xref: /openbmc/linux/fs/f2fs/f2fs.h (revision fadb2fb8af5348c1bc59cab17c6f8bf515e50d55)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_IO,
50 	FAULT_MAX,
51 };
52 
53 struct f2fs_fault_info {
54 	atomic_t inject_ops;
55 	unsigned int inject_rate;
56 	unsigned int inject_type;
57 };
58 
59 extern struct f2fs_fault_info f2fs_fault;
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
62 
63 static inline bool time_to_inject(int type)
64 {
65 	if (!f2fs_fault.inject_rate)
66 		return false;
67 	if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
68 		return false;
69 	else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
70 		return false;
71 	else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
72 		return false;
73 	else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
74 		return false;
75 	else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
76 		return false;
77 	else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
78 		return false;
79 	else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
80 		return false;
81 	else if (type == FAULT_IO && !IS_FAULT_SET(type))
82 		return false;
83 
84 	atomic_inc(&f2fs_fault.inject_ops);
85 	if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
86 		atomic_set(&f2fs_fault.inject_ops, 0);
87 		printk("%sF2FS-fs : inject %s in %pF\n",
88 				KERN_INFO,
89 				fault_name[type],
90 				__builtin_return_address(0));
91 		return true;
92 	}
93 	return false;
94 }
95 #endif
96 
97 /*
98  * For mount options
99  */
100 #define F2FS_MOUNT_BG_GC		0x00000001
101 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
102 #define F2FS_MOUNT_DISCARD		0x00000004
103 #define F2FS_MOUNT_NOHEAP		0x00000008
104 #define F2FS_MOUNT_XATTR_USER		0x00000010
105 #define F2FS_MOUNT_POSIX_ACL		0x00000020
106 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
107 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
108 #define F2FS_MOUNT_INLINE_DATA		0x00000100
109 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
110 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
111 #define F2FS_MOUNT_NOBARRIER		0x00000800
112 #define F2FS_MOUNT_FASTBOOT		0x00001000
113 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
114 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
115 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
116 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
117 #define F2FS_MOUNT_ADAPTIVE		0x00020000
118 #define F2FS_MOUNT_LFS			0x00040000
119 
120 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
121 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
122 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
123 
124 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
125 		typecheck(unsigned long long, b) &&			\
126 		((long long)((a) - (b)) > 0))
127 
128 typedef u32 block_t;	/*
129 			 * should not change u32, since it is the on-disk block
130 			 * address format, __le32.
131 			 */
132 typedef u32 nid_t;
133 
134 struct f2fs_mount_info {
135 	unsigned int	opt;
136 };
137 
138 #define F2FS_FEATURE_ENCRYPT	0x0001
139 #define F2FS_FEATURE_HMSMR	0x0002
140 
141 #define F2FS_HAS_FEATURE(sb, mask)					\
142 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
143 #define F2FS_SET_FEATURE(sb, mask)					\
144 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
145 #define F2FS_CLEAR_FEATURE(sb, mask)					\
146 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
147 
148 /*
149  * For checkpoint manager
150  */
151 enum {
152 	NAT_BITMAP,
153 	SIT_BITMAP
154 };
155 
156 enum {
157 	CP_UMOUNT,
158 	CP_FASTBOOT,
159 	CP_SYNC,
160 	CP_RECOVERY,
161 	CP_DISCARD,
162 };
163 
164 #define DEF_BATCHED_TRIM_SECTIONS	2
165 #define BATCHED_TRIM_SEGMENTS(sbi)	\
166 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
167 #define BATCHED_TRIM_BLOCKS(sbi)	\
168 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
169 #define DEF_CP_INTERVAL			60	/* 60 secs */
170 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
171 
172 struct cp_control {
173 	int reason;
174 	__u64 trim_start;
175 	__u64 trim_end;
176 	__u64 trim_minlen;
177 	__u64 trimmed;
178 };
179 
180 /*
181  * For CP/NAT/SIT/SSA readahead
182  */
183 enum {
184 	META_CP,
185 	META_NAT,
186 	META_SIT,
187 	META_SSA,
188 	META_POR,
189 };
190 
191 /* for the list of ino */
192 enum {
193 	ORPHAN_INO,		/* for orphan ino list */
194 	APPEND_INO,		/* for append ino list */
195 	UPDATE_INO,		/* for update ino list */
196 	MAX_INO_ENTRY,		/* max. list */
197 };
198 
199 struct ino_entry {
200 	struct list_head list;	/* list head */
201 	nid_t ino;		/* inode number */
202 };
203 
204 /* for the list of inodes to be GCed */
205 struct inode_entry {
206 	struct list_head list;	/* list head */
207 	struct inode *inode;	/* vfs inode pointer */
208 };
209 
210 /* for the list of blockaddresses to be discarded */
211 struct discard_entry {
212 	struct list_head list;	/* list head */
213 	block_t blkaddr;	/* block address to be discarded */
214 	int len;		/* # of consecutive blocks of the discard */
215 };
216 
217 struct bio_entry {
218 	struct list_head list;
219 	struct bio *bio;
220 	struct completion event;
221 	int error;
222 };
223 
224 /* for the list of fsync inodes, used only during recovery */
225 struct fsync_inode_entry {
226 	struct list_head list;	/* list head */
227 	struct inode *inode;	/* vfs inode pointer */
228 	block_t blkaddr;	/* block address locating the last fsync */
229 	block_t last_dentry;	/* block address locating the last dentry */
230 };
231 
232 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
233 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
234 
235 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
236 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
237 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
238 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
239 
240 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
241 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
242 
243 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
244 {
245 	int before = nats_in_cursum(journal);
246 	journal->n_nats = cpu_to_le16(before + i);
247 	return before;
248 }
249 
250 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
251 {
252 	int before = sits_in_cursum(journal);
253 	journal->n_sits = cpu_to_le16(before + i);
254 	return before;
255 }
256 
257 static inline bool __has_cursum_space(struct f2fs_journal *journal,
258 							int size, int type)
259 {
260 	if (type == NAT_JOURNAL)
261 		return size <= MAX_NAT_JENTRIES(journal);
262 	return size <= MAX_SIT_JENTRIES(journal);
263 }
264 
265 /*
266  * ioctl commands
267  */
268 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
269 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
270 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
271 
272 #define F2FS_IOCTL_MAGIC		0xf5
273 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
274 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
275 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
276 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
277 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
278 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
279 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
280 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
281 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
282 						struct f2fs_move_range)
283 
284 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
285 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
286 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
287 
288 /*
289  * should be same as XFS_IOC_GOINGDOWN.
290  * Flags for going down operation used by FS_IOC_GOINGDOWN
291  */
292 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
293 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
294 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
295 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
296 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
297 
298 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
299 /*
300  * ioctl commands in 32 bit emulation
301  */
302 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
303 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
304 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
305 #endif
306 
307 struct f2fs_defragment {
308 	u64 start;
309 	u64 len;
310 };
311 
312 struct f2fs_move_range {
313 	u32 dst_fd;		/* destination fd */
314 	u64 pos_in;		/* start position in src_fd */
315 	u64 pos_out;		/* start position in dst_fd */
316 	u64 len;		/* size to move */
317 };
318 
319 /*
320  * For INODE and NODE manager
321  */
322 /* for directory operations */
323 struct f2fs_dentry_ptr {
324 	struct inode *inode;
325 	const void *bitmap;
326 	struct f2fs_dir_entry *dentry;
327 	__u8 (*filename)[F2FS_SLOT_LEN];
328 	int max;
329 };
330 
331 static inline void make_dentry_ptr(struct inode *inode,
332 		struct f2fs_dentry_ptr *d, void *src, int type)
333 {
334 	d->inode = inode;
335 
336 	if (type == 1) {
337 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
338 		d->max = NR_DENTRY_IN_BLOCK;
339 		d->bitmap = &t->dentry_bitmap;
340 		d->dentry = t->dentry;
341 		d->filename = t->filename;
342 	} else {
343 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
344 		d->max = NR_INLINE_DENTRY;
345 		d->bitmap = &t->dentry_bitmap;
346 		d->dentry = t->dentry;
347 		d->filename = t->filename;
348 	}
349 }
350 
351 /*
352  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
353  * as its node offset to distinguish from index node blocks.
354  * But some bits are used to mark the node block.
355  */
356 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
357 				>> OFFSET_BIT_SHIFT)
358 enum {
359 	ALLOC_NODE,			/* allocate a new node page if needed */
360 	LOOKUP_NODE,			/* look up a node without readahead */
361 	LOOKUP_NODE_RA,			/*
362 					 * look up a node with readahead called
363 					 * by get_data_block.
364 					 */
365 };
366 
367 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
368 
369 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
370 
371 /* vector size for gang look-up from extent cache that consists of radix tree */
372 #define EXT_TREE_VEC_SIZE	64
373 
374 /* for in-memory extent cache entry */
375 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
376 
377 /* number of extent info in extent cache we try to shrink */
378 #define EXTENT_CACHE_SHRINK_NUMBER	128
379 
380 struct extent_info {
381 	unsigned int fofs;		/* start offset in a file */
382 	u32 blk;			/* start block address of the extent */
383 	unsigned int len;		/* length of the extent */
384 };
385 
386 struct extent_node {
387 	struct rb_node rb_node;		/* rb node located in rb-tree */
388 	struct list_head list;		/* node in global extent list of sbi */
389 	struct extent_info ei;		/* extent info */
390 	struct extent_tree *et;		/* extent tree pointer */
391 };
392 
393 struct extent_tree {
394 	nid_t ino;			/* inode number */
395 	struct rb_root root;		/* root of extent info rb-tree */
396 	struct extent_node *cached_en;	/* recently accessed extent node */
397 	struct extent_info largest;	/* largested extent info */
398 	struct list_head list;		/* to be used by sbi->zombie_list */
399 	rwlock_t lock;			/* protect extent info rb-tree */
400 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
401 };
402 
403 /*
404  * This structure is taken from ext4_map_blocks.
405  *
406  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
407  */
408 #define F2FS_MAP_NEW		(1 << BH_New)
409 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
410 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
411 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
412 				F2FS_MAP_UNWRITTEN)
413 
414 struct f2fs_map_blocks {
415 	block_t m_pblk;
416 	block_t m_lblk;
417 	unsigned int m_len;
418 	unsigned int m_flags;
419 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
420 };
421 
422 /* for flag in get_data_block */
423 #define F2FS_GET_BLOCK_READ		0
424 #define F2FS_GET_BLOCK_DIO		1
425 #define F2FS_GET_BLOCK_FIEMAP		2
426 #define F2FS_GET_BLOCK_BMAP		3
427 #define F2FS_GET_BLOCK_PRE_DIO		4
428 #define F2FS_GET_BLOCK_PRE_AIO		5
429 
430 /*
431  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
432  */
433 #define FADVISE_COLD_BIT	0x01
434 #define FADVISE_LOST_PINO_BIT	0x02
435 #define FADVISE_ENCRYPT_BIT	0x04
436 #define FADVISE_ENC_NAME_BIT	0x08
437 
438 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
439 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
440 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
441 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
442 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
443 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
444 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
445 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
446 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
447 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
448 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
449 
450 #define DEF_DIR_LEVEL		0
451 
452 struct f2fs_inode_info {
453 	struct inode vfs_inode;		/* serve a vfs inode */
454 	unsigned long i_flags;		/* keep an inode flags for ioctl */
455 	unsigned char i_advise;		/* use to give file attribute hints */
456 	unsigned char i_dir_level;	/* use for dentry level for large dir */
457 	unsigned int i_current_depth;	/* use only in directory structure */
458 	unsigned int i_pino;		/* parent inode number */
459 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
460 
461 	/* Use below internally in f2fs*/
462 	unsigned long flags;		/* use to pass per-file flags */
463 	struct rw_semaphore i_sem;	/* protect fi info */
464 	struct percpu_counter dirty_pages;	/* # of dirty pages */
465 	f2fs_hash_t chash;		/* hash value of given file name */
466 	unsigned int clevel;		/* maximum level of given file name */
467 	nid_t i_xattr_nid;		/* node id that contains xattrs */
468 	unsigned long long xattr_ver;	/* cp version of xattr modification */
469 	loff_t	last_disk_size;		/* lastly written file size */
470 
471 	struct list_head dirty_list;	/* dirty list for dirs and files */
472 	struct list_head gdirty_list;	/* linked in global dirty list */
473 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
474 	struct mutex inmem_lock;	/* lock for inmemory pages */
475 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
476 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
477 };
478 
479 static inline void get_extent_info(struct extent_info *ext,
480 					struct f2fs_extent *i_ext)
481 {
482 	ext->fofs = le32_to_cpu(i_ext->fofs);
483 	ext->blk = le32_to_cpu(i_ext->blk);
484 	ext->len = le32_to_cpu(i_ext->len);
485 }
486 
487 static inline void set_raw_extent(struct extent_info *ext,
488 					struct f2fs_extent *i_ext)
489 {
490 	i_ext->fofs = cpu_to_le32(ext->fofs);
491 	i_ext->blk = cpu_to_le32(ext->blk);
492 	i_ext->len = cpu_to_le32(ext->len);
493 }
494 
495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
496 						u32 blk, unsigned int len)
497 {
498 	ei->fofs = fofs;
499 	ei->blk = blk;
500 	ei->len = len;
501 }
502 
503 static inline bool __is_extent_same(struct extent_info *ei1,
504 						struct extent_info *ei2)
505 {
506 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
507 						ei1->len == ei2->len);
508 }
509 
510 static inline bool __is_extent_mergeable(struct extent_info *back,
511 						struct extent_info *front)
512 {
513 	return (back->fofs + back->len == front->fofs &&
514 			back->blk + back->len == front->blk);
515 }
516 
517 static inline bool __is_back_mergeable(struct extent_info *cur,
518 						struct extent_info *back)
519 {
520 	return __is_extent_mergeable(back, cur);
521 }
522 
523 static inline bool __is_front_mergeable(struct extent_info *cur,
524 						struct extent_info *front)
525 {
526 	return __is_extent_mergeable(cur, front);
527 }
528 
529 extern void f2fs_mark_inode_dirty_sync(struct inode *);
530 static inline void __try_update_largest_extent(struct inode *inode,
531 			struct extent_tree *et, struct extent_node *en)
532 {
533 	if (en->ei.len > et->largest.len) {
534 		et->largest = en->ei;
535 		f2fs_mark_inode_dirty_sync(inode);
536 	}
537 }
538 
539 struct f2fs_nm_info {
540 	block_t nat_blkaddr;		/* base disk address of NAT */
541 	nid_t max_nid;			/* maximum possible node ids */
542 	nid_t available_nids;		/* maximum available node ids */
543 	nid_t next_scan_nid;		/* the next nid to be scanned */
544 	unsigned int ram_thresh;	/* control the memory footprint */
545 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
546 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
547 
548 	/* NAT cache management */
549 	struct radix_tree_root nat_root;/* root of the nat entry cache */
550 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
551 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
552 	struct list_head nat_entries;	/* cached nat entry list (clean) */
553 	unsigned int nat_cnt;		/* the # of cached nat entries */
554 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
555 
556 	/* free node ids management */
557 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
558 	struct list_head free_nid_list;	/* a list for free nids */
559 	spinlock_t free_nid_list_lock;	/* protect free nid list */
560 	unsigned int fcnt;		/* the number of free node id */
561 	struct mutex build_lock;	/* lock for build free nids */
562 
563 	/* for checkpoint */
564 	char *nat_bitmap;		/* NAT bitmap pointer */
565 	int bitmap_size;		/* bitmap size */
566 };
567 
568 /*
569  * this structure is used as one of function parameters.
570  * all the information are dedicated to a given direct node block determined
571  * by the data offset in a file.
572  */
573 struct dnode_of_data {
574 	struct inode *inode;		/* vfs inode pointer */
575 	struct page *inode_page;	/* its inode page, NULL is possible */
576 	struct page *node_page;		/* cached direct node page */
577 	nid_t nid;			/* node id of the direct node block */
578 	unsigned int ofs_in_node;	/* data offset in the node page */
579 	bool inode_page_locked;		/* inode page is locked or not */
580 	bool node_changed;		/* is node block changed */
581 	char cur_level;			/* level of hole node page */
582 	char max_level;			/* level of current page located */
583 	block_t	data_blkaddr;		/* block address of the node block */
584 };
585 
586 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
587 		struct page *ipage, struct page *npage, nid_t nid)
588 {
589 	memset(dn, 0, sizeof(*dn));
590 	dn->inode = inode;
591 	dn->inode_page = ipage;
592 	dn->node_page = npage;
593 	dn->nid = nid;
594 }
595 
596 /*
597  * For SIT manager
598  *
599  * By default, there are 6 active log areas across the whole main area.
600  * When considering hot and cold data separation to reduce cleaning overhead,
601  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
602  * respectively.
603  * In the current design, you should not change the numbers intentionally.
604  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
605  * logs individually according to the underlying devices. (default: 6)
606  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
607  * data and 8 for node logs.
608  */
609 #define	NR_CURSEG_DATA_TYPE	(3)
610 #define NR_CURSEG_NODE_TYPE	(3)
611 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
612 
613 enum {
614 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
615 	CURSEG_WARM_DATA,	/* data blocks */
616 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
617 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
618 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
619 	CURSEG_COLD_NODE,	/* indirect node blocks */
620 	NO_CHECK_TYPE,
621 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
622 };
623 
624 struct flush_cmd {
625 	struct completion wait;
626 	struct llist_node llnode;
627 	int ret;
628 };
629 
630 struct flush_cmd_control {
631 	struct task_struct *f2fs_issue_flush;	/* flush thread */
632 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
633 	atomic_t submit_flush;			/* # of issued flushes */
634 	struct llist_head issue_list;		/* list for command issue */
635 	struct llist_node *dispatch_list;	/* list for command dispatch */
636 };
637 
638 struct f2fs_sm_info {
639 	struct sit_info *sit_info;		/* whole segment information */
640 	struct free_segmap_info *free_info;	/* free segment information */
641 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
642 	struct curseg_info *curseg_array;	/* active segment information */
643 
644 	block_t seg0_blkaddr;		/* block address of 0'th segment */
645 	block_t main_blkaddr;		/* start block address of main area */
646 	block_t ssa_blkaddr;		/* start block address of SSA area */
647 
648 	unsigned int segment_count;	/* total # of segments */
649 	unsigned int main_segments;	/* # of segments in main area */
650 	unsigned int reserved_segments;	/* # of reserved segments */
651 	unsigned int ovp_segments;	/* # of overprovision segments */
652 
653 	/* a threshold to reclaim prefree segments */
654 	unsigned int rec_prefree_segments;
655 
656 	/* for small discard management */
657 	struct list_head discard_list;		/* 4KB discard list */
658 	struct list_head wait_list;		/* linked with issued discard bio */
659 	int nr_discards;			/* # of discards in the list */
660 	int max_discards;			/* max. discards to be issued */
661 
662 	/* for batched trimming */
663 	unsigned int trim_sections;		/* # of sections to trim */
664 
665 	struct list_head sit_entry_set;	/* sit entry set list */
666 
667 	unsigned int ipu_policy;	/* in-place-update policy */
668 	unsigned int min_ipu_util;	/* in-place-update threshold */
669 	unsigned int min_fsync_blocks;	/* threshold for fsync */
670 
671 	/* for flush command control */
672 	struct flush_cmd_control *cmd_control_info;
673 
674 };
675 
676 /*
677  * For superblock
678  */
679 /*
680  * COUNT_TYPE for monitoring
681  *
682  * f2fs monitors the number of several block types such as on-writeback,
683  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
684  */
685 enum count_type {
686 	F2FS_DIRTY_DENTS,
687 	F2FS_DIRTY_DATA,
688 	F2FS_DIRTY_NODES,
689 	F2FS_DIRTY_META,
690 	F2FS_INMEM_PAGES,
691 	F2FS_DIRTY_IMETA,
692 	NR_COUNT_TYPE,
693 };
694 
695 /*
696  * The below are the page types of bios used in submit_bio().
697  * The available types are:
698  * DATA			User data pages. It operates as async mode.
699  * NODE			Node pages. It operates as async mode.
700  * META			FS metadata pages such as SIT, NAT, CP.
701  * NR_PAGE_TYPE		The number of page types.
702  * META_FLUSH		Make sure the previous pages are written
703  *			with waiting the bio's completion
704  * ...			Only can be used with META.
705  */
706 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
707 enum page_type {
708 	DATA,
709 	NODE,
710 	META,
711 	NR_PAGE_TYPE,
712 	META_FLUSH,
713 	INMEM,		/* the below types are used by tracepoints only. */
714 	INMEM_DROP,
715 	INMEM_REVOKE,
716 	IPU,
717 	OPU,
718 };
719 
720 struct f2fs_io_info {
721 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
722 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
723 	int op;			/* contains REQ_OP_ */
724 	int op_flags;		/* rq_flag_bits */
725 	block_t new_blkaddr;	/* new block address to be written */
726 	block_t old_blkaddr;	/* old block address before Cow */
727 	struct page *page;	/* page to be written */
728 	struct page *encrypted_page;	/* encrypted page */
729 };
730 
731 #define is_read_io(rw) (rw == READ)
732 struct f2fs_bio_info {
733 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
734 	struct bio *bio;		/* bios to merge */
735 	sector_t last_block_in_bio;	/* last block number */
736 	struct f2fs_io_info fio;	/* store buffered io info. */
737 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
738 };
739 
740 enum inode_type {
741 	DIR_INODE,			/* for dirty dir inode */
742 	FILE_INODE,			/* for dirty regular/symlink inode */
743 	DIRTY_META,			/* for all dirtied inode metadata */
744 	NR_INODE_TYPE,
745 };
746 
747 /* for inner inode cache management */
748 struct inode_management {
749 	struct radix_tree_root ino_root;	/* ino entry array */
750 	spinlock_t ino_lock;			/* for ino entry lock */
751 	struct list_head ino_list;		/* inode list head */
752 	unsigned long ino_num;			/* number of entries */
753 };
754 
755 /* For s_flag in struct f2fs_sb_info */
756 enum {
757 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
758 	SBI_IS_CLOSE,				/* specify unmounting */
759 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
760 	SBI_POR_DOING,				/* recovery is doing or not */
761 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
762 	SBI_NEED_CP,				/* need to checkpoint */
763 };
764 
765 enum {
766 	CP_TIME,
767 	REQ_TIME,
768 	MAX_TIME,
769 };
770 
771 #ifdef CONFIG_F2FS_FS_ENCRYPTION
772 #define F2FS_KEY_DESC_PREFIX "f2fs:"
773 #define F2FS_KEY_DESC_PREFIX_SIZE 5
774 #endif
775 struct f2fs_sb_info {
776 	struct super_block *sb;			/* pointer to VFS super block */
777 	struct proc_dir_entry *s_proc;		/* proc entry */
778 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
779 	int valid_super_block;			/* valid super block no */
780 	unsigned long s_flag;				/* flags for sbi */
781 
782 #ifdef CONFIG_F2FS_FS_ENCRYPTION
783 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
784 	u8 key_prefix_size;
785 #endif
786 	/* for node-related operations */
787 	struct f2fs_nm_info *nm_info;		/* node manager */
788 	struct inode *node_inode;		/* cache node blocks */
789 
790 	/* for segment-related operations */
791 	struct f2fs_sm_info *sm_info;		/* segment manager */
792 
793 	/* for bio operations */
794 	struct f2fs_bio_info read_io;			/* for read bios */
795 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
796 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
797 
798 	/* for checkpoint */
799 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
800 	struct inode *meta_inode;		/* cache meta blocks */
801 	struct mutex cp_mutex;			/* checkpoint procedure lock */
802 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
803 	struct rw_semaphore node_write;		/* locking node writes */
804 	wait_queue_head_t cp_wait;
805 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
806 	long interval_time[MAX_TIME];		/* to store thresholds */
807 
808 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
809 
810 	/* for orphan inode, use 0'th array */
811 	unsigned int max_orphans;		/* max orphan inodes */
812 
813 	/* for inode management */
814 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
815 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
816 
817 	/* for extent tree cache */
818 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
819 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
820 	struct list_head extent_list;		/* lru list for shrinker */
821 	spinlock_t extent_lock;			/* locking extent lru list */
822 	atomic_t total_ext_tree;		/* extent tree count */
823 	struct list_head zombie_list;		/* extent zombie tree list */
824 	atomic_t total_zombie_tree;		/* extent zombie tree count */
825 	atomic_t total_ext_node;		/* extent info count */
826 
827 	/* basic filesystem units */
828 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
829 	unsigned int log_blocksize;		/* log2 block size */
830 	unsigned int blocksize;			/* block size */
831 	unsigned int root_ino_num;		/* root inode number*/
832 	unsigned int node_ino_num;		/* node inode number*/
833 	unsigned int meta_ino_num;		/* meta inode number*/
834 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
835 	unsigned int blocks_per_seg;		/* blocks per segment */
836 	unsigned int segs_per_sec;		/* segments per section */
837 	unsigned int secs_per_zone;		/* sections per zone */
838 	unsigned int total_sections;		/* total section count */
839 	unsigned int total_node_count;		/* total node block count */
840 	unsigned int total_valid_node_count;	/* valid node block count */
841 	loff_t max_file_blocks;			/* max block index of file */
842 	int active_logs;			/* # of active logs */
843 	int dir_level;				/* directory level */
844 
845 	block_t user_block_count;		/* # of user blocks */
846 	block_t total_valid_block_count;	/* # of valid blocks */
847 	block_t discard_blks;			/* discard command candidats */
848 	block_t last_valid_block_count;		/* for recovery */
849 	u32 s_next_generation;			/* for NFS support */
850 	atomic_t nr_wb_bios;			/* # of writeback bios */
851 
852 	/* # of pages, see count_type */
853 	struct percpu_counter nr_pages[NR_COUNT_TYPE];
854 	/* # of allocated blocks */
855 	struct percpu_counter alloc_valid_block_count;
856 
857 	/* valid inode count */
858 	struct percpu_counter total_valid_inode_count;
859 
860 	struct f2fs_mount_info mount_opt;	/* mount options */
861 
862 	/* for cleaning operations */
863 	struct mutex gc_mutex;			/* mutex for GC */
864 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
865 	unsigned int cur_victim_sec;		/* current victim section num */
866 
867 	/* maximum # of trials to find a victim segment for SSR and GC */
868 	unsigned int max_victim_search;
869 
870 	/*
871 	 * for stat information.
872 	 * one is for the LFS mode, and the other is for the SSR mode.
873 	 */
874 #ifdef CONFIG_F2FS_STAT_FS
875 	struct f2fs_stat_info *stat_info;	/* FS status information */
876 	unsigned int segment_count[2];		/* # of allocated segments */
877 	unsigned int block_count[2];		/* # of allocated blocks */
878 	atomic_t inplace_count;		/* # of inplace update */
879 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
880 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
881 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
882 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
883 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
884 	atomic_t inline_inode;			/* # of inline_data inodes */
885 	atomic_t inline_dir;			/* # of inline_dentry inodes */
886 	int bg_gc;				/* background gc calls */
887 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
888 #endif
889 	unsigned int last_victim[2];		/* last victim segment # */
890 	spinlock_t stat_lock;			/* lock for stat operations */
891 
892 	/* For sysfs suppport */
893 	struct kobject s_kobj;
894 	struct completion s_kobj_unregister;
895 
896 	/* For shrinker support */
897 	struct list_head s_list;
898 	struct mutex umount_mutex;
899 	unsigned int shrinker_run_no;
900 
901 	/* For write statistics */
902 	u64 sectors_written_start;
903 	u64 kbytes_written;
904 
905 	/* Reference to checksum algorithm driver via cryptoapi */
906 	struct crypto_shash *s_chksum_driver;
907 };
908 
909 /* For write statistics. Suppose sector size is 512 bytes,
910  * and the return value is in kbytes. s is of struct f2fs_sb_info.
911  */
912 #define BD_PART_WRITTEN(s)						 \
913 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
914 		s->sectors_written_start) >> 1)
915 
916 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
917 {
918 	sbi->last_time[type] = jiffies;
919 }
920 
921 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
922 {
923 	struct timespec ts = {sbi->interval_time[type], 0};
924 	unsigned long interval = timespec_to_jiffies(&ts);
925 
926 	return time_after(jiffies, sbi->last_time[type] + interval);
927 }
928 
929 static inline bool is_idle(struct f2fs_sb_info *sbi)
930 {
931 	struct block_device *bdev = sbi->sb->s_bdev;
932 	struct request_queue *q = bdev_get_queue(bdev);
933 	struct request_list *rl = &q->root_rl;
934 
935 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
936 		return 0;
937 
938 	return f2fs_time_over(sbi, REQ_TIME);
939 }
940 
941 /*
942  * Inline functions
943  */
944 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
945 			   unsigned int length)
946 {
947 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
948 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
949 	int err;
950 
951 	shash->tfm = sbi->s_chksum_driver;
952 	shash->flags = 0;
953 	*ctx = F2FS_SUPER_MAGIC;
954 
955 	err = crypto_shash_update(shash, address, length);
956 	BUG_ON(err);
957 
958 	return *ctx;
959 }
960 
961 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
962 				  void *buf, size_t buf_size)
963 {
964 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
965 }
966 
967 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
968 {
969 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
970 }
971 
972 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
973 {
974 	return sb->s_fs_info;
975 }
976 
977 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
978 {
979 	return F2FS_SB(inode->i_sb);
980 }
981 
982 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
983 {
984 	return F2FS_I_SB(mapping->host);
985 }
986 
987 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
988 {
989 	return F2FS_M_SB(page->mapping);
990 }
991 
992 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
993 {
994 	return (struct f2fs_super_block *)(sbi->raw_super);
995 }
996 
997 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
998 {
999 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1000 }
1001 
1002 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1003 {
1004 	return (struct f2fs_node *)page_address(page);
1005 }
1006 
1007 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1008 {
1009 	return &((struct f2fs_node *)page_address(page))->i;
1010 }
1011 
1012 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1013 {
1014 	return (struct f2fs_nm_info *)(sbi->nm_info);
1015 }
1016 
1017 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1018 {
1019 	return (struct f2fs_sm_info *)(sbi->sm_info);
1020 }
1021 
1022 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1023 {
1024 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1025 }
1026 
1027 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1028 {
1029 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1030 }
1031 
1032 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1033 {
1034 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1035 }
1036 
1037 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1038 {
1039 	return sbi->meta_inode->i_mapping;
1040 }
1041 
1042 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1043 {
1044 	return sbi->node_inode->i_mapping;
1045 }
1046 
1047 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1048 {
1049 	return test_bit(type, &sbi->s_flag);
1050 }
1051 
1052 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1053 {
1054 	set_bit(type, &sbi->s_flag);
1055 }
1056 
1057 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1058 {
1059 	clear_bit(type, &sbi->s_flag);
1060 }
1061 
1062 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1063 {
1064 	return le64_to_cpu(cp->checkpoint_ver);
1065 }
1066 
1067 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1068 {
1069 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1070 	return ckpt_flags & f;
1071 }
1072 
1073 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1074 {
1075 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1076 	ckpt_flags |= f;
1077 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1078 }
1079 
1080 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1081 {
1082 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1083 	ckpt_flags &= (~f);
1084 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1085 }
1086 
1087 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1088 {
1089 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1090 
1091 	return blk_queue_discard(q);
1092 }
1093 
1094 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1095 {
1096 	down_read(&sbi->cp_rwsem);
1097 }
1098 
1099 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1100 {
1101 	up_read(&sbi->cp_rwsem);
1102 }
1103 
1104 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1105 {
1106 	down_write(&sbi->cp_rwsem);
1107 }
1108 
1109 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1110 {
1111 	up_write(&sbi->cp_rwsem);
1112 }
1113 
1114 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1115 {
1116 	int reason = CP_SYNC;
1117 
1118 	if (test_opt(sbi, FASTBOOT))
1119 		reason = CP_FASTBOOT;
1120 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1121 		reason = CP_UMOUNT;
1122 	return reason;
1123 }
1124 
1125 static inline bool __remain_node_summaries(int reason)
1126 {
1127 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1128 }
1129 
1130 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1131 {
1132 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1133 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1134 }
1135 
1136 /*
1137  * Check whether the given nid is within node id range.
1138  */
1139 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1140 {
1141 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1142 		return -EINVAL;
1143 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1144 		return -EINVAL;
1145 	return 0;
1146 }
1147 
1148 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1149 
1150 /*
1151  * Check whether the inode has blocks or not
1152  */
1153 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1154 {
1155 	if (F2FS_I(inode)->i_xattr_nid)
1156 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1157 	else
1158 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1159 }
1160 
1161 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1162 {
1163 	return ofs == XATTR_NODE_OFFSET;
1164 }
1165 
1166 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1167 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1168 				 struct inode *inode, blkcnt_t *count)
1169 {
1170 	blkcnt_t diff;
1171 
1172 #ifdef CONFIG_F2FS_FAULT_INJECTION
1173 	if (time_to_inject(FAULT_BLOCK))
1174 		return false;
1175 #endif
1176 	/*
1177 	 * let's increase this in prior to actual block count change in order
1178 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1179 	 */
1180 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1181 
1182 	spin_lock(&sbi->stat_lock);
1183 	sbi->total_valid_block_count += (block_t)(*count);
1184 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1185 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1186 		*count -= diff;
1187 		sbi->total_valid_block_count = sbi->user_block_count;
1188 		if (!*count) {
1189 			spin_unlock(&sbi->stat_lock);
1190 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1191 			return false;
1192 		}
1193 	}
1194 	spin_unlock(&sbi->stat_lock);
1195 
1196 	f2fs_i_blocks_write(inode, *count, true);
1197 	return true;
1198 }
1199 
1200 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1201 						struct inode *inode,
1202 						blkcnt_t count)
1203 {
1204 	spin_lock(&sbi->stat_lock);
1205 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1206 	f2fs_bug_on(sbi, inode->i_blocks < count);
1207 	sbi->total_valid_block_count -= (block_t)count;
1208 	spin_unlock(&sbi->stat_lock);
1209 	f2fs_i_blocks_write(inode, count, false);
1210 }
1211 
1212 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1213 {
1214 	percpu_counter_inc(&sbi->nr_pages[count_type]);
1215 
1216 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES)
1217 		return;
1218 
1219 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1220 }
1221 
1222 static inline void inode_inc_dirty_pages(struct inode *inode)
1223 {
1224 	percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1225 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1226 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1227 }
1228 
1229 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1230 {
1231 	percpu_counter_dec(&sbi->nr_pages[count_type]);
1232 }
1233 
1234 static inline void inode_dec_dirty_pages(struct inode *inode)
1235 {
1236 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1237 			!S_ISLNK(inode->i_mode))
1238 		return;
1239 
1240 	percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1241 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1242 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1243 }
1244 
1245 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1246 {
1247 	return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1248 }
1249 
1250 static inline s64 get_dirty_pages(struct inode *inode)
1251 {
1252 	return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1253 }
1254 
1255 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1256 {
1257 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1258 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1259 						sbi->log_blocks_per_seg;
1260 
1261 	return segs / sbi->segs_per_sec;
1262 }
1263 
1264 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1265 {
1266 	return sbi->total_valid_block_count;
1267 }
1268 
1269 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1270 {
1271 	return sbi->discard_blks;
1272 }
1273 
1274 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1275 {
1276 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1277 
1278 	/* return NAT or SIT bitmap */
1279 	if (flag == NAT_BITMAP)
1280 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1281 	else if (flag == SIT_BITMAP)
1282 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1283 
1284 	return 0;
1285 }
1286 
1287 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1288 {
1289 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1290 }
1291 
1292 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1293 {
1294 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1295 	int offset;
1296 
1297 	if (__cp_payload(sbi) > 0) {
1298 		if (flag == NAT_BITMAP)
1299 			return &ckpt->sit_nat_version_bitmap;
1300 		else
1301 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1302 	} else {
1303 		offset = (flag == NAT_BITMAP) ?
1304 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1305 		return &ckpt->sit_nat_version_bitmap + offset;
1306 	}
1307 }
1308 
1309 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1310 {
1311 	block_t start_addr;
1312 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1313 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1314 
1315 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1316 
1317 	/*
1318 	 * odd numbered checkpoint should at cp segment 0
1319 	 * and even segment must be at cp segment 1
1320 	 */
1321 	if (!(ckpt_version & 1))
1322 		start_addr += sbi->blocks_per_seg;
1323 
1324 	return start_addr;
1325 }
1326 
1327 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1328 {
1329 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1330 }
1331 
1332 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1333 						struct inode *inode)
1334 {
1335 	block_t	valid_block_count;
1336 	unsigned int valid_node_count;
1337 
1338 	spin_lock(&sbi->stat_lock);
1339 
1340 	valid_block_count = sbi->total_valid_block_count + 1;
1341 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1342 		spin_unlock(&sbi->stat_lock);
1343 		return false;
1344 	}
1345 
1346 	valid_node_count = sbi->total_valid_node_count + 1;
1347 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1348 		spin_unlock(&sbi->stat_lock);
1349 		return false;
1350 	}
1351 
1352 	if (inode)
1353 		f2fs_i_blocks_write(inode, 1, true);
1354 
1355 	sbi->total_valid_node_count++;
1356 	sbi->total_valid_block_count++;
1357 	spin_unlock(&sbi->stat_lock);
1358 
1359 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1360 	return true;
1361 }
1362 
1363 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1364 						struct inode *inode)
1365 {
1366 	spin_lock(&sbi->stat_lock);
1367 
1368 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1369 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1370 	f2fs_bug_on(sbi, !inode->i_blocks);
1371 
1372 	f2fs_i_blocks_write(inode, 1, false);
1373 	sbi->total_valid_node_count--;
1374 	sbi->total_valid_block_count--;
1375 
1376 	spin_unlock(&sbi->stat_lock);
1377 }
1378 
1379 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1380 {
1381 	return sbi->total_valid_node_count;
1382 }
1383 
1384 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1385 {
1386 	percpu_counter_inc(&sbi->total_valid_inode_count);
1387 }
1388 
1389 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1390 {
1391 	percpu_counter_dec(&sbi->total_valid_inode_count);
1392 }
1393 
1394 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1395 {
1396 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1397 }
1398 
1399 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1400 						pgoff_t index, bool for_write)
1401 {
1402 #ifdef CONFIG_F2FS_FAULT_INJECTION
1403 	struct page *page = find_lock_page(mapping, index);
1404 	if (page)
1405 		return page;
1406 
1407 	if (time_to_inject(FAULT_PAGE_ALLOC))
1408 		return NULL;
1409 #endif
1410 	if (!for_write)
1411 		return grab_cache_page(mapping, index);
1412 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1413 }
1414 
1415 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1416 {
1417 	char *src_kaddr = kmap(src);
1418 	char *dst_kaddr = kmap(dst);
1419 
1420 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1421 	kunmap(dst);
1422 	kunmap(src);
1423 }
1424 
1425 static inline void f2fs_put_page(struct page *page, int unlock)
1426 {
1427 	if (!page)
1428 		return;
1429 
1430 	if (unlock) {
1431 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1432 		unlock_page(page);
1433 	}
1434 	put_page(page);
1435 }
1436 
1437 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1438 {
1439 	if (dn->node_page)
1440 		f2fs_put_page(dn->node_page, 1);
1441 	if (dn->inode_page && dn->node_page != dn->inode_page)
1442 		f2fs_put_page(dn->inode_page, 0);
1443 	dn->node_page = NULL;
1444 	dn->inode_page = NULL;
1445 }
1446 
1447 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1448 					size_t size)
1449 {
1450 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1451 }
1452 
1453 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1454 						gfp_t flags)
1455 {
1456 	void *entry;
1457 
1458 	entry = kmem_cache_alloc(cachep, flags);
1459 	if (!entry)
1460 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1461 	return entry;
1462 }
1463 
1464 static inline struct bio *f2fs_bio_alloc(int npages)
1465 {
1466 	struct bio *bio;
1467 
1468 	/* No failure on bio allocation */
1469 	bio = bio_alloc(GFP_NOIO, npages);
1470 	if (!bio)
1471 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1472 	return bio;
1473 }
1474 
1475 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1476 				unsigned long index, void *item)
1477 {
1478 	while (radix_tree_insert(root, index, item))
1479 		cond_resched();
1480 }
1481 
1482 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1483 
1484 static inline bool IS_INODE(struct page *page)
1485 {
1486 	struct f2fs_node *p = F2FS_NODE(page);
1487 	return RAW_IS_INODE(p);
1488 }
1489 
1490 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1491 {
1492 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1493 }
1494 
1495 static inline block_t datablock_addr(struct page *node_page,
1496 		unsigned int offset)
1497 {
1498 	struct f2fs_node *raw_node;
1499 	__le32 *addr_array;
1500 	raw_node = F2FS_NODE(node_page);
1501 	addr_array = blkaddr_in_node(raw_node);
1502 	return le32_to_cpu(addr_array[offset]);
1503 }
1504 
1505 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1506 {
1507 	int mask;
1508 
1509 	addr += (nr >> 3);
1510 	mask = 1 << (7 - (nr & 0x07));
1511 	return mask & *addr;
1512 }
1513 
1514 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1515 {
1516 	int mask;
1517 
1518 	addr += (nr >> 3);
1519 	mask = 1 << (7 - (nr & 0x07));
1520 	*addr |= mask;
1521 }
1522 
1523 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1524 {
1525 	int mask;
1526 
1527 	addr += (nr >> 3);
1528 	mask = 1 << (7 - (nr & 0x07));
1529 	*addr &= ~mask;
1530 }
1531 
1532 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1533 {
1534 	int mask;
1535 	int ret;
1536 
1537 	addr += (nr >> 3);
1538 	mask = 1 << (7 - (nr & 0x07));
1539 	ret = mask & *addr;
1540 	*addr |= mask;
1541 	return ret;
1542 }
1543 
1544 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1545 {
1546 	int mask;
1547 	int ret;
1548 
1549 	addr += (nr >> 3);
1550 	mask = 1 << (7 - (nr & 0x07));
1551 	ret = mask & *addr;
1552 	*addr &= ~mask;
1553 	return ret;
1554 }
1555 
1556 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1557 {
1558 	int mask;
1559 
1560 	addr += (nr >> 3);
1561 	mask = 1 << (7 - (nr & 0x07));
1562 	*addr ^= mask;
1563 }
1564 
1565 /* used for f2fs_inode_info->flags */
1566 enum {
1567 	FI_NEW_INODE,		/* indicate newly allocated inode */
1568 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1569 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1570 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1571 	FI_INC_LINK,		/* need to increment i_nlink */
1572 	FI_ACL_MODE,		/* indicate acl mode */
1573 	FI_NO_ALLOC,		/* should not allocate any blocks */
1574 	FI_FREE_NID,		/* free allocated nide */
1575 	FI_NO_EXTENT,		/* not to use the extent cache */
1576 	FI_INLINE_XATTR,	/* used for inline xattr */
1577 	FI_INLINE_DATA,		/* used for inline data*/
1578 	FI_INLINE_DENTRY,	/* used for inline dentry */
1579 	FI_APPEND_WRITE,	/* inode has appended data */
1580 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1581 	FI_NEED_IPU,		/* used for ipu per file */
1582 	FI_ATOMIC_FILE,		/* indicate atomic file */
1583 	FI_VOLATILE_FILE,	/* indicate volatile file */
1584 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1585 	FI_DROP_CACHE,		/* drop dirty page cache */
1586 	FI_DATA_EXIST,		/* indicate data exists */
1587 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1588 	FI_DO_DEFRAG,		/* indicate defragment is running */
1589 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1590 };
1591 
1592 static inline void __mark_inode_dirty_flag(struct inode *inode,
1593 						int flag, bool set)
1594 {
1595 	switch (flag) {
1596 	case FI_INLINE_XATTR:
1597 	case FI_INLINE_DATA:
1598 	case FI_INLINE_DENTRY:
1599 		if (set)
1600 			return;
1601 	case FI_DATA_EXIST:
1602 	case FI_INLINE_DOTS:
1603 		f2fs_mark_inode_dirty_sync(inode);
1604 	}
1605 }
1606 
1607 static inline void set_inode_flag(struct inode *inode, int flag)
1608 {
1609 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1610 		set_bit(flag, &F2FS_I(inode)->flags);
1611 	__mark_inode_dirty_flag(inode, flag, true);
1612 }
1613 
1614 static inline int is_inode_flag_set(struct inode *inode, int flag)
1615 {
1616 	return test_bit(flag, &F2FS_I(inode)->flags);
1617 }
1618 
1619 static inline void clear_inode_flag(struct inode *inode, int flag)
1620 {
1621 	if (test_bit(flag, &F2FS_I(inode)->flags))
1622 		clear_bit(flag, &F2FS_I(inode)->flags);
1623 	__mark_inode_dirty_flag(inode, flag, false);
1624 }
1625 
1626 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1627 {
1628 	F2FS_I(inode)->i_acl_mode = mode;
1629 	set_inode_flag(inode, FI_ACL_MODE);
1630 	f2fs_mark_inode_dirty_sync(inode);
1631 }
1632 
1633 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1634 {
1635 	if (inc)
1636 		inc_nlink(inode);
1637 	else
1638 		drop_nlink(inode);
1639 	f2fs_mark_inode_dirty_sync(inode);
1640 }
1641 
1642 static inline void f2fs_i_blocks_write(struct inode *inode,
1643 					blkcnt_t diff, bool add)
1644 {
1645 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1646 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1647 
1648 	inode->i_blocks = add ? inode->i_blocks + diff :
1649 				inode->i_blocks - diff;
1650 	f2fs_mark_inode_dirty_sync(inode);
1651 	if (clean || recover)
1652 		set_inode_flag(inode, FI_AUTO_RECOVER);
1653 }
1654 
1655 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1656 {
1657 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1658 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1659 
1660 	if (i_size_read(inode) == i_size)
1661 		return;
1662 
1663 	i_size_write(inode, i_size);
1664 	f2fs_mark_inode_dirty_sync(inode);
1665 	if (clean || recover)
1666 		set_inode_flag(inode, FI_AUTO_RECOVER);
1667 }
1668 
1669 static inline bool f2fs_skip_inode_update(struct inode *inode)
1670 {
1671 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1672 		return false;
1673 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1674 }
1675 
1676 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1677 {
1678 	F2FS_I(inode)->i_current_depth = depth;
1679 	f2fs_mark_inode_dirty_sync(inode);
1680 }
1681 
1682 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1683 {
1684 	F2FS_I(inode)->i_xattr_nid = xnid;
1685 	f2fs_mark_inode_dirty_sync(inode);
1686 }
1687 
1688 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1689 {
1690 	F2FS_I(inode)->i_pino = pino;
1691 	f2fs_mark_inode_dirty_sync(inode);
1692 }
1693 
1694 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1695 {
1696 	struct f2fs_inode_info *fi = F2FS_I(inode);
1697 
1698 	if (ri->i_inline & F2FS_INLINE_XATTR)
1699 		set_bit(FI_INLINE_XATTR, &fi->flags);
1700 	if (ri->i_inline & F2FS_INLINE_DATA)
1701 		set_bit(FI_INLINE_DATA, &fi->flags);
1702 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1703 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1704 	if (ri->i_inline & F2FS_DATA_EXIST)
1705 		set_bit(FI_DATA_EXIST, &fi->flags);
1706 	if (ri->i_inline & F2FS_INLINE_DOTS)
1707 		set_bit(FI_INLINE_DOTS, &fi->flags);
1708 }
1709 
1710 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1711 {
1712 	ri->i_inline = 0;
1713 
1714 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1715 		ri->i_inline |= F2FS_INLINE_XATTR;
1716 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1717 		ri->i_inline |= F2FS_INLINE_DATA;
1718 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1719 		ri->i_inline |= F2FS_INLINE_DENTRY;
1720 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1721 		ri->i_inline |= F2FS_DATA_EXIST;
1722 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1723 		ri->i_inline |= F2FS_INLINE_DOTS;
1724 }
1725 
1726 static inline int f2fs_has_inline_xattr(struct inode *inode)
1727 {
1728 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1729 }
1730 
1731 static inline unsigned int addrs_per_inode(struct inode *inode)
1732 {
1733 	if (f2fs_has_inline_xattr(inode))
1734 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1735 	return DEF_ADDRS_PER_INODE;
1736 }
1737 
1738 static inline void *inline_xattr_addr(struct page *page)
1739 {
1740 	struct f2fs_inode *ri = F2FS_INODE(page);
1741 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1742 					F2FS_INLINE_XATTR_ADDRS]);
1743 }
1744 
1745 static inline int inline_xattr_size(struct inode *inode)
1746 {
1747 	if (f2fs_has_inline_xattr(inode))
1748 		return F2FS_INLINE_XATTR_ADDRS << 2;
1749 	else
1750 		return 0;
1751 }
1752 
1753 static inline int f2fs_has_inline_data(struct inode *inode)
1754 {
1755 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1756 }
1757 
1758 static inline void f2fs_clear_inline_inode(struct inode *inode)
1759 {
1760 	clear_inode_flag(inode, FI_INLINE_DATA);
1761 	clear_inode_flag(inode, FI_DATA_EXIST);
1762 }
1763 
1764 static inline int f2fs_exist_data(struct inode *inode)
1765 {
1766 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1767 }
1768 
1769 static inline int f2fs_has_inline_dots(struct inode *inode)
1770 {
1771 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1772 }
1773 
1774 static inline bool f2fs_is_atomic_file(struct inode *inode)
1775 {
1776 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1777 }
1778 
1779 static inline bool f2fs_is_volatile_file(struct inode *inode)
1780 {
1781 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1782 }
1783 
1784 static inline bool f2fs_is_first_block_written(struct inode *inode)
1785 {
1786 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1787 }
1788 
1789 static inline bool f2fs_is_drop_cache(struct inode *inode)
1790 {
1791 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1792 }
1793 
1794 static inline void *inline_data_addr(struct page *page)
1795 {
1796 	struct f2fs_inode *ri = F2FS_INODE(page);
1797 	return (void *)&(ri->i_addr[1]);
1798 }
1799 
1800 static inline int f2fs_has_inline_dentry(struct inode *inode)
1801 {
1802 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1803 }
1804 
1805 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1806 {
1807 	if (!f2fs_has_inline_dentry(dir))
1808 		kunmap(page);
1809 }
1810 
1811 static inline int is_file(struct inode *inode, int type)
1812 {
1813 	return F2FS_I(inode)->i_advise & type;
1814 }
1815 
1816 static inline void set_file(struct inode *inode, int type)
1817 {
1818 	F2FS_I(inode)->i_advise |= type;
1819 	f2fs_mark_inode_dirty_sync(inode);
1820 }
1821 
1822 static inline void clear_file(struct inode *inode, int type)
1823 {
1824 	F2FS_I(inode)->i_advise &= ~type;
1825 	f2fs_mark_inode_dirty_sync(inode);
1826 }
1827 
1828 static inline int f2fs_readonly(struct super_block *sb)
1829 {
1830 	return sb->s_flags & MS_RDONLY;
1831 }
1832 
1833 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1834 {
1835 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1836 }
1837 
1838 static inline bool is_dot_dotdot(const struct qstr *str)
1839 {
1840 	if (str->len == 1 && str->name[0] == '.')
1841 		return true;
1842 
1843 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1844 		return true;
1845 
1846 	return false;
1847 }
1848 
1849 static inline bool f2fs_may_extent_tree(struct inode *inode)
1850 {
1851 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1852 			is_inode_flag_set(inode, FI_NO_EXTENT))
1853 		return false;
1854 
1855 	return S_ISREG(inode->i_mode);
1856 }
1857 
1858 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1859 {
1860 #ifdef CONFIG_F2FS_FAULT_INJECTION
1861 	if (time_to_inject(FAULT_KMALLOC))
1862 		return NULL;
1863 #endif
1864 	return kmalloc(size, flags);
1865 }
1866 
1867 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1868 {
1869 	void *ret;
1870 
1871 	ret = kmalloc(size, flags | __GFP_NOWARN);
1872 	if (!ret)
1873 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1874 	return ret;
1875 }
1876 
1877 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1878 {
1879 	void *ret;
1880 
1881 	ret = kzalloc(size, flags | __GFP_NOWARN);
1882 	if (!ret)
1883 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1884 	return ret;
1885 }
1886 
1887 #define get_inode_mode(i) \
1888 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1889 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1890 
1891 /* get offset of first page in next direct node */
1892 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1893 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1894 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1895 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1896 
1897 /*
1898  * file.c
1899  */
1900 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1901 void truncate_data_blocks(struct dnode_of_data *);
1902 int truncate_blocks(struct inode *, u64, bool);
1903 int f2fs_truncate(struct inode *);
1904 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1905 int f2fs_setattr(struct dentry *, struct iattr *);
1906 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1907 int truncate_data_blocks_range(struct dnode_of_data *, int);
1908 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1909 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1910 
1911 /*
1912  * inode.c
1913  */
1914 void f2fs_set_inode_flags(struct inode *);
1915 struct inode *f2fs_iget(struct super_block *, unsigned long);
1916 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1917 int try_to_free_nats(struct f2fs_sb_info *, int);
1918 int update_inode(struct inode *, struct page *);
1919 int update_inode_page(struct inode *);
1920 int f2fs_write_inode(struct inode *, struct writeback_control *);
1921 void f2fs_evict_inode(struct inode *);
1922 void handle_failed_inode(struct inode *);
1923 
1924 /*
1925  * namei.c
1926  */
1927 struct dentry *f2fs_get_parent(struct dentry *child);
1928 
1929 /*
1930  * dir.c
1931  */
1932 void set_de_type(struct f2fs_dir_entry *, umode_t);
1933 unsigned char get_de_type(struct f2fs_dir_entry *);
1934 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1935 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1936 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1937 			unsigned int, struct fscrypt_str *);
1938 void do_make_empty_dir(struct inode *, struct inode *,
1939 			struct f2fs_dentry_ptr *);
1940 struct page *init_inode_metadata(struct inode *, struct inode *,
1941 		const struct qstr *, const struct qstr *, struct page *);
1942 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1943 int room_for_filename(const void *, int, int);
1944 void f2fs_drop_nlink(struct inode *, struct inode *);
1945 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
1946 							struct page **);
1947 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1948 							struct page **);
1949 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1950 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1951 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1952 				struct page *, struct inode *);
1953 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1954 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1955 			const struct qstr *, f2fs_hash_t , unsigned int);
1956 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1957 			const struct qstr *, struct inode *, nid_t, umode_t);
1958 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
1959 			nid_t, umode_t);
1960 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1961 			umode_t);
1962 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1963 							struct inode *);
1964 int f2fs_do_tmpfile(struct inode *, struct inode *);
1965 bool f2fs_empty_dir(struct inode *);
1966 
1967 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1968 {
1969 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1970 				inode, inode->i_ino, inode->i_mode);
1971 }
1972 
1973 /*
1974  * super.c
1975  */
1976 int f2fs_inode_dirtied(struct inode *);
1977 void f2fs_inode_synced(struct inode *);
1978 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1979 int f2fs_sync_fs(struct super_block *, int);
1980 extern __printf(3, 4)
1981 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1982 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1983 
1984 /*
1985  * hash.c
1986  */
1987 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1988 
1989 /*
1990  * node.c
1991  */
1992 struct dnode_of_data;
1993 struct node_info;
1994 
1995 bool available_free_memory(struct f2fs_sb_info *, int);
1996 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1997 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1998 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1999 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2000 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2001 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2002 int truncate_inode_blocks(struct inode *, pgoff_t);
2003 int truncate_xattr_node(struct inode *, struct page *);
2004 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2005 int remove_inode_page(struct inode *);
2006 struct page *new_inode_page(struct inode *);
2007 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2008 void ra_node_page(struct f2fs_sb_info *, nid_t);
2009 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2010 struct page *get_node_page_ra(struct page *, int);
2011 void move_node_page(struct page *, int);
2012 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2013 			struct writeback_control *, bool);
2014 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2015 void build_free_nids(struct f2fs_sb_info *);
2016 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2017 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2018 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2019 int try_to_free_nids(struct f2fs_sb_info *, int);
2020 void recover_inline_xattr(struct inode *, struct page *);
2021 void recover_xattr_data(struct inode *, struct page *, block_t);
2022 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2023 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2024 				struct f2fs_summary_block *);
2025 void flush_nat_entries(struct f2fs_sb_info *);
2026 int build_node_manager(struct f2fs_sb_info *);
2027 void destroy_node_manager(struct f2fs_sb_info *);
2028 int __init create_node_manager_caches(void);
2029 void destroy_node_manager_caches(void);
2030 
2031 /*
2032  * segment.c
2033  */
2034 void register_inmem_page(struct inode *, struct page *);
2035 void drop_inmem_pages(struct inode *);
2036 int commit_inmem_pages(struct inode *);
2037 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2038 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2039 int f2fs_issue_flush(struct f2fs_sb_info *);
2040 int create_flush_cmd_control(struct f2fs_sb_info *);
2041 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2042 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2043 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2044 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2045 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2046 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2047 void release_discard_addrs(struct f2fs_sb_info *);
2048 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2049 void allocate_new_segments(struct f2fs_sb_info *);
2050 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2051 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2052 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2053 void write_meta_page(struct f2fs_sb_info *, struct page *);
2054 void write_node_page(unsigned int, struct f2fs_io_info *);
2055 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2056 void rewrite_data_page(struct f2fs_io_info *);
2057 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2058 					block_t, block_t, bool, bool);
2059 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2060 				block_t, block_t, unsigned char, bool, bool);
2061 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2062 		block_t, block_t *, struct f2fs_summary *, int);
2063 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2064 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2065 void write_data_summaries(struct f2fs_sb_info *, block_t);
2066 void write_node_summaries(struct f2fs_sb_info *, block_t);
2067 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2068 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2069 int build_segment_manager(struct f2fs_sb_info *);
2070 void destroy_segment_manager(struct f2fs_sb_info *);
2071 int __init create_segment_manager_caches(void);
2072 void destroy_segment_manager_caches(void);
2073 
2074 /*
2075  * checkpoint.c
2076  */
2077 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2078 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2079 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2080 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2081 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2082 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2083 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2084 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2085 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2086 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2087 void release_ino_entry(struct f2fs_sb_info *, bool);
2088 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2089 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2090 int acquire_orphan_inode(struct f2fs_sb_info *);
2091 void release_orphan_inode(struct f2fs_sb_info *);
2092 void add_orphan_inode(struct inode *);
2093 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2094 int recover_orphan_inodes(struct f2fs_sb_info *);
2095 int get_valid_checkpoint(struct f2fs_sb_info *);
2096 void update_dirty_page(struct inode *, struct page *);
2097 void remove_dirty_inode(struct inode *);
2098 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2099 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2100 void init_ino_entry_info(struct f2fs_sb_info *);
2101 int __init create_checkpoint_caches(void);
2102 void destroy_checkpoint_caches(void);
2103 
2104 /*
2105  * data.c
2106  */
2107 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2108 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2109 				struct page *, nid_t, enum page_type, int);
2110 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2111 int f2fs_submit_page_bio(struct f2fs_io_info *);
2112 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2113 void set_data_blkaddr(struct dnode_of_data *);
2114 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2115 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2116 int reserve_new_block(struct dnode_of_data *);
2117 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2118 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2119 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2120 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2121 struct page *find_data_page(struct inode *, pgoff_t);
2122 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2123 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2124 int do_write_data_page(struct f2fs_io_info *);
2125 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2126 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2127 void f2fs_set_page_dirty_nobuffers(struct page *);
2128 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2129 int f2fs_release_page(struct page *, gfp_t);
2130 
2131 /*
2132  * gc.c
2133  */
2134 int start_gc_thread(struct f2fs_sb_info *);
2135 void stop_gc_thread(struct f2fs_sb_info *);
2136 block_t start_bidx_of_node(unsigned int, struct inode *);
2137 int f2fs_gc(struct f2fs_sb_info *, bool);
2138 void build_gc_manager(struct f2fs_sb_info *);
2139 
2140 /*
2141  * recovery.c
2142  */
2143 int recover_fsync_data(struct f2fs_sb_info *, bool);
2144 bool space_for_roll_forward(struct f2fs_sb_info *);
2145 
2146 /*
2147  * debug.c
2148  */
2149 #ifdef CONFIG_F2FS_STAT_FS
2150 struct f2fs_stat_info {
2151 	struct list_head stat_list;
2152 	struct f2fs_sb_info *sbi;
2153 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2154 	int main_area_segs, main_area_sections, main_area_zones;
2155 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2156 	unsigned long long hit_total, total_ext;
2157 	int ext_tree, zombie_tree, ext_node;
2158 	s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2159 	s64 inmem_pages;
2160 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2161 	int nats, dirty_nats, sits, dirty_sits, fnids;
2162 	int total_count, utilization;
2163 	int bg_gc, wb_bios;
2164 	int inline_xattr, inline_inode, inline_dir, orphans;
2165 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2166 	unsigned int bimodal, avg_vblocks;
2167 	int util_free, util_valid, util_invalid;
2168 	int rsvd_segs, overp_segs;
2169 	int dirty_count, node_pages, meta_pages;
2170 	int prefree_count, call_count, cp_count, bg_cp_count;
2171 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2172 	int bg_node_segs, bg_data_segs;
2173 	int tot_blks, data_blks, node_blks;
2174 	int bg_data_blks, bg_node_blks;
2175 	int curseg[NR_CURSEG_TYPE];
2176 	int cursec[NR_CURSEG_TYPE];
2177 	int curzone[NR_CURSEG_TYPE];
2178 
2179 	unsigned int segment_count[2];
2180 	unsigned int block_count[2];
2181 	unsigned int inplace_count;
2182 	unsigned long long base_mem, cache_mem, page_mem;
2183 };
2184 
2185 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2186 {
2187 	return (struct f2fs_stat_info *)sbi->stat_info;
2188 }
2189 
2190 #define stat_inc_cp_count(si)		((si)->cp_count++)
2191 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2192 #define stat_inc_call_count(si)		((si)->call_count++)
2193 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2194 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2195 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2196 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2197 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2198 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2199 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2200 #define stat_inc_inline_xattr(inode)					\
2201 	do {								\
2202 		if (f2fs_has_inline_xattr(inode))			\
2203 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2204 	} while (0)
2205 #define stat_dec_inline_xattr(inode)					\
2206 	do {								\
2207 		if (f2fs_has_inline_xattr(inode))			\
2208 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2209 	} while (0)
2210 #define stat_inc_inline_inode(inode)					\
2211 	do {								\
2212 		if (f2fs_has_inline_data(inode))			\
2213 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2214 	} while (0)
2215 #define stat_dec_inline_inode(inode)					\
2216 	do {								\
2217 		if (f2fs_has_inline_data(inode))			\
2218 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2219 	} while (0)
2220 #define stat_inc_inline_dir(inode)					\
2221 	do {								\
2222 		if (f2fs_has_inline_dentry(inode))			\
2223 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2224 	} while (0)
2225 #define stat_dec_inline_dir(inode)					\
2226 	do {								\
2227 		if (f2fs_has_inline_dentry(inode))			\
2228 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2229 	} while (0)
2230 #define stat_inc_seg_type(sbi, curseg)					\
2231 		((sbi)->segment_count[(curseg)->alloc_type]++)
2232 #define stat_inc_block_count(sbi, curseg)				\
2233 		((sbi)->block_count[(curseg)->alloc_type]++)
2234 #define stat_inc_inplace_blocks(sbi)					\
2235 		(atomic_inc(&(sbi)->inplace_count))
2236 #define stat_inc_seg_count(sbi, type, gc_type)				\
2237 	do {								\
2238 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2239 		(si)->tot_segs++;					\
2240 		if (type == SUM_TYPE_DATA) {				\
2241 			si->data_segs++;				\
2242 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2243 		} else {						\
2244 			si->node_segs++;				\
2245 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2246 		}							\
2247 	} while (0)
2248 
2249 #define stat_inc_tot_blk_count(si, blks)				\
2250 	(si->tot_blks += (blks))
2251 
2252 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2253 	do {								\
2254 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2255 		stat_inc_tot_blk_count(si, blks);			\
2256 		si->data_blks += (blks);				\
2257 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2258 	} while (0)
2259 
2260 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2261 	do {								\
2262 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2263 		stat_inc_tot_blk_count(si, blks);			\
2264 		si->node_blks += (blks);				\
2265 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2266 	} while (0)
2267 
2268 int f2fs_build_stats(struct f2fs_sb_info *);
2269 void f2fs_destroy_stats(struct f2fs_sb_info *);
2270 int __init f2fs_create_root_stats(void);
2271 void f2fs_destroy_root_stats(void);
2272 #else
2273 #define stat_inc_cp_count(si)
2274 #define stat_inc_bg_cp_count(si)
2275 #define stat_inc_call_count(si)
2276 #define stat_inc_bggc_count(si)
2277 #define stat_inc_dirty_inode(sbi, type)
2278 #define stat_dec_dirty_inode(sbi, type)
2279 #define stat_inc_total_hit(sb)
2280 #define stat_inc_rbtree_node_hit(sb)
2281 #define stat_inc_largest_node_hit(sbi)
2282 #define stat_inc_cached_node_hit(sbi)
2283 #define stat_inc_inline_xattr(inode)
2284 #define stat_dec_inline_xattr(inode)
2285 #define stat_inc_inline_inode(inode)
2286 #define stat_dec_inline_inode(inode)
2287 #define stat_inc_inline_dir(inode)
2288 #define stat_dec_inline_dir(inode)
2289 #define stat_inc_seg_type(sbi, curseg)
2290 #define stat_inc_block_count(sbi, curseg)
2291 #define stat_inc_inplace_blocks(sbi)
2292 #define stat_inc_seg_count(sbi, type, gc_type)
2293 #define stat_inc_tot_blk_count(si, blks)
2294 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2295 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2296 
2297 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2298 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2299 static inline int __init f2fs_create_root_stats(void) { return 0; }
2300 static inline void f2fs_destroy_root_stats(void) { }
2301 #endif
2302 
2303 extern const struct file_operations f2fs_dir_operations;
2304 extern const struct file_operations f2fs_file_operations;
2305 extern const struct inode_operations f2fs_file_inode_operations;
2306 extern const struct address_space_operations f2fs_dblock_aops;
2307 extern const struct address_space_operations f2fs_node_aops;
2308 extern const struct address_space_operations f2fs_meta_aops;
2309 extern const struct inode_operations f2fs_dir_inode_operations;
2310 extern const struct inode_operations f2fs_symlink_inode_operations;
2311 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2312 extern const struct inode_operations f2fs_special_inode_operations;
2313 extern struct kmem_cache *inode_entry_slab;
2314 
2315 /*
2316  * inline.c
2317  */
2318 bool f2fs_may_inline_data(struct inode *);
2319 bool f2fs_may_inline_dentry(struct inode *);
2320 void read_inline_data(struct page *, struct page *);
2321 bool truncate_inline_inode(struct page *, u64);
2322 int f2fs_read_inline_data(struct inode *, struct page *);
2323 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2324 int f2fs_convert_inline_inode(struct inode *);
2325 int f2fs_write_inline_data(struct inode *, struct page *);
2326 bool recover_inline_data(struct inode *, struct page *);
2327 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2328 				struct fscrypt_name *, struct page **);
2329 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2330 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2331 		const struct qstr *, struct inode *, nid_t, umode_t);
2332 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2333 						struct inode *, struct inode *);
2334 bool f2fs_empty_inline_dir(struct inode *);
2335 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2336 						struct fscrypt_str *);
2337 int f2fs_inline_data_fiemap(struct inode *,
2338 		struct fiemap_extent_info *, __u64, __u64);
2339 
2340 /*
2341  * shrinker.c
2342  */
2343 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2344 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2345 void f2fs_join_shrinker(struct f2fs_sb_info *);
2346 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2347 
2348 /*
2349  * extent_cache.c
2350  */
2351 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2352 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2353 void f2fs_drop_extent_tree(struct inode *);
2354 unsigned int f2fs_destroy_extent_node(struct inode *);
2355 void f2fs_destroy_extent_tree(struct inode *);
2356 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2357 void f2fs_update_extent_cache(struct dnode_of_data *);
2358 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2359 						pgoff_t, block_t, unsigned int);
2360 void init_extent_cache_info(struct f2fs_sb_info *);
2361 int __init create_extent_cache(void);
2362 void destroy_extent_cache(void);
2363 
2364 /*
2365  * crypto support
2366  */
2367 static inline bool f2fs_encrypted_inode(struct inode *inode)
2368 {
2369 	return file_is_encrypt(inode);
2370 }
2371 
2372 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2373 {
2374 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2375 	file_set_encrypt(inode);
2376 #endif
2377 }
2378 
2379 static inline bool f2fs_bio_encrypted(struct bio *bio)
2380 {
2381 	return bio->bi_private != NULL;
2382 }
2383 
2384 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2385 {
2386 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2387 }
2388 
2389 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2390 {
2391 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2392 }
2393 
2394 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2395 {
2396 	clear_opt(sbi, ADAPTIVE);
2397 	clear_opt(sbi, LFS);
2398 
2399 	switch (mt) {
2400 	case F2FS_MOUNT_ADAPTIVE:
2401 		set_opt(sbi, ADAPTIVE);
2402 		break;
2403 	case F2FS_MOUNT_LFS:
2404 		set_opt(sbi, LFS);
2405 		break;
2406 	}
2407 }
2408 
2409 static inline bool f2fs_may_encrypt(struct inode *inode)
2410 {
2411 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2412 	umode_t mode = inode->i_mode;
2413 
2414 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2415 #else
2416 	return 0;
2417 #endif
2418 }
2419 
2420 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2421 #define fscrypt_set_d_op(i)
2422 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2423 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2424 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2425 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2426 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2427 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2428 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2429 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2430 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2431 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2432 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2433 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2434 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2435 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2436 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2437 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2438 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2439 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2440 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2441 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2442 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2443 #endif
2444 #endif
2445