1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <crypto/hash.h> 27 28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 29 #include <linux/fscrypt.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (unlikely(condition)) { \ 37 WARN_ON(1); \ 38 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 39 } \ 40 } while (0) 41 #endif 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 enum { 45 FAULT_KMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_PAGE_GET, 48 FAULT_ALLOC_BIO, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_IO, 56 FAULT_CHECKPOINT, 57 FAULT_MAX, 58 }; 59 60 struct f2fs_fault_info { 61 atomic_t inject_ops; 62 unsigned int inject_rate; 63 unsigned int inject_type; 64 }; 65 66 extern char *fault_name[FAULT_MAX]; 67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 68 #endif 69 70 /* 71 * For mount options 72 */ 73 #define F2FS_MOUNT_BG_GC 0x00000001 74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 75 #define F2FS_MOUNT_DISCARD 0x00000004 76 #define F2FS_MOUNT_NOHEAP 0x00000008 77 #define F2FS_MOUNT_XATTR_USER 0x00000010 78 #define F2FS_MOUNT_POSIX_ACL 0x00000020 79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 81 #define F2FS_MOUNT_INLINE_DATA 0x00000100 82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 84 #define F2FS_MOUNT_NOBARRIER 0x00000800 85 #define F2FS_MOUNT_FASTBOOT 0x00001000 86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_ADAPTIVE 0x00020000 91 #define F2FS_MOUNT_LFS 0x00040000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 #define F2FS_MOUNT_QUOTA 0x00400000 96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 97 98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 101 102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 103 typecheck(unsigned long long, b) && \ 104 ((long long)((a) - (b)) > 0)) 105 106 typedef u32 block_t; /* 107 * should not change u32, since it is the on-disk block 108 * address format, __le32. 109 */ 110 typedef u32 nid_t; 111 112 struct f2fs_mount_info { 113 unsigned int opt; 114 }; 115 116 #define F2FS_FEATURE_ENCRYPT 0x0001 117 #define F2FS_FEATURE_BLKZONED 0x0002 118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 120 #define F2FS_FEATURE_PRJQUOTA 0x0010 121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 123 #define F2FS_FEATURE_QUOTA_INO 0x0080 124 125 #define F2FS_HAS_FEATURE(sb, mask) \ 126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 127 #define F2FS_SET_FEATURE(sb, mask) \ 128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 129 #define F2FS_CLEAR_FEATURE(sb, mask) \ 130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 131 132 /* 133 * For checkpoint manager 134 */ 135 enum { 136 NAT_BITMAP, 137 SIT_BITMAP 138 }; 139 140 #define CP_UMOUNT 0x00000001 141 #define CP_FASTBOOT 0x00000002 142 #define CP_SYNC 0x00000004 143 #define CP_RECOVERY 0x00000008 144 #define CP_DISCARD 0x00000010 145 #define CP_TRIMMED 0x00000020 146 147 #define DEF_BATCHED_TRIM_SECTIONS 2048 148 #define BATCHED_TRIM_SEGMENTS(sbi) \ 149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 150 #define BATCHED_TRIM_BLOCKS(sbi) \ 151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 156 #define DEF_CP_INTERVAL 60 /* 60 secs */ 157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 158 159 struct cp_control { 160 int reason; 161 __u64 trim_start; 162 __u64 trim_end; 163 __u64 trim_minlen; 164 }; 165 166 /* 167 * For CP/NAT/SIT/SSA readahead 168 */ 169 enum { 170 META_CP, 171 META_NAT, 172 META_SIT, 173 META_SSA, 174 META_POR, 175 }; 176 177 /* for the list of ino */ 178 enum { 179 ORPHAN_INO, /* for orphan ino list */ 180 APPEND_INO, /* for append ino list */ 181 UPDATE_INO, /* for update ino list */ 182 FLUSH_INO, /* for multiple device flushing */ 183 MAX_INO_ENTRY, /* max. list */ 184 }; 185 186 struct ino_entry { 187 struct list_head list; /* list head */ 188 nid_t ino; /* inode number */ 189 unsigned int dirty_device; /* dirty device bitmap */ 190 }; 191 192 /* for the list of inodes to be GCed */ 193 struct inode_entry { 194 struct list_head list; /* list head */ 195 struct inode *inode; /* vfs inode pointer */ 196 }; 197 198 /* for the bitmap indicate blocks to be discarded */ 199 struct discard_entry { 200 struct list_head list; /* list head */ 201 block_t start_blkaddr; /* start blockaddr of current segment */ 202 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 203 }; 204 205 /* default discard granularity of inner discard thread, unit: block count */ 206 #define DEFAULT_DISCARD_GRANULARITY 16 207 208 /* max discard pend list number */ 209 #define MAX_PLIST_NUM 512 210 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 211 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 212 213 enum { 214 D_PREP, 215 D_SUBMIT, 216 D_DONE, 217 }; 218 219 struct discard_info { 220 block_t lstart; /* logical start address */ 221 block_t len; /* length */ 222 block_t start; /* actual start address in dev */ 223 }; 224 225 struct discard_cmd { 226 struct rb_node rb_node; /* rb node located in rb-tree */ 227 union { 228 struct { 229 block_t lstart; /* logical start address */ 230 block_t len; /* length */ 231 block_t start; /* actual start address in dev */ 232 }; 233 struct discard_info di; /* discard info */ 234 235 }; 236 struct list_head list; /* command list */ 237 struct completion wait; /* compleation */ 238 struct block_device *bdev; /* bdev */ 239 unsigned short ref; /* reference count */ 240 unsigned char state; /* state */ 241 int error; /* bio error */ 242 }; 243 244 enum { 245 DPOLICY_BG, 246 DPOLICY_FORCE, 247 DPOLICY_FSTRIM, 248 DPOLICY_UMOUNT, 249 MAX_DPOLICY, 250 }; 251 252 struct discard_policy { 253 int type; /* type of discard */ 254 unsigned int min_interval; /* used for candidates exist */ 255 unsigned int max_interval; /* used for candidates not exist */ 256 unsigned int max_requests; /* # of discards issued per round */ 257 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 258 bool io_aware; /* issue discard in idle time */ 259 bool sync; /* submit discard with REQ_SYNC flag */ 260 unsigned int granularity; /* discard granularity */ 261 }; 262 263 struct discard_cmd_control { 264 struct task_struct *f2fs_issue_discard; /* discard thread */ 265 struct list_head entry_list; /* 4KB discard entry list */ 266 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 267 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */ 268 struct list_head wait_list; /* store on-flushing entries */ 269 struct list_head fstrim_list; /* in-flight discard from fstrim */ 270 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 271 unsigned int discard_wake; /* to wake up discard thread */ 272 struct mutex cmd_lock; 273 unsigned int nr_discards; /* # of discards in the list */ 274 unsigned int max_discards; /* max. discards to be issued */ 275 unsigned int discard_granularity; /* discard granularity */ 276 unsigned int undiscard_blks; /* # of undiscard blocks */ 277 atomic_t issued_discard; /* # of issued discard */ 278 atomic_t issing_discard; /* # of issing discard */ 279 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 280 struct rb_root root; /* root of discard rb-tree */ 281 }; 282 283 /* for the list of fsync inodes, used only during recovery */ 284 struct fsync_inode_entry { 285 struct list_head list; /* list head */ 286 struct inode *inode; /* vfs inode pointer */ 287 block_t blkaddr; /* block address locating the last fsync */ 288 block_t last_dentry; /* block address locating the last dentry */ 289 }; 290 291 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 292 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 293 294 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 295 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 296 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 297 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 298 299 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 300 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 301 302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 303 { 304 int before = nats_in_cursum(journal); 305 306 journal->n_nats = cpu_to_le16(before + i); 307 return before; 308 } 309 310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 311 { 312 int before = sits_in_cursum(journal); 313 314 journal->n_sits = cpu_to_le16(before + i); 315 return before; 316 } 317 318 static inline bool __has_cursum_space(struct f2fs_journal *journal, 319 int size, int type) 320 { 321 if (type == NAT_JOURNAL) 322 return size <= MAX_NAT_JENTRIES(journal); 323 return size <= MAX_SIT_JENTRIES(journal); 324 } 325 326 /* 327 * ioctl commands 328 */ 329 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 330 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 331 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 332 333 #define F2FS_IOCTL_MAGIC 0xf5 334 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 336 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 338 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 339 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 340 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 341 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 342 struct f2fs_defragment) 343 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 344 struct f2fs_move_range) 345 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 346 struct f2fs_flush_device) 347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 348 struct f2fs_gc_range) 349 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 350 351 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 352 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 354 355 /* 356 * should be same as XFS_IOC_GOINGDOWN. 357 * Flags for going down operation used by FS_IOC_GOINGDOWN 358 */ 359 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 360 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 361 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 362 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 363 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 364 365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 366 /* 367 * ioctl commands in 32 bit emulation 368 */ 369 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 370 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 371 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 372 #endif 373 374 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 375 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 376 377 struct f2fs_gc_range { 378 u32 sync; 379 u64 start; 380 u64 len; 381 }; 382 383 struct f2fs_defragment { 384 u64 start; 385 u64 len; 386 }; 387 388 struct f2fs_move_range { 389 u32 dst_fd; /* destination fd */ 390 u64 pos_in; /* start position in src_fd */ 391 u64 pos_out; /* start position in dst_fd */ 392 u64 len; /* size to move */ 393 }; 394 395 struct f2fs_flush_device { 396 u32 dev_num; /* device number to flush */ 397 u32 segments; /* # of segments to flush */ 398 }; 399 400 /* for inline stuff */ 401 #define DEF_INLINE_RESERVED_SIZE 1 402 #define DEF_MIN_INLINE_SIZE 1 403 static inline int get_extra_isize(struct inode *inode); 404 static inline int get_inline_xattr_addrs(struct inode *inode); 405 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode) 406 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 407 (CUR_ADDRS_PER_INODE(inode) - \ 408 F2FS_INLINE_XATTR_ADDRS(inode) - \ 409 DEF_INLINE_RESERVED_SIZE)) 410 411 /* for inline dir */ 412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 413 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 414 BITS_PER_BYTE + 1)) 415 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 416 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 417 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 418 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 419 NR_INLINE_DENTRY(inode) + \ 420 INLINE_DENTRY_BITMAP_SIZE(inode))) 421 422 /* 423 * For INODE and NODE manager 424 */ 425 /* for directory operations */ 426 struct f2fs_dentry_ptr { 427 struct inode *inode; 428 void *bitmap; 429 struct f2fs_dir_entry *dentry; 430 __u8 (*filename)[F2FS_SLOT_LEN]; 431 int max; 432 int nr_bitmap; 433 }; 434 435 static inline void make_dentry_ptr_block(struct inode *inode, 436 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 437 { 438 d->inode = inode; 439 d->max = NR_DENTRY_IN_BLOCK; 440 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 441 d->bitmap = &t->dentry_bitmap; 442 d->dentry = t->dentry; 443 d->filename = t->filename; 444 } 445 446 static inline void make_dentry_ptr_inline(struct inode *inode, 447 struct f2fs_dentry_ptr *d, void *t) 448 { 449 int entry_cnt = NR_INLINE_DENTRY(inode); 450 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 451 int reserved_size = INLINE_RESERVED_SIZE(inode); 452 453 d->inode = inode; 454 d->max = entry_cnt; 455 d->nr_bitmap = bitmap_size; 456 d->bitmap = t; 457 d->dentry = t + bitmap_size + reserved_size; 458 d->filename = t + bitmap_size + reserved_size + 459 SIZE_OF_DIR_ENTRY * entry_cnt; 460 } 461 462 /* 463 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 464 * as its node offset to distinguish from index node blocks. 465 * But some bits are used to mark the node block. 466 */ 467 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 468 >> OFFSET_BIT_SHIFT) 469 enum { 470 ALLOC_NODE, /* allocate a new node page if needed */ 471 LOOKUP_NODE, /* look up a node without readahead */ 472 LOOKUP_NODE_RA, /* 473 * look up a node with readahead called 474 * by get_data_block. 475 */ 476 }; 477 478 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 479 480 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 481 482 /* vector size for gang look-up from extent cache that consists of radix tree */ 483 #define EXT_TREE_VEC_SIZE 64 484 485 /* for in-memory extent cache entry */ 486 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 487 488 /* number of extent info in extent cache we try to shrink */ 489 #define EXTENT_CACHE_SHRINK_NUMBER 128 490 491 struct rb_entry { 492 struct rb_node rb_node; /* rb node located in rb-tree */ 493 unsigned int ofs; /* start offset of the entry */ 494 unsigned int len; /* length of the entry */ 495 }; 496 497 struct extent_info { 498 unsigned int fofs; /* start offset in a file */ 499 unsigned int len; /* length of the extent */ 500 u32 blk; /* start block address of the extent */ 501 }; 502 503 struct extent_node { 504 struct rb_node rb_node; 505 union { 506 struct { 507 unsigned int fofs; 508 unsigned int len; 509 u32 blk; 510 }; 511 struct extent_info ei; /* extent info */ 512 513 }; 514 struct list_head list; /* node in global extent list of sbi */ 515 struct extent_tree *et; /* extent tree pointer */ 516 }; 517 518 struct extent_tree { 519 nid_t ino; /* inode number */ 520 struct rb_root root; /* root of extent info rb-tree */ 521 struct extent_node *cached_en; /* recently accessed extent node */ 522 struct extent_info largest; /* largested extent info */ 523 struct list_head list; /* to be used by sbi->zombie_list */ 524 rwlock_t lock; /* protect extent info rb-tree */ 525 atomic_t node_cnt; /* # of extent node in rb-tree*/ 526 }; 527 528 /* 529 * This structure is taken from ext4_map_blocks. 530 * 531 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 532 */ 533 #define F2FS_MAP_NEW (1 << BH_New) 534 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 535 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 536 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 537 F2FS_MAP_UNWRITTEN) 538 539 struct f2fs_map_blocks { 540 block_t m_pblk; 541 block_t m_lblk; 542 unsigned int m_len; 543 unsigned int m_flags; 544 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 545 }; 546 547 /* for flag in get_data_block */ 548 enum { 549 F2FS_GET_BLOCK_DEFAULT, 550 F2FS_GET_BLOCK_FIEMAP, 551 F2FS_GET_BLOCK_BMAP, 552 F2FS_GET_BLOCK_PRE_DIO, 553 F2FS_GET_BLOCK_PRE_AIO, 554 }; 555 556 /* 557 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 558 */ 559 #define FADVISE_COLD_BIT 0x01 560 #define FADVISE_LOST_PINO_BIT 0x02 561 #define FADVISE_ENCRYPT_BIT 0x04 562 #define FADVISE_ENC_NAME_BIT 0x08 563 #define FADVISE_KEEP_SIZE_BIT 0x10 564 565 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 566 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 567 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 568 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 569 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 570 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 571 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 572 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 573 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 574 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 575 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 576 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 577 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 578 579 #define DEF_DIR_LEVEL 0 580 581 struct f2fs_inode_info { 582 struct inode vfs_inode; /* serve a vfs inode */ 583 unsigned long i_flags; /* keep an inode flags for ioctl */ 584 unsigned char i_advise; /* use to give file attribute hints */ 585 unsigned char i_dir_level; /* use for dentry level for large dir */ 586 unsigned int i_current_depth; /* use only in directory structure */ 587 unsigned int i_pino; /* parent inode number */ 588 umode_t i_acl_mode; /* keep file acl mode temporarily */ 589 590 /* Use below internally in f2fs*/ 591 unsigned long flags; /* use to pass per-file flags */ 592 struct rw_semaphore i_sem; /* protect fi info */ 593 atomic_t dirty_pages; /* # of dirty pages */ 594 f2fs_hash_t chash; /* hash value of given file name */ 595 unsigned int clevel; /* maximum level of given file name */ 596 struct task_struct *task; /* lookup and create consistency */ 597 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 598 nid_t i_xattr_nid; /* node id that contains xattrs */ 599 loff_t last_disk_size; /* lastly written file size */ 600 601 #ifdef CONFIG_QUOTA 602 struct dquot *i_dquot[MAXQUOTAS]; 603 604 /* quota space reservation, managed internally by quota code */ 605 qsize_t i_reserved_quota; 606 #endif 607 struct list_head dirty_list; /* dirty list for dirs and files */ 608 struct list_head gdirty_list; /* linked in global dirty list */ 609 struct list_head inmem_ilist; /* list for inmem inodes */ 610 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 611 struct task_struct *inmem_task; /* store inmemory task */ 612 struct mutex inmem_lock; /* lock for inmemory pages */ 613 struct extent_tree *extent_tree; /* cached extent_tree entry */ 614 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 615 struct rw_semaphore i_mmap_sem; 616 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 617 618 int i_extra_isize; /* size of extra space located in i_addr */ 619 kprojid_t i_projid; /* id for project quota */ 620 int i_inline_xattr_size; /* inline xattr size */ 621 }; 622 623 static inline void get_extent_info(struct extent_info *ext, 624 struct f2fs_extent *i_ext) 625 { 626 ext->fofs = le32_to_cpu(i_ext->fofs); 627 ext->blk = le32_to_cpu(i_ext->blk); 628 ext->len = le32_to_cpu(i_ext->len); 629 } 630 631 static inline void set_raw_extent(struct extent_info *ext, 632 struct f2fs_extent *i_ext) 633 { 634 i_ext->fofs = cpu_to_le32(ext->fofs); 635 i_ext->blk = cpu_to_le32(ext->blk); 636 i_ext->len = cpu_to_le32(ext->len); 637 } 638 639 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 640 u32 blk, unsigned int len) 641 { 642 ei->fofs = fofs; 643 ei->blk = blk; 644 ei->len = len; 645 } 646 647 static inline bool __is_discard_mergeable(struct discard_info *back, 648 struct discard_info *front) 649 { 650 return back->lstart + back->len == front->lstart; 651 } 652 653 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 654 struct discard_info *back) 655 { 656 return __is_discard_mergeable(back, cur); 657 } 658 659 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 660 struct discard_info *front) 661 { 662 return __is_discard_mergeable(cur, front); 663 } 664 665 static inline bool __is_extent_mergeable(struct extent_info *back, 666 struct extent_info *front) 667 { 668 return (back->fofs + back->len == front->fofs && 669 back->blk + back->len == front->blk); 670 } 671 672 static inline bool __is_back_mergeable(struct extent_info *cur, 673 struct extent_info *back) 674 { 675 return __is_extent_mergeable(back, cur); 676 } 677 678 static inline bool __is_front_mergeable(struct extent_info *cur, 679 struct extent_info *front) 680 { 681 return __is_extent_mergeable(cur, front); 682 } 683 684 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 685 static inline void __try_update_largest_extent(struct inode *inode, 686 struct extent_tree *et, struct extent_node *en) 687 { 688 if (en->ei.len > et->largest.len) { 689 et->largest = en->ei; 690 f2fs_mark_inode_dirty_sync(inode, true); 691 } 692 } 693 694 /* 695 * For free nid management 696 */ 697 enum nid_state { 698 FREE_NID, /* newly added to free nid list */ 699 PREALLOC_NID, /* it is preallocated */ 700 MAX_NID_STATE, 701 }; 702 703 struct f2fs_nm_info { 704 block_t nat_blkaddr; /* base disk address of NAT */ 705 nid_t max_nid; /* maximum possible node ids */ 706 nid_t available_nids; /* # of available node ids */ 707 nid_t next_scan_nid; /* the next nid to be scanned */ 708 unsigned int ram_thresh; /* control the memory footprint */ 709 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 710 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 711 712 /* NAT cache management */ 713 struct radix_tree_root nat_root;/* root of the nat entry cache */ 714 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 715 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 716 struct list_head nat_entries; /* cached nat entry list (clean) */ 717 unsigned int nat_cnt; /* the # of cached nat entries */ 718 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 719 unsigned int nat_blocks; /* # of nat blocks */ 720 721 /* free node ids management */ 722 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 723 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 724 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 725 spinlock_t nid_list_lock; /* protect nid lists ops */ 726 struct mutex build_lock; /* lock for build free nids */ 727 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 728 unsigned char *nat_block_bitmap; 729 unsigned short *free_nid_count; /* free nid count of NAT block */ 730 731 /* for checkpoint */ 732 char *nat_bitmap; /* NAT bitmap pointer */ 733 734 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 735 unsigned char *nat_bits; /* NAT bits blocks */ 736 unsigned char *full_nat_bits; /* full NAT pages */ 737 unsigned char *empty_nat_bits; /* empty NAT pages */ 738 #ifdef CONFIG_F2FS_CHECK_FS 739 char *nat_bitmap_mir; /* NAT bitmap mirror */ 740 #endif 741 int bitmap_size; /* bitmap size */ 742 }; 743 744 /* 745 * this structure is used as one of function parameters. 746 * all the information are dedicated to a given direct node block determined 747 * by the data offset in a file. 748 */ 749 struct dnode_of_data { 750 struct inode *inode; /* vfs inode pointer */ 751 struct page *inode_page; /* its inode page, NULL is possible */ 752 struct page *node_page; /* cached direct node page */ 753 nid_t nid; /* node id of the direct node block */ 754 unsigned int ofs_in_node; /* data offset in the node page */ 755 bool inode_page_locked; /* inode page is locked or not */ 756 bool node_changed; /* is node block changed */ 757 char cur_level; /* level of hole node page */ 758 char max_level; /* level of current page located */ 759 block_t data_blkaddr; /* block address of the node block */ 760 }; 761 762 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 763 struct page *ipage, struct page *npage, nid_t nid) 764 { 765 memset(dn, 0, sizeof(*dn)); 766 dn->inode = inode; 767 dn->inode_page = ipage; 768 dn->node_page = npage; 769 dn->nid = nid; 770 } 771 772 /* 773 * For SIT manager 774 * 775 * By default, there are 6 active log areas across the whole main area. 776 * When considering hot and cold data separation to reduce cleaning overhead, 777 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 778 * respectively. 779 * In the current design, you should not change the numbers intentionally. 780 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 781 * logs individually according to the underlying devices. (default: 6) 782 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 783 * data and 8 for node logs. 784 */ 785 #define NR_CURSEG_DATA_TYPE (3) 786 #define NR_CURSEG_NODE_TYPE (3) 787 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 788 789 enum { 790 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 791 CURSEG_WARM_DATA, /* data blocks */ 792 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 793 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 794 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 795 CURSEG_COLD_NODE, /* indirect node blocks */ 796 NO_CHECK_TYPE, 797 }; 798 799 struct flush_cmd { 800 struct completion wait; 801 struct llist_node llnode; 802 nid_t ino; 803 int ret; 804 }; 805 806 struct flush_cmd_control { 807 struct task_struct *f2fs_issue_flush; /* flush thread */ 808 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 809 atomic_t issued_flush; /* # of issued flushes */ 810 atomic_t issing_flush; /* # of issing flushes */ 811 struct llist_head issue_list; /* list for command issue */ 812 struct llist_node *dispatch_list; /* list for command dispatch */ 813 }; 814 815 struct f2fs_sm_info { 816 struct sit_info *sit_info; /* whole segment information */ 817 struct free_segmap_info *free_info; /* free segment information */ 818 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 819 struct curseg_info *curseg_array; /* active segment information */ 820 821 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 822 823 block_t seg0_blkaddr; /* block address of 0'th segment */ 824 block_t main_blkaddr; /* start block address of main area */ 825 block_t ssa_blkaddr; /* start block address of SSA area */ 826 827 unsigned int segment_count; /* total # of segments */ 828 unsigned int main_segments; /* # of segments in main area */ 829 unsigned int reserved_segments; /* # of reserved segments */ 830 unsigned int ovp_segments; /* # of overprovision segments */ 831 832 /* a threshold to reclaim prefree segments */ 833 unsigned int rec_prefree_segments; 834 835 /* for batched trimming */ 836 unsigned int trim_sections; /* # of sections to trim */ 837 838 struct list_head sit_entry_set; /* sit entry set list */ 839 840 unsigned int ipu_policy; /* in-place-update policy */ 841 unsigned int min_ipu_util; /* in-place-update threshold */ 842 unsigned int min_fsync_blocks; /* threshold for fsync */ 843 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 844 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 845 846 /* for flush command control */ 847 struct flush_cmd_control *fcc_info; 848 849 /* for discard command control */ 850 struct discard_cmd_control *dcc_info; 851 }; 852 853 /* 854 * For superblock 855 */ 856 /* 857 * COUNT_TYPE for monitoring 858 * 859 * f2fs monitors the number of several block types such as on-writeback, 860 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 861 */ 862 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 863 enum count_type { 864 F2FS_DIRTY_DENTS, 865 F2FS_DIRTY_DATA, 866 F2FS_DIRTY_QDATA, 867 F2FS_DIRTY_NODES, 868 F2FS_DIRTY_META, 869 F2FS_INMEM_PAGES, 870 F2FS_DIRTY_IMETA, 871 F2FS_WB_CP_DATA, 872 F2FS_WB_DATA, 873 NR_COUNT_TYPE, 874 }; 875 876 /* 877 * The below are the page types of bios used in submit_bio(). 878 * The available types are: 879 * DATA User data pages. It operates as async mode. 880 * NODE Node pages. It operates as async mode. 881 * META FS metadata pages such as SIT, NAT, CP. 882 * NR_PAGE_TYPE The number of page types. 883 * META_FLUSH Make sure the previous pages are written 884 * with waiting the bio's completion 885 * ... Only can be used with META. 886 */ 887 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 888 enum page_type { 889 DATA, 890 NODE, 891 META, 892 NR_PAGE_TYPE, 893 META_FLUSH, 894 INMEM, /* the below types are used by tracepoints only. */ 895 INMEM_DROP, 896 INMEM_INVALIDATE, 897 INMEM_REVOKE, 898 IPU, 899 OPU, 900 }; 901 902 enum temp_type { 903 HOT = 0, /* must be zero for meta bio */ 904 WARM, 905 COLD, 906 NR_TEMP_TYPE, 907 }; 908 909 enum need_lock_type { 910 LOCK_REQ = 0, 911 LOCK_DONE, 912 LOCK_RETRY, 913 }; 914 915 enum cp_reason_type { 916 CP_NO_NEEDED, 917 CP_NON_REGULAR, 918 CP_HARDLINK, 919 CP_SB_NEED_CP, 920 CP_WRONG_PINO, 921 CP_NO_SPC_ROLL, 922 CP_NODE_NEED_CP, 923 CP_FASTBOOT_MODE, 924 CP_SPEC_LOG_NUM, 925 }; 926 927 enum iostat_type { 928 APP_DIRECT_IO, /* app direct IOs */ 929 APP_BUFFERED_IO, /* app buffered IOs */ 930 APP_WRITE_IO, /* app write IOs */ 931 APP_MAPPED_IO, /* app mapped IOs */ 932 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 933 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 934 FS_META_IO, /* meta IOs from kworker/reclaimer */ 935 FS_GC_DATA_IO, /* data IOs from forground gc */ 936 FS_GC_NODE_IO, /* node IOs from forground gc */ 937 FS_CP_DATA_IO, /* data IOs from checkpoint */ 938 FS_CP_NODE_IO, /* node IOs from checkpoint */ 939 FS_CP_META_IO, /* meta IOs from checkpoint */ 940 FS_DISCARD, /* discard */ 941 NR_IO_TYPE, 942 }; 943 944 struct f2fs_io_info { 945 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 946 nid_t ino; /* inode number */ 947 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 948 enum temp_type temp; /* contains HOT/WARM/COLD */ 949 int op; /* contains REQ_OP_ */ 950 int op_flags; /* req_flag_bits */ 951 block_t new_blkaddr; /* new block address to be written */ 952 block_t old_blkaddr; /* old block address before Cow */ 953 struct page *page; /* page to be written */ 954 struct page *encrypted_page; /* encrypted page */ 955 struct list_head list; /* serialize IOs */ 956 bool submitted; /* indicate IO submission */ 957 int need_lock; /* indicate we need to lock cp_rwsem */ 958 bool in_list; /* indicate fio is in io_list */ 959 enum iostat_type io_type; /* io type */ 960 }; 961 962 #define is_read_io(rw) ((rw) == READ) 963 struct f2fs_bio_info { 964 struct f2fs_sb_info *sbi; /* f2fs superblock */ 965 struct bio *bio; /* bios to merge */ 966 sector_t last_block_in_bio; /* last block number */ 967 struct f2fs_io_info fio; /* store buffered io info. */ 968 struct rw_semaphore io_rwsem; /* blocking op for bio */ 969 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 970 struct list_head io_list; /* track fios */ 971 }; 972 973 #define FDEV(i) (sbi->devs[i]) 974 #define RDEV(i) (raw_super->devs[i]) 975 struct f2fs_dev_info { 976 struct block_device *bdev; 977 char path[MAX_PATH_LEN]; 978 unsigned int total_segments; 979 block_t start_blk; 980 block_t end_blk; 981 #ifdef CONFIG_BLK_DEV_ZONED 982 unsigned int nr_blkz; /* Total number of zones */ 983 u8 *blkz_type; /* Array of zones type */ 984 #endif 985 }; 986 987 enum inode_type { 988 DIR_INODE, /* for dirty dir inode */ 989 FILE_INODE, /* for dirty regular/symlink inode */ 990 DIRTY_META, /* for all dirtied inode metadata */ 991 ATOMIC_FILE, /* for all atomic files */ 992 NR_INODE_TYPE, 993 }; 994 995 /* for inner inode cache management */ 996 struct inode_management { 997 struct radix_tree_root ino_root; /* ino entry array */ 998 spinlock_t ino_lock; /* for ino entry lock */ 999 struct list_head ino_list; /* inode list head */ 1000 unsigned long ino_num; /* number of entries */ 1001 }; 1002 1003 /* For s_flag in struct f2fs_sb_info */ 1004 enum { 1005 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1006 SBI_IS_CLOSE, /* specify unmounting */ 1007 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1008 SBI_POR_DOING, /* recovery is doing or not */ 1009 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1010 SBI_NEED_CP, /* need to checkpoint */ 1011 }; 1012 1013 enum { 1014 CP_TIME, 1015 REQ_TIME, 1016 MAX_TIME, 1017 }; 1018 1019 struct f2fs_sb_info { 1020 struct super_block *sb; /* pointer to VFS super block */ 1021 struct proc_dir_entry *s_proc; /* proc entry */ 1022 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1023 int valid_super_block; /* valid super block no */ 1024 unsigned long s_flag; /* flags for sbi */ 1025 1026 #ifdef CONFIG_BLK_DEV_ZONED 1027 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1028 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1029 #endif 1030 1031 /* for node-related operations */ 1032 struct f2fs_nm_info *nm_info; /* node manager */ 1033 struct inode *node_inode; /* cache node blocks */ 1034 1035 /* for segment-related operations */ 1036 struct f2fs_sm_info *sm_info; /* segment manager */ 1037 1038 /* for bio operations */ 1039 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1040 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1041 /* bio ordering for NODE/DATA */ 1042 int write_io_size_bits; /* Write IO size bits */ 1043 mempool_t *write_io_dummy; /* Dummy pages */ 1044 1045 /* for checkpoint */ 1046 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1047 int cur_cp_pack; /* remain current cp pack */ 1048 spinlock_t cp_lock; /* for flag in ckpt */ 1049 struct inode *meta_inode; /* cache meta blocks */ 1050 struct mutex cp_mutex; /* checkpoint procedure lock */ 1051 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1052 struct rw_semaphore node_write; /* locking node writes */ 1053 struct rw_semaphore node_change; /* locking node change */ 1054 wait_queue_head_t cp_wait; 1055 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1056 long interval_time[MAX_TIME]; /* to store thresholds */ 1057 1058 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1059 1060 /* for orphan inode, use 0'th array */ 1061 unsigned int max_orphans; /* max orphan inodes */ 1062 1063 /* for inode management */ 1064 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1065 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1066 1067 /* for extent tree cache */ 1068 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1069 struct mutex extent_tree_lock; /* locking extent radix tree */ 1070 struct list_head extent_list; /* lru list for shrinker */ 1071 spinlock_t extent_lock; /* locking extent lru list */ 1072 atomic_t total_ext_tree; /* extent tree count */ 1073 struct list_head zombie_list; /* extent zombie tree list */ 1074 atomic_t total_zombie_tree; /* extent zombie tree count */ 1075 atomic_t total_ext_node; /* extent info count */ 1076 1077 /* basic filesystem units */ 1078 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1079 unsigned int log_blocksize; /* log2 block size */ 1080 unsigned int blocksize; /* block size */ 1081 unsigned int root_ino_num; /* root inode number*/ 1082 unsigned int node_ino_num; /* node inode number*/ 1083 unsigned int meta_ino_num; /* meta inode number*/ 1084 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1085 unsigned int blocks_per_seg; /* blocks per segment */ 1086 unsigned int segs_per_sec; /* segments per section */ 1087 unsigned int secs_per_zone; /* sections per zone */ 1088 unsigned int total_sections; /* total section count */ 1089 unsigned int total_node_count; /* total node block count */ 1090 unsigned int total_valid_node_count; /* valid node block count */ 1091 loff_t max_file_blocks; /* max block index of file */ 1092 int active_logs; /* # of active logs */ 1093 int dir_level; /* directory level */ 1094 int inline_xattr_size; /* inline xattr size */ 1095 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1096 int readdir_ra; /* readahead inode in readdir */ 1097 1098 block_t user_block_count; /* # of user blocks */ 1099 block_t total_valid_block_count; /* # of valid blocks */ 1100 block_t discard_blks; /* discard command candidats */ 1101 block_t last_valid_block_count; /* for recovery */ 1102 block_t reserved_blocks; /* configurable reserved blocks */ 1103 block_t current_reserved_blocks; /* current reserved blocks */ 1104 1105 unsigned int nquota_files; /* # of quota sysfile */ 1106 1107 u32 s_next_generation; /* for NFS support */ 1108 1109 /* # of pages, see count_type */ 1110 atomic_t nr_pages[NR_COUNT_TYPE]; 1111 /* # of allocated blocks */ 1112 struct percpu_counter alloc_valid_block_count; 1113 1114 /* writeback control */ 1115 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1116 1117 /* valid inode count */ 1118 struct percpu_counter total_valid_inode_count; 1119 1120 struct f2fs_mount_info mount_opt; /* mount options */ 1121 1122 /* for cleaning operations */ 1123 struct mutex gc_mutex; /* mutex for GC */ 1124 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1125 unsigned int cur_victim_sec; /* current victim section num */ 1126 1127 /* threshold for converting bg victims for fg */ 1128 u64 fggc_threshold; 1129 1130 /* maximum # of trials to find a victim segment for SSR and GC */ 1131 unsigned int max_victim_search; 1132 1133 /* 1134 * for stat information. 1135 * one is for the LFS mode, and the other is for the SSR mode. 1136 */ 1137 #ifdef CONFIG_F2FS_STAT_FS 1138 struct f2fs_stat_info *stat_info; /* FS status information */ 1139 unsigned int segment_count[2]; /* # of allocated segments */ 1140 unsigned int block_count[2]; /* # of allocated blocks */ 1141 atomic_t inplace_count; /* # of inplace update */ 1142 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1143 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1144 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1145 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1146 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1147 atomic_t inline_inode; /* # of inline_data inodes */ 1148 atomic_t inline_dir; /* # of inline_dentry inodes */ 1149 atomic_t aw_cnt; /* # of atomic writes */ 1150 atomic_t vw_cnt; /* # of volatile writes */ 1151 atomic_t max_aw_cnt; /* max # of atomic writes */ 1152 atomic_t max_vw_cnt; /* max # of volatile writes */ 1153 int bg_gc; /* background gc calls */ 1154 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1155 #endif 1156 spinlock_t stat_lock; /* lock for stat operations */ 1157 1158 /* For app/fs IO statistics */ 1159 spinlock_t iostat_lock; 1160 unsigned long long write_iostat[NR_IO_TYPE]; 1161 bool iostat_enable; 1162 1163 /* For sysfs suppport */ 1164 struct kobject s_kobj; 1165 struct completion s_kobj_unregister; 1166 1167 /* For shrinker support */ 1168 struct list_head s_list; 1169 int s_ndevs; /* number of devices */ 1170 struct f2fs_dev_info *devs; /* for device list */ 1171 unsigned int dirty_device; /* for checkpoint data flush */ 1172 spinlock_t dev_lock; /* protect dirty_device */ 1173 struct mutex umount_mutex; 1174 unsigned int shrinker_run_no; 1175 1176 /* For write statistics */ 1177 u64 sectors_written_start; 1178 u64 kbytes_written; 1179 1180 /* Reference to checksum algorithm driver via cryptoapi */ 1181 struct crypto_shash *s_chksum_driver; 1182 1183 /* Precomputed FS UUID checksum for seeding other checksums */ 1184 __u32 s_chksum_seed; 1185 1186 /* For fault injection */ 1187 #ifdef CONFIG_F2FS_FAULT_INJECTION 1188 struct f2fs_fault_info fault_info; 1189 #endif 1190 1191 #ifdef CONFIG_QUOTA 1192 /* Names of quota files with journalled quota */ 1193 char *s_qf_names[MAXQUOTAS]; 1194 int s_jquota_fmt; /* Format of quota to use */ 1195 #endif 1196 }; 1197 1198 #ifdef CONFIG_F2FS_FAULT_INJECTION 1199 #define f2fs_show_injection_info(type) \ 1200 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1201 KERN_INFO, fault_name[type], \ 1202 __func__, __builtin_return_address(0)) 1203 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1204 { 1205 struct f2fs_fault_info *ffi = &sbi->fault_info; 1206 1207 if (!ffi->inject_rate) 1208 return false; 1209 1210 if (!IS_FAULT_SET(ffi, type)) 1211 return false; 1212 1213 atomic_inc(&ffi->inject_ops); 1214 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1215 atomic_set(&ffi->inject_ops, 0); 1216 return true; 1217 } 1218 return false; 1219 } 1220 #endif 1221 1222 /* For write statistics. Suppose sector size is 512 bytes, 1223 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1224 */ 1225 #define BD_PART_WRITTEN(s) \ 1226 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1227 (s)->sectors_written_start) >> 1) 1228 1229 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1230 { 1231 sbi->last_time[type] = jiffies; 1232 } 1233 1234 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1235 { 1236 unsigned long interval = sbi->interval_time[type] * HZ; 1237 1238 return time_after(jiffies, sbi->last_time[type] + interval); 1239 } 1240 1241 static inline bool is_idle(struct f2fs_sb_info *sbi) 1242 { 1243 struct block_device *bdev = sbi->sb->s_bdev; 1244 struct request_queue *q = bdev_get_queue(bdev); 1245 struct request_list *rl = &q->root_rl; 1246 1247 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1248 return 0; 1249 1250 return f2fs_time_over(sbi, REQ_TIME); 1251 } 1252 1253 /* 1254 * Inline functions 1255 */ 1256 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1257 unsigned int length) 1258 { 1259 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1260 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1261 u32 retval; 1262 int err; 1263 1264 shash->tfm = sbi->s_chksum_driver; 1265 shash->flags = 0; 1266 *ctx = F2FS_SUPER_MAGIC; 1267 1268 err = crypto_shash_update(shash, address, length); 1269 BUG_ON(err); 1270 1271 retval = *ctx; 1272 barrier_data(ctx); 1273 return retval; 1274 } 1275 1276 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1277 void *buf, size_t buf_size) 1278 { 1279 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1280 } 1281 1282 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1283 const void *address, unsigned int length) 1284 { 1285 struct { 1286 struct shash_desc shash; 1287 char ctx[4]; 1288 } desc; 1289 int err; 1290 1291 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1292 1293 desc.shash.tfm = sbi->s_chksum_driver; 1294 desc.shash.flags = 0; 1295 *(u32 *)desc.ctx = crc; 1296 1297 err = crypto_shash_update(&desc.shash, address, length); 1298 BUG_ON(err); 1299 1300 return *(u32 *)desc.ctx; 1301 } 1302 1303 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1304 { 1305 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1306 } 1307 1308 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1309 { 1310 return sb->s_fs_info; 1311 } 1312 1313 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1314 { 1315 return F2FS_SB(inode->i_sb); 1316 } 1317 1318 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1319 { 1320 return F2FS_I_SB(mapping->host); 1321 } 1322 1323 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1324 { 1325 return F2FS_M_SB(page->mapping); 1326 } 1327 1328 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1329 { 1330 return (struct f2fs_super_block *)(sbi->raw_super); 1331 } 1332 1333 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1334 { 1335 return (struct f2fs_checkpoint *)(sbi->ckpt); 1336 } 1337 1338 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1339 { 1340 return (struct f2fs_node *)page_address(page); 1341 } 1342 1343 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1344 { 1345 return &((struct f2fs_node *)page_address(page))->i; 1346 } 1347 1348 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1349 { 1350 return (struct f2fs_nm_info *)(sbi->nm_info); 1351 } 1352 1353 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1354 { 1355 return (struct f2fs_sm_info *)(sbi->sm_info); 1356 } 1357 1358 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1359 { 1360 return (struct sit_info *)(SM_I(sbi)->sit_info); 1361 } 1362 1363 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1364 { 1365 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1366 } 1367 1368 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1369 { 1370 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1371 } 1372 1373 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1374 { 1375 return sbi->meta_inode->i_mapping; 1376 } 1377 1378 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1379 { 1380 return sbi->node_inode->i_mapping; 1381 } 1382 1383 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1384 { 1385 return test_bit(type, &sbi->s_flag); 1386 } 1387 1388 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1389 { 1390 set_bit(type, &sbi->s_flag); 1391 } 1392 1393 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1394 { 1395 clear_bit(type, &sbi->s_flag); 1396 } 1397 1398 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1399 { 1400 return le64_to_cpu(cp->checkpoint_ver); 1401 } 1402 1403 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1404 { 1405 if (type < F2FS_MAX_QUOTAS) 1406 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1407 return 0; 1408 } 1409 1410 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1411 { 1412 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1413 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1414 } 1415 1416 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1417 { 1418 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1419 1420 return ckpt_flags & f; 1421 } 1422 1423 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1424 { 1425 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1426 } 1427 1428 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1429 { 1430 unsigned int ckpt_flags; 1431 1432 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1433 ckpt_flags |= f; 1434 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1435 } 1436 1437 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1438 { 1439 unsigned long flags; 1440 1441 spin_lock_irqsave(&sbi->cp_lock, flags); 1442 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1443 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1444 } 1445 1446 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1447 { 1448 unsigned int ckpt_flags; 1449 1450 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1451 ckpt_flags &= (~f); 1452 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1453 } 1454 1455 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1456 { 1457 unsigned long flags; 1458 1459 spin_lock_irqsave(&sbi->cp_lock, flags); 1460 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1461 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1462 } 1463 1464 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1465 { 1466 unsigned long flags; 1467 1468 set_sbi_flag(sbi, SBI_NEED_FSCK); 1469 1470 if (lock) 1471 spin_lock_irqsave(&sbi->cp_lock, flags); 1472 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1473 kfree(NM_I(sbi)->nat_bits); 1474 NM_I(sbi)->nat_bits = NULL; 1475 if (lock) 1476 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1477 } 1478 1479 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1480 struct cp_control *cpc) 1481 { 1482 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1483 1484 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1485 } 1486 1487 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1488 { 1489 down_read(&sbi->cp_rwsem); 1490 } 1491 1492 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1493 { 1494 return down_read_trylock(&sbi->cp_rwsem); 1495 } 1496 1497 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1498 { 1499 up_read(&sbi->cp_rwsem); 1500 } 1501 1502 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1503 { 1504 down_write(&sbi->cp_rwsem); 1505 } 1506 1507 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1508 { 1509 up_write(&sbi->cp_rwsem); 1510 } 1511 1512 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1513 { 1514 int reason = CP_SYNC; 1515 1516 if (test_opt(sbi, FASTBOOT)) 1517 reason = CP_FASTBOOT; 1518 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1519 reason = CP_UMOUNT; 1520 return reason; 1521 } 1522 1523 static inline bool __remain_node_summaries(int reason) 1524 { 1525 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1526 } 1527 1528 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1529 { 1530 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1531 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1532 } 1533 1534 /* 1535 * Check whether the given nid is within node id range. 1536 */ 1537 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1538 { 1539 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1540 return -EINVAL; 1541 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1542 return -EINVAL; 1543 return 0; 1544 } 1545 1546 /* 1547 * Check whether the inode has blocks or not 1548 */ 1549 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1550 { 1551 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1552 1553 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1554 } 1555 1556 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1557 { 1558 return ofs == XATTR_NODE_OFFSET; 1559 } 1560 1561 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1562 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1563 struct inode *inode, blkcnt_t *count) 1564 { 1565 blkcnt_t diff = 0, release = 0; 1566 block_t avail_user_block_count; 1567 int ret; 1568 1569 ret = dquot_reserve_block(inode, *count); 1570 if (ret) 1571 return ret; 1572 1573 #ifdef CONFIG_F2FS_FAULT_INJECTION 1574 if (time_to_inject(sbi, FAULT_BLOCK)) { 1575 f2fs_show_injection_info(FAULT_BLOCK); 1576 release = *count; 1577 goto enospc; 1578 } 1579 #endif 1580 /* 1581 * let's increase this in prior to actual block count change in order 1582 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1583 */ 1584 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1585 1586 spin_lock(&sbi->stat_lock); 1587 sbi->total_valid_block_count += (block_t)(*count); 1588 avail_user_block_count = sbi->user_block_count - 1589 sbi->current_reserved_blocks; 1590 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1591 diff = sbi->total_valid_block_count - avail_user_block_count; 1592 *count -= diff; 1593 release = diff; 1594 sbi->total_valid_block_count = avail_user_block_count; 1595 if (!*count) { 1596 spin_unlock(&sbi->stat_lock); 1597 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1598 goto enospc; 1599 } 1600 } 1601 spin_unlock(&sbi->stat_lock); 1602 1603 if (release) 1604 dquot_release_reservation_block(inode, release); 1605 f2fs_i_blocks_write(inode, *count, true, true); 1606 return 0; 1607 1608 enospc: 1609 dquot_release_reservation_block(inode, release); 1610 return -ENOSPC; 1611 } 1612 1613 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1614 struct inode *inode, 1615 block_t count) 1616 { 1617 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1618 1619 spin_lock(&sbi->stat_lock); 1620 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1621 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1622 sbi->total_valid_block_count -= (block_t)count; 1623 if (sbi->reserved_blocks && 1624 sbi->current_reserved_blocks < sbi->reserved_blocks) 1625 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1626 sbi->current_reserved_blocks + count); 1627 spin_unlock(&sbi->stat_lock); 1628 f2fs_i_blocks_write(inode, count, false, true); 1629 } 1630 1631 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1632 { 1633 atomic_inc(&sbi->nr_pages[count_type]); 1634 1635 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1636 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1637 return; 1638 1639 set_sbi_flag(sbi, SBI_IS_DIRTY); 1640 } 1641 1642 static inline void inode_inc_dirty_pages(struct inode *inode) 1643 { 1644 atomic_inc(&F2FS_I(inode)->dirty_pages); 1645 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1646 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1647 if (IS_NOQUOTA(inode)) 1648 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1649 } 1650 1651 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1652 { 1653 atomic_dec(&sbi->nr_pages[count_type]); 1654 } 1655 1656 static inline void inode_dec_dirty_pages(struct inode *inode) 1657 { 1658 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1659 !S_ISLNK(inode->i_mode)) 1660 return; 1661 1662 atomic_dec(&F2FS_I(inode)->dirty_pages); 1663 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1664 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1665 if (IS_NOQUOTA(inode)) 1666 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1667 } 1668 1669 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1670 { 1671 return atomic_read(&sbi->nr_pages[count_type]); 1672 } 1673 1674 static inline int get_dirty_pages(struct inode *inode) 1675 { 1676 return atomic_read(&F2FS_I(inode)->dirty_pages); 1677 } 1678 1679 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1680 { 1681 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1682 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1683 sbi->log_blocks_per_seg; 1684 1685 return segs / sbi->segs_per_sec; 1686 } 1687 1688 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1689 { 1690 return sbi->total_valid_block_count; 1691 } 1692 1693 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1694 { 1695 return sbi->discard_blks; 1696 } 1697 1698 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1699 { 1700 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1701 1702 /* return NAT or SIT bitmap */ 1703 if (flag == NAT_BITMAP) 1704 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1705 else if (flag == SIT_BITMAP) 1706 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1707 1708 return 0; 1709 } 1710 1711 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1712 { 1713 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1714 } 1715 1716 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1717 { 1718 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1719 int offset; 1720 1721 if (__cp_payload(sbi) > 0) { 1722 if (flag == NAT_BITMAP) 1723 return &ckpt->sit_nat_version_bitmap; 1724 else 1725 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1726 } else { 1727 offset = (flag == NAT_BITMAP) ? 1728 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1729 return &ckpt->sit_nat_version_bitmap + offset; 1730 } 1731 } 1732 1733 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1734 { 1735 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1736 1737 if (sbi->cur_cp_pack == 2) 1738 start_addr += sbi->blocks_per_seg; 1739 return start_addr; 1740 } 1741 1742 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1743 { 1744 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1745 1746 if (sbi->cur_cp_pack == 1) 1747 start_addr += sbi->blocks_per_seg; 1748 return start_addr; 1749 } 1750 1751 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1752 { 1753 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1754 } 1755 1756 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1757 { 1758 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1759 } 1760 1761 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1762 struct inode *inode, bool is_inode) 1763 { 1764 block_t valid_block_count; 1765 unsigned int valid_node_count; 1766 bool quota = inode && !is_inode; 1767 1768 if (quota) { 1769 int ret = dquot_reserve_block(inode, 1); 1770 if (ret) 1771 return ret; 1772 } 1773 1774 #ifdef CONFIG_F2FS_FAULT_INJECTION 1775 if (time_to_inject(sbi, FAULT_BLOCK)) { 1776 f2fs_show_injection_info(FAULT_BLOCK); 1777 goto enospc; 1778 } 1779 #endif 1780 1781 spin_lock(&sbi->stat_lock); 1782 1783 valid_block_count = sbi->total_valid_block_count + 1; 1784 if (unlikely(valid_block_count + sbi->current_reserved_blocks > 1785 sbi->user_block_count)) { 1786 spin_unlock(&sbi->stat_lock); 1787 goto enospc; 1788 } 1789 1790 valid_node_count = sbi->total_valid_node_count + 1; 1791 if (unlikely(valid_node_count > sbi->total_node_count)) { 1792 spin_unlock(&sbi->stat_lock); 1793 goto enospc; 1794 } 1795 1796 sbi->total_valid_node_count++; 1797 sbi->total_valid_block_count++; 1798 spin_unlock(&sbi->stat_lock); 1799 1800 if (inode) { 1801 if (is_inode) 1802 f2fs_mark_inode_dirty_sync(inode, true); 1803 else 1804 f2fs_i_blocks_write(inode, 1, true, true); 1805 } 1806 1807 percpu_counter_inc(&sbi->alloc_valid_block_count); 1808 return 0; 1809 1810 enospc: 1811 if (quota) 1812 dquot_release_reservation_block(inode, 1); 1813 return -ENOSPC; 1814 } 1815 1816 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1817 struct inode *inode, bool is_inode) 1818 { 1819 spin_lock(&sbi->stat_lock); 1820 1821 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1822 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1823 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1824 1825 sbi->total_valid_node_count--; 1826 sbi->total_valid_block_count--; 1827 if (sbi->reserved_blocks && 1828 sbi->current_reserved_blocks < sbi->reserved_blocks) 1829 sbi->current_reserved_blocks++; 1830 1831 spin_unlock(&sbi->stat_lock); 1832 1833 if (!is_inode) 1834 f2fs_i_blocks_write(inode, 1, false, true); 1835 } 1836 1837 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1838 { 1839 return sbi->total_valid_node_count; 1840 } 1841 1842 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1843 { 1844 percpu_counter_inc(&sbi->total_valid_inode_count); 1845 } 1846 1847 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1848 { 1849 percpu_counter_dec(&sbi->total_valid_inode_count); 1850 } 1851 1852 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1853 { 1854 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1855 } 1856 1857 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1858 pgoff_t index, bool for_write) 1859 { 1860 #ifdef CONFIG_F2FS_FAULT_INJECTION 1861 struct page *page = find_lock_page(mapping, index); 1862 1863 if (page) 1864 return page; 1865 1866 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1867 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1868 return NULL; 1869 } 1870 #endif 1871 if (!for_write) 1872 return grab_cache_page(mapping, index); 1873 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1874 } 1875 1876 static inline struct page *f2fs_pagecache_get_page( 1877 struct address_space *mapping, pgoff_t index, 1878 int fgp_flags, gfp_t gfp_mask) 1879 { 1880 #ifdef CONFIG_F2FS_FAULT_INJECTION 1881 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1882 f2fs_show_injection_info(FAULT_PAGE_GET); 1883 return NULL; 1884 } 1885 #endif 1886 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1887 } 1888 1889 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1890 { 1891 char *src_kaddr = kmap(src); 1892 char *dst_kaddr = kmap(dst); 1893 1894 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1895 kunmap(dst); 1896 kunmap(src); 1897 } 1898 1899 static inline void f2fs_put_page(struct page *page, int unlock) 1900 { 1901 if (!page) 1902 return; 1903 1904 if (unlock) { 1905 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1906 unlock_page(page); 1907 } 1908 put_page(page); 1909 } 1910 1911 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1912 { 1913 if (dn->node_page) 1914 f2fs_put_page(dn->node_page, 1); 1915 if (dn->inode_page && dn->node_page != dn->inode_page) 1916 f2fs_put_page(dn->inode_page, 0); 1917 dn->node_page = NULL; 1918 dn->inode_page = NULL; 1919 } 1920 1921 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1922 size_t size) 1923 { 1924 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1925 } 1926 1927 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1928 gfp_t flags) 1929 { 1930 void *entry; 1931 1932 entry = kmem_cache_alloc(cachep, flags); 1933 if (!entry) 1934 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1935 return entry; 1936 } 1937 1938 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1939 int npages, bool no_fail) 1940 { 1941 struct bio *bio; 1942 1943 if (no_fail) { 1944 /* No failure on bio allocation */ 1945 bio = bio_alloc(GFP_NOIO, npages); 1946 if (!bio) 1947 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1948 return bio; 1949 } 1950 #ifdef CONFIG_F2FS_FAULT_INJECTION 1951 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 1952 f2fs_show_injection_info(FAULT_ALLOC_BIO); 1953 return NULL; 1954 } 1955 #endif 1956 return bio_alloc(GFP_KERNEL, npages); 1957 } 1958 1959 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1960 unsigned long index, void *item) 1961 { 1962 while (radix_tree_insert(root, index, item)) 1963 cond_resched(); 1964 } 1965 1966 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1967 1968 static inline bool IS_INODE(struct page *page) 1969 { 1970 struct f2fs_node *p = F2FS_NODE(page); 1971 1972 return RAW_IS_INODE(p); 1973 } 1974 1975 static inline int offset_in_addr(struct f2fs_inode *i) 1976 { 1977 return (i->i_inline & F2FS_EXTRA_ATTR) ? 1978 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 1979 } 1980 1981 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1982 { 1983 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1984 } 1985 1986 static inline int f2fs_has_extra_attr(struct inode *inode); 1987 static inline block_t datablock_addr(struct inode *inode, 1988 struct page *node_page, unsigned int offset) 1989 { 1990 struct f2fs_node *raw_node; 1991 __le32 *addr_array; 1992 int base = 0; 1993 bool is_inode = IS_INODE(node_page); 1994 1995 raw_node = F2FS_NODE(node_page); 1996 1997 /* from GC path only */ 1998 if (!inode) { 1999 if (is_inode) 2000 base = offset_in_addr(&raw_node->i); 2001 } else if (f2fs_has_extra_attr(inode) && is_inode) { 2002 base = get_extra_isize(inode); 2003 } 2004 2005 addr_array = blkaddr_in_node(raw_node); 2006 return le32_to_cpu(addr_array[base + offset]); 2007 } 2008 2009 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2010 { 2011 int mask; 2012 2013 addr += (nr >> 3); 2014 mask = 1 << (7 - (nr & 0x07)); 2015 return mask & *addr; 2016 } 2017 2018 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2019 { 2020 int mask; 2021 2022 addr += (nr >> 3); 2023 mask = 1 << (7 - (nr & 0x07)); 2024 *addr |= mask; 2025 } 2026 2027 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2028 { 2029 int mask; 2030 2031 addr += (nr >> 3); 2032 mask = 1 << (7 - (nr & 0x07)); 2033 *addr &= ~mask; 2034 } 2035 2036 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2037 { 2038 int mask; 2039 int ret; 2040 2041 addr += (nr >> 3); 2042 mask = 1 << (7 - (nr & 0x07)); 2043 ret = mask & *addr; 2044 *addr |= mask; 2045 return ret; 2046 } 2047 2048 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2049 { 2050 int mask; 2051 int ret; 2052 2053 addr += (nr >> 3); 2054 mask = 1 << (7 - (nr & 0x07)); 2055 ret = mask & *addr; 2056 *addr &= ~mask; 2057 return ret; 2058 } 2059 2060 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2061 { 2062 int mask; 2063 2064 addr += (nr >> 3); 2065 mask = 1 << (7 - (nr & 0x07)); 2066 *addr ^= mask; 2067 } 2068 2069 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2070 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2071 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2072 2073 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2074 { 2075 if (S_ISDIR(mode)) 2076 return flags; 2077 else if (S_ISREG(mode)) 2078 return flags & F2FS_REG_FLMASK; 2079 else 2080 return flags & F2FS_OTHER_FLMASK; 2081 } 2082 2083 /* used for f2fs_inode_info->flags */ 2084 enum { 2085 FI_NEW_INODE, /* indicate newly allocated inode */ 2086 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2087 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2088 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2089 FI_INC_LINK, /* need to increment i_nlink */ 2090 FI_ACL_MODE, /* indicate acl mode */ 2091 FI_NO_ALLOC, /* should not allocate any blocks */ 2092 FI_FREE_NID, /* free allocated nide */ 2093 FI_NO_EXTENT, /* not to use the extent cache */ 2094 FI_INLINE_XATTR, /* used for inline xattr */ 2095 FI_INLINE_DATA, /* used for inline data*/ 2096 FI_INLINE_DENTRY, /* used for inline dentry */ 2097 FI_APPEND_WRITE, /* inode has appended data */ 2098 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2099 FI_NEED_IPU, /* used for ipu per file */ 2100 FI_ATOMIC_FILE, /* indicate atomic file */ 2101 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2102 FI_VOLATILE_FILE, /* indicate volatile file */ 2103 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2104 FI_DROP_CACHE, /* drop dirty page cache */ 2105 FI_DATA_EXIST, /* indicate data exists */ 2106 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2107 FI_DO_DEFRAG, /* indicate defragment is running */ 2108 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2109 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2110 FI_HOT_DATA, /* indicate file is hot */ 2111 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2112 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2113 }; 2114 2115 static inline void __mark_inode_dirty_flag(struct inode *inode, 2116 int flag, bool set) 2117 { 2118 switch (flag) { 2119 case FI_INLINE_XATTR: 2120 case FI_INLINE_DATA: 2121 case FI_INLINE_DENTRY: 2122 if (set) 2123 return; 2124 case FI_DATA_EXIST: 2125 case FI_INLINE_DOTS: 2126 f2fs_mark_inode_dirty_sync(inode, true); 2127 } 2128 } 2129 2130 static inline void set_inode_flag(struct inode *inode, int flag) 2131 { 2132 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2133 set_bit(flag, &F2FS_I(inode)->flags); 2134 __mark_inode_dirty_flag(inode, flag, true); 2135 } 2136 2137 static inline int is_inode_flag_set(struct inode *inode, int flag) 2138 { 2139 return test_bit(flag, &F2FS_I(inode)->flags); 2140 } 2141 2142 static inline void clear_inode_flag(struct inode *inode, int flag) 2143 { 2144 if (test_bit(flag, &F2FS_I(inode)->flags)) 2145 clear_bit(flag, &F2FS_I(inode)->flags); 2146 __mark_inode_dirty_flag(inode, flag, false); 2147 } 2148 2149 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2150 { 2151 F2FS_I(inode)->i_acl_mode = mode; 2152 set_inode_flag(inode, FI_ACL_MODE); 2153 f2fs_mark_inode_dirty_sync(inode, false); 2154 } 2155 2156 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2157 { 2158 if (inc) 2159 inc_nlink(inode); 2160 else 2161 drop_nlink(inode); 2162 f2fs_mark_inode_dirty_sync(inode, true); 2163 } 2164 2165 static inline void f2fs_i_blocks_write(struct inode *inode, 2166 block_t diff, bool add, bool claim) 2167 { 2168 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2169 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2170 2171 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2172 if (add) { 2173 if (claim) 2174 dquot_claim_block(inode, diff); 2175 else 2176 dquot_alloc_block_nofail(inode, diff); 2177 } else { 2178 dquot_free_block(inode, diff); 2179 } 2180 2181 f2fs_mark_inode_dirty_sync(inode, true); 2182 if (clean || recover) 2183 set_inode_flag(inode, FI_AUTO_RECOVER); 2184 } 2185 2186 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2187 { 2188 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2189 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2190 2191 if (i_size_read(inode) == i_size) 2192 return; 2193 2194 i_size_write(inode, i_size); 2195 f2fs_mark_inode_dirty_sync(inode, true); 2196 if (clean || recover) 2197 set_inode_flag(inode, FI_AUTO_RECOVER); 2198 } 2199 2200 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2201 { 2202 F2FS_I(inode)->i_current_depth = depth; 2203 f2fs_mark_inode_dirty_sync(inode, true); 2204 } 2205 2206 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2207 { 2208 F2FS_I(inode)->i_xattr_nid = xnid; 2209 f2fs_mark_inode_dirty_sync(inode, true); 2210 } 2211 2212 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2213 { 2214 F2FS_I(inode)->i_pino = pino; 2215 f2fs_mark_inode_dirty_sync(inode, true); 2216 } 2217 2218 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2219 { 2220 struct f2fs_inode_info *fi = F2FS_I(inode); 2221 2222 if (ri->i_inline & F2FS_INLINE_XATTR) 2223 set_bit(FI_INLINE_XATTR, &fi->flags); 2224 if (ri->i_inline & F2FS_INLINE_DATA) 2225 set_bit(FI_INLINE_DATA, &fi->flags); 2226 if (ri->i_inline & F2FS_INLINE_DENTRY) 2227 set_bit(FI_INLINE_DENTRY, &fi->flags); 2228 if (ri->i_inline & F2FS_DATA_EXIST) 2229 set_bit(FI_DATA_EXIST, &fi->flags); 2230 if (ri->i_inline & F2FS_INLINE_DOTS) 2231 set_bit(FI_INLINE_DOTS, &fi->flags); 2232 if (ri->i_inline & F2FS_EXTRA_ATTR) 2233 set_bit(FI_EXTRA_ATTR, &fi->flags); 2234 } 2235 2236 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2237 { 2238 ri->i_inline = 0; 2239 2240 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2241 ri->i_inline |= F2FS_INLINE_XATTR; 2242 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2243 ri->i_inline |= F2FS_INLINE_DATA; 2244 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2245 ri->i_inline |= F2FS_INLINE_DENTRY; 2246 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2247 ri->i_inline |= F2FS_DATA_EXIST; 2248 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2249 ri->i_inline |= F2FS_INLINE_DOTS; 2250 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2251 ri->i_inline |= F2FS_EXTRA_ATTR; 2252 } 2253 2254 static inline int f2fs_has_extra_attr(struct inode *inode) 2255 { 2256 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2257 } 2258 2259 static inline int f2fs_has_inline_xattr(struct inode *inode) 2260 { 2261 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2262 } 2263 2264 static inline unsigned int addrs_per_inode(struct inode *inode) 2265 { 2266 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode); 2267 } 2268 2269 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2270 { 2271 struct f2fs_inode *ri = F2FS_INODE(page); 2272 2273 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2274 F2FS_INLINE_XATTR_ADDRS(inode)]); 2275 } 2276 2277 static inline int inline_xattr_size(struct inode *inode) 2278 { 2279 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2280 } 2281 2282 static inline int f2fs_has_inline_data(struct inode *inode) 2283 { 2284 return is_inode_flag_set(inode, FI_INLINE_DATA); 2285 } 2286 2287 static inline int f2fs_exist_data(struct inode *inode) 2288 { 2289 return is_inode_flag_set(inode, FI_DATA_EXIST); 2290 } 2291 2292 static inline int f2fs_has_inline_dots(struct inode *inode) 2293 { 2294 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2295 } 2296 2297 static inline bool f2fs_is_atomic_file(struct inode *inode) 2298 { 2299 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2300 } 2301 2302 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2303 { 2304 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2305 } 2306 2307 static inline bool f2fs_is_volatile_file(struct inode *inode) 2308 { 2309 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2310 } 2311 2312 static inline bool f2fs_is_first_block_written(struct inode *inode) 2313 { 2314 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2315 } 2316 2317 static inline bool f2fs_is_drop_cache(struct inode *inode) 2318 { 2319 return is_inode_flag_set(inode, FI_DROP_CACHE); 2320 } 2321 2322 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2323 { 2324 struct f2fs_inode *ri = F2FS_INODE(page); 2325 int extra_size = get_extra_isize(inode); 2326 2327 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2328 } 2329 2330 static inline int f2fs_has_inline_dentry(struct inode *inode) 2331 { 2332 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2333 } 2334 2335 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2336 { 2337 if (!f2fs_has_inline_dentry(dir)) 2338 kunmap(page); 2339 } 2340 2341 static inline int is_file(struct inode *inode, int type) 2342 { 2343 return F2FS_I(inode)->i_advise & type; 2344 } 2345 2346 static inline void set_file(struct inode *inode, int type) 2347 { 2348 F2FS_I(inode)->i_advise |= type; 2349 f2fs_mark_inode_dirty_sync(inode, true); 2350 } 2351 2352 static inline void clear_file(struct inode *inode, int type) 2353 { 2354 F2FS_I(inode)->i_advise &= ~type; 2355 f2fs_mark_inode_dirty_sync(inode, true); 2356 } 2357 2358 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2359 { 2360 bool ret; 2361 2362 if (dsync) { 2363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2364 2365 spin_lock(&sbi->inode_lock[DIRTY_META]); 2366 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2367 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2368 return ret; 2369 } 2370 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2371 file_keep_isize(inode) || 2372 i_size_read(inode) & PAGE_MASK) 2373 return false; 2374 2375 down_read(&F2FS_I(inode)->i_sem); 2376 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2377 up_read(&F2FS_I(inode)->i_sem); 2378 2379 return ret; 2380 } 2381 2382 static inline int f2fs_readonly(struct super_block *sb) 2383 { 2384 return sb->s_flags & SB_RDONLY; 2385 } 2386 2387 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2388 { 2389 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2390 } 2391 2392 static inline bool is_dot_dotdot(const struct qstr *str) 2393 { 2394 if (str->len == 1 && str->name[0] == '.') 2395 return true; 2396 2397 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2398 return true; 2399 2400 return false; 2401 } 2402 2403 static inline bool f2fs_may_extent_tree(struct inode *inode) 2404 { 2405 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2406 is_inode_flag_set(inode, FI_NO_EXTENT)) 2407 return false; 2408 2409 return S_ISREG(inode->i_mode); 2410 } 2411 2412 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2413 size_t size, gfp_t flags) 2414 { 2415 #ifdef CONFIG_F2FS_FAULT_INJECTION 2416 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2417 f2fs_show_injection_info(FAULT_KMALLOC); 2418 return NULL; 2419 } 2420 #endif 2421 return kmalloc(size, flags); 2422 } 2423 2424 static inline int get_extra_isize(struct inode *inode) 2425 { 2426 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2427 } 2428 2429 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb); 2430 static inline int get_inline_xattr_addrs(struct inode *inode) 2431 { 2432 return F2FS_I(inode)->i_inline_xattr_size; 2433 } 2434 2435 #define get_inode_mode(i) \ 2436 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2437 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2438 2439 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2440 (offsetof(struct f2fs_inode, i_extra_end) - \ 2441 offsetof(struct f2fs_inode, i_extra_isize)) \ 2442 2443 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2444 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2445 ((offsetof(typeof(*f2fs_inode), field) + \ 2446 sizeof((f2fs_inode)->field)) \ 2447 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2448 2449 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2450 { 2451 int i; 2452 2453 spin_lock(&sbi->iostat_lock); 2454 for (i = 0; i < NR_IO_TYPE; i++) 2455 sbi->write_iostat[i] = 0; 2456 spin_unlock(&sbi->iostat_lock); 2457 } 2458 2459 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2460 enum iostat_type type, unsigned long long io_bytes) 2461 { 2462 if (!sbi->iostat_enable) 2463 return; 2464 spin_lock(&sbi->iostat_lock); 2465 sbi->write_iostat[type] += io_bytes; 2466 2467 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2468 sbi->write_iostat[APP_BUFFERED_IO] = 2469 sbi->write_iostat[APP_WRITE_IO] - 2470 sbi->write_iostat[APP_DIRECT_IO]; 2471 spin_unlock(&sbi->iostat_lock); 2472 } 2473 2474 /* 2475 * file.c 2476 */ 2477 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2478 void truncate_data_blocks(struct dnode_of_data *dn); 2479 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2480 int f2fs_truncate(struct inode *inode); 2481 int f2fs_getattr(const struct path *path, struct kstat *stat, 2482 u32 request_mask, unsigned int flags); 2483 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2484 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2485 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2486 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2487 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2488 2489 /* 2490 * inode.c 2491 */ 2492 void f2fs_set_inode_flags(struct inode *inode); 2493 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2494 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2495 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2496 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2497 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2498 int update_inode(struct inode *inode, struct page *node_page); 2499 int update_inode_page(struct inode *inode); 2500 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2501 void f2fs_evict_inode(struct inode *inode); 2502 void handle_failed_inode(struct inode *inode); 2503 2504 /* 2505 * namei.c 2506 */ 2507 struct dentry *f2fs_get_parent(struct dentry *child); 2508 2509 /* 2510 * dir.c 2511 */ 2512 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2513 unsigned char get_de_type(struct f2fs_dir_entry *de); 2514 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2515 f2fs_hash_t namehash, int *max_slots, 2516 struct f2fs_dentry_ptr *d); 2517 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2518 unsigned int start_pos, struct fscrypt_str *fstr); 2519 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2520 struct f2fs_dentry_ptr *d); 2521 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2522 const struct qstr *new_name, 2523 const struct qstr *orig_name, struct page *dpage); 2524 void update_parent_metadata(struct inode *dir, struct inode *inode, 2525 unsigned int current_depth); 2526 int room_for_filename(const void *bitmap, int slots, int max_slots); 2527 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2528 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2529 struct fscrypt_name *fname, struct page **res_page); 2530 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2531 const struct qstr *child, struct page **res_page); 2532 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2533 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2534 struct page **page); 2535 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2536 struct page *page, struct inode *inode); 2537 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2538 const struct qstr *name, f2fs_hash_t name_hash, 2539 unsigned int bit_pos); 2540 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2541 const struct qstr *orig_name, 2542 struct inode *inode, nid_t ino, umode_t mode); 2543 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2544 struct inode *inode, nid_t ino, umode_t mode); 2545 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2546 struct inode *inode, nid_t ino, umode_t mode); 2547 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2548 struct inode *dir, struct inode *inode); 2549 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2550 bool f2fs_empty_dir(struct inode *dir); 2551 2552 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2553 { 2554 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2555 inode, inode->i_ino, inode->i_mode); 2556 } 2557 2558 /* 2559 * super.c 2560 */ 2561 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2562 void f2fs_inode_synced(struct inode *inode); 2563 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2564 void f2fs_quota_off_umount(struct super_block *sb); 2565 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2566 int f2fs_sync_fs(struct super_block *sb, int sync); 2567 extern __printf(3, 4) 2568 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2569 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2570 2571 /* 2572 * hash.c 2573 */ 2574 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2575 struct fscrypt_name *fname); 2576 2577 /* 2578 * node.c 2579 */ 2580 struct dnode_of_data; 2581 struct node_info; 2582 2583 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2584 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2585 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2586 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2587 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2588 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2589 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2590 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2591 int truncate_xattr_node(struct inode *inode); 2592 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2593 int remove_inode_page(struct inode *inode); 2594 struct page *new_inode_page(struct inode *inode); 2595 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2596 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2597 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2598 struct page *get_node_page_ra(struct page *parent, int start); 2599 void move_node_page(struct page *node_page, int gc_type); 2600 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2601 struct writeback_control *wbc, bool atomic); 2602 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2603 bool do_balance, enum iostat_type io_type); 2604 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2605 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2606 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2607 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2608 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2609 void recover_inline_xattr(struct inode *inode, struct page *page); 2610 int recover_xattr_data(struct inode *inode, struct page *page); 2611 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2612 int restore_node_summary(struct f2fs_sb_info *sbi, 2613 unsigned int segno, struct f2fs_summary_block *sum); 2614 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2615 int build_node_manager(struct f2fs_sb_info *sbi); 2616 void destroy_node_manager(struct f2fs_sb_info *sbi); 2617 int __init create_node_manager_caches(void); 2618 void destroy_node_manager_caches(void); 2619 2620 /* 2621 * segment.c 2622 */ 2623 bool need_SSR(struct f2fs_sb_info *sbi); 2624 void register_inmem_page(struct inode *inode, struct page *page); 2625 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2626 void drop_inmem_pages(struct inode *inode); 2627 void drop_inmem_page(struct inode *inode, struct page *page); 2628 int commit_inmem_pages(struct inode *inode); 2629 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2630 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2631 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2632 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2633 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2634 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2635 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2636 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2637 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2638 unsigned int granularity); 2639 void stop_discard_thread(struct f2fs_sb_info *sbi); 2640 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2641 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2642 void release_discard_addrs(struct f2fs_sb_info *sbi); 2643 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2644 void allocate_new_segments(struct f2fs_sb_info *sbi); 2645 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2646 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2647 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2648 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2649 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2650 enum iostat_type io_type); 2651 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2652 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2653 int rewrite_data_page(struct f2fs_io_info *fio); 2654 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2655 block_t old_blkaddr, block_t new_blkaddr, 2656 bool recover_curseg, bool recover_newaddr); 2657 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2658 block_t old_addr, block_t new_addr, 2659 unsigned char version, bool recover_curseg, 2660 bool recover_newaddr); 2661 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2662 block_t old_blkaddr, block_t *new_blkaddr, 2663 struct f2fs_summary *sum, int type, 2664 struct f2fs_io_info *fio, bool add_list); 2665 void f2fs_wait_on_page_writeback(struct page *page, 2666 enum page_type type, bool ordered); 2667 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2668 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2669 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2670 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2671 unsigned int val, int alloc); 2672 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2673 int build_segment_manager(struct f2fs_sb_info *sbi); 2674 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2675 int __init create_segment_manager_caches(void); 2676 void destroy_segment_manager_caches(void); 2677 2678 /* 2679 * checkpoint.c 2680 */ 2681 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2682 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2683 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2684 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2685 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2686 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2687 int type, bool sync); 2688 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2689 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2690 long nr_to_write, enum iostat_type io_type); 2691 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2692 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2693 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2694 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2695 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2696 unsigned int devidx, int type); 2697 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2698 unsigned int devidx, int type); 2699 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2700 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2701 void release_orphan_inode(struct f2fs_sb_info *sbi); 2702 void add_orphan_inode(struct inode *inode); 2703 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2704 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2705 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2706 void update_dirty_page(struct inode *inode, struct page *page); 2707 void remove_dirty_inode(struct inode *inode); 2708 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2709 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2710 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2711 int __init create_checkpoint_caches(void); 2712 void destroy_checkpoint_caches(void); 2713 2714 /* 2715 * data.c 2716 */ 2717 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2718 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2719 struct inode *inode, nid_t ino, pgoff_t idx, 2720 enum page_type type); 2721 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2722 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2723 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2724 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2725 block_t blk_addr, struct bio *bio); 2726 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2727 void set_data_blkaddr(struct dnode_of_data *dn); 2728 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2729 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2730 int reserve_new_block(struct dnode_of_data *dn); 2731 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2732 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2733 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2734 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2735 int op_flags, bool for_write); 2736 struct page *find_data_page(struct inode *inode, pgoff_t index); 2737 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2738 bool for_write); 2739 struct page *get_new_data_page(struct inode *inode, 2740 struct page *ipage, pgoff_t index, bool new_i_size); 2741 int do_write_data_page(struct f2fs_io_info *fio); 2742 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2743 int create, int flag); 2744 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2745 u64 start, u64 len); 2746 void f2fs_set_page_dirty_nobuffers(struct page *page); 2747 int __f2fs_write_data_pages(struct address_space *mapping, 2748 struct writeback_control *wbc, 2749 enum iostat_type io_type); 2750 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2751 unsigned int length); 2752 int f2fs_release_page(struct page *page, gfp_t wait); 2753 #ifdef CONFIG_MIGRATION 2754 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2755 struct page *page, enum migrate_mode mode); 2756 #endif 2757 2758 /* 2759 * gc.c 2760 */ 2761 int start_gc_thread(struct f2fs_sb_info *sbi); 2762 void stop_gc_thread(struct f2fs_sb_info *sbi); 2763 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2764 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2765 unsigned int segno); 2766 void build_gc_manager(struct f2fs_sb_info *sbi); 2767 2768 /* 2769 * recovery.c 2770 */ 2771 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2772 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2773 2774 /* 2775 * debug.c 2776 */ 2777 #ifdef CONFIG_F2FS_STAT_FS 2778 struct f2fs_stat_info { 2779 struct list_head stat_list; 2780 struct f2fs_sb_info *sbi; 2781 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2782 int main_area_segs, main_area_sections, main_area_zones; 2783 unsigned long long hit_largest, hit_cached, hit_rbtree; 2784 unsigned long long hit_total, total_ext; 2785 int ext_tree, zombie_tree, ext_node; 2786 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2787 int ndirty_data, ndirty_qdata; 2788 int inmem_pages; 2789 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2790 int nats, dirty_nats, sits, dirty_sits; 2791 int free_nids, avail_nids, alloc_nids; 2792 int total_count, utilization; 2793 int bg_gc, nr_wb_cp_data, nr_wb_data; 2794 int nr_flushing, nr_flushed, flush_list_empty; 2795 int nr_discarding, nr_discarded; 2796 int nr_discard_cmd; 2797 unsigned int undiscard_blks; 2798 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2799 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2800 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2801 unsigned int bimodal, avg_vblocks; 2802 int util_free, util_valid, util_invalid; 2803 int rsvd_segs, overp_segs; 2804 int dirty_count, node_pages, meta_pages; 2805 int prefree_count, call_count, cp_count, bg_cp_count; 2806 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2807 int bg_node_segs, bg_data_segs; 2808 int tot_blks, data_blks, node_blks; 2809 int bg_data_blks, bg_node_blks; 2810 int curseg[NR_CURSEG_TYPE]; 2811 int cursec[NR_CURSEG_TYPE]; 2812 int curzone[NR_CURSEG_TYPE]; 2813 2814 unsigned int segment_count[2]; 2815 unsigned int block_count[2]; 2816 unsigned int inplace_count; 2817 unsigned long long base_mem, cache_mem, page_mem; 2818 }; 2819 2820 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2821 { 2822 return (struct f2fs_stat_info *)sbi->stat_info; 2823 } 2824 2825 #define stat_inc_cp_count(si) ((si)->cp_count++) 2826 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2827 #define stat_inc_call_count(si) ((si)->call_count++) 2828 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2829 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2830 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2831 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2832 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2833 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2834 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2835 #define stat_inc_inline_xattr(inode) \ 2836 do { \ 2837 if (f2fs_has_inline_xattr(inode)) \ 2838 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2839 } while (0) 2840 #define stat_dec_inline_xattr(inode) \ 2841 do { \ 2842 if (f2fs_has_inline_xattr(inode)) \ 2843 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2844 } while (0) 2845 #define stat_inc_inline_inode(inode) \ 2846 do { \ 2847 if (f2fs_has_inline_data(inode)) \ 2848 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2849 } while (0) 2850 #define stat_dec_inline_inode(inode) \ 2851 do { \ 2852 if (f2fs_has_inline_data(inode)) \ 2853 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2854 } while (0) 2855 #define stat_inc_inline_dir(inode) \ 2856 do { \ 2857 if (f2fs_has_inline_dentry(inode)) \ 2858 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2859 } while (0) 2860 #define stat_dec_inline_dir(inode) \ 2861 do { \ 2862 if (f2fs_has_inline_dentry(inode)) \ 2863 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2864 } while (0) 2865 #define stat_inc_seg_type(sbi, curseg) \ 2866 ((sbi)->segment_count[(curseg)->alloc_type]++) 2867 #define stat_inc_block_count(sbi, curseg) \ 2868 ((sbi)->block_count[(curseg)->alloc_type]++) 2869 #define stat_inc_inplace_blocks(sbi) \ 2870 (atomic_inc(&(sbi)->inplace_count)) 2871 #define stat_inc_atomic_write(inode) \ 2872 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2873 #define stat_dec_atomic_write(inode) \ 2874 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2875 #define stat_update_max_atomic_write(inode) \ 2876 do { \ 2877 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2878 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2879 if (cur > max) \ 2880 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2881 } while (0) 2882 #define stat_inc_volatile_write(inode) \ 2883 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2884 #define stat_dec_volatile_write(inode) \ 2885 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2886 #define stat_update_max_volatile_write(inode) \ 2887 do { \ 2888 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2889 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2890 if (cur > max) \ 2891 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2892 } while (0) 2893 #define stat_inc_seg_count(sbi, type, gc_type) \ 2894 do { \ 2895 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2896 si->tot_segs++; \ 2897 if ((type) == SUM_TYPE_DATA) { \ 2898 si->data_segs++; \ 2899 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2900 } else { \ 2901 si->node_segs++; \ 2902 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2903 } \ 2904 } while (0) 2905 2906 #define stat_inc_tot_blk_count(si, blks) \ 2907 ((si)->tot_blks += (blks)) 2908 2909 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2910 do { \ 2911 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2912 stat_inc_tot_blk_count(si, blks); \ 2913 si->data_blks += (blks); \ 2914 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2915 } while (0) 2916 2917 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2918 do { \ 2919 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2920 stat_inc_tot_blk_count(si, blks); \ 2921 si->node_blks += (blks); \ 2922 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2923 } while (0) 2924 2925 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2926 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2927 int __init f2fs_create_root_stats(void); 2928 void f2fs_destroy_root_stats(void); 2929 #else 2930 #define stat_inc_cp_count(si) do { } while (0) 2931 #define stat_inc_bg_cp_count(si) do { } while (0) 2932 #define stat_inc_call_count(si) do { } while (0) 2933 #define stat_inc_bggc_count(si) do { } while (0) 2934 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2935 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2936 #define stat_inc_total_hit(sb) do { } while (0) 2937 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2938 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2939 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2940 #define stat_inc_inline_xattr(inode) do { } while (0) 2941 #define stat_dec_inline_xattr(inode) do { } while (0) 2942 #define stat_inc_inline_inode(inode) do { } while (0) 2943 #define stat_dec_inline_inode(inode) do { } while (0) 2944 #define stat_inc_inline_dir(inode) do { } while (0) 2945 #define stat_dec_inline_dir(inode) do { } while (0) 2946 #define stat_inc_atomic_write(inode) do { } while (0) 2947 #define stat_dec_atomic_write(inode) do { } while (0) 2948 #define stat_update_max_atomic_write(inode) do { } while (0) 2949 #define stat_inc_volatile_write(inode) do { } while (0) 2950 #define stat_dec_volatile_write(inode) do { } while (0) 2951 #define stat_update_max_volatile_write(inode) do { } while (0) 2952 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2953 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2954 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2955 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2956 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2957 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2958 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2959 2960 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2961 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2962 static inline int __init f2fs_create_root_stats(void) { return 0; } 2963 static inline void f2fs_destroy_root_stats(void) { } 2964 #endif 2965 2966 extern const struct file_operations f2fs_dir_operations; 2967 extern const struct file_operations f2fs_file_operations; 2968 extern const struct inode_operations f2fs_file_inode_operations; 2969 extern const struct address_space_operations f2fs_dblock_aops; 2970 extern const struct address_space_operations f2fs_node_aops; 2971 extern const struct address_space_operations f2fs_meta_aops; 2972 extern const struct inode_operations f2fs_dir_inode_operations; 2973 extern const struct inode_operations f2fs_symlink_inode_operations; 2974 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2975 extern const struct inode_operations f2fs_special_inode_operations; 2976 extern struct kmem_cache *inode_entry_slab; 2977 2978 /* 2979 * inline.c 2980 */ 2981 bool f2fs_may_inline_data(struct inode *inode); 2982 bool f2fs_may_inline_dentry(struct inode *inode); 2983 void read_inline_data(struct page *page, struct page *ipage); 2984 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2985 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2986 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2987 int f2fs_convert_inline_inode(struct inode *inode); 2988 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2989 bool recover_inline_data(struct inode *inode, struct page *npage); 2990 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2991 struct fscrypt_name *fname, struct page **res_page); 2992 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2993 struct page *ipage); 2994 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2995 const struct qstr *orig_name, 2996 struct inode *inode, nid_t ino, umode_t mode); 2997 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2998 struct inode *dir, struct inode *inode); 2999 bool f2fs_empty_inline_dir(struct inode *dir); 3000 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3001 struct fscrypt_str *fstr); 3002 int f2fs_inline_data_fiemap(struct inode *inode, 3003 struct fiemap_extent_info *fieinfo, 3004 __u64 start, __u64 len); 3005 3006 /* 3007 * shrinker.c 3008 */ 3009 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3010 struct shrink_control *sc); 3011 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3012 struct shrink_control *sc); 3013 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3014 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3015 3016 /* 3017 * extent_cache.c 3018 */ 3019 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3020 struct rb_entry *cached_re, unsigned int ofs); 3021 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3022 struct rb_root *root, struct rb_node **parent, 3023 unsigned int ofs); 3024 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3025 struct rb_entry *cached_re, unsigned int ofs, 3026 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3027 struct rb_node ***insert_p, struct rb_node **insert_parent, 3028 bool force); 3029 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3030 struct rb_root *root); 3031 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3032 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3033 void f2fs_drop_extent_tree(struct inode *inode); 3034 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3035 void f2fs_destroy_extent_tree(struct inode *inode); 3036 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3037 struct extent_info *ei); 3038 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3039 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3040 pgoff_t fofs, block_t blkaddr, unsigned int len); 3041 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3042 int __init create_extent_cache(void); 3043 void destroy_extent_cache(void); 3044 3045 /* 3046 * sysfs.c 3047 */ 3048 int __init f2fs_init_sysfs(void); 3049 void f2fs_exit_sysfs(void); 3050 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3051 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3052 3053 /* 3054 * crypto support 3055 */ 3056 static inline bool f2fs_encrypted_inode(struct inode *inode) 3057 { 3058 return file_is_encrypt(inode); 3059 } 3060 3061 static inline bool f2fs_encrypted_file(struct inode *inode) 3062 { 3063 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3064 } 3065 3066 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3067 { 3068 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3069 file_set_encrypt(inode); 3070 inode->i_flags |= S_ENCRYPTED; 3071 #endif 3072 } 3073 3074 static inline bool f2fs_bio_encrypted(struct bio *bio) 3075 { 3076 return bio->bi_private != NULL; 3077 } 3078 3079 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3080 { 3081 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3082 } 3083 3084 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3085 { 3086 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3087 } 3088 3089 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3090 { 3091 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3092 } 3093 3094 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3095 { 3096 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3097 } 3098 3099 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3100 { 3101 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3102 } 3103 3104 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3105 { 3106 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3107 } 3108 3109 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3110 { 3111 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3112 } 3113 3114 #ifdef CONFIG_BLK_DEV_ZONED 3115 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3116 struct block_device *bdev, block_t blkaddr) 3117 { 3118 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3119 int i; 3120 3121 for (i = 0; i < sbi->s_ndevs; i++) 3122 if (FDEV(i).bdev == bdev) 3123 return FDEV(i).blkz_type[zno]; 3124 return -EINVAL; 3125 } 3126 #endif 3127 3128 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3129 { 3130 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3131 3132 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3133 } 3134 3135 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3136 { 3137 clear_opt(sbi, ADAPTIVE); 3138 clear_opt(sbi, LFS); 3139 3140 switch (mt) { 3141 case F2FS_MOUNT_ADAPTIVE: 3142 set_opt(sbi, ADAPTIVE); 3143 break; 3144 case F2FS_MOUNT_LFS: 3145 set_opt(sbi, LFS); 3146 break; 3147 } 3148 } 3149 3150 static inline bool f2fs_may_encrypt(struct inode *inode) 3151 { 3152 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3153 umode_t mode = inode->i_mode; 3154 3155 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3156 #else 3157 return 0; 3158 #endif 3159 } 3160 3161 #endif 3162