xref: /openbmc/linux/fs/f2fs/f2fs.h (revision feeb0debfb3454726ebea3871cecac35e144d1bb)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			sbi->need_fsck = true;				\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 #define F2FS_MOUNT_FASTBOOT		0x00001000
53 
54 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
57 
58 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
59 		typecheck(unsigned long long, b) &&			\
60 		((long long)((a) - (b)) > 0))
61 
62 typedef u32 block_t;	/*
63 			 * should not change u32, since it is the on-disk block
64 			 * address format, __le32.
65 			 */
66 typedef u32 nid_t;
67 
68 struct f2fs_mount_info {
69 	unsigned int	opt;
70 };
71 
72 #define CRCPOLY_LE 0xedb88320
73 
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 	unsigned char *p = (unsigned char *)buf;
77 	__u32 crc = F2FS_SUPER_MAGIC;
78 	int i;
79 
80 	while (len--) {
81 		crc ^= *p++;
82 		for (i = 0; i < 8; i++)
83 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 	}
85 	return crc;
86 }
87 
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 	return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92 
93 /*
94  * For checkpoint manager
95  */
96 enum {
97 	NAT_BITMAP,
98 	SIT_BITMAP
99 };
100 
101 enum {
102 	CP_UMOUNT,
103 	CP_SYNC,
104 	CP_DISCARD,
105 };
106 
107 struct cp_control {
108 	int reason;
109 	__u64 trim_start;
110 	__u64 trim_end;
111 	__u64 trim_minlen;
112 	__u64 trimmed;
113 };
114 
115 /*
116  * For CP/NAT/SIT/SSA readahead
117  */
118 enum {
119 	META_CP,
120 	META_NAT,
121 	META_SIT,
122 	META_SSA,
123 	META_POR,
124 };
125 
126 /* for the list of ino */
127 enum {
128 	ORPHAN_INO,		/* for orphan ino list */
129 	APPEND_INO,		/* for append ino list */
130 	UPDATE_INO,		/* for update ino list */
131 	MAX_INO_ENTRY,		/* max. list */
132 };
133 
134 struct ino_entry {
135 	struct list_head list;	/* list head */
136 	nid_t ino;		/* inode number */
137 };
138 
139 /*
140  * for the list of directory inodes or gc inodes.
141  * NOTE: there are two slab users for this structure, if we add/modify/delete
142  * fields in structure for one of slab users, it may affect fields or size of
143  * other one, in this condition, it's better to split both of slab and related
144  * data structure.
145  */
146 struct inode_entry {
147 	struct list_head list;	/* list head */
148 	struct inode *inode;	/* vfs inode pointer */
149 };
150 
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 	struct list_head list;	/* list head */
154 	block_t blkaddr;	/* block address to be discarded */
155 	int len;		/* # of consecutive blocks of the discard */
156 };
157 
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 	struct list_head list;	/* list head */
161 	struct inode *inode;	/* vfs inode pointer */
162 	block_t blkaddr;	/* block address locating the last fsync */
163 	block_t last_dentry;	/* block address locating the last dentry */
164 	block_t last_inode;	/* block address locating the last inode */
165 };
166 
167 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
169 
170 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
174 
175 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177 
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 	int before = nats_in_cursum(rs);
181 	rs->n_nats = cpu_to_le16(before + i);
182 	return before;
183 }
184 
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 	int before = sits_in_cursum(rs);
188 	rs->n_sits = cpu_to_le16(before + i);
189 	return before;
190 }
191 
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 								int type)
194 {
195 	if (type == NAT_JOURNAL)
196 		return size <= MAX_NAT_JENTRIES(sum);
197 	return size <= MAX_SIT_JENTRIES(sum);
198 }
199 
200 /*
201  * ioctl commands
202  */
203 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
205 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
206 
207 #define F2FS_IOCTL_MAGIC		0xf5
208 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
209 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
210 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
211 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
212 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
213 
214 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
215 /*
216  * ioctl commands in 32 bit emulation
217  */
218 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
219 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
220 #endif
221 
222 /*
223  * For INODE and NODE manager
224  */
225 /* for directory operations */
226 struct f2fs_dentry_ptr {
227 	const void *bitmap;
228 	struct f2fs_dir_entry *dentry;
229 	__u8 (*filename)[F2FS_SLOT_LEN];
230 	int max;
231 };
232 
233 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
234 					void *src, int type)
235 {
236 	if (type == 1) {
237 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
238 		d->max = NR_DENTRY_IN_BLOCK;
239 		d->bitmap = &t->dentry_bitmap;
240 		d->dentry = t->dentry;
241 		d->filename = t->filename;
242 	} else {
243 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
244 		d->max = NR_INLINE_DENTRY;
245 		d->bitmap = &t->dentry_bitmap;
246 		d->dentry = t->dentry;
247 		d->filename = t->filename;
248 	}
249 }
250 
251 /*
252  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
253  * as its node offset to distinguish from index node blocks.
254  * But some bits are used to mark the node block.
255  */
256 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
257 				>> OFFSET_BIT_SHIFT)
258 enum {
259 	ALLOC_NODE,			/* allocate a new node page if needed */
260 	LOOKUP_NODE,			/* look up a node without readahead */
261 	LOOKUP_NODE_RA,			/*
262 					 * look up a node with readahead called
263 					 * by get_data_block.
264 					 */
265 };
266 
267 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
268 
269 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
270 
271 /* for in-memory extent cache entry */
272 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
273 
274 struct extent_info {
275 	rwlock_t ext_lock;	/* rwlock for consistency */
276 	unsigned int fofs;	/* start offset in a file */
277 	u32 blk_addr;		/* start block address of the extent */
278 	unsigned int len;	/* length of the extent */
279 };
280 
281 /*
282  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
283  */
284 #define FADVISE_COLD_BIT	0x01
285 #define FADVISE_LOST_PINO_BIT	0x02
286 
287 #define DEF_DIR_LEVEL		0
288 
289 struct f2fs_inode_info {
290 	struct inode vfs_inode;		/* serve a vfs inode */
291 	unsigned long i_flags;		/* keep an inode flags for ioctl */
292 	unsigned char i_advise;		/* use to give file attribute hints */
293 	unsigned char i_dir_level;	/* use for dentry level for large dir */
294 	unsigned int i_current_depth;	/* use only in directory structure */
295 	unsigned int i_pino;		/* parent inode number */
296 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
297 
298 	/* Use below internally in f2fs*/
299 	unsigned long flags;		/* use to pass per-file flags */
300 	struct rw_semaphore i_sem;	/* protect fi info */
301 	atomic_t dirty_pages;		/* # of dirty pages */
302 	f2fs_hash_t chash;		/* hash value of given file name */
303 	unsigned int clevel;		/* maximum level of given file name */
304 	nid_t i_xattr_nid;		/* node id that contains xattrs */
305 	unsigned long long xattr_ver;	/* cp version of xattr modification */
306 	struct extent_info ext;		/* in-memory extent cache entry */
307 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
308 
309 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
310 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
311 	struct mutex inmem_lock;	/* lock for inmemory pages */
312 };
313 
314 static inline void get_extent_info(struct extent_info *ext,
315 					struct f2fs_extent i_ext)
316 {
317 	write_lock(&ext->ext_lock);
318 	ext->fofs = le32_to_cpu(i_ext.fofs);
319 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
320 	ext->len = le32_to_cpu(i_ext.len);
321 	write_unlock(&ext->ext_lock);
322 }
323 
324 static inline void set_raw_extent(struct extent_info *ext,
325 					struct f2fs_extent *i_ext)
326 {
327 	read_lock(&ext->ext_lock);
328 	i_ext->fofs = cpu_to_le32(ext->fofs);
329 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
330 	i_ext->len = cpu_to_le32(ext->len);
331 	read_unlock(&ext->ext_lock);
332 }
333 
334 struct f2fs_nm_info {
335 	block_t nat_blkaddr;		/* base disk address of NAT */
336 	nid_t max_nid;			/* maximum possible node ids */
337 	nid_t available_nids;		/* maximum available node ids */
338 	nid_t next_scan_nid;		/* the next nid to be scanned */
339 	unsigned int ram_thresh;	/* control the memory footprint */
340 
341 	/* NAT cache management */
342 	struct radix_tree_root nat_root;/* root of the nat entry cache */
343 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
344 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
345 	struct list_head nat_entries;	/* cached nat entry list (clean) */
346 	unsigned int nat_cnt;		/* the # of cached nat entries */
347 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
348 
349 	/* free node ids management */
350 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
351 	struct list_head free_nid_list;	/* a list for free nids */
352 	spinlock_t free_nid_list_lock;	/* protect free nid list */
353 	unsigned int fcnt;		/* the number of free node id */
354 	struct mutex build_lock;	/* lock for build free nids */
355 
356 	/* for checkpoint */
357 	char *nat_bitmap;		/* NAT bitmap pointer */
358 	int bitmap_size;		/* bitmap size */
359 };
360 
361 /*
362  * this structure is used as one of function parameters.
363  * all the information are dedicated to a given direct node block determined
364  * by the data offset in a file.
365  */
366 struct dnode_of_data {
367 	struct inode *inode;		/* vfs inode pointer */
368 	struct page *inode_page;	/* its inode page, NULL is possible */
369 	struct page *node_page;		/* cached direct node page */
370 	nid_t nid;			/* node id of the direct node block */
371 	unsigned int ofs_in_node;	/* data offset in the node page */
372 	bool inode_page_locked;		/* inode page is locked or not */
373 	block_t	data_blkaddr;		/* block address of the node block */
374 };
375 
376 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
377 		struct page *ipage, struct page *npage, nid_t nid)
378 {
379 	memset(dn, 0, sizeof(*dn));
380 	dn->inode = inode;
381 	dn->inode_page = ipage;
382 	dn->node_page = npage;
383 	dn->nid = nid;
384 }
385 
386 /*
387  * For SIT manager
388  *
389  * By default, there are 6 active log areas across the whole main area.
390  * When considering hot and cold data separation to reduce cleaning overhead,
391  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
392  * respectively.
393  * In the current design, you should not change the numbers intentionally.
394  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
395  * logs individually according to the underlying devices. (default: 6)
396  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
397  * data and 8 for node logs.
398  */
399 #define	NR_CURSEG_DATA_TYPE	(3)
400 #define NR_CURSEG_NODE_TYPE	(3)
401 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
402 
403 enum {
404 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
405 	CURSEG_WARM_DATA,	/* data blocks */
406 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
407 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
408 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
409 	CURSEG_COLD_NODE,	/* indirect node blocks */
410 	NO_CHECK_TYPE,
411 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
412 };
413 
414 struct flush_cmd {
415 	struct completion wait;
416 	struct llist_node llnode;
417 	int ret;
418 };
419 
420 struct flush_cmd_control {
421 	struct task_struct *f2fs_issue_flush;	/* flush thread */
422 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
423 	struct llist_head issue_list;		/* list for command issue */
424 	struct llist_node *dispatch_list;	/* list for command dispatch */
425 };
426 
427 struct f2fs_sm_info {
428 	struct sit_info *sit_info;		/* whole segment information */
429 	struct free_segmap_info *free_info;	/* free segment information */
430 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
431 	struct curseg_info *curseg_array;	/* active segment information */
432 
433 	block_t seg0_blkaddr;		/* block address of 0'th segment */
434 	block_t main_blkaddr;		/* start block address of main area */
435 	block_t ssa_blkaddr;		/* start block address of SSA area */
436 
437 	unsigned int segment_count;	/* total # of segments */
438 	unsigned int main_segments;	/* # of segments in main area */
439 	unsigned int reserved_segments;	/* # of reserved segments */
440 	unsigned int ovp_segments;	/* # of overprovision segments */
441 
442 	/* a threshold to reclaim prefree segments */
443 	unsigned int rec_prefree_segments;
444 
445 	/* for small discard management */
446 	struct list_head discard_list;		/* 4KB discard list */
447 	int nr_discards;			/* # of discards in the list */
448 	int max_discards;			/* max. discards to be issued */
449 
450 	struct list_head sit_entry_set;	/* sit entry set list */
451 
452 	unsigned int ipu_policy;	/* in-place-update policy */
453 	unsigned int min_ipu_util;	/* in-place-update threshold */
454 	unsigned int min_fsync_blocks;	/* threshold for fsync */
455 
456 	/* for flush command control */
457 	struct flush_cmd_control *cmd_control_info;
458 
459 };
460 
461 /*
462  * For superblock
463  */
464 /*
465  * COUNT_TYPE for monitoring
466  *
467  * f2fs monitors the number of several block types such as on-writeback,
468  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
469  */
470 enum count_type {
471 	F2FS_WRITEBACK,
472 	F2FS_DIRTY_DENTS,
473 	F2FS_DIRTY_NODES,
474 	F2FS_DIRTY_META,
475 	F2FS_INMEM_PAGES,
476 	NR_COUNT_TYPE,
477 };
478 
479 /*
480  * The below are the page types of bios used in submit_bio().
481  * The available types are:
482  * DATA			User data pages. It operates as async mode.
483  * NODE			Node pages. It operates as async mode.
484  * META			FS metadata pages such as SIT, NAT, CP.
485  * NR_PAGE_TYPE		The number of page types.
486  * META_FLUSH		Make sure the previous pages are written
487  *			with waiting the bio's completion
488  * ...			Only can be used with META.
489  */
490 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
491 enum page_type {
492 	DATA,
493 	NODE,
494 	META,
495 	NR_PAGE_TYPE,
496 	META_FLUSH,
497 };
498 
499 struct f2fs_io_info {
500 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
501 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
502 	block_t blk_addr;	/* block address to be written */
503 };
504 
505 #define is_read_io(rw)	(((rw) & 1) == READ)
506 struct f2fs_bio_info {
507 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
508 	struct bio *bio;		/* bios to merge */
509 	sector_t last_block_in_bio;	/* last block number */
510 	struct f2fs_io_info fio;	/* store buffered io info. */
511 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
512 };
513 
514 /* for inner inode cache management */
515 struct inode_management {
516 	struct radix_tree_root ino_root;	/* ino entry array */
517 	spinlock_t ino_lock;			/* for ino entry lock */
518 	struct list_head ino_list;		/* inode list head */
519 	unsigned long ino_num;			/* number of entries */
520 };
521 
522 struct f2fs_sb_info {
523 	struct super_block *sb;			/* pointer to VFS super block */
524 	struct proc_dir_entry *s_proc;		/* proc entry */
525 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
526 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
527 	int s_dirty;				/* dirty flag for checkpoint */
528 	bool need_fsck;				/* need fsck.f2fs to fix */
529 	bool s_closing;				/* specify unmounting */
530 
531 	/* for node-related operations */
532 	struct f2fs_nm_info *nm_info;		/* node manager */
533 	struct inode *node_inode;		/* cache node blocks */
534 
535 	/* for segment-related operations */
536 	struct f2fs_sm_info *sm_info;		/* segment manager */
537 
538 	/* for bio operations */
539 	struct f2fs_bio_info read_io;			/* for read bios */
540 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
541 
542 	/* for checkpoint */
543 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
544 	struct inode *meta_inode;		/* cache meta blocks */
545 	struct mutex cp_mutex;			/* checkpoint procedure lock */
546 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
547 	struct rw_semaphore node_write;		/* locking node writes */
548 	struct mutex writepages;		/* mutex for writepages() */
549 	bool por_doing;				/* recovery is doing or not */
550 	wait_queue_head_t cp_wait;
551 
552 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
553 
554 	/* for orphan inode, use 0'th array */
555 	unsigned int max_orphans;		/* max orphan inodes */
556 
557 	/* for directory inode management */
558 	struct list_head dir_inode_list;	/* dir inode list */
559 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
560 
561 	/* basic filesystem units */
562 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
563 	unsigned int log_blocksize;		/* log2 block size */
564 	unsigned int blocksize;			/* block size */
565 	unsigned int root_ino_num;		/* root inode number*/
566 	unsigned int node_ino_num;		/* node inode number*/
567 	unsigned int meta_ino_num;		/* meta inode number*/
568 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
569 	unsigned int blocks_per_seg;		/* blocks per segment */
570 	unsigned int segs_per_sec;		/* segments per section */
571 	unsigned int secs_per_zone;		/* sections per zone */
572 	unsigned int total_sections;		/* total section count */
573 	unsigned int total_node_count;		/* total node block count */
574 	unsigned int total_valid_node_count;	/* valid node block count */
575 	unsigned int total_valid_inode_count;	/* valid inode count */
576 	int active_logs;			/* # of active logs */
577 	int dir_level;				/* directory level */
578 
579 	block_t user_block_count;		/* # of user blocks */
580 	block_t total_valid_block_count;	/* # of valid blocks */
581 	block_t alloc_valid_block_count;	/* # of allocated blocks */
582 	block_t last_valid_block_count;		/* for recovery */
583 	u32 s_next_generation;			/* for NFS support */
584 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
585 
586 	struct f2fs_mount_info mount_opt;	/* mount options */
587 
588 	/* for cleaning operations */
589 	struct mutex gc_mutex;			/* mutex for GC */
590 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
591 	unsigned int cur_victim_sec;		/* current victim section num */
592 
593 	/* maximum # of trials to find a victim segment for SSR and GC */
594 	unsigned int max_victim_search;
595 
596 	/*
597 	 * for stat information.
598 	 * one is for the LFS mode, and the other is for the SSR mode.
599 	 */
600 #ifdef CONFIG_F2FS_STAT_FS
601 	struct f2fs_stat_info *stat_info;	/* FS status information */
602 	unsigned int segment_count[2];		/* # of allocated segments */
603 	unsigned int block_count[2];		/* # of allocated blocks */
604 	atomic_t inplace_count;		/* # of inplace update */
605 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
606 	atomic_t inline_inode;			/* # of inline_data inodes */
607 	atomic_t inline_dir;			/* # of inline_dentry inodes */
608 	int bg_gc;				/* background gc calls */
609 	unsigned int n_dirty_dirs;		/* # of dir inodes */
610 #endif
611 	unsigned int last_victim[2];		/* last victim segment # */
612 	spinlock_t stat_lock;			/* lock for stat operations */
613 
614 	/* For sysfs suppport */
615 	struct kobject s_kobj;
616 	struct completion s_kobj_unregister;
617 };
618 
619 /*
620  * Inline functions
621  */
622 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
623 {
624 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
625 }
626 
627 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
628 {
629 	return sb->s_fs_info;
630 }
631 
632 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
633 {
634 	return F2FS_SB(inode->i_sb);
635 }
636 
637 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
638 {
639 	return F2FS_I_SB(mapping->host);
640 }
641 
642 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
643 {
644 	return F2FS_M_SB(page->mapping);
645 }
646 
647 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
648 {
649 	return (struct f2fs_super_block *)(sbi->raw_super);
650 }
651 
652 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
653 {
654 	return (struct f2fs_checkpoint *)(sbi->ckpt);
655 }
656 
657 static inline struct f2fs_node *F2FS_NODE(struct page *page)
658 {
659 	return (struct f2fs_node *)page_address(page);
660 }
661 
662 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
663 {
664 	return &((struct f2fs_node *)page_address(page))->i;
665 }
666 
667 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
668 {
669 	return (struct f2fs_nm_info *)(sbi->nm_info);
670 }
671 
672 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
673 {
674 	return (struct f2fs_sm_info *)(sbi->sm_info);
675 }
676 
677 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
678 {
679 	return (struct sit_info *)(SM_I(sbi)->sit_info);
680 }
681 
682 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
683 {
684 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
685 }
686 
687 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
688 {
689 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
690 }
691 
692 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
693 {
694 	return sbi->meta_inode->i_mapping;
695 }
696 
697 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
698 {
699 	return sbi->node_inode->i_mapping;
700 }
701 
702 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
703 {
704 	sbi->s_dirty = 1;
705 }
706 
707 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
708 {
709 	sbi->s_dirty = 0;
710 }
711 
712 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
713 {
714 	return le64_to_cpu(cp->checkpoint_ver);
715 }
716 
717 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
718 {
719 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
720 	return ckpt_flags & f;
721 }
722 
723 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
724 {
725 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
726 	ckpt_flags |= f;
727 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
728 }
729 
730 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
731 {
732 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
733 	ckpt_flags &= (~f);
734 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
735 }
736 
737 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
738 {
739 	down_read(&sbi->cp_rwsem);
740 }
741 
742 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
743 {
744 	up_read(&sbi->cp_rwsem);
745 }
746 
747 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
748 {
749 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
750 }
751 
752 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
753 {
754 	up_write(&sbi->cp_rwsem);
755 }
756 
757 /*
758  * Check whether the given nid is within node id range.
759  */
760 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
761 {
762 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
763 		return -EINVAL;
764 	if (unlikely(nid >= NM_I(sbi)->max_nid))
765 		return -EINVAL;
766 	return 0;
767 }
768 
769 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
770 
771 /*
772  * Check whether the inode has blocks or not
773  */
774 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
775 {
776 	if (F2FS_I(inode)->i_xattr_nid)
777 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
778 	else
779 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
780 }
781 
782 static inline bool f2fs_has_xattr_block(unsigned int ofs)
783 {
784 	return ofs == XATTR_NODE_OFFSET;
785 }
786 
787 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
788 				 struct inode *inode, blkcnt_t count)
789 {
790 	block_t	valid_block_count;
791 
792 	spin_lock(&sbi->stat_lock);
793 	valid_block_count =
794 		sbi->total_valid_block_count + (block_t)count;
795 	if (unlikely(valid_block_count > sbi->user_block_count)) {
796 		spin_unlock(&sbi->stat_lock);
797 		return false;
798 	}
799 	inode->i_blocks += count;
800 	sbi->total_valid_block_count = valid_block_count;
801 	sbi->alloc_valid_block_count += (block_t)count;
802 	spin_unlock(&sbi->stat_lock);
803 	return true;
804 }
805 
806 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
807 						struct inode *inode,
808 						blkcnt_t count)
809 {
810 	spin_lock(&sbi->stat_lock);
811 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
812 	f2fs_bug_on(sbi, inode->i_blocks < count);
813 	inode->i_blocks -= count;
814 	sbi->total_valid_block_count -= (block_t)count;
815 	spin_unlock(&sbi->stat_lock);
816 }
817 
818 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
819 {
820 	atomic_inc(&sbi->nr_pages[count_type]);
821 	F2FS_SET_SB_DIRT(sbi);
822 }
823 
824 static inline void inode_inc_dirty_pages(struct inode *inode)
825 {
826 	atomic_inc(&F2FS_I(inode)->dirty_pages);
827 	if (S_ISDIR(inode->i_mode))
828 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
829 }
830 
831 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
832 {
833 	atomic_dec(&sbi->nr_pages[count_type]);
834 }
835 
836 static inline void inode_dec_dirty_pages(struct inode *inode)
837 {
838 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
839 		return;
840 
841 	atomic_dec(&F2FS_I(inode)->dirty_pages);
842 
843 	if (S_ISDIR(inode->i_mode))
844 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
845 }
846 
847 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
848 {
849 	return atomic_read(&sbi->nr_pages[count_type]);
850 }
851 
852 static inline int get_dirty_pages(struct inode *inode)
853 {
854 	return atomic_read(&F2FS_I(inode)->dirty_pages);
855 }
856 
857 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
858 {
859 	unsigned int pages_per_sec = sbi->segs_per_sec *
860 					(1 << sbi->log_blocks_per_seg);
861 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
862 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
863 }
864 
865 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
866 {
867 	return sbi->total_valid_block_count;
868 }
869 
870 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
871 {
872 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
873 
874 	/* return NAT or SIT bitmap */
875 	if (flag == NAT_BITMAP)
876 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
877 	else if (flag == SIT_BITMAP)
878 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
879 
880 	return 0;
881 }
882 
883 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
884 {
885 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886 	int offset;
887 
888 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
889 		if (flag == NAT_BITMAP)
890 			return &ckpt->sit_nat_version_bitmap;
891 		else
892 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
893 	} else {
894 		offset = (flag == NAT_BITMAP) ?
895 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
896 		return &ckpt->sit_nat_version_bitmap + offset;
897 	}
898 }
899 
900 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
901 {
902 	block_t start_addr;
903 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
904 	unsigned long long ckpt_version = cur_cp_version(ckpt);
905 
906 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
907 
908 	/*
909 	 * odd numbered checkpoint should at cp segment 0
910 	 * and even segment must be at cp segment 1
911 	 */
912 	if (!(ckpt_version & 1))
913 		start_addr += sbi->blocks_per_seg;
914 
915 	return start_addr;
916 }
917 
918 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
919 {
920 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
921 }
922 
923 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
924 						struct inode *inode)
925 {
926 	block_t	valid_block_count;
927 	unsigned int valid_node_count;
928 
929 	spin_lock(&sbi->stat_lock);
930 
931 	valid_block_count = sbi->total_valid_block_count + 1;
932 	if (unlikely(valid_block_count > sbi->user_block_count)) {
933 		spin_unlock(&sbi->stat_lock);
934 		return false;
935 	}
936 
937 	valid_node_count = sbi->total_valid_node_count + 1;
938 	if (unlikely(valid_node_count > sbi->total_node_count)) {
939 		spin_unlock(&sbi->stat_lock);
940 		return false;
941 	}
942 
943 	if (inode)
944 		inode->i_blocks++;
945 
946 	sbi->alloc_valid_block_count++;
947 	sbi->total_valid_node_count++;
948 	sbi->total_valid_block_count++;
949 	spin_unlock(&sbi->stat_lock);
950 
951 	return true;
952 }
953 
954 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
955 						struct inode *inode)
956 {
957 	spin_lock(&sbi->stat_lock);
958 
959 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
960 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
961 	f2fs_bug_on(sbi, !inode->i_blocks);
962 
963 	inode->i_blocks--;
964 	sbi->total_valid_node_count--;
965 	sbi->total_valid_block_count--;
966 
967 	spin_unlock(&sbi->stat_lock);
968 }
969 
970 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
971 {
972 	return sbi->total_valid_node_count;
973 }
974 
975 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
976 {
977 	spin_lock(&sbi->stat_lock);
978 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
979 	sbi->total_valid_inode_count++;
980 	spin_unlock(&sbi->stat_lock);
981 }
982 
983 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
984 {
985 	spin_lock(&sbi->stat_lock);
986 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
987 	sbi->total_valid_inode_count--;
988 	spin_unlock(&sbi->stat_lock);
989 }
990 
991 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
992 {
993 	return sbi->total_valid_inode_count;
994 }
995 
996 static inline void f2fs_put_page(struct page *page, int unlock)
997 {
998 	if (!page)
999 		return;
1000 
1001 	if (unlock) {
1002 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1003 		unlock_page(page);
1004 	}
1005 	page_cache_release(page);
1006 }
1007 
1008 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1009 {
1010 	if (dn->node_page)
1011 		f2fs_put_page(dn->node_page, 1);
1012 	if (dn->inode_page && dn->node_page != dn->inode_page)
1013 		f2fs_put_page(dn->inode_page, 0);
1014 	dn->node_page = NULL;
1015 	dn->inode_page = NULL;
1016 }
1017 
1018 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1019 					size_t size)
1020 {
1021 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1022 }
1023 
1024 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1025 						gfp_t flags)
1026 {
1027 	void *entry;
1028 retry:
1029 	entry = kmem_cache_alloc(cachep, flags);
1030 	if (!entry) {
1031 		cond_resched();
1032 		goto retry;
1033 	}
1034 
1035 	return entry;
1036 }
1037 
1038 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1039 				unsigned long index, void *item)
1040 {
1041 	while (radix_tree_insert(root, index, item))
1042 		cond_resched();
1043 }
1044 
1045 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1046 
1047 static inline bool IS_INODE(struct page *page)
1048 {
1049 	struct f2fs_node *p = F2FS_NODE(page);
1050 	return RAW_IS_INODE(p);
1051 }
1052 
1053 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1054 {
1055 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1056 }
1057 
1058 static inline block_t datablock_addr(struct page *node_page,
1059 		unsigned int offset)
1060 {
1061 	struct f2fs_node *raw_node;
1062 	__le32 *addr_array;
1063 	raw_node = F2FS_NODE(node_page);
1064 	addr_array = blkaddr_in_node(raw_node);
1065 	return le32_to_cpu(addr_array[offset]);
1066 }
1067 
1068 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1069 {
1070 	int mask;
1071 
1072 	addr += (nr >> 3);
1073 	mask = 1 << (7 - (nr & 0x07));
1074 	return mask & *addr;
1075 }
1076 
1077 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1078 {
1079 	int mask;
1080 	int ret;
1081 
1082 	addr += (nr >> 3);
1083 	mask = 1 << (7 - (nr & 0x07));
1084 	ret = mask & *addr;
1085 	*addr |= mask;
1086 	return ret;
1087 }
1088 
1089 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1090 {
1091 	int mask;
1092 	int ret;
1093 
1094 	addr += (nr >> 3);
1095 	mask = 1 << (7 - (nr & 0x07));
1096 	ret = mask & *addr;
1097 	*addr &= ~mask;
1098 	return ret;
1099 }
1100 
1101 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1102 {
1103 	int mask;
1104 
1105 	addr += (nr >> 3);
1106 	mask = 1 << (7 - (nr & 0x07));
1107 	*addr ^= mask;
1108 }
1109 
1110 /* used for f2fs_inode_info->flags */
1111 enum {
1112 	FI_NEW_INODE,		/* indicate newly allocated inode */
1113 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1114 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1115 	FI_INC_LINK,		/* need to increment i_nlink */
1116 	FI_ACL_MODE,		/* indicate acl mode */
1117 	FI_NO_ALLOC,		/* should not allocate any blocks */
1118 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1119 	FI_DELAY_IPUT,		/* used for the recovery */
1120 	FI_NO_EXTENT,		/* not to use the extent cache */
1121 	FI_INLINE_XATTR,	/* used for inline xattr */
1122 	FI_INLINE_DATA,		/* used for inline data*/
1123 	FI_INLINE_DENTRY,	/* used for inline dentry */
1124 	FI_APPEND_WRITE,	/* inode has appended data */
1125 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1126 	FI_NEED_IPU,		/* used for ipu per file */
1127 	FI_ATOMIC_FILE,		/* indicate atomic file */
1128 	FI_VOLATILE_FILE,	/* indicate volatile file */
1129 	FI_DROP_CACHE,		/* drop dirty page cache */
1130 	FI_DATA_EXIST,		/* indicate data exists */
1131 };
1132 
1133 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1134 {
1135 	if (!test_bit(flag, &fi->flags))
1136 		set_bit(flag, &fi->flags);
1137 }
1138 
1139 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1140 {
1141 	return test_bit(flag, &fi->flags);
1142 }
1143 
1144 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1145 {
1146 	if (test_bit(flag, &fi->flags))
1147 		clear_bit(flag, &fi->flags);
1148 }
1149 
1150 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1151 {
1152 	fi->i_acl_mode = mode;
1153 	set_inode_flag(fi, FI_ACL_MODE);
1154 }
1155 
1156 static inline void get_inline_info(struct f2fs_inode_info *fi,
1157 					struct f2fs_inode *ri)
1158 {
1159 	if (ri->i_inline & F2FS_INLINE_XATTR)
1160 		set_inode_flag(fi, FI_INLINE_XATTR);
1161 	if (ri->i_inline & F2FS_INLINE_DATA)
1162 		set_inode_flag(fi, FI_INLINE_DATA);
1163 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1164 		set_inode_flag(fi, FI_INLINE_DENTRY);
1165 	if (ri->i_inline & F2FS_DATA_EXIST)
1166 		set_inode_flag(fi, FI_DATA_EXIST);
1167 }
1168 
1169 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1170 					struct f2fs_inode *ri)
1171 {
1172 	ri->i_inline = 0;
1173 
1174 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1175 		ri->i_inline |= F2FS_INLINE_XATTR;
1176 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1177 		ri->i_inline |= F2FS_INLINE_DATA;
1178 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1179 		ri->i_inline |= F2FS_INLINE_DENTRY;
1180 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1181 		ri->i_inline |= F2FS_DATA_EXIST;
1182 }
1183 
1184 static inline int f2fs_has_inline_xattr(struct inode *inode)
1185 {
1186 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1187 }
1188 
1189 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1190 {
1191 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1192 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1193 	return DEF_ADDRS_PER_INODE;
1194 }
1195 
1196 static inline void *inline_xattr_addr(struct page *page)
1197 {
1198 	struct f2fs_inode *ri = F2FS_INODE(page);
1199 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1200 					F2FS_INLINE_XATTR_ADDRS]);
1201 }
1202 
1203 static inline int inline_xattr_size(struct inode *inode)
1204 {
1205 	if (f2fs_has_inline_xattr(inode))
1206 		return F2FS_INLINE_XATTR_ADDRS << 2;
1207 	else
1208 		return 0;
1209 }
1210 
1211 static inline int f2fs_has_inline_data(struct inode *inode)
1212 {
1213 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1214 }
1215 
1216 static inline void f2fs_clear_inline_inode(struct inode *inode)
1217 {
1218 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1219 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1220 }
1221 
1222 static inline int f2fs_exist_data(struct inode *inode)
1223 {
1224 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1225 }
1226 
1227 static inline bool f2fs_is_atomic_file(struct inode *inode)
1228 {
1229 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1230 }
1231 
1232 static inline bool f2fs_is_volatile_file(struct inode *inode)
1233 {
1234 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1235 }
1236 
1237 static inline bool f2fs_is_drop_cache(struct inode *inode)
1238 {
1239 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1240 }
1241 
1242 static inline void *inline_data_addr(struct page *page)
1243 {
1244 	struct f2fs_inode *ri = F2FS_INODE(page);
1245 	return (void *)&(ri->i_addr[1]);
1246 }
1247 
1248 static inline int f2fs_has_inline_dentry(struct inode *inode)
1249 {
1250 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1251 }
1252 
1253 static inline void *inline_dentry_addr(struct page *page)
1254 {
1255 	struct f2fs_inode *ri = F2FS_INODE(page);
1256 	return (void *)&(ri->i_addr[1]);
1257 }
1258 
1259 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1260 {
1261 	if (!f2fs_has_inline_dentry(dir))
1262 		kunmap(page);
1263 }
1264 
1265 static inline int f2fs_readonly(struct super_block *sb)
1266 {
1267 	return sb->s_flags & MS_RDONLY;
1268 }
1269 
1270 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1271 {
1272 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1273 }
1274 
1275 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1276 {
1277 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1278 	sbi->sb->s_flags |= MS_RDONLY;
1279 }
1280 
1281 #define get_inode_mode(i) \
1282 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1283 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1284 
1285 /* get offset of first page in next direct node */
1286 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1287 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1288 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1289 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1290 
1291 /*
1292  * file.c
1293  */
1294 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1295 void truncate_data_blocks(struct dnode_of_data *);
1296 int truncate_blocks(struct inode *, u64, bool);
1297 void f2fs_truncate(struct inode *);
1298 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1299 int f2fs_setattr(struct dentry *, struct iattr *);
1300 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1301 int truncate_data_blocks_range(struct dnode_of_data *, int);
1302 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1303 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1304 
1305 /*
1306  * inode.c
1307  */
1308 void f2fs_set_inode_flags(struct inode *);
1309 struct inode *f2fs_iget(struct super_block *, unsigned long);
1310 int try_to_free_nats(struct f2fs_sb_info *, int);
1311 void update_inode(struct inode *, struct page *);
1312 void update_inode_page(struct inode *);
1313 int f2fs_write_inode(struct inode *, struct writeback_control *);
1314 void f2fs_evict_inode(struct inode *);
1315 void handle_failed_inode(struct inode *);
1316 
1317 /*
1318  * namei.c
1319  */
1320 struct dentry *f2fs_get_parent(struct dentry *child);
1321 
1322 /*
1323  * dir.c
1324  */
1325 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1326 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1327 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1328 			struct f2fs_dentry_ptr *);
1329 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1330 			unsigned int);
1331 void do_make_empty_dir(struct inode *, struct inode *,
1332 			struct f2fs_dentry_ptr *);
1333 struct page *init_inode_metadata(struct inode *, struct inode *,
1334 			const struct qstr *, struct page *);
1335 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1336 int room_for_filename(const void *, int, int);
1337 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1338 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1339 							struct page **);
1340 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1341 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1342 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1343 				struct page *, struct inode *);
1344 int update_dent_inode(struct inode *, const struct qstr *);
1345 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1346 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1347 							struct inode *);
1348 int f2fs_do_tmpfile(struct inode *, struct inode *);
1349 int f2fs_make_empty(struct inode *, struct inode *);
1350 bool f2fs_empty_dir(struct inode *);
1351 
1352 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1353 {
1354 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1355 				inode);
1356 }
1357 
1358 /*
1359  * super.c
1360  */
1361 int f2fs_sync_fs(struct super_block *, int);
1362 extern __printf(3, 4)
1363 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1364 
1365 /*
1366  * hash.c
1367  */
1368 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1369 
1370 /*
1371  * node.c
1372  */
1373 struct dnode_of_data;
1374 struct node_info;
1375 
1376 bool available_free_memory(struct f2fs_sb_info *, int);
1377 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1378 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1379 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1380 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1381 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1382 int truncate_inode_blocks(struct inode *, pgoff_t);
1383 int truncate_xattr_node(struct inode *, struct page *);
1384 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1385 void remove_inode_page(struct inode *);
1386 struct page *new_inode_page(struct inode *);
1387 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1388 void ra_node_page(struct f2fs_sb_info *, nid_t);
1389 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1390 struct page *get_node_page_ra(struct page *, int);
1391 void sync_inode_page(struct dnode_of_data *);
1392 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1393 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1394 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1395 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1396 void recover_inline_xattr(struct inode *, struct page *);
1397 void recover_xattr_data(struct inode *, struct page *, block_t);
1398 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1399 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1400 				struct f2fs_summary_block *);
1401 void flush_nat_entries(struct f2fs_sb_info *);
1402 int build_node_manager(struct f2fs_sb_info *);
1403 void destroy_node_manager(struct f2fs_sb_info *);
1404 int __init create_node_manager_caches(void);
1405 void destroy_node_manager_caches(void);
1406 
1407 /*
1408  * segment.c
1409  */
1410 void register_inmem_page(struct inode *, struct page *);
1411 void commit_inmem_pages(struct inode *, bool);
1412 void f2fs_balance_fs(struct f2fs_sb_info *);
1413 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1414 int f2fs_issue_flush(struct f2fs_sb_info *);
1415 int create_flush_cmd_control(struct f2fs_sb_info *);
1416 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1417 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1418 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1419 void clear_prefree_segments(struct f2fs_sb_info *);
1420 void release_discard_addrs(struct f2fs_sb_info *);
1421 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1422 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1423 void allocate_new_segments(struct f2fs_sb_info *);
1424 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1425 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1426 void write_meta_page(struct f2fs_sb_info *, struct page *);
1427 void write_node_page(struct f2fs_sb_info *, struct page *,
1428 				unsigned int, struct f2fs_io_info *);
1429 void write_data_page(struct page *, struct dnode_of_data *,
1430 			struct f2fs_io_info *);
1431 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1432 void recover_data_page(struct f2fs_sb_info *, struct page *,
1433 				struct f2fs_summary *, block_t, block_t);
1434 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1435 		block_t, block_t *, struct f2fs_summary *, int);
1436 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1437 void write_data_summaries(struct f2fs_sb_info *, block_t);
1438 void write_node_summaries(struct f2fs_sb_info *, block_t);
1439 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1440 					int, unsigned int, int);
1441 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1442 int build_segment_manager(struct f2fs_sb_info *);
1443 void destroy_segment_manager(struct f2fs_sb_info *);
1444 int __init create_segment_manager_caches(void);
1445 void destroy_segment_manager_caches(void);
1446 
1447 /*
1448  * checkpoint.c
1449  */
1450 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1451 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1452 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1453 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1454 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1455 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1456 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1457 void release_dirty_inode(struct f2fs_sb_info *);
1458 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1459 int acquire_orphan_inode(struct f2fs_sb_info *);
1460 void release_orphan_inode(struct f2fs_sb_info *);
1461 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1462 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1463 void recover_orphan_inodes(struct f2fs_sb_info *);
1464 int get_valid_checkpoint(struct f2fs_sb_info *);
1465 void update_dirty_page(struct inode *, struct page *);
1466 void add_dirty_dir_inode(struct inode *);
1467 void remove_dirty_dir_inode(struct inode *);
1468 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1469 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1470 void init_ino_entry_info(struct f2fs_sb_info *);
1471 int __init create_checkpoint_caches(void);
1472 void destroy_checkpoint_caches(void);
1473 
1474 /*
1475  * data.c
1476  */
1477 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1478 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1479 						struct f2fs_io_info *);
1480 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1481 						struct f2fs_io_info *);
1482 int reserve_new_block(struct dnode_of_data *);
1483 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1484 void update_extent_cache(struct dnode_of_data *);
1485 struct page *find_data_page(struct inode *, pgoff_t, bool);
1486 struct page *get_lock_data_page(struct inode *, pgoff_t);
1487 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1488 int do_write_data_page(struct page *, struct f2fs_io_info *);
1489 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1490 
1491 /*
1492  * gc.c
1493  */
1494 int start_gc_thread(struct f2fs_sb_info *);
1495 void stop_gc_thread(struct f2fs_sb_info *);
1496 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1497 int f2fs_gc(struct f2fs_sb_info *);
1498 void build_gc_manager(struct f2fs_sb_info *);
1499 
1500 /*
1501  * recovery.c
1502  */
1503 int recover_fsync_data(struct f2fs_sb_info *);
1504 bool space_for_roll_forward(struct f2fs_sb_info *);
1505 
1506 /*
1507  * debug.c
1508  */
1509 #ifdef CONFIG_F2FS_STAT_FS
1510 struct f2fs_stat_info {
1511 	struct list_head stat_list;
1512 	struct f2fs_sb_info *sbi;
1513 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1514 	int main_area_segs, main_area_sections, main_area_zones;
1515 	int hit_ext, total_ext;
1516 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1517 	int nats, dirty_nats, sits, dirty_sits, fnids;
1518 	int total_count, utilization;
1519 	int bg_gc, inline_inode, inline_dir, inmem_pages;
1520 	unsigned int valid_count, valid_node_count, valid_inode_count;
1521 	unsigned int bimodal, avg_vblocks;
1522 	int util_free, util_valid, util_invalid;
1523 	int rsvd_segs, overp_segs;
1524 	int dirty_count, node_pages, meta_pages;
1525 	int prefree_count, call_count, cp_count;
1526 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1527 	int tot_blks, data_blks, node_blks;
1528 	int curseg[NR_CURSEG_TYPE];
1529 	int cursec[NR_CURSEG_TYPE];
1530 	int curzone[NR_CURSEG_TYPE];
1531 
1532 	unsigned int segment_count[2];
1533 	unsigned int block_count[2];
1534 	unsigned int inplace_count;
1535 	unsigned base_mem, cache_mem, page_mem;
1536 };
1537 
1538 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1539 {
1540 	return (struct f2fs_stat_info *)sbi->stat_info;
1541 }
1542 
1543 #define stat_inc_cp_count(si)		((si)->cp_count++)
1544 #define stat_inc_call_count(si)		((si)->call_count++)
1545 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1546 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1547 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1548 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1549 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1550 #define stat_inc_inline_inode(inode)					\
1551 	do {								\
1552 		if (f2fs_has_inline_data(inode))			\
1553 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1554 	} while (0)
1555 #define stat_dec_inline_inode(inode)					\
1556 	do {								\
1557 		if (f2fs_has_inline_data(inode))			\
1558 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1559 	} while (0)
1560 #define stat_inc_inline_dir(inode)					\
1561 	do {								\
1562 		if (f2fs_has_inline_dentry(inode))			\
1563 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1564 	} while (0)
1565 #define stat_dec_inline_dir(inode)					\
1566 	do {								\
1567 		if (f2fs_has_inline_dentry(inode))			\
1568 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1569 	} while (0)
1570 #define stat_inc_seg_type(sbi, curseg)					\
1571 		((sbi)->segment_count[(curseg)->alloc_type]++)
1572 #define stat_inc_block_count(sbi, curseg)				\
1573 		((sbi)->block_count[(curseg)->alloc_type]++)
1574 #define stat_inc_inplace_blocks(sbi)					\
1575 		(atomic_inc(&(sbi)->inplace_count))
1576 #define stat_inc_seg_count(sbi, type)					\
1577 	do {								\
1578 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1579 		(si)->tot_segs++;					\
1580 		if (type == SUM_TYPE_DATA)				\
1581 			si->data_segs++;				\
1582 		else							\
1583 			si->node_segs++;				\
1584 	} while (0)
1585 
1586 #define stat_inc_tot_blk_count(si, blks)				\
1587 	(si->tot_blks += (blks))
1588 
1589 #define stat_inc_data_blk_count(sbi, blks)				\
1590 	do {								\
1591 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1592 		stat_inc_tot_blk_count(si, blks);			\
1593 		si->data_blks += (blks);				\
1594 	} while (0)
1595 
1596 #define stat_inc_node_blk_count(sbi, blks)				\
1597 	do {								\
1598 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1599 		stat_inc_tot_blk_count(si, blks);			\
1600 		si->node_blks += (blks);				\
1601 	} while (0)
1602 
1603 int f2fs_build_stats(struct f2fs_sb_info *);
1604 void f2fs_destroy_stats(struct f2fs_sb_info *);
1605 void __init f2fs_create_root_stats(void);
1606 void f2fs_destroy_root_stats(void);
1607 #else
1608 #define stat_inc_cp_count(si)
1609 #define stat_inc_call_count(si)
1610 #define stat_inc_bggc_count(si)
1611 #define stat_inc_dirty_dir(sbi)
1612 #define stat_dec_dirty_dir(sbi)
1613 #define stat_inc_total_hit(sb)
1614 #define stat_inc_read_hit(sb)
1615 #define stat_inc_inline_inode(inode)
1616 #define stat_dec_inline_inode(inode)
1617 #define stat_inc_inline_dir(inode)
1618 #define stat_dec_inline_dir(inode)
1619 #define stat_inc_seg_type(sbi, curseg)
1620 #define stat_inc_block_count(sbi, curseg)
1621 #define stat_inc_inplace_blocks(sbi)
1622 #define stat_inc_seg_count(si, type)
1623 #define stat_inc_tot_blk_count(si, blks)
1624 #define stat_inc_data_blk_count(si, blks)
1625 #define stat_inc_node_blk_count(sbi, blks)
1626 
1627 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1628 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1629 static inline void __init f2fs_create_root_stats(void) { }
1630 static inline void f2fs_destroy_root_stats(void) { }
1631 #endif
1632 
1633 extern const struct file_operations f2fs_dir_operations;
1634 extern const struct file_operations f2fs_file_operations;
1635 extern const struct inode_operations f2fs_file_inode_operations;
1636 extern const struct address_space_operations f2fs_dblock_aops;
1637 extern const struct address_space_operations f2fs_node_aops;
1638 extern const struct address_space_operations f2fs_meta_aops;
1639 extern const struct inode_operations f2fs_dir_inode_operations;
1640 extern const struct inode_operations f2fs_symlink_inode_operations;
1641 extern const struct inode_operations f2fs_special_inode_operations;
1642 
1643 /*
1644  * inline.c
1645  */
1646 bool f2fs_may_inline(struct inode *);
1647 void read_inline_data(struct page *, struct page *);
1648 int f2fs_read_inline_data(struct inode *, struct page *);
1649 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1650 int f2fs_convert_inline_inode(struct inode *);
1651 int f2fs_write_inline_data(struct inode *, struct page *);
1652 bool recover_inline_data(struct inode *, struct page *);
1653 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1654 							struct page **);
1655 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1656 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1657 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1658 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1659 						struct inode *, struct inode *);
1660 bool f2fs_empty_inline_dir(struct inode *);
1661 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1662 #endif
1663