1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_IO, 50 FAULT_MAX, 51 }; 52 53 struct f2fs_fault_info { 54 atomic_t inject_ops; 55 unsigned int inject_rate; 56 unsigned int inject_type; 57 }; 58 59 extern struct f2fs_fault_info f2fs_fault; 60 extern char *fault_name[FAULT_MAX]; 61 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type))) 62 63 static inline bool time_to_inject(int type) 64 { 65 if (!f2fs_fault.inject_rate) 66 return false; 67 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type)) 68 return false; 69 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type)) 70 return false; 71 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type)) 72 return false; 73 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type)) 74 return false; 75 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type)) 76 return false; 77 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type)) 78 return false; 79 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type)) 80 return false; 81 else if (type == FAULT_IO && !IS_FAULT_SET(type)) 82 return false; 83 84 atomic_inc(&f2fs_fault.inject_ops); 85 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) { 86 atomic_set(&f2fs_fault.inject_ops, 0); 87 printk("%sF2FS-fs : inject %s in %pF\n", 88 KERN_INFO, 89 fault_name[type], 90 __builtin_return_address(0)); 91 return true; 92 } 93 return false; 94 } 95 #endif 96 97 /* 98 * For mount options 99 */ 100 #define F2FS_MOUNT_BG_GC 0x00000001 101 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 102 #define F2FS_MOUNT_DISCARD 0x00000004 103 #define F2FS_MOUNT_NOHEAP 0x00000008 104 #define F2FS_MOUNT_XATTR_USER 0x00000010 105 #define F2FS_MOUNT_POSIX_ACL 0x00000020 106 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 107 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 108 #define F2FS_MOUNT_INLINE_DATA 0x00000100 109 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 110 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 111 #define F2FS_MOUNT_NOBARRIER 0x00000800 112 #define F2FS_MOUNT_FASTBOOT 0x00001000 113 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 114 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 115 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 116 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 117 #define F2FS_MOUNT_ADAPTIVE 0x00020000 118 #define F2FS_MOUNT_LFS 0x00040000 119 120 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 121 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 122 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 123 124 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 125 typecheck(unsigned long long, b) && \ 126 ((long long)((a) - (b)) > 0)) 127 128 typedef u32 block_t; /* 129 * should not change u32, since it is the on-disk block 130 * address format, __le32. 131 */ 132 typedef u32 nid_t; 133 134 struct f2fs_mount_info { 135 unsigned int opt; 136 }; 137 138 #define F2FS_FEATURE_ENCRYPT 0x0001 139 #define F2FS_FEATURE_HMSMR 0x0002 140 141 #define F2FS_HAS_FEATURE(sb, mask) \ 142 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 143 #define F2FS_SET_FEATURE(sb, mask) \ 144 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 145 #define F2FS_CLEAR_FEATURE(sb, mask) \ 146 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 147 148 /* 149 * For checkpoint manager 150 */ 151 enum { 152 NAT_BITMAP, 153 SIT_BITMAP 154 }; 155 156 enum { 157 CP_UMOUNT, 158 CP_FASTBOOT, 159 CP_SYNC, 160 CP_RECOVERY, 161 CP_DISCARD, 162 }; 163 164 #define DEF_BATCHED_TRIM_SECTIONS 2 165 #define BATCHED_TRIM_SEGMENTS(sbi) \ 166 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 167 #define BATCHED_TRIM_BLOCKS(sbi) \ 168 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 169 #define DEF_CP_INTERVAL 60 /* 60 secs */ 170 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 171 172 struct cp_control { 173 int reason; 174 __u64 trim_start; 175 __u64 trim_end; 176 __u64 trim_minlen; 177 __u64 trimmed; 178 }; 179 180 /* 181 * For CP/NAT/SIT/SSA readahead 182 */ 183 enum { 184 META_CP, 185 META_NAT, 186 META_SIT, 187 META_SSA, 188 META_POR, 189 }; 190 191 /* for the list of ino */ 192 enum { 193 ORPHAN_INO, /* for orphan ino list */ 194 APPEND_INO, /* for append ino list */ 195 UPDATE_INO, /* for update ino list */ 196 MAX_INO_ENTRY, /* max. list */ 197 }; 198 199 struct ino_entry { 200 struct list_head list; /* list head */ 201 nid_t ino; /* inode number */ 202 }; 203 204 /* for the list of inodes to be GCed */ 205 struct inode_entry { 206 struct list_head list; /* list head */ 207 struct inode *inode; /* vfs inode pointer */ 208 }; 209 210 /* for the list of blockaddresses to be discarded */ 211 struct discard_entry { 212 struct list_head list; /* list head */ 213 block_t blkaddr; /* block address to be discarded */ 214 int len; /* # of consecutive blocks of the discard */ 215 }; 216 217 struct bio_entry { 218 struct list_head list; 219 struct bio *bio; 220 struct completion event; 221 int error; 222 }; 223 224 /* for the list of fsync inodes, used only during recovery */ 225 struct fsync_inode_entry { 226 struct list_head list; /* list head */ 227 struct inode *inode; /* vfs inode pointer */ 228 block_t blkaddr; /* block address locating the last fsync */ 229 block_t last_dentry; /* block address locating the last dentry */ 230 }; 231 232 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 233 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 234 235 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 236 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 237 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 238 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 239 240 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 241 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 242 243 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 244 { 245 int before = nats_in_cursum(journal); 246 journal->n_nats = cpu_to_le16(before + i); 247 return before; 248 } 249 250 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 251 { 252 int before = sits_in_cursum(journal); 253 journal->n_sits = cpu_to_le16(before + i); 254 return before; 255 } 256 257 static inline bool __has_cursum_space(struct f2fs_journal *journal, 258 int size, int type) 259 { 260 if (type == NAT_JOURNAL) 261 return size <= MAX_NAT_JENTRIES(journal); 262 return size <= MAX_SIT_JENTRIES(journal); 263 } 264 265 /* 266 * ioctl commands 267 */ 268 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 269 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 270 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 271 272 #define F2FS_IOCTL_MAGIC 0xf5 273 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 274 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 275 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 276 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 277 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 278 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 279 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 280 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 281 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 282 struct f2fs_move_range) 283 284 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 285 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 286 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 287 288 /* 289 * should be same as XFS_IOC_GOINGDOWN. 290 * Flags for going down operation used by FS_IOC_GOINGDOWN 291 */ 292 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 293 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 294 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 295 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 296 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 297 298 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 299 /* 300 * ioctl commands in 32 bit emulation 301 */ 302 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 303 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 304 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 305 #endif 306 307 struct f2fs_defragment { 308 u64 start; 309 u64 len; 310 }; 311 312 struct f2fs_move_range { 313 u32 dst_fd; /* destination fd */ 314 u64 pos_in; /* start position in src_fd */ 315 u64 pos_out; /* start position in dst_fd */ 316 u64 len; /* size to move */ 317 }; 318 319 /* 320 * For INODE and NODE manager 321 */ 322 /* for directory operations */ 323 struct f2fs_dentry_ptr { 324 struct inode *inode; 325 const void *bitmap; 326 struct f2fs_dir_entry *dentry; 327 __u8 (*filename)[F2FS_SLOT_LEN]; 328 int max; 329 }; 330 331 static inline void make_dentry_ptr(struct inode *inode, 332 struct f2fs_dentry_ptr *d, void *src, int type) 333 { 334 d->inode = inode; 335 336 if (type == 1) { 337 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 338 d->max = NR_DENTRY_IN_BLOCK; 339 d->bitmap = &t->dentry_bitmap; 340 d->dentry = t->dentry; 341 d->filename = t->filename; 342 } else { 343 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 344 d->max = NR_INLINE_DENTRY; 345 d->bitmap = &t->dentry_bitmap; 346 d->dentry = t->dentry; 347 d->filename = t->filename; 348 } 349 } 350 351 /* 352 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 353 * as its node offset to distinguish from index node blocks. 354 * But some bits are used to mark the node block. 355 */ 356 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 357 >> OFFSET_BIT_SHIFT) 358 enum { 359 ALLOC_NODE, /* allocate a new node page if needed */ 360 LOOKUP_NODE, /* look up a node without readahead */ 361 LOOKUP_NODE_RA, /* 362 * look up a node with readahead called 363 * by get_data_block. 364 */ 365 }; 366 367 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 368 369 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 370 371 /* vector size for gang look-up from extent cache that consists of radix tree */ 372 #define EXT_TREE_VEC_SIZE 64 373 374 /* for in-memory extent cache entry */ 375 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 376 377 /* number of extent info in extent cache we try to shrink */ 378 #define EXTENT_CACHE_SHRINK_NUMBER 128 379 380 struct extent_info { 381 unsigned int fofs; /* start offset in a file */ 382 u32 blk; /* start block address of the extent */ 383 unsigned int len; /* length of the extent */ 384 }; 385 386 struct extent_node { 387 struct rb_node rb_node; /* rb node located in rb-tree */ 388 struct list_head list; /* node in global extent list of sbi */ 389 struct extent_info ei; /* extent info */ 390 struct extent_tree *et; /* extent tree pointer */ 391 }; 392 393 struct extent_tree { 394 nid_t ino; /* inode number */ 395 struct rb_root root; /* root of extent info rb-tree */ 396 struct extent_node *cached_en; /* recently accessed extent node */ 397 struct extent_info largest; /* largested extent info */ 398 struct list_head list; /* to be used by sbi->zombie_list */ 399 rwlock_t lock; /* protect extent info rb-tree */ 400 atomic_t node_cnt; /* # of extent node in rb-tree*/ 401 }; 402 403 /* 404 * This structure is taken from ext4_map_blocks. 405 * 406 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 407 */ 408 #define F2FS_MAP_NEW (1 << BH_New) 409 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 410 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 411 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 412 F2FS_MAP_UNWRITTEN) 413 414 struct f2fs_map_blocks { 415 block_t m_pblk; 416 block_t m_lblk; 417 unsigned int m_len; 418 unsigned int m_flags; 419 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 420 }; 421 422 /* for flag in get_data_block */ 423 #define F2FS_GET_BLOCK_READ 0 424 #define F2FS_GET_BLOCK_DIO 1 425 #define F2FS_GET_BLOCK_FIEMAP 2 426 #define F2FS_GET_BLOCK_BMAP 3 427 #define F2FS_GET_BLOCK_PRE_DIO 4 428 #define F2FS_GET_BLOCK_PRE_AIO 5 429 430 /* 431 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 432 */ 433 #define FADVISE_COLD_BIT 0x01 434 #define FADVISE_LOST_PINO_BIT 0x02 435 #define FADVISE_ENCRYPT_BIT 0x04 436 #define FADVISE_ENC_NAME_BIT 0x08 437 438 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 439 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 440 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 441 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 442 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 443 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 444 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 445 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 446 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 447 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 448 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 449 450 #define DEF_DIR_LEVEL 0 451 452 struct f2fs_inode_info { 453 struct inode vfs_inode; /* serve a vfs inode */ 454 unsigned long i_flags; /* keep an inode flags for ioctl */ 455 unsigned char i_advise; /* use to give file attribute hints */ 456 unsigned char i_dir_level; /* use for dentry level for large dir */ 457 unsigned int i_current_depth; /* use only in directory structure */ 458 unsigned int i_pino; /* parent inode number */ 459 umode_t i_acl_mode; /* keep file acl mode temporarily */ 460 461 /* Use below internally in f2fs*/ 462 unsigned long flags; /* use to pass per-file flags */ 463 struct rw_semaphore i_sem; /* protect fi info */ 464 struct percpu_counter dirty_pages; /* # of dirty pages */ 465 f2fs_hash_t chash; /* hash value of given file name */ 466 unsigned int clevel; /* maximum level of given file name */ 467 nid_t i_xattr_nid; /* node id that contains xattrs */ 468 unsigned long long xattr_ver; /* cp version of xattr modification */ 469 loff_t last_disk_size; /* lastly written file size */ 470 471 struct list_head dirty_list; /* dirty list for dirs and files */ 472 struct list_head gdirty_list; /* linked in global dirty list */ 473 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 474 struct mutex inmem_lock; /* lock for inmemory pages */ 475 struct extent_tree *extent_tree; /* cached extent_tree entry */ 476 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 477 }; 478 479 static inline void get_extent_info(struct extent_info *ext, 480 struct f2fs_extent *i_ext) 481 { 482 ext->fofs = le32_to_cpu(i_ext->fofs); 483 ext->blk = le32_to_cpu(i_ext->blk); 484 ext->len = le32_to_cpu(i_ext->len); 485 } 486 487 static inline void set_raw_extent(struct extent_info *ext, 488 struct f2fs_extent *i_ext) 489 { 490 i_ext->fofs = cpu_to_le32(ext->fofs); 491 i_ext->blk = cpu_to_le32(ext->blk); 492 i_ext->len = cpu_to_le32(ext->len); 493 } 494 495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 496 u32 blk, unsigned int len) 497 { 498 ei->fofs = fofs; 499 ei->blk = blk; 500 ei->len = len; 501 } 502 503 static inline bool __is_extent_same(struct extent_info *ei1, 504 struct extent_info *ei2) 505 { 506 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 507 ei1->len == ei2->len); 508 } 509 510 static inline bool __is_extent_mergeable(struct extent_info *back, 511 struct extent_info *front) 512 { 513 return (back->fofs + back->len == front->fofs && 514 back->blk + back->len == front->blk); 515 } 516 517 static inline bool __is_back_mergeable(struct extent_info *cur, 518 struct extent_info *back) 519 { 520 return __is_extent_mergeable(back, cur); 521 } 522 523 static inline bool __is_front_mergeable(struct extent_info *cur, 524 struct extent_info *front) 525 { 526 return __is_extent_mergeable(cur, front); 527 } 528 529 extern void f2fs_mark_inode_dirty_sync(struct inode *); 530 static inline void __try_update_largest_extent(struct inode *inode, 531 struct extent_tree *et, struct extent_node *en) 532 { 533 if (en->ei.len > et->largest.len) { 534 et->largest = en->ei; 535 f2fs_mark_inode_dirty_sync(inode); 536 } 537 } 538 539 struct f2fs_nm_info { 540 block_t nat_blkaddr; /* base disk address of NAT */ 541 nid_t max_nid; /* maximum possible node ids */ 542 nid_t available_nids; /* maximum available node ids */ 543 nid_t next_scan_nid; /* the next nid to be scanned */ 544 unsigned int ram_thresh; /* control the memory footprint */ 545 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 546 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 547 548 /* NAT cache management */ 549 struct radix_tree_root nat_root;/* root of the nat entry cache */ 550 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 551 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 552 struct list_head nat_entries; /* cached nat entry list (clean) */ 553 unsigned int nat_cnt; /* the # of cached nat entries */ 554 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 555 556 /* free node ids management */ 557 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 558 struct list_head free_nid_list; /* a list for free nids */ 559 spinlock_t free_nid_list_lock; /* protect free nid list */ 560 unsigned int fcnt; /* the number of free node id */ 561 struct mutex build_lock; /* lock for build free nids */ 562 563 /* for checkpoint */ 564 char *nat_bitmap; /* NAT bitmap pointer */ 565 int bitmap_size; /* bitmap size */ 566 }; 567 568 /* 569 * this structure is used as one of function parameters. 570 * all the information are dedicated to a given direct node block determined 571 * by the data offset in a file. 572 */ 573 struct dnode_of_data { 574 struct inode *inode; /* vfs inode pointer */ 575 struct page *inode_page; /* its inode page, NULL is possible */ 576 struct page *node_page; /* cached direct node page */ 577 nid_t nid; /* node id of the direct node block */ 578 unsigned int ofs_in_node; /* data offset in the node page */ 579 bool inode_page_locked; /* inode page is locked or not */ 580 bool node_changed; /* is node block changed */ 581 char cur_level; /* level of hole node page */ 582 char max_level; /* level of current page located */ 583 block_t data_blkaddr; /* block address of the node block */ 584 }; 585 586 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 587 struct page *ipage, struct page *npage, nid_t nid) 588 { 589 memset(dn, 0, sizeof(*dn)); 590 dn->inode = inode; 591 dn->inode_page = ipage; 592 dn->node_page = npage; 593 dn->nid = nid; 594 } 595 596 /* 597 * For SIT manager 598 * 599 * By default, there are 6 active log areas across the whole main area. 600 * When considering hot and cold data separation to reduce cleaning overhead, 601 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 602 * respectively. 603 * In the current design, you should not change the numbers intentionally. 604 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 605 * logs individually according to the underlying devices. (default: 6) 606 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 607 * data and 8 for node logs. 608 */ 609 #define NR_CURSEG_DATA_TYPE (3) 610 #define NR_CURSEG_NODE_TYPE (3) 611 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 612 613 enum { 614 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 615 CURSEG_WARM_DATA, /* data blocks */ 616 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 617 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 618 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 619 CURSEG_COLD_NODE, /* indirect node blocks */ 620 NO_CHECK_TYPE, 621 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 622 }; 623 624 struct flush_cmd { 625 struct completion wait; 626 struct llist_node llnode; 627 int ret; 628 }; 629 630 struct flush_cmd_control { 631 struct task_struct *f2fs_issue_flush; /* flush thread */ 632 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 633 atomic_t submit_flush; /* # of issued flushes */ 634 struct llist_head issue_list; /* list for command issue */ 635 struct llist_node *dispatch_list; /* list for command dispatch */ 636 }; 637 638 struct f2fs_sm_info { 639 struct sit_info *sit_info; /* whole segment information */ 640 struct free_segmap_info *free_info; /* free segment information */ 641 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 642 struct curseg_info *curseg_array; /* active segment information */ 643 644 block_t seg0_blkaddr; /* block address of 0'th segment */ 645 block_t main_blkaddr; /* start block address of main area */ 646 block_t ssa_blkaddr; /* start block address of SSA area */ 647 648 unsigned int segment_count; /* total # of segments */ 649 unsigned int main_segments; /* # of segments in main area */ 650 unsigned int reserved_segments; /* # of reserved segments */ 651 unsigned int ovp_segments; /* # of overprovision segments */ 652 653 /* a threshold to reclaim prefree segments */ 654 unsigned int rec_prefree_segments; 655 656 /* for small discard management */ 657 struct list_head discard_list; /* 4KB discard list */ 658 struct list_head wait_list; /* linked with issued discard bio */ 659 int nr_discards; /* # of discards in the list */ 660 int max_discards; /* max. discards to be issued */ 661 662 /* for batched trimming */ 663 unsigned int trim_sections; /* # of sections to trim */ 664 665 struct list_head sit_entry_set; /* sit entry set list */ 666 667 unsigned int ipu_policy; /* in-place-update policy */ 668 unsigned int min_ipu_util; /* in-place-update threshold */ 669 unsigned int min_fsync_blocks; /* threshold for fsync */ 670 671 /* for flush command control */ 672 struct flush_cmd_control *cmd_control_info; 673 674 }; 675 676 /* 677 * For superblock 678 */ 679 /* 680 * COUNT_TYPE for monitoring 681 * 682 * f2fs monitors the number of several block types such as on-writeback, 683 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 684 */ 685 enum count_type { 686 F2FS_DIRTY_DENTS, 687 F2FS_DIRTY_DATA, 688 F2FS_DIRTY_NODES, 689 F2FS_DIRTY_META, 690 F2FS_INMEM_PAGES, 691 F2FS_DIRTY_IMETA, 692 NR_COUNT_TYPE, 693 }; 694 695 /* 696 * The below are the page types of bios used in submit_bio(). 697 * The available types are: 698 * DATA User data pages. It operates as async mode. 699 * NODE Node pages. It operates as async mode. 700 * META FS metadata pages such as SIT, NAT, CP. 701 * NR_PAGE_TYPE The number of page types. 702 * META_FLUSH Make sure the previous pages are written 703 * with waiting the bio's completion 704 * ... Only can be used with META. 705 */ 706 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 707 enum page_type { 708 DATA, 709 NODE, 710 META, 711 NR_PAGE_TYPE, 712 META_FLUSH, 713 INMEM, /* the below types are used by tracepoints only. */ 714 INMEM_DROP, 715 INMEM_REVOKE, 716 IPU, 717 OPU, 718 }; 719 720 struct f2fs_io_info { 721 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 722 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 723 int op; /* contains REQ_OP_ */ 724 int op_flags; /* rq_flag_bits */ 725 block_t new_blkaddr; /* new block address to be written */ 726 block_t old_blkaddr; /* old block address before Cow */ 727 struct page *page; /* page to be written */ 728 struct page *encrypted_page; /* encrypted page */ 729 }; 730 731 #define is_read_io(rw) (rw == READ) 732 struct f2fs_bio_info { 733 struct f2fs_sb_info *sbi; /* f2fs superblock */ 734 struct bio *bio; /* bios to merge */ 735 sector_t last_block_in_bio; /* last block number */ 736 struct f2fs_io_info fio; /* store buffered io info. */ 737 struct rw_semaphore io_rwsem; /* blocking op for bio */ 738 }; 739 740 enum inode_type { 741 DIR_INODE, /* for dirty dir inode */ 742 FILE_INODE, /* for dirty regular/symlink inode */ 743 DIRTY_META, /* for all dirtied inode metadata */ 744 NR_INODE_TYPE, 745 }; 746 747 /* for inner inode cache management */ 748 struct inode_management { 749 struct radix_tree_root ino_root; /* ino entry array */ 750 spinlock_t ino_lock; /* for ino entry lock */ 751 struct list_head ino_list; /* inode list head */ 752 unsigned long ino_num; /* number of entries */ 753 }; 754 755 /* For s_flag in struct f2fs_sb_info */ 756 enum { 757 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 758 SBI_IS_CLOSE, /* specify unmounting */ 759 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 760 SBI_POR_DOING, /* recovery is doing or not */ 761 SBI_NEED_SB_WRITE, /* need to recover superblock */ 762 SBI_NEED_CP, /* need to checkpoint */ 763 }; 764 765 enum { 766 CP_TIME, 767 REQ_TIME, 768 MAX_TIME, 769 }; 770 771 #ifdef CONFIG_F2FS_FS_ENCRYPTION 772 #define F2FS_KEY_DESC_PREFIX "f2fs:" 773 #define F2FS_KEY_DESC_PREFIX_SIZE 5 774 #endif 775 struct f2fs_sb_info { 776 struct super_block *sb; /* pointer to VFS super block */ 777 struct proc_dir_entry *s_proc; /* proc entry */ 778 struct f2fs_super_block *raw_super; /* raw super block pointer */ 779 int valid_super_block; /* valid super block no */ 780 unsigned long s_flag; /* flags for sbi */ 781 782 #ifdef CONFIG_F2FS_FS_ENCRYPTION 783 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 784 u8 key_prefix_size; 785 #endif 786 /* for node-related operations */ 787 struct f2fs_nm_info *nm_info; /* node manager */ 788 struct inode *node_inode; /* cache node blocks */ 789 790 /* for segment-related operations */ 791 struct f2fs_sm_info *sm_info; /* segment manager */ 792 793 /* for bio operations */ 794 struct f2fs_bio_info read_io; /* for read bios */ 795 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 796 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 797 798 /* for checkpoint */ 799 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 800 struct inode *meta_inode; /* cache meta blocks */ 801 struct mutex cp_mutex; /* checkpoint procedure lock */ 802 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 803 struct rw_semaphore node_write; /* locking node writes */ 804 wait_queue_head_t cp_wait; 805 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 806 long interval_time[MAX_TIME]; /* to store thresholds */ 807 808 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 809 810 /* for orphan inode, use 0'th array */ 811 unsigned int max_orphans; /* max orphan inodes */ 812 813 /* for inode management */ 814 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 815 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 816 817 /* for extent tree cache */ 818 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 819 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 820 struct list_head extent_list; /* lru list for shrinker */ 821 spinlock_t extent_lock; /* locking extent lru list */ 822 atomic_t total_ext_tree; /* extent tree count */ 823 struct list_head zombie_list; /* extent zombie tree list */ 824 atomic_t total_zombie_tree; /* extent zombie tree count */ 825 atomic_t total_ext_node; /* extent info count */ 826 827 /* basic filesystem units */ 828 unsigned int log_sectors_per_block; /* log2 sectors per block */ 829 unsigned int log_blocksize; /* log2 block size */ 830 unsigned int blocksize; /* block size */ 831 unsigned int root_ino_num; /* root inode number*/ 832 unsigned int node_ino_num; /* node inode number*/ 833 unsigned int meta_ino_num; /* meta inode number*/ 834 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 835 unsigned int blocks_per_seg; /* blocks per segment */ 836 unsigned int segs_per_sec; /* segments per section */ 837 unsigned int secs_per_zone; /* sections per zone */ 838 unsigned int total_sections; /* total section count */ 839 unsigned int total_node_count; /* total node block count */ 840 unsigned int total_valid_node_count; /* valid node block count */ 841 loff_t max_file_blocks; /* max block index of file */ 842 int active_logs; /* # of active logs */ 843 int dir_level; /* directory level */ 844 845 block_t user_block_count; /* # of user blocks */ 846 block_t total_valid_block_count; /* # of valid blocks */ 847 block_t discard_blks; /* discard command candidats */ 848 block_t last_valid_block_count; /* for recovery */ 849 u32 s_next_generation; /* for NFS support */ 850 atomic_t nr_wb_bios; /* # of writeback bios */ 851 852 /* # of pages, see count_type */ 853 struct percpu_counter nr_pages[NR_COUNT_TYPE]; 854 /* # of allocated blocks */ 855 struct percpu_counter alloc_valid_block_count; 856 857 /* valid inode count */ 858 struct percpu_counter total_valid_inode_count; 859 860 struct f2fs_mount_info mount_opt; /* mount options */ 861 862 /* for cleaning operations */ 863 struct mutex gc_mutex; /* mutex for GC */ 864 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 865 unsigned int cur_victim_sec; /* current victim section num */ 866 867 /* maximum # of trials to find a victim segment for SSR and GC */ 868 unsigned int max_victim_search; 869 870 /* 871 * for stat information. 872 * one is for the LFS mode, and the other is for the SSR mode. 873 */ 874 #ifdef CONFIG_F2FS_STAT_FS 875 struct f2fs_stat_info *stat_info; /* FS status information */ 876 unsigned int segment_count[2]; /* # of allocated segments */ 877 unsigned int block_count[2]; /* # of allocated blocks */ 878 atomic_t inplace_count; /* # of inplace update */ 879 atomic64_t total_hit_ext; /* # of lookup extent cache */ 880 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 881 atomic64_t read_hit_largest; /* # of hit largest extent node */ 882 atomic64_t read_hit_cached; /* # of hit cached extent node */ 883 atomic_t inline_xattr; /* # of inline_xattr inodes */ 884 atomic_t inline_inode; /* # of inline_data inodes */ 885 atomic_t inline_dir; /* # of inline_dentry inodes */ 886 int bg_gc; /* background gc calls */ 887 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 888 #endif 889 unsigned int last_victim[2]; /* last victim segment # */ 890 spinlock_t stat_lock; /* lock for stat operations */ 891 892 /* For sysfs suppport */ 893 struct kobject s_kobj; 894 struct completion s_kobj_unregister; 895 896 /* For shrinker support */ 897 struct list_head s_list; 898 struct mutex umount_mutex; 899 unsigned int shrinker_run_no; 900 901 /* For write statistics */ 902 u64 sectors_written_start; 903 u64 kbytes_written; 904 905 /* Reference to checksum algorithm driver via cryptoapi */ 906 struct crypto_shash *s_chksum_driver; 907 }; 908 909 /* For write statistics. Suppose sector size is 512 bytes, 910 * and the return value is in kbytes. s is of struct f2fs_sb_info. 911 */ 912 #define BD_PART_WRITTEN(s) \ 913 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 914 s->sectors_written_start) >> 1) 915 916 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 917 { 918 sbi->last_time[type] = jiffies; 919 } 920 921 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 922 { 923 struct timespec ts = {sbi->interval_time[type], 0}; 924 unsigned long interval = timespec_to_jiffies(&ts); 925 926 return time_after(jiffies, sbi->last_time[type] + interval); 927 } 928 929 static inline bool is_idle(struct f2fs_sb_info *sbi) 930 { 931 struct block_device *bdev = sbi->sb->s_bdev; 932 struct request_queue *q = bdev_get_queue(bdev); 933 struct request_list *rl = &q->root_rl; 934 935 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 936 return 0; 937 938 return f2fs_time_over(sbi, REQ_TIME); 939 } 940 941 /* 942 * Inline functions 943 */ 944 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 945 unsigned int length) 946 { 947 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 948 u32 *ctx = (u32 *)shash_desc_ctx(shash); 949 int err; 950 951 shash->tfm = sbi->s_chksum_driver; 952 shash->flags = 0; 953 *ctx = F2FS_SUPER_MAGIC; 954 955 err = crypto_shash_update(shash, address, length); 956 BUG_ON(err); 957 958 return *ctx; 959 } 960 961 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 962 void *buf, size_t buf_size) 963 { 964 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 965 } 966 967 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 968 { 969 return container_of(inode, struct f2fs_inode_info, vfs_inode); 970 } 971 972 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 973 { 974 return sb->s_fs_info; 975 } 976 977 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 978 { 979 return F2FS_SB(inode->i_sb); 980 } 981 982 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 983 { 984 return F2FS_I_SB(mapping->host); 985 } 986 987 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 988 { 989 return F2FS_M_SB(page->mapping); 990 } 991 992 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 993 { 994 return (struct f2fs_super_block *)(sbi->raw_super); 995 } 996 997 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 998 { 999 return (struct f2fs_checkpoint *)(sbi->ckpt); 1000 } 1001 1002 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1003 { 1004 return (struct f2fs_node *)page_address(page); 1005 } 1006 1007 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1008 { 1009 return &((struct f2fs_node *)page_address(page))->i; 1010 } 1011 1012 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1013 { 1014 return (struct f2fs_nm_info *)(sbi->nm_info); 1015 } 1016 1017 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1018 { 1019 return (struct f2fs_sm_info *)(sbi->sm_info); 1020 } 1021 1022 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1023 { 1024 return (struct sit_info *)(SM_I(sbi)->sit_info); 1025 } 1026 1027 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1028 { 1029 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1030 } 1031 1032 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1033 { 1034 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1035 } 1036 1037 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1038 { 1039 return sbi->meta_inode->i_mapping; 1040 } 1041 1042 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1043 { 1044 return sbi->node_inode->i_mapping; 1045 } 1046 1047 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1048 { 1049 return test_bit(type, &sbi->s_flag); 1050 } 1051 1052 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1053 { 1054 set_bit(type, &sbi->s_flag); 1055 } 1056 1057 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1058 { 1059 clear_bit(type, &sbi->s_flag); 1060 } 1061 1062 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1063 { 1064 return le64_to_cpu(cp->checkpoint_ver); 1065 } 1066 1067 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1068 { 1069 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1070 return ckpt_flags & f; 1071 } 1072 1073 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1074 { 1075 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1076 ckpt_flags |= f; 1077 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1078 } 1079 1080 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1081 { 1082 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1083 ckpt_flags &= (~f); 1084 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1085 } 1086 1087 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 1088 { 1089 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 1090 1091 return blk_queue_discard(q); 1092 } 1093 1094 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1095 { 1096 down_read(&sbi->cp_rwsem); 1097 } 1098 1099 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1100 { 1101 up_read(&sbi->cp_rwsem); 1102 } 1103 1104 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1105 { 1106 down_write(&sbi->cp_rwsem); 1107 } 1108 1109 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1110 { 1111 up_write(&sbi->cp_rwsem); 1112 } 1113 1114 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1115 { 1116 int reason = CP_SYNC; 1117 1118 if (test_opt(sbi, FASTBOOT)) 1119 reason = CP_FASTBOOT; 1120 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1121 reason = CP_UMOUNT; 1122 return reason; 1123 } 1124 1125 static inline bool __remain_node_summaries(int reason) 1126 { 1127 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1128 } 1129 1130 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1131 { 1132 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1133 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1134 } 1135 1136 /* 1137 * Check whether the given nid is within node id range. 1138 */ 1139 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1140 { 1141 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1142 return -EINVAL; 1143 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1144 return -EINVAL; 1145 return 0; 1146 } 1147 1148 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1149 1150 /* 1151 * Check whether the inode has blocks or not 1152 */ 1153 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1154 { 1155 if (F2FS_I(inode)->i_xattr_nid) 1156 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1157 else 1158 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1159 } 1160 1161 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1162 { 1163 return ofs == XATTR_NODE_OFFSET; 1164 } 1165 1166 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1167 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1168 struct inode *inode, blkcnt_t *count) 1169 { 1170 blkcnt_t diff; 1171 1172 #ifdef CONFIG_F2FS_FAULT_INJECTION 1173 if (time_to_inject(FAULT_BLOCK)) 1174 return false; 1175 #endif 1176 /* 1177 * let's increase this in prior to actual block count change in order 1178 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1179 */ 1180 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1181 1182 spin_lock(&sbi->stat_lock); 1183 sbi->total_valid_block_count += (block_t)(*count); 1184 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1185 diff = sbi->total_valid_block_count - sbi->user_block_count; 1186 *count -= diff; 1187 sbi->total_valid_block_count = sbi->user_block_count; 1188 if (!*count) { 1189 spin_unlock(&sbi->stat_lock); 1190 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1191 return false; 1192 } 1193 } 1194 spin_unlock(&sbi->stat_lock); 1195 1196 f2fs_i_blocks_write(inode, *count, true); 1197 return true; 1198 } 1199 1200 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1201 struct inode *inode, 1202 blkcnt_t count) 1203 { 1204 spin_lock(&sbi->stat_lock); 1205 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1206 f2fs_bug_on(sbi, inode->i_blocks < count); 1207 sbi->total_valid_block_count -= (block_t)count; 1208 spin_unlock(&sbi->stat_lock); 1209 f2fs_i_blocks_write(inode, count, false); 1210 } 1211 1212 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1213 { 1214 percpu_counter_inc(&sbi->nr_pages[count_type]); 1215 1216 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES) 1217 return; 1218 1219 set_sbi_flag(sbi, SBI_IS_DIRTY); 1220 } 1221 1222 static inline void inode_inc_dirty_pages(struct inode *inode) 1223 { 1224 percpu_counter_inc(&F2FS_I(inode)->dirty_pages); 1225 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1226 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1227 } 1228 1229 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1230 { 1231 percpu_counter_dec(&sbi->nr_pages[count_type]); 1232 } 1233 1234 static inline void inode_dec_dirty_pages(struct inode *inode) 1235 { 1236 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1237 !S_ISLNK(inode->i_mode)) 1238 return; 1239 1240 percpu_counter_dec(&F2FS_I(inode)->dirty_pages); 1241 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1242 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1243 } 1244 1245 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1246 { 1247 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]); 1248 } 1249 1250 static inline s64 get_dirty_pages(struct inode *inode) 1251 { 1252 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages); 1253 } 1254 1255 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1256 { 1257 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1258 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1259 sbi->log_blocks_per_seg; 1260 1261 return segs / sbi->segs_per_sec; 1262 } 1263 1264 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1265 { 1266 return sbi->total_valid_block_count; 1267 } 1268 1269 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1270 { 1271 return sbi->discard_blks; 1272 } 1273 1274 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1275 { 1276 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1277 1278 /* return NAT or SIT bitmap */ 1279 if (flag == NAT_BITMAP) 1280 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1281 else if (flag == SIT_BITMAP) 1282 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1283 1284 return 0; 1285 } 1286 1287 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1288 { 1289 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1290 } 1291 1292 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1293 { 1294 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1295 int offset; 1296 1297 if (__cp_payload(sbi) > 0) { 1298 if (flag == NAT_BITMAP) 1299 return &ckpt->sit_nat_version_bitmap; 1300 else 1301 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1302 } else { 1303 offset = (flag == NAT_BITMAP) ? 1304 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1305 return &ckpt->sit_nat_version_bitmap + offset; 1306 } 1307 } 1308 1309 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1310 { 1311 block_t start_addr; 1312 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1313 unsigned long long ckpt_version = cur_cp_version(ckpt); 1314 1315 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1316 1317 /* 1318 * odd numbered checkpoint should at cp segment 0 1319 * and even segment must be at cp segment 1 1320 */ 1321 if (!(ckpt_version & 1)) 1322 start_addr += sbi->blocks_per_seg; 1323 1324 return start_addr; 1325 } 1326 1327 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1328 { 1329 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1330 } 1331 1332 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1333 struct inode *inode) 1334 { 1335 block_t valid_block_count; 1336 unsigned int valid_node_count; 1337 1338 spin_lock(&sbi->stat_lock); 1339 1340 valid_block_count = sbi->total_valid_block_count + 1; 1341 if (unlikely(valid_block_count > sbi->user_block_count)) { 1342 spin_unlock(&sbi->stat_lock); 1343 return false; 1344 } 1345 1346 valid_node_count = sbi->total_valid_node_count + 1; 1347 if (unlikely(valid_node_count > sbi->total_node_count)) { 1348 spin_unlock(&sbi->stat_lock); 1349 return false; 1350 } 1351 1352 if (inode) 1353 f2fs_i_blocks_write(inode, 1, true); 1354 1355 sbi->total_valid_node_count++; 1356 sbi->total_valid_block_count++; 1357 spin_unlock(&sbi->stat_lock); 1358 1359 percpu_counter_inc(&sbi->alloc_valid_block_count); 1360 return true; 1361 } 1362 1363 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1364 struct inode *inode) 1365 { 1366 spin_lock(&sbi->stat_lock); 1367 1368 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1369 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1370 f2fs_bug_on(sbi, !inode->i_blocks); 1371 1372 f2fs_i_blocks_write(inode, 1, false); 1373 sbi->total_valid_node_count--; 1374 sbi->total_valid_block_count--; 1375 1376 spin_unlock(&sbi->stat_lock); 1377 } 1378 1379 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1380 { 1381 return sbi->total_valid_node_count; 1382 } 1383 1384 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1385 { 1386 percpu_counter_inc(&sbi->total_valid_inode_count); 1387 } 1388 1389 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1390 { 1391 percpu_counter_dec(&sbi->total_valid_inode_count); 1392 } 1393 1394 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1395 { 1396 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1397 } 1398 1399 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1400 pgoff_t index, bool for_write) 1401 { 1402 #ifdef CONFIG_F2FS_FAULT_INJECTION 1403 struct page *page = find_lock_page(mapping, index); 1404 if (page) 1405 return page; 1406 1407 if (time_to_inject(FAULT_PAGE_ALLOC)) 1408 return NULL; 1409 #endif 1410 if (!for_write) 1411 return grab_cache_page(mapping, index); 1412 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1413 } 1414 1415 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1416 { 1417 char *src_kaddr = kmap(src); 1418 char *dst_kaddr = kmap(dst); 1419 1420 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1421 kunmap(dst); 1422 kunmap(src); 1423 } 1424 1425 static inline void f2fs_put_page(struct page *page, int unlock) 1426 { 1427 if (!page) 1428 return; 1429 1430 if (unlock) { 1431 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1432 unlock_page(page); 1433 } 1434 put_page(page); 1435 } 1436 1437 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1438 { 1439 if (dn->node_page) 1440 f2fs_put_page(dn->node_page, 1); 1441 if (dn->inode_page && dn->node_page != dn->inode_page) 1442 f2fs_put_page(dn->inode_page, 0); 1443 dn->node_page = NULL; 1444 dn->inode_page = NULL; 1445 } 1446 1447 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1448 size_t size) 1449 { 1450 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1451 } 1452 1453 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1454 gfp_t flags) 1455 { 1456 void *entry; 1457 1458 entry = kmem_cache_alloc(cachep, flags); 1459 if (!entry) 1460 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1461 return entry; 1462 } 1463 1464 static inline struct bio *f2fs_bio_alloc(int npages) 1465 { 1466 struct bio *bio; 1467 1468 /* No failure on bio allocation */ 1469 bio = bio_alloc(GFP_NOIO, npages); 1470 if (!bio) 1471 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1472 return bio; 1473 } 1474 1475 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1476 unsigned long index, void *item) 1477 { 1478 while (radix_tree_insert(root, index, item)) 1479 cond_resched(); 1480 } 1481 1482 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1483 1484 static inline bool IS_INODE(struct page *page) 1485 { 1486 struct f2fs_node *p = F2FS_NODE(page); 1487 return RAW_IS_INODE(p); 1488 } 1489 1490 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1491 { 1492 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1493 } 1494 1495 static inline block_t datablock_addr(struct page *node_page, 1496 unsigned int offset) 1497 { 1498 struct f2fs_node *raw_node; 1499 __le32 *addr_array; 1500 raw_node = F2FS_NODE(node_page); 1501 addr_array = blkaddr_in_node(raw_node); 1502 return le32_to_cpu(addr_array[offset]); 1503 } 1504 1505 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1506 { 1507 int mask; 1508 1509 addr += (nr >> 3); 1510 mask = 1 << (7 - (nr & 0x07)); 1511 return mask & *addr; 1512 } 1513 1514 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1515 { 1516 int mask; 1517 1518 addr += (nr >> 3); 1519 mask = 1 << (7 - (nr & 0x07)); 1520 *addr |= mask; 1521 } 1522 1523 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1524 { 1525 int mask; 1526 1527 addr += (nr >> 3); 1528 mask = 1 << (7 - (nr & 0x07)); 1529 *addr &= ~mask; 1530 } 1531 1532 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1533 { 1534 int mask; 1535 int ret; 1536 1537 addr += (nr >> 3); 1538 mask = 1 << (7 - (nr & 0x07)); 1539 ret = mask & *addr; 1540 *addr |= mask; 1541 return ret; 1542 } 1543 1544 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1545 { 1546 int mask; 1547 int ret; 1548 1549 addr += (nr >> 3); 1550 mask = 1 << (7 - (nr & 0x07)); 1551 ret = mask & *addr; 1552 *addr &= ~mask; 1553 return ret; 1554 } 1555 1556 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1557 { 1558 int mask; 1559 1560 addr += (nr >> 3); 1561 mask = 1 << (7 - (nr & 0x07)); 1562 *addr ^= mask; 1563 } 1564 1565 /* used for f2fs_inode_info->flags */ 1566 enum { 1567 FI_NEW_INODE, /* indicate newly allocated inode */ 1568 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1569 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1570 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1571 FI_INC_LINK, /* need to increment i_nlink */ 1572 FI_ACL_MODE, /* indicate acl mode */ 1573 FI_NO_ALLOC, /* should not allocate any blocks */ 1574 FI_FREE_NID, /* free allocated nide */ 1575 FI_NO_EXTENT, /* not to use the extent cache */ 1576 FI_INLINE_XATTR, /* used for inline xattr */ 1577 FI_INLINE_DATA, /* used for inline data*/ 1578 FI_INLINE_DENTRY, /* used for inline dentry */ 1579 FI_APPEND_WRITE, /* inode has appended data */ 1580 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1581 FI_NEED_IPU, /* used for ipu per file */ 1582 FI_ATOMIC_FILE, /* indicate atomic file */ 1583 FI_VOLATILE_FILE, /* indicate volatile file */ 1584 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1585 FI_DROP_CACHE, /* drop dirty page cache */ 1586 FI_DATA_EXIST, /* indicate data exists */ 1587 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1588 FI_DO_DEFRAG, /* indicate defragment is running */ 1589 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1590 }; 1591 1592 static inline void __mark_inode_dirty_flag(struct inode *inode, 1593 int flag, bool set) 1594 { 1595 switch (flag) { 1596 case FI_INLINE_XATTR: 1597 case FI_INLINE_DATA: 1598 case FI_INLINE_DENTRY: 1599 if (set) 1600 return; 1601 case FI_DATA_EXIST: 1602 case FI_INLINE_DOTS: 1603 f2fs_mark_inode_dirty_sync(inode); 1604 } 1605 } 1606 1607 static inline void set_inode_flag(struct inode *inode, int flag) 1608 { 1609 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1610 set_bit(flag, &F2FS_I(inode)->flags); 1611 __mark_inode_dirty_flag(inode, flag, true); 1612 } 1613 1614 static inline int is_inode_flag_set(struct inode *inode, int flag) 1615 { 1616 return test_bit(flag, &F2FS_I(inode)->flags); 1617 } 1618 1619 static inline void clear_inode_flag(struct inode *inode, int flag) 1620 { 1621 if (test_bit(flag, &F2FS_I(inode)->flags)) 1622 clear_bit(flag, &F2FS_I(inode)->flags); 1623 __mark_inode_dirty_flag(inode, flag, false); 1624 } 1625 1626 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1627 { 1628 F2FS_I(inode)->i_acl_mode = mode; 1629 set_inode_flag(inode, FI_ACL_MODE); 1630 f2fs_mark_inode_dirty_sync(inode); 1631 } 1632 1633 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1634 { 1635 if (inc) 1636 inc_nlink(inode); 1637 else 1638 drop_nlink(inode); 1639 f2fs_mark_inode_dirty_sync(inode); 1640 } 1641 1642 static inline void f2fs_i_blocks_write(struct inode *inode, 1643 blkcnt_t diff, bool add) 1644 { 1645 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1646 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1647 1648 inode->i_blocks = add ? inode->i_blocks + diff : 1649 inode->i_blocks - diff; 1650 f2fs_mark_inode_dirty_sync(inode); 1651 if (clean || recover) 1652 set_inode_flag(inode, FI_AUTO_RECOVER); 1653 } 1654 1655 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1656 { 1657 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1658 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1659 1660 if (i_size_read(inode) == i_size) 1661 return; 1662 1663 i_size_write(inode, i_size); 1664 f2fs_mark_inode_dirty_sync(inode); 1665 if (clean || recover) 1666 set_inode_flag(inode, FI_AUTO_RECOVER); 1667 } 1668 1669 static inline bool f2fs_skip_inode_update(struct inode *inode) 1670 { 1671 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1672 return false; 1673 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1674 } 1675 1676 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1677 { 1678 F2FS_I(inode)->i_current_depth = depth; 1679 f2fs_mark_inode_dirty_sync(inode); 1680 } 1681 1682 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1683 { 1684 F2FS_I(inode)->i_xattr_nid = xnid; 1685 f2fs_mark_inode_dirty_sync(inode); 1686 } 1687 1688 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1689 { 1690 F2FS_I(inode)->i_pino = pino; 1691 f2fs_mark_inode_dirty_sync(inode); 1692 } 1693 1694 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1695 { 1696 struct f2fs_inode_info *fi = F2FS_I(inode); 1697 1698 if (ri->i_inline & F2FS_INLINE_XATTR) 1699 set_bit(FI_INLINE_XATTR, &fi->flags); 1700 if (ri->i_inline & F2FS_INLINE_DATA) 1701 set_bit(FI_INLINE_DATA, &fi->flags); 1702 if (ri->i_inline & F2FS_INLINE_DENTRY) 1703 set_bit(FI_INLINE_DENTRY, &fi->flags); 1704 if (ri->i_inline & F2FS_DATA_EXIST) 1705 set_bit(FI_DATA_EXIST, &fi->flags); 1706 if (ri->i_inline & F2FS_INLINE_DOTS) 1707 set_bit(FI_INLINE_DOTS, &fi->flags); 1708 } 1709 1710 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1711 { 1712 ri->i_inline = 0; 1713 1714 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1715 ri->i_inline |= F2FS_INLINE_XATTR; 1716 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1717 ri->i_inline |= F2FS_INLINE_DATA; 1718 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1719 ri->i_inline |= F2FS_INLINE_DENTRY; 1720 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1721 ri->i_inline |= F2FS_DATA_EXIST; 1722 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1723 ri->i_inline |= F2FS_INLINE_DOTS; 1724 } 1725 1726 static inline int f2fs_has_inline_xattr(struct inode *inode) 1727 { 1728 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1729 } 1730 1731 static inline unsigned int addrs_per_inode(struct inode *inode) 1732 { 1733 if (f2fs_has_inline_xattr(inode)) 1734 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1735 return DEF_ADDRS_PER_INODE; 1736 } 1737 1738 static inline void *inline_xattr_addr(struct page *page) 1739 { 1740 struct f2fs_inode *ri = F2FS_INODE(page); 1741 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1742 F2FS_INLINE_XATTR_ADDRS]); 1743 } 1744 1745 static inline int inline_xattr_size(struct inode *inode) 1746 { 1747 if (f2fs_has_inline_xattr(inode)) 1748 return F2FS_INLINE_XATTR_ADDRS << 2; 1749 else 1750 return 0; 1751 } 1752 1753 static inline int f2fs_has_inline_data(struct inode *inode) 1754 { 1755 return is_inode_flag_set(inode, FI_INLINE_DATA); 1756 } 1757 1758 static inline void f2fs_clear_inline_inode(struct inode *inode) 1759 { 1760 clear_inode_flag(inode, FI_INLINE_DATA); 1761 clear_inode_flag(inode, FI_DATA_EXIST); 1762 } 1763 1764 static inline int f2fs_exist_data(struct inode *inode) 1765 { 1766 return is_inode_flag_set(inode, FI_DATA_EXIST); 1767 } 1768 1769 static inline int f2fs_has_inline_dots(struct inode *inode) 1770 { 1771 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1772 } 1773 1774 static inline bool f2fs_is_atomic_file(struct inode *inode) 1775 { 1776 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1777 } 1778 1779 static inline bool f2fs_is_volatile_file(struct inode *inode) 1780 { 1781 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1782 } 1783 1784 static inline bool f2fs_is_first_block_written(struct inode *inode) 1785 { 1786 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1787 } 1788 1789 static inline bool f2fs_is_drop_cache(struct inode *inode) 1790 { 1791 return is_inode_flag_set(inode, FI_DROP_CACHE); 1792 } 1793 1794 static inline void *inline_data_addr(struct page *page) 1795 { 1796 struct f2fs_inode *ri = F2FS_INODE(page); 1797 return (void *)&(ri->i_addr[1]); 1798 } 1799 1800 static inline int f2fs_has_inline_dentry(struct inode *inode) 1801 { 1802 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1803 } 1804 1805 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1806 { 1807 if (!f2fs_has_inline_dentry(dir)) 1808 kunmap(page); 1809 } 1810 1811 static inline int is_file(struct inode *inode, int type) 1812 { 1813 return F2FS_I(inode)->i_advise & type; 1814 } 1815 1816 static inline void set_file(struct inode *inode, int type) 1817 { 1818 F2FS_I(inode)->i_advise |= type; 1819 f2fs_mark_inode_dirty_sync(inode); 1820 } 1821 1822 static inline void clear_file(struct inode *inode, int type) 1823 { 1824 F2FS_I(inode)->i_advise &= ~type; 1825 f2fs_mark_inode_dirty_sync(inode); 1826 } 1827 1828 static inline int f2fs_readonly(struct super_block *sb) 1829 { 1830 return sb->s_flags & MS_RDONLY; 1831 } 1832 1833 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1834 { 1835 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1836 } 1837 1838 static inline bool is_dot_dotdot(const struct qstr *str) 1839 { 1840 if (str->len == 1 && str->name[0] == '.') 1841 return true; 1842 1843 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1844 return true; 1845 1846 return false; 1847 } 1848 1849 static inline bool f2fs_may_extent_tree(struct inode *inode) 1850 { 1851 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1852 is_inode_flag_set(inode, FI_NO_EXTENT)) 1853 return false; 1854 1855 return S_ISREG(inode->i_mode); 1856 } 1857 1858 static inline void *f2fs_kmalloc(size_t size, gfp_t flags) 1859 { 1860 #ifdef CONFIG_F2FS_FAULT_INJECTION 1861 if (time_to_inject(FAULT_KMALLOC)) 1862 return NULL; 1863 #endif 1864 return kmalloc(size, flags); 1865 } 1866 1867 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1868 { 1869 void *ret; 1870 1871 ret = kmalloc(size, flags | __GFP_NOWARN); 1872 if (!ret) 1873 ret = __vmalloc(size, flags, PAGE_KERNEL); 1874 return ret; 1875 } 1876 1877 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1878 { 1879 void *ret; 1880 1881 ret = kzalloc(size, flags | __GFP_NOWARN); 1882 if (!ret) 1883 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1884 return ret; 1885 } 1886 1887 #define get_inode_mode(i) \ 1888 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1889 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1890 1891 /* get offset of first page in next direct node */ 1892 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1893 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1894 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1895 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1896 1897 /* 1898 * file.c 1899 */ 1900 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1901 void truncate_data_blocks(struct dnode_of_data *); 1902 int truncate_blocks(struct inode *, u64, bool); 1903 int f2fs_truncate(struct inode *); 1904 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1905 int f2fs_setattr(struct dentry *, struct iattr *); 1906 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1907 int truncate_data_blocks_range(struct dnode_of_data *, int); 1908 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1909 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1910 1911 /* 1912 * inode.c 1913 */ 1914 void f2fs_set_inode_flags(struct inode *); 1915 struct inode *f2fs_iget(struct super_block *, unsigned long); 1916 struct inode *f2fs_iget_retry(struct super_block *, unsigned long); 1917 int try_to_free_nats(struct f2fs_sb_info *, int); 1918 int update_inode(struct inode *, struct page *); 1919 int update_inode_page(struct inode *); 1920 int f2fs_write_inode(struct inode *, struct writeback_control *); 1921 void f2fs_evict_inode(struct inode *); 1922 void handle_failed_inode(struct inode *); 1923 1924 /* 1925 * namei.c 1926 */ 1927 struct dentry *f2fs_get_parent(struct dentry *child); 1928 1929 /* 1930 * dir.c 1931 */ 1932 void set_de_type(struct f2fs_dir_entry *, umode_t); 1933 unsigned char get_de_type(struct f2fs_dir_entry *); 1934 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1935 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1936 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1937 unsigned int, struct fscrypt_str *); 1938 void do_make_empty_dir(struct inode *, struct inode *, 1939 struct f2fs_dentry_ptr *); 1940 struct page *init_inode_metadata(struct inode *, struct inode *, 1941 const struct qstr *, const struct qstr *, struct page *); 1942 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1943 int room_for_filename(const void *, int, int); 1944 void f2fs_drop_nlink(struct inode *, struct inode *); 1945 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *, 1946 struct page **); 1947 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 1948 struct page **); 1949 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1950 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 1951 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1952 struct page *, struct inode *); 1953 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1954 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1955 const struct qstr *, f2fs_hash_t , unsigned int); 1956 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 1957 const struct qstr *, struct inode *, nid_t, umode_t); 1958 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *, 1959 nid_t, umode_t); 1960 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1961 umode_t); 1962 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1963 struct inode *); 1964 int f2fs_do_tmpfile(struct inode *, struct inode *); 1965 bool f2fs_empty_dir(struct inode *); 1966 1967 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1968 { 1969 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1970 inode, inode->i_ino, inode->i_mode); 1971 } 1972 1973 /* 1974 * super.c 1975 */ 1976 int f2fs_inode_dirtied(struct inode *); 1977 void f2fs_inode_synced(struct inode *); 1978 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1979 int f2fs_sync_fs(struct super_block *, int); 1980 extern __printf(3, 4) 1981 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1982 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 1983 1984 /* 1985 * hash.c 1986 */ 1987 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1988 1989 /* 1990 * node.c 1991 */ 1992 struct dnode_of_data; 1993 struct node_info; 1994 1995 bool available_free_memory(struct f2fs_sb_info *, int); 1996 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1997 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1998 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1999 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 2000 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 2001 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 2002 int truncate_inode_blocks(struct inode *, pgoff_t); 2003 int truncate_xattr_node(struct inode *, struct page *); 2004 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 2005 int remove_inode_page(struct inode *); 2006 struct page *new_inode_page(struct inode *); 2007 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 2008 void ra_node_page(struct f2fs_sb_info *, nid_t); 2009 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 2010 struct page *get_node_page_ra(struct page *, int); 2011 void move_node_page(struct page *, int); 2012 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 2013 struct writeback_control *, bool); 2014 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 2015 void build_free_nids(struct f2fs_sb_info *); 2016 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 2017 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 2018 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 2019 int try_to_free_nids(struct f2fs_sb_info *, int); 2020 void recover_inline_xattr(struct inode *, struct page *); 2021 void recover_xattr_data(struct inode *, struct page *, block_t); 2022 int recover_inode_page(struct f2fs_sb_info *, struct page *); 2023 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 2024 struct f2fs_summary_block *); 2025 void flush_nat_entries(struct f2fs_sb_info *); 2026 int build_node_manager(struct f2fs_sb_info *); 2027 void destroy_node_manager(struct f2fs_sb_info *); 2028 int __init create_node_manager_caches(void); 2029 void destroy_node_manager_caches(void); 2030 2031 /* 2032 * segment.c 2033 */ 2034 void register_inmem_page(struct inode *, struct page *); 2035 void drop_inmem_pages(struct inode *); 2036 int commit_inmem_pages(struct inode *); 2037 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2038 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2039 int f2fs_issue_flush(struct f2fs_sb_info *); 2040 int create_flush_cmd_control(struct f2fs_sb_info *); 2041 void destroy_flush_cmd_control(struct f2fs_sb_info *); 2042 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2043 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2044 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2045 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *); 2046 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2047 void release_discard_addrs(struct f2fs_sb_info *); 2048 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2049 void allocate_new_segments(struct f2fs_sb_info *); 2050 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2051 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2052 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2053 void write_meta_page(struct f2fs_sb_info *, struct page *); 2054 void write_node_page(unsigned int, struct f2fs_io_info *); 2055 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2056 void rewrite_data_page(struct f2fs_io_info *); 2057 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2058 block_t, block_t, bool, bool); 2059 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2060 block_t, block_t, unsigned char, bool, bool); 2061 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2062 block_t, block_t *, struct f2fs_summary *, int); 2063 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2064 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2065 void write_data_summaries(struct f2fs_sb_info *, block_t); 2066 void write_node_summaries(struct f2fs_sb_info *, block_t); 2067 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2068 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2069 int build_segment_manager(struct f2fs_sb_info *); 2070 void destroy_segment_manager(struct f2fs_sb_info *); 2071 int __init create_segment_manager_caches(void); 2072 void destroy_segment_manager_caches(void); 2073 2074 /* 2075 * checkpoint.c 2076 */ 2077 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2078 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2079 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2080 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2081 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2082 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2083 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2084 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2085 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2086 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2087 void release_ino_entry(struct f2fs_sb_info *, bool); 2088 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2089 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2090 int acquire_orphan_inode(struct f2fs_sb_info *); 2091 void release_orphan_inode(struct f2fs_sb_info *); 2092 void add_orphan_inode(struct inode *); 2093 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2094 int recover_orphan_inodes(struct f2fs_sb_info *); 2095 int get_valid_checkpoint(struct f2fs_sb_info *); 2096 void update_dirty_page(struct inode *, struct page *); 2097 void remove_dirty_inode(struct inode *); 2098 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2099 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2100 void init_ino_entry_info(struct f2fs_sb_info *); 2101 int __init create_checkpoint_caches(void); 2102 void destroy_checkpoint_caches(void); 2103 2104 /* 2105 * data.c 2106 */ 2107 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2108 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2109 struct page *, nid_t, enum page_type, int); 2110 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2111 int f2fs_submit_page_bio(struct f2fs_io_info *); 2112 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2113 void set_data_blkaddr(struct dnode_of_data *); 2114 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2115 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2116 int reserve_new_block(struct dnode_of_data *); 2117 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2118 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2119 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2120 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2121 struct page *find_data_page(struct inode *, pgoff_t); 2122 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2123 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2124 int do_write_data_page(struct f2fs_io_info *); 2125 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2126 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2127 void f2fs_set_page_dirty_nobuffers(struct page *); 2128 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2129 int f2fs_release_page(struct page *, gfp_t); 2130 2131 /* 2132 * gc.c 2133 */ 2134 int start_gc_thread(struct f2fs_sb_info *); 2135 void stop_gc_thread(struct f2fs_sb_info *); 2136 block_t start_bidx_of_node(unsigned int, struct inode *); 2137 int f2fs_gc(struct f2fs_sb_info *, bool); 2138 void build_gc_manager(struct f2fs_sb_info *); 2139 2140 /* 2141 * recovery.c 2142 */ 2143 int recover_fsync_data(struct f2fs_sb_info *, bool); 2144 bool space_for_roll_forward(struct f2fs_sb_info *); 2145 2146 /* 2147 * debug.c 2148 */ 2149 #ifdef CONFIG_F2FS_STAT_FS 2150 struct f2fs_stat_info { 2151 struct list_head stat_list; 2152 struct f2fs_sb_info *sbi; 2153 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2154 int main_area_segs, main_area_sections, main_area_zones; 2155 unsigned long long hit_largest, hit_cached, hit_rbtree; 2156 unsigned long long hit_total, total_ext; 2157 int ext_tree, zombie_tree, ext_node; 2158 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2159 s64 inmem_pages; 2160 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2161 int nats, dirty_nats, sits, dirty_sits, fnids; 2162 int total_count, utilization; 2163 int bg_gc, wb_bios; 2164 int inline_xattr, inline_inode, inline_dir, orphans; 2165 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2166 unsigned int bimodal, avg_vblocks; 2167 int util_free, util_valid, util_invalid; 2168 int rsvd_segs, overp_segs; 2169 int dirty_count, node_pages, meta_pages; 2170 int prefree_count, call_count, cp_count, bg_cp_count; 2171 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2172 int bg_node_segs, bg_data_segs; 2173 int tot_blks, data_blks, node_blks; 2174 int bg_data_blks, bg_node_blks; 2175 int curseg[NR_CURSEG_TYPE]; 2176 int cursec[NR_CURSEG_TYPE]; 2177 int curzone[NR_CURSEG_TYPE]; 2178 2179 unsigned int segment_count[2]; 2180 unsigned int block_count[2]; 2181 unsigned int inplace_count; 2182 unsigned long long base_mem, cache_mem, page_mem; 2183 }; 2184 2185 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2186 { 2187 return (struct f2fs_stat_info *)sbi->stat_info; 2188 } 2189 2190 #define stat_inc_cp_count(si) ((si)->cp_count++) 2191 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2192 #define stat_inc_call_count(si) ((si)->call_count++) 2193 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2194 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2195 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2196 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2197 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2198 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2199 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2200 #define stat_inc_inline_xattr(inode) \ 2201 do { \ 2202 if (f2fs_has_inline_xattr(inode)) \ 2203 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2204 } while (0) 2205 #define stat_dec_inline_xattr(inode) \ 2206 do { \ 2207 if (f2fs_has_inline_xattr(inode)) \ 2208 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2209 } while (0) 2210 #define stat_inc_inline_inode(inode) \ 2211 do { \ 2212 if (f2fs_has_inline_data(inode)) \ 2213 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2214 } while (0) 2215 #define stat_dec_inline_inode(inode) \ 2216 do { \ 2217 if (f2fs_has_inline_data(inode)) \ 2218 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2219 } while (0) 2220 #define stat_inc_inline_dir(inode) \ 2221 do { \ 2222 if (f2fs_has_inline_dentry(inode)) \ 2223 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2224 } while (0) 2225 #define stat_dec_inline_dir(inode) \ 2226 do { \ 2227 if (f2fs_has_inline_dentry(inode)) \ 2228 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2229 } while (0) 2230 #define stat_inc_seg_type(sbi, curseg) \ 2231 ((sbi)->segment_count[(curseg)->alloc_type]++) 2232 #define stat_inc_block_count(sbi, curseg) \ 2233 ((sbi)->block_count[(curseg)->alloc_type]++) 2234 #define stat_inc_inplace_blocks(sbi) \ 2235 (atomic_inc(&(sbi)->inplace_count)) 2236 #define stat_inc_seg_count(sbi, type, gc_type) \ 2237 do { \ 2238 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2239 (si)->tot_segs++; \ 2240 if (type == SUM_TYPE_DATA) { \ 2241 si->data_segs++; \ 2242 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2243 } else { \ 2244 si->node_segs++; \ 2245 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2246 } \ 2247 } while (0) 2248 2249 #define stat_inc_tot_blk_count(si, blks) \ 2250 (si->tot_blks += (blks)) 2251 2252 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2253 do { \ 2254 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2255 stat_inc_tot_blk_count(si, blks); \ 2256 si->data_blks += (blks); \ 2257 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2258 } while (0) 2259 2260 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2261 do { \ 2262 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2263 stat_inc_tot_blk_count(si, blks); \ 2264 si->node_blks += (blks); \ 2265 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2266 } while (0) 2267 2268 int f2fs_build_stats(struct f2fs_sb_info *); 2269 void f2fs_destroy_stats(struct f2fs_sb_info *); 2270 int __init f2fs_create_root_stats(void); 2271 void f2fs_destroy_root_stats(void); 2272 #else 2273 #define stat_inc_cp_count(si) 2274 #define stat_inc_bg_cp_count(si) 2275 #define stat_inc_call_count(si) 2276 #define stat_inc_bggc_count(si) 2277 #define stat_inc_dirty_inode(sbi, type) 2278 #define stat_dec_dirty_inode(sbi, type) 2279 #define stat_inc_total_hit(sb) 2280 #define stat_inc_rbtree_node_hit(sb) 2281 #define stat_inc_largest_node_hit(sbi) 2282 #define stat_inc_cached_node_hit(sbi) 2283 #define stat_inc_inline_xattr(inode) 2284 #define stat_dec_inline_xattr(inode) 2285 #define stat_inc_inline_inode(inode) 2286 #define stat_dec_inline_inode(inode) 2287 #define stat_inc_inline_dir(inode) 2288 #define stat_dec_inline_dir(inode) 2289 #define stat_inc_seg_type(sbi, curseg) 2290 #define stat_inc_block_count(sbi, curseg) 2291 #define stat_inc_inplace_blocks(sbi) 2292 #define stat_inc_seg_count(sbi, type, gc_type) 2293 #define stat_inc_tot_blk_count(si, blks) 2294 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2295 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2296 2297 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2298 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2299 static inline int __init f2fs_create_root_stats(void) { return 0; } 2300 static inline void f2fs_destroy_root_stats(void) { } 2301 #endif 2302 2303 extern const struct file_operations f2fs_dir_operations; 2304 extern const struct file_operations f2fs_file_operations; 2305 extern const struct inode_operations f2fs_file_inode_operations; 2306 extern const struct address_space_operations f2fs_dblock_aops; 2307 extern const struct address_space_operations f2fs_node_aops; 2308 extern const struct address_space_operations f2fs_meta_aops; 2309 extern const struct inode_operations f2fs_dir_inode_operations; 2310 extern const struct inode_operations f2fs_symlink_inode_operations; 2311 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2312 extern const struct inode_operations f2fs_special_inode_operations; 2313 extern struct kmem_cache *inode_entry_slab; 2314 2315 /* 2316 * inline.c 2317 */ 2318 bool f2fs_may_inline_data(struct inode *); 2319 bool f2fs_may_inline_dentry(struct inode *); 2320 void read_inline_data(struct page *, struct page *); 2321 bool truncate_inline_inode(struct page *, u64); 2322 int f2fs_read_inline_data(struct inode *, struct page *); 2323 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2324 int f2fs_convert_inline_inode(struct inode *); 2325 int f2fs_write_inline_data(struct inode *, struct page *); 2326 bool recover_inline_data(struct inode *, struct page *); 2327 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2328 struct fscrypt_name *, struct page **); 2329 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2330 int f2fs_add_inline_entry(struct inode *, const struct qstr *, 2331 const struct qstr *, struct inode *, nid_t, umode_t); 2332 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2333 struct inode *, struct inode *); 2334 bool f2fs_empty_inline_dir(struct inode *); 2335 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2336 struct fscrypt_str *); 2337 int f2fs_inline_data_fiemap(struct inode *, 2338 struct fiemap_extent_info *, __u64, __u64); 2339 2340 /* 2341 * shrinker.c 2342 */ 2343 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2344 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2345 void f2fs_join_shrinker(struct f2fs_sb_info *); 2346 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2347 2348 /* 2349 * extent_cache.c 2350 */ 2351 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2352 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2353 void f2fs_drop_extent_tree(struct inode *); 2354 unsigned int f2fs_destroy_extent_node(struct inode *); 2355 void f2fs_destroy_extent_tree(struct inode *); 2356 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2357 void f2fs_update_extent_cache(struct dnode_of_data *); 2358 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2359 pgoff_t, block_t, unsigned int); 2360 void init_extent_cache_info(struct f2fs_sb_info *); 2361 int __init create_extent_cache(void); 2362 void destroy_extent_cache(void); 2363 2364 /* 2365 * crypto support 2366 */ 2367 static inline bool f2fs_encrypted_inode(struct inode *inode) 2368 { 2369 return file_is_encrypt(inode); 2370 } 2371 2372 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2373 { 2374 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2375 file_set_encrypt(inode); 2376 #endif 2377 } 2378 2379 static inline bool f2fs_bio_encrypted(struct bio *bio) 2380 { 2381 return bio->bi_private != NULL; 2382 } 2383 2384 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2385 { 2386 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2387 } 2388 2389 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb) 2390 { 2391 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR); 2392 } 2393 2394 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2395 { 2396 clear_opt(sbi, ADAPTIVE); 2397 clear_opt(sbi, LFS); 2398 2399 switch (mt) { 2400 case F2FS_MOUNT_ADAPTIVE: 2401 set_opt(sbi, ADAPTIVE); 2402 break; 2403 case F2FS_MOUNT_LFS: 2404 set_opt(sbi, LFS); 2405 break; 2406 } 2407 } 2408 2409 static inline bool f2fs_may_encrypt(struct inode *inode) 2410 { 2411 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2412 umode_t mode = inode->i_mode; 2413 2414 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2415 #else 2416 return 0; 2417 #endif 2418 } 2419 2420 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2421 #define fscrypt_set_d_op(i) 2422 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2423 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2424 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2425 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2426 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2427 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2428 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2429 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2430 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2431 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2432 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2433 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2434 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2435 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2436 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2437 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2438 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2439 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2440 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2441 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2442 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2443 #endif 2444 #endif 2445