1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/bio.h> 23 24 #ifdef CONFIG_F2FS_CHECK_FS 25 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 26 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 27 #else 28 #define f2fs_bug_on(sbi, condition) \ 29 do { \ 30 if (unlikely(condition)) { \ 31 WARN_ON(1); \ 32 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 33 } \ 34 } while (0) 35 #define f2fs_down_write(x, y) down_write(x) 36 #endif 37 38 /* 39 * For mount options 40 */ 41 #define F2FS_MOUNT_BG_GC 0x00000001 42 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 43 #define F2FS_MOUNT_DISCARD 0x00000004 44 #define F2FS_MOUNT_NOHEAP 0x00000008 45 #define F2FS_MOUNT_XATTR_USER 0x00000010 46 #define F2FS_MOUNT_POSIX_ACL 0x00000020 47 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 48 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 49 #define F2FS_MOUNT_INLINE_DATA 0x00000100 50 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 51 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 52 #define F2FS_MOUNT_NOBARRIER 0x00000800 53 #define F2FS_MOUNT_FASTBOOT 0x00001000 54 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 55 56 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 57 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 58 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 59 60 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 61 typecheck(unsigned long long, b) && \ 62 ((long long)((a) - (b)) > 0)) 63 64 typedef u32 block_t; /* 65 * should not change u32, since it is the on-disk block 66 * address format, __le32. 67 */ 68 typedef u32 nid_t; 69 70 struct f2fs_mount_info { 71 unsigned int opt; 72 }; 73 74 #define F2FS_FEATURE_ENCRYPT 0x0001 75 76 #define F2FS_HAS_FEATURE(sb, mask) \ 77 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 78 #define F2FS_SET_FEATURE(sb, mask) \ 79 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 80 #define F2FS_CLEAR_FEATURE(sb, mask) \ 81 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 82 83 #define CRCPOLY_LE 0xedb88320 84 85 static inline __u32 f2fs_crc32(void *buf, size_t len) 86 { 87 unsigned char *p = (unsigned char *)buf; 88 __u32 crc = F2FS_SUPER_MAGIC; 89 int i; 90 91 while (len--) { 92 crc ^= *p++; 93 for (i = 0; i < 8; i++) 94 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 95 } 96 return crc; 97 } 98 99 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 100 { 101 return f2fs_crc32(buf, buf_size) == blk_crc; 102 } 103 104 /* 105 * For checkpoint manager 106 */ 107 enum { 108 NAT_BITMAP, 109 SIT_BITMAP 110 }; 111 112 enum { 113 CP_UMOUNT, 114 CP_FASTBOOT, 115 CP_SYNC, 116 CP_RECOVERY, 117 CP_DISCARD, 118 }; 119 120 #define DEF_BATCHED_TRIM_SECTIONS 32 121 #define BATCHED_TRIM_SEGMENTS(sbi) \ 122 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 123 #define BATCHED_TRIM_BLOCKS(sbi) \ 124 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 125 126 struct cp_control { 127 int reason; 128 __u64 trim_start; 129 __u64 trim_end; 130 __u64 trim_minlen; 131 __u64 trimmed; 132 }; 133 134 /* 135 * For CP/NAT/SIT/SSA readahead 136 */ 137 enum { 138 META_CP, 139 META_NAT, 140 META_SIT, 141 META_SSA, 142 META_POR, 143 }; 144 145 /* for the list of ino */ 146 enum { 147 ORPHAN_INO, /* for orphan ino list */ 148 APPEND_INO, /* for append ino list */ 149 UPDATE_INO, /* for update ino list */ 150 MAX_INO_ENTRY, /* max. list */ 151 }; 152 153 struct ino_entry { 154 struct list_head list; /* list head */ 155 nid_t ino; /* inode number */ 156 }; 157 158 /* 159 * for the list of directory inodes or gc inodes. 160 * NOTE: there are two slab users for this structure, if we add/modify/delete 161 * fields in structure for one of slab users, it may affect fields or size of 162 * other one, in this condition, it's better to split both of slab and related 163 * data structure. 164 */ 165 struct inode_entry { 166 struct list_head list; /* list head */ 167 struct inode *inode; /* vfs inode pointer */ 168 }; 169 170 /* for the list of blockaddresses to be discarded */ 171 struct discard_entry { 172 struct list_head list; /* list head */ 173 block_t blkaddr; /* block address to be discarded */ 174 int len; /* # of consecutive blocks of the discard */ 175 }; 176 177 /* for the list of fsync inodes, used only during recovery */ 178 struct fsync_inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 block_t blkaddr; /* block address locating the last fsync */ 182 block_t last_dentry; /* block address locating the last dentry */ 183 block_t last_inode; /* block address locating the last inode */ 184 }; 185 186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 188 189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 193 194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 196 197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 198 { 199 int before = nats_in_cursum(rs); 200 rs->n_nats = cpu_to_le16(before + i); 201 return before; 202 } 203 204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 205 { 206 int before = sits_in_cursum(rs); 207 rs->n_sits = cpu_to_le16(before + i); 208 return before; 209 } 210 211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 212 int type) 213 { 214 if (type == NAT_JOURNAL) 215 return size <= MAX_NAT_JENTRIES(sum); 216 return size <= MAX_SIT_JENTRIES(sum); 217 } 218 219 /* 220 * ioctl commands 221 */ 222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 225 226 #define F2FS_IOCTL_MAGIC 0xf5 227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 233 234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 235 _IOR('f', 19, struct f2fs_encryption_policy) 236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 237 _IOW('f', 20, __u8[16]) 238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 239 _IOW('f', 21, struct f2fs_encryption_policy) 240 241 /* 242 * should be same as XFS_IOC_GOINGDOWN. 243 * Flags for going down operation used by FS_IOC_GOINGDOWN 244 */ 245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 249 250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 251 /* 252 * ioctl commands in 32 bit emulation 253 */ 254 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 255 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 256 #endif 257 258 /* 259 * For INODE and NODE manager 260 */ 261 /* for directory operations */ 262 struct f2fs_str { 263 unsigned char *name; 264 u32 len; 265 }; 266 267 struct f2fs_filename { 268 const struct qstr *usr_fname; 269 struct f2fs_str disk_name; 270 f2fs_hash_t hash; 271 #ifdef CONFIG_F2FS_FS_ENCRYPTION 272 struct f2fs_str crypto_buf; 273 #endif 274 }; 275 276 #define FSTR_INIT(n, l) { .name = n, .len = l } 277 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 278 #define fname_name(p) ((p)->disk_name.name) 279 #define fname_len(p) ((p)->disk_name.len) 280 281 struct f2fs_dentry_ptr { 282 struct inode *inode; 283 const void *bitmap; 284 struct f2fs_dir_entry *dentry; 285 __u8 (*filename)[F2FS_SLOT_LEN]; 286 int max; 287 }; 288 289 static inline void make_dentry_ptr(struct inode *inode, 290 struct f2fs_dentry_ptr *d, void *src, int type) 291 { 292 d->inode = inode; 293 294 if (type == 1) { 295 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 296 d->max = NR_DENTRY_IN_BLOCK; 297 d->bitmap = &t->dentry_bitmap; 298 d->dentry = t->dentry; 299 d->filename = t->filename; 300 } else { 301 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 302 d->max = NR_INLINE_DENTRY; 303 d->bitmap = &t->dentry_bitmap; 304 d->dentry = t->dentry; 305 d->filename = t->filename; 306 } 307 } 308 309 /* 310 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 311 * as its node offset to distinguish from index node blocks. 312 * But some bits are used to mark the node block. 313 */ 314 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 315 >> OFFSET_BIT_SHIFT) 316 enum { 317 ALLOC_NODE, /* allocate a new node page if needed */ 318 LOOKUP_NODE, /* look up a node without readahead */ 319 LOOKUP_NODE_RA, /* 320 * look up a node with readahead called 321 * by get_data_block. 322 */ 323 }; 324 325 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 326 327 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 328 329 /* vector size for gang look-up from extent cache that consists of radix tree */ 330 #define EXT_TREE_VEC_SIZE 64 331 332 /* for in-memory extent cache entry */ 333 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 334 335 /* number of extent info in extent cache we try to shrink */ 336 #define EXTENT_CACHE_SHRINK_NUMBER 128 337 338 struct extent_info { 339 unsigned int fofs; /* start offset in a file */ 340 u32 blk; /* start block address of the extent */ 341 unsigned int len; /* length of the extent */ 342 }; 343 344 struct extent_node { 345 struct rb_node rb_node; /* rb node located in rb-tree */ 346 struct list_head list; /* node in global extent list of sbi */ 347 struct extent_info ei; /* extent info */ 348 }; 349 350 struct extent_tree { 351 nid_t ino; /* inode number */ 352 struct rb_root root; /* root of extent info rb-tree */ 353 struct extent_node *cached_en; /* recently accessed extent node */ 354 struct extent_info largest; /* largested extent info */ 355 rwlock_t lock; /* protect extent info rb-tree */ 356 atomic_t refcount; /* reference count of rb-tree */ 357 unsigned int count; /* # of extent node in rb-tree*/ 358 }; 359 360 /* 361 * This structure is taken from ext4_map_blocks. 362 * 363 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 364 */ 365 #define F2FS_MAP_NEW (1 << BH_New) 366 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 367 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 368 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 369 F2FS_MAP_UNWRITTEN) 370 371 struct f2fs_map_blocks { 372 block_t m_pblk; 373 block_t m_lblk; 374 unsigned int m_len; 375 unsigned int m_flags; 376 }; 377 378 /* for flag in get_data_block */ 379 #define F2FS_GET_BLOCK_READ 0 380 #define F2FS_GET_BLOCK_DIO 1 381 #define F2FS_GET_BLOCK_FIEMAP 2 382 #define F2FS_GET_BLOCK_BMAP 3 383 384 /* 385 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 386 */ 387 #define FADVISE_COLD_BIT 0x01 388 #define FADVISE_LOST_PINO_BIT 0x02 389 #define FADVISE_ENCRYPT_BIT 0x04 390 #define FADVISE_ENC_NAME_BIT 0x08 391 392 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 393 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 394 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 395 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 396 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 397 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 398 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 399 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 400 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 401 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 402 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 403 404 /* Encryption algorithms */ 405 #define F2FS_ENCRYPTION_MODE_INVALID 0 406 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 407 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 408 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 409 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 410 411 #include "f2fs_crypto.h" 412 413 #define DEF_DIR_LEVEL 0 414 415 struct f2fs_inode_info { 416 struct inode vfs_inode; /* serve a vfs inode */ 417 unsigned long i_flags; /* keep an inode flags for ioctl */ 418 unsigned char i_advise; /* use to give file attribute hints */ 419 unsigned char i_dir_level; /* use for dentry level for large dir */ 420 unsigned int i_current_depth; /* use only in directory structure */ 421 unsigned int i_pino; /* parent inode number */ 422 umode_t i_acl_mode; /* keep file acl mode temporarily */ 423 424 /* Use below internally in f2fs*/ 425 unsigned long flags; /* use to pass per-file flags */ 426 struct rw_semaphore i_sem; /* protect fi info */ 427 atomic_t dirty_pages; /* # of dirty pages */ 428 f2fs_hash_t chash; /* hash value of given file name */ 429 unsigned int clevel; /* maximum level of given file name */ 430 nid_t i_xattr_nid; /* node id that contains xattrs */ 431 unsigned long long xattr_ver; /* cp version of xattr modification */ 432 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 433 434 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 435 struct mutex inmem_lock; /* lock for inmemory pages */ 436 437 struct extent_tree *extent_tree; /* cached extent_tree entry */ 438 439 #ifdef CONFIG_F2FS_FS_ENCRYPTION 440 /* Encryption params */ 441 struct f2fs_crypt_info *i_crypt_info; 442 #endif 443 }; 444 445 static inline void get_extent_info(struct extent_info *ext, 446 struct f2fs_extent i_ext) 447 { 448 ext->fofs = le32_to_cpu(i_ext.fofs); 449 ext->blk = le32_to_cpu(i_ext.blk); 450 ext->len = le32_to_cpu(i_ext.len); 451 } 452 453 static inline void set_raw_extent(struct extent_info *ext, 454 struct f2fs_extent *i_ext) 455 { 456 i_ext->fofs = cpu_to_le32(ext->fofs); 457 i_ext->blk = cpu_to_le32(ext->blk); 458 i_ext->len = cpu_to_le32(ext->len); 459 } 460 461 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 462 u32 blk, unsigned int len) 463 { 464 ei->fofs = fofs; 465 ei->blk = blk; 466 ei->len = len; 467 } 468 469 static inline bool __is_extent_same(struct extent_info *ei1, 470 struct extent_info *ei2) 471 { 472 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 473 ei1->len == ei2->len); 474 } 475 476 static inline bool __is_extent_mergeable(struct extent_info *back, 477 struct extent_info *front) 478 { 479 return (back->fofs + back->len == front->fofs && 480 back->blk + back->len == front->blk); 481 } 482 483 static inline bool __is_back_mergeable(struct extent_info *cur, 484 struct extent_info *back) 485 { 486 return __is_extent_mergeable(back, cur); 487 } 488 489 static inline bool __is_front_mergeable(struct extent_info *cur, 490 struct extent_info *front) 491 { 492 return __is_extent_mergeable(cur, front); 493 } 494 495 struct f2fs_nm_info { 496 block_t nat_blkaddr; /* base disk address of NAT */ 497 nid_t max_nid; /* maximum possible node ids */ 498 nid_t available_nids; /* maximum available node ids */ 499 nid_t next_scan_nid; /* the next nid to be scanned */ 500 unsigned int ram_thresh; /* control the memory footprint */ 501 502 /* NAT cache management */ 503 struct radix_tree_root nat_root;/* root of the nat entry cache */ 504 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 505 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 506 struct list_head nat_entries; /* cached nat entry list (clean) */ 507 unsigned int nat_cnt; /* the # of cached nat entries */ 508 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 509 510 /* free node ids management */ 511 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 512 struct list_head free_nid_list; /* a list for free nids */ 513 spinlock_t free_nid_list_lock; /* protect free nid list */ 514 unsigned int fcnt; /* the number of free node id */ 515 struct mutex build_lock; /* lock for build free nids */ 516 517 /* for checkpoint */ 518 char *nat_bitmap; /* NAT bitmap pointer */ 519 int bitmap_size; /* bitmap size */ 520 }; 521 522 /* 523 * this structure is used as one of function parameters. 524 * all the information are dedicated to a given direct node block determined 525 * by the data offset in a file. 526 */ 527 struct dnode_of_data { 528 struct inode *inode; /* vfs inode pointer */ 529 struct page *inode_page; /* its inode page, NULL is possible */ 530 struct page *node_page; /* cached direct node page */ 531 nid_t nid; /* node id of the direct node block */ 532 unsigned int ofs_in_node; /* data offset in the node page */ 533 bool inode_page_locked; /* inode page is locked or not */ 534 block_t data_blkaddr; /* block address of the node block */ 535 }; 536 537 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 538 struct page *ipage, struct page *npage, nid_t nid) 539 { 540 memset(dn, 0, sizeof(*dn)); 541 dn->inode = inode; 542 dn->inode_page = ipage; 543 dn->node_page = npage; 544 dn->nid = nid; 545 } 546 547 /* 548 * For SIT manager 549 * 550 * By default, there are 6 active log areas across the whole main area. 551 * When considering hot and cold data separation to reduce cleaning overhead, 552 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 553 * respectively. 554 * In the current design, you should not change the numbers intentionally. 555 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 556 * logs individually according to the underlying devices. (default: 6) 557 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 558 * data and 8 for node logs. 559 */ 560 #define NR_CURSEG_DATA_TYPE (3) 561 #define NR_CURSEG_NODE_TYPE (3) 562 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 563 564 enum { 565 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 566 CURSEG_WARM_DATA, /* data blocks */ 567 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 568 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 569 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 570 CURSEG_COLD_NODE, /* indirect node blocks */ 571 NO_CHECK_TYPE, 572 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 573 }; 574 575 struct flush_cmd { 576 struct completion wait; 577 struct llist_node llnode; 578 int ret; 579 }; 580 581 struct flush_cmd_control { 582 struct task_struct *f2fs_issue_flush; /* flush thread */ 583 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 584 struct llist_head issue_list; /* list for command issue */ 585 struct llist_node *dispatch_list; /* list for command dispatch */ 586 }; 587 588 struct f2fs_sm_info { 589 struct sit_info *sit_info; /* whole segment information */ 590 struct free_segmap_info *free_info; /* free segment information */ 591 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 592 struct curseg_info *curseg_array; /* active segment information */ 593 594 block_t seg0_blkaddr; /* block address of 0'th segment */ 595 block_t main_blkaddr; /* start block address of main area */ 596 block_t ssa_blkaddr; /* start block address of SSA area */ 597 598 unsigned int segment_count; /* total # of segments */ 599 unsigned int main_segments; /* # of segments in main area */ 600 unsigned int reserved_segments; /* # of reserved segments */ 601 unsigned int ovp_segments; /* # of overprovision segments */ 602 603 /* a threshold to reclaim prefree segments */ 604 unsigned int rec_prefree_segments; 605 606 /* for small discard management */ 607 struct list_head discard_list; /* 4KB discard list */ 608 int nr_discards; /* # of discards in the list */ 609 int max_discards; /* max. discards to be issued */ 610 611 /* for batched trimming */ 612 unsigned int trim_sections; /* # of sections to trim */ 613 614 struct list_head sit_entry_set; /* sit entry set list */ 615 616 unsigned int ipu_policy; /* in-place-update policy */ 617 unsigned int min_ipu_util; /* in-place-update threshold */ 618 unsigned int min_fsync_blocks; /* threshold for fsync */ 619 620 /* for flush command control */ 621 struct flush_cmd_control *cmd_control_info; 622 623 }; 624 625 /* 626 * For superblock 627 */ 628 /* 629 * COUNT_TYPE for monitoring 630 * 631 * f2fs monitors the number of several block types such as on-writeback, 632 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 633 */ 634 enum count_type { 635 F2FS_WRITEBACK, 636 F2FS_DIRTY_DENTS, 637 F2FS_DIRTY_NODES, 638 F2FS_DIRTY_META, 639 F2FS_INMEM_PAGES, 640 NR_COUNT_TYPE, 641 }; 642 643 /* 644 * The below are the page types of bios used in submit_bio(). 645 * The available types are: 646 * DATA User data pages. It operates as async mode. 647 * NODE Node pages. It operates as async mode. 648 * META FS metadata pages such as SIT, NAT, CP. 649 * NR_PAGE_TYPE The number of page types. 650 * META_FLUSH Make sure the previous pages are written 651 * with waiting the bio's completion 652 * ... Only can be used with META. 653 */ 654 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 655 enum page_type { 656 DATA, 657 NODE, 658 META, 659 NR_PAGE_TYPE, 660 META_FLUSH, 661 INMEM, /* the below types are used by tracepoints only. */ 662 INMEM_DROP, 663 IPU, 664 OPU, 665 }; 666 667 struct f2fs_io_info { 668 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 669 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 670 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 671 block_t blk_addr; /* block address to be written */ 672 struct page *page; /* page to be written */ 673 struct page *encrypted_page; /* encrypted page */ 674 }; 675 676 #define is_read_io(rw) (((rw) & 1) == READ) 677 struct f2fs_bio_info { 678 struct f2fs_sb_info *sbi; /* f2fs superblock */ 679 struct bio *bio; /* bios to merge */ 680 sector_t last_block_in_bio; /* last block number */ 681 struct f2fs_io_info fio; /* store buffered io info. */ 682 struct rw_semaphore io_rwsem; /* blocking op for bio */ 683 }; 684 685 /* for inner inode cache management */ 686 struct inode_management { 687 struct radix_tree_root ino_root; /* ino entry array */ 688 spinlock_t ino_lock; /* for ino entry lock */ 689 struct list_head ino_list; /* inode list head */ 690 unsigned long ino_num; /* number of entries */ 691 }; 692 693 /* For s_flag in struct f2fs_sb_info */ 694 enum { 695 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 696 SBI_IS_CLOSE, /* specify unmounting */ 697 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 698 SBI_POR_DOING, /* recovery is doing or not */ 699 }; 700 701 struct f2fs_sb_info { 702 struct super_block *sb; /* pointer to VFS super block */ 703 struct proc_dir_entry *s_proc; /* proc entry */ 704 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 705 struct f2fs_super_block *raw_super; /* raw super block pointer */ 706 int s_flag; /* flags for sbi */ 707 708 /* for node-related operations */ 709 struct f2fs_nm_info *nm_info; /* node manager */ 710 struct inode *node_inode; /* cache node blocks */ 711 712 /* for segment-related operations */ 713 struct f2fs_sm_info *sm_info; /* segment manager */ 714 715 /* for bio operations */ 716 struct f2fs_bio_info read_io; /* for read bios */ 717 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 718 719 /* for checkpoint */ 720 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 721 struct inode *meta_inode; /* cache meta blocks */ 722 struct mutex cp_mutex; /* checkpoint procedure lock */ 723 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 724 struct rw_semaphore node_write; /* locking node writes */ 725 struct mutex writepages; /* mutex for writepages() */ 726 wait_queue_head_t cp_wait; 727 728 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 729 730 /* for orphan inode, use 0'th array */ 731 unsigned int max_orphans; /* max orphan inodes */ 732 733 /* for directory inode management */ 734 struct list_head dir_inode_list; /* dir inode list */ 735 spinlock_t dir_inode_lock; /* for dir inode list lock */ 736 737 /* for extent tree cache */ 738 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 739 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 740 struct list_head extent_list; /* lru list for shrinker */ 741 spinlock_t extent_lock; /* locking extent lru list */ 742 int total_ext_tree; /* extent tree count */ 743 atomic_t total_ext_node; /* extent info count */ 744 745 /* basic filesystem units */ 746 unsigned int log_sectors_per_block; /* log2 sectors per block */ 747 unsigned int log_blocksize; /* log2 block size */ 748 unsigned int blocksize; /* block size */ 749 unsigned int root_ino_num; /* root inode number*/ 750 unsigned int node_ino_num; /* node inode number*/ 751 unsigned int meta_ino_num; /* meta inode number*/ 752 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 753 unsigned int blocks_per_seg; /* blocks per segment */ 754 unsigned int segs_per_sec; /* segments per section */ 755 unsigned int secs_per_zone; /* sections per zone */ 756 unsigned int total_sections; /* total section count */ 757 unsigned int total_node_count; /* total node block count */ 758 unsigned int total_valid_node_count; /* valid node block count */ 759 unsigned int total_valid_inode_count; /* valid inode count */ 760 int active_logs; /* # of active logs */ 761 int dir_level; /* directory level */ 762 763 block_t user_block_count; /* # of user blocks */ 764 block_t total_valid_block_count; /* # of valid blocks */ 765 block_t alloc_valid_block_count; /* # of allocated blocks */ 766 block_t discard_blks; /* discard command candidats */ 767 block_t last_valid_block_count; /* for recovery */ 768 u32 s_next_generation; /* for NFS support */ 769 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 770 771 struct f2fs_mount_info mount_opt; /* mount options */ 772 773 /* for cleaning operations */ 774 struct mutex gc_mutex; /* mutex for GC */ 775 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 776 unsigned int cur_victim_sec; /* current victim section num */ 777 778 /* maximum # of trials to find a victim segment for SSR and GC */ 779 unsigned int max_victim_search; 780 781 /* 782 * for stat information. 783 * one is for the LFS mode, and the other is for the SSR mode. 784 */ 785 #ifdef CONFIG_F2FS_STAT_FS 786 struct f2fs_stat_info *stat_info; /* FS status information */ 787 unsigned int segment_count[2]; /* # of allocated segments */ 788 unsigned int block_count[2]; /* # of allocated blocks */ 789 atomic_t inplace_count; /* # of inplace update */ 790 atomic_t total_hit_ext; /* # of lookup extent cache */ 791 atomic_t read_hit_ext; /* # of hit extent cache */ 792 atomic_t inline_xattr; /* # of inline_xattr inodes */ 793 atomic_t inline_inode; /* # of inline_data inodes */ 794 atomic_t inline_dir; /* # of inline_dentry inodes */ 795 int bg_gc; /* background gc calls */ 796 unsigned int n_dirty_dirs; /* # of dir inodes */ 797 #endif 798 unsigned int last_victim[2]; /* last victim segment # */ 799 spinlock_t stat_lock; /* lock for stat operations */ 800 801 /* For sysfs suppport */ 802 struct kobject s_kobj; 803 struct completion s_kobj_unregister; 804 805 /* For shrinker support */ 806 struct list_head s_list; 807 struct mutex umount_mutex; 808 unsigned int shrinker_run_no; 809 }; 810 811 /* 812 * Inline functions 813 */ 814 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 815 { 816 return container_of(inode, struct f2fs_inode_info, vfs_inode); 817 } 818 819 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 820 { 821 return sb->s_fs_info; 822 } 823 824 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 825 { 826 return F2FS_SB(inode->i_sb); 827 } 828 829 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 830 { 831 return F2FS_I_SB(mapping->host); 832 } 833 834 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 835 { 836 return F2FS_M_SB(page->mapping); 837 } 838 839 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 840 { 841 return (struct f2fs_super_block *)(sbi->raw_super); 842 } 843 844 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 845 { 846 return (struct f2fs_checkpoint *)(sbi->ckpt); 847 } 848 849 static inline struct f2fs_node *F2FS_NODE(struct page *page) 850 { 851 return (struct f2fs_node *)page_address(page); 852 } 853 854 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 855 { 856 return &((struct f2fs_node *)page_address(page))->i; 857 } 858 859 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 860 { 861 return (struct f2fs_nm_info *)(sbi->nm_info); 862 } 863 864 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 865 { 866 return (struct f2fs_sm_info *)(sbi->sm_info); 867 } 868 869 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 870 { 871 return (struct sit_info *)(SM_I(sbi)->sit_info); 872 } 873 874 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 875 { 876 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 877 } 878 879 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 880 { 881 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 882 } 883 884 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 885 { 886 return sbi->meta_inode->i_mapping; 887 } 888 889 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 890 { 891 return sbi->node_inode->i_mapping; 892 } 893 894 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 895 { 896 return sbi->s_flag & (0x01 << type); 897 } 898 899 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 900 { 901 sbi->s_flag |= (0x01 << type); 902 } 903 904 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 905 { 906 sbi->s_flag &= ~(0x01 << type); 907 } 908 909 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 910 { 911 return le64_to_cpu(cp->checkpoint_ver); 912 } 913 914 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 915 { 916 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 917 return ckpt_flags & f; 918 } 919 920 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 921 { 922 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 923 ckpt_flags |= f; 924 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 925 } 926 927 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 928 { 929 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 930 ckpt_flags &= (~f); 931 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 932 } 933 934 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 935 { 936 down_read(&sbi->cp_rwsem); 937 } 938 939 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 940 { 941 up_read(&sbi->cp_rwsem); 942 } 943 944 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 945 { 946 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 947 } 948 949 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 950 { 951 up_write(&sbi->cp_rwsem); 952 } 953 954 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 955 { 956 int reason = CP_SYNC; 957 958 if (test_opt(sbi, FASTBOOT)) 959 reason = CP_FASTBOOT; 960 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 961 reason = CP_UMOUNT; 962 return reason; 963 } 964 965 static inline bool __remain_node_summaries(int reason) 966 { 967 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 968 } 969 970 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 971 { 972 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 973 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 974 } 975 976 /* 977 * Check whether the given nid is within node id range. 978 */ 979 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 980 { 981 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 982 return -EINVAL; 983 if (unlikely(nid >= NM_I(sbi)->max_nid)) 984 return -EINVAL; 985 return 0; 986 } 987 988 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 989 990 /* 991 * Check whether the inode has blocks or not 992 */ 993 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 994 { 995 if (F2FS_I(inode)->i_xattr_nid) 996 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 997 else 998 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 999 } 1000 1001 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1002 { 1003 return ofs == XATTR_NODE_OFFSET; 1004 } 1005 1006 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1007 struct inode *inode, blkcnt_t count) 1008 { 1009 block_t valid_block_count; 1010 1011 spin_lock(&sbi->stat_lock); 1012 valid_block_count = 1013 sbi->total_valid_block_count + (block_t)count; 1014 if (unlikely(valid_block_count > sbi->user_block_count)) { 1015 spin_unlock(&sbi->stat_lock); 1016 return false; 1017 } 1018 inode->i_blocks += count; 1019 sbi->total_valid_block_count = valid_block_count; 1020 sbi->alloc_valid_block_count += (block_t)count; 1021 spin_unlock(&sbi->stat_lock); 1022 return true; 1023 } 1024 1025 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1026 struct inode *inode, 1027 blkcnt_t count) 1028 { 1029 spin_lock(&sbi->stat_lock); 1030 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1031 f2fs_bug_on(sbi, inode->i_blocks < count); 1032 inode->i_blocks -= count; 1033 sbi->total_valid_block_count -= (block_t)count; 1034 spin_unlock(&sbi->stat_lock); 1035 } 1036 1037 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1038 { 1039 atomic_inc(&sbi->nr_pages[count_type]); 1040 set_sbi_flag(sbi, SBI_IS_DIRTY); 1041 } 1042 1043 static inline void inode_inc_dirty_pages(struct inode *inode) 1044 { 1045 atomic_inc(&F2FS_I(inode)->dirty_pages); 1046 if (S_ISDIR(inode->i_mode)) 1047 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1048 } 1049 1050 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1051 { 1052 atomic_dec(&sbi->nr_pages[count_type]); 1053 } 1054 1055 static inline void inode_dec_dirty_pages(struct inode *inode) 1056 { 1057 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1058 !S_ISLNK(inode->i_mode)) 1059 return; 1060 1061 atomic_dec(&F2FS_I(inode)->dirty_pages); 1062 1063 if (S_ISDIR(inode->i_mode)) 1064 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1065 } 1066 1067 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1068 { 1069 return atomic_read(&sbi->nr_pages[count_type]); 1070 } 1071 1072 static inline int get_dirty_pages(struct inode *inode) 1073 { 1074 return atomic_read(&F2FS_I(inode)->dirty_pages); 1075 } 1076 1077 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1078 { 1079 unsigned int pages_per_sec = sbi->segs_per_sec * 1080 (1 << sbi->log_blocks_per_seg); 1081 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1082 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1083 } 1084 1085 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1086 { 1087 return sbi->total_valid_block_count; 1088 } 1089 1090 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1091 { 1092 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1093 1094 /* return NAT or SIT bitmap */ 1095 if (flag == NAT_BITMAP) 1096 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1097 else if (flag == SIT_BITMAP) 1098 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1099 1100 return 0; 1101 } 1102 1103 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1104 { 1105 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1106 } 1107 1108 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1109 { 1110 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1111 int offset; 1112 1113 if (__cp_payload(sbi) > 0) { 1114 if (flag == NAT_BITMAP) 1115 return &ckpt->sit_nat_version_bitmap; 1116 else 1117 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1118 } else { 1119 offset = (flag == NAT_BITMAP) ? 1120 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1121 return &ckpt->sit_nat_version_bitmap + offset; 1122 } 1123 } 1124 1125 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1126 { 1127 block_t start_addr; 1128 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1129 unsigned long long ckpt_version = cur_cp_version(ckpt); 1130 1131 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1132 1133 /* 1134 * odd numbered checkpoint should at cp segment 0 1135 * and even segment must be at cp segment 1 1136 */ 1137 if (!(ckpt_version & 1)) 1138 start_addr += sbi->blocks_per_seg; 1139 1140 return start_addr; 1141 } 1142 1143 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1144 { 1145 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1146 } 1147 1148 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1149 struct inode *inode) 1150 { 1151 block_t valid_block_count; 1152 unsigned int valid_node_count; 1153 1154 spin_lock(&sbi->stat_lock); 1155 1156 valid_block_count = sbi->total_valid_block_count + 1; 1157 if (unlikely(valid_block_count > sbi->user_block_count)) { 1158 spin_unlock(&sbi->stat_lock); 1159 return false; 1160 } 1161 1162 valid_node_count = sbi->total_valid_node_count + 1; 1163 if (unlikely(valid_node_count > sbi->total_node_count)) { 1164 spin_unlock(&sbi->stat_lock); 1165 return false; 1166 } 1167 1168 if (inode) 1169 inode->i_blocks++; 1170 1171 sbi->alloc_valid_block_count++; 1172 sbi->total_valid_node_count++; 1173 sbi->total_valid_block_count++; 1174 spin_unlock(&sbi->stat_lock); 1175 1176 return true; 1177 } 1178 1179 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1180 struct inode *inode) 1181 { 1182 spin_lock(&sbi->stat_lock); 1183 1184 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1185 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1186 f2fs_bug_on(sbi, !inode->i_blocks); 1187 1188 inode->i_blocks--; 1189 sbi->total_valid_node_count--; 1190 sbi->total_valid_block_count--; 1191 1192 spin_unlock(&sbi->stat_lock); 1193 } 1194 1195 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1196 { 1197 return sbi->total_valid_node_count; 1198 } 1199 1200 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1201 { 1202 spin_lock(&sbi->stat_lock); 1203 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1204 sbi->total_valid_inode_count++; 1205 spin_unlock(&sbi->stat_lock); 1206 } 1207 1208 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1209 { 1210 spin_lock(&sbi->stat_lock); 1211 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1212 sbi->total_valid_inode_count--; 1213 spin_unlock(&sbi->stat_lock); 1214 } 1215 1216 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1217 { 1218 return sbi->total_valid_inode_count; 1219 } 1220 1221 static inline void f2fs_put_page(struct page *page, int unlock) 1222 { 1223 if (!page) 1224 return; 1225 1226 if (unlock) { 1227 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1228 unlock_page(page); 1229 } 1230 page_cache_release(page); 1231 } 1232 1233 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1234 { 1235 if (dn->node_page) 1236 f2fs_put_page(dn->node_page, 1); 1237 if (dn->inode_page && dn->node_page != dn->inode_page) 1238 f2fs_put_page(dn->inode_page, 0); 1239 dn->node_page = NULL; 1240 dn->inode_page = NULL; 1241 } 1242 1243 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1244 size_t size) 1245 { 1246 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1247 } 1248 1249 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1250 gfp_t flags) 1251 { 1252 void *entry; 1253 retry: 1254 entry = kmem_cache_alloc(cachep, flags); 1255 if (!entry) { 1256 cond_resched(); 1257 goto retry; 1258 } 1259 1260 return entry; 1261 } 1262 1263 static inline struct bio *f2fs_bio_alloc(int npages) 1264 { 1265 struct bio *bio; 1266 1267 /* No failure on bio allocation */ 1268 retry: 1269 bio = bio_alloc(GFP_NOIO, npages); 1270 if (!bio) { 1271 cond_resched(); 1272 goto retry; 1273 } 1274 return bio; 1275 } 1276 1277 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1278 unsigned long index, void *item) 1279 { 1280 while (radix_tree_insert(root, index, item)) 1281 cond_resched(); 1282 } 1283 1284 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1285 1286 static inline bool IS_INODE(struct page *page) 1287 { 1288 struct f2fs_node *p = F2FS_NODE(page); 1289 return RAW_IS_INODE(p); 1290 } 1291 1292 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1293 { 1294 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1295 } 1296 1297 static inline block_t datablock_addr(struct page *node_page, 1298 unsigned int offset) 1299 { 1300 struct f2fs_node *raw_node; 1301 __le32 *addr_array; 1302 raw_node = F2FS_NODE(node_page); 1303 addr_array = blkaddr_in_node(raw_node); 1304 return le32_to_cpu(addr_array[offset]); 1305 } 1306 1307 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1308 { 1309 int mask; 1310 1311 addr += (nr >> 3); 1312 mask = 1 << (7 - (nr & 0x07)); 1313 return mask & *addr; 1314 } 1315 1316 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1317 { 1318 int mask; 1319 1320 addr += (nr >> 3); 1321 mask = 1 << (7 - (nr & 0x07)); 1322 *addr |= mask; 1323 } 1324 1325 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1326 { 1327 int mask; 1328 1329 addr += (nr >> 3); 1330 mask = 1 << (7 - (nr & 0x07)); 1331 *addr &= ~mask; 1332 } 1333 1334 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1335 { 1336 int mask; 1337 int ret; 1338 1339 addr += (nr >> 3); 1340 mask = 1 << (7 - (nr & 0x07)); 1341 ret = mask & *addr; 1342 *addr |= mask; 1343 return ret; 1344 } 1345 1346 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1347 { 1348 int mask; 1349 int ret; 1350 1351 addr += (nr >> 3); 1352 mask = 1 << (7 - (nr & 0x07)); 1353 ret = mask & *addr; 1354 *addr &= ~mask; 1355 return ret; 1356 } 1357 1358 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1359 { 1360 int mask; 1361 1362 addr += (nr >> 3); 1363 mask = 1 << (7 - (nr & 0x07)); 1364 *addr ^= mask; 1365 } 1366 1367 /* used for f2fs_inode_info->flags */ 1368 enum { 1369 FI_NEW_INODE, /* indicate newly allocated inode */ 1370 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1371 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1372 FI_INC_LINK, /* need to increment i_nlink */ 1373 FI_ACL_MODE, /* indicate acl mode */ 1374 FI_NO_ALLOC, /* should not allocate any blocks */ 1375 FI_FREE_NID, /* free allocated nide */ 1376 FI_UPDATE_DIR, /* should update inode block for consistency */ 1377 FI_DELAY_IPUT, /* used for the recovery */ 1378 FI_NO_EXTENT, /* not to use the extent cache */ 1379 FI_INLINE_XATTR, /* used for inline xattr */ 1380 FI_INLINE_DATA, /* used for inline data*/ 1381 FI_INLINE_DENTRY, /* used for inline dentry */ 1382 FI_APPEND_WRITE, /* inode has appended data */ 1383 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1384 FI_NEED_IPU, /* used for ipu per file */ 1385 FI_ATOMIC_FILE, /* indicate atomic file */ 1386 FI_VOLATILE_FILE, /* indicate volatile file */ 1387 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1388 FI_DROP_CACHE, /* drop dirty page cache */ 1389 FI_DATA_EXIST, /* indicate data exists */ 1390 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1391 }; 1392 1393 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1394 { 1395 if (!test_bit(flag, &fi->flags)) 1396 set_bit(flag, &fi->flags); 1397 } 1398 1399 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1400 { 1401 return test_bit(flag, &fi->flags); 1402 } 1403 1404 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1405 { 1406 if (test_bit(flag, &fi->flags)) 1407 clear_bit(flag, &fi->flags); 1408 } 1409 1410 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1411 { 1412 fi->i_acl_mode = mode; 1413 set_inode_flag(fi, FI_ACL_MODE); 1414 } 1415 1416 static inline void get_inline_info(struct f2fs_inode_info *fi, 1417 struct f2fs_inode *ri) 1418 { 1419 if (ri->i_inline & F2FS_INLINE_XATTR) 1420 set_inode_flag(fi, FI_INLINE_XATTR); 1421 if (ri->i_inline & F2FS_INLINE_DATA) 1422 set_inode_flag(fi, FI_INLINE_DATA); 1423 if (ri->i_inline & F2FS_INLINE_DENTRY) 1424 set_inode_flag(fi, FI_INLINE_DENTRY); 1425 if (ri->i_inline & F2FS_DATA_EXIST) 1426 set_inode_flag(fi, FI_DATA_EXIST); 1427 if (ri->i_inline & F2FS_INLINE_DOTS) 1428 set_inode_flag(fi, FI_INLINE_DOTS); 1429 } 1430 1431 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1432 struct f2fs_inode *ri) 1433 { 1434 ri->i_inline = 0; 1435 1436 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1437 ri->i_inline |= F2FS_INLINE_XATTR; 1438 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1439 ri->i_inline |= F2FS_INLINE_DATA; 1440 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1441 ri->i_inline |= F2FS_INLINE_DENTRY; 1442 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1443 ri->i_inline |= F2FS_DATA_EXIST; 1444 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1445 ri->i_inline |= F2FS_INLINE_DOTS; 1446 } 1447 1448 static inline int f2fs_has_inline_xattr(struct inode *inode) 1449 { 1450 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1451 } 1452 1453 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1454 { 1455 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1456 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1457 return DEF_ADDRS_PER_INODE; 1458 } 1459 1460 static inline void *inline_xattr_addr(struct page *page) 1461 { 1462 struct f2fs_inode *ri = F2FS_INODE(page); 1463 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1464 F2FS_INLINE_XATTR_ADDRS]); 1465 } 1466 1467 static inline int inline_xattr_size(struct inode *inode) 1468 { 1469 if (f2fs_has_inline_xattr(inode)) 1470 return F2FS_INLINE_XATTR_ADDRS << 2; 1471 else 1472 return 0; 1473 } 1474 1475 static inline int f2fs_has_inline_data(struct inode *inode) 1476 { 1477 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1478 } 1479 1480 static inline void f2fs_clear_inline_inode(struct inode *inode) 1481 { 1482 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1483 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1484 } 1485 1486 static inline int f2fs_exist_data(struct inode *inode) 1487 { 1488 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1489 } 1490 1491 static inline int f2fs_has_inline_dots(struct inode *inode) 1492 { 1493 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1494 } 1495 1496 static inline bool f2fs_is_atomic_file(struct inode *inode) 1497 { 1498 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1499 } 1500 1501 static inline bool f2fs_is_volatile_file(struct inode *inode) 1502 { 1503 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1504 } 1505 1506 static inline bool f2fs_is_first_block_written(struct inode *inode) 1507 { 1508 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1509 } 1510 1511 static inline bool f2fs_is_drop_cache(struct inode *inode) 1512 { 1513 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1514 } 1515 1516 static inline void *inline_data_addr(struct page *page) 1517 { 1518 struct f2fs_inode *ri = F2FS_INODE(page); 1519 return (void *)&(ri->i_addr[1]); 1520 } 1521 1522 static inline int f2fs_has_inline_dentry(struct inode *inode) 1523 { 1524 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1525 } 1526 1527 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1528 { 1529 if (!f2fs_has_inline_dentry(dir)) 1530 kunmap(page); 1531 } 1532 1533 static inline int is_file(struct inode *inode, int type) 1534 { 1535 return F2FS_I(inode)->i_advise & type; 1536 } 1537 1538 static inline void set_file(struct inode *inode, int type) 1539 { 1540 F2FS_I(inode)->i_advise |= type; 1541 } 1542 1543 static inline void clear_file(struct inode *inode, int type) 1544 { 1545 F2FS_I(inode)->i_advise &= ~type; 1546 } 1547 1548 static inline int f2fs_readonly(struct super_block *sb) 1549 { 1550 return sb->s_flags & MS_RDONLY; 1551 } 1552 1553 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1554 { 1555 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1556 } 1557 1558 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1559 { 1560 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1561 sbi->sb->s_flags |= MS_RDONLY; 1562 } 1563 1564 static inline bool is_dot_dotdot(const struct qstr *str) 1565 { 1566 if (str->len == 1 && str->name[0] == '.') 1567 return true; 1568 1569 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1570 return true; 1571 1572 return false; 1573 } 1574 1575 static inline bool f2fs_may_extent_tree(struct inode *inode) 1576 { 1577 mode_t mode = inode->i_mode; 1578 1579 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1580 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1581 return false; 1582 1583 return S_ISREG(mode); 1584 } 1585 1586 #define get_inode_mode(i) \ 1587 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1588 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1589 1590 /* get offset of first page in next direct node */ 1591 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1592 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1593 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1594 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1595 1596 /* 1597 * file.c 1598 */ 1599 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1600 void truncate_data_blocks(struct dnode_of_data *); 1601 int truncate_blocks(struct inode *, u64, bool); 1602 void f2fs_truncate(struct inode *, bool); 1603 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1604 int f2fs_setattr(struct dentry *, struct iattr *); 1605 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1606 int truncate_data_blocks_range(struct dnode_of_data *, int); 1607 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1608 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1609 1610 /* 1611 * inode.c 1612 */ 1613 void f2fs_set_inode_flags(struct inode *); 1614 struct inode *f2fs_iget(struct super_block *, unsigned long); 1615 int try_to_free_nats(struct f2fs_sb_info *, int); 1616 void update_inode(struct inode *, struct page *); 1617 void update_inode_page(struct inode *); 1618 int f2fs_write_inode(struct inode *, struct writeback_control *); 1619 void f2fs_evict_inode(struct inode *); 1620 void handle_failed_inode(struct inode *); 1621 1622 /* 1623 * namei.c 1624 */ 1625 struct dentry *f2fs_get_parent(struct dentry *child); 1626 1627 /* 1628 * dir.c 1629 */ 1630 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1631 void set_de_type(struct f2fs_dir_entry *, umode_t); 1632 1633 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1634 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1635 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1636 unsigned int, struct f2fs_str *); 1637 void do_make_empty_dir(struct inode *, struct inode *, 1638 struct f2fs_dentry_ptr *); 1639 struct page *init_inode_metadata(struct inode *, struct inode *, 1640 const struct qstr *, struct page *); 1641 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1642 int room_for_filename(const void *, int, int); 1643 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1644 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1645 struct page **); 1646 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1647 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1648 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1649 struct page *, struct inode *); 1650 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1651 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1652 const struct qstr *, f2fs_hash_t , unsigned int); 1653 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1654 umode_t); 1655 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1656 struct inode *); 1657 int f2fs_do_tmpfile(struct inode *, struct inode *); 1658 bool f2fs_empty_dir(struct inode *); 1659 1660 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1661 { 1662 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1663 inode, inode->i_ino, inode->i_mode); 1664 } 1665 1666 /* 1667 * super.c 1668 */ 1669 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1670 int f2fs_sync_fs(struct super_block *, int); 1671 extern __printf(3, 4) 1672 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1673 1674 /* 1675 * hash.c 1676 */ 1677 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1678 1679 /* 1680 * node.c 1681 */ 1682 struct dnode_of_data; 1683 struct node_info; 1684 1685 bool available_free_memory(struct f2fs_sb_info *, int); 1686 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1687 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1688 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1689 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1690 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1691 int truncate_inode_blocks(struct inode *, pgoff_t); 1692 int truncate_xattr_node(struct inode *, struct page *); 1693 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1694 void remove_inode_page(struct inode *); 1695 struct page *new_inode_page(struct inode *); 1696 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1697 void ra_node_page(struct f2fs_sb_info *, nid_t); 1698 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1699 struct page *get_node_page_ra(struct page *, int); 1700 void sync_inode_page(struct dnode_of_data *); 1701 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1702 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1703 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1704 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1705 int try_to_free_nids(struct f2fs_sb_info *, int); 1706 void recover_inline_xattr(struct inode *, struct page *); 1707 void recover_xattr_data(struct inode *, struct page *, block_t); 1708 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1709 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1710 struct f2fs_summary_block *); 1711 void flush_nat_entries(struct f2fs_sb_info *); 1712 int build_node_manager(struct f2fs_sb_info *); 1713 void destroy_node_manager(struct f2fs_sb_info *); 1714 int __init create_node_manager_caches(void); 1715 void destroy_node_manager_caches(void); 1716 1717 /* 1718 * segment.c 1719 */ 1720 void register_inmem_page(struct inode *, struct page *); 1721 int commit_inmem_pages(struct inode *, bool); 1722 void f2fs_balance_fs(struct f2fs_sb_info *); 1723 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1724 int f2fs_issue_flush(struct f2fs_sb_info *); 1725 int create_flush_cmd_control(struct f2fs_sb_info *); 1726 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1727 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1728 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1729 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1730 void release_discard_addrs(struct f2fs_sb_info *); 1731 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1732 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1733 void allocate_new_segments(struct f2fs_sb_info *); 1734 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1735 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1736 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1737 void write_meta_page(struct f2fs_sb_info *, struct page *); 1738 void write_node_page(unsigned int, struct f2fs_io_info *); 1739 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1740 void rewrite_data_page(struct f2fs_io_info *); 1741 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1742 block_t, block_t, unsigned char, bool); 1743 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1744 block_t, block_t *, struct f2fs_summary *, int); 1745 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1746 void write_data_summaries(struct f2fs_sb_info *, block_t); 1747 void write_node_summaries(struct f2fs_sb_info *, block_t); 1748 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1749 int, unsigned int, int); 1750 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1751 int build_segment_manager(struct f2fs_sb_info *); 1752 void destroy_segment_manager(struct f2fs_sb_info *); 1753 int __init create_segment_manager_caches(void); 1754 void destroy_segment_manager_caches(void); 1755 1756 /* 1757 * checkpoint.c 1758 */ 1759 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1760 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1761 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1762 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1763 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1764 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1765 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1766 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1767 void release_dirty_inode(struct f2fs_sb_info *); 1768 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1769 int acquire_orphan_inode(struct f2fs_sb_info *); 1770 void release_orphan_inode(struct f2fs_sb_info *); 1771 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1772 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1773 int recover_orphan_inodes(struct f2fs_sb_info *); 1774 int get_valid_checkpoint(struct f2fs_sb_info *); 1775 void update_dirty_page(struct inode *, struct page *); 1776 void add_dirty_dir_inode(struct inode *); 1777 void remove_dirty_dir_inode(struct inode *); 1778 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1779 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1780 void init_ino_entry_info(struct f2fs_sb_info *); 1781 int __init create_checkpoint_caches(void); 1782 void destroy_checkpoint_caches(void); 1783 1784 /* 1785 * data.c 1786 */ 1787 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1788 int f2fs_submit_page_bio(struct f2fs_io_info *); 1789 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1790 void set_data_blkaddr(struct dnode_of_data *); 1791 int reserve_new_block(struct dnode_of_data *); 1792 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1793 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1794 struct page *get_read_data_page(struct inode *, pgoff_t, int); 1795 struct page *find_data_page(struct inode *, pgoff_t); 1796 struct page *get_lock_data_page(struct inode *, pgoff_t); 1797 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1798 int do_write_data_page(struct f2fs_io_info *); 1799 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1800 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1801 int f2fs_release_page(struct page *, gfp_t); 1802 1803 /* 1804 * gc.c 1805 */ 1806 int start_gc_thread(struct f2fs_sb_info *); 1807 void stop_gc_thread(struct f2fs_sb_info *); 1808 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1809 int f2fs_gc(struct f2fs_sb_info *); 1810 void build_gc_manager(struct f2fs_sb_info *); 1811 1812 /* 1813 * recovery.c 1814 */ 1815 int recover_fsync_data(struct f2fs_sb_info *); 1816 bool space_for_roll_forward(struct f2fs_sb_info *); 1817 1818 /* 1819 * debug.c 1820 */ 1821 #ifdef CONFIG_F2FS_STAT_FS 1822 struct f2fs_stat_info { 1823 struct list_head stat_list; 1824 struct f2fs_sb_info *sbi; 1825 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1826 int main_area_segs, main_area_sections, main_area_zones; 1827 int hit_ext, total_ext, ext_tree, ext_node; 1828 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1829 int nats, dirty_nats, sits, dirty_sits, fnids; 1830 int total_count, utilization; 1831 int bg_gc, inmem_pages, wb_pages; 1832 int inline_xattr, inline_inode, inline_dir; 1833 unsigned int valid_count, valid_node_count, valid_inode_count; 1834 unsigned int bimodal, avg_vblocks; 1835 int util_free, util_valid, util_invalid; 1836 int rsvd_segs, overp_segs; 1837 int dirty_count, node_pages, meta_pages; 1838 int prefree_count, call_count, cp_count; 1839 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1840 int bg_node_segs, bg_data_segs; 1841 int tot_blks, data_blks, node_blks; 1842 int bg_data_blks, bg_node_blks; 1843 int curseg[NR_CURSEG_TYPE]; 1844 int cursec[NR_CURSEG_TYPE]; 1845 int curzone[NR_CURSEG_TYPE]; 1846 1847 unsigned int segment_count[2]; 1848 unsigned int block_count[2]; 1849 unsigned int inplace_count; 1850 unsigned base_mem, cache_mem, page_mem; 1851 }; 1852 1853 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1854 { 1855 return (struct f2fs_stat_info *)sbi->stat_info; 1856 } 1857 1858 #define stat_inc_cp_count(si) ((si)->cp_count++) 1859 #define stat_inc_call_count(si) ((si)->call_count++) 1860 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1861 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1862 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1863 #define stat_inc_total_hit(sbi) (atomic_inc(&(sbi)->total_hit_ext)) 1864 #define stat_inc_read_hit(sbi) (atomic_inc(&(sbi)->read_hit_ext)) 1865 #define stat_inc_inline_xattr(inode) \ 1866 do { \ 1867 if (f2fs_has_inline_xattr(inode)) \ 1868 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1869 } while (0) 1870 #define stat_dec_inline_xattr(inode) \ 1871 do { \ 1872 if (f2fs_has_inline_xattr(inode)) \ 1873 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 1874 } while (0) 1875 #define stat_inc_inline_inode(inode) \ 1876 do { \ 1877 if (f2fs_has_inline_data(inode)) \ 1878 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1879 } while (0) 1880 #define stat_dec_inline_inode(inode) \ 1881 do { \ 1882 if (f2fs_has_inline_data(inode)) \ 1883 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1884 } while (0) 1885 #define stat_inc_inline_dir(inode) \ 1886 do { \ 1887 if (f2fs_has_inline_dentry(inode)) \ 1888 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1889 } while (0) 1890 #define stat_dec_inline_dir(inode) \ 1891 do { \ 1892 if (f2fs_has_inline_dentry(inode)) \ 1893 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1894 } while (0) 1895 #define stat_inc_seg_type(sbi, curseg) \ 1896 ((sbi)->segment_count[(curseg)->alloc_type]++) 1897 #define stat_inc_block_count(sbi, curseg) \ 1898 ((sbi)->block_count[(curseg)->alloc_type]++) 1899 #define stat_inc_inplace_blocks(sbi) \ 1900 (atomic_inc(&(sbi)->inplace_count)) 1901 #define stat_inc_seg_count(sbi, type, gc_type) \ 1902 do { \ 1903 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1904 (si)->tot_segs++; \ 1905 if (type == SUM_TYPE_DATA) { \ 1906 si->data_segs++; \ 1907 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 1908 } else { \ 1909 si->node_segs++; \ 1910 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 1911 } \ 1912 } while (0) 1913 1914 #define stat_inc_tot_blk_count(si, blks) \ 1915 (si->tot_blks += (blks)) 1916 1917 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 1918 do { \ 1919 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1920 stat_inc_tot_blk_count(si, blks); \ 1921 si->data_blks += (blks); \ 1922 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1923 } while (0) 1924 1925 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 1926 do { \ 1927 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1928 stat_inc_tot_blk_count(si, blks); \ 1929 si->node_blks += (blks); \ 1930 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1931 } while (0) 1932 1933 int f2fs_build_stats(struct f2fs_sb_info *); 1934 void f2fs_destroy_stats(struct f2fs_sb_info *); 1935 void __init f2fs_create_root_stats(void); 1936 void f2fs_destroy_root_stats(void); 1937 #else 1938 #define stat_inc_cp_count(si) 1939 #define stat_inc_call_count(si) 1940 #define stat_inc_bggc_count(si) 1941 #define stat_inc_dirty_dir(sbi) 1942 #define stat_dec_dirty_dir(sbi) 1943 #define stat_inc_total_hit(sb) 1944 #define stat_inc_read_hit(sb) 1945 #define stat_inc_inline_xattr(inode) 1946 #define stat_dec_inline_xattr(inode) 1947 #define stat_inc_inline_inode(inode) 1948 #define stat_dec_inline_inode(inode) 1949 #define stat_inc_inline_dir(inode) 1950 #define stat_dec_inline_dir(inode) 1951 #define stat_inc_seg_type(sbi, curseg) 1952 #define stat_inc_block_count(sbi, curseg) 1953 #define stat_inc_inplace_blocks(sbi) 1954 #define stat_inc_seg_count(sbi, type, gc_type) 1955 #define stat_inc_tot_blk_count(si, blks) 1956 #define stat_inc_data_blk_count(sbi, blks, gc_type) 1957 #define stat_inc_node_blk_count(sbi, blks, gc_type) 1958 1959 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1960 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1961 static inline void __init f2fs_create_root_stats(void) { } 1962 static inline void f2fs_destroy_root_stats(void) { } 1963 #endif 1964 1965 extern const struct file_operations f2fs_dir_operations; 1966 extern const struct file_operations f2fs_file_operations; 1967 extern const struct inode_operations f2fs_file_inode_operations; 1968 extern const struct address_space_operations f2fs_dblock_aops; 1969 extern const struct address_space_operations f2fs_node_aops; 1970 extern const struct address_space_operations f2fs_meta_aops; 1971 extern const struct inode_operations f2fs_dir_inode_operations; 1972 extern const struct inode_operations f2fs_symlink_inode_operations; 1973 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 1974 extern const struct inode_operations f2fs_special_inode_operations; 1975 extern struct kmem_cache *inode_entry_slab; 1976 1977 /* 1978 * inline.c 1979 */ 1980 bool f2fs_may_inline_data(struct inode *); 1981 bool f2fs_may_inline_dentry(struct inode *); 1982 void read_inline_data(struct page *, struct page *); 1983 bool truncate_inline_inode(struct page *, u64); 1984 int f2fs_read_inline_data(struct inode *, struct page *); 1985 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 1986 int f2fs_convert_inline_inode(struct inode *); 1987 int f2fs_write_inline_data(struct inode *, struct page *); 1988 bool recover_inline_data(struct inode *, struct page *); 1989 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 1990 struct f2fs_filename *, struct page **); 1991 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 1992 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 1993 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 1994 nid_t, umode_t); 1995 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 1996 struct inode *, struct inode *); 1997 bool f2fs_empty_inline_dir(struct inode *); 1998 int f2fs_read_inline_dir(struct file *, struct dir_context *, 1999 struct f2fs_str *); 2000 2001 /* 2002 * shrinker.c 2003 */ 2004 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2005 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2006 void f2fs_join_shrinker(struct f2fs_sb_info *); 2007 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2008 2009 /* 2010 * extent_cache.c 2011 */ 2012 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2013 void f2fs_drop_largest_extent(struct inode *, pgoff_t); 2014 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2015 unsigned int f2fs_destroy_extent_node(struct inode *); 2016 void f2fs_destroy_extent_tree(struct inode *); 2017 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2018 void f2fs_update_extent_cache(struct dnode_of_data *); 2019 void init_extent_cache_info(struct f2fs_sb_info *); 2020 int __init create_extent_cache(void); 2021 void destroy_extent_cache(void); 2022 2023 /* 2024 * crypto support 2025 */ 2026 static inline int f2fs_encrypted_inode(struct inode *inode) 2027 { 2028 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2029 return file_is_encrypt(inode); 2030 #else 2031 return 0; 2032 #endif 2033 } 2034 2035 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2036 { 2037 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2038 file_set_encrypt(inode); 2039 #endif 2040 } 2041 2042 static inline bool f2fs_bio_encrypted(struct bio *bio) 2043 { 2044 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2045 return unlikely(bio->bi_private != NULL); 2046 #else 2047 return false; 2048 #endif 2049 } 2050 2051 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2052 { 2053 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2054 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2055 #else 2056 return 0; 2057 #endif 2058 } 2059 2060 static inline bool f2fs_may_encrypt(struct inode *inode) 2061 { 2062 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2063 mode_t mode = inode->i_mode; 2064 2065 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2066 #else 2067 return 0; 2068 #endif 2069 } 2070 2071 /* crypto_policy.c */ 2072 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2073 struct inode *); 2074 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2075 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2076 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2077 2078 /* crypt.c */ 2079 extern struct kmem_cache *f2fs_crypt_info_cachep; 2080 bool f2fs_valid_contents_enc_mode(uint32_t); 2081 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2082 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2083 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2084 struct page *f2fs_encrypt(struct inode *, struct page *); 2085 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *); 2086 int f2fs_decrypt_one(struct inode *, struct page *); 2087 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2088 2089 /* crypto_key.c */ 2090 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2091 int _f2fs_get_encryption_info(struct inode *inode); 2092 2093 /* crypto_fname.c */ 2094 bool f2fs_valid_filenames_enc_mode(uint32_t); 2095 u32 f2fs_fname_crypto_round_up(u32, u32); 2096 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2097 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2098 const struct f2fs_str *, struct f2fs_str *); 2099 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2100 struct f2fs_str *); 2101 2102 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2103 void f2fs_restore_and_release_control_page(struct page **); 2104 void f2fs_restore_control_page(struct page *); 2105 2106 int __init f2fs_init_crypto(void); 2107 int f2fs_crypto_initialize(void); 2108 void f2fs_exit_crypto(void); 2109 2110 int f2fs_has_encryption_key(struct inode *); 2111 2112 static inline int f2fs_get_encryption_info(struct inode *inode) 2113 { 2114 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2115 2116 if (!ci || 2117 (ci->ci_keyring_key && 2118 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2119 (1 << KEY_FLAG_REVOKED) | 2120 (1 << KEY_FLAG_DEAD))))) 2121 return _f2fs_get_encryption_info(inode); 2122 return 0; 2123 } 2124 2125 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2126 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2127 int lookup, struct f2fs_filename *); 2128 void f2fs_fname_free_filename(struct f2fs_filename *); 2129 #else 2130 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2131 static inline void f2fs_restore_control_page(struct page *p) { } 2132 2133 static inline int __init f2fs_init_crypto(void) { return 0; } 2134 static inline void f2fs_exit_crypto(void) { } 2135 2136 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2137 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2138 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2139 2140 static inline int f2fs_fname_setup_filename(struct inode *dir, 2141 const struct qstr *iname, 2142 int lookup, struct f2fs_filename *fname) 2143 { 2144 memset(fname, 0, sizeof(struct f2fs_filename)); 2145 fname->usr_fname = iname; 2146 fname->disk_name.name = (unsigned char *)iname->name; 2147 fname->disk_name.len = iname->len; 2148 return 0; 2149 } 2150 2151 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2152 #endif 2153 #endif 2154