOWN_METASYNC:
2248 		/* do checkpoint only */
2249 		ret = f2fs_sync_fs(sb, 1);
2250 		if (ret)
2251 			goto out;
2252 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2253 		break;
2254 	case F2FS_GOING_DOWN_NOSYNC:
2255 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2256 		break;
2257 	case F2FS_GOING_DOWN_METAFLUSH:
2258 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2259 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2260 		break;
2261 	case F2FS_GOING_DOWN_NEED_FSCK:
2262 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2263 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2264 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2265 		/* do checkpoint only */
2266 		ret = f2fs_sync_fs(sb, 1);
2267 		goto out;
2268 	default:
2269 		ret = -EINVAL;
2270 		goto out;
2271 	}
2272 
2273 	f2fs_stop_gc_thread(sbi);
2274 	f2fs_stop_discard_thread(sbi);
2275 
2276 	f2fs_drop_discard_cmd(sbi);
2277 	clear_opt(sbi, DISCARD);
2278 
2279 	f2fs_update_time(sbi, REQ_TIME);
2280 out:
2281 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2282 		mnt_drop_write_file(filp);
2283 
2284 	trace_f2fs_shutdown(sbi, in, ret);
2285 
2286 	return ret;
2287 }
2288 
2289 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2290 {
2291 	struct inode *inode = file_inode(filp);
2292 	struct super_block *sb = inode->i_sb;
2293 	struct fstrim_range range;
2294 	int ret;
2295 
2296 	if (!capable(CAP_SYS_ADMIN))
2297 		return -EPERM;
2298 
2299 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2300 		return -EOPNOTSUPP;
2301 
2302 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2303 				sizeof(range)))
2304 		return -EFAULT;
2305 
2306 	ret = mnt_want_write_file(filp);
2307 	if (ret)
2308 		return ret;
2309 
2310 	range.minlen = max((unsigned int)range.minlen,
2311 			   bdev_discard_granularity(sb->s_bdev));
2312 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2313 	mnt_drop_write_file(filp);
2314 	if (ret < 0)
2315 		return ret;
2316 
2317 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2318 				sizeof(range)))
2319 		return -EFAULT;
2320 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321 	return 0;
2322 }
2323 
2324 static bool uuid_is_nonzero(__u8 u[16])
2325 {
2326 	int i;
2327 
2328 	for (i = 0; i < 16; i++)
2329 		if (u[i])
2330 			return true;
2331 	return false;
2332 }
2333 
2334 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2335 {
2336 	struct inode *inode = file_inode(filp);
2337 
2338 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2339 		return -EOPNOTSUPP;
2340 
2341 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2342 
2343 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2344 }
2345 
2346 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2347 {
2348 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2349 		return -EOPNOTSUPP;
2350 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2351 }
2352 
2353 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2354 {
2355 	struct inode *inode = file_inode(filp);
2356 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2357 	u8 encrypt_pw_salt[16];
2358 	int err;
2359 
2360 	if (!f2fs_sb_has_encrypt(sbi))
2361 		return -EOPNOTSUPP;
2362 
2363 	err = mnt_want_write_file(filp);
2364 	if (err)
2365 		return err;
2366 
2367 	f2fs_down_write(&sbi->sb_lock);
2368 
2369 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2370 		goto got_it;
2371 
2372 	/* update superblock with uuid */
2373 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2374 
2375 	err = f2fs_commit_super(sbi, false);
2376 	if (err) {
2377 		/* undo new data */
2378 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2379 		goto out_err;
2380 	}
2381 got_it:
2382 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2383 out_err:
2384 	f2fs_up_write(&sbi->sb_lock);
2385 	mnt_drop_write_file(filp);
2386 
2387 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2388 		err = -EFAULT;
2389 
2390 	return err;
2391 }
2392 
2393 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2394 					     unsigned long arg)
2395 {
2396 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2397 		return -EOPNOTSUPP;
2398 
2399 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2400 }
2401 
2402 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2403 {
2404 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2405 		return -EOPNOTSUPP;
2406 
2407 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2408 }
2409 
2410 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2411 {
2412 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2413 		return -EOPNOTSUPP;
2414 
2415 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2416 }
2417 
2418 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2419 						    unsigned long arg)
2420 {
2421 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2422 		return -EOPNOTSUPP;
2423 
2424 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2425 }
2426 
2427 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2428 					      unsigned long arg)
2429 {
2430 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2431 		return -EOPNOTSUPP;
2432 
2433 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2434 }
2435 
2436 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2437 {
2438 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2439 		return -EOPNOTSUPP;
2440 
2441 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2442 }
2443 
2444 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2445 {
2446 	struct inode *inode = file_inode(filp);
2447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2448 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2449 			.no_bg_gc = false,
2450 			.should_migrate_blocks = false,
2451 			.nr_free_secs = 0 };
2452 	__u32 sync;
2453 	int ret;
2454 
2455 	if (!capable(CAP_SYS_ADMIN))
2456 		return -EPERM;
2457 
2458 	if (get_user(sync, (__u32 __user *)arg))
2459 		return -EFAULT;
2460 
2461 	if (f2fs_readonly(sbi->sb))
2462 		return -EROFS;
2463 
2464 	ret = mnt_want_write_file(filp);
2465 	if (ret)
2466 		return ret;
2467 
2468 	if (!sync) {
2469 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2470 			ret = -EBUSY;
2471 			goto out;
2472 		}
2473 	} else {
2474 		f2fs_down_write(&sbi->gc_lock);
2475 	}
2476 
2477 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2478 	gc_control.err_gc_skipped = sync;
2479 	ret = f2fs_gc(sbi, &gc_control);
2480 out:
2481 	mnt_drop_write_file(filp);
2482 	return ret;
2483 }
2484 
2485 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2486 {
2487 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2488 	struct f2fs_gc_control gc_control = {
2489 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2490 			.no_bg_gc = false,
2491 			.should_migrate_blocks = false,
2492 			.err_gc_skipped = range->sync,
2493 			.nr_free_secs = 0 };
2494 	u64 end;
2495 	int ret;
2496 
2497 	if (!capable(CAP_SYS_ADMIN))
2498 		return -EPERM;
2499 	if (f2fs_readonly(sbi->sb))
2500 		return -EROFS;
2501 
2502 	end = range->start + range->len;
2503 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2504 					end >= MAX_BLKADDR(sbi))
2505 		return -EINVAL;
2506 
2507 	ret = mnt_want_write_file(filp);
2508 	if (ret)
2509 		return ret;
2510 
2511 do_more:
2512 	if (!range->sync) {
2513 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2514 			ret = -EBUSY;
2515 			goto out;
2516 		}
2517 	} else {
2518 		f2fs_down_write(&sbi->gc_lock);
2519 	}
2520 
2521 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2522 	ret = f2fs_gc(sbi, &gc_control);
2523 	if (ret) {
2524 		if (ret == -EBUSY)
2525 			ret = -EAGAIN;
2526 		goto out;
2527 	}
2528 	range->start += CAP_BLKS_PER_SEC(sbi);
2529 	if (range->start <= end)
2530 		goto do_more;
2531 out:
2532 	mnt_drop_write_file(filp);
2533 	return ret;
2534 }
2535 
2536 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2537 {
2538 	struct f2fs_gc_range range;
2539 
2540 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2541 							sizeof(range)))
2542 		return -EFAULT;
2543 	return __f2fs_ioc_gc_range(filp, &range);
2544 }
2545 
2546 static int f2fs_ioc_write_checkpoint(struct file *filp)
2547 {
2548 	struct inode *inode = file_inode(filp);
2549 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2550 	int ret;
2551 
2552 	if (!capable(CAP_SYS_ADMIN))
2553 		return -EPERM;
2554 
2555 	if (f2fs_readonly(sbi->sb))
2556 		return -EROFS;
2557 
2558 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2559 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2560 		return -EINVAL;
2561 	}
2562 
2563 	ret = mnt_want_write_file(filp);
2564 	if (ret)
2565 		return ret;
2566 
2567 	ret = f2fs_sync_fs(sbi->sb, 1);
2568 
2569 	mnt_drop_write_file(filp);
2570 	return ret;
2571 }
2572 
2573 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2574 					struct file *filp,
2575 					struct f2fs_defragment *range)
2576 {
2577 	struct inode *inode = file_inode(filp);
2578 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2579 					.m_seg_type = NO_CHECK_TYPE,
2580 					.m_may_create = false };
2581 	struct extent_info ei = {};
2582 	pgoff_t pg_start, pg_end, next_pgofs;
2583 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2584 	unsigned int total = 0, sec_num;
2585 	block_t blk_end = 0;
2586 	bool fragmented = false;
2587 	int err;
2588 
2589 	pg_start = range->start >> PAGE_SHIFT;
2590 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2591 
2592 	f2fs_balance_fs(sbi, true);
2593 
2594 	inode_lock(inode);
2595 
2596 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2597 		err = -EINVAL;
2598 		goto unlock_out;
2599 	}
2600 
2601 	/* if in-place-update policy is enabled, don't waste time here */
2602 	set_inode_flag(inode, FI_OPU_WRITE);
2603 	if (f2fs_should_update_inplace(inode, NULL)) {
2604 		err = -EINVAL;
2605 		goto out;
2606 	}
2607 
2608 	/* writeback all dirty pages in the range */
2609 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2610 						range->start + range->len - 1);
2611 	if (err)
2612 		goto out;
2613 
2614 	/*
2615 	 * lookup mapping info in extent cache, skip defragmenting if physical
2616 	 * block addresses are continuous.
2617 	 */
2618 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2619 		if (ei.fofs + ei.len >= pg_end)
2620 			goto out;
2621 	}
2622 
2623 	map.m_lblk = pg_start;
2624 	map.m_next_pgofs = &next_pgofs;
2625 
2626 	/*
2627 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2628 	 * physical block addresses are continuous even if there are hole(s)
2629 	 * in logical blocks.
2630 	 */
2631 	while (map.m_lblk < pg_end) {
2632 		map.m_len = pg_end - map.m_lblk;
2633 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2634 		if (err)
2635 			goto out;
2636 
2637 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2638 			map.m_lblk = next_pgofs;
2639 			continue;
2640 		}
2641 
2642 		if (blk_end && blk_end != map.m_pblk)
2643 			fragmented = true;
2644 
2645 		/* record total count of block that we're going to move */
2646 		total += map.m_len;
2647 
2648 		blk_end = map.m_pblk + map.m_len;
2649 
2650 		map.m_lblk += map.m_len;
2651 	}
2652 
2653 	if (!fragmented) {
2654 		total = 0;
2655 		goto out;
2656 	}
2657 
2658 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2659 
2660 	/*
2661 	 * make sure there are enough free section for LFS allocation, this can
2662 	 * avoid defragment running in SSR mode when free section are allocated
2663 	 * intensively
2664 	 */
2665 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2666 		err = -EAGAIN;
2667 		goto out;
2668 	}
2669 
2670 	map.m_lblk = pg_start;
2671 	map.m_len = pg_end - pg_start;
2672 	total = 0;
2673 
2674 	while (map.m_lblk < pg_end) {
2675 		pgoff_t idx;
2676 		int cnt = 0;
2677 
2678 do_map:
2679 		map.m_len = pg_end - map.m_lblk;
2680 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2681 		if (err)
2682 			goto clear_out;
2683 
2684 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2685 			map.m_lblk = next_pgofs;
2686 			goto check;
2687 		}
2688 
2689 		set_inode_flag(inode, FI_SKIP_WRITES);
2690 
2691 		idx = map.m_lblk;
2692 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2693 			struct page *page;
2694 
2695 			page = f2fs_get_lock_data_page(inode, idx, true);
2696 			if (IS_ERR(page)) {
2697 				err = PTR_ERR(page);
2698 				goto clear_out;
2699 			}
2700 
2701 			set_page_dirty(page);
2702 			set_page_private_gcing(page);
2703 			f2fs_put_page(page, 1);
2704 
2705 			idx++;
2706 			cnt++;
2707 			total++;
2708 		}
2709 
2710 		map.m_lblk = idx;
2711 check:
2712 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2713 			goto do_map;
2714 
2715 		clear_inode_flag(inode, FI_SKIP_WRITES);
2716 
2717 		err = filemap_fdatawrite(inode->i_mapping);
2718 		if (err)
2719 			goto out;
2720 	}
2721 clear_out:
2722 	clear_inode_flag(inode, FI_SKIP_WRITES);
2723 out:
2724 	clear_inode_flag(inode, FI_OPU_WRITE);
2725 unlock_out:
2726 	inode_unlock(inode);
2727 	if (!err)
2728 		range->len = (u64)total << PAGE_SHIFT;
2729 	return err;
2730 }
2731 
2732 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2733 {
2734 	struct inode *inode = file_inode(filp);
2735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2736 	struct f2fs_defragment range;
2737 	int err;
2738 
2739 	if (!capable(CAP_SYS_ADMIN))
2740 		return -EPERM;
2741 
2742 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2743 		return -EINVAL;
2744 
2745 	if (f2fs_readonly(sbi->sb))
2746 		return -EROFS;
2747 
2748 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2749 							sizeof(range)))
2750 		return -EFAULT;
2751 
2752 	/* verify alignment of offset & size */
2753 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2754 		return -EINVAL;
2755 
2756 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2757 					max_file_blocks(inode)))
2758 		return -EINVAL;
2759 
2760 	err = mnt_want_write_file(filp);
2761 	if (err)
2762 		return err;
2763 
2764 	err = f2fs_defragment_range(sbi, filp, &range);
2765 	mnt_drop_write_file(filp);
2766 
2767 	f2fs_update_time(sbi, REQ_TIME);
2768 	if (err < 0)
2769 		return err;
2770 
2771 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2772 							sizeof(range)))
2773 		return -EFAULT;
2774 
2775 	return 0;
2776 }
2777 
2778 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2779 			struct file *file_out, loff_t pos_out, size_t len)
2780 {
2781 	struct inode *src = file_inode(file_in);
2782 	struct inode *dst = file_inode(file_out);
2783 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2784 	size_t olen = len, dst_max_i_size = 0;
2785 	size_t dst_osize;
2786 	int ret;
2787 
2788 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2789 				src->i_sb != dst->i_sb)
2790 		return -EXDEV;
2791 
2792 	if (unlikely(f2fs_readonly(src->i_sb)))
2793 		return -EROFS;
2794 
2795 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2796 		return -EINVAL;
2797 
2798 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2799 		return -EOPNOTSUPP;
2800 
2801 	if (pos_out < 0 || pos_in < 0)
2802 		return -EINVAL;
2803 
2804 	if (src == dst) {
2805 		if (pos_in == pos_out)
2806 			return 0;
2807 		if (pos_out > pos_in && pos_out < pos_in + len)
2808 			return -EINVAL;
2809 	}
2810 
2811 	inode_lock(src);
2812 	if (src != dst) {
2813 		ret = -EBUSY;
2814 		if (!inode_trylock(dst))
2815 			goto out;
2816 	}
2817 
2818 	ret = -EINVAL;
2819 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2820 		goto out_unlock;
2821 	if (len == 0)
2822 		olen = len = src->i_size - pos_in;
2823 	if (pos_in + len == src->i_size)
2824 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2825 	if (len == 0) {
2826 		ret = 0;
2827 		goto out_unlock;
2828 	}
2829 
2830 	dst_osize = dst->i_size;
2831 	if (pos_out + olen > dst->i_size)
2832 		dst_max_i_size = pos_out + olen;
2833 
2834 	/* verify the end result is block aligned */
2835 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2836 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2837 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2838 		goto out_unlock;
2839 
2840 	ret = f2fs_convert_inline_inode(src);
2841 	if (ret)
2842 		goto out_unlock;
2843 
2844 	ret = f2fs_convert_inline_inode(dst);
2845 	if (ret)
2846 		goto out_unlock;
2847 
2848 	/* write out all dirty pages from offset */
2849 	ret = filemap_write_and_wait_range(src->i_mapping,
2850 					pos_in, pos_in + len);
2851 	if (ret)
2852 		goto out_unlock;
2853 
2854 	ret = filemap_write_and_wait_range(dst->i_mapping,
2855 					pos_out, pos_out + len);
2856 	if (ret)
2857 		goto out_unlock;
2858 
2859 	f2fs_balance_fs(sbi, true);
2860 
2861 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2862 	if (src != dst) {
2863 		ret = -EBUSY;
2864 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2865 			goto out_src;
2866 	}
2867 
2868 	f2fs_lock_op(sbi);
2869 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2870 				pos_out >> F2FS_BLKSIZE_BITS,
2871 				len >> F2FS_BLKSIZE_BITS, false);
2872 
2873 	if (!ret) {
2874 		if (dst_max_i_size)
2875 			f2fs_i_size_write(dst, dst_max_i_size);
2876 		else if (dst_osize != dst->i_size)
2877 			f2fs_i_size_write(dst, dst_osize);
2878 	}
2879 	f2fs_unlock_op(sbi);
2880 
2881 	if (src != dst)
2882 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2883 out_src:
2884 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2885 	if (ret)
2886 		goto out_unlock;
2887 
2888 	src->i_mtime = src->i_ctime = current_time(src);
2889 	f2fs_mark_inode_dirty_sync(src, false);
2890 	if (src != dst) {
2891 		dst->i_mtime = dst->i_ctime = current_time(dst);
2892 		f2fs_mark_inode_dirty_sync(dst, false);
2893 	}
2894 	f2fs_update_time(sbi, REQ_TIME);
2895 
2896 out_unlock:
2897 	if (src != dst)
2898 		inode_unlock(dst);
2899 out:
2900 	inode_unlock(src);
2901 	return ret;
2902 }
2903 
2904 static int __f2fs_ioc_move_range(struct file *filp,
2905 				struct f2fs_move_range *range)
2906 {
2907 	struct fd dst;
2908 	int err;
2909 
2910 	if (!(filp->f_mode & FMODE_READ) ||
2911 			!(filp->f_mode & FMODE_WRITE))
2912 		return -EBADF;
2913 
2914 	dst = fdget(range->dst_fd);
2915 	if (!dst.file)
2916 		return -EBADF;
2917 
2918 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2919 		err = -EBADF;
2920 		goto err_out;
2921 	}
2922 
2923 	err = mnt_want_write_file(filp);
2924 	if (err)
2925 		goto err_out;
2926 
2927 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2928 					range->pos_out, range->len);
2929 
2930 	mnt_drop_write_file(filp);
2931 err_out:
2932 	fdput(dst);
2933 	return err;
2934 }
2935 
2936 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2937 {
2938 	struct f2fs_move_range range;
2939 
2940 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2941 							sizeof(range)))
2942 		return -EFAULT;
2943 	return __f2fs_ioc_move_range(filp, &range);
2944 }
2945 
2946 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2947 {
2948 	struct inode *inode = file_inode(filp);
2949 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2950 	struct sit_info *sm = SIT_I(sbi);
2951 	unsigned int start_segno = 0, end_segno = 0;
2952 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2953 	struct f2fs_flush_device range;
2954 	struct f2fs_gc_control gc_control = {
2955 			.init_gc_type = FG_GC,
2956 			.should_migrate_blocks = true,
2957 			.err_gc_skipped = true,
2958 			.nr_free_secs = 0 };
2959 	int ret;
2960 
2961 	if (!capable(CAP_SYS_ADMIN))
2962 		return -EPERM;
2963 
2964 	if (f2fs_readonly(sbi->sb))
2965 		return -EROFS;
2966 
2967 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2968 		return -EINVAL;
2969 
2970 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2971 							sizeof(range)))
2972 		return -EFAULT;
2973 
2974 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2975 			__is_large_section(sbi)) {
2976 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2977 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2978 		return -EINVAL;
2979 	}
2980 
2981 	ret = mnt_want_write_file(filp);
2982 	if (ret)
2983 		return ret;
2984 
2985 	if (range.dev_num != 0)
2986 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2987 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2988 
2989 	start_segno = sm->last_victim[FLUSH_DEVICE];
2990 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2991 		start_segno = dev_start_segno;
2992 	end_segno = min(start_segno + range.segments, dev_end_segno);
2993 
2994 	while (start_segno < end_segno) {
2995 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2996 			ret = -EBUSY;
2997 			goto out;
2998 		}
2999 		sm->last_victim[GC_CB] = end_segno + 1;
3000 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3001 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3002 
3003 		gc_control.victim_segno = start_segno;
3004 		ret = f2fs_gc(sbi, &gc_control);
3005 		if (ret == -EAGAIN)
3006 			ret = 0;
3007 		else if (ret < 0)
3008 			break;
3009 		start_segno++;
3010 	}
3011 out:
3012 	mnt_drop_write_file(filp);
3013 	return ret;
3014 }
3015 
3016 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3017 {
3018 	struct inode *inode = file_inode(filp);
3019 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3020 
3021 	/* Must validate to set it with SQLite behavior in Android. */
3022 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3023 
3024 	return put_user(sb_feature, (u32 __user *)arg);
3025 }
3026 
3027 #ifdef CONFIG_QUOTA
3028 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3029 {
3030 	struct dquot *transfer_to[MAXQUOTAS] = {};
3031 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3032 	struct super_block *sb = sbi->sb;
3033 	int err;
3034 
3035 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3036 	if (IS_ERR(transfer_to[PRJQUOTA]))
3037 		return PTR_ERR(transfer_to[PRJQUOTA]);
3038 
3039 	err = __dquot_transfer(inode, transfer_to);
3040 	if (err)
3041 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3042 	dqput(transfer_to[PRJQUOTA]);
3043 	return err;
3044 }
3045 
3046 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3047 {
3048 	struct f2fs_inode_info *fi = F2FS_I(inode);
3049 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3050 	struct f2fs_inode *ri = NULL;
3051 	kprojid_t kprojid;
3052 	int err;
3053 
3054 	if (!f2fs_sb_has_project_quota(sbi)) {
3055 		if (projid != F2FS_DEF_PROJID)
3056 			return -EOPNOTSUPP;
3057 		else
3058 			return 0;
3059 	}
3060 
3061 	if (!f2fs_has_extra_attr(inode))
3062 		return -EOPNOTSUPP;
3063 
3064 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3065 
3066 	if (projid_eq(kprojid, fi->i_projid))
3067 		return 0;
3068 
3069 	err = -EPERM;
3070 	/* Is it quota file? Do not allow user to mess with it */
3071 	if (IS_NOQUOTA(inode))
3072 		return err;
3073 
3074 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3075 		return -EOVERFLOW;
3076 
3077 	err = f2fs_dquot_initialize(inode);
3078 	if (err)
3079 		return err;
3080 
3081 	f2fs_lock_op(sbi);
3082 	err = f2fs_transfer_project_quota(inode, kprojid);
3083 	if (err)
3084 		goto out_unlock;
3085 
3086 	fi->i_projid = kprojid;
3087 	inode->i_ctime = current_time(inode);
3088 	f2fs_mark_inode_dirty_sync(inode, true);
3089 out_unlock:
3090 	f2fs_unlock_op(sbi);
3091 	return err;
3092 }
3093 #else
3094 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3095 {
3096 	return 0;
3097 }
3098 
3099 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3100 {
3101 	if (projid != F2FS_DEF_PROJID)
3102 		return -EOPNOTSUPP;
3103 	return 0;
3104 }
3105 #endif
3106 
3107 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3108 {
3109 	struct inode *inode = d_inode(dentry);
3110 	struct f2fs_inode_info *fi = F2FS_I(inode);
3111 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3112 
3113 	if (IS_ENCRYPTED(inode))
3114 		fsflags |= FS_ENCRYPT_FL;
3115 	if (IS_VERITY(inode))
3116 		fsflags |= FS_VERITY_FL;
3117 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3118 		fsflags |= FS_INLINE_DATA_FL;
3119 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3120 		fsflags |= FS_NOCOW_FL;
3121 
3122 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3123 
3124 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3125 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3126 
3127 	return 0;
3128 }
3129 
3130 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3131 		      struct dentry *dentry, struct fileattr *fa)
3132 {
3133 	struct inode *inode = d_inode(dentry);
3134 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3135 	u32 iflags;
3136 	int err;
3137 
3138 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3139 		return -EIO;
3140 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3141 		return -ENOSPC;
3142 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3143 		return -EOPNOTSUPP;
3144 	fsflags &= F2FS_SETTABLE_FS_FL;
3145 	if (!fa->flags_valid)
3146 		mask &= FS_COMMON_FL;
3147 
3148 	iflags = f2fs_fsflags_to_iflags(fsflags);
3149 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3150 		return -EOPNOTSUPP;
3151 
3152 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3153 	if (!err)
3154 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3155 
3156 	return err;
3157 }
3158 
3159 int f2fs_pin_file_control(struct inode *inode, bool inc)
3160 {
3161 	struct f2fs_inode_info *fi = F2FS_I(inode);
3162 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3163 
3164 	/* Use i_gc_failures for normal file as a risk signal. */
3165 	if (inc)
3166 		f2fs_i_gc_failures_write(inode,
3167 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3168 
3169 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3170 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3171 			  __func__, inode->i_ino,
3172 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3173 		clear_inode_flag(inode, FI_PIN_FILE);
3174 		return -EAGAIN;
3175 	}
3176 	return 0;
3177 }
3178 
3179 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3180 {
3181 	struct inode *inode = file_inode(filp);
3182 	__u32 pin;
3183 	int ret = 0;
3184 
3185 	if (get_user(pin, (__u32 __user *)arg))
3186 		return -EFAULT;
3187 
3188 	if (!S_ISREG(inode->i_mode))
3189 		return -EINVAL;
3190 
3191 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3192 		return -EROFS;
3193 
3194 	ret = mnt_want_write_file(filp);
3195 	if (ret)
3196 		return ret;
3197 
3198 	inode_lock(inode);
3199 
3200 	if (!pin) {
3201 		clear_inode_flag(inode, FI_PIN_FILE);
3202 		f2fs_i_gc_failures_write(inode, 0);
3203 		goto done;
3204 	}
3205 
3206 	if (f2fs_should_update_outplace(inode, NULL)) {
3207 		ret = -EINVAL;
3208 		goto out;
3209 	}
3210 
3211 	if (f2fs_pin_file_control(inode, false)) {
3212 		ret = -EAGAIN;
3213 		goto out;
3214 	}
3215 
3216 	ret = f2fs_convert_inline_inode(inode);
3217 	if (ret)
3218 		goto out;
3219 
3220 	if (!f2fs_disable_compressed_file(inode)) {
3221 		ret = -EOPNOTSUPP;
3222 		goto out;
3223 	}
3224 
3225 	set_inode_flag(inode, FI_PIN_FILE);
3226 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3227 done:
3228 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3229 out:
3230 	inode_unlock(inode);
3231 	mnt_drop_write_file(filp);
3232 	return ret;
3233 }
3234 
3235 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3236 {
3237 	struct inode *inode = file_inode(filp);
3238 	__u32 pin = 0;
3239 
3240 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3241 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3242 	return put_user(pin, (u32 __user *)arg);
3243 }
3244 
3245 int f2fs_precache_extents(struct inode *inode)
3246 {
3247 	struct f2fs_inode_info *fi = F2FS_I(inode);
3248 	struct f2fs_map_blocks map;
3249 	pgoff_t m_next_extent;
3250 	loff_t end;
3251 	int err;
3252 
3253 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3254 		return -EOPNOTSUPP;
3255 
3256 	map.m_lblk = 0;
3257 	map.m_next_pgofs = NULL;
3258 	map.m_next_extent = &m_next_extent;
3259 	map.m_seg_type = NO_CHECK_TYPE;
3260 	map.m_may_create = false;
3261 	end = max_file_blocks(inode);
3262 
3263 	while (map.m_lblk < end) {
3264 		map.m_len = end - map.m_lblk;
3265 
3266 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3267 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3268 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3269 		if (err)
3270 			return err;
3271 
3272 		map.m_lblk = m_next_extent;
3273 	}
3274 
3275 	return 0;
3276 }
3277 
3278 static int f2fs_ioc_precache_extents(struct file *filp)
3279 {
3280 	return f2fs_precache_extents(file_inode(filp));
3281 }
3282 
3283 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3284 {
3285 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3286 	__u64 block_count;
3287 
3288 	if (!capable(CAP_SYS_ADMIN))
3289 		return -EPERM;
3290 
3291 	if (f2fs_readonly(sbi->sb))
3292 		return -EROFS;
3293 
3294 	if (copy_from_user(&block_count, (void __user *)arg,
3295 			   sizeof(block_count)))
3296 		return -EFAULT;
3297 
3298 	return f2fs_resize_fs(filp, block_count);
3299 }
3300 
3301 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3302 {
3303 	struct inode *inode = file_inode(filp);
3304 
3305 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3306 
3307 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3308 		f2fs_warn(F2FS_I_SB(inode),
3309 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3310 			  inode->i_ino);
3311 		return -EOPNOTSUPP;
3312 	}
3313 
3314 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3315 }
3316 
3317 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3318 {
3319 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3320 		return -EOPNOTSUPP;
3321 
3322 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3323 }
3324 
3325 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3326 {
3327 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3328 		return -EOPNOTSUPP;
3329 
3330 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3331 }
3332 
3333 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3334 {
3335 	struct inode *inode = file_inode(filp);
3336 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3337 	char *vbuf;
3338 	int count;
3339 	int err = 0;
3340 
3341 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3342 	if (!vbuf)
3343 		return -ENOMEM;
3344 
3345 	f2fs_down_read(&sbi->sb_lock);
3346 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3347 			ARRAY_SIZE(sbi->raw_super->volume_name),
3348 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3349 	f2fs_up_read(&sbi->sb_lock);
3350 
3351 	if (copy_to_user((char __user *)arg, vbuf,
3352 				min(FSLABEL_MAX, count)))
3353 		err = -EFAULT;
3354 
3355 	kfree(vbuf);
3356 	return err;
3357 }
3358 
3359 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3360 {
3361 	struct inode *inode = file_inode(filp);
3362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3363 	char *vbuf;
3364 	int err = 0;
3365 
3366 	if (!capable(CAP_SYS_ADMIN))
3367 		return -EPERM;
3368 
3369 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3370 	if (IS_ERR(vbuf))
3371 		return PTR_ERR(vbuf);
3372 
3373 	err = mnt_want_write_file(filp);
3374 	if (err)
3375 		goto out;
3376 
3377 	f2fs_down_write(&sbi->sb_lock);
3378 
3379 	memset(sbi->raw_super->volume_name, 0,
3380 			sizeof(sbi->raw_super->volume_name));
3381 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3382 			sbi->raw_super->volume_name,
3383 			ARRAY_SIZE(sbi->raw_super->volume_name));
3384 
3385 	err = f2fs_commit_super(sbi, false);
3386 
3387 	f2fs_up_write(&sbi->sb_lock);
3388 
3389 	mnt_drop_write_file(filp);
3390 out:
3391 	kfree(vbuf);
3392 	return err;
3393 }
3394 
3395 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3396 {
3397 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3398 		return -EOPNOTSUPP;
3399 
3400 	if (!f2fs_compressed_file(inode))
3401 		return -EINVAL;
3402 
3403 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3404 
3405 	return 0;
3406 }
3407 
3408 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3409 {
3410 	struct inode *inode = file_inode(filp);
3411 	__u64 blocks;
3412 	int ret;
3413 
3414 	ret = f2fs_get_compress_blocks(inode, &blocks);
3415 	if (ret < 0)
3416 		return ret;
3417 
3418 	return put_user(blocks, (u64 __user *)arg);
3419 }
3420 
3421 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3422 {
3423 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3424 	unsigned int released_blocks = 0;
3425 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3426 	block_t blkaddr;
3427 	int i;
3428 
3429 	for (i = 0; i < count; i++) {
3430 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3431 						dn->ofs_in_node + i);
3432 
3433 		if (!__is_valid_data_blkaddr(blkaddr))
3434 			continue;
3435 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3436 					DATA_GENERIC_ENHANCE))) {
3437 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3438 			return -EFSCORRUPTED;
3439 		}
3440 	}
3441 
3442 	while (count) {
3443 		int compr_blocks = 0;
3444 
3445 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3446 			blkaddr = f2fs_data_blkaddr(dn);
3447 
3448 			if (i == 0) {
3449 				if (blkaddr == COMPRESS_ADDR)
3450 					continue;
3451 				dn->ofs_in_node += cluster_size;
3452 				goto next;
3453 			}
3454 
3455 			if (__is_valid_data_blkaddr(blkaddr))
3456 				compr_blocks++;
3457 
3458 			if (blkaddr != NEW_ADDR)
3459 				continue;
3460 
3461 			dn->data_blkaddr = NULL_ADDR;
3462 			f2fs_set_data_blkaddr(dn);
3463 		}
3464 
3465 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3466 		dec_valid_block_count(sbi, dn->inode,
3467 					cluster_size - compr_blocks);
3468 
3469 		released_blocks += cluster_size - compr_blocks;
3470 next:
3471 		count -= cluster_size;
3472 	}
3473 
3474 	return released_blocks;
3475 }
3476 
3477 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3478 {
3479 	struct inode *inode = file_inode(filp);
3480 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3481 	pgoff_t page_idx = 0, last_idx;
3482 	unsigned int released_blocks = 0;
3483 	int ret;
3484 	int writecount;
3485 
3486 	if (!f2fs_sb_has_compression(sbi))
3487 		return -EOPNOTSUPP;
3488 
3489 	if (!f2fs_compressed_file(inode))
3490 		return -EINVAL;
3491 
3492 	if (f2fs_readonly(sbi->sb))
3493 		return -EROFS;
3494 
3495 	ret = mnt_want_write_file(filp);
3496 	if (ret)
3497 		return ret;
3498 
3499 	f2fs_balance_fs(sbi, true);
3500 
3501 	inode_lock(inode);
3502 
3503 	writecount = atomic_read(&inode->i_writecount);
3504 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3505 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3506 		ret = -EBUSY;
3507 		goto out;
3508 	}
3509 
3510 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3511 		ret = -EINVAL;
3512 		goto out;
3513 	}
3514 
3515 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3516 	if (ret)
3517 		goto out;
3518 
3519 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3520 		ret = -EPERM;
3521 		goto out;
3522 	}
3523 
3524 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3525 	inode->i_ctime = current_time(inode);
3526 	f2fs_mark_inode_dirty_sync(inode, true);
3527 
3528 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3529 	filemap_invalidate_lock(inode->i_mapping);
3530 
3531 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3532 
3533 	while (page_idx < last_idx) {
3534 		struct dnode_of_data dn;
3535 		pgoff_t end_offset, count;
3536 
3537 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3538 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3539 		if (ret) {
3540 			if (ret == -ENOENT) {
3541 				page_idx = f2fs_get_next_page_offset(&dn,
3542 								page_idx);
3543 				ret = 0;
3544 				continue;
3545 			}
3546 			break;
3547 		}
3548 
3549 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3550 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3551 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3552 
3553 		ret = release_compress_blocks(&dn, count);
3554 
3555 		f2fs_put_dnode(&dn);
3556 
3557 		if (ret < 0)
3558 			break;
3559 
3560 		page_idx += count;
3561 		released_blocks += ret;
3562 	}
3563 
3564 	filemap_invalidate_unlock(inode->i_mapping);
3565 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3566 out:
3567 	inode_unlock(inode);
3568 
3569 	mnt_drop_write_file(filp);
3570 
3571 	if (ret >= 0) {
3572 		ret = put_user(released_blocks, (u64 __user *)arg);
3573 	} else if (released_blocks &&
3574 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3575 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3576 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3577 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3578 			"run fsck to fix.",
3579 			__func__, inode->i_ino, inode->i_blocks,
3580 			released_blocks,
3581 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3582 	}
3583 
3584 	return ret;
3585 }
3586 
3587 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3588 {
3589 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3590 	unsigned int reserved_blocks = 0;
3591 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3592 	block_t blkaddr;
3593 	int i;
3594 
3595 	for (i = 0; i < count; i++) {
3596 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3597 						dn->ofs_in_node + i);
3598 
3599 		if (!__is_valid_data_blkaddr(blkaddr))
3600 			continue;
3601 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3602 					DATA_GENERIC_ENHANCE))) {
3603 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3604 			return -EFSCORRUPTED;
3605 		}
3606 	}
3607 
3608 	while (count) {
3609 		int compr_blocks = 0;
3610 		blkcnt_t reserved;
3611 		int ret;
3612 
3613 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3614 			blkaddr = f2fs_data_blkaddr(dn);
3615 
3616 			if (i == 0) {
3617 				if (blkaddr == COMPRESS_ADDR)
3618 					continue;
3619 				dn->ofs_in_node += cluster_size;
3620 				goto next;
3621 			}
3622 
3623 			if (__is_valid_data_blkaddr(blkaddr)) {
3624 				compr_blocks++;
3625 				continue;
3626 			}
3627 
3628 			dn->data_blkaddr = NEW_ADDR;
3629 			f2fs_set_data_blkaddr(dn);
3630 		}
3631 
3632 		reserved = cluster_size - compr_blocks;
3633 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3634 		if (ret)
3635 			return ret;
3636 
3637 		if (reserved != cluster_size - compr_blocks)
3638 			return -ENOSPC;
3639 
3640 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3641 
3642 		reserved_blocks += reserved;
3643 next:
3644 		count -= cluster_size;
3645 	}
3646 
3647 	return reserved_blocks;
3648 }
3649 
3650 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3651 {
3652 	struct inode *inode = file_inode(filp);
3653 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3654 	pgoff_t page_idx = 0, last_idx;
3655 	unsigned int reserved_blocks = 0;
3656 	int ret;
3657 
3658 	if (!f2fs_sb_has_compression(sbi))
3659 		return -EOPNOTSUPP;
3660 
3661 	if (!f2fs_compressed_file(inode))
3662 		return -EINVAL;
3663 
3664 	if (f2fs_readonly(sbi->sb))
3665 		return -EROFS;
3666 
3667 	ret = mnt_want_write_file(filp);
3668 	if (ret)
3669 		return ret;
3670 
3671 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3672 		goto out;
3673 
3674 	f2fs_balance_fs(sbi, true);
3675 
3676 	inode_lock(inode);
3677 
3678 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3679 		ret = -EINVAL;
3680 		goto unlock_inode;
3681 	}
3682 
3683 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3684 	filemap_invalidate_lock(inode->i_mapping);
3685 
3686 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3687 
3688 	while (page_idx < last_idx) {
3689 		struct dnode_of_data dn;
3690 		pgoff_t end_offset, count;
3691 
3692 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3693 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3694 		if (ret) {
3695 			if (ret == -ENOENT) {
3696 				page_idx = f2fs_get_next_page_offset(&dn,
3697 								page_idx);
3698 				ret = 0;
3699 				continue;
3700 			}
3701 			break;
3702 		}
3703 
3704 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3705 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3706 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3707 
3708 		ret = reserve_compress_blocks(&dn, count);
3709 
3710 		f2fs_put_dnode(&dn);
3711 
3712 		if (ret < 0)
3713 			break;
3714 
3715 		page_idx += count;
3716 		reserved_blocks += ret;
3717 	}
3718 
3719 	filemap_invalidate_unlock(inode->i_mapping);
3720 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3721 
3722 	if (ret >= 0) {
3723 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3724 		inode->i_ctime = current_time(inode);
3725 		f2fs_mark_inode_dirty_sync(inode, true);
3726 	}
3727 unlock_inode:
3728 	inode_unlock(inode);
3729 out:
3730 	mnt_drop_write_file(filp);
3731 
3732 	if (ret >= 0) {
3733 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3734 	} else if (reserved_blocks &&
3735 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3736 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3737 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3738 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3739 			"run fsck to fix.",
3740 			__func__, inode->i_ino, inode->i_blocks,
3741 			reserved_blocks,
3742 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3743 	}
3744 
3745 	return ret;
3746 }
3747 
3748 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3749 		pgoff_t off, block_t block, block_t len, u32 flags)
3750 {
3751 	sector_t sector = SECTOR_FROM_BLOCK(block);
3752 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3753 	int ret = 0;
3754 
3755 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3756 		if (bdev_max_secure_erase_sectors(bdev))
3757 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3758 					GFP_NOFS);
3759 		else
3760 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3761 					GFP_NOFS);
3762 	}
3763 
3764 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3765 		if (IS_ENCRYPTED(inode))
3766 			ret = fscrypt_zeroout_range(inode, off, block, len);
3767 		else
3768 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3769 					GFP_NOFS, 0);
3770 	}
3771 
3772 	return ret;
3773 }
3774 
3775 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3776 {
3777 	struct inode *inode = file_inode(filp);
3778 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3779 	struct address_space *mapping = inode->i_mapping;
3780 	struct block_device *prev_bdev = NULL;
3781 	struct f2fs_sectrim_range range;
3782 	pgoff_t index, pg_end, prev_index = 0;
3783 	block_t prev_block = 0, len = 0;
3784 	loff_t end_addr;
3785 	bool to_end = false;
3786 	int ret = 0;
3787 
3788 	if (!(filp->f_mode & FMODE_WRITE))
3789 		return -EBADF;
3790 
3791 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3792 				sizeof(range)))
3793 		return -EFAULT;
3794 
3795 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3796 			!S_ISREG(inode->i_mode))
3797 		return -EINVAL;
3798 
3799 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3800 			!f2fs_hw_support_discard(sbi)) ||
3801 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3802 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3803 		return -EOPNOTSUPP;
3804 
3805 	file_start_write(filp);
3806 	inode_lock(inode);
3807 
3808 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3809 			range.start >= inode->i_size) {
3810 		ret = -EINVAL;
3811 		goto err;
3812 	}
3813 
3814 	if (range.len == 0)
3815 		goto err;
3816 
3817 	if (inode->i_size - range.start > range.len) {
3818 		end_addr = range.start + range.len;
3819 	} else {
3820 		end_addr = range.len == (u64)-1 ?
3821 			sbi->sb->s_maxbytes : inode->i_size;
3822 		to_end = true;
3823 	}
3824 
3825 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3826 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3827 		ret = -EINVAL;
3828 		goto err;
3829 	}
3830 
3831 	index = F2FS_BYTES_TO_BLK(range.start);
3832 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3833 
3834 	ret = f2fs_convert_inline_inode(inode);
3835 	if (ret)
3836 		goto err;
3837 
3838 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3839 	filemap_invalidate_lock(mapping);
3840 
3841 	ret = filemap_write_and_wait_range(mapping, range.start,
3842 			to_end ? LLONG_MAX : end_addr - 1);
3843 	if (ret)
3844 		goto out;
3845 
3846 	truncate_inode_pages_range(mapping, range.start,
3847 			to_end ? -1 : end_addr - 1);
3848 
3849 	while (index < pg_end) {
3850 		struct dnode_of_data dn;
3851 		pgoff_t end_offset, count;
3852 		int i;
3853 
3854 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3855 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3856 		if (ret) {
3857 			if (ret == -ENOENT) {
3858 				index = f2fs_get_next_page_offset(&dn, index);
3859 				continue;
3860 			}
3861 			goto out;
3862 		}
3863 
3864 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3865 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3866 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3867 			struct block_device *cur_bdev;
3868 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3869 
3870 			if (!__is_valid_data_blkaddr(blkaddr))
3871 				continue;
3872 
3873 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3874 						DATA_GENERIC_ENHANCE)) {
3875 				ret = -EFSCORRUPTED;
3876 				f2fs_put_dnode(&dn);
3877 				f2fs_handle_error(sbi,
3878 						ERROR_INVALID_BLKADDR);
3879 				goto out;
3880 			}
3881 
3882 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3883 			if (f2fs_is_multi_device(sbi)) {
3884 				int di = f2fs_target_device_index(sbi, blkaddr);
3885 
3886 				blkaddr -= FDEV(di).start_blk;
3887 			}
3888 
3889 			if (len) {
3890 				if (prev_bdev == cur_bdev &&
3891 						index == prev_index + len &&
3892 						blkaddr == prev_block + len) {
3893 					len++;
3894 				} else {
3895 					ret = f2fs_secure_erase(prev_bdev,
3896 						inode, prev_index, prev_block,
3897 						len, range.flags);
3898 					if (ret) {
3899 						f2fs_put_dnode(&dn);
3900 						goto out;
3901 					}
3902 
3903 					len = 0;
3904 				}
3905 			}
3906 
3907 			if (!len) {
3908 				prev_bdev = cur_bdev;
3909 				prev_index = index;
3910 				prev_block = blkaddr;
3911 				len = 1;
3912 			}
3913 		}
3914 
3915 		f2fs_put_dnode(&dn);
3916 
3917 		if (fatal_signal_pending(current)) {
3918 			ret = -EINTR;
3919 			goto out;
3920 		}
3921 		cond_resched();
3922 	}
3923 
3924 	if (len)
3925 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3926 				prev_block, len, range.flags);
3927 out:
3928 	filemap_invalidate_unlock(mapping);
3929 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3930 err:
3931 	inode_unlock(inode);
3932 	file_end_write(filp);
3933 
3934 	return ret;
3935 }
3936 
3937 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3938 {
3939 	struct inode *inode = file_inode(filp);
3940 	struct f2fs_comp_option option;
3941 
3942 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3943 		return -EOPNOTSUPP;
3944 
3945 	inode_lock_shared(inode);
3946 
3947 	if (!f2fs_compressed_file(inode)) {
3948 		inode_unlock_shared(inode);
3949 		return -ENODATA;
3950 	}
3951 
3952 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3953 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3954 
3955 	inode_unlock_shared(inode);
3956 
3957 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3958 				sizeof(option)))
3959 		return -EFAULT;
3960 
3961 	return 0;
3962 }
3963 
3964 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3965 {
3966 	struct inode *inode = file_inode(filp);
3967 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3968 	struct f2fs_comp_option option;
3969 	int ret = 0;
3970 
3971 	if (!f2fs_sb_has_compression(sbi))
3972 		return -EOPNOTSUPP;
3973 
3974 	if (!(filp->f_mode & FMODE_WRITE))
3975 		return -EBADF;
3976 
3977 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3978 				sizeof(option)))
3979 		return -EFAULT;
3980 
3981 	if (!f2fs_compressed_file(inode) ||
3982 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3983 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3984 			option.algorithm >= COMPRESS_MAX)
3985 		return -EINVAL;
3986 
3987 	file_start_write(filp);
3988 	inode_lock(inode);
3989 
3990 	f2fs_down_write(&F2FS_I(inode)->i_sem);
3991 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3992 		ret = -EBUSY;
3993 		goto out;
3994 	}
3995 
3996 	if (F2FS_HAS_BLOCKS(inode)) {
3997 		ret = -EFBIG;
3998 		goto out;
3999 	}
4000 
4001 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4002 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4003 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4004 	f2fs_mark_inode_dirty_sync(inode, true);
4005 
4006 	if (!f2fs_is_compress_backend_ready(inode))
4007 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4008 			"but current kernel doesn't support this algorithm.");
4009 out:
4010 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4011 	inode_unlock(inode);
4012 	file_end_write(filp);
4013 
4014 	return ret;
4015 }
4016 
4017 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4018 {
4019 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4020 	struct address_space *mapping = inode->i_mapping;
4021 	struct page *page;
4022 	pgoff_t redirty_idx = page_idx;
4023 	int i, page_len = 0, ret = 0;
4024 
4025 	page_cache_ra_unbounded(&ractl, len, 0);
4026 
4027 	for (i = 0; i < len; i++, page_idx++) {
4028 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4029 		if (IS_ERR(page)) {
4030 			ret = PTR_ERR(page);
4031 			break;
4032 		}
4033 		page_len++;
4034 	}
4035 
4036 	for (i = 0; i < page_len; i++, redirty_idx++) {
4037 		page = find_lock_page(mapping, redirty_idx);
4038 
4039 		/* It will never fail, when page has pinned above */
4040 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4041 
4042 		set_page_dirty(page);
4043 		f2fs_put_page(page, 1);
4044 		f2fs_put_page(page, 0);
4045 	}
4046 
4047 	return ret;
4048 }
4049 
4050 static int f2fs_ioc_decompress_file(struct file *filp)
4051 {
4052 	struct inode *inode = file_inode(filp);
4053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4054 	struct f2fs_inode_info *fi = F2FS_I(inode);
4055 	pgoff_t page_idx = 0, last_idx;
4056 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4057 	int cluster_size = fi->i_cluster_size;
4058 	int count, ret;
4059 
4060 	if (!f2fs_sb_has_compression(sbi) ||
4061 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4062 		return -EOPNOTSUPP;
4063 
4064 	if (!(filp->f_mode & FMODE_WRITE))
4065 		return -EBADF;
4066 
4067 	if (!f2fs_compressed_file(inode))
4068 		return -EINVAL;
4069 
4070 	f2fs_balance_fs(sbi, true);
4071 
4072 	file_start_write(filp);
4073 	inode_lock(inode);
4074 
4075 	if (!f2fs_is_compress_backend_ready(inode)) {
4076 		ret = -EOPNOTSUPP;
4077 		goto out;
4078 	}
4079 
4080 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4081 		ret = -EINVAL;
4082 		goto out;
4083 	}
4084 
4085 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4086 	if (ret)
4087 		goto out;
4088 
4089 	if (!atomic_read(&fi->i_compr_blocks))
4090 		goto out;
4091 
4092 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4093 
4094 	count = last_idx - page_idx;
4095 	while (count && count >= cluster_size) {
4096 		ret = redirty_blocks(inode, page_idx, cluster_size);
4097 		if (ret < 0)
4098 			break;
4099 
4100 		if (get_dirty_pages(inode) >= blk_per_seg) {
4101 			ret = filemap_fdatawrite(inode->i_mapping);
4102 			if (ret < 0)
4103 				break;
4104 		}
4105 
4106 		count -= cluster_size;
4107 		page_idx += cluster_size;
4108 
4109 		cond_resched();
4110 		if (fatal_signal_pending(current)) {
4111 			ret = -EINTR;
4112 			break;
4113 		}
4114 	}
4115 
4116 	if (!ret)
4117 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4118 							LLONG_MAX);
4119 
4120 	if (ret)
4121 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4122 			  __func__, ret);
4123 out:
4124 	inode_unlock(inode);
4125 	file_end_write(filp);
4126 
4127 	return ret;
4128 }
4129 
4130 static int f2fs_ioc_compress_file(struct file *filp)
4131 {
4132 	struct inode *inode = file_inode(filp);
4133 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4134 	pgoff_t page_idx = 0, last_idx;
4135 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4136 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4137 	int count, ret;
4138 
4139 	if (!f2fs_sb_has_compression(sbi) ||
4140 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4141 		return -EOPNOTSUPP;
4142 
4143 	if (!(filp->f_mode & FMODE_WRITE))
4144 		return -EBADF;
4145 
4146 	if (!f2fs_compressed_file(inode))
4147 		return -EINVAL;
4148 
4149 	f2fs_balance_fs(sbi, true);
4150 
4151 	file_start_write(filp);
4152 	inode_lock(inode);
4153 
4154 	if (!f2fs_is_compress_backend_ready(inode)) {
4155 		ret = -EOPNOTSUPP;
4156 		goto out;
4157 	}
4158 
4159 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4160 		ret = -EINVAL;
4161 		goto out;
4162 	}
4163 
4164 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4165 	if (ret)
4166 		goto out;
4167 
4168 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4169 
4170 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4171 
4172 	count = last_idx - page_idx;
4173 	while (count && count >= cluster_size) {
4174 		ret = redirty_blocks(inode, page_idx, cluster_size);
4175 		if (ret < 0)
4176 			break;
4177 
4178 		if (get_dirty_pages(inode) >= blk_per_seg) {
4179 			ret = filemap_fdatawrite(inode->i_mapping);
4180 			if (ret < 0)
4181 				break;
4182 		}
4183 
4184 		count -= cluster_size;
4185 		page_idx += cluster_size;
4186 
4187 		cond_resched();
4188 		if (fatal_signal_pending(current)) {
4189 			ret = -EINTR;
4190 			break;
4191 		}
4192 	}
4193 
4194 	if (!ret)
4195 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4196 							LLONG_MAX);
4197 
4198 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4199 
4200 	if (ret)
4201 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4202 			  __func__, ret);
4203 out:
4204 	inode_unlock(inode);
4205 	file_end_write(filp);
4206 
4207 	return ret;
4208 }
4209 
4210 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4211 {
4212 	switch (cmd) {
4213 	case FS_IOC_GETVERSION:
4214 		return f2fs_ioc_getversion(filp, arg);
4215 	case F2FS_IOC_START_ATOMIC_WRITE:
4216 		return f2fs_ioc_start_atomic_write(filp, false);
4217 	case F2FS_IOC_START_ATOMIC_REPLACE:
4218 		return f2fs_ioc_start_atomic_write(filp, true);
4219 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4220 		return f2fs_ioc_commit_atomic_write(filp);
4221 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4222 		return f2fs_ioc_abort_atomic_write(filp);
4223 	case F2FS_IOC_START_VOLATILE_WRITE:
4224 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4225 		return -EOPNOTSUPP;
4226 	case F2FS_IOC_SHUTDOWN:
4227 		return f2fs_ioc_shutdown(filp, arg);
4228 	case FITRIM:
4229 		return f2fs_ioc_fitrim(filp, arg);
4230 	case FS_IOC_SET_ENCRYPTION_POLICY:
4231 		return f2fs_ioc_set_encryption_policy(filp, arg);
4232 	case FS_IOC_GET_ENCRYPTION_POLICY:
4233 		return f2fs_ioc_get_encryption_policy(filp, arg);
4234 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4235 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4236 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4237 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4238 	case FS_IOC_ADD_ENCRYPTION_KEY:
4239 		return f2fs_ioc_add_encryption_key(filp, arg);
4240 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4241 		return f2fs_ioc_remove_encryption_key(filp, arg);
4242 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4243 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4244 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4245 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4246 	case FS_IOC_GET_ENCRYPTION_NONCE:
4247 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4248 	case F2FS_IOC_GARBAGE_COLLECT:
4249 		return f2fs_ioc_gc(filp, arg);
4250 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4251 		return f2fs_ioc_gc_range(filp, arg);
4252 	case F2FS_IOC_WRITE_CHECKPOINT:
4253 		return f2fs_ioc_write_checkpoint(filp);
4254 	case F2FS_IOC_DEFRAGMENT:
4255 		return f2fs_ioc_defragment(filp, arg);
4256 	case F2FS_IOC_MOVE_RANGE:
4257 		return f2fs_ioc_move_range(filp, arg);
4258 	case F2FS_IOC_FLUSH_DEVICE:
4259 		return f2fs_ioc_flush_device(filp, arg);
4260 	case F2FS_IOC_GET_FEATURES:
4261 		return f2fs_ioc_get_features(filp, arg);
4262 	case F2FS_IOC_GET_PIN_FILE:
4263 		return f2fs_ioc_get_pin_file(filp, arg);
4264 	case F2FS_IOC_SET_PIN_FILE:
4265 		return f2fs_ioc_set_pin_file(filp, arg);
4266 	case F2FS_IOC_PRECACHE_EXTENTS:
4267 		return f2fs_ioc_precache_extents(filp);
4268 	case F2FS_IOC_RESIZE_FS:
4269 		return f2fs_ioc_resize_fs(filp, arg);
4270 	case FS_IOC_ENABLE_VERITY:
4271 		return f2fs_ioc_enable_verity(filp, arg);
4272 	case FS_IOC_MEASURE_VERITY:
4273 		return f2fs_ioc_measure_verity(filp, arg);
4274 	case FS_IOC_READ_VERITY_METADATA:
4275 		return f2fs_ioc_read_verity_metadata(filp, arg);
4276 	case FS_IOC_GETFSLABEL:
4277 		return f2fs_ioc_getfslabel(filp, arg);
4278 	case FS_IOC_SETFSLABEL:
4279 		return f2fs_ioc_setfslabel(filp, arg);
4280 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4281 		return f2fs_ioc_get_compress_blocks(filp, arg);
4282 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4283 		return f2fs_release_compress_blocks(filp, arg);
4284 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4285 		return f2fs_reserve_compress_blocks(filp, arg);
4286 	case F2FS_IOC_SEC_TRIM_FILE:
4287 		return f2fs_sec_trim_file(filp, arg);
4288 	case F2FS_IOC_GET_COMPRESS_OPTION:
4289 		return f2fs_ioc_get_compress_option(filp, arg);
4290 	case F2FS_IOC_SET_COMPRESS_OPTION:
4291 		return f2fs_ioc_set_compress_option(filp, arg);
4292 	case F2FS_IOC_DECOMPRESS_FILE:
4293 		return f2fs_ioc_decompress_file(filp);
4294 	case F2FS_IOC_COMPRESS_FILE:
4295 		return f2fs_ioc_compress_file(filp);
4296 	default:
4297 		return -ENOTTY;
4298 	}
4299 }
4300 
4301 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4302 {
4303 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4304 		return -EIO;
4305 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4306 		return -ENOSPC;
4307 
4308 	return __f2fs_ioctl(filp, cmd, arg);
4309 }
4310 
4311 /*
4312  * Return %true if the given read or write request should use direct I/O, or
4313  * %false if it should use buffered I/O.
4314  */
4315 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4316 				struct iov_iter *iter)
4317 {
4318 	unsigned int align;
4319 
4320 	if (!(iocb->ki_flags & IOCB_DIRECT))
4321 		return false;
4322 
4323 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4324 		return false;
4325 
4326 	/*
4327 	 * Direct I/O not aligned to the disk's logical_block_size will be
4328 	 * attempted, but will fail with -EINVAL.
4329 	 *
4330 	 * f2fs additionally requires that direct I/O be aligned to the
4331 	 * filesystem block size, which is often a stricter requirement.
4332 	 * However, f2fs traditionally falls back to buffered I/O on requests
4333 	 * that are logical_block_size-aligned but not fs-block aligned.
4334 	 *
4335 	 * The below logic implements this behavior.
4336 	 */
4337 	align = iocb->ki_pos | iov_iter_alignment(iter);
4338 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4339 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4340 		return false;
4341 
4342 	return true;
4343 }
4344 
4345 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4346 				unsigned int flags)
4347 {
4348 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4349 
4350 	dec_page_count(sbi, F2FS_DIO_READ);
4351 	if (error)
4352 		return error;
4353 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4354 	return 0;
4355 }
4356 
4357 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4358 	.end_io = f2fs_dio_read_end_io,
4359 };
4360 
4361 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4362 {
4363 	struct file *file = iocb->ki_filp;
4364 	struct inode *inode = file_inode(file);
4365 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4366 	struct f2fs_inode_info *fi = F2FS_I(inode);
4367 	const loff_t pos = iocb->ki_pos;
4368 	const size_t count = iov_iter_count(to);
4369 	struct iomap_dio *dio;
4370 	ssize_t ret;
4371 
4372 	if (count == 0)
4373 		return 0; /* skip atime update */
4374 
4375 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4376 
4377 	if (iocb->ki_flags & IOCB_NOWAIT) {
4378 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4379 			ret = -EAGAIN;
4380 			goto out;
4381 		}
4382 	} else {
4383 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4384 	}
4385 
4386 	/*
4387 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4388 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4389 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4390 	 */
4391 	inc_page_count(sbi, F2FS_DIO_READ);
4392 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4393 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4394 	if (IS_ERR_OR_NULL(dio)) {
4395 		ret = PTR_ERR_OR_ZERO(dio);
4396 		if (ret != -EIOCBQUEUED)
4397 			dec_page_count(sbi, F2FS_DIO_READ);
4398 	} else {
4399 		ret = iomap_dio_complete(dio);
4400 	}
4401 
4402 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4403 
4404 	file_accessed(file);
4405 out:
4406 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4407 	return ret;
4408 }
4409 
4410 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4411 				    int rw)
4412 {
4413 	struct inode *inode = file_inode(file);
4414 	char *buf, *path;
4415 
4416 	buf = f2fs_getname(F2FS_I_SB(inode));
4417 	if (!buf)
4418 		return;
4419 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4420 	if (IS_ERR(path))
4421 		goto free_buf;
4422 	if (rw == WRITE)
4423 		trace_f2fs_datawrite_start(inode, pos, count,
4424 				current->pid, path, current->comm);
4425 	else
4426 		trace_f2fs_dataread_start(inode, pos, count,
4427 				current->pid, path, current->comm);
4428 free_buf:
4429 	f2fs_putname(buf);
4430 }
4431 
4432 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4433 {
4434 	struct inode *inode = file_inode(iocb->ki_filp);
4435 	const loff_t pos = iocb->ki_pos;
4436 	ssize_t ret;
4437 
4438 	if (!f2fs_is_compress_backend_ready(inode))
4439 		return -EOPNOTSUPP;
4440 
4441 	if (trace_f2fs_dataread_start_enabled())
4442 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4443 					iov_iter_count(to), READ);
4444 
4445 	if (f2fs_should_use_dio(inode, iocb, to)) {
4446 		ret = f2fs_dio_read_iter(iocb, to);
4447 	} else {
4448 		ret = filemap_read(iocb, to, 0);
4449 		if (ret > 0)
4450 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4451 						APP_BUFFERED_READ_IO, ret);
4452 	}
4453 	if (trace_f2fs_dataread_end_enabled())
4454 		trace_f2fs_dataread_end(inode, pos, ret);
4455 	return ret;
4456 }
4457 
4458 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4459 				     struct pipe_inode_info *pipe,
4460 				     size_t len, unsigned int flags)
4461 {
4462 	struct inode *inode = file_inode(in);
4463 	const loff_t pos = *ppos;
4464 	ssize_t ret;
4465 
4466 	if (!f2fs_is_compress_backend_ready(inode))
4467 		return -EOPNOTSUPP;
4468 
4469 	if (trace_f2fs_dataread_start_enabled())
4470 		f2fs_trace_rw_file_path(in, pos, len, READ);
4471 
4472 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4473 	if (ret > 0)
4474 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4475 				   APP_BUFFERED_READ_IO, ret);
4476 
4477 	if (trace_f2fs_dataread_end_enabled())
4478 		trace_f2fs_dataread_end(inode, pos, ret);
4479 	return ret;
4480 }
4481 
4482 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4483 {
4484 	struct file *file = iocb->ki_filp;
4485 	struct inode *inode = file_inode(file);
4486 	ssize_t count;
4487 	int err;
4488 
4489 	if (IS_IMMUTABLE(inode))
4490 		return -EPERM;
4491 
4492 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4493 		return -EPERM;
4494 
4495 	count = generic_write_checks(iocb, from);
4496 	if (count <= 0)
4497 		return count;
4498 
4499 	err = file_modified(file);
4500 	if (err)
4501 		return err;
4502 	return count;
4503 }
4504 
4505 /*
4506  * Preallocate blocks for a write request, if it is possible and helpful to do
4507  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4508  * blocks were preallocated, or a negative errno value if something went
4509  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4510  * requested blocks (not just some of them) have been allocated.
4511  */
4512 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4513 				   bool dio)
4514 {
4515 	struct inode *inode = file_inode(iocb->ki_filp);
4516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4517 	const loff_t pos = iocb->ki_pos;
4518 	const size_t count = iov_iter_count(iter);
4519 	struct f2fs_map_blocks map = {};
4520 	int flag;
4521 	int ret;
4522 
4523 	/* If it will be an out-of-place direct write, don't bother. */
4524 	if (dio && f2fs_lfs_mode(sbi))
4525 		return 0;
4526 	/*
4527 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4528 	 * buffered IO, if DIO meets any holes.
4529 	 */
4530 	if (dio && i_size_read(inode) &&
4531 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4532 		return 0;
4533 
4534 	/* No-wait I/O can't allocate blocks. */
4535 	if (iocb->ki_flags & IOCB_NOWAIT)
4536 		return 0;
4537 
4538 	/* If it will be a short write, don't bother. */
4539 	if (fault_in_iov_iter_readable(iter, count))
4540 		return 0;
4541 
4542 	if (f2fs_has_inline_data(inode)) {
4543 		/* If the data will fit inline, don't bother. */
4544 		if (pos + count <= MAX_INLINE_DATA(inode))
4545 			return 0;
4546 		ret = f2fs_convert_inline_inode(inode);
4547 		if (ret)
4548 			return ret;
4549 	}
4550 
4551 	/* Do not preallocate blocks that will be written partially in 4KB. */
4552 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4553 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4554 	if (map.m_len > map.m_lblk)
4555 		map.m_len -= map.m_lblk;
4556 	else
4557 		map.m_len = 0;
4558 	map.m_may_create = true;
4559 	if (dio) {
4560 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4561 		flag = F2FS_GET_BLOCK_PRE_DIO;
4562 	} else {
4563 		map.m_seg_type = NO_CHECK_TYPE;
4564 		flag = F2FS_GET_BLOCK_PRE_AIO;
4565 	}
4566 
4567 	ret = f2fs_map_blocks(inode, &map, flag);
4568 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4569 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4570 		return ret;
4571 	if (ret == 0)
4572 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4573 	return map.m_len;
4574 }
4575 
4576 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4577 					struct iov_iter *from)
4578 {
4579 	struct file *file = iocb->ki_filp;
4580 	struct inode *inode = file_inode(file);
4581 	ssize_t ret;
4582 
4583 	if (iocb->ki_flags & IOCB_NOWAIT)
4584 		return -EOPNOTSUPP;
4585 
4586 	ret = generic_perform_write(iocb, from);
4587 
4588 	if (ret > 0) {
4589 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4590 						APP_BUFFERED_IO, ret);
4591 	}
4592 	return ret;
4593 }
4594 
4595 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4596 				 unsigned int flags)
4597 {
4598 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4599 
4600 	dec_page_count(sbi, F2FS_DIO_WRITE);
4601 	if (error)
4602 		return error;
4603 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4604 	return 0;
4605 }
4606 
4607 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4608 	.end_io = f2fs_dio_write_end_io,
4609 };
4610 
4611 static void f2fs_flush_buffered_write(struct address_space *mapping,
4612 				      loff_t start_pos, loff_t end_pos)
4613 {
4614 	int ret;
4615 
4616 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4617 	if (ret < 0)
4618 		return;
4619 	invalidate_mapping_pages(mapping,
4620 				 start_pos >> PAGE_SHIFT,
4621 				 end_pos >> PAGE_SHIFT);
4622 }
4623 
4624 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4625 				   bool *may_need_sync)
4626 {
4627 	struct file *file = iocb->ki_filp;
4628 	struct inode *inode = file_inode(file);
4629 	struct f2fs_inode_info *fi = F2FS_I(inode);
4630 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4631 	const bool do_opu = f2fs_lfs_mode(sbi);
4632 	const loff_t pos = iocb->ki_pos;
4633 	const ssize_t count = iov_iter_count(from);
4634 	unsigned int dio_flags;
4635 	struct iomap_dio *dio;
4636 	ssize_t ret;
4637 
4638 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4639 
4640 	if (iocb->ki_flags & IOCB_NOWAIT) {
4641 		/* f2fs_convert_inline_inode() and block allocation can block */
4642 		if (f2fs_has_inline_data(inode) ||
4643 		    !f2fs_overwrite_io(inode, pos, count)) {
4644 			ret = -EAGAIN;
4645 			goto out;
4646 		}
4647 
4648 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4649 			ret = -EAGAIN;
4650 			goto out;
4651 		}
4652 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4653 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4654 			ret = -EAGAIN;
4655 			goto out;
4656 		}
4657 	} else {
4658 		ret = f2fs_convert_inline_inode(inode);
4659 		if (ret)
4660 			goto out;
4661 
4662 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4663 		if (do_opu)
4664 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4665 	}
4666 
4667 	/*
4668 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4669 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4670 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4671 	 */
4672 	inc_page_count(sbi, F2FS_DIO_WRITE);
4673 	dio_flags = 0;
4674 	if (pos + count > inode->i_size)
4675 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4676 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4677 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4678 	if (IS_ERR_OR_NULL(dio)) {
4679 		ret = PTR_ERR_OR_ZERO(dio);
4680 		if (ret == -ENOTBLK)
4681 			ret = 0;
4682 		if (ret != -EIOCBQUEUED)
4683 			dec_page_count(sbi, F2FS_DIO_WRITE);
4684 	} else {
4685 		ret = iomap_dio_complete(dio);
4686 	}
4687 
4688 	if (do_opu)
4689 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4690 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4691 
4692 	if (ret < 0)
4693 		goto out;
4694 	if (pos + ret > inode->i_size)
4695 		f2fs_i_size_write(inode, pos + ret);
4696 	if (!do_opu)
4697 		set_inode_flag(inode, FI_UPDATE_WRITE);
4698 
4699 	if (iov_iter_count(from)) {
4700 		ssize_t ret2;
4701 		loff_t bufio_start_pos = iocb->ki_pos;
4702 
4703 		/*
4704 		 * The direct write was partial, so we need to fall back to a
4705 		 * buffered write for the remainder.
4706 		 */
4707 
4708 		ret2 = f2fs_buffered_write_iter(iocb, from);
4709 		if (iov_iter_count(from))
4710 			f2fs_write_failed(inode, iocb->ki_pos);
4711 		if (ret2 < 0)
4712 			goto out;
4713 
4714 		/*
4715 		 * Ensure that the pagecache pages are written to disk and
4716 		 * invalidated to preserve the expected O_DIRECT semantics.
4717 		 */
4718 		if (ret2 > 0) {
4719 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4720 
4721 			ret += ret2;
4722 
4723 			f2fs_flush_buffered_write(file->f_mapping,
4724 						  bufio_start_pos,
4725 						  bufio_end_pos);
4726 		}
4727 	} else {
4728 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4729 		*may_need_sync = false;
4730 	}
4731 out:
4732 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4733 	return ret;
4734 }
4735 
4736 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4737 {
4738 	struct inode *inode = file_inode(iocb->ki_filp);
4739 	const loff_t orig_pos = iocb->ki_pos;
4740 	const size_t orig_count = iov_iter_count(from);
4741 	loff_t target_size;
4742 	bool dio;
4743 	bool may_need_sync = true;
4744 	int preallocated;
4745 	ssize_t ret;
4746 
4747 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4748 		ret = -EIO;
4749 		goto out;
4750 	}
4751 
4752 	if (!f2fs_is_compress_backend_ready(inode)) {
4753 		ret = -EOPNOTSUPP;
4754 		goto out;
4755 	}
4756 
4757 	if (iocb->ki_flags & IOCB_NOWAIT) {
4758 		if (!inode_trylock(inode)) {
4759 			ret = -EAGAIN;
4760 			goto out;
4761 		}
4762 	} else {
4763 		inode_lock(inode);
4764 	}
4765 
4766 	ret = f2fs_write_checks(iocb, from);
4767 	if (ret <= 0)
4768 		goto out_unlock;
4769 
4770 	/* Determine whether we will do a direct write or a buffered write. */
4771 	dio = f2fs_should_use_dio(inode, iocb, from);
4772 
4773 	/* Possibly preallocate the blocks for the write. */
4774 	target_size = iocb->ki_pos + iov_iter_count(from);
4775 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4776 	if (preallocated < 0) {
4777 		ret = preallocated;
4778 	} else {
4779 		if (trace_f2fs_datawrite_start_enabled())
4780 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4781 						orig_count, WRITE);
4782 
4783 		/* Do the actual write. */
4784 		ret = dio ?
4785 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4786 			f2fs_buffered_write_iter(iocb, from);
4787 
4788 		if (trace_f2fs_datawrite_end_enabled())
4789 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4790 	}
4791 
4792 	/* Don't leave any preallocated blocks around past i_size. */
4793 	if (preallocated && i_size_read(inode) < target_size) {
4794 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4795 		filemap_invalidate_lock(inode->i_mapping);
4796 		if (!f2fs_truncate(inode))
4797 			file_dont_truncate(inode);
4798 		filemap_invalidate_unlock(inode->i_mapping);
4799 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4800 	} else {
4801 		file_dont_truncate(inode);
4802 	}
4803 
4804 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4805 out_unlock:
4806 	inode_unlock(inode);
4807 out:
4808 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4809 
4810 	if (ret > 0 && may_need_sync)
4811 		ret = generic_write_sync(iocb, ret);
4812 
4813 	/* If buffered IO was forced, flush and drop the data from
4814 	 * the page cache to preserve O_DIRECT semantics
4815 	 */
4816 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4817 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4818 					  orig_pos,
4819 					  orig_pos + ret - 1);
4820 
4821 	return ret;
4822 }
4823 
4824 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4825 		int advice)
4826 {
4827 	struct address_space *mapping;
4828 	struct backing_dev_info *bdi;
4829 	struct inode *inode = file_inode(filp);
4830 	int err;
4831 
4832 	if (advice == POSIX_FADV_SEQUENTIAL) {
4833 		if (S_ISFIFO(inode->i_mode))
4834 			return -ESPIPE;
4835 
4836 		mapping = filp->f_mapping;
4837 		if (!mapping || len < 0)
4838 			return -EINVAL;
4839 
4840 		bdi = inode_to_bdi(mapping->host);
4841 		filp->f_ra.ra_pages = bdi->ra_pages *
4842 			F2FS_I_SB(inode)->seq_file_ra_mul;
4843 		spin_lock(&filp->f_lock);
4844 		filp->f_mode &= ~FMODE_RANDOM;
4845 		spin_unlock(&filp->f_lock);
4846 		return 0;
4847 	}
4848 
4849 	err = generic_fadvise(filp, offset, len, advice);
4850 	if (!err && advice == POSIX_FADV_DONTNEED &&
4851 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4852 		f2fs_compressed_file(inode))
4853 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4854 
4855 	return err;
4856 }
4857 
4858 #ifdef CONFIG_COMPAT
4859 struct compat_f2fs_gc_range {
4860 	u32 sync;
4861 	compat_u64 start;
4862 	compat_u64 len;
4863 };
4864 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4865 						struct compat_f2fs_gc_range)
4866 
4867 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4868 {
4869 	struct compat_f2fs_gc_range __user *urange;
4870 	struct f2fs_gc_range range;
4871 	int err;
4872 
4873 	urange = compat_ptr(arg);
4874 	err = get_user(range.sync, &urange->sync);
4875 	err |= get_user(range.start, &urange->start);
4876 	err |= get_user(range.len, &urange->len);
4877 	if (err)
4878 		return -EFAULT;
4879 
4880 	return __f2fs_ioc_gc_range(file, &range);
4881 }
4882 
4883 struct compat_f2fs_move_range {
4884 	u32 dst_fd;
4885 	compat_u64 pos_in;
4886 	compat_u64 pos_out;
4887 	compat_u64 len;
4888 };
4889 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4890 					struct compat_f2fs_move_range)
4891 
4892 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4893 {
4894 	struct compat_f2fs_move_range __user *urange;
4895 	struct f2fs_move_range range;
4896 	int err;
4897 
4898 	urange = compat_ptr(arg);
4899 	err = get_user(range.dst_fd, &urange->dst_fd);
4900 	err |= get_user(range.pos_in, &urange->pos_in);
4901 	err |= get_user(range.pos_out, &urange->pos_out);
4902 	err |= get_user(range.len, &urange->len);
4903 	if (err)
4904 		return -EFAULT;
4905 
4906 	return __f2fs_ioc_move_range(file, &range);
4907 }
4908 
4909 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4910 {
4911 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4912 		return -EIO;
4913 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4914 		return -ENOSPC;
4915 
4916 	switch (cmd) {
4917 	case FS_IOC32_GETVERSION:
4918 		cmd = FS_IOC_GETVERSION;
4919 		break;
4920 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4921 		return f2fs_compat_ioc_gc_range(file, arg);
4922 	case F2FS_IOC32_MOVE_RANGE:
4923 		return f2fs_compat_ioc_move_range(file, arg);
4924 	case F2FS_IOC_START_ATOMIC_WRITE:
4925 	case F2FS_IOC_START_ATOMIC_REPLACE:
4926 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4927 	case F2FS_IOC_START_VOLATILE_WRITE:
4928 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4929 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4930 	case F2FS_IOC_SHUTDOWN:
4931 	case FITRIM:
4932 	case FS_IOC_SET_ENCRYPTION_POLICY:
4933 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4934 	case FS_IOC_GET_ENCRYPTION_POLICY:
4935 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4936 	case FS_IOC_ADD_ENCRYPTION_KEY:
4937 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4938 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4939 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4940 	case FS_IOC_GET_ENCRYPTION_NONCE:
4941 	case F2FS_IOC_GARBAGE_COLLECT:
4942 	case F2FS_IOC_WRITE_CHECKPOINT:
4943 	case F2FS_IOC_DEFRAGMENT:
4944 	case F2FS_IOC_FLUSH_DEVICE:
4945 	case F2FS_IOC_GET_FEATURES:
4946 	case F2FS_IOC_GET_PIN_FILE:
4947 	case F2FS_IOC_SET_PIN_FILE:
4948 	case F2FS_IOC_PRECACHE_EXTENTS:
4949 	case F2FS_IOC_RESIZE_FS:
4950 	case FS_IOC_ENABLE_VERITY:
4951 	case FS_IOC_MEASURE_VERITY:
4952 	case FS_IOC_READ_VERITY_METADATA:
4953 	case FS_IOC_GETFSLABEL:
4954 	case FS_IOC_SETFSLABEL:
4955 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4956 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4957 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4958 	case F2FS_IOC_SEC_TRIM_FILE:
4959 	case F2FS_IOC_GET_COMPRESS_OPTION:
4960 	case F2FS_IOC_SET_COMPRESS_OPTION:
4961 	case F2FS_IOC_DECOMPRESS_FILE:
4962 	case F2FS_IOC_COMPRESS_FILE:
4963 		break;
4964 	default:
4965 		return -ENOIOCTLCMD;
4966 	}
4967 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4968 }
4969 #endif
4970 
4971 const struct file_operations f2fs_file_operations = {
4972 	.llseek		= f2fs_llseek,
4973 	.read_iter	= f2fs_file_read_iter,
4974 	.write_iter	= f2fs_file_write_iter,
4975 	.iopoll		= iocb_bio_iopoll,
4976 	.open		= f2fs_file_open,
4977 	.release	= f2fs_release_file,
4978 	.mmap		= f2fs_file_mmap,
4979 	.flush		= f2fs_file_flush,
4980 	.fsync		= f2fs_sync_file,
4981 	.fallocate	= f2fs_fallocate,
4982 	.unlocked_ioctl	= f2fs_ioctl,
4983 #ifdef CONFIG_COMPAT
4984 	.compat_ioctl	= f2fs_compat_ioctl,
4985 #endif
4986 	.splice_read	= f2fs_file_splice_read,
4987 	.splice_write	= iter_file_splice_write,
4988 	.fadvise	= f2fs_file_fadvise,
4989 };
4990