xref: /openbmc/linux/fs/f2fs/file.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return vmf_fs_error(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 							XATTR_DIR_INO))
218 		cp_reason = CP_XATTR_DIR;
219 
220 	return cp_reason;
221 }
222 
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 	bool ret = false;
227 	/* But we need to avoid that there are some inode updates */
228 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 		ret = true;
230 	f2fs_put_page(i, 0);
231 	return ret;
232 }
233 
234 static void try_to_fix_pino(struct inode *inode)
235 {
236 	struct f2fs_inode_info *fi = F2FS_I(inode);
237 	nid_t pino;
238 
239 	f2fs_down_write(&fi->i_sem);
240 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 			get_parent_ino(inode, &pino)) {
242 		f2fs_i_pino_write(inode, pino);
243 		file_got_pino(inode);
244 	}
245 	f2fs_up_write(&fi->i_sem);
246 }
247 
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 						int datasync, bool atomic)
250 {
251 	struct inode *inode = file->f_mapping->host;
252 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 	nid_t ino = inode->i_ino;
254 	int ret = 0;
255 	enum cp_reason_type cp_reason = 0;
256 	struct writeback_control wbc = {
257 		.sync_mode = WB_SYNC_ALL,
258 		.nr_to_write = LONG_MAX,
259 		.for_reclaim = 0,
260 	};
261 	unsigned int seq_id = 0;
262 
263 	if (unlikely(f2fs_readonly(inode->i_sb)))
264 		return 0;
265 
266 	trace_f2fs_sync_file_enter(inode);
267 
268 	if (S_ISDIR(inode->i_mode))
269 		goto go_write;
270 
271 	/* if fdatasync is triggered, let's do in-place-update */
272 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 		set_inode_flag(inode, FI_NEED_IPU);
274 	ret = file_write_and_wait_range(file, start, end);
275 	clear_inode_flag(inode, FI_NEED_IPU);
276 
277 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 		return ret;
280 	}
281 
282 	/* if the inode is dirty, let's recover all the time */
283 	if (!f2fs_skip_inode_update(inode, datasync)) {
284 		f2fs_write_inode(inode, NULL);
285 		goto go_write;
286 	}
287 
288 	/*
289 	 * if there is no written data, don't waste time to write recovery info.
290 	 */
291 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293 
294 		/* it may call write_inode just prior to fsync */
295 		if (need_inode_page_update(sbi, ino))
296 			goto go_write;
297 
298 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 			goto flush_out;
301 		goto out;
302 	} else {
303 		/*
304 		 * for OPU case, during fsync(), node can be persisted before
305 		 * data when lower device doesn't support write barrier, result
306 		 * in data corruption after SPO.
307 		 * So for strict fsync mode, force to use atomic write semantics
308 		 * to keep write order in between data/node and last node to
309 		 * avoid potential data corruption.
310 		 */
311 		if (F2FS_OPTION(sbi).fsync_mode ==
312 				FSYNC_MODE_STRICT && !atomic)
313 			atomic = true;
314 	}
315 go_write:
316 	/*
317 	 * Both of fdatasync() and fsync() are able to be recovered from
318 	 * sudden-power-off.
319 	 */
320 	f2fs_down_read(&F2FS_I(inode)->i_sem);
321 	cp_reason = need_do_checkpoint(inode);
322 	f2fs_up_read(&F2FS_I(inode)->i_sem);
323 
324 	if (cp_reason) {
325 		/* all the dirty node pages should be flushed for POR */
326 		ret = f2fs_sync_fs(inode->i_sb, 1);
327 
328 		/*
329 		 * We've secured consistency through sync_fs. Following pino
330 		 * will be used only for fsynced inodes after checkpoint.
331 		 */
332 		try_to_fix_pino(inode);
333 		clear_inode_flag(inode, FI_APPEND_WRITE);
334 		clear_inode_flag(inode, FI_UPDATE_WRITE);
335 		goto out;
336 	}
337 sync_nodes:
338 	atomic_inc(&sbi->wb_sync_req[NODE]);
339 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 	atomic_dec(&sbi->wb_sync_req[NODE]);
341 	if (ret)
342 		goto out;
343 
344 	/* if cp_error was enabled, we should avoid infinite loop */
345 	if (unlikely(f2fs_cp_error(sbi))) {
346 		ret = -EIO;
347 		goto out;
348 	}
349 
350 	if (f2fs_need_inode_block_update(sbi, ino)) {
351 		f2fs_mark_inode_dirty_sync(inode, true);
352 		f2fs_write_inode(inode, NULL);
353 		goto sync_nodes;
354 	}
355 
356 	/*
357 	 * If it's atomic_write, it's just fine to keep write ordering. So
358 	 * here we don't need to wait for node write completion, since we use
359 	 * node chain which serializes node blocks. If one of node writes are
360 	 * reordered, we can see simply broken chain, resulting in stopping
361 	 * roll-forward recovery. It means we'll recover all or none node blocks
362 	 * given fsync mark.
363 	 */
364 	if (!atomic) {
365 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 		if (ret)
367 			goto out;
368 	}
369 
370 	/* once recovery info is written, don't need to tack this */
371 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 	clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 		ret = f2fs_issue_flush(sbi, inode->i_ino);
377 	if (!ret) {
378 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 		clear_inode_flag(inode, FI_UPDATE_WRITE);
380 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 	}
382 	f2fs_update_time(sbi, REQ_TIME);
383 out:
384 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 	return ret;
386 }
387 
388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 		return -EIO;
392 	return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394 
395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 				pgoff_t index, int whence)
397 {
398 	switch (whence) {
399 	case SEEK_DATA:
400 		if (__is_valid_data_blkaddr(blkaddr))
401 			return true;
402 		if (blkaddr == NEW_ADDR &&
403 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 			return true;
405 		break;
406 	case SEEK_HOLE:
407 		if (blkaddr == NULL_ADDR)
408 			return true;
409 		break;
410 	}
411 	return false;
412 }
413 
414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 	struct inode *inode = file->f_mapping->host;
417 	loff_t maxbytes = inode->i_sb->s_maxbytes;
418 	struct dnode_of_data dn;
419 	pgoff_t pgofs, end_offset;
420 	loff_t data_ofs = offset;
421 	loff_t isize;
422 	int err = 0;
423 
424 	inode_lock(inode);
425 
426 	isize = i_size_read(inode);
427 	if (offset >= isize)
428 		goto fail;
429 
430 	/* handle inline data case */
431 	if (f2fs_has_inline_data(inode)) {
432 		if (whence == SEEK_HOLE) {
433 			data_ofs = isize;
434 			goto found;
435 		} else if (whence == SEEK_DATA) {
436 			data_ofs = offset;
437 			goto found;
438 		}
439 	}
440 
441 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442 
443 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 		set_new_dnode(&dn, inode, NULL, NULL, 0);
445 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 		if (err && err != -ENOENT) {
447 			goto fail;
448 		} else if (err == -ENOENT) {
449 			/* direct node does not exists */
450 			if (whence == SEEK_DATA) {
451 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 				continue;
453 			} else {
454 				goto found;
455 			}
456 		}
457 
458 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459 
460 		/* find data/hole in dnode block */
461 		for (; dn.ofs_in_node < end_offset;
462 				dn.ofs_in_node++, pgofs++,
463 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 			block_t blkaddr;
465 
466 			blkaddr = f2fs_data_blkaddr(&dn);
467 
468 			if (__is_valid_data_blkaddr(blkaddr) &&
469 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 					blkaddr, DATA_GENERIC_ENHANCE)) {
471 				f2fs_put_dnode(&dn);
472 				goto fail;
473 			}
474 
475 			if (__found_offset(file->f_mapping, blkaddr,
476 							pgofs, whence)) {
477 				f2fs_put_dnode(&dn);
478 				goto found;
479 			}
480 		}
481 		f2fs_put_dnode(&dn);
482 	}
483 
484 	if (whence == SEEK_DATA)
485 		goto fail;
486 found:
487 	if (whence == SEEK_HOLE && data_ofs > isize)
488 		data_ofs = isize;
489 	inode_unlock(inode);
490 	return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 	inode_unlock(inode);
493 	return -ENXIO;
494 }
495 
496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 	struct inode *inode = file->f_mapping->host;
499 	loff_t maxbytes = inode->i_sb->s_maxbytes;
500 
501 	if (f2fs_compressed_file(inode))
502 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503 
504 	switch (whence) {
505 	case SEEK_SET:
506 	case SEEK_CUR:
507 	case SEEK_END:
508 		return generic_file_llseek_size(file, offset, whence,
509 						maxbytes, i_size_read(inode));
510 	case SEEK_DATA:
511 	case SEEK_HOLE:
512 		if (offset < 0)
513 			return -ENXIO;
514 		return f2fs_seek_block(file, offset, whence);
515 	}
516 
517 	return -EINVAL;
518 }
519 
520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 	struct inode *inode = file_inode(file);
523 
524 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 		return -EIO;
526 
527 	if (!f2fs_is_compress_backend_ready(inode))
528 		return -EOPNOTSUPP;
529 
530 	file_accessed(file);
531 	vma->vm_ops = &f2fs_file_vm_ops;
532 
533 	f2fs_down_read(&F2FS_I(inode)->i_sem);
534 	set_inode_flag(inode, FI_MMAP_FILE);
535 	f2fs_up_read(&F2FS_I(inode)->i_sem);
536 
537 	return 0;
538 }
539 
540 static int finish_preallocate_blocks(struct inode *inode)
541 {
542 	int ret;
543 
544 	inode_lock(inode);
545 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
546 		inode_unlock(inode);
547 		return 0;
548 	}
549 
550 	if (!file_should_truncate(inode)) {
551 		set_inode_flag(inode, FI_OPENED_FILE);
552 		inode_unlock(inode);
553 		return 0;
554 	}
555 
556 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
557 	filemap_invalidate_lock(inode->i_mapping);
558 
559 	truncate_setsize(inode, i_size_read(inode));
560 	ret = f2fs_truncate(inode);
561 
562 	filemap_invalidate_unlock(inode->i_mapping);
563 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
564 
565 	if (!ret)
566 		set_inode_flag(inode, FI_OPENED_FILE);
567 
568 	inode_unlock(inode);
569 	if (ret)
570 		return ret;
571 
572 	file_dont_truncate(inode);
573 	return 0;
574 }
575 
576 static int f2fs_file_open(struct inode *inode, struct file *filp)
577 {
578 	int err = fscrypt_file_open(inode, filp);
579 
580 	if (err)
581 		return err;
582 
583 	if (!f2fs_is_compress_backend_ready(inode))
584 		return -EOPNOTSUPP;
585 
586 	err = fsverity_file_open(inode, filp);
587 	if (err)
588 		return err;
589 
590 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
591 	filp->f_mode |= FMODE_CAN_ODIRECT;
592 
593 	err = dquot_file_open(inode, filp);
594 	if (err)
595 		return err;
596 
597 	return finish_preallocate_blocks(inode);
598 }
599 
600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
601 {
602 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
603 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
604 	__le32 *addr;
605 	bool compressed_cluster = false;
606 	int cluster_index = 0, valid_blocks = 0;
607 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
608 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
609 
610 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
611 
612 	/* Assumption: truncation starts with cluster */
613 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
614 		block_t blkaddr = le32_to_cpu(*addr);
615 
616 		if (f2fs_compressed_file(dn->inode) &&
617 					!(cluster_index & (cluster_size - 1))) {
618 			if (compressed_cluster)
619 				f2fs_i_compr_blocks_update(dn->inode,
620 							valid_blocks, false);
621 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
622 			valid_blocks = 0;
623 		}
624 
625 		if (blkaddr == NULL_ADDR)
626 			continue;
627 
628 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
629 
630 		if (__is_valid_data_blkaddr(blkaddr)) {
631 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
632 					DATA_GENERIC_ENHANCE))
633 				continue;
634 			if (compressed_cluster)
635 				valid_blocks++;
636 		}
637 
638 		f2fs_invalidate_blocks(sbi, blkaddr);
639 
640 		if (!released || blkaddr != COMPRESS_ADDR)
641 			nr_free++;
642 	}
643 
644 	if (compressed_cluster)
645 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
646 
647 	if (nr_free) {
648 		pgoff_t fofs;
649 		/*
650 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
651 		 * we will invalidate all blkaddr in the whole range.
652 		 */
653 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
654 							dn->inode) + ofs;
655 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
656 		f2fs_update_age_extent_cache_range(dn, fofs, len);
657 		dec_valid_block_count(sbi, dn->inode, nr_free);
658 	}
659 	dn->ofs_in_node = ofs;
660 
661 	f2fs_update_time(sbi, REQ_TIME);
662 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
663 					 dn->ofs_in_node, nr_free);
664 }
665 
666 static int truncate_partial_data_page(struct inode *inode, u64 from,
667 								bool cache_only)
668 {
669 	loff_t offset = from & (PAGE_SIZE - 1);
670 	pgoff_t index = from >> PAGE_SHIFT;
671 	struct address_space *mapping = inode->i_mapping;
672 	struct page *page;
673 
674 	if (!offset && !cache_only)
675 		return 0;
676 
677 	if (cache_only) {
678 		page = find_lock_page(mapping, index);
679 		if (page && PageUptodate(page))
680 			goto truncate_out;
681 		f2fs_put_page(page, 1);
682 		return 0;
683 	}
684 
685 	page = f2fs_get_lock_data_page(inode, index, true);
686 	if (IS_ERR(page))
687 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
688 truncate_out:
689 	f2fs_wait_on_page_writeback(page, DATA, true, true);
690 	zero_user(page, offset, PAGE_SIZE - offset);
691 
692 	/* An encrypted inode should have a key and truncate the last page. */
693 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
694 	if (!cache_only)
695 		set_page_dirty(page);
696 	f2fs_put_page(page, 1);
697 	return 0;
698 }
699 
700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
701 {
702 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 	struct dnode_of_data dn;
704 	pgoff_t free_from;
705 	int count = 0, err = 0;
706 	struct page *ipage;
707 	bool truncate_page = false;
708 
709 	trace_f2fs_truncate_blocks_enter(inode, from);
710 
711 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
712 
713 	if (free_from >= max_file_blocks(inode))
714 		goto free_partial;
715 
716 	if (lock)
717 		f2fs_lock_op(sbi);
718 
719 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
720 	if (IS_ERR(ipage)) {
721 		err = PTR_ERR(ipage);
722 		goto out;
723 	}
724 
725 	if (f2fs_has_inline_data(inode)) {
726 		f2fs_truncate_inline_inode(inode, ipage, from);
727 		f2fs_put_page(ipage, 1);
728 		truncate_page = true;
729 		goto out;
730 	}
731 
732 	set_new_dnode(&dn, inode, ipage, NULL, 0);
733 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
734 	if (err) {
735 		if (err == -ENOENT)
736 			goto free_next;
737 		goto out;
738 	}
739 
740 	count = ADDRS_PER_PAGE(dn.node_page, inode);
741 
742 	count -= dn.ofs_in_node;
743 	f2fs_bug_on(sbi, count < 0);
744 
745 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
746 		f2fs_truncate_data_blocks_range(&dn, count);
747 		free_from += count;
748 	}
749 
750 	f2fs_put_dnode(&dn);
751 free_next:
752 	err = f2fs_truncate_inode_blocks(inode, free_from);
753 out:
754 	if (lock)
755 		f2fs_unlock_op(sbi);
756 free_partial:
757 	/* lastly zero out the first data page */
758 	if (!err)
759 		err = truncate_partial_data_page(inode, from, truncate_page);
760 
761 	trace_f2fs_truncate_blocks_exit(inode, err);
762 	return err;
763 }
764 
765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
766 {
767 	u64 free_from = from;
768 	int err;
769 
770 #ifdef CONFIG_F2FS_FS_COMPRESSION
771 	/*
772 	 * for compressed file, only support cluster size
773 	 * aligned truncation.
774 	 */
775 	if (f2fs_compressed_file(inode))
776 		free_from = round_up(from,
777 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
778 #endif
779 
780 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
781 	if (err)
782 		return err;
783 
784 #ifdef CONFIG_F2FS_FS_COMPRESSION
785 	/*
786 	 * For compressed file, after release compress blocks, don't allow write
787 	 * direct, but we should allow write direct after truncate to zero.
788 	 */
789 	if (f2fs_compressed_file(inode) && !free_from
790 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
791 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
792 
793 	if (from != free_from) {
794 		err = f2fs_truncate_partial_cluster(inode, from, lock);
795 		if (err)
796 			return err;
797 	}
798 #endif
799 
800 	return 0;
801 }
802 
803 int f2fs_truncate(struct inode *inode)
804 {
805 	int err;
806 
807 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
808 		return -EIO;
809 
810 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
811 				S_ISLNK(inode->i_mode)))
812 		return 0;
813 
814 	trace_f2fs_truncate(inode);
815 
816 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
817 		return -EIO;
818 
819 	err = f2fs_dquot_initialize(inode);
820 	if (err)
821 		return err;
822 
823 	/* we should check inline_data size */
824 	if (!f2fs_may_inline_data(inode)) {
825 		err = f2fs_convert_inline_inode(inode);
826 		if (err)
827 			return err;
828 	}
829 
830 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
831 	if (err)
832 		return err;
833 
834 	inode->i_mtime = inode_set_ctime_current(inode);
835 	f2fs_mark_inode_dirty_sync(inode, false);
836 	return 0;
837 }
838 
839 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
840 {
841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
842 
843 	if (!fscrypt_dio_supported(inode))
844 		return true;
845 	if (fsverity_active(inode))
846 		return true;
847 	if (f2fs_compressed_file(inode))
848 		return true;
849 	/*
850 	 * only force direct read to use buffered IO, for direct write,
851 	 * it expects inline data conversion before committing IO.
852 	 */
853 	if (f2fs_has_inline_data(inode) && rw == READ)
854 		return true;
855 
856 	/* disallow direct IO if any of devices has unaligned blksize */
857 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
858 		return true;
859 	/*
860 	 * for blkzoned device, fallback direct IO to buffered IO, so
861 	 * all IOs can be serialized by log-structured write.
862 	 */
863 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
864 		return true;
865 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
866 		return true;
867 
868 	return false;
869 }
870 
871 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
872 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
873 {
874 	struct inode *inode = d_inode(path->dentry);
875 	struct f2fs_inode_info *fi = F2FS_I(inode);
876 	struct f2fs_inode *ri = NULL;
877 	unsigned int flags;
878 
879 	if (f2fs_has_extra_attr(inode) &&
880 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
881 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
882 		stat->result_mask |= STATX_BTIME;
883 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
884 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
885 	}
886 
887 	/*
888 	 * Return the DIO alignment restrictions if requested.  We only return
889 	 * this information when requested, since on encrypted files it might
890 	 * take a fair bit of work to get if the file wasn't opened recently.
891 	 *
892 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
893 	 * cannot represent that, so in that case we report no DIO support.
894 	 */
895 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
896 		unsigned int bsize = i_blocksize(inode);
897 
898 		stat->result_mask |= STATX_DIOALIGN;
899 		if (!f2fs_force_buffered_io(inode, WRITE)) {
900 			stat->dio_mem_align = bsize;
901 			stat->dio_offset_align = bsize;
902 		}
903 	}
904 
905 	flags = fi->i_flags;
906 	if (flags & F2FS_COMPR_FL)
907 		stat->attributes |= STATX_ATTR_COMPRESSED;
908 	if (flags & F2FS_APPEND_FL)
909 		stat->attributes |= STATX_ATTR_APPEND;
910 	if (IS_ENCRYPTED(inode))
911 		stat->attributes |= STATX_ATTR_ENCRYPTED;
912 	if (flags & F2FS_IMMUTABLE_FL)
913 		stat->attributes |= STATX_ATTR_IMMUTABLE;
914 	if (flags & F2FS_NODUMP_FL)
915 		stat->attributes |= STATX_ATTR_NODUMP;
916 	if (IS_VERITY(inode))
917 		stat->attributes |= STATX_ATTR_VERITY;
918 
919 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
920 				  STATX_ATTR_APPEND |
921 				  STATX_ATTR_ENCRYPTED |
922 				  STATX_ATTR_IMMUTABLE |
923 				  STATX_ATTR_NODUMP |
924 				  STATX_ATTR_VERITY);
925 
926 	generic_fillattr(idmap, request_mask, inode, stat);
927 
928 	/* we need to show initial sectors used for inline_data/dentries */
929 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
930 					f2fs_has_inline_dentry(inode))
931 		stat->blocks += (stat->size + 511) >> 9;
932 
933 	return 0;
934 }
935 
936 #ifdef CONFIG_F2FS_FS_POSIX_ACL
937 static void __setattr_copy(struct mnt_idmap *idmap,
938 			   struct inode *inode, const struct iattr *attr)
939 {
940 	unsigned int ia_valid = attr->ia_valid;
941 
942 	i_uid_update(idmap, attr, inode);
943 	i_gid_update(idmap, attr, inode);
944 	if (ia_valid & ATTR_ATIME)
945 		inode->i_atime = attr->ia_atime;
946 	if (ia_valid & ATTR_MTIME)
947 		inode->i_mtime = attr->ia_mtime;
948 	if (ia_valid & ATTR_CTIME)
949 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
950 	if (ia_valid & ATTR_MODE) {
951 		umode_t mode = attr->ia_mode;
952 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
953 
954 		if (!vfsgid_in_group_p(vfsgid) &&
955 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
956 			mode &= ~S_ISGID;
957 		set_acl_inode(inode, mode);
958 	}
959 }
960 #else
961 #define __setattr_copy setattr_copy
962 #endif
963 
964 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
965 		 struct iattr *attr)
966 {
967 	struct inode *inode = d_inode(dentry);
968 	int err;
969 
970 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
971 		return -EIO;
972 
973 	if (unlikely(IS_IMMUTABLE(inode)))
974 		return -EPERM;
975 
976 	if (unlikely(IS_APPEND(inode) &&
977 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
978 				  ATTR_GID | ATTR_TIMES_SET))))
979 		return -EPERM;
980 
981 	if ((attr->ia_valid & ATTR_SIZE)) {
982 		if (!f2fs_is_compress_backend_ready(inode))
983 			return -EOPNOTSUPP;
984 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
985 			!IS_ALIGNED(attr->ia_size,
986 			F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
987 			return -EINVAL;
988 	}
989 
990 	err = setattr_prepare(idmap, dentry, attr);
991 	if (err)
992 		return err;
993 
994 	err = fscrypt_prepare_setattr(dentry, attr);
995 	if (err)
996 		return err;
997 
998 	err = fsverity_prepare_setattr(dentry, attr);
999 	if (err)
1000 		return err;
1001 
1002 	if (is_quota_modification(idmap, inode, attr)) {
1003 		err = f2fs_dquot_initialize(inode);
1004 		if (err)
1005 			return err;
1006 	}
1007 	if (i_uid_needs_update(idmap, attr, inode) ||
1008 	    i_gid_needs_update(idmap, attr, inode)) {
1009 		f2fs_lock_op(F2FS_I_SB(inode));
1010 		err = dquot_transfer(idmap, inode, attr);
1011 		if (err) {
1012 			set_sbi_flag(F2FS_I_SB(inode),
1013 					SBI_QUOTA_NEED_REPAIR);
1014 			f2fs_unlock_op(F2FS_I_SB(inode));
1015 			return err;
1016 		}
1017 		/*
1018 		 * update uid/gid under lock_op(), so that dquot and inode can
1019 		 * be updated atomically.
1020 		 */
1021 		i_uid_update(idmap, attr, inode);
1022 		i_gid_update(idmap, attr, inode);
1023 		f2fs_mark_inode_dirty_sync(inode, true);
1024 		f2fs_unlock_op(F2FS_I_SB(inode));
1025 	}
1026 
1027 	if (attr->ia_valid & ATTR_SIZE) {
1028 		loff_t old_size = i_size_read(inode);
1029 
1030 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1031 			/*
1032 			 * should convert inline inode before i_size_write to
1033 			 * keep smaller than inline_data size with inline flag.
1034 			 */
1035 			err = f2fs_convert_inline_inode(inode);
1036 			if (err)
1037 				return err;
1038 		}
1039 
1040 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1041 		filemap_invalidate_lock(inode->i_mapping);
1042 
1043 		truncate_setsize(inode, attr->ia_size);
1044 
1045 		if (attr->ia_size <= old_size)
1046 			err = f2fs_truncate(inode);
1047 		/*
1048 		 * do not trim all blocks after i_size if target size is
1049 		 * larger than i_size.
1050 		 */
1051 		filemap_invalidate_unlock(inode->i_mapping);
1052 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1053 		if (err)
1054 			return err;
1055 
1056 		spin_lock(&F2FS_I(inode)->i_size_lock);
1057 		inode->i_mtime = inode_set_ctime_current(inode);
1058 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1059 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1060 	}
1061 
1062 	__setattr_copy(idmap, inode, attr);
1063 
1064 	if (attr->ia_valid & ATTR_MODE) {
1065 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1066 
1067 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1068 			if (!err)
1069 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1070 			clear_inode_flag(inode, FI_ACL_MODE);
1071 		}
1072 	}
1073 
1074 	/* file size may changed here */
1075 	f2fs_mark_inode_dirty_sync(inode, true);
1076 
1077 	/* inode change will produce dirty node pages flushed by checkpoint */
1078 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1079 
1080 	return err;
1081 }
1082 
1083 const struct inode_operations f2fs_file_inode_operations = {
1084 	.getattr	= f2fs_getattr,
1085 	.setattr	= f2fs_setattr,
1086 	.get_inode_acl	= f2fs_get_acl,
1087 	.set_acl	= f2fs_set_acl,
1088 	.listxattr	= f2fs_listxattr,
1089 	.fiemap		= f2fs_fiemap,
1090 	.fileattr_get	= f2fs_fileattr_get,
1091 	.fileattr_set	= f2fs_fileattr_set,
1092 };
1093 
1094 static int fill_zero(struct inode *inode, pgoff_t index,
1095 					loff_t start, loff_t len)
1096 {
1097 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1098 	struct page *page;
1099 
1100 	if (!len)
1101 		return 0;
1102 
1103 	f2fs_balance_fs(sbi, true);
1104 
1105 	f2fs_lock_op(sbi);
1106 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1107 	f2fs_unlock_op(sbi);
1108 
1109 	if (IS_ERR(page))
1110 		return PTR_ERR(page);
1111 
1112 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1113 	zero_user(page, start, len);
1114 	set_page_dirty(page);
1115 	f2fs_put_page(page, 1);
1116 	return 0;
1117 }
1118 
1119 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1120 {
1121 	int err;
1122 
1123 	while (pg_start < pg_end) {
1124 		struct dnode_of_data dn;
1125 		pgoff_t end_offset, count;
1126 
1127 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1128 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1129 		if (err) {
1130 			if (err == -ENOENT) {
1131 				pg_start = f2fs_get_next_page_offset(&dn,
1132 								pg_start);
1133 				continue;
1134 			}
1135 			return err;
1136 		}
1137 
1138 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1139 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1140 
1141 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1142 
1143 		f2fs_truncate_data_blocks_range(&dn, count);
1144 		f2fs_put_dnode(&dn);
1145 
1146 		pg_start += count;
1147 	}
1148 	return 0;
1149 }
1150 
1151 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1152 {
1153 	pgoff_t pg_start, pg_end;
1154 	loff_t off_start, off_end;
1155 	int ret;
1156 
1157 	ret = f2fs_convert_inline_inode(inode);
1158 	if (ret)
1159 		return ret;
1160 
1161 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1162 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1163 
1164 	off_start = offset & (PAGE_SIZE - 1);
1165 	off_end = (offset + len) & (PAGE_SIZE - 1);
1166 
1167 	if (pg_start == pg_end) {
1168 		ret = fill_zero(inode, pg_start, off_start,
1169 						off_end - off_start);
1170 		if (ret)
1171 			return ret;
1172 	} else {
1173 		if (off_start) {
1174 			ret = fill_zero(inode, pg_start++, off_start,
1175 						PAGE_SIZE - off_start);
1176 			if (ret)
1177 				return ret;
1178 		}
1179 		if (off_end) {
1180 			ret = fill_zero(inode, pg_end, 0, off_end);
1181 			if (ret)
1182 				return ret;
1183 		}
1184 
1185 		if (pg_start < pg_end) {
1186 			loff_t blk_start, blk_end;
1187 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1188 
1189 			f2fs_balance_fs(sbi, true);
1190 
1191 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1192 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1193 
1194 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1195 			filemap_invalidate_lock(inode->i_mapping);
1196 
1197 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1198 
1199 			f2fs_lock_op(sbi);
1200 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1201 			f2fs_unlock_op(sbi);
1202 
1203 			filemap_invalidate_unlock(inode->i_mapping);
1204 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1205 		}
1206 	}
1207 
1208 	return ret;
1209 }
1210 
1211 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1212 				int *do_replace, pgoff_t off, pgoff_t len)
1213 {
1214 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 	struct dnode_of_data dn;
1216 	int ret, done, i;
1217 
1218 next_dnode:
1219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1220 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1221 	if (ret && ret != -ENOENT) {
1222 		return ret;
1223 	} else if (ret == -ENOENT) {
1224 		if (dn.max_level == 0)
1225 			return -ENOENT;
1226 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1227 						dn.ofs_in_node, len);
1228 		blkaddr += done;
1229 		do_replace += done;
1230 		goto next;
1231 	}
1232 
1233 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1234 							dn.ofs_in_node, len);
1235 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1236 		*blkaddr = f2fs_data_blkaddr(&dn);
1237 
1238 		if (__is_valid_data_blkaddr(*blkaddr) &&
1239 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1240 					DATA_GENERIC_ENHANCE)) {
1241 			f2fs_put_dnode(&dn);
1242 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1243 			return -EFSCORRUPTED;
1244 		}
1245 
1246 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1247 
1248 			if (f2fs_lfs_mode(sbi)) {
1249 				f2fs_put_dnode(&dn);
1250 				return -EOPNOTSUPP;
1251 			}
1252 
1253 			/* do not invalidate this block address */
1254 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1255 			*do_replace = 1;
1256 		}
1257 	}
1258 	f2fs_put_dnode(&dn);
1259 next:
1260 	len -= done;
1261 	off += done;
1262 	if (len)
1263 		goto next_dnode;
1264 	return 0;
1265 }
1266 
1267 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1268 				int *do_replace, pgoff_t off, int len)
1269 {
1270 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1271 	struct dnode_of_data dn;
1272 	int ret, i;
1273 
1274 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1275 		if (*do_replace == 0)
1276 			continue;
1277 
1278 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1279 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1280 		if (ret) {
1281 			dec_valid_block_count(sbi, inode, 1);
1282 			f2fs_invalidate_blocks(sbi, *blkaddr);
1283 		} else {
1284 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1285 		}
1286 		f2fs_put_dnode(&dn);
1287 	}
1288 	return 0;
1289 }
1290 
1291 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1292 			block_t *blkaddr, int *do_replace,
1293 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1294 {
1295 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1296 	pgoff_t i = 0;
1297 	int ret;
1298 
1299 	while (i < len) {
1300 		if (blkaddr[i] == NULL_ADDR && !full) {
1301 			i++;
1302 			continue;
1303 		}
1304 
1305 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1306 			struct dnode_of_data dn;
1307 			struct node_info ni;
1308 			size_t new_size;
1309 			pgoff_t ilen;
1310 
1311 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1312 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1313 			if (ret)
1314 				return ret;
1315 
1316 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1317 			if (ret) {
1318 				f2fs_put_dnode(&dn);
1319 				return ret;
1320 			}
1321 
1322 			ilen = min((pgoff_t)
1323 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1324 						dn.ofs_in_node, len - i);
1325 			do {
1326 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1327 				f2fs_truncate_data_blocks_range(&dn, 1);
1328 
1329 				if (do_replace[i]) {
1330 					f2fs_i_blocks_write(src_inode,
1331 							1, false, false);
1332 					f2fs_i_blocks_write(dst_inode,
1333 							1, true, false);
1334 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1335 					blkaddr[i], ni.version, true, false);
1336 
1337 					do_replace[i] = 0;
1338 				}
1339 				dn.ofs_in_node++;
1340 				i++;
1341 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1342 				if (dst_inode->i_size < new_size)
1343 					f2fs_i_size_write(dst_inode, new_size);
1344 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1345 
1346 			f2fs_put_dnode(&dn);
1347 		} else {
1348 			struct page *psrc, *pdst;
1349 
1350 			psrc = f2fs_get_lock_data_page(src_inode,
1351 							src + i, true);
1352 			if (IS_ERR(psrc))
1353 				return PTR_ERR(psrc);
1354 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1355 								true);
1356 			if (IS_ERR(pdst)) {
1357 				f2fs_put_page(psrc, 1);
1358 				return PTR_ERR(pdst);
1359 			}
1360 
1361 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1362 
1363 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1364 			set_page_dirty(pdst);
1365 			set_page_private_gcing(pdst);
1366 			f2fs_put_page(pdst, 1);
1367 			f2fs_put_page(psrc, 1);
1368 
1369 			ret = f2fs_truncate_hole(src_inode,
1370 						src + i, src + i + 1);
1371 			if (ret)
1372 				return ret;
1373 			i++;
1374 		}
1375 	}
1376 	return 0;
1377 }
1378 
1379 static int __exchange_data_block(struct inode *src_inode,
1380 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1381 			pgoff_t len, bool full)
1382 {
1383 	block_t *src_blkaddr;
1384 	int *do_replace;
1385 	pgoff_t olen;
1386 	int ret;
1387 
1388 	while (len) {
1389 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1390 
1391 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1392 					array_size(olen, sizeof(block_t)),
1393 					GFP_NOFS);
1394 		if (!src_blkaddr)
1395 			return -ENOMEM;
1396 
1397 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1398 					array_size(olen, sizeof(int)),
1399 					GFP_NOFS);
1400 		if (!do_replace) {
1401 			kvfree(src_blkaddr);
1402 			return -ENOMEM;
1403 		}
1404 
1405 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1406 					do_replace, src, olen);
1407 		if (ret)
1408 			goto roll_back;
1409 
1410 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1411 					do_replace, src, dst, olen, full);
1412 		if (ret)
1413 			goto roll_back;
1414 
1415 		src += olen;
1416 		dst += olen;
1417 		len -= olen;
1418 
1419 		kvfree(src_blkaddr);
1420 		kvfree(do_replace);
1421 	}
1422 	return 0;
1423 
1424 roll_back:
1425 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1426 	kvfree(src_blkaddr);
1427 	kvfree(do_replace);
1428 	return ret;
1429 }
1430 
1431 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1432 {
1433 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1434 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1435 	pgoff_t start = offset >> PAGE_SHIFT;
1436 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1437 	int ret;
1438 
1439 	f2fs_balance_fs(sbi, true);
1440 
1441 	/* avoid gc operation during block exchange */
1442 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1443 	filemap_invalidate_lock(inode->i_mapping);
1444 
1445 	f2fs_lock_op(sbi);
1446 	f2fs_drop_extent_tree(inode);
1447 	truncate_pagecache(inode, offset);
1448 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1449 	f2fs_unlock_op(sbi);
1450 
1451 	filemap_invalidate_unlock(inode->i_mapping);
1452 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1453 	return ret;
1454 }
1455 
1456 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1457 {
1458 	loff_t new_size;
1459 	int ret;
1460 
1461 	if (offset + len >= i_size_read(inode))
1462 		return -EINVAL;
1463 
1464 	/* collapse range should be aligned to block size of f2fs. */
1465 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1466 		return -EINVAL;
1467 
1468 	ret = f2fs_convert_inline_inode(inode);
1469 	if (ret)
1470 		return ret;
1471 
1472 	/* write out all dirty pages from offset */
1473 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1474 	if (ret)
1475 		return ret;
1476 
1477 	ret = f2fs_do_collapse(inode, offset, len);
1478 	if (ret)
1479 		return ret;
1480 
1481 	/* write out all moved pages, if possible */
1482 	filemap_invalidate_lock(inode->i_mapping);
1483 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1484 	truncate_pagecache(inode, offset);
1485 
1486 	new_size = i_size_read(inode) - len;
1487 	ret = f2fs_truncate_blocks(inode, new_size, true);
1488 	filemap_invalidate_unlock(inode->i_mapping);
1489 	if (!ret)
1490 		f2fs_i_size_write(inode, new_size);
1491 	return ret;
1492 }
1493 
1494 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1495 								pgoff_t end)
1496 {
1497 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1498 	pgoff_t index = start;
1499 	unsigned int ofs_in_node = dn->ofs_in_node;
1500 	blkcnt_t count = 0;
1501 	int ret;
1502 
1503 	for (; index < end; index++, dn->ofs_in_node++) {
1504 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1505 			count++;
1506 	}
1507 
1508 	dn->ofs_in_node = ofs_in_node;
1509 	ret = f2fs_reserve_new_blocks(dn, count);
1510 	if (ret)
1511 		return ret;
1512 
1513 	dn->ofs_in_node = ofs_in_node;
1514 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1515 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1516 		/*
1517 		 * f2fs_reserve_new_blocks will not guarantee entire block
1518 		 * allocation.
1519 		 */
1520 		if (dn->data_blkaddr == NULL_ADDR) {
1521 			ret = -ENOSPC;
1522 			break;
1523 		}
1524 
1525 		if (dn->data_blkaddr == NEW_ADDR)
1526 			continue;
1527 
1528 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1529 					DATA_GENERIC_ENHANCE)) {
1530 			ret = -EFSCORRUPTED;
1531 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1532 			break;
1533 		}
1534 
1535 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1536 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1537 	}
1538 
1539 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1540 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1541 
1542 	return ret;
1543 }
1544 
1545 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1546 								int mode)
1547 {
1548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1549 	struct address_space *mapping = inode->i_mapping;
1550 	pgoff_t index, pg_start, pg_end;
1551 	loff_t new_size = i_size_read(inode);
1552 	loff_t off_start, off_end;
1553 	int ret = 0;
1554 
1555 	ret = inode_newsize_ok(inode, (len + offset));
1556 	if (ret)
1557 		return ret;
1558 
1559 	ret = f2fs_convert_inline_inode(inode);
1560 	if (ret)
1561 		return ret;
1562 
1563 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1564 	if (ret)
1565 		return ret;
1566 
1567 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1568 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1569 
1570 	off_start = offset & (PAGE_SIZE - 1);
1571 	off_end = (offset + len) & (PAGE_SIZE - 1);
1572 
1573 	if (pg_start == pg_end) {
1574 		ret = fill_zero(inode, pg_start, off_start,
1575 						off_end - off_start);
1576 		if (ret)
1577 			return ret;
1578 
1579 		new_size = max_t(loff_t, new_size, offset + len);
1580 	} else {
1581 		if (off_start) {
1582 			ret = fill_zero(inode, pg_start++, off_start,
1583 						PAGE_SIZE - off_start);
1584 			if (ret)
1585 				return ret;
1586 
1587 			new_size = max_t(loff_t, new_size,
1588 					(loff_t)pg_start << PAGE_SHIFT);
1589 		}
1590 
1591 		for (index = pg_start; index < pg_end;) {
1592 			struct dnode_of_data dn;
1593 			unsigned int end_offset;
1594 			pgoff_t end;
1595 
1596 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1597 			filemap_invalidate_lock(mapping);
1598 
1599 			truncate_pagecache_range(inode,
1600 				(loff_t)index << PAGE_SHIFT,
1601 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1602 
1603 			f2fs_lock_op(sbi);
1604 
1605 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1606 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1607 			if (ret) {
1608 				f2fs_unlock_op(sbi);
1609 				filemap_invalidate_unlock(mapping);
1610 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1611 				goto out;
1612 			}
1613 
1614 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1615 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1616 
1617 			ret = f2fs_do_zero_range(&dn, index, end);
1618 			f2fs_put_dnode(&dn);
1619 
1620 			f2fs_unlock_op(sbi);
1621 			filemap_invalidate_unlock(mapping);
1622 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1623 
1624 			f2fs_balance_fs(sbi, dn.node_changed);
1625 
1626 			if (ret)
1627 				goto out;
1628 
1629 			index = end;
1630 			new_size = max_t(loff_t, new_size,
1631 					(loff_t)index << PAGE_SHIFT);
1632 		}
1633 
1634 		if (off_end) {
1635 			ret = fill_zero(inode, pg_end, 0, off_end);
1636 			if (ret)
1637 				goto out;
1638 
1639 			new_size = max_t(loff_t, new_size, offset + len);
1640 		}
1641 	}
1642 
1643 out:
1644 	if (new_size > i_size_read(inode)) {
1645 		if (mode & FALLOC_FL_KEEP_SIZE)
1646 			file_set_keep_isize(inode);
1647 		else
1648 			f2fs_i_size_write(inode, new_size);
1649 	}
1650 	return ret;
1651 }
1652 
1653 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1654 {
1655 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1656 	struct address_space *mapping = inode->i_mapping;
1657 	pgoff_t nr, pg_start, pg_end, delta, idx;
1658 	loff_t new_size;
1659 	int ret = 0;
1660 
1661 	new_size = i_size_read(inode) + len;
1662 	ret = inode_newsize_ok(inode, new_size);
1663 	if (ret)
1664 		return ret;
1665 
1666 	if (offset >= i_size_read(inode))
1667 		return -EINVAL;
1668 
1669 	/* insert range should be aligned to block size of f2fs. */
1670 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1671 		return -EINVAL;
1672 
1673 	ret = f2fs_convert_inline_inode(inode);
1674 	if (ret)
1675 		return ret;
1676 
1677 	f2fs_balance_fs(sbi, true);
1678 
1679 	filemap_invalidate_lock(mapping);
1680 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1681 	filemap_invalidate_unlock(mapping);
1682 	if (ret)
1683 		return ret;
1684 
1685 	/* write out all dirty pages from offset */
1686 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1687 	if (ret)
1688 		return ret;
1689 
1690 	pg_start = offset >> PAGE_SHIFT;
1691 	pg_end = (offset + len) >> PAGE_SHIFT;
1692 	delta = pg_end - pg_start;
1693 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1694 
1695 	/* avoid gc operation during block exchange */
1696 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1697 	filemap_invalidate_lock(mapping);
1698 	truncate_pagecache(inode, offset);
1699 
1700 	while (!ret && idx > pg_start) {
1701 		nr = idx - pg_start;
1702 		if (nr > delta)
1703 			nr = delta;
1704 		idx -= nr;
1705 
1706 		f2fs_lock_op(sbi);
1707 		f2fs_drop_extent_tree(inode);
1708 
1709 		ret = __exchange_data_block(inode, inode, idx,
1710 					idx + delta, nr, false);
1711 		f2fs_unlock_op(sbi);
1712 	}
1713 	filemap_invalidate_unlock(mapping);
1714 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1715 
1716 	/* write out all moved pages, if possible */
1717 	filemap_invalidate_lock(mapping);
1718 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1719 	truncate_pagecache(inode, offset);
1720 	filemap_invalidate_unlock(mapping);
1721 
1722 	if (!ret)
1723 		f2fs_i_size_write(inode, new_size);
1724 	return ret;
1725 }
1726 
1727 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1728 					loff_t len, int mode)
1729 {
1730 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1731 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1732 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1733 			.m_may_create = true };
1734 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1735 			.init_gc_type = FG_GC,
1736 			.should_migrate_blocks = false,
1737 			.err_gc_skipped = true,
1738 			.nr_free_secs = 0 };
1739 	pgoff_t pg_start, pg_end;
1740 	loff_t new_size;
1741 	loff_t off_end;
1742 	block_t expanded = 0;
1743 	int err;
1744 
1745 	err = inode_newsize_ok(inode, (len + offset));
1746 	if (err)
1747 		return err;
1748 
1749 	err = f2fs_convert_inline_inode(inode);
1750 	if (err)
1751 		return err;
1752 
1753 	f2fs_balance_fs(sbi, true);
1754 
1755 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1756 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1757 	off_end = (offset + len) & (PAGE_SIZE - 1);
1758 
1759 	map.m_lblk = pg_start;
1760 	map.m_len = pg_end - pg_start;
1761 	if (off_end)
1762 		map.m_len++;
1763 
1764 	if (!map.m_len)
1765 		return 0;
1766 
1767 	if (f2fs_is_pinned_file(inode)) {
1768 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1769 		block_t sec_len = roundup(map.m_len, sec_blks);
1770 
1771 		map.m_len = sec_blks;
1772 next_alloc:
1773 		if (has_not_enough_free_secs(sbi, 0,
1774 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1775 			f2fs_down_write(&sbi->gc_lock);
1776 			stat_inc_gc_call_count(sbi, FOREGROUND);
1777 			err = f2fs_gc(sbi, &gc_control);
1778 			if (err && err != -ENODATA)
1779 				goto out_err;
1780 		}
1781 
1782 		f2fs_down_write(&sbi->pin_sem);
1783 
1784 		err = f2fs_allocate_pinning_section(sbi);
1785 		if (err) {
1786 			f2fs_up_write(&sbi->pin_sem);
1787 			goto out_err;
1788 		}
1789 
1790 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1791 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1792 		file_dont_truncate(inode);
1793 
1794 		f2fs_up_write(&sbi->pin_sem);
1795 
1796 		expanded += map.m_len;
1797 		sec_len -= map.m_len;
1798 		map.m_lblk += map.m_len;
1799 		if (!err && sec_len)
1800 			goto next_alloc;
1801 
1802 		map.m_len = expanded;
1803 	} else {
1804 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1805 		expanded = map.m_len;
1806 	}
1807 out_err:
1808 	if (err) {
1809 		pgoff_t last_off;
1810 
1811 		if (!expanded)
1812 			return err;
1813 
1814 		last_off = pg_start + expanded - 1;
1815 
1816 		/* update new size to the failed position */
1817 		new_size = (last_off == pg_end) ? offset + len :
1818 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1819 	} else {
1820 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1821 	}
1822 
1823 	if (new_size > i_size_read(inode)) {
1824 		if (mode & FALLOC_FL_KEEP_SIZE)
1825 			file_set_keep_isize(inode);
1826 		else
1827 			f2fs_i_size_write(inode, new_size);
1828 	}
1829 
1830 	return err;
1831 }
1832 
1833 static long f2fs_fallocate(struct file *file, int mode,
1834 				loff_t offset, loff_t len)
1835 {
1836 	struct inode *inode = file_inode(file);
1837 	long ret = 0;
1838 
1839 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1840 		return -EIO;
1841 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1842 		return -ENOSPC;
1843 	if (!f2fs_is_compress_backend_ready(inode))
1844 		return -EOPNOTSUPP;
1845 
1846 	/* f2fs only support ->fallocate for regular file */
1847 	if (!S_ISREG(inode->i_mode))
1848 		return -EINVAL;
1849 
1850 	if (IS_ENCRYPTED(inode) &&
1851 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1852 		return -EOPNOTSUPP;
1853 
1854 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1855 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1856 			FALLOC_FL_INSERT_RANGE))
1857 		return -EOPNOTSUPP;
1858 
1859 	inode_lock(inode);
1860 
1861 	/*
1862 	 * Pinned file should not support partial truncation since the block
1863 	 * can be used by applications.
1864 	 */
1865 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1866 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1867 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1868 		ret = -EOPNOTSUPP;
1869 		goto out;
1870 	}
1871 
1872 	ret = file_modified(file);
1873 	if (ret)
1874 		goto out;
1875 
1876 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1877 		if (offset >= inode->i_size)
1878 			goto out;
1879 
1880 		ret = f2fs_punch_hole(inode, offset, len);
1881 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1882 		ret = f2fs_collapse_range(inode, offset, len);
1883 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1884 		ret = f2fs_zero_range(inode, offset, len, mode);
1885 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1886 		ret = f2fs_insert_range(inode, offset, len);
1887 	} else {
1888 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1889 	}
1890 
1891 	if (!ret) {
1892 		inode->i_mtime = inode_set_ctime_current(inode);
1893 		f2fs_mark_inode_dirty_sync(inode, false);
1894 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1895 	}
1896 
1897 out:
1898 	inode_unlock(inode);
1899 
1900 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1901 	return ret;
1902 }
1903 
1904 static int f2fs_release_file(struct inode *inode, struct file *filp)
1905 {
1906 	/*
1907 	 * f2fs_release_file is called at every close calls. So we should
1908 	 * not drop any inmemory pages by close called by other process.
1909 	 */
1910 	if (!(filp->f_mode & FMODE_WRITE) ||
1911 			atomic_read(&inode->i_writecount) != 1)
1912 		return 0;
1913 
1914 	inode_lock(inode);
1915 	f2fs_abort_atomic_write(inode, true);
1916 	inode_unlock(inode);
1917 
1918 	return 0;
1919 }
1920 
1921 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1922 {
1923 	struct inode *inode = file_inode(file);
1924 
1925 	/*
1926 	 * If the process doing a transaction is crashed, we should do
1927 	 * roll-back. Otherwise, other reader/write can see corrupted database
1928 	 * until all the writers close its file. Since this should be done
1929 	 * before dropping file lock, it needs to do in ->flush.
1930 	 */
1931 	if (F2FS_I(inode)->atomic_write_task == current &&
1932 				(current->flags & PF_EXITING)) {
1933 		inode_lock(inode);
1934 		f2fs_abort_atomic_write(inode, true);
1935 		inode_unlock(inode);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1942 {
1943 	struct f2fs_inode_info *fi = F2FS_I(inode);
1944 	u32 masked_flags = fi->i_flags & mask;
1945 
1946 	/* mask can be shrunk by flags_valid selector */
1947 	iflags &= mask;
1948 
1949 	/* Is it quota file? Do not allow user to mess with it */
1950 	if (IS_NOQUOTA(inode))
1951 		return -EPERM;
1952 
1953 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1954 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1955 			return -EOPNOTSUPP;
1956 		if (!f2fs_empty_dir(inode))
1957 			return -ENOTEMPTY;
1958 	}
1959 
1960 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1961 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1962 			return -EOPNOTSUPP;
1963 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1964 			return -EINVAL;
1965 	}
1966 
1967 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1968 		if (masked_flags & F2FS_COMPR_FL) {
1969 			if (!f2fs_disable_compressed_file(inode))
1970 				return -EINVAL;
1971 		} else {
1972 			/* try to convert inline_data to support compression */
1973 			int err = f2fs_convert_inline_inode(inode);
1974 			if (err)
1975 				return err;
1976 
1977 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1978 			if (!f2fs_may_compress(inode) ||
1979 					(S_ISREG(inode->i_mode) &&
1980 					F2FS_HAS_BLOCKS(inode))) {
1981 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1982 				return -EINVAL;
1983 			}
1984 			err = set_compress_context(inode);
1985 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1986 
1987 			if (err)
1988 				return err;
1989 		}
1990 	}
1991 
1992 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1993 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1994 					(fi->i_flags & F2FS_NOCOMP_FL));
1995 
1996 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1997 		set_inode_flag(inode, FI_PROJ_INHERIT);
1998 	else
1999 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2000 
2001 	inode_set_ctime_current(inode);
2002 	f2fs_set_inode_flags(inode);
2003 	f2fs_mark_inode_dirty_sync(inode, true);
2004 	return 0;
2005 }
2006 
2007 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2008 
2009 /*
2010  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2011  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2012  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2013  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2014  *
2015  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2016  * FS_IOC_FSSETXATTR is done by the VFS.
2017  */
2018 
2019 static const struct {
2020 	u32 iflag;
2021 	u32 fsflag;
2022 } f2fs_fsflags_map[] = {
2023 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2024 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2025 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2026 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2027 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2028 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2029 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2030 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2031 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2032 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2033 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2034 };
2035 
2036 #define F2FS_GETTABLE_FS_FL (		\
2037 		FS_COMPR_FL |		\
2038 		FS_SYNC_FL |		\
2039 		FS_IMMUTABLE_FL |	\
2040 		FS_APPEND_FL |		\
2041 		FS_NODUMP_FL |		\
2042 		FS_NOATIME_FL |		\
2043 		FS_NOCOMP_FL |		\
2044 		FS_INDEX_FL |		\
2045 		FS_DIRSYNC_FL |		\
2046 		FS_PROJINHERIT_FL |	\
2047 		FS_ENCRYPT_FL |		\
2048 		FS_INLINE_DATA_FL |	\
2049 		FS_NOCOW_FL |		\
2050 		FS_VERITY_FL |		\
2051 		FS_CASEFOLD_FL)
2052 
2053 #define F2FS_SETTABLE_FS_FL (		\
2054 		FS_COMPR_FL |		\
2055 		FS_SYNC_FL |		\
2056 		FS_IMMUTABLE_FL |	\
2057 		FS_APPEND_FL |		\
2058 		FS_NODUMP_FL |		\
2059 		FS_NOATIME_FL |		\
2060 		FS_NOCOMP_FL |		\
2061 		FS_DIRSYNC_FL |		\
2062 		FS_PROJINHERIT_FL |	\
2063 		FS_CASEFOLD_FL)
2064 
2065 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2066 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2067 {
2068 	u32 fsflags = 0;
2069 	int i;
2070 
2071 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2072 		if (iflags & f2fs_fsflags_map[i].iflag)
2073 			fsflags |= f2fs_fsflags_map[i].fsflag;
2074 
2075 	return fsflags;
2076 }
2077 
2078 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2079 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2080 {
2081 	u32 iflags = 0;
2082 	int i;
2083 
2084 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2085 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2086 			iflags |= f2fs_fsflags_map[i].iflag;
2087 
2088 	return iflags;
2089 }
2090 
2091 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2092 {
2093 	struct inode *inode = file_inode(filp);
2094 
2095 	return put_user(inode->i_generation, (int __user *)arg);
2096 }
2097 
2098 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2099 {
2100 	struct inode *inode = file_inode(filp);
2101 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2102 	struct f2fs_inode_info *fi = F2FS_I(inode);
2103 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2104 	loff_t isize;
2105 	int ret;
2106 
2107 	if (!(filp->f_mode & FMODE_WRITE))
2108 		return -EBADF;
2109 
2110 	if (!inode_owner_or_capable(idmap, inode))
2111 		return -EACCES;
2112 
2113 	if (!S_ISREG(inode->i_mode))
2114 		return -EINVAL;
2115 
2116 	if (filp->f_flags & O_DIRECT)
2117 		return -EINVAL;
2118 
2119 	ret = mnt_want_write_file(filp);
2120 	if (ret)
2121 		return ret;
2122 
2123 	inode_lock(inode);
2124 
2125 	if (!f2fs_disable_compressed_file(inode)) {
2126 		ret = -EINVAL;
2127 		goto out;
2128 	}
2129 
2130 	if (f2fs_is_atomic_file(inode))
2131 		goto out;
2132 
2133 	ret = f2fs_convert_inline_inode(inode);
2134 	if (ret)
2135 		goto out;
2136 
2137 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2138 
2139 	/*
2140 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2141 	 * f2fs_is_atomic_file.
2142 	 */
2143 	if (get_dirty_pages(inode))
2144 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2145 			  inode->i_ino, get_dirty_pages(inode));
2146 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2147 	if (ret) {
2148 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2149 		goto out;
2150 	}
2151 
2152 	/* Check if the inode already has a COW inode */
2153 	if (fi->cow_inode == NULL) {
2154 		/* Create a COW inode for atomic write */
2155 		struct dentry *dentry = file_dentry(filp);
2156 		struct inode *dir = d_inode(dentry->d_parent);
2157 
2158 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2159 		if (ret) {
2160 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2161 			goto out;
2162 		}
2163 
2164 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2165 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2166 
2167 		/* Set the COW inode's atomic_inode to the atomic inode */
2168 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2169 	} else {
2170 		/* Reuse the already created COW inode */
2171 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2172 
2173 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2174 
2175 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2176 		if (ret) {
2177 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	f2fs_write_inode(inode, NULL);
2183 
2184 	stat_inc_atomic_inode(inode);
2185 
2186 	set_inode_flag(inode, FI_ATOMIC_FILE);
2187 
2188 	isize = i_size_read(inode);
2189 	fi->original_i_size = isize;
2190 	if (truncate) {
2191 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2192 		truncate_inode_pages_final(inode->i_mapping);
2193 		f2fs_i_size_write(inode, 0);
2194 		isize = 0;
2195 	}
2196 	f2fs_i_size_write(fi->cow_inode, isize);
2197 
2198 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2199 
2200 	f2fs_update_time(sbi, REQ_TIME);
2201 	fi->atomic_write_task = current;
2202 	stat_update_max_atomic_write(inode);
2203 	fi->atomic_write_cnt = 0;
2204 out:
2205 	inode_unlock(inode);
2206 	mnt_drop_write_file(filp);
2207 	return ret;
2208 }
2209 
2210 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2211 {
2212 	struct inode *inode = file_inode(filp);
2213 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2214 	int ret;
2215 
2216 	if (!(filp->f_mode & FMODE_WRITE))
2217 		return -EBADF;
2218 
2219 	if (!inode_owner_or_capable(idmap, inode))
2220 		return -EACCES;
2221 
2222 	ret = mnt_want_write_file(filp);
2223 	if (ret)
2224 		return ret;
2225 
2226 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2227 
2228 	inode_lock(inode);
2229 
2230 	if (f2fs_is_atomic_file(inode)) {
2231 		ret = f2fs_commit_atomic_write(inode);
2232 		if (!ret)
2233 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2234 
2235 		f2fs_abort_atomic_write(inode, ret);
2236 	} else {
2237 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2238 	}
2239 
2240 	inode_unlock(inode);
2241 	mnt_drop_write_file(filp);
2242 	return ret;
2243 }
2244 
2245 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2246 {
2247 	struct inode *inode = file_inode(filp);
2248 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2249 	int ret;
2250 
2251 	if (!(filp->f_mode & FMODE_WRITE))
2252 		return -EBADF;
2253 
2254 	if (!inode_owner_or_capable(idmap, inode))
2255 		return -EACCES;
2256 
2257 	ret = mnt_want_write_file(filp);
2258 	if (ret)
2259 		return ret;
2260 
2261 	inode_lock(inode);
2262 
2263 	f2fs_abort_atomic_write(inode, true);
2264 
2265 	inode_unlock(inode);
2266 
2267 	mnt_drop_write_file(filp);
2268 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2269 	return ret;
2270 }
2271 
2272 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2273 						bool readonly, bool need_lock)
2274 {
2275 	struct super_block *sb = sbi->sb;
2276 	int ret = 0;
2277 
2278 	switch (flag) {
2279 	case F2FS_GOING_DOWN_FULLSYNC:
2280 		ret = freeze_bdev(sb->s_bdev);
2281 		if (ret)
2282 			goto out;
2283 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2284 		thaw_bdev(sb->s_bdev);
2285 		break;
2286 	case F2FS_GOING_DOWN_METASYNC:
2287 		/* do checkpoint only */
2288 		ret = f2fs_sync_fs(sb, 1);
2289 		if (ret)
2290 			goto out;
2291 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2292 		break;
2293 	case F2FS_GOING_DOWN_NOSYNC:
2294 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2295 		break;
2296 	case F2FS_GOING_DOWN_METAFLUSH:
2297 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2298 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2299 		break;
2300 	case F2FS_GOING_DOWN_NEED_FSCK:
2301 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2302 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2303 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2304 		/* do checkpoint only */
2305 		ret = f2fs_sync_fs(sb, 1);
2306 		goto out;
2307 	default:
2308 		ret = -EINVAL;
2309 		goto out;
2310 	}
2311 
2312 	if (readonly)
2313 		goto out;
2314 
2315 	/*
2316 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2317 	 * paths.
2318 	 */
2319 	if (need_lock)
2320 		down_write(&sbi->sb->s_umount);
2321 
2322 	f2fs_stop_gc_thread(sbi);
2323 	f2fs_stop_discard_thread(sbi);
2324 
2325 	f2fs_drop_discard_cmd(sbi);
2326 	clear_opt(sbi, DISCARD);
2327 
2328 	if (need_lock)
2329 		up_write(&sbi->sb->s_umount);
2330 
2331 	f2fs_update_time(sbi, REQ_TIME);
2332 out:
2333 
2334 	trace_f2fs_shutdown(sbi, flag, ret);
2335 
2336 	return ret;
2337 }
2338 
2339 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2340 {
2341 	struct inode *inode = file_inode(filp);
2342 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2343 	__u32 in;
2344 	int ret;
2345 	bool need_drop = false, readonly = false;
2346 
2347 	if (!capable(CAP_SYS_ADMIN))
2348 		return -EPERM;
2349 
2350 	if (get_user(in, (__u32 __user *)arg))
2351 		return -EFAULT;
2352 
2353 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2354 		ret = mnt_want_write_file(filp);
2355 		if (ret) {
2356 			if (ret != -EROFS)
2357 				return ret;
2358 
2359 			/* fallback to nosync shutdown for readonly fs */
2360 			in = F2FS_GOING_DOWN_NOSYNC;
2361 			readonly = true;
2362 		} else {
2363 			need_drop = true;
2364 		}
2365 	}
2366 
2367 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2368 
2369 	if (need_drop)
2370 		mnt_drop_write_file(filp);
2371 
2372 	return ret;
2373 }
2374 
2375 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2376 {
2377 	struct inode *inode = file_inode(filp);
2378 	struct super_block *sb = inode->i_sb;
2379 	struct fstrim_range range;
2380 	int ret;
2381 
2382 	if (!capable(CAP_SYS_ADMIN))
2383 		return -EPERM;
2384 
2385 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2386 		return -EOPNOTSUPP;
2387 
2388 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2389 				sizeof(range)))
2390 		return -EFAULT;
2391 
2392 	ret = mnt_want_write_file(filp);
2393 	if (ret)
2394 		return ret;
2395 
2396 	range.minlen = max((unsigned int)range.minlen,
2397 			   bdev_discard_granularity(sb->s_bdev));
2398 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2399 	mnt_drop_write_file(filp);
2400 	if (ret < 0)
2401 		return ret;
2402 
2403 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2404 				sizeof(range)))
2405 		return -EFAULT;
2406 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2407 	return 0;
2408 }
2409 
2410 static bool uuid_is_nonzero(__u8 u[16])
2411 {
2412 	int i;
2413 
2414 	for (i = 0; i < 16; i++)
2415 		if (u[i])
2416 			return true;
2417 	return false;
2418 }
2419 
2420 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2421 {
2422 	struct inode *inode = file_inode(filp);
2423 
2424 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2425 		return -EOPNOTSUPP;
2426 
2427 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2428 
2429 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2430 }
2431 
2432 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2433 {
2434 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2435 		return -EOPNOTSUPP;
2436 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2437 }
2438 
2439 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2440 {
2441 	struct inode *inode = file_inode(filp);
2442 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2443 	u8 encrypt_pw_salt[16];
2444 	int err;
2445 
2446 	if (!f2fs_sb_has_encrypt(sbi))
2447 		return -EOPNOTSUPP;
2448 
2449 	err = mnt_want_write_file(filp);
2450 	if (err)
2451 		return err;
2452 
2453 	f2fs_down_write(&sbi->sb_lock);
2454 
2455 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2456 		goto got_it;
2457 
2458 	/* update superblock with uuid */
2459 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2460 
2461 	err = f2fs_commit_super(sbi, false);
2462 	if (err) {
2463 		/* undo new data */
2464 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2465 		goto out_err;
2466 	}
2467 got_it:
2468 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2469 out_err:
2470 	f2fs_up_write(&sbi->sb_lock);
2471 	mnt_drop_write_file(filp);
2472 
2473 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2474 		err = -EFAULT;
2475 
2476 	return err;
2477 }
2478 
2479 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2480 					     unsigned long arg)
2481 {
2482 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2483 		return -EOPNOTSUPP;
2484 
2485 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2486 }
2487 
2488 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2489 {
2490 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2491 		return -EOPNOTSUPP;
2492 
2493 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2494 }
2495 
2496 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2497 {
2498 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2499 		return -EOPNOTSUPP;
2500 
2501 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2502 }
2503 
2504 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2505 						    unsigned long arg)
2506 {
2507 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2508 		return -EOPNOTSUPP;
2509 
2510 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2511 }
2512 
2513 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2514 					      unsigned long arg)
2515 {
2516 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2517 		return -EOPNOTSUPP;
2518 
2519 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2520 }
2521 
2522 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2523 {
2524 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2525 		return -EOPNOTSUPP;
2526 
2527 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2528 }
2529 
2530 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2531 {
2532 	struct inode *inode = file_inode(filp);
2533 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2535 			.no_bg_gc = false,
2536 			.should_migrate_blocks = false,
2537 			.nr_free_secs = 0 };
2538 	__u32 sync;
2539 	int ret;
2540 
2541 	if (!capable(CAP_SYS_ADMIN))
2542 		return -EPERM;
2543 
2544 	if (get_user(sync, (__u32 __user *)arg))
2545 		return -EFAULT;
2546 
2547 	if (f2fs_readonly(sbi->sb))
2548 		return -EROFS;
2549 
2550 	ret = mnt_want_write_file(filp);
2551 	if (ret)
2552 		return ret;
2553 
2554 	if (!sync) {
2555 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2556 			ret = -EBUSY;
2557 			goto out;
2558 		}
2559 	} else {
2560 		f2fs_down_write(&sbi->gc_lock);
2561 	}
2562 
2563 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2564 	gc_control.err_gc_skipped = sync;
2565 	stat_inc_gc_call_count(sbi, FOREGROUND);
2566 	ret = f2fs_gc(sbi, &gc_control);
2567 out:
2568 	mnt_drop_write_file(filp);
2569 	return ret;
2570 }
2571 
2572 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2573 {
2574 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2575 	struct f2fs_gc_control gc_control = {
2576 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2577 			.no_bg_gc = false,
2578 			.should_migrate_blocks = false,
2579 			.err_gc_skipped = range->sync,
2580 			.nr_free_secs = 0 };
2581 	u64 end;
2582 	int ret;
2583 
2584 	if (!capable(CAP_SYS_ADMIN))
2585 		return -EPERM;
2586 	if (f2fs_readonly(sbi->sb))
2587 		return -EROFS;
2588 
2589 	end = range->start + range->len;
2590 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2591 					end >= MAX_BLKADDR(sbi))
2592 		return -EINVAL;
2593 
2594 	ret = mnt_want_write_file(filp);
2595 	if (ret)
2596 		return ret;
2597 
2598 do_more:
2599 	if (!range->sync) {
2600 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2601 			ret = -EBUSY;
2602 			goto out;
2603 		}
2604 	} else {
2605 		f2fs_down_write(&sbi->gc_lock);
2606 	}
2607 
2608 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2609 	stat_inc_gc_call_count(sbi, FOREGROUND);
2610 	ret = f2fs_gc(sbi, &gc_control);
2611 	if (ret) {
2612 		if (ret == -EBUSY)
2613 			ret = -EAGAIN;
2614 		goto out;
2615 	}
2616 	range->start += CAP_BLKS_PER_SEC(sbi);
2617 	if (range->start <= end)
2618 		goto do_more;
2619 out:
2620 	mnt_drop_write_file(filp);
2621 	return ret;
2622 }
2623 
2624 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2625 {
2626 	struct f2fs_gc_range range;
2627 
2628 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2629 							sizeof(range)))
2630 		return -EFAULT;
2631 	return __f2fs_ioc_gc_range(filp, &range);
2632 }
2633 
2634 static int f2fs_ioc_write_checkpoint(struct file *filp)
2635 {
2636 	struct inode *inode = file_inode(filp);
2637 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 	int ret;
2639 
2640 	if (!capable(CAP_SYS_ADMIN))
2641 		return -EPERM;
2642 
2643 	if (f2fs_readonly(sbi->sb))
2644 		return -EROFS;
2645 
2646 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2647 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2648 		return -EINVAL;
2649 	}
2650 
2651 	ret = mnt_want_write_file(filp);
2652 	if (ret)
2653 		return ret;
2654 
2655 	ret = f2fs_sync_fs(sbi->sb, 1);
2656 
2657 	mnt_drop_write_file(filp);
2658 	return ret;
2659 }
2660 
2661 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2662 					struct file *filp,
2663 					struct f2fs_defragment *range)
2664 {
2665 	struct inode *inode = file_inode(filp);
2666 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2667 					.m_seg_type = NO_CHECK_TYPE,
2668 					.m_may_create = false };
2669 	struct extent_info ei = {};
2670 	pgoff_t pg_start, pg_end, next_pgofs;
2671 	unsigned int total = 0, sec_num;
2672 	block_t blk_end = 0;
2673 	bool fragmented = false;
2674 	int err;
2675 
2676 	pg_start = range->start >> PAGE_SHIFT;
2677 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2678 
2679 	f2fs_balance_fs(sbi, true);
2680 
2681 	inode_lock(inode);
2682 
2683 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2684 		f2fs_is_atomic_file(inode)) {
2685 		err = -EINVAL;
2686 		goto unlock_out;
2687 	}
2688 
2689 	/* if in-place-update policy is enabled, don't waste time here */
2690 	set_inode_flag(inode, FI_OPU_WRITE);
2691 	if (f2fs_should_update_inplace(inode, NULL)) {
2692 		err = -EINVAL;
2693 		goto out;
2694 	}
2695 
2696 	/* writeback all dirty pages in the range */
2697 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2698 						range->start + range->len - 1);
2699 	if (err)
2700 		goto out;
2701 
2702 	/*
2703 	 * lookup mapping info in extent cache, skip defragmenting if physical
2704 	 * block addresses are continuous.
2705 	 */
2706 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2707 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2708 			goto out;
2709 	}
2710 
2711 	map.m_lblk = pg_start;
2712 	map.m_next_pgofs = &next_pgofs;
2713 
2714 	/*
2715 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2716 	 * physical block addresses are continuous even if there are hole(s)
2717 	 * in logical blocks.
2718 	 */
2719 	while (map.m_lblk < pg_end) {
2720 		map.m_len = pg_end - map.m_lblk;
2721 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2722 		if (err)
2723 			goto out;
2724 
2725 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2726 			map.m_lblk = next_pgofs;
2727 			continue;
2728 		}
2729 
2730 		if (blk_end && blk_end != map.m_pblk)
2731 			fragmented = true;
2732 
2733 		/* record total count of block that we're going to move */
2734 		total += map.m_len;
2735 
2736 		blk_end = map.m_pblk + map.m_len;
2737 
2738 		map.m_lblk += map.m_len;
2739 	}
2740 
2741 	if (!fragmented) {
2742 		total = 0;
2743 		goto out;
2744 	}
2745 
2746 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2747 
2748 	/*
2749 	 * make sure there are enough free section for LFS allocation, this can
2750 	 * avoid defragment running in SSR mode when free section are allocated
2751 	 * intensively
2752 	 */
2753 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2754 		err = -EAGAIN;
2755 		goto out;
2756 	}
2757 
2758 	map.m_lblk = pg_start;
2759 	map.m_len = pg_end - pg_start;
2760 	total = 0;
2761 
2762 	while (map.m_lblk < pg_end) {
2763 		pgoff_t idx;
2764 		int cnt = 0;
2765 
2766 do_map:
2767 		map.m_len = pg_end - map.m_lblk;
2768 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2769 		if (err)
2770 			goto clear_out;
2771 
2772 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2773 			map.m_lblk = next_pgofs;
2774 			goto check;
2775 		}
2776 
2777 		set_inode_flag(inode, FI_SKIP_WRITES);
2778 
2779 		idx = map.m_lblk;
2780 		while (idx < map.m_lblk + map.m_len &&
2781 						cnt < BLKS_PER_SEG(sbi)) {
2782 			struct page *page;
2783 
2784 			page = f2fs_get_lock_data_page(inode, idx, true);
2785 			if (IS_ERR(page)) {
2786 				err = PTR_ERR(page);
2787 				goto clear_out;
2788 			}
2789 
2790 			f2fs_wait_on_page_writeback(page, DATA, true, true);
2791 
2792 			set_page_dirty(page);
2793 			set_page_private_gcing(page);
2794 			f2fs_put_page(page, 1);
2795 
2796 			idx++;
2797 			cnt++;
2798 			total++;
2799 		}
2800 
2801 		map.m_lblk = idx;
2802 check:
2803 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2804 			goto do_map;
2805 
2806 		clear_inode_flag(inode, FI_SKIP_WRITES);
2807 
2808 		err = filemap_fdatawrite(inode->i_mapping);
2809 		if (err)
2810 			goto out;
2811 	}
2812 clear_out:
2813 	clear_inode_flag(inode, FI_SKIP_WRITES);
2814 out:
2815 	clear_inode_flag(inode, FI_OPU_WRITE);
2816 unlock_out:
2817 	inode_unlock(inode);
2818 	if (!err)
2819 		range->len = (u64)total << PAGE_SHIFT;
2820 	return err;
2821 }
2822 
2823 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2824 {
2825 	struct inode *inode = file_inode(filp);
2826 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2827 	struct f2fs_defragment range;
2828 	int err;
2829 
2830 	if (!capable(CAP_SYS_ADMIN))
2831 		return -EPERM;
2832 
2833 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2834 		return -EINVAL;
2835 
2836 	if (f2fs_readonly(sbi->sb))
2837 		return -EROFS;
2838 
2839 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2840 							sizeof(range)))
2841 		return -EFAULT;
2842 
2843 	/* verify alignment of offset & size */
2844 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2845 		return -EINVAL;
2846 
2847 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2848 					max_file_blocks(inode)))
2849 		return -EINVAL;
2850 
2851 	err = mnt_want_write_file(filp);
2852 	if (err)
2853 		return err;
2854 
2855 	err = f2fs_defragment_range(sbi, filp, &range);
2856 	mnt_drop_write_file(filp);
2857 
2858 	f2fs_update_time(sbi, REQ_TIME);
2859 	if (err < 0)
2860 		return err;
2861 
2862 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2863 							sizeof(range)))
2864 		return -EFAULT;
2865 
2866 	return 0;
2867 }
2868 
2869 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2870 			struct file *file_out, loff_t pos_out, size_t len)
2871 {
2872 	struct inode *src = file_inode(file_in);
2873 	struct inode *dst = file_inode(file_out);
2874 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2875 	size_t olen = len, dst_max_i_size = 0;
2876 	size_t dst_osize;
2877 	int ret;
2878 
2879 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2880 				src->i_sb != dst->i_sb)
2881 		return -EXDEV;
2882 
2883 	if (unlikely(f2fs_readonly(src->i_sb)))
2884 		return -EROFS;
2885 
2886 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2887 		return -EINVAL;
2888 
2889 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2890 		return -EOPNOTSUPP;
2891 
2892 	if (pos_out < 0 || pos_in < 0)
2893 		return -EINVAL;
2894 
2895 	if (src == dst) {
2896 		if (pos_in == pos_out)
2897 			return 0;
2898 		if (pos_out > pos_in && pos_out < pos_in + len)
2899 			return -EINVAL;
2900 	}
2901 
2902 	inode_lock(src);
2903 	if (src != dst) {
2904 		ret = -EBUSY;
2905 		if (!inode_trylock(dst))
2906 			goto out;
2907 	}
2908 
2909 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2910 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2911 		ret = -EOPNOTSUPP;
2912 		goto out_unlock;
2913 	}
2914 
2915 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2916 		ret = -EINVAL;
2917 		goto out_unlock;
2918 	}
2919 
2920 	ret = -EINVAL;
2921 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2922 		goto out_unlock;
2923 	if (len == 0)
2924 		olen = len = src->i_size - pos_in;
2925 	if (pos_in + len == src->i_size)
2926 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2927 	if (len == 0) {
2928 		ret = 0;
2929 		goto out_unlock;
2930 	}
2931 
2932 	dst_osize = dst->i_size;
2933 	if (pos_out + olen > dst->i_size)
2934 		dst_max_i_size = pos_out + olen;
2935 
2936 	/* verify the end result is block aligned */
2937 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2938 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2939 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2940 		goto out_unlock;
2941 
2942 	ret = f2fs_convert_inline_inode(src);
2943 	if (ret)
2944 		goto out_unlock;
2945 
2946 	ret = f2fs_convert_inline_inode(dst);
2947 	if (ret)
2948 		goto out_unlock;
2949 
2950 	/* write out all dirty pages from offset */
2951 	ret = filemap_write_and_wait_range(src->i_mapping,
2952 					pos_in, pos_in + len);
2953 	if (ret)
2954 		goto out_unlock;
2955 
2956 	ret = filemap_write_and_wait_range(dst->i_mapping,
2957 					pos_out, pos_out + len);
2958 	if (ret)
2959 		goto out_unlock;
2960 
2961 	f2fs_balance_fs(sbi, true);
2962 
2963 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2964 	if (src != dst) {
2965 		ret = -EBUSY;
2966 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2967 			goto out_src;
2968 	}
2969 
2970 	f2fs_lock_op(sbi);
2971 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2972 				pos_out >> F2FS_BLKSIZE_BITS,
2973 				len >> F2FS_BLKSIZE_BITS, false);
2974 
2975 	if (!ret) {
2976 		if (dst_max_i_size)
2977 			f2fs_i_size_write(dst, dst_max_i_size);
2978 		else if (dst_osize != dst->i_size)
2979 			f2fs_i_size_write(dst, dst_osize);
2980 	}
2981 	f2fs_unlock_op(sbi);
2982 
2983 	if (src != dst)
2984 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2985 out_src:
2986 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2987 	if (ret)
2988 		goto out_unlock;
2989 
2990 	src->i_mtime = inode_set_ctime_current(src);
2991 	f2fs_mark_inode_dirty_sync(src, false);
2992 	if (src != dst) {
2993 		dst->i_mtime = inode_set_ctime_current(dst);
2994 		f2fs_mark_inode_dirty_sync(dst, false);
2995 	}
2996 	f2fs_update_time(sbi, REQ_TIME);
2997 
2998 out_unlock:
2999 	if (src != dst)
3000 		inode_unlock(dst);
3001 out:
3002 	inode_unlock(src);
3003 	return ret;
3004 }
3005 
3006 static int __f2fs_ioc_move_range(struct file *filp,
3007 				struct f2fs_move_range *range)
3008 {
3009 	struct fd dst;
3010 	int err;
3011 
3012 	if (!(filp->f_mode & FMODE_READ) ||
3013 			!(filp->f_mode & FMODE_WRITE))
3014 		return -EBADF;
3015 
3016 	dst = fdget(range->dst_fd);
3017 	if (!dst.file)
3018 		return -EBADF;
3019 
3020 	if (!(dst.file->f_mode & FMODE_WRITE)) {
3021 		err = -EBADF;
3022 		goto err_out;
3023 	}
3024 
3025 	err = mnt_want_write_file(filp);
3026 	if (err)
3027 		goto err_out;
3028 
3029 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3030 					range->pos_out, range->len);
3031 
3032 	mnt_drop_write_file(filp);
3033 err_out:
3034 	fdput(dst);
3035 	return err;
3036 }
3037 
3038 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3039 {
3040 	struct f2fs_move_range range;
3041 
3042 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3043 							sizeof(range)))
3044 		return -EFAULT;
3045 	return __f2fs_ioc_move_range(filp, &range);
3046 }
3047 
3048 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3049 {
3050 	struct inode *inode = file_inode(filp);
3051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3052 	struct sit_info *sm = SIT_I(sbi);
3053 	unsigned int start_segno = 0, end_segno = 0;
3054 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3055 	struct f2fs_flush_device range;
3056 	struct f2fs_gc_control gc_control = {
3057 			.init_gc_type = FG_GC,
3058 			.should_migrate_blocks = true,
3059 			.err_gc_skipped = true,
3060 			.nr_free_secs = 0 };
3061 	int ret;
3062 
3063 	if (!capable(CAP_SYS_ADMIN))
3064 		return -EPERM;
3065 
3066 	if (f2fs_readonly(sbi->sb))
3067 		return -EROFS;
3068 
3069 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3070 		return -EINVAL;
3071 
3072 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3073 							sizeof(range)))
3074 		return -EFAULT;
3075 
3076 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3077 			__is_large_section(sbi)) {
3078 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3079 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3080 		return -EINVAL;
3081 	}
3082 
3083 	ret = mnt_want_write_file(filp);
3084 	if (ret)
3085 		return ret;
3086 
3087 	if (range.dev_num != 0)
3088 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3089 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3090 
3091 	start_segno = sm->last_victim[FLUSH_DEVICE];
3092 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3093 		start_segno = dev_start_segno;
3094 	end_segno = min(start_segno + range.segments, dev_end_segno);
3095 
3096 	while (start_segno < end_segno) {
3097 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3098 			ret = -EBUSY;
3099 			goto out;
3100 		}
3101 		sm->last_victim[GC_CB] = end_segno + 1;
3102 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3103 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3104 
3105 		gc_control.victim_segno = start_segno;
3106 		stat_inc_gc_call_count(sbi, FOREGROUND);
3107 		ret = f2fs_gc(sbi, &gc_control);
3108 		if (ret == -EAGAIN)
3109 			ret = 0;
3110 		else if (ret < 0)
3111 			break;
3112 		start_segno++;
3113 	}
3114 out:
3115 	mnt_drop_write_file(filp);
3116 	return ret;
3117 }
3118 
3119 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3120 {
3121 	struct inode *inode = file_inode(filp);
3122 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3123 
3124 	/* Must validate to set it with SQLite behavior in Android. */
3125 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3126 
3127 	return put_user(sb_feature, (u32 __user *)arg);
3128 }
3129 
3130 #ifdef CONFIG_QUOTA
3131 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3132 {
3133 	struct dquot *transfer_to[MAXQUOTAS] = {};
3134 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135 	struct super_block *sb = sbi->sb;
3136 	int err;
3137 
3138 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3139 	if (IS_ERR(transfer_to[PRJQUOTA]))
3140 		return PTR_ERR(transfer_to[PRJQUOTA]);
3141 
3142 	err = __dquot_transfer(inode, transfer_to);
3143 	if (err)
3144 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3145 	dqput(transfer_to[PRJQUOTA]);
3146 	return err;
3147 }
3148 
3149 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3150 {
3151 	struct f2fs_inode_info *fi = F2FS_I(inode);
3152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153 	struct f2fs_inode *ri = NULL;
3154 	kprojid_t kprojid;
3155 	int err;
3156 
3157 	if (!f2fs_sb_has_project_quota(sbi)) {
3158 		if (projid != F2FS_DEF_PROJID)
3159 			return -EOPNOTSUPP;
3160 		else
3161 			return 0;
3162 	}
3163 
3164 	if (!f2fs_has_extra_attr(inode))
3165 		return -EOPNOTSUPP;
3166 
3167 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3168 
3169 	if (projid_eq(kprojid, fi->i_projid))
3170 		return 0;
3171 
3172 	err = -EPERM;
3173 	/* Is it quota file? Do not allow user to mess with it */
3174 	if (IS_NOQUOTA(inode))
3175 		return err;
3176 
3177 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3178 		return -EOVERFLOW;
3179 
3180 	err = f2fs_dquot_initialize(inode);
3181 	if (err)
3182 		return err;
3183 
3184 	f2fs_lock_op(sbi);
3185 	err = f2fs_transfer_project_quota(inode, kprojid);
3186 	if (err)
3187 		goto out_unlock;
3188 
3189 	fi->i_projid = kprojid;
3190 	inode_set_ctime_current(inode);
3191 	f2fs_mark_inode_dirty_sync(inode, true);
3192 out_unlock:
3193 	f2fs_unlock_op(sbi);
3194 	return err;
3195 }
3196 #else
3197 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3198 {
3199 	return 0;
3200 }
3201 
3202 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3203 {
3204 	if (projid != F2FS_DEF_PROJID)
3205 		return -EOPNOTSUPP;
3206 	return 0;
3207 }
3208 #endif
3209 
3210 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3211 {
3212 	struct inode *inode = d_inode(dentry);
3213 	struct f2fs_inode_info *fi = F2FS_I(inode);
3214 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3215 
3216 	if (IS_ENCRYPTED(inode))
3217 		fsflags |= FS_ENCRYPT_FL;
3218 	if (IS_VERITY(inode))
3219 		fsflags |= FS_VERITY_FL;
3220 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3221 		fsflags |= FS_INLINE_DATA_FL;
3222 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3223 		fsflags |= FS_NOCOW_FL;
3224 
3225 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3226 
3227 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3228 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3229 
3230 	return 0;
3231 }
3232 
3233 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3234 		      struct dentry *dentry, struct fileattr *fa)
3235 {
3236 	struct inode *inode = d_inode(dentry);
3237 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3238 	u32 iflags;
3239 	int err;
3240 
3241 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3242 		return -EIO;
3243 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3244 		return -ENOSPC;
3245 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3246 		return -EOPNOTSUPP;
3247 	fsflags &= F2FS_SETTABLE_FS_FL;
3248 	if (!fa->flags_valid)
3249 		mask &= FS_COMMON_FL;
3250 
3251 	iflags = f2fs_fsflags_to_iflags(fsflags);
3252 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3253 		return -EOPNOTSUPP;
3254 
3255 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3256 	if (!err)
3257 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3258 
3259 	return err;
3260 }
3261 
3262 int f2fs_pin_file_control(struct inode *inode, bool inc)
3263 {
3264 	struct f2fs_inode_info *fi = F2FS_I(inode);
3265 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3266 
3267 	/* Use i_gc_failures for normal file as a risk signal. */
3268 	if (inc)
3269 		f2fs_i_gc_failures_write(inode,
3270 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3271 
3272 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3273 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3274 			  __func__, inode->i_ino,
3275 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3276 		clear_inode_flag(inode, FI_PIN_FILE);
3277 		return -EAGAIN;
3278 	}
3279 	return 0;
3280 }
3281 
3282 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3283 {
3284 	struct inode *inode = file_inode(filp);
3285 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3286 	__u32 pin;
3287 	int ret = 0;
3288 
3289 	if (get_user(pin, (__u32 __user *)arg))
3290 		return -EFAULT;
3291 
3292 	if (!S_ISREG(inode->i_mode))
3293 		return -EINVAL;
3294 
3295 	if (f2fs_readonly(sbi->sb))
3296 		return -EROFS;
3297 
3298 	ret = mnt_want_write_file(filp);
3299 	if (ret)
3300 		return ret;
3301 
3302 	inode_lock(inode);
3303 
3304 	if (f2fs_is_atomic_file(inode)) {
3305 		ret = -EINVAL;
3306 		goto out;
3307 	}
3308 
3309 	if (!pin) {
3310 		clear_inode_flag(inode, FI_PIN_FILE);
3311 		f2fs_i_gc_failures_write(inode, 0);
3312 		goto done;
3313 	} else if (f2fs_is_pinned_file(inode)) {
3314 		goto done;
3315 	}
3316 
3317 	if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3318 		ret = -EFBIG;
3319 		goto out;
3320 	}
3321 
3322 	/* Let's allow file pinning on zoned device. */
3323 	if (!f2fs_sb_has_blkzoned(sbi) &&
3324 	    f2fs_should_update_outplace(inode, NULL)) {
3325 		ret = -EINVAL;
3326 		goto out;
3327 	}
3328 
3329 	if (f2fs_pin_file_control(inode, false)) {
3330 		ret = -EAGAIN;
3331 		goto out;
3332 	}
3333 
3334 	ret = f2fs_convert_inline_inode(inode);
3335 	if (ret)
3336 		goto out;
3337 
3338 	if (!f2fs_disable_compressed_file(inode)) {
3339 		ret = -EOPNOTSUPP;
3340 		goto out;
3341 	}
3342 
3343 	set_inode_flag(inode, FI_PIN_FILE);
3344 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3345 done:
3346 	f2fs_update_time(sbi, REQ_TIME);
3347 out:
3348 	inode_unlock(inode);
3349 	mnt_drop_write_file(filp);
3350 	return ret;
3351 }
3352 
3353 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3354 {
3355 	struct inode *inode = file_inode(filp);
3356 	__u32 pin = 0;
3357 
3358 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3359 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3360 	return put_user(pin, (u32 __user *)arg);
3361 }
3362 
3363 int f2fs_precache_extents(struct inode *inode)
3364 {
3365 	struct f2fs_inode_info *fi = F2FS_I(inode);
3366 	struct f2fs_map_blocks map;
3367 	pgoff_t m_next_extent;
3368 	loff_t end;
3369 	int err;
3370 
3371 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3372 		return -EOPNOTSUPP;
3373 
3374 	map.m_lblk = 0;
3375 	map.m_pblk = 0;
3376 	map.m_next_pgofs = NULL;
3377 	map.m_next_extent = &m_next_extent;
3378 	map.m_seg_type = NO_CHECK_TYPE;
3379 	map.m_may_create = false;
3380 	end = max_file_blocks(inode);
3381 
3382 	while (map.m_lblk < end) {
3383 		map.m_len = end - map.m_lblk;
3384 
3385 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3386 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3387 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3388 		if (err)
3389 			return err;
3390 
3391 		map.m_lblk = m_next_extent;
3392 	}
3393 
3394 	return 0;
3395 }
3396 
3397 static int f2fs_ioc_precache_extents(struct file *filp)
3398 {
3399 	return f2fs_precache_extents(file_inode(filp));
3400 }
3401 
3402 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3403 {
3404 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3405 	__u64 block_count;
3406 
3407 	if (!capable(CAP_SYS_ADMIN))
3408 		return -EPERM;
3409 
3410 	if (f2fs_readonly(sbi->sb))
3411 		return -EROFS;
3412 
3413 	if (copy_from_user(&block_count, (void __user *)arg,
3414 			   sizeof(block_count)))
3415 		return -EFAULT;
3416 
3417 	return f2fs_resize_fs(filp, block_count);
3418 }
3419 
3420 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3421 {
3422 	struct inode *inode = file_inode(filp);
3423 
3424 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3425 
3426 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3427 		f2fs_warn(F2FS_I_SB(inode),
3428 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3429 			  inode->i_ino);
3430 		return -EOPNOTSUPP;
3431 	}
3432 
3433 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3434 }
3435 
3436 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3437 {
3438 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3439 		return -EOPNOTSUPP;
3440 
3441 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3442 }
3443 
3444 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3445 {
3446 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3447 		return -EOPNOTSUPP;
3448 
3449 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3450 }
3451 
3452 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3453 {
3454 	struct inode *inode = file_inode(filp);
3455 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3456 	char *vbuf;
3457 	int count;
3458 	int err = 0;
3459 
3460 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3461 	if (!vbuf)
3462 		return -ENOMEM;
3463 
3464 	f2fs_down_read(&sbi->sb_lock);
3465 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3466 			ARRAY_SIZE(sbi->raw_super->volume_name),
3467 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3468 	f2fs_up_read(&sbi->sb_lock);
3469 
3470 	if (copy_to_user((char __user *)arg, vbuf,
3471 				min(FSLABEL_MAX, count)))
3472 		err = -EFAULT;
3473 
3474 	kfree(vbuf);
3475 	return err;
3476 }
3477 
3478 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3479 {
3480 	struct inode *inode = file_inode(filp);
3481 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3482 	char *vbuf;
3483 	int err = 0;
3484 
3485 	if (!capable(CAP_SYS_ADMIN))
3486 		return -EPERM;
3487 
3488 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3489 	if (IS_ERR(vbuf))
3490 		return PTR_ERR(vbuf);
3491 
3492 	err = mnt_want_write_file(filp);
3493 	if (err)
3494 		goto out;
3495 
3496 	f2fs_down_write(&sbi->sb_lock);
3497 
3498 	memset(sbi->raw_super->volume_name, 0,
3499 			sizeof(sbi->raw_super->volume_name));
3500 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3501 			sbi->raw_super->volume_name,
3502 			ARRAY_SIZE(sbi->raw_super->volume_name));
3503 
3504 	err = f2fs_commit_super(sbi, false);
3505 
3506 	f2fs_up_write(&sbi->sb_lock);
3507 
3508 	mnt_drop_write_file(filp);
3509 out:
3510 	kfree(vbuf);
3511 	return err;
3512 }
3513 
3514 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3515 {
3516 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3517 		return -EOPNOTSUPP;
3518 
3519 	if (!f2fs_compressed_file(inode))
3520 		return -EINVAL;
3521 
3522 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3523 
3524 	return 0;
3525 }
3526 
3527 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3528 {
3529 	struct inode *inode = file_inode(filp);
3530 	__u64 blocks;
3531 	int ret;
3532 
3533 	ret = f2fs_get_compress_blocks(inode, &blocks);
3534 	if (ret < 0)
3535 		return ret;
3536 
3537 	return put_user(blocks, (u64 __user *)arg);
3538 }
3539 
3540 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3541 {
3542 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3543 	unsigned int released_blocks = 0;
3544 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3545 	block_t blkaddr;
3546 	int i;
3547 
3548 	for (i = 0; i < count; i++) {
3549 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3550 						dn->ofs_in_node + i);
3551 
3552 		if (!__is_valid_data_blkaddr(blkaddr))
3553 			continue;
3554 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3555 					DATA_GENERIC_ENHANCE))) {
3556 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3557 			return -EFSCORRUPTED;
3558 		}
3559 	}
3560 
3561 	while (count) {
3562 		int compr_blocks = 0;
3563 
3564 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3565 			blkaddr = f2fs_data_blkaddr(dn);
3566 
3567 			if (i == 0) {
3568 				if (blkaddr == COMPRESS_ADDR)
3569 					continue;
3570 				dn->ofs_in_node += cluster_size;
3571 				goto next;
3572 			}
3573 
3574 			if (__is_valid_data_blkaddr(blkaddr))
3575 				compr_blocks++;
3576 
3577 			if (blkaddr != NEW_ADDR)
3578 				continue;
3579 
3580 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3581 		}
3582 
3583 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3584 		dec_valid_block_count(sbi, dn->inode,
3585 					cluster_size - compr_blocks);
3586 
3587 		released_blocks += cluster_size - compr_blocks;
3588 next:
3589 		count -= cluster_size;
3590 	}
3591 
3592 	return released_blocks;
3593 }
3594 
3595 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3596 {
3597 	struct inode *inode = file_inode(filp);
3598 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3599 	pgoff_t page_idx = 0, last_idx;
3600 	unsigned int released_blocks = 0;
3601 	int ret;
3602 	int writecount;
3603 
3604 	if (!f2fs_sb_has_compression(sbi))
3605 		return -EOPNOTSUPP;
3606 
3607 	if (f2fs_readonly(sbi->sb))
3608 		return -EROFS;
3609 
3610 	ret = mnt_want_write_file(filp);
3611 	if (ret)
3612 		return ret;
3613 
3614 	f2fs_balance_fs(sbi, true);
3615 
3616 	inode_lock(inode);
3617 
3618 	writecount = atomic_read(&inode->i_writecount);
3619 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3620 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3621 		ret = -EBUSY;
3622 		goto out;
3623 	}
3624 
3625 	if (!f2fs_compressed_file(inode) ||
3626 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3632 	if (ret)
3633 		goto out;
3634 
3635 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3636 		ret = -EPERM;
3637 		goto out;
3638 	}
3639 
3640 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3641 	inode_set_ctime_current(inode);
3642 	f2fs_mark_inode_dirty_sync(inode, true);
3643 
3644 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3645 	filemap_invalidate_lock(inode->i_mapping);
3646 
3647 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3648 
3649 	while (page_idx < last_idx) {
3650 		struct dnode_of_data dn;
3651 		pgoff_t end_offset, count;
3652 
3653 		f2fs_lock_op(sbi);
3654 
3655 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3656 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3657 		if (ret) {
3658 			f2fs_unlock_op(sbi);
3659 			if (ret == -ENOENT) {
3660 				page_idx = f2fs_get_next_page_offset(&dn,
3661 								page_idx);
3662 				ret = 0;
3663 				continue;
3664 			}
3665 			break;
3666 		}
3667 
3668 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3669 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3670 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3671 
3672 		ret = release_compress_blocks(&dn, count);
3673 
3674 		f2fs_put_dnode(&dn);
3675 
3676 		f2fs_unlock_op(sbi);
3677 
3678 		if (ret < 0)
3679 			break;
3680 
3681 		page_idx += count;
3682 		released_blocks += ret;
3683 	}
3684 
3685 	filemap_invalidate_unlock(inode->i_mapping);
3686 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3687 out:
3688 	inode_unlock(inode);
3689 
3690 	mnt_drop_write_file(filp);
3691 
3692 	if (ret >= 0) {
3693 		ret = put_user(released_blocks, (u64 __user *)arg);
3694 	} else if (released_blocks &&
3695 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3696 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3697 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3698 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3699 			"run fsck to fix.",
3700 			__func__, inode->i_ino, inode->i_blocks,
3701 			released_blocks,
3702 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3703 	}
3704 
3705 	return ret;
3706 }
3707 
3708 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3709 		unsigned int *reserved_blocks)
3710 {
3711 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3712 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3713 	block_t blkaddr;
3714 	int i;
3715 
3716 	for (i = 0; i < count; i++) {
3717 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3718 						dn->ofs_in_node + i);
3719 
3720 		if (!__is_valid_data_blkaddr(blkaddr))
3721 			continue;
3722 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3723 					DATA_GENERIC_ENHANCE))) {
3724 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3725 			return -EFSCORRUPTED;
3726 		}
3727 	}
3728 
3729 	while (count) {
3730 		int compr_blocks = 0;
3731 		blkcnt_t reserved = 0;
3732 		blkcnt_t to_reserved;
3733 		int ret;
3734 
3735 		for (i = 0; i < cluster_size; i++) {
3736 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3737 						dn->ofs_in_node + i);
3738 
3739 			if (i == 0) {
3740 				if (blkaddr != COMPRESS_ADDR) {
3741 					dn->ofs_in_node += cluster_size;
3742 					goto next;
3743 				}
3744 				continue;
3745 			}
3746 
3747 			/*
3748 			 * compressed cluster was not released due to it
3749 			 * fails in release_compress_blocks(), so NEW_ADDR
3750 			 * is a possible case.
3751 			 */
3752 			if (blkaddr == NEW_ADDR) {
3753 				reserved++;
3754 				continue;
3755 			}
3756 			if (__is_valid_data_blkaddr(blkaddr)) {
3757 				compr_blocks++;
3758 				continue;
3759 			}
3760 		}
3761 
3762 		to_reserved = cluster_size - compr_blocks - reserved;
3763 
3764 		/* for the case all blocks in cluster were reserved */
3765 		if (reserved && to_reserved == 1) {
3766 			dn->ofs_in_node += cluster_size;
3767 			goto next;
3768 		}
3769 
3770 		ret = inc_valid_block_count(sbi, dn->inode,
3771 						&to_reserved, false);
3772 		if (unlikely(ret))
3773 			return ret;
3774 
3775 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3776 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3777 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3778 		}
3779 
3780 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3781 
3782 		*reserved_blocks += to_reserved;
3783 next:
3784 		count -= cluster_size;
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3791 {
3792 	struct inode *inode = file_inode(filp);
3793 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3794 	pgoff_t page_idx = 0, last_idx;
3795 	unsigned int reserved_blocks = 0;
3796 	int ret;
3797 
3798 	if (!f2fs_sb_has_compression(sbi))
3799 		return -EOPNOTSUPP;
3800 
3801 	if (f2fs_readonly(sbi->sb))
3802 		return -EROFS;
3803 
3804 	ret = mnt_want_write_file(filp);
3805 	if (ret)
3806 		return ret;
3807 
3808 	f2fs_balance_fs(sbi, true);
3809 
3810 	inode_lock(inode);
3811 
3812 	if (!f2fs_compressed_file(inode) ||
3813 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3814 		ret = -EINVAL;
3815 		goto unlock_inode;
3816 	}
3817 
3818 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3819 		goto unlock_inode;
3820 
3821 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3822 	filemap_invalidate_lock(inode->i_mapping);
3823 
3824 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3825 
3826 	while (page_idx < last_idx) {
3827 		struct dnode_of_data dn;
3828 		pgoff_t end_offset, count;
3829 
3830 		f2fs_lock_op(sbi);
3831 
3832 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3833 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3834 		if (ret) {
3835 			f2fs_unlock_op(sbi);
3836 			if (ret == -ENOENT) {
3837 				page_idx = f2fs_get_next_page_offset(&dn,
3838 								page_idx);
3839 				ret = 0;
3840 				continue;
3841 			}
3842 			break;
3843 		}
3844 
3845 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3846 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3847 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3848 
3849 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3850 
3851 		f2fs_put_dnode(&dn);
3852 
3853 		f2fs_unlock_op(sbi);
3854 
3855 		if (ret < 0)
3856 			break;
3857 
3858 		page_idx += count;
3859 	}
3860 
3861 	filemap_invalidate_unlock(inode->i_mapping);
3862 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3863 
3864 	if (!ret) {
3865 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3866 		inode_set_ctime_current(inode);
3867 		f2fs_mark_inode_dirty_sync(inode, true);
3868 	}
3869 unlock_inode:
3870 	inode_unlock(inode);
3871 	mnt_drop_write_file(filp);
3872 
3873 	if (!ret) {
3874 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3875 	} else if (reserved_blocks &&
3876 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3877 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3878 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3879 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3880 			"run fsck to fix.",
3881 			__func__, inode->i_ino, inode->i_blocks,
3882 			reserved_blocks,
3883 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3884 	}
3885 
3886 	return ret;
3887 }
3888 
3889 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3890 		pgoff_t off, block_t block, block_t len, u32 flags)
3891 {
3892 	sector_t sector = SECTOR_FROM_BLOCK(block);
3893 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3894 	int ret = 0;
3895 
3896 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3897 		if (bdev_max_secure_erase_sectors(bdev))
3898 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3899 					GFP_NOFS);
3900 		else
3901 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3902 					GFP_NOFS);
3903 	}
3904 
3905 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3906 		if (IS_ENCRYPTED(inode))
3907 			ret = fscrypt_zeroout_range(inode, off, block, len);
3908 		else
3909 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3910 					GFP_NOFS, 0);
3911 	}
3912 
3913 	return ret;
3914 }
3915 
3916 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3917 {
3918 	struct inode *inode = file_inode(filp);
3919 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3920 	struct address_space *mapping = inode->i_mapping;
3921 	struct block_device *prev_bdev = NULL;
3922 	struct f2fs_sectrim_range range;
3923 	pgoff_t index, pg_end, prev_index = 0;
3924 	block_t prev_block = 0, len = 0;
3925 	loff_t end_addr;
3926 	bool to_end = false;
3927 	int ret = 0;
3928 
3929 	if (!(filp->f_mode & FMODE_WRITE))
3930 		return -EBADF;
3931 
3932 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3933 				sizeof(range)))
3934 		return -EFAULT;
3935 
3936 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3937 			!S_ISREG(inode->i_mode))
3938 		return -EINVAL;
3939 
3940 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3941 			!f2fs_hw_support_discard(sbi)) ||
3942 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3943 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3944 		return -EOPNOTSUPP;
3945 
3946 	file_start_write(filp);
3947 	inode_lock(inode);
3948 
3949 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3950 			range.start >= inode->i_size) {
3951 		ret = -EINVAL;
3952 		goto err;
3953 	}
3954 
3955 	if (range.len == 0)
3956 		goto err;
3957 
3958 	if (inode->i_size - range.start > range.len) {
3959 		end_addr = range.start + range.len;
3960 	} else {
3961 		end_addr = range.len == (u64)-1 ?
3962 			sbi->sb->s_maxbytes : inode->i_size;
3963 		to_end = true;
3964 	}
3965 
3966 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3967 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3968 		ret = -EINVAL;
3969 		goto err;
3970 	}
3971 
3972 	index = F2FS_BYTES_TO_BLK(range.start);
3973 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3974 
3975 	ret = f2fs_convert_inline_inode(inode);
3976 	if (ret)
3977 		goto err;
3978 
3979 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3980 	filemap_invalidate_lock(mapping);
3981 
3982 	ret = filemap_write_and_wait_range(mapping, range.start,
3983 			to_end ? LLONG_MAX : end_addr - 1);
3984 	if (ret)
3985 		goto out;
3986 
3987 	truncate_inode_pages_range(mapping, range.start,
3988 			to_end ? -1 : end_addr - 1);
3989 
3990 	while (index < pg_end) {
3991 		struct dnode_of_data dn;
3992 		pgoff_t end_offset, count;
3993 		int i;
3994 
3995 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3996 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3997 		if (ret) {
3998 			if (ret == -ENOENT) {
3999 				index = f2fs_get_next_page_offset(&dn, index);
4000 				continue;
4001 			}
4002 			goto out;
4003 		}
4004 
4005 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4006 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4007 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4008 			struct block_device *cur_bdev;
4009 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4010 
4011 			if (!__is_valid_data_blkaddr(blkaddr))
4012 				continue;
4013 
4014 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4015 						DATA_GENERIC_ENHANCE)) {
4016 				ret = -EFSCORRUPTED;
4017 				f2fs_put_dnode(&dn);
4018 				f2fs_handle_error(sbi,
4019 						ERROR_INVALID_BLKADDR);
4020 				goto out;
4021 			}
4022 
4023 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4024 			if (f2fs_is_multi_device(sbi)) {
4025 				int di = f2fs_target_device_index(sbi, blkaddr);
4026 
4027 				blkaddr -= FDEV(di).start_blk;
4028 			}
4029 
4030 			if (len) {
4031 				if (prev_bdev == cur_bdev &&
4032 						index == prev_index + len &&
4033 						blkaddr == prev_block + len) {
4034 					len++;
4035 				} else {
4036 					ret = f2fs_secure_erase(prev_bdev,
4037 						inode, prev_index, prev_block,
4038 						len, range.flags);
4039 					if (ret) {
4040 						f2fs_put_dnode(&dn);
4041 						goto out;
4042 					}
4043 
4044 					len = 0;
4045 				}
4046 			}
4047 
4048 			if (!len) {
4049 				prev_bdev = cur_bdev;
4050 				prev_index = index;
4051 				prev_block = blkaddr;
4052 				len = 1;
4053 			}
4054 		}
4055 
4056 		f2fs_put_dnode(&dn);
4057 
4058 		if (fatal_signal_pending(current)) {
4059 			ret = -EINTR;
4060 			goto out;
4061 		}
4062 		cond_resched();
4063 	}
4064 
4065 	if (len)
4066 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4067 				prev_block, len, range.flags);
4068 out:
4069 	filemap_invalidate_unlock(mapping);
4070 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4071 err:
4072 	inode_unlock(inode);
4073 	file_end_write(filp);
4074 
4075 	return ret;
4076 }
4077 
4078 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4079 {
4080 	struct inode *inode = file_inode(filp);
4081 	struct f2fs_comp_option option;
4082 
4083 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4084 		return -EOPNOTSUPP;
4085 
4086 	inode_lock_shared(inode);
4087 
4088 	if (!f2fs_compressed_file(inode)) {
4089 		inode_unlock_shared(inode);
4090 		return -ENODATA;
4091 	}
4092 
4093 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4094 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4095 
4096 	inode_unlock_shared(inode);
4097 
4098 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4099 				sizeof(option)))
4100 		return -EFAULT;
4101 
4102 	return 0;
4103 }
4104 
4105 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4106 {
4107 	struct inode *inode = file_inode(filp);
4108 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4109 	struct f2fs_comp_option option;
4110 	int ret = 0;
4111 
4112 	if (!f2fs_sb_has_compression(sbi))
4113 		return -EOPNOTSUPP;
4114 
4115 	if (!(filp->f_mode & FMODE_WRITE))
4116 		return -EBADF;
4117 
4118 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4119 				sizeof(option)))
4120 		return -EFAULT;
4121 
4122 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4123 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4124 		option.algorithm >= COMPRESS_MAX)
4125 		return -EINVAL;
4126 
4127 	file_start_write(filp);
4128 	inode_lock(inode);
4129 
4130 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4131 	if (!f2fs_compressed_file(inode)) {
4132 		ret = -EINVAL;
4133 		goto out;
4134 	}
4135 
4136 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4137 		ret = -EBUSY;
4138 		goto out;
4139 	}
4140 
4141 	if (F2FS_HAS_BLOCKS(inode)) {
4142 		ret = -EFBIG;
4143 		goto out;
4144 	}
4145 
4146 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4147 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4148 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4149 	/* Set default level */
4150 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4151 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4152 	else
4153 		F2FS_I(inode)->i_compress_level = 0;
4154 	/* Adjust mount option level */
4155 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4156 	    F2FS_OPTION(sbi).compress_level)
4157 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4158 	f2fs_mark_inode_dirty_sync(inode, true);
4159 
4160 	if (!f2fs_is_compress_backend_ready(inode))
4161 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4162 			"but current kernel doesn't support this algorithm.");
4163 out:
4164 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4165 	inode_unlock(inode);
4166 	file_end_write(filp);
4167 
4168 	return ret;
4169 }
4170 
4171 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4172 {
4173 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4174 	struct address_space *mapping = inode->i_mapping;
4175 	struct page *page;
4176 	pgoff_t redirty_idx = page_idx;
4177 	int i, page_len = 0, ret = 0;
4178 
4179 	page_cache_ra_unbounded(&ractl, len, 0);
4180 
4181 	for (i = 0; i < len; i++, page_idx++) {
4182 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4183 		if (IS_ERR(page)) {
4184 			ret = PTR_ERR(page);
4185 			break;
4186 		}
4187 		page_len++;
4188 	}
4189 
4190 	for (i = 0; i < page_len; i++, redirty_idx++) {
4191 		page = find_lock_page(mapping, redirty_idx);
4192 
4193 		/* It will never fail, when page has pinned above */
4194 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4195 
4196 		f2fs_wait_on_page_writeback(page, DATA, true, true);
4197 
4198 		set_page_dirty(page);
4199 		set_page_private_gcing(page);
4200 		f2fs_put_page(page, 1);
4201 		f2fs_put_page(page, 0);
4202 	}
4203 
4204 	return ret;
4205 }
4206 
4207 static int f2fs_ioc_decompress_file(struct file *filp)
4208 {
4209 	struct inode *inode = file_inode(filp);
4210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4211 	struct f2fs_inode_info *fi = F2FS_I(inode);
4212 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4213 	int ret;
4214 
4215 	if (!f2fs_sb_has_compression(sbi) ||
4216 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4217 		return -EOPNOTSUPP;
4218 
4219 	if (!(filp->f_mode & FMODE_WRITE))
4220 		return -EBADF;
4221 
4222 	f2fs_balance_fs(sbi, true);
4223 
4224 	file_start_write(filp);
4225 	inode_lock(inode);
4226 
4227 	if (!f2fs_is_compress_backend_ready(inode)) {
4228 		ret = -EOPNOTSUPP;
4229 		goto out;
4230 	}
4231 
4232 	if (!f2fs_compressed_file(inode) ||
4233 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4234 		ret = -EINVAL;
4235 		goto out;
4236 	}
4237 
4238 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4239 	if (ret)
4240 		goto out;
4241 
4242 	if (!atomic_read(&fi->i_compr_blocks))
4243 		goto out;
4244 
4245 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4246 	last_idx >>= fi->i_log_cluster_size;
4247 
4248 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4249 		page_idx = cluster_idx << fi->i_log_cluster_size;
4250 
4251 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4252 			continue;
4253 
4254 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4255 		if (ret < 0)
4256 			break;
4257 
4258 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4259 			ret = filemap_fdatawrite(inode->i_mapping);
4260 			if (ret < 0)
4261 				break;
4262 		}
4263 
4264 		cond_resched();
4265 		if (fatal_signal_pending(current)) {
4266 			ret = -EINTR;
4267 			break;
4268 		}
4269 	}
4270 
4271 	if (!ret)
4272 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4273 							LLONG_MAX);
4274 
4275 	if (ret)
4276 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4277 			  __func__, ret);
4278 out:
4279 	inode_unlock(inode);
4280 	file_end_write(filp);
4281 
4282 	return ret;
4283 }
4284 
4285 static int f2fs_ioc_compress_file(struct file *filp)
4286 {
4287 	struct inode *inode = file_inode(filp);
4288 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4289 	struct f2fs_inode_info *fi = F2FS_I(inode);
4290 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4291 	int ret;
4292 
4293 	if (!f2fs_sb_has_compression(sbi) ||
4294 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4295 		return -EOPNOTSUPP;
4296 
4297 	if (!(filp->f_mode & FMODE_WRITE))
4298 		return -EBADF;
4299 
4300 	f2fs_balance_fs(sbi, true);
4301 
4302 	file_start_write(filp);
4303 	inode_lock(inode);
4304 
4305 	if (!f2fs_is_compress_backend_ready(inode)) {
4306 		ret = -EOPNOTSUPP;
4307 		goto out;
4308 	}
4309 
4310 	if (!f2fs_compressed_file(inode) ||
4311 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4312 		ret = -EINVAL;
4313 		goto out;
4314 	}
4315 
4316 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4317 	if (ret)
4318 		goto out;
4319 
4320 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4321 
4322 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4323 	last_idx >>= fi->i_log_cluster_size;
4324 
4325 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4326 		page_idx = cluster_idx << fi->i_log_cluster_size;
4327 
4328 		if (f2fs_is_sparse_cluster(inode, page_idx))
4329 			continue;
4330 
4331 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4332 		if (ret < 0)
4333 			break;
4334 
4335 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4336 			ret = filemap_fdatawrite(inode->i_mapping);
4337 			if (ret < 0)
4338 				break;
4339 		}
4340 
4341 		cond_resched();
4342 		if (fatal_signal_pending(current)) {
4343 			ret = -EINTR;
4344 			break;
4345 		}
4346 	}
4347 
4348 	if (!ret)
4349 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4350 							LLONG_MAX);
4351 
4352 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4353 
4354 	if (ret)
4355 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4356 			  __func__, ret);
4357 out:
4358 	inode_unlock(inode);
4359 	file_end_write(filp);
4360 
4361 	return ret;
4362 }
4363 
4364 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4365 {
4366 	switch (cmd) {
4367 	case FS_IOC_GETVERSION:
4368 		return f2fs_ioc_getversion(filp, arg);
4369 	case F2FS_IOC_START_ATOMIC_WRITE:
4370 		return f2fs_ioc_start_atomic_write(filp, false);
4371 	case F2FS_IOC_START_ATOMIC_REPLACE:
4372 		return f2fs_ioc_start_atomic_write(filp, true);
4373 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4374 		return f2fs_ioc_commit_atomic_write(filp);
4375 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4376 		return f2fs_ioc_abort_atomic_write(filp);
4377 	case F2FS_IOC_START_VOLATILE_WRITE:
4378 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4379 		return -EOPNOTSUPP;
4380 	case F2FS_IOC_SHUTDOWN:
4381 		return f2fs_ioc_shutdown(filp, arg);
4382 	case FITRIM:
4383 		return f2fs_ioc_fitrim(filp, arg);
4384 	case FS_IOC_SET_ENCRYPTION_POLICY:
4385 		return f2fs_ioc_set_encryption_policy(filp, arg);
4386 	case FS_IOC_GET_ENCRYPTION_POLICY:
4387 		return f2fs_ioc_get_encryption_policy(filp, arg);
4388 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4389 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4390 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4391 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4392 	case FS_IOC_ADD_ENCRYPTION_KEY:
4393 		return f2fs_ioc_add_encryption_key(filp, arg);
4394 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4395 		return f2fs_ioc_remove_encryption_key(filp, arg);
4396 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4397 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4398 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4399 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4400 	case FS_IOC_GET_ENCRYPTION_NONCE:
4401 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4402 	case F2FS_IOC_GARBAGE_COLLECT:
4403 		return f2fs_ioc_gc(filp, arg);
4404 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4405 		return f2fs_ioc_gc_range(filp, arg);
4406 	case F2FS_IOC_WRITE_CHECKPOINT:
4407 		return f2fs_ioc_write_checkpoint(filp);
4408 	case F2FS_IOC_DEFRAGMENT:
4409 		return f2fs_ioc_defragment(filp, arg);
4410 	case F2FS_IOC_MOVE_RANGE:
4411 		return f2fs_ioc_move_range(filp, arg);
4412 	case F2FS_IOC_FLUSH_DEVICE:
4413 		return f2fs_ioc_flush_device(filp, arg);
4414 	case F2FS_IOC_GET_FEATURES:
4415 		return f2fs_ioc_get_features(filp, arg);
4416 	case F2FS_IOC_GET_PIN_FILE:
4417 		return f2fs_ioc_get_pin_file(filp, arg);
4418 	case F2FS_IOC_SET_PIN_FILE:
4419 		return f2fs_ioc_set_pin_file(filp, arg);
4420 	case F2FS_IOC_PRECACHE_EXTENTS:
4421 		return f2fs_ioc_precache_extents(filp);
4422 	case F2FS_IOC_RESIZE_FS:
4423 		return f2fs_ioc_resize_fs(filp, arg);
4424 	case FS_IOC_ENABLE_VERITY:
4425 		return f2fs_ioc_enable_verity(filp, arg);
4426 	case FS_IOC_MEASURE_VERITY:
4427 		return f2fs_ioc_measure_verity(filp, arg);
4428 	case FS_IOC_READ_VERITY_METADATA:
4429 		return f2fs_ioc_read_verity_metadata(filp, arg);
4430 	case FS_IOC_GETFSLABEL:
4431 		return f2fs_ioc_getfslabel(filp, arg);
4432 	case FS_IOC_SETFSLABEL:
4433 		return f2fs_ioc_setfslabel(filp, arg);
4434 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4435 		return f2fs_ioc_get_compress_blocks(filp, arg);
4436 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4437 		return f2fs_release_compress_blocks(filp, arg);
4438 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4439 		return f2fs_reserve_compress_blocks(filp, arg);
4440 	case F2FS_IOC_SEC_TRIM_FILE:
4441 		return f2fs_sec_trim_file(filp, arg);
4442 	case F2FS_IOC_GET_COMPRESS_OPTION:
4443 		return f2fs_ioc_get_compress_option(filp, arg);
4444 	case F2FS_IOC_SET_COMPRESS_OPTION:
4445 		return f2fs_ioc_set_compress_option(filp, arg);
4446 	case F2FS_IOC_DECOMPRESS_FILE:
4447 		return f2fs_ioc_decompress_file(filp);
4448 	case F2FS_IOC_COMPRESS_FILE:
4449 		return f2fs_ioc_compress_file(filp);
4450 	default:
4451 		return -ENOTTY;
4452 	}
4453 }
4454 
4455 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4456 {
4457 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4458 		return -EIO;
4459 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4460 		return -ENOSPC;
4461 
4462 	return __f2fs_ioctl(filp, cmd, arg);
4463 }
4464 
4465 /*
4466  * Return %true if the given read or write request should use direct I/O, or
4467  * %false if it should use buffered I/O.
4468  */
4469 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4470 				struct iov_iter *iter)
4471 {
4472 	unsigned int align;
4473 
4474 	if (!(iocb->ki_flags & IOCB_DIRECT))
4475 		return false;
4476 
4477 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4478 		return false;
4479 
4480 	/*
4481 	 * Direct I/O not aligned to the disk's logical_block_size will be
4482 	 * attempted, but will fail with -EINVAL.
4483 	 *
4484 	 * f2fs additionally requires that direct I/O be aligned to the
4485 	 * filesystem block size, which is often a stricter requirement.
4486 	 * However, f2fs traditionally falls back to buffered I/O on requests
4487 	 * that are logical_block_size-aligned but not fs-block aligned.
4488 	 *
4489 	 * The below logic implements this behavior.
4490 	 */
4491 	align = iocb->ki_pos | iov_iter_alignment(iter);
4492 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4493 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4494 		return false;
4495 
4496 	return true;
4497 }
4498 
4499 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4500 				unsigned int flags)
4501 {
4502 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4503 
4504 	dec_page_count(sbi, F2FS_DIO_READ);
4505 	if (error)
4506 		return error;
4507 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4508 	return 0;
4509 }
4510 
4511 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4512 	.end_io = f2fs_dio_read_end_io,
4513 };
4514 
4515 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4516 {
4517 	struct file *file = iocb->ki_filp;
4518 	struct inode *inode = file_inode(file);
4519 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4520 	struct f2fs_inode_info *fi = F2FS_I(inode);
4521 	const loff_t pos = iocb->ki_pos;
4522 	const size_t count = iov_iter_count(to);
4523 	struct iomap_dio *dio;
4524 	ssize_t ret;
4525 
4526 	if (count == 0)
4527 		return 0; /* skip atime update */
4528 
4529 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4530 
4531 	if (iocb->ki_flags & IOCB_NOWAIT) {
4532 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4533 			ret = -EAGAIN;
4534 			goto out;
4535 		}
4536 	} else {
4537 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4538 	}
4539 
4540 	/*
4541 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4542 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4543 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4544 	 */
4545 	inc_page_count(sbi, F2FS_DIO_READ);
4546 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4547 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4548 	if (IS_ERR_OR_NULL(dio)) {
4549 		ret = PTR_ERR_OR_ZERO(dio);
4550 		if (ret != -EIOCBQUEUED)
4551 			dec_page_count(sbi, F2FS_DIO_READ);
4552 	} else {
4553 		ret = iomap_dio_complete(dio);
4554 	}
4555 
4556 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4557 
4558 	file_accessed(file);
4559 out:
4560 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4561 	return ret;
4562 }
4563 
4564 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4565 				    int rw)
4566 {
4567 	struct inode *inode = file_inode(file);
4568 	char *buf, *path;
4569 
4570 	buf = f2fs_getname(F2FS_I_SB(inode));
4571 	if (!buf)
4572 		return;
4573 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4574 	if (IS_ERR(path))
4575 		goto free_buf;
4576 	if (rw == WRITE)
4577 		trace_f2fs_datawrite_start(inode, pos, count,
4578 				current->pid, path, current->comm);
4579 	else
4580 		trace_f2fs_dataread_start(inode, pos, count,
4581 				current->pid, path, current->comm);
4582 free_buf:
4583 	f2fs_putname(buf);
4584 }
4585 
4586 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4587 {
4588 	struct inode *inode = file_inode(iocb->ki_filp);
4589 	const loff_t pos = iocb->ki_pos;
4590 	ssize_t ret;
4591 
4592 	if (!f2fs_is_compress_backend_ready(inode))
4593 		return -EOPNOTSUPP;
4594 
4595 	if (trace_f2fs_dataread_start_enabled())
4596 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4597 					iov_iter_count(to), READ);
4598 
4599 	/* In LFS mode, if there is inflight dio, wait for its completion */
4600 	if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4601 		inode_dio_wait(inode);
4602 
4603 	if (f2fs_should_use_dio(inode, iocb, to)) {
4604 		ret = f2fs_dio_read_iter(iocb, to);
4605 	} else {
4606 		ret = filemap_read(iocb, to, 0);
4607 		if (ret > 0)
4608 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4609 						APP_BUFFERED_READ_IO, ret);
4610 	}
4611 	if (trace_f2fs_dataread_end_enabled())
4612 		trace_f2fs_dataread_end(inode, pos, ret);
4613 	return ret;
4614 }
4615 
4616 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4617 				     struct pipe_inode_info *pipe,
4618 				     size_t len, unsigned int flags)
4619 {
4620 	struct inode *inode = file_inode(in);
4621 	const loff_t pos = *ppos;
4622 	ssize_t ret;
4623 
4624 	if (!f2fs_is_compress_backend_ready(inode))
4625 		return -EOPNOTSUPP;
4626 
4627 	if (trace_f2fs_dataread_start_enabled())
4628 		f2fs_trace_rw_file_path(in, pos, len, READ);
4629 
4630 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4631 	if (ret > 0)
4632 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4633 				   APP_BUFFERED_READ_IO, ret);
4634 
4635 	if (trace_f2fs_dataread_end_enabled())
4636 		trace_f2fs_dataread_end(inode, pos, ret);
4637 	return ret;
4638 }
4639 
4640 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4641 {
4642 	struct file *file = iocb->ki_filp;
4643 	struct inode *inode = file_inode(file);
4644 	ssize_t count;
4645 	int err;
4646 
4647 	if (IS_IMMUTABLE(inode))
4648 		return -EPERM;
4649 
4650 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4651 		return -EPERM;
4652 
4653 	count = generic_write_checks(iocb, from);
4654 	if (count <= 0)
4655 		return count;
4656 
4657 	err = file_modified(file);
4658 	if (err)
4659 		return err;
4660 	return count;
4661 }
4662 
4663 /*
4664  * Preallocate blocks for a write request, if it is possible and helpful to do
4665  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4666  * blocks were preallocated, or a negative errno value if something went
4667  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4668  * requested blocks (not just some of them) have been allocated.
4669  */
4670 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4671 				   bool dio)
4672 {
4673 	struct inode *inode = file_inode(iocb->ki_filp);
4674 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4675 	const loff_t pos = iocb->ki_pos;
4676 	const size_t count = iov_iter_count(iter);
4677 	struct f2fs_map_blocks map = {};
4678 	int flag;
4679 	int ret;
4680 
4681 	/* If it will be an out-of-place direct write, don't bother. */
4682 	if (dio && f2fs_lfs_mode(sbi))
4683 		return 0;
4684 	/*
4685 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4686 	 * buffered IO, if DIO meets any holes.
4687 	 */
4688 	if (dio && i_size_read(inode) &&
4689 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4690 		return 0;
4691 
4692 	/* No-wait I/O can't allocate blocks. */
4693 	if (iocb->ki_flags & IOCB_NOWAIT)
4694 		return 0;
4695 
4696 	/* If it will be a short write, don't bother. */
4697 	if (fault_in_iov_iter_readable(iter, count))
4698 		return 0;
4699 
4700 	if (f2fs_has_inline_data(inode)) {
4701 		/* If the data will fit inline, don't bother. */
4702 		if (pos + count <= MAX_INLINE_DATA(inode))
4703 			return 0;
4704 		ret = f2fs_convert_inline_inode(inode);
4705 		if (ret)
4706 			return ret;
4707 	}
4708 
4709 	/* Do not preallocate blocks that will be written partially in 4KB. */
4710 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4711 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4712 	if (map.m_len > map.m_lblk)
4713 		map.m_len -= map.m_lblk;
4714 	else
4715 		map.m_len = 0;
4716 	map.m_may_create = true;
4717 	if (dio) {
4718 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4719 		flag = F2FS_GET_BLOCK_PRE_DIO;
4720 	} else {
4721 		map.m_seg_type = NO_CHECK_TYPE;
4722 		flag = F2FS_GET_BLOCK_PRE_AIO;
4723 	}
4724 
4725 	ret = f2fs_map_blocks(inode, &map, flag);
4726 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4727 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4728 		return ret;
4729 	if (ret == 0)
4730 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4731 	return map.m_len;
4732 }
4733 
4734 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4735 					struct iov_iter *from)
4736 {
4737 	struct file *file = iocb->ki_filp;
4738 	struct inode *inode = file_inode(file);
4739 	ssize_t ret;
4740 
4741 	if (iocb->ki_flags & IOCB_NOWAIT)
4742 		return -EOPNOTSUPP;
4743 
4744 	ret = generic_perform_write(iocb, from);
4745 
4746 	if (ret > 0) {
4747 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4748 						APP_BUFFERED_IO, ret);
4749 	}
4750 	return ret;
4751 }
4752 
4753 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4754 				 unsigned int flags)
4755 {
4756 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4757 
4758 	dec_page_count(sbi, F2FS_DIO_WRITE);
4759 	if (error)
4760 		return error;
4761 	f2fs_update_time(sbi, REQ_TIME);
4762 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4763 	return 0;
4764 }
4765 
4766 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4767 	.end_io = f2fs_dio_write_end_io,
4768 };
4769 
4770 static void f2fs_flush_buffered_write(struct address_space *mapping,
4771 				      loff_t start_pos, loff_t end_pos)
4772 {
4773 	int ret;
4774 
4775 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4776 	if (ret < 0)
4777 		return;
4778 	invalidate_mapping_pages(mapping,
4779 				 start_pos >> PAGE_SHIFT,
4780 				 end_pos >> PAGE_SHIFT);
4781 }
4782 
4783 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4784 				   bool *may_need_sync)
4785 {
4786 	struct file *file = iocb->ki_filp;
4787 	struct inode *inode = file_inode(file);
4788 	struct f2fs_inode_info *fi = F2FS_I(inode);
4789 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4790 	const bool do_opu = f2fs_lfs_mode(sbi);
4791 	const loff_t pos = iocb->ki_pos;
4792 	const ssize_t count = iov_iter_count(from);
4793 	unsigned int dio_flags;
4794 	struct iomap_dio *dio;
4795 	ssize_t ret;
4796 
4797 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4798 
4799 	if (iocb->ki_flags & IOCB_NOWAIT) {
4800 		/* f2fs_convert_inline_inode() and block allocation can block */
4801 		if (f2fs_has_inline_data(inode) ||
4802 		    !f2fs_overwrite_io(inode, pos, count)) {
4803 			ret = -EAGAIN;
4804 			goto out;
4805 		}
4806 
4807 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4808 			ret = -EAGAIN;
4809 			goto out;
4810 		}
4811 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4812 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4813 			ret = -EAGAIN;
4814 			goto out;
4815 		}
4816 	} else {
4817 		ret = f2fs_convert_inline_inode(inode);
4818 		if (ret)
4819 			goto out;
4820 
4821 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4822 		if (do_opu)
4823 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4824 	}
4825 
4826 	/*
4827 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4828 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4829 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4830 	 */
4831 	inc_page_count(sbi, F2FS_DIO_WRITE);
4832 	dio_flags = 0;
4833 	if (pos + count > inode->i_size)
4834 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4835 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4836 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4837 	if (IS_ERR_OR_NULL(dio)) {
4838 		ret = PTR_ERR_OR_ZERO(dio);
4839 		if (ret == -ENOTBLK)
4840 			ret = 0;
4841 		if (ret != -EIOCBQUEUED)
4842 			dec_page_count(sbi, F2FS_DIO_WRITE);
4843 	} else {
4844 		ret = iomap_dio_complete(dio);
4845 	}
4846 
4847 	if (do_opu)
4848 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4849 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4850 
4851 	if (ret < 0)
4852 		goto out;
4853 	if (pos + ret > inode->i_size)
4854 		f2fs_i_size_write(inode, pos + ret);
4855 	if (!do_opu)
4856 		set_inode_flag(inode, FI_UPDATE_WRITE);
4857 
4858 	if (iov_iter_count(from)) {
4859 		ssize_t ret2;
4860 		loff_t bufio_start_pos = iocb->ki_pos;
4861 
4862 		/*
4863 		 * The direct write was partial, so we need to fall back to a
4864 		 * buffered write for the remainder.
4865 		 */
4866 
4867 		ret2 = f2fs_buffered_write_iter(iocb, from);
4868 		if (iov_iter_count(from))
4869 			f2fs_write_failed(inode, iocb->ki_pos);
4870 		if (ret2 < 0)
4871 			goto out;
4872 
4873 		/*
4874 		 * Ensure that the pagecache pages are written to disk and
4875 		 * invalidated to preserve the expected O_DIRECT semantics.
4876 		 */
4877 		if (ret2 > 0) {
4878 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4879 
4880 			ret += ret2;
4881 
4882 			f2fs_flush_buffered_write(file->f_mapping,
4883 						  bufio_start_pos,
4884 						  bufio_end_pos);
4885 		}
4886 	} else {
4887 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4888 		*may_need_sync = false;
4889 	}
4890 out:
4891 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4892 	return ret;
4893 }
4894 
4895 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4896 {
4897 	struct inode *inode = file_inode(iocb->ki_filp);
4898 	const loff_t orig_pos = iocb->ki_pos;
4899 	const size_t orig_count = iov_iter_count(from);
4900 	loff_t target_size;
4901 	bool dio;
4902 	bool may_need_sync = true;
4903 	int preallocated;
4904 	ssize_t ret;
4905 
4906 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4907 		ret = -EIO;
4908 		goto out;
4909 	}
4910 
4911 	if (!f2fs_is_compress_backend_ready(inode)) {
4912 		ret = -EOPNOTSUPP;
4913 		goto out;
4914 	}
4915 
4916 	if (iocb->ki_flags & IOCB_NOWAIT) {
4917 		if (!inode_trylock(inode)) {
4918 			ret = -EAGAIN;
4919 			goto out;
4920 		}
4921 	} else {
4922 		inode_lock(inode);
4923 	}
4924 
4925 	ret = f2fs_write_checks(iocb, from);
4926 	if (ret <= 0)
4927 		goto out_unlock;
4928 
4929 	/* Determine whether we will do a direct write or a buffered write. */
4930 	dio = f2fs_should_use_dio(inode, iocb, from);
4931 
4932 	/* Possibly preallocate the blocks for the write. */
4933 	target_size = iocb->ki_pos + iov_iter_count(from);
4934 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4935 	if (preallocated < 0) {
4936 		ret = preallocated;
4937 	} else {
4938 		if (trace_f2fs_datawrite_start_enabled())
4939 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4940 						orig_count, WRITE);
4941 
4942 		/* Do the actual write. */
4943 		ret = dio ?
4944 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4945 			f2fs_buffered_write_iter(iocb, from);
4946 
4947 		if (trace_f2fs_datawrite_end_enabled())
4948 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4949 	}
4950 
4951 	/* Don't leave any preallocated blocks around past i_size. */
4952 	if (preallocated && i_size_read(inode) < target_size) {
4953 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4954 		filemap_invalidate_lock(inode->i_mapping);
4955 		if (!f2fs_truncate(inode))
4956 			file_dont_truncate(inode);
4957 		filemap_invalidate_unlock(inode->i_mapping);
4958 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4959 	} else {
4960 		file_dont_truncate(inode);
4961 	}
4962 
4963 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4964 out_unlock:
4965 	inode_unlock(inode);
4966 out:
4967 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4968 
4969 	if (ret > 0 && may_need_sync)
4970 		ret = generic_write_sync(iocb, ret);
4971 
4972 	/* If buffered IO was forced, flush and drop the data from
4973 	 * the page cache to preserve O_DIRECT semantics
4974 	 */
4975 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4976 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4977 					  orig_pos,
4978 					  orig_pos + ret - 1);
4979 
4980 	return ret;
4981 }
4982 
4983 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4984 		int advice)
4985 {
4986 	struct address_space *mapping;
4987 	struct backing_dev_info *bdi;
4988 	struct inode *inode = file_inode(filp);
4989 	int err;
4990 
4991 	if (advice == POSIX_FADV_SEQUENTIAL) {
4992 		if (S_ISFIFO(inode->i_mode))
4993 			return -ESPIPE;
4994 
4995 		mapping = filp->f_mapping;
4996 		if (!mapping || len < 0)
4997 			return -EINVAL;
4998 
4999 		bdi = inode_to_bdi(mapping->host);
5000 		filp->f_ra.ra_pages = bdi->ra_pages *
5001 			F2FS_I_SB(inode)->seq_file_ra_mul;
5002 		spin_lock(&filp->f_lock);
5003 		filp->f_mode &= ~FMODE_RANDOM;
5004 		spin_unlock(&filp->f_lock);
5005 		return 0;
5006 	}
5007 
5008 	err = generic_fadvise(filp, offset, len, advice);
5009 	if (!err && advice == POSIX_FADV_DONTNEED &&
5010 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5011 		f2fs_compressed_file(inode))
5012 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5013 
5014 	return err;
5015 }
5016 
5017 #ifdef CONFIG_COMPAT
5018 struct compat_f2fs_gc_range {
5019 	u32 sync;
5020 	compat_u64 start;
5021 	compat_u64 len;
5022 };
5023 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5024 						struct compat_f2fs_gc_range)
5025 
5026 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5027 {
5028 	struct compat_f2fs_gc_range __user *urange;
5029 	struct f2fs_gc_range range;
5030 	int err;
5031 
5032 	urange = compat_ptr(arg);
5033 	err = get_user(range.sync, &urange->sync);
5034 	err |= get_user(range.start, &urange->start);
5035 	err |= get_user(range.len, &urange->len);
5036 	if (err)
5037 		return -EFAULT;
5038 
5039 	return __f2fs_ioc_gc_range(file, &range);
5040 }
5041 
5042 struct compat_f2fs_move_range {
5043 	u32 dst_fd;
5044 	compat_u64 pos_in;
5045 	compat_u64 pos_out;
5046 	compat_u64 len;
5047 };
5048 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5049 					struct compat_f2fs_move_range)
5050 
5051 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5052 {
5053 	struct compat_f2fs_move_range __user *urange;
5054 	struct f2fs_move_range range;
5055 	int err;
5056 
5057 	urange = compat_ptr(arg);
5058 	err = get_user(range.dst_fd, &urange->dst_fd);
5059 	err |= get_user(range.pos_in, &urange->pos_in);
5060 	err |= get_user(range.pos_out, &urange->pos_out);
5061 	err |= get_user(range.len, &urange->len);
5062 	if (err)
5063 		return -EFAULT;
5064 
5065 	return __f2fs_ioc_move_range(file, &range);
5066 }
5067 
5068 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5069 {
5070 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5071 		return -EIO;
5072 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5073 		return -ENOSPC;
5074 
5075 	switch (cmd) {
5076 	case FS_IOC32_GETVERSION:
5077 		cmd = FS_IOC_GETVERSION;
5078 		break;
5079 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5080 		return f2fs_compat_ioc_gc_range(file, arg);
5081 	case F2FS_IOC32_MOVE_RANGE:
5082 		return f2fs_compat_ioc_move_range(file, arg);
5083 	case F2FS_IOC_START_ATOMIC_WRITE:
5084 	case F2FS_IOC_START_ATOMIC_REPLACE:
5085 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5086 	case F2FS_IOC_START_VOLATILE_WRITE:
5087 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5088 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5089 	case F2FS_IOC_SHUTDOWN:
5090 	case FITRIM:
5091 	case FS_IOC_SET_ENCRYPTION_POLICY:
5092 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5093 	case FS_IOC_GET_ENCRYPTION_POLICY:
5094 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5095 	case FS_IOC_ADD_ENCRYPTION_KEY:
5096 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5097 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5098 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5099 	case FS_IOC_GET_ENCRYPTION_NONCE:
5100 	case F2FS_IOC_GARBAGE_COLLECT:
5101 	case F2FS_IOC_WRITE_CHECKPOINT:
5102 	case F2FS_IOC_DEFRAGMENT:
5103 	case F2FS_IOC_FLUSH_DEVICE:
5104 	case F2FS_IOC_GET_FEATURES:
5105 	case F2FS_IOC_GET_PIN_FILE:
5106 	case F2FS_IOC_SET_PIN_FILE:
5107 	case F2FS_IOC_PRECACHE_EXTENTS:
5108 	case F2FS_IOC_RESIZE_FS:
5109 	case FS_IOC_ENABLE_VERITY:
5110 	case FS_IOC_MEASURE_VERITY:
5111 	case FS_IOC_READ_VERITY_METADATA:
5112 	case FS_IOC_GETFSLABEL:
5113 	case FS_IOC_SETFSLABEL:
5114 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5115 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5116 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5117 	case F2FS_IOC_SEC_TRIM_FILE:
5118 	case F2FS_IOC_GET_COMPRESS_OPTION:
5119 	case F2FS_IOC_SET_COMPRESS_OPTION:
5120 	case F2FS_IOC_DECOMPRESS_FILE:
5121 	case F2FS_IOC_COMPRESS_FILE:
5122 		break;
5123 	default:
5124 		return -ENOIOCTLCMD;
5125 	}
5126 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5127 }
5128 #endif
5129 
5130 const struct file_operations f2fs_file_operations = {
5131 	.llseek		= f2fs_llseek,
5132 	.read_iter	= f2fs_file_read_iter,
5133 	.write_iter	= f2fs_file_write_iter,
5134 	.iopoll		= iocb_bio_iopoll,
5135 	.open		= f2fs_file_open,
5136 	.release	= f2fs_release_file,
5137 	.mmap		= f2fs_file_mmap,
5138 	.flush		= f2fs_file_flush,
5139 	.fsync		= f2fs_sync_file,
5140 	.fallocate	= f2fs_fallocate,
5141 	.unlocked_ioctl	= f2fs_ioctl,
5142 #ifdef CONFIG_COMPAT
5143 	.compat_ioctl	= f2fs_compat_ioctl,
5144 #endif
5145 	.splice_read	= f2fs_file_splice_read,
5146 	.splice_write	= iter_file_splice_write,
5147 	.fadvise	= f2fs_file_fadvise,
5148 };
5149