xref: /openbmc/linux/fs/f2fs/f2fs.h (revision dcbb4c10e6d9693cc9d6fa493b4d130b66a60c7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition)					\
33 	do {								\
34 		if (unlikely(condition)) {				\
35 			WARN_ON(1);					\
36 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
37 		}							\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_BG_GC		0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_ADAPTIVE		0x00020000
94 #define F2FS_MOUNT_LFS			0x00040000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	bool test_dummy_encryption;	/* test dummy encryption */
139 	block_t unusable_cap;		/* Amount of space allowed to be
140 					 * unusable when disabling checkpoint
141 					 */
142 };
143 
144 #define F2FS_FEATURE_ENCRYPT		0x0001
145 #define F2FS_FEATURE_BLKZONED		0x0002
146 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
147 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
148 #define F2FS_FEATURE_PRJQUOTA		0x0010
149 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
150 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
151 #define F2FS_FEATURE_QUOTA_INO		0x0080
152 #define F2FS_FEATURE_INODE_CRTIME	0x0100
153 #define F2FS_FEATURE_LOST_FOUND		0x0200
154 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
155 #define F2FS_FEATURE_SB_CHKSUM		0x0800
156 
157 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
158 	((raw_super->feature & cpu_to_le32(mask)) != 0)
159 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
160 #define F2FS_SET_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature |= cpu_to_le32(mask))
162 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
163 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
164 
165 /*
166  * Default values for user and/or group using reserved blocks
167  */
168 #define	F2FS_DEF_RESUID		0
169 #define	F2FS_DEF_RESGID		0
170 
171 /*
172  * For checkpoint manager
173  */
174 enum {
175 	NAT_BITMAP,
176 	SIT_BITMAP
177 };
178 
179 #define	CP_UMOUNT	0x00000001
180 #define	CP_FASTBOOT	0x00000002
181 #define	CP_SYNC		0x00000004
182 #define	CP_RECOVERY	0x00000008
183 #define	CP_DISCARD	0x00000010
184 #define CP_TRIMMED	0x00000020
185 #define CP_PAUSE	0x00000040
186 
187 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
188 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
189 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
190 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
191 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
192 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
193 #define DEF_CP_INTERVAL			60	/* 60 secs */
194 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
195 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
196 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
197 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
198 
199 struct cp_control {
200 	int reason;
201 	__u64 trim_start;
202 	__u64 trim_end;
203 	__u64 trim_minlen;
204 };
205 
206 /*
207  * indicate meta/data type
208  */
209 enum {
210 	META_CP,
211 	META_NAT,
212 	META_SIT,
213 	META_SSA,
214 	META_MAX,
215 	META_POR,
216 	DATA_GENERIC,		/* check range only */
217 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
218 	DATA_GENERIC_ENHANCE_READ,	/*
219 					 * strong check on range and segment
220 					 * bitmap but no warning due to race
221 					 * condition of read on truncated area
222 					 * by extent_cache
223 					 */
224 	META_GENERIC,
225 };
226 
227 /* for the list of ino */
228 enum {
229 	ORPHAN_INO,		/* for orphan ino list */
230 	APPEND_INO,		/* for append ino list */
231 	UPDATE_INO,		/* for update ino list */
232 	TRANS_DIR_INO,		/* for trasactions dir ino list */
233 	FLUSH_INO,		/* for multiple device flushing */
234 	MAX_INO_ENTRY,		/* max. list */
235 };
236 
237 struct ino_entry {
238 	struct list_head list;		/* list head */
239 	nid_t ino;			/* inode number */
240 	unsigned int dirty_device;	/* dirty device bitmap */
241 };
242 
243 /* for the list of inodes to be GCed */
244 struct inode_entry {
245 	struct list_head list;	/* list head */
246 	struct inode *inode;	/* vfs inode pointer */
247 };
248 
249 struct fsync_node_entry {
250 	struct list_head list;	/* list head */
251 	struct page *page;	/* warm node page pointer */
252 	unsigned int seq_id;	/* sequence id */
253 };
254 
255 /* for the bitmap indicate blocks to be discarded */
256 struct discard_entry {
257 	struct list_head list;	/* list head */
258 	block_t start_blkaddr;	/* start blockaddr of current segment */
259 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
260 };
261 
262 /* default discard granularity of inner discard thread, unit: block count */
263 #define DEFAULT_DISCARD_GRANULARITY		16
264 
265 /* max discard pend list number */
266 #define MAX_PLIST_NUM		512
267 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
268 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
269 
270 enum {
271 	D_PREP,			/* initial */
272 	D_PARTIAL,		/* partially submitted */
273 	D_SUBMIT,		/* all submitted */
274 	D_DONE,			/* finished */
275 };
276 
277 struct discard_info {
278 	block_t lstart;			/* logical start address */
279 	block_t len;			/* length */
280 	block_t start;			/* actual start address in dev */
281 };
282 
283 struct discard_cmd {
284 	struct rb_node rb_node;		/* rb node located in rb-tree */
285 	union {
286 		struct {
287 			block_t lstart;	/* logical start address */
288 			block_t len;	/* length */
289 			block_t start;	/* actual start address in dev */
290 		};
291 		struct discard_info di;	/* discard info */
292 
293 	};
294 	struct list_head list;		/* command list */
295 	struct completion wait;		/* compleation */
296 	struct block_device *bdev;	/* bdev */
297 	unsigned short ref;		/* reference count */
298 	unsigned char state;		/* state */
299 	unsigned char queued;		/* queued discard */
300 	int error;			/* bio error */
301 	spinlock_t lock;		/* for state/bio_ref updating */
302 	unsigned short bio_ref;		/* bio reference count */
303 };
304 
305 enum {
306 	DPOLICY_BG,
307 	DPOLICY_FORCE,
308 	DPOLICY_FSTRIM,
309 	DPOLICY_UMOUNT,
310 	MAX_DPOLICY,
311 };
312 
313 struct discard_policy {
314 	int type;			/* type of discard */
315 	unsigned int min_interval;	/* used for candidates exist */
316 	unsigned int mid_interval;	/* used for device busy */
317 	unsigned int max_interval;	/* used for candidates not exist */
318 	unsigned int max_requests;	/* # of discards issued per round */
319 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
320 	bool io_aware;			/* issue discard in idle time */
321 	bool sync;			/* submit discard with REQ_SYNC flag */
322 	bool ordered;			/* issue discard by lba order */
323 	unsigned int granularity;	/* discard granularity */
324 	int timeout;			/* discard timeout for put_super */
325 };
326 
327 struct discard_cmd_control {
328 	struct task_struct *f2fs_issue_discard;	/* discard thread */
329 	struct list_head entry_list;		/* 4KB discard entry list */
330 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
331 	struct list_head wait_list;		/* store on-flushing entries */
332 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
333 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
334 	unsigned int discard_wake;		/* to wake up discard thread */
335 	struct mutex cmd_lock;
336 	unsigned int nr_discards;		/* # of discards in the list */
337 	unsigned int max_discards;		/* max. discards to be issued */
338 	unsigned int discard_granularity;	/* discard granularity */
339 	unsigned int undiscard_blks;		/* # of undiscard blocks */
340 	unsigned int next_pos;			/* next discard position */
341 	atomic_t issued_discard;		/* # of issued discard */
342 	atomic_t queued_discard;		/* # of queued discard */
343 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
344 	struct rb_root_cached root;		/* root of discard rb-tree */
345 	bool rbtree_check;			/* config for consistence check */
346 };
347 
348 /* for the list of fsync inodes, used only during recovery */
349 struct fsync_inode_entry {
350 	struct list_head list;	/* list head */
351 	struct inode *inode;	/* vfs inode pointer */
352 	block_t blkaddr;	/* block address locating the last fsync */
353 	block_t last_dentry;	/* block address locating the last dentry */
354 };
355 
356 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
357 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
358 
359 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
360 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
361 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
362 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
363 
364 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
365 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
366 
367 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
368 {
369 	int before = nats_in_cursum(journal);
370 
371 	journal->n_nats = cpu_to_le16(before + i);
372 	return before;
373 }
374 
375 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
376 {
377 	int before = sits_in_cursum(journal);
378 
379 	journal->n_sits = cpu_to_le16(before + i);
380 	return before;
381 }
382 
383 static inline bool __has_cursum_space(struct f2fs_journal *journal,
384 							int size, int type)
385 {
386 	if (type == NAT_JOURNAL)
387 		return size <= MAX_NAT_JENTRIES(journal);
388 	return size <= MAX_SIT_JENTRIES(journal);
389 }
390 
391 /*
392  * ioctl commands
393  */
394 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
395 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
396 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
397 
398 #define F2FS_IOCTL_MAGIC		0xf5
399 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
400 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
401 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
402 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
403 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
404 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
405 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
406 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
407 						struct f2fs_defragment)
408 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
409 						struct f2fs_move_range)
410 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
411 						struct f2fs_flush_device)
412 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
413 						struct f2fs_gc_range)
414 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
415 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
416 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
417 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
418 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
419 
420 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
421 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
422 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
423 
424 /*
425  * should be same as XFS_IOC_GOINGDOWN.
426  * Flags for going down operation used by FS_IOC_GOINGDOWN
427  */
428 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
429 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
430 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
431 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
432 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
433 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
434 
435 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
436 /*
437  * ioctl commands in 32 bit emulation
438  */
439 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
440 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
441 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
442 #endif
443 
444 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
445 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
446 
447 struct f2fs_gc_range {
448 	u32 sync;
449 	u64 start;
450 	u64 len;
451 };
452 
453 struct f2fs_defragment {
454 	u64 start;
455 	u64 len;
456 };
457 
458 struct f2fs_move_range {
459 	u32 dst_fd;		/* destination fd */
460 	u64 pos_in;		/* start position in src_fd */
461 	u64 pos_out;		/* start position in dst_fd */
462 	u64 len;		/* size to move */
463 };
464 
465 struct f2fs_flush_device {
466 	u32 dev_num;		/* device number to flush */
467 	u32 segments;		/* # of segments to flush */
468 };
469 
470 /* for inline stuff */
471 #define DEF_INLINE_RESERVED_SIZE	1
472 static inline int get_extra_isize(struct inode *inode);
473 static inline int get_inline_xattr_addrs(struct inode *inode);
474 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
475 				(CUR_ADDRS_PER_INODE(inode) -		\
476 				get_inline_xattr_addrs(inode) -	\
477 				DEF_INLINE_RESERVED_SIZE))
478 
479 /* for inline dir */
480 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
481 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
482 				BITS_PER_BYTE + 1))
483 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
484 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
485 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
486 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
487 				NR_INLINE_DENTRY(inode) + \
488 				INLINE_DENTRY_BITMAP_SIZE(inode)))
489 
490 /*
491  * For INODE and NODE manager
492  */
493 /* for directory operations */
494 struct f2fs_dentry_ptr {
495 	struct inode *inode;
496 	void *bitmap;
497 	struct f2fs_dir_entry *dentry;
498 	__u8 (*filename)[F2FS_SLOT_LEN];
499 	int max;
500 	int nr_bitmap;
501 };
502 
503 static inline void make_dentry_ptr_block(struct inode *inode,
504 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
505 {
506 	d->inode = inode;
507 	d->max = NR_DENTRY_IN_BLOCK;
508 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
509 	d->bitmap = t->dentry_bitmap;
510 	d->dentry = t->dentry;
511 	d->filename = t->filename;
512 }
513 
514 static inline void make_dentry_ptr_inline(struct inode *inode,
515 					struct f2fs_dentry_ptr *d, void *t)
516 {
517 	int entry_cnt = NR_INLINE_DENTRY(inode);
518 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
519 	int reserved_size = INLINE_RESERVED_SIZE(inode);
520 
521 	d->inode = inode;
522 	d->max = entry_cnt;
523 	d->nr_bitmap = bitmap_size;
524 	d->bitmap = t;
525 	d->dentry = t + bitmap_size + reserved_size;
526 	d->filename = t + bitmap_size + reserved_size +
527 					SIZE_OF_DIR_ENTRY * entry_cnt;
528 }
529 
530 /*
531  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
532  * as its node offset to distinguish from index node blocks.
533  * But some bits are used to mark the node block.
534  */
535 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
536 				>> OFFSET_BIT_SHIFT)
537 enum {
538 	ALLOC_NODE,			/* allocate a new node page if needed */
539 	LOOKUP_NODE,			/* look up a node without readahead */
540 	LOOKUP_NODE_RA,			/*
541 					 * look up a node with readahead called
542 					 * by get_data_block.
543 					 */
544 };
545 
546 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
547 
548 /* maximum retry quota flush count */
549 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
550 
551 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
552 
553 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
554 
555 /* for in-memory extent cache entry */
556 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
557 
558 /* number of extent info in extent cache we try to shrink */
559 #define EXTENT_CACHE_SHRINK_NUMBER	128
560 
561 struct rb_entry {
562 	struct rb_node rb_node;		/* rb node located in rb-tree */
563 	unsigned int ofs;		/* start offset of the entry */
564 	unsigned int len;		/* length of the entry */
565 };
566 
567 struct extent_info {
568 	unsigned int fofs;		/* start offset in a file */
569 	unsigned int len;		/* length of the extent */
570 	u32 blk;			/* start block address of the extent */
571 };
572 
573 struct extent_node {
574 	struct rb_node rb_node;		/* rb node located in rb-tree */
575 	struct extent_info ei;		/* extent info */
576 	struct list_head list;		/* node in global extent list of sbi */
577 	struct extent_tree *et;		/* extent tree pointer */
578 };
579 
580 struct extent_tree {
581 	nid_t ino;			/* inode number */
582 	struct rb_root_cached root;	/* root of extent info rb-tree */
583 	struct extent_node *cached_en;	/* recently accessed extent node */
584 	struct extent_info largest;	/* largested extent info */
585 	struct list_head list;		/* to be used by sbi->zombie_list */
586 	rwlock_t lock;			/* protect extent info rb-tree */
587 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
588 	bool largest_updated;		/* largest extent updated */
589 };
590 
591 /*
592  * This structure is taken from ext4_map_blocks.
593  *
594  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
595  */
596 #define F2FS_MAP_NEW		(1 << BH_New)
597 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
598 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
599 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
600 				F2FS_MAP_UNWRITTEN)
601 
602 struct f2fs_map_blocks {
603 	block_t m_pblk;
604 	block_t m_lblk;
605 	unsigned int m_len;
606 	unsigned int m_flags;
607 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
608 	pgoff_t *m_next_extent;		/* point to next possible extent */
609 	int m_seg_type;
610 	bool m_may_create;		/* indicate it is from write path */
611 };
612 
613 /* for flag in get_data_block */
614 enum {
615 	F2FS_GET_BLOCK_DEFAULT,
616 	F2FS_GET_BLOCK_FIEMAP,
617 	F2FS_GET_BLOCK_BMAP,
618 	F2FS_GET_BLOCK_DIO,
619 	F2FS_GET_BLOCK_PRE_DIO,
620 	F2FS_GET_BLOCK_PRE_AIO,
621 	F2FS_GET_BLOCK_PRECACHE,
622 };
623 
624 /*
625  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
626  */
627 #define FADVISE_COLD_BIT	0x01
628 #define FADVISE_LOST_PINO_BIT	0x02
629 #define FADVISE_ENCRYPT_BIT	0x04
630 #define FADVISE_ENC_NAME_BIT	0x08
631 #define FADVISE_KEEP_SIZE_BIT	0x10
632 #define FADVISE_HOT_BIT		0x20
633 #define FADVISE_VERITY_BIT	0x40	/* reserved */
634 
635 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
636 
637 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
638 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
640 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
641 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
642 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
644 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
645 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
646 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
647 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
648 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
649 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
650 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
651 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
652 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
653 
654 #define DEF_DIR_LEVEL		0
655 
656 enum {
657 	GC_FAILURE_PIN,
658 	GC_FAILURE_ATOMIC,
659 	MAX_GC_FAILURE
660 };
661 
662 struct f2fs_inode_info {
663 	struct inode vfs_inode;		/* serve a vfs inode */
664 	unsigned long i_flags;		/* keep an inode flags for ioctl */
665 	unsigned char i_advise;		/* use to give file attribute hints */
666 	unsigned char i_dir_level;	/* use for dentry level for large dir */
667 	unsigned int i_current_depth;	/* only for directory depth */
668 	/* for gc failure statistic */
669 	unsigned int i_gc_failures[MAX_GC_FAILURE];
670 	unsigned int i_pino;		/* parent inode number */
671 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
672 
673 	/* Use below internally in f2fs*/
674 	unsigned long flags;		/* use to pass per-file flags */
675 	struct rw_semaphore i_sem;	/* protect fi info */
676 	atomic_t dirty_pages;		/* # of dirty pages */
677 	f2fs_hash_t chash;		/* hash value of given file name */
678 	unsigned int clevel;		/* maximum level of given file name */
679 	struct task_struct *task;	/* lookup and create consistency */
680 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
681 	nid_t i_xattr_nid;		/* node id that contains xattrs */
682 	loff_t	last_disk_size;		/* lastly written file size */
683 
684 #ifdef CONFIG_QUOTA
685 	struct dquot *i_dquot[MAXQUOTAS];
686 
687 	/* quota space reservation, managed internally by quota code */
688 	qsize_t i_reserved_quota;
689 #endif
690 	struct list_head dirty_list;	/* dirty list for dirs and files */
691 	struct list_head gdirty_list;	/* linked in global dirty list */
692 	struct list_head inmem_ilist;	/* list for inmem inodes */
693 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
694 	struct task_struct *inmem_task;	/* store inmemory task */
695 	struct mutex inmem_lock;	/* lock for inmemory pages */
696 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
697 
698 	/* avoid racing between foreground op and gc */
699 	struct rw_semaphore i_gc_rwsem[2];
700 	struct rw_semaphore i_mmap_sem;
701 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
702 
703 	int i_extra_isize;		/* size of extra space located in i_addr */
704 	kprojid_t i_projid;		/* id for project quota */
705 	int i_inline_xattr_size;	/* inline xattr size */
706 	struct timespec64 i_crtime;	/* inode creation time */
707 	struct timespec64 i_disk_time[4];/* inode disk times */
708 };
709 
710 static inline void get_extent_info(struct extent_info *ext,
711 					struct f2fs_extent *i_ext)
712 {
713 	ext->fofs = le32_to_cpu(i_ext->fofs);
714 	ext->blk = le32_to_cpu(i_ext->blk);
715 	ext->len = le32_to_cpu(i_ext->len);
716 }
717 
718 static inline void set_raw_extent(struct extent_info *ext,
719 					struct f2fs_extent *i_ext)
720 {
721 	i_ext->fofs = cpu_to_le32(ext->fofs);
722 	i_ext->blk = cpu_to_le32(ext->blk);
723 	i_ext->len = cpu_to_le32(ext->len);
724 }
725 
726 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
727 						u32 blk, unsigned int len)
728 {
729 	ei->fofs = fofs;
730 	ei->blk = blk;
731 	ei->len = len;
732 }
733 
734 static inline bool __is_discard_mergeable(struct discard_info *back,
735 			struct discard_info *front, unsigned int max_len)
736 {
737 	return (back->lstart + back->len == front->lstart) &&
738 		(back->len + front->len <= max_len);
739 }
740 
741 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
742 			struct discard_info *back, unsigned int max_len)
743 {
744 	return __is_discard_mergeable(back, cur, max_len);
745 }
746 
747 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
748 			struct discard_info *front, unsigned int max_len)
749 {
750 	return __is_discard_mergeable(cur, front, max_len);
751 }
752 
753 static inline bool __is_extent_mergeable(struct extent_info *back,
754 						struct extent_info *front)
755 {
756 	return (back->fofs + back->len == front->fofs &&
757 			back->blk + back->len == front->blk);
758 }
759 
760 static inline bool __is_back_mergeable(struct extent_info *cur,
761 						struct extent_info *back)
762 {
763 	return __is_extent_mergeable(back, cur);
764 }
765 
766 static inline bool __is_front_mergeable(struct extent_info *cur,
767 						struct extent_info *front)
768 {
769 	return __is_extent_mergeable(cur, front);
770 }
771 
772 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
773 static inline void __try_update_largest_extent(struct extent_tree *et,
774 						struct extent_node *en)
775 {
776 	if (en->ei.len > et->largest.len) {
777 		et->largest = en->ei;
778 		et->largest_updated = true;
779 	}
780 }
781 
782 /*
783  * For free nid management
784  */
785 enum nid_state {
786 	FREE_NID,		/* newly added to free nid list */
787 	PREALLOC_NID,		/* it is preallocated */
788 	MAX_NID_STATE,
789 };
790 
791 struct f2fs_nm_info {
792 	block_t nat_blkaddr;		/* base disk address of NAT */
793 	nid_t max_nid;			/* maximum possible node ids */
794 	nid_t available_nids;		/* # of available node ids */
795 	nid_t next_scan_nid;		/* the next nid to be scanned */
796 	unsigned int ram_thresh;	/* control the memory footprint */
797 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
798 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
799 
800 	/* NAT cache management */
801 	struct radix_tree_root nat_root;/* root of the nat entry cache */
802 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
803 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
804 	struct list_head nat_entries;	/* cached nat entry list (clean) */
805 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
806 	unsigned int nat_cnt;		/* the # of cached nat entries */
807 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
808 	unsigned int nat_blocks;	/* # of nat blocks */
809 
810 	/* free node ids management */
811 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
812 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
813 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
814 	spinlock_t nid_list_lock;	/* protect nid lists ops */
815 	struct mutex build_lock;	/* lock for build free nids */
816 	unsigned char **free_nid_bitmap;
817 	unsigned char *nat_block_bitmap;
818 	unsigned short *free_nid_count;	/* free nid count of NAT block */
819 
820 	/* for checkpoint */
821 	char *nat_bitmap;		/* NAT bitmap pointer */
822 
823 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
824 	unsigned char *nat_bits;	/* NAT bits blocks */
825 	unsigned char *full_nat_bits;	/* full NAT pages */
826 	unsigned char *empty_nat_bits;	/* empty NAT pages */
827 #ifdef CONFIG_F2FS_CHECK_FS
828 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
829 #endif
830 	int bitmap_size;		/* bitmap size */
831 };
832 
833 /*
834  * this structure is used as one of function parameters.
835  * all the information are dedicated to a given direct node block determined
836  * by the data offset in a file.
837  */
838 struct dnode_of_data {
839 	struct inode *inode;		/* vfs inode pointer */
840 	struct page *inode_page;	/* its inode page, NULL is possible */
841 	struct page *node_page;		/* cached direct node page */
842 	nid_t nid;			/* node id of the direct node block */
843 	unsigned int ofs_in_node;	/* data offset in the node page */
844 	bool inode_page_locked;		/* inode page is locked or not */
845 	bool node_changed;		/* is node block changed */
846 	char cur_level;			/* level of hole node page */
847 	char max_level;			/* level of current page located */
848 	block_t	data_blkaddr;		/* block address of the node block */
849 };
850 
851 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
852 		struct page *ipage, struct page *npage, nid_t nid)
853 {
854 	memset(dn, 0, sizeof(*dn));
855 	dn->inode = inode;
856 	dn->inode_page = ipage;
857 	dn->node_page = npage;
858 	dn->nid = nid;
859 }
860 
861 /*
862  * For SIT manager
863  *
864  * By default, there are 6 active log areas across the whole main area.
865  * When considering hot and cold data separation to reduce cleaning overhead,
866  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
867  * respectively.
868  * In the current design, you should not change the numbers intentionally.
869  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
870  * logs individually according to the underlying devices. (default: 6)
871  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
872  * data and 8 for node logs.
873  */
874 #define	NR_CURSEG_DATA_TYPE	(3)
875 #define NR_CURSEG_NODE_TYPE	(3)
876 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
877 
878 enum {
879 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
880 	CURSEG_WARM_DATA,	/* data blocks */
881 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
882 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
883 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
884 	CURSEG_COLD_NODE,	/* indirect node blocks */
885 	NO_CHECK_TYPE,
886 };
887 
888 struct flush_cmd {
889 	struct completion wait;
890 	struct llist_node llnode;
891 	nid_t ino;
892 	int ret;
893 };
894 
895 struct flush_cmd_control {
896 	struct task_struct *f2fs_issue_flush;	/* flush thread */
897 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
898 	atomic_t issued_flush;			/* # of issued flushes */
899 	atomic_t queued_flush;			/* # of queued flushes */
900 	struct llist_head issue_list;		/* list for command issue */
901 	struct llist_node *dispatch_list;	/* list for command dispatch */
902 };
903 
904 struct f2fs_sm_info {
905 	struct sit_info *sit_info;		/* whole segment information */
906 	struct free_segmap_info *free_info;	/* free segment information */
907 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
908 	struct curseg_info *curseg_array;	/* active segment information */
909 
910 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
911 
912 	block_t seg0_blkaddr;		/* block address of 0'th segment */
913 	block_t main_blkaddr;		/* start block address of main area */
914 	block_t ssa_blkaddr;		/* start block address of SSA area */
915 
916 	unsigned int segment_count;	/* total # of segments */
917 	unsigned int main_segments;	/* # of segments in main area */
918 	unsigned int reserved_segments;	/* # of reserved segments */
919 	unsigned int ovp_segments;	/* # of overprovision segments */
920 
921 	/* a threshold to reclaim prefree segments */
922 	unsigned int rec_prefree_segments;
923 
924 	/* for batched trimming */
925 	unsigned int trim_sections;		/* # of sections to trim */
926 
927 	struct list_head sit_entry_set;	/* sit entry set list */
928 
929 	unsigned int ipu_policy;	/* in-place-update policy */
930 	unsigned int min_ipu_util;	/* in-place-update threshold */
931 	unsigned int min_fsync_blocks;	/* threshold for fsync */
932 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
933 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
934 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
935 
936 	/* for flush command control */
937 	struct flush_cmd_control *fcc_info;
938 
939 	/* for discard command control */
940 	struct discard_cmd_control *dcc_info;
941 };
942 
943 /*
944  * For superblock
945  */
946 /*
947  * COUNT_TYPE for monitoring
948  *
949  * f2fs monitors the number of several block types such as on-writeback,
950  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
951  */
952 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
953 enum count_type {
954 	F2FS_DIRTY_DENTS,
955 	F2FS_DIRTY_DATA,
956 	F2FS_DIRTY_QDATA,
957 	F2FS_DIRTY_NODES,
958 	F2FS_DIRTY_META,
959 	F2FS_INMEM_PAGES,
960 	F2FS_DIRTY_IMETA,
961 	F2FS_WB_CP_DATA,
962 	F2FS_WB_DATA,
963 	F2FS_RD_DATA,
964 	F2FS_RD_NODE,
965 	F2FS_RD_META,
966 	F2FS_DIO_WRITE,
967 	F2FS_DIO_READ,
968 	NR_COUNT_TYPE,
969 };
970 
971 /*
972  * The below are the page types of bios used in submit_bio().
973  * The available types are:
974  * DATA			User data pages. It operates as async mode.
975  * NODE			Node pages. It operates as async mode.
976  * META			FS metadata pages such as SIT, NAT, CP.
977  * NR_PAGE_TYPE		The number of page types.
978  * META_FLUSH		Make sure the previous pages are written
979  *			with waiting the bio's completion
980  * ...			Only can be used with META.
981  */
982 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
983 enum page_type {
984 	DATA,
985 	NODE,
986 	META,
987 	NR_PAGE_TYPE,
988 	META_FLUSH,
989 	INMEM,		/* the below types are used by tracepoints only. */
990 	INMEM_DROP,
991 	INMEM_INVALIDATE,
992 	INMEM_REVOKE,
993 	IPU,
994 	OPU,
995 };
996 
997 enum temp_type {
998 	HOT = 0,	/* must be zero for meta bio */
999 	WARM,
1000 	COLD,
1001 	NR_TEMP_TYPE,
1002 };
1003 
1004 enum need_lock_type {
1005 	LOCK_REQ = 0,
1006 	LOCK_DONE,
1007 	LOCK_RETRY,
1008 };
1009 
1010 enum cp_reason_type {
1011 	CP_NO_NEEDED,
1012 	CP_NON_REGULAR,
1013 	CP_HARDLINK,
1014 	CP_SB_NEED_CP,
1015 	CP_WRONG_PINO,
1016 	CP_NO_SPC_ROLL,
1017 	CP_NODE_NEED_CP,
1018 	CP_FASTBOOT_MODE,
1019 	CP_SPEC_LOG_NUM,
1020 	CP_RECOVER_DIR,
1021 };
1022 
1023 enum iostat_type {
1024 	APP_DIRECT_IO,			/* app direct IOs */
1025 	APP_BUFFERED_IO,		/* app buffered IOs */
1026 	APP_WRITE_IO,			/* app write IOs */
1027 	APP_MAPPED_IO,			/* app mapped IOs */
1028 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1029 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1030 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1031 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1032 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1033 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1034 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1035 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1036 	FS_DISCARD,			/* discard */
1037 	NR_IO_TYPE,
1038 };
1039 
1040 struct f2fs_io_info {
1041 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1042 	nid_t ino;		/* inode number */
1043 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1044 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1045 	int op;			/* contains REQ_OP_ */
1046 	int op_flags;		/* req_flag_bits */
1047 	block_t new_blkaddr;	/* new block address to be written */
1048 	block_t old_blkaddr;	/* old block address before Cow */
1049 	struct page *page;	/* page to be written */
1050 	struct page *encrypted_page;	/* encrypted page */
1051 	struct list_head list;		/* serialize IOs */
1052 	bool submitted;		/* indicate IO submission */
1053 	int need_lock;		/* indicate we need to lock cp_rwsem */
1054 	bool in_list;		/* indicate fio is in io_list */
1055 	bool is_por;		/* indicate IO is from recovery or not */
1056 	bool retry;		/* need to reallocate block address */
1057 	enum iostat_type io_type;	/* io type */
1058 	struct writeback_control *io_wbc; /* writeback control */
1059 	struct bio **bio;		/* bio for ipu */
1060 	sector_t *last_block;		/* last block number in bio */
1061 	unsigned char version;		/* version of the node */
1062 };
1063 
1064 #define is_read_io(rw) ((rw) == READ)
1065 struct f2fs_bio_info {
1066 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1067 	struct bio *bio;		/* bios to merge */
1068 	sector_t last_block_in_bio;	/* last block number */
1069 	struct f2fs_io_info fio;	/* store buffered io info. */
1070 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1071 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1072 	struct list_head io_list;	/* track fios */
1073 };
1074 
1075 #define FDEV(i)				(sbi->devs[i])
1076 #define RDEV(i)				(raw_super->devs[i])
1077 struct f2fs_dev_info {
1078 	struct block_device *bdev;
1079 	char path[MAX_PATH_LEN];
1080 	unsigned int total_segments;
1081 	block_t start_blk;
1082 	block_t end_blk;
1083 #ifdef CONFIG_BLK_DEV_ZONED
1084 	unsigned int nr_blkz;		/* Total number of zones */
1085 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1086 #endif
1087 };
1088 
1089 enum inode_type {
1090 	DIR_INODE,			/* for dirty dir inode */
1091 	FILE_INODE,			/* for dirty regular/symlink inode */
1092 	DIRTY_META,			/* for all dirtied inode metadata */
1093 	ATOMIC_FILE,			/* for all atomic files */
1094 	NR_INODE_TYPE,
1095 };
1096 
1097 /* for inner inode cache management */
1098 struct inode_management {
1099 	struct radix_tree_root ino_root;	/* ino entry array */
1100 	spinlock_t ino_lock;			/* for ino entry lock */
1101 	struct list_head ino_list;		/* inode list head */
1102 	unsigned long ino_num;			/* number of entries */
1103 };
1104 
1105 /* For s_flag in struct f2fs_sb_info */
1106 enum {
1107 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1108 	SBI_IS_CLOSE,				/* specify unmounting */
1109 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1110 	SBI_POR_DOING,				/* recovery is doing or not */
1111 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1112 	SBI_NEED_CP,				/* need to checkpoint */
1113 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1114 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1115 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1116 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1117 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1118 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1119 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1120 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1121 };
1122 
1123 enum {
1124 	CP_TIME,
1125 	REQ_TIME,
1126 	DISCARD_TIME,
1127 	GC_TIME,
1128 	DISABLE_TIME,
1129 	UMOUNT_DISCARD_TIMEOUT,
1130 	MAX_TIME,
1131 };
1132 
1133 enum {
1134 	GC_NORMAL,
1135 	GC_IDLE_CB,
1136 	GC_IDLE_GREEDY,
1137 	GC_URGENT,
1138 };
1139 
1140 enum {
1141 	WHINT_MODE_OFF,		/* not pass down write hints */
1142 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1143 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1144 };
1145 
1146 enum {
1147 	ALLOC_MODE_DEFAULT,	/* stay default */
1148 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1149 };
1150 
1151 enum fsync_mode {
1152 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1153 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1154 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1155 };
1156 
1157 #ifdef CONFIG_FS_ENCRYPTION
1158 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1159 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1160 #else
1161 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1162 #endif
1163 
1164 struct f2fs_sb_info {
1165 	struct super_block *sb;			/* pointer to VFS super block */
1166 	struct proc_dir_entry *s_proc;		/* proc entry */
1167 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1168 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1169 	int valid_super_block;			/* valid super block no */
1170 	unsigned long s_flag;				/* flags for sbi */
1171 	struct mutex writepages;		/* mutex for writepages() */
1172 
1173 #ifdef CONFIG_BLK_DEV_ZONED
1174 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1175 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1176 #endif
1177 
1178 	/* for node-related operations */
1179 	struct f2fs_nm_info *nm_info;		/* node manager */
1180 	struct inode *node_inode;		/* cache node blocks */
1181 
1182 	/* for segment-related operations */
1183 	struct f2fs_sm_info *sm_info;		/* segment manager */
1184 
1185 	/* for bio operations */
1186 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1187 	/* keep migration IO order for LFS mode */
1188 	struct rw_semaphore io_order_lock;
1189 	mempool_t *write_io_dummy;		/* Dummy pages */
1190 
1191 	/* for checkpoint */
1192 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1193 	int cur_cp_pack;			/* remain current cp pack */
1194 	spinlock_t cp_lock;			/* for flag in ckpt */
1195 	struct inode *meta_inode;		/* cache meta blocks */
1196 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1197 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1198 	struct rw_semaphore node_write;		/* locking node writes */
1199 	struct rw_semaphore node_change;	/* locking node change */
1200 	wait_queue_head_t cp_wait;
1201 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1202 	long interval_time[MAX_TIME];		/* to store thresholds */
1203 
1204 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1205 
1206 	spinlock_t fsync_node_lock;		/* for node entry lock */
1207 	struct list_head fsync_node_list;	/* node list head */
1208 	unsigned int fsync_seg_id;		/* sequence id */
1209 	unsigned int fsync_node_num;		/* number of node entries */
1210 
1211 	/* for orphan inode, use 0'th array */
1212 	unsigned int max_orphans;		/* max orphan inodes */
1213 
1214 	/* for inode management */
1215 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1216 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1217 	struct mutex flush_lock;		/* for flush exclusion */
1218 
1219 	/* for extent tree cache */
1220 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1221 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1222 	struct list_head extent_list;		/* lru list for shrinker */
1223 	spinlock_t extent_lock;			/* locking extent lru list */
1224 	atomic_t total_ext_tree;		/* extent tree count */
1225 	struct list_head zombie_list;		/* extent zombie tree list */
1226 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1227 	atomic_t total_ext_node;		/* extent info count */
1228 
1229 	/* basic filesystem units */
1230 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1231 	unsigned int log_blocksize;		/* log2 block size */
1232 	unsigned int blocksize;			/* block size */
1233 	unsigned int root_ino_num;		/* root inode number*/
1234 	unsigned int node_ino_num;		/* node inode number*/
1235 	unsigned int meta_ino_num;		/* meta inode number*/
1236 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1237 	unsigned int blocks_per_seg;		/* blocks per segment */
1238 	unsigned int segs_per_sec;		/* segments per section */
1239 	unsigned int secs_per_zone;		/* sections per zone */
1240 	unsigned int total_sections;		/* total section count */
1241 	struct mutex resize_mutex;		/* for resize exclusion */
1242 	unsigned int total_node_count;		/* total node block count */
1243 	unsigned int total_valid_node_count;	/* valid node block count */
1244 	loff_t max_file_blocks;			/* max block index of file */
1245 	int dir_level;				/* directory level */
1246 	int readdir_ra;				/* readahead inode in readdir */
1247 
1248 	block_t user_block_count;		/* # of user blocks */
1249 	block_t total_valid_block_count;	/* # of valid blocks */
1250 	block_t discard_blks;			/* discard command candidats */
1251 	block_t last_valid_block_count;		/* for recovery */
1252 	block_t reserved_blocks;		/* configurable reserved blocks */
1253 	block_t current_reserved_blocks;	/* current reserved blocks */
1254 
1255 	/* Additional tracking for no checkpoint mode */
1256 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1257 
1258 	unsigned int nquota_files;		/* # of quota sysfile */
1259 
1260 	/* # of pages, see count_type */
1261 	atomic_t nr_pages[NR_COUNT_TYPE];
1262 	/* # of allocated blocks */
1263 	struct percpu_counter alloc_valid_block_count;
1264 
1265 	/* writeback control */
1266 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1267 
1268 	/* valid inode count */
1269 	struct percpu_counter total_valid_inode_count;
1270 
1271 	struct f2fs_mount_info mount_opt;	/* mount options */
1272 
1273 	/* for cleaning operations */
1274 	struct mutex gc_mutex;			/* mutex for GC */
1275 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1276 	unsigned int cur_victim_sec;		/* current victim section num */
1277 	unsigned int gc_mode;			/* current GC state */
1278 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1279 	/* for skip statistic */
1280 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1281 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1282 
1283 	/* threshold for gc trials on pinned files */
1284 	u64 gc_pin_file_threshold;
1285 
1286 	/* maximum # of trials to find a victim segment for SSR and GC */
1287 	unsigned int max_victim_search;
1288 	/* migration granularity of garbage collection, unit: segment */
1289 	unsigned int migration_granularity;
1290 
1291 	/*
1292 	 * for stat information.
1293 	 * one is for the LFS mode, and the other is for the SSR mode.
1294 	 */
1295 #ifdef CONFIG_F2FS_STAT_FS
1296 	struct f2fs_stat_info *stat_info;	/* FS status information */
1297 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1298 	unsigned int segment_count[2];		/* # of allocated segments */
1299 	unsigned int block_count[2];		/* # of allocated blocks */
1300 	atomic_t inplace_count;		/* # of inplace update */
1301 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1302 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1303 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1304 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1305 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1306 	atomic_t inline_inode;			/* # of inline_data inodes */
1307 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1308 	atomic_t aw_cnt;			/* # of atomic writes */
1309 	atomic_t vw_cnt;			/* # of volatile writes */
1310 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1311 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1312 	int bg_gc;				/* background gc calls */
1313 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1314 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1315 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1316 #endif
1317 	spinlock_t stat_lock;			/* lock for stat operations */
1318 
1319 	/* For app/fs IO statistics */
1320 	spinlock_t iostat_lock;
1321 	unsigned long long write_iostat[NR_IO_TYPE];
1322 	bool iostat_enable;
1323 
1324 	/* For sysfs suppport */
1325 	struct kobject s_kobj;
1326 	struct completion s_kobj_unregister;
1327 
1328 	/* For shrinker support */
1329 	struct list_head s_list;
1330 	int s_ndevs;				/* number of devices */
1331 	struct f2fs_dev_info *devs;		/* for device list */
1332 	unsigned int dirty_device;		/* for checkpoint data flush */
1333 	spinlock_t dev_lock;			/* protect dirty_device */
1334 	struct mutex umount_mutex;
1335 	unsigned int shrinker_run_no;
1336 
1337 	/* For write statistics */
1338 	u64 sectors_written_start;
1339 	u64 kbytes_written;
1340 
1341 	/* Reference to checksum algorithm driver via cryptoapi */
1342 	struct crypto_shash *s_chksum_driver;
1343 
1344 	/* Precomputed FS UUID checksum for seeding other checksums */
1345 	__u32 s_chksum_seed;
1346 };
1347 
1348 struct f2fs_private_dio {
1349 	struct inode *inode;
1350 	void *orig_private;
1351 	bio_end_io_t *orig_end_io;
1352 	bool write;
1353 };
1354 
1355 #ifdef CONFIG_F2FS_FAULT_INJECTION
1356 #define f2fs_show_injection_info(type)					\
1357 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n",	\
1358 		KERN_INFO, f2fs_fault_name[type],			\
1359 		__func__, __builtin_return_address(0))
1360 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1361 {
1362 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1363 
1364 	if (!ffi->inject_rate)
1365 		return false;
1366 
1367 	if (!IS_FAULT_SET(ffi, type))
1368 		return false;
1369 
1370 	atomic_inc(&ffi->inject_ops);
1371 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1372 		atomic_set(&ffi->inject_ops, 0);
1373 		return true;
1374 	}
1375 	return false;
1376 }
1377 #else
1378 #define f2fs_show_injection_info(type) do { } while (0)
1379 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1380 {
1381 	return false;
1382 }
1383 #endif
1384 
1385 /*
1386  * Test if the mounted volume is a multi-device volume.
1387  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1388  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1389  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1390  */
1391 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1392 {
1393 	return sbi->s_ndevs > 1;
1394 }
1395 
1396 /* For write statistics. Suppose sector size is 512 bytes,
1397  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1398  */
1399 #define BD_PART_WRITTEN(s)						 \
1400 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1401 		(s)->sectors_written_start) >> 1)
1402 
1403 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1404 {
1405 	unsigned long now = jiffies;
1406 
1407 	sbi->last_time[type] = now;
1408 
1409 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1410 	if (type == REQ_TIME) {
1411 		sbi->last_time[DISCARD_TIME] = now;
1412 		sbi->last_time[GC_TIME] = now;
1413 	}
1414 }
1415 
1416 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1417 {
1418 	unsigned long interval = sbi->interval_time[type] * HZ;
1419 
1420 	return time_after(jiffies, sbi->last_time[type] + interval);
1421 }
1422 
1423 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1424 						int type)
1425 {
1426 	unsigned long interval = sbi->interval_time[type] * HZ;
1427 	unsigned int wait_ms = 0;
1428 	long delta;
1429 
1430 	delta = (sbi->last_time[type] + interval) - jiffies;
1431 	if (delta > 0)
1432 		wait_ms = jiffies_to_msecs(delta);
1433 
1434 	return wait_ms;
1435 }
1436 
1437 /*
1438  * Inline functions
1439  */
1440 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1441 			      const void *address, unsigned int length)
1442 {
1443 	struct {
1444 		struct shash_desc shash;
1445 		char ctx[4];
1446 	} desc;
1447 	int err;
1448 
1449 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1450 
1451 	desc.shash.tfm = sbi->s_chksum_driver;
1452 	*(u32 *)desc.ctx = crc;
1453 
1454 	err = crypto_shash_update(&desc.shash, address, length);
1455 	BUG_ON(err);
1456 
1457 	return *(u32 *)desc.ctx;
1458 }
1459 
1460 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1461 			   unsigned int length)
1462 {
1463 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1464 }
1465 
1466 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1467 				  void *buf, size_t buf_size)
1468 {
1469 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1470 }
1471 
1472 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1473 			      const void *address, unsigned int length)
1474 {
1475 	return __f2fs_crc32(sbi, crc, address, length);
1476 }
1477 
1478 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1479 {
1480 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1481 }
1482 
1483 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1484 {
1485 	return sb->s_fs_info;
1486 }
1487 
1488 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1489 {
1490 	return F2FS_SB(inode->i_sb);
1491 }
1492 
1493 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1494 {
1495 	return F2FS_I_SB(mapping->host);
1496 }
1497 
1498 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1499 {
1500 	return F2FS_M_SB(page->mapping);
1501 }
1502 
1503 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1504 {
1505 	return (struct f2fs_super_block *)(sbi->raw_super);
1506 }
1507 
1508 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1509 {
1510 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1511 }
1512 
1513 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1514 {
1515 	return (struct f2fs_node *)page_address(page);
1516 }
1517 
1518 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1519 {
1520 	return &((struct f2fs_node *)page_address(page))->i;
1521 }
1522 
1523 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1524 {
1525 	return (struct f2fs_nm_info *)(sbi->nm_info);
1526 }
1527 
1528 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1529 {
1530 	return (struct f2fs_sm_info *)(sbi->sm_info);
1531 }
1532 
1533 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1534 {
1535 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1536 }
1537 
1538 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1539 {
1540 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1541 }
1542 
1543 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1544 {
1545 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1546 }
1547 
1548 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1549 {
1550 	return sbi->meta_inode->i_mapping;
1551 }
1552 
1553 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1554 {
1555 	return sbi->node_inode->i_mapping;
1556 }
1557 
1558 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1559 {
1560 	return test_bit(type, &sbi->s_flag);
1561 }
1562 
1563 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1564 {
1565 	set_bit(type, &sbi->s_flag);
1566 }
1567 
1568 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1569 {
1570 	clear_bit(type, &sbi->s_flag);
1571 }
1572 
1573 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1574 {
1575 	return le64_to_cpu(cp->checkpoint_ver);
1576 }
1577 
1578 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1579 {
1580 	if (type < F2FS_MAX_QUOTAS)
1581 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1582 	return 0;
1583 }
1584 
1585 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1586 {
1587 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1588 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1589 }
1590 
1591 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1592 {
1593 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1594 
1595 	return ckpt_flags & f;
1596 }
1597 
1598 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1599 {
1600 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1601 }
1602 
1603 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1604 {
1605 	unsigned int ckpt_flags;
1606 
1607 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1608 	ckpt_flags |= f;
1609 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1610 }
1611 
1612 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1613 {
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&sbi->cp_lock, flags);
1617 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1618 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1619 }
1620 
1621 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1622 {
1623 	unsigned int ckpt_flags;
1624 
1625 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1626 	ckpt_flags &= (~f);
1627 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1628 }
1629 
1630 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1631 {
1632 	unsigned long flags;
1633 
1634 	spin_lock_irqsave(&sbi->cp_lock, flags);
1635 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1636 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1637 }
1638 
1639 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1640 {
1641 	unsigned long flags;
1642 
1643 	/*
1644 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1645 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1646 	 * so let's rely on regular fsck or unclean shutdown.
1647 	 */
1648 
1649 	if (lock)
1650 		spin_lock_irqsave(&sbi->cp_lock, flags);
1651 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1652 	kvfree(NM_I(sbi)->nat_bits);
1653 	NM_I(sbi)->nat_bits = NULL;
1654 	if (lock)
1655 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1656 }
1657 
1658 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1659 					struct cp_control *cpc)
1660 {
1661 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1662 
1663 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1664 }
1665 
1666 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1667 {
1668 	down_read(&sbi->cp_rwsem);
1669 }
1670 
1671 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1672 {
1673 	return down_read_trylock(&sbi->cp_rwsem);
1674 }
1675 
1676 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1677 {
1678 	up_read(&sbi->cp_rwsem);
1679 }
1680 
1681 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1682 {
1683 	down_write(&sbi->cp_rwsem);
1684 }
1685 
1686 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1687 {
1688 	up_write(&sbi->cp_rwsem);
1689 }
1690 
1691 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1692 {
1693 	int reason = CP_SYNC;
1694 
1695 	if (test_opt(sbi, FASTBOOT))
1696 		reason = CP_FASTBOOT;
1697 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1698 		reason = CP_UMOUNT;
1699 	return reason;
1700 }
1701 
1702 static inline bool __remain_node_summaries(int reason)
1703 {
1704 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1705 }
1706 
1707 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1708 {
1709 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1710 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1711 }
1712 
1713 /*
1714  * Check whether the inode has blocks or not
1715  */
1716 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1717 {
1718 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1719 
1720 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1721 }
1722 
1723 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1724 {
1725 	return ofs == XATTR_NODE_OFFSET;
1726 }
1727 
1728 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1729 					struct inode *inode, bool cap)
1730 {
1731 	if (!inode)
1732 		return true;
1733 	if (!test_opt(sbi, RESERVE_ROOT))
1734 		return false;
1735 	if (IS_NOQUOTA(inode))
1736 		return true;
1737 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1738 		return true;
1739 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1740 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1741 		return true;
1742 	if (cap && capable(CAP_SYS_RESOURCE))
1743 		return true;
1744 	return false;
1745 }
1746 
1747 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1748 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1749 				 struct inode *inode, blkcnt_t *count)
1750 {
1751 	blkcnt_t diff = 0, release = 0;
1752 	block_t avail_user_block_count;
1753 	int ret;
1754 
1755 	ret = dquot_reserve_block(inode, *count);
1756 	if (ret)
1757 		return ret;
1758 
1759 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1760 		f2fs_show_injection_info(FAULT_BLOCK);
1761 		release = *count;
1762 		goto enospc;
1763 	}
1764 
1765 	/*
1766 	 * let's increase this in prior to actual block count change in order
1767 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1768 	 */
1769 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1770 
1771 	spin_lock(&sbi->stat_lock);
1772 	sbi->total_valid_block_count += (block_t)(*count);
1773 	avail_user_block_count = sbi->user_block_count -
1774 					sbi->current_reserved_blocks;
1775 
1776 	if (!__allow_reserved_blocks(sbi, inode, true))
1777 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1778 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1779 		if (avail_user_block_count > sbi->unusable_block_count)
1780 			avail_user_block_count -= sbi->unusable_block_count;
1781 		else
1782 			avail_user_block_count = 0;
1783 	}
1784 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1785 		diff = sbi->total_valid_block_count - avail_user_block_count;
1786 		if (diff > *count)
1787 			diff = *count;
1788 		*count -= diff;
1789 		release = diff;
1790 		sbi->total_valid_block_count -= diff;
1791 		if (!*count) {
1792 			spin_unlock(&sbi->stat_lock);
1793 			goto enospc;
1794 		}
1795 	}
1796 	spin_unlock(&sbi->stat_lock);
1797 
1798 	if (unlikely(release)) {
1799 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1800 		dquot_release_reservation_block(inode, release);
1801 	}
1802 	f2fs_i_blocks_write(inode, *count, true, true);
1803 	return 0;
1804 
1805 enospc:
1806 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1807 	dquot_release_reservation_block(inode, release);
1808 	return -ENOSPC;
1809 }
1810 
1811 __printf(2, 3)
1812 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1813 
1814 #define f2fs_err(sbi, fmt, ...)						\
1815 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1816 #define f2fs_warn(sbi, fmt, ...)					\
1817 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1818 #define f2fs_notice(sbi, fmt, ...)					\
1819 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1820 #define f2fs_info(sbi, fmt, ...)					\
1821 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1822 #define f2fs_debug(sbi, fmt, ...)					\
1823 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1824 
1825 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1826 						struct inode *inode,
1827 						block_t count)
1828 {
1829 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1830 
1831 	spin_lock(&sbi->stat_lock);
1832 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1833 	sbi->total_valid_block_count -= (block_t)count;
1834 	if (sbi->reserved_blocks &&
1835 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1836 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1837 					sbi->current_reserved_blocks + count);
1838 	spin_unlock(&sbi->stat_lock);
1839 	if (unlikely(inode->i_blocks < sectors)) {
1840 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1841 			  inode->i_ino,
1842 			  (unsigned long long)inode->i_blocks,
1843 			  (unsigned long long)sectors);
1844 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1845 		return;
1846 	}
1847 	f2fs_i_blocks_write(inode, count, false, true);
1848 }
1849 
1850 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1851 {
1852 	atomic_inc(&sbi->nr_pages[count_type]);
1853 
1854 	if (count_type == F2FS_DIRTY_DENTS ||
1855 			count_type == F2FS_DIRTY_NODES ||
1856 			count_type == F2FS_DIRTY_META ||
1857 			count_type == F2FS_DIRTY_QDATA ||
1858 			count_type == F2FS_DIRTY_IMETA)
1859 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1860 }
1861 
1862 static inline void inode_inc_dirty_pages(struct inode *inode)
1863 {
1864 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1865 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1866 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1867 	if (IS_NOQUOTA(inode))
1868 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1869 }
1870 
1871 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1872 {
1873 	atomic_dec(&sbi->nr_pages[count_type]);
1874 }
1875 
1876 static inline void inode_dec_dirty_pages(struct inode *inode)
1877 {
1878 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1879 			!S_ISLNK(inode->i_mode))
1880 		return;
1881 
1882 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1883 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1884 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1885 	if (IS_NOQUOTA(inode))
1886 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1887 }
1888 
1889 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1890 {
1891 	return atomic_read(&sbi->nr_pages[count_type]);
1892 }
1893 
1894 static inline int get_dirty_pages(struct inode *inode)
1895 {
1896 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1897 }
1898 
1899 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1900 {
1901 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1902 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1903 						sbi->log_blocks_per_seg;
1904 
1905 	return segs / sbi->segs_per_sec;
1906 }
1907 
1908 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1909 {
1910 	return sbi->total_valid_block_count;
1911 }
1912 
1913 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1914 {
1915 	return sbi->discard_blks;
1916 }
1917 
1918 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1919 {
1920 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1921 
1922 	/* return NAT or SIT bitmap */
1923 	if (flag == NAT_BITMAP)
1924 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1925 	else if (flag == SIT_BITMAP)
1926 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1927 
1928 	return 0;
1929 }
1930 
1931 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1932 {
1933 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1934 }
1935 
1936 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1937 {
1938 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1939 	int offset;
1940 
1941 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1942 		offset = (flag == SIT_BITMAP) ?
1943 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1944 		/*
1945 		 * if large_nat_bitmap feature is enabled, leave checksum
1946 		 * protection for all nat/sit bitmaps.
1947 		 */
1948 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1949 	}
1950 
1951 	if (__cp_payload(sbi) > 0) {
1952 		if (flag == NAT_BITMAP)
1953 			return &ckpt->sit_nat_version_bitmap;
1954 		else
1955 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1956 	} else {
1957 		offset = (flag == NAT_BITMAP) ?
1958 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1959 		return &ckpt->sit_nat_version_bitmap + offset;
1960 	}
1961 }
1962 
1963 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1964 {
1965 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1966 
1967 	if (sbi->cur_cp_pack == 2)
1968 		start_addr += sbi->blocks_per_seg;
1969 	return start_addr;
1970 }
1971 
1972 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1973 {
1974 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1975 
1976 	if (sbi->cur_cp_pack == 1)
1977 		start_addr += sbi->blocks_per_seg;
1978 	return start_addr;
1979 }
1980 
1981 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1982 {
1983 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1984 }
1985 
1986 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1987 {
1988 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1989 }
1990 
1991 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1992 					struct inode *inode, bool is_inode)
1993 {
1994 	block_t	valid_block_count;
1995 	unsigned int valid_node_count, user_block_count;
1996 	int err;
1997 
1998 	if (is_inode) {
1999 		if (inode) {
2000 			err = dquot_alloc_inode(inode);
2001 			if (err)
2002 				return err;
2003 		}
2004 	} else {
2005 		err = dquot_reserve_block(inode, 1);
2006 		if (err)
2007 			return err;
2008 	}
2009 
2010 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2011 		f2fs_show_injection_info(FAULT_BLOCK);
2012 		goto enospc;
2013 	}
2014 
2015 	spin_lock(&sbi->stat_lock);
2016 
2017 	valid_block_count = sbi->total_valid_block_count +
2018 					sbi->current_reserved_blocks + 1;
2019 
2020 	if (!__allow_reserved_blocks(sbi, inode, false))
2021 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2022 	user_block_count = sbi->user_block_count;
2023 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2024 		user_block_count -= sbi->unusable_block_count;
2025 
2026 	if (unlikely(valid_block_count > user_block_count)) {
2027 		spin_unlock(&sbi->stat_lock);
2028 		goto enospc;
2029 	}
2030 
2031 	valid_node_count = sbi->total_valid_node_count + 1;
2032 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2033 		spin_unlock(&sbi->stat_lock);
2034 		goto enospc;
2035 	}
2036 
2037 	sbi->total_valid_node_count++;
2038 	sbi->total_valid_block_count++;
2039 	spin_unlock(&sbi->stat_lock);
2040 
2041 	if (inode) {
2042 		if (is_inode)
2043 			f2fs_mark_inode_dirty_sync(inode, true);
2044 		else
2045 			f2fs_i_blocks_write(inode, 1, true, true);
2046 	}
2047 
2048 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2049 	return 0;
2050 
2051 enospc:
2052 	if (is_inode) {
2053 		if (inode)
2054 			dquot_free_inode(inode);
2055 	} else {
2056 		dquot_release_reservation_block(inode, 1);
2057 	}
2058 	return -ENOSPC;
2059 }
2060 
2061 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2062 					struct inode *inode, bool is_inode)
2063 {
2064 	spin_lock(&sbi->stat_lock);
2065 
2066 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2067 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2068 
2069 	sbi->total_valid_node_count--;
2070 	sbi->total_valid_block_count--;
2071 	if (sbi->reserved_blocks &&
2072 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2073 		sbi->current_reserved_blocks++;
2074 
2075 	spin_unlock(&sbi->stat_lock);
2076 
2077 	if (is_inode) {
2078 		dquot_free_inode(inode);
2079 	} else {
2080 		if (unlikely(inode->i_blocks == 0)) {
2081 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2082 				  inode->i_ino,
2083 				  (unsigned long long)inode->i_blocks);
2084 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2085 			return;
2086 		}
2087 		f2fs_i_blocks_write(inode, 1, false, true);
2088 	}
2089 }
2090 
2091 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2092 {
2093 	return sbi->total_valid_node_count;
2094 }
2095 
2096 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2097 {
2098 	percpu_counter_inc(&sbi->total_valid_inode_count);
2099 }
2100 
2101 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2102 {
2103 	percpu_counter_dec(&sbi->total_valid_inode_count);
2104 }
2105 
2106 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2107 {
2108 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2109 }
2110 
2111 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2112 						pgoff_t index, bool for_write)
2113 {
2114 	struct page *page;
2115 
2116 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2117 		if (!for_write)
2118 			page = find_get_page_flags(mapping, index,
2119 							FGP_LOCK | FGP_ACCESSED);
2120 		else
2121 			page = find_lock_page(mapping, index);
2122 		if (page)
2123 			return page;
2124 
2125 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2126 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2127 			return NULL;
2128 		}
2129 	}
2130 
2131 	if (!for_write)
2132 		return grab_cache_page(mapping, index);
2133 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2134 }
2135 
2136 static inline struct page *f2fs_pagecache_get_page(
2137 				struct address_space *mapping, pgoff_t index,
2138 				int fgp_flags, gfp_t gfp_mask)
2139 {
2140 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2141 		f2fs_show_injection_info(FAULT_PAGE_GET);
2142 		return NULL;
2143 	}
2144 
2145 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2146 }
2147 
2148 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2149 {
2150 	char *src_kaddr = kmap(src);
2151 	char *dst_kaddr = kmap(dst);
2152 
2153 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2154 	kunmap(dst);
2155 	kunmap(src);
2156 }
2157 
2158 static inline void f2fs_put_page(struct page *page, int unlock)
2159 {
2160 	if (!page)
2161 		return;
2162 
2163 	if (unlock) {
2164 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2165 		unlock_page(page);
2166 	}
2167 	put_page(page);
2168 }
2169 
2170 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2171 {
2172 	if (dn->node_page)
2173 		f2fs_put_page(dn->node_page, 1);
2174 	if (dn->inode_page && dn->node_page != dn->inode_page)
2175 		f2fs_put_page(dn->inode_page, 0);
2176 	dn->node_page = NULL;
2177 	dn->inode_page = NULL;
2178 }
2179 
2180 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2181 					size_t size)
2182 {
2183 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2184 }
2185 
2186 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2187 						gfp_t flags)
2188 {
2189 	void *entry;
2190 
2191 	entry = kmem_cache_alloc(cachep, flags);
2192 	if (!entry)
2193 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2194 	return entry;
2195 }
2196 
2197 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2198 						int npages, bool no_fail)
2199 {
2200 	struct bio *bio;
2201 
2202 	if (no_fail) {
2203 		/* No failure on bio allocation */
2204 		bio = bio_alloc(GFP_NOIO, npages);
2205 		if (!bio)
2206 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2207 		return bio;
2208 	}
2209 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2210 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2211 		return NULL;
2212 	}
2213 
2214 	return bio_alloc(GFP_KERNEL, npages);
2215 }
2216 
2217 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2218 {
2219 	if (sbi->gc_mode == GC_URGENT)
2220 		return true;
2221 
2222 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2223 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2224 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2225 		get_pages(sbi, F2FS_DIO_READ) ||
2226 		get_pages(sbi, F2FS_DIO_WRITE))
2227 		return false;
2228 
2229 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2230 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2231 		return false;
2232 
2233 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2234 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2235 		return false;
2236 
2237 	return f2fs_time_over(sbi, type);
2238 }
2239 
2240 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2241 				unsigned long index, void *item)
2242 {
2243 	while (radix_tree_insert(root, index, item))
2244 		cond_resched();
2245 }
2246 
2247 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2248 
2249 static inline bool IS_INODE(struct page *page)
2250 {
2251 	struct f2fs_node *p = F2FS_NODE(page);
2252 
2253 	return RAW_IS_INODE(p);
2254 }
2255 
2256 static inline int offset_in_addr(struct f2fs_inode *i)
2257 {
2258 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2259 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2260 }
2261 
2262 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2263 {
2264 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2265 }
2266 
2267 static inline int f2fs_has_extra_attr(struct inode *inode);
2268 static inline block_t datablock_addr(struct inode *inode,
2269 			struct page *node_page, unsigned int offset)
2270 {
2271 	struct f2fs_node *raw_node;
2272 	__le32 *addr_array;
2273 	int base = 0;
2274 	bool is_inode = IS_INODE(node_page);
2275 
2276 	raw_node = F2FS_NODE(node_page);
2277 
2278 	/* from GC path only */
2279 	if (is_inode) {
2280 		if (!inode)
2281 			base = offset_in_addr(&raw_node->i);
2282 		else if (f2fs_has_extra_attr(inode))
2283 			base = get_extra_isize(inode);
2284 	}
2285 
2286 	addr_array = blkaddr_in_node(raw_node);
2287 	return le32_to_cpu(addr_array[base + offset]);
2288 }
2289 
2290 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2291 {
2292 	int mask;
2293 
2294 	addr += (nr >> 3);
2295 	mask = 1 << (7 - (nr & 0x07));
2296 	return mask & *addr;
2297 }
2298 
2299 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2300 {
2301 	int mask;
2302 
2303 	addr += (nr >> 3);
2304 	mask = 1 << (7 - (nr & 0x07));
2305 	*addr |= mask;
2306 }
2307 
2308 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2309 {
2310 	int mask;
2311 
2312 	addr += (nr >> 3);
2313 	mask = 1 << (7 - (nr & 0x07));
2314 	*addr &= ~mask;
2315 }
2316 
2317 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2318 {
2319 	int mask;
2320 	int ret;
2321 
2322 	addr += (nr >> 3);
2323 	mask = 1 << (7 - (nr & 0x07));
2324 	ret = mask & *addr;
2325 	*addr |= mask;
2326 	return ret;
2327 }
2328 
2329 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2330 {
2331 	int mask;
2332 	int ret;
2333 
2334 	addr += (nr >> 3);
2335 	mask = 1 << (7 - (nr & 0x07));
2336 	ret = mask & *addr;
2337 	*addr &= ~mask;
2338 	return ret;
2339 }
2340 
2341 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2342 {
2343 	int mask;
2344 
2345 	addr += (nr >> 3);
2346 	mask = 1 << (7 - (nr & 0x07));
2347 	*addr ^= mask;
2348 }
2349 
2350 /*
2351  * On-disk inode flags (f2fs_inode::i_flags)
2352  */
2353 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2354 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2355 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2356 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2357 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2358 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2359 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2360 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2361 
2362 /* Flags that should be inherited by new inodes from their parent. */
2363 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2364 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL)
2365 
2366 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2367 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL))
2368 
2369 /* Flags that are appropriate for non-directories/regular files. */
2370 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2371 
2372 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2373 {
2374 	if (S_ISDIR(mode))
2375 		return flags;
2376 	else if (S_ISREG(mode))
2377 		return flags & F2FS_REG_FLMASK;
2378 	else
2379 		return flags & F2FS_OTHER_FLMASK;
2380 }
2381 
2382 /* used for f2fs_inode_info->flags */
2383 enum {
2384 	FI_NEW_INODE,		/* indicate newly allocated inode */
2385 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2386 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2387 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2388 	FI_INC_LINK,		/* need to increment i_nlink */
2389 	FI_ACL_MODE,		/* indicate acl mode */
2390 	FI_NO_ALLOC,		/* should not allocate any blocks */
2391 	FI_FREE_NID,		/* free allocated nide */
2392 	FI_NO_EXTENT,		/* not to use the extent cache */
2393 	FI_INLINE_XATTR,	/* used for inline xattr */
2394 	FI_INLINE_DATA,		/* used for inline data*/
2395 	FI_INLINE_DENTRY,	/* used for inline dentry */
2396 	FI_APPEND_WRITE,	/* inode has appended data */
2397 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2398 	FI_NEED_IPU,		/* used for ipu per file */
2399 	FI_ATOMIC_FILE,		/* indicate atomic file */
2400 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2401 	FI_VOLATILE_FILE,	/* indicate volatile file */
2402 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2403 	FI_DROP_CACHE,		/* drop dirty page cache */
2404 	FI_DATA_EXIST,		/* indicate data exists */
2405 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2406 	FI_DO_DEFRAG,		/* indicate defragment is running */
2407 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2408 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2409 	FI_HOT_DATA,		/* indicate file is hot */
2410 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2411 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2412 	FI_PIN_FILE,		/* indicate file should not be gced */
2413 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2414 };
2415 
2416 static inline void __mark_inode_dirty_flag(struct inode *inode,
2417 						int flag, bool set)
2418 {
2419 	switch (flag) {
2420 	case FI_INLINE_XATTR:
2421 	case FI_INLINE_DATA:
2422 	case FI_INLINE_DENTRY:
2423 	case FI_NEW_INODE:
2424 		if (set)
2425 			return;
2426 		/* fall through */
2427 	case FI_DATA_EXIST:
2428 	case FI_INLINE_DOTS:
2429 	case FI_PIN_FILE:
2430 		f2fs_mark_inode_dirty_sync(inode, true);
2431 	}
2432 }
2433 
2434 static inline void set_inode_flag(struct inode *inode, int flag)
2435 {
2436 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2437 		set_bit(flag, &F2FS_I(inode)->flags);
2438 	__mark_inode_dirty_flag(inode, flag, true);
2439 }
2440 
2441 static inline int is_inode_flag_set(struct inode *inode, int flag)
2442 {
2443 	return test_bit(flag, &F2FS_I(inode)->flags);
2444 }
2445 
2446 static inline void clear_inode_flag(struct inode *inode, int flag)
2447 {
2448 	if (test_bit(flag, &F2FS_I(inode)->flags))
2449 		clear_bit(flag, &F2FS_I(inode)->flags);
2450 	__mark_inode_dirty_flag(inode, flag, false);
2451 }
2452 
2453 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2454 {
2455 	F2FS_I(inode)->i_acl_mode = mode;
2456 	set_inode_flag(inode, FI_ACL_MODE);
2457 	f2fs_mark_inode_dirty_sync(inode, false);
2458 }
2459 
2460 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2461 {
2462 	if (inc)
2463 		inc_nlink(inode);
2464 	else
2465 		drop_nlink(inode);
2466 	f2fs_mark_inode_dirty_sync(inode, true);
2467 }
2468 
2469 static inline void f2fs_i_blocks_write(struct inode *inode,
2470 					block_t diff, bool add, bool claim)
2471 {
2472 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2473 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2474 
2475 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2476 	if (add) {
2477 		if (claim)
2478 			dquot_claim_block(inode, diff);
2479 		else
2480 			dquot_alloc_block_nofail(inode, diff);
2481 	} else {
2482 		dquot_free_block(inode, diff);
2483 	}
2484 
2485 	f2fs_mark_inode_dirty_sync(inode, true);
2486 	if (clean || recover)
2487 		set_inode_flag(inode, FI_AUTO_RECOVER);
2488 }
2489 
2490 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2491 {
2492 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2493 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2494 
2495 	if (i_size_read(inode) == i_size)
2496 		return;
2497 
2498 	i_size_write(inode, i_size);
2499 	f2fs_mark_inode_dirty_sync(inode, true);
2500 	if (clean || recover)
2501 		set_inode_flag(inode, FI_AUTO_RECOVER);
2502 }
2503 
2504 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2505 {
2506 	F2FS_I(inode)->i_current_depth = depth;
2507 	f2fs_mark_inode_dirty_sync(inode, true);
2508 }
2509 
2510 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2511 					unsigned int count)
2512 {
2513 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2514 	f2fs_mark_inode_dirty_sync(inode, true);
2515 }
2516 
2517 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2518 {
2519 	F2FS_I(inode)->i_xattr_nid = xnid;
2520 	f2fs_mark_inode_dirty_sync(inode, true);
2521 }
2522 
2523 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2524 {
2525 	F2FS_I(inode)->i_pino = pino;
2526 	f2fs_mark_inode_dirty_sync(inode, true);
2527 }
2528 
2529 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2530 {
2531 	struct f2fs_inode_info *fi = F2FS_I(inode);
2532 
2533 	if (ri->i_inline & F2FS_INLINE_XATTR)
2534 		set_bit(FI_INLINE_XATTR, &fi->flags);
2535 	if (ri->i_inline & F2FS_INLINE_DATA)
2536 		set_bit(FI_INLINE_DATA, &fi->flags);
2537 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2538 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2539 	if (ri->i_inline & F2FS_DATA_EXIST)
2540 		set_bit(FI_DATA_EXIST, &fi->flags);
2541 	if (ri->i_inline & F2FS_INLINE_DOTS)
2542 		set_bit(FI_INLINE_DOTS, &fi->flags);
2543 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2544 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2545 	if (ri->i_inline & F2FS_PIN_FILE)
2546 		set_bit(FI_PIN_FILE, &fi->flags);
2547 }
2548 
2549 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2550 {
2551 	ri->i_inline = 0;
2552 
2553 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2554 		ri->i_inline |= F2FS_INLINE_XATTR;
2555 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2556 		ri->i_inline |= F2FS_INLINE_DATA;
2557 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2558 		ri->i_inline |= F2FS_INLINE_DENTRY;
2559 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2560 		ri->i_inline |= F2FS_DATA_EXIST;
2561 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2562 		ri->i_inline |= F2FS_INLINE_DOTS;
2563 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2564 		ri->i_inline |= F2FS_EXTRA_ATTR;
2565 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2566 		ri->i_inline |= F2FS_PIN_FILE;
2567 }
2568 
2569 static inline int f2fs_has_extra_attr(struct inode *inode)
2570 {
2571 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2572 }
2573 
2574 static inline int f2fs_has_inline_xattr(struct inode *inode)
2575 {
2576 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2577 }
2578 
2579 static inline unsigned int addrs_per_inode(struct inode *inode)
2580 {
2581 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2582 				get_inline_xattr_addrs(inode);
2583 	return ALIGN_DOWN(addrs, 1);
2584 }
2585 
2586 static inline unsigned int addrs_per_block(struct inode *inode)
2587 {
2588 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2589 }
2590 
2591 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2592 {
2593 	struct f2fs_inode *ri = F2FS_INODE(page);
2594 
2595 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2596 					get_inline_xattr_addrs(inode)]);
2597 }
2598 
2599 static inline int inline_xattr_size(struct inode *inode)
2600 {
2601 	if (f2fs_has_inline_xattr(inode))
2602 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2603 	return 0;
2604 }
2605 
2606 static inline int f2fs_has_inline_data(struct inode *inode)
2607 {
2608 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2609 }
2610 
2611 static inline int f2fs_exist_data(struct inode *inode)
2612 {
2613 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2614 }
2615 
2616 static inline int f2fs_has_inline_dots(struct inode *inode)
2617 {
2618 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2619 }
2620 
2621 static inline bool f2fs_is_pinned_file(struct inode *inode)
2622 {
2623 	return is_inode_flag_set(inode, FI_PIN_FILE);
2624 }
2625 
2626 static inline bool f2fs_is_atomic_file(struct inode *inode)
2627 {
2628 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2629 }
2630 
2631 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2632 {
2633 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2634 }
2635 
2636 static inline bool f2fs_is_volatile_file(struct inode *inode)
2637 {
2638 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2639 }
2640 
2641 static inline bool f2fs_is_first_block_written(struct inode *inode)
2642 {
2643 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2644 }
2645 
2646 static inline bool f2fs_is_drop_cache(struct inode *inode)
2647 {
2648 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2649 }
2650 
2651 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2652 {
2653 	struct f2fs_inode *ri = F2FS_INODE(page);
2654 	int extra_size = get_extra_isize(inode);
2655 
2656 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2657 }
2658 
2659 static inline int f2fs_has_inline_dentry(struct inode *inode)
2660 {
2661 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2662 }
2663 
2664 static inline int is_file(struct inode *inode, int type)
2665 {
2666 	return F2FS_I(inode)->i_advise & type;
2667 }
2668 
2669 static inline void set_file(struct inode *inode, int type)
2670 {
2671 	F2FS_I(inode)->i_advise |= type;
2672 	f2fs_mark_inode_dirty_sync(inode, true);
2673 }
2674 
2675 static inline void clear_file(struct inode *inode, int type)
2676 {
2677 	F2FS_I(inode)->i_advise &= ~type;
2678 	f2fs_mark_inode_dirty_sync(inode, true);
2679 }
2680 
2681 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2682 {
2683 	bool ret;
2684 
2685 	if (dsync) {
2686 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2687 
2688 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2689 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2690 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2691 		return ret;
2692 	}
2693 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2694 			file_keep_isize(inode) ||
2695 			i_size_read(inode) & ~PAGE_MASK)
2696 		return false;
2697 
2698 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2699 		return false;
2700 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2701 		return false;
2702 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2703 		return false;
2704 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2705 						&F2FS_I(inode)->i_crtime))
2706 		return false;
2707 
2708 	down_read(&F2FS_I(inode)->i_sem);
2709 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2710 	up_read(&F2FS_I(inode)->i_sem);
2711 
2712 	return ret;
2713 }
2714 
2715 static inline bool f2fs_readonly(struct super_block *sb)
2716 {
2717 	return sb_rdonly(sb);
2718 }
2719 
2720 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2721 {
2722 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2723 }
2724 
2725 static inline bool is_dot_dotdot(const struct qstr *str)
2726 {
2727 	if (str->len == 1 && str->name[0] == '.')
2728 		return true;
2729 
2730 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2731 		return true;
2732 
2733 	return false;
2734 }
2735 
2736 static inline bool f2fs_may_extent_tree(struct inode *inode)
2737 {
2738 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 
2740 	if (!test_opt(sbi, EXTENT_CACHE) ||
2741 			is_inode_flag_set(inode, FI_NO_EXTENT))
2742 		return false;
2743 
2744 	/*
2745 	 * for recovered files during mount do not create extents
2746 	 * if shrinker is not registered.
2747 	 */
2748 	if (list_empty(&sbi->s_list))
2749 		return false;
2750 
2751 	return S_ISREG(inode->i_mode);
2752 }
2753 
2754 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2755 					size_t size, gfp_t flags)
2756 {
2757 	void *ret;
2758 
2759 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2760 		f2fs_show_injection_info(FAULT_KMALLOC);
2761 		return NULL;
2762 	}
2763 
2764 	ret = kmalloc(size, flags);
2765 	if (ret)
2766 		return ret;
2767 
2768 	return kvmalloc(size, flags);
2769 }
2770 
2771 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2772 					size_t size, gfp_t flags)
2773 {
2774 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2775 }
2776 
2777 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2778 					size_t size, gfp_t flags)
2779 {
2780 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2781 		f2fs_show_injection_info(FAULT_KVMALLOC);
2782 		return NULL;
2783 	}
2784 
2785 	return kvmalloc(size, flags);
2786 }
2787 
2788 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2789 					size_t size, gfp_t flags)
2790 {
2791 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2792 }
2793 
2794 static inline int get_extra_isize(struct inode *inode)
2795 {
2796 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2797 }
2798 
2799 static inline int get_inline_xattr_addrs(struct inode *inode)
2800 {
2801 	return F2FS_I(inode)->i_inline_xattr_size;
2802 }
2803 
2804 #define f2fs_get_inode_mode(i) \
2805 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2806 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2807 
2808 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2809 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2810 	offsetof(struct f2fs_inode, i_extra_isize))	\
2811 
2812 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2813 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2814 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2815 		sizeof((f2fs_inode)->field))			\
2816 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2817 
2818 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2819 {
2820 	int i;
2821 
2822 	spin_lock(&sbi->iostat_lock);
2823 	for (i = 0; i < NR_IO_TYPE; i++)
2824 		sbi->write_iostat[i] = 0;
2825 	spin_unlock(&sbi->iostat_lock);
2826 }
2827 
2828 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2829 			enum iostat_type type, unsigned long long io_bytes)
2830 {
2831 	if (!sbi->iostat_enable)
2832 		return;
2833 	spin_lock(&sbi->iostat_lock);
2834 	sbi->write_iostat[type] += io_bytes;
2835 
2836 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2837 		sbi->write_iostat[APP_BUFFERED_IO] =
2838 			sbi->write_iostat[APP_WRITE_IO] -
2839 			sbi->write_iostat[APP_DIRECT_IO];
2840 	spin_unlock(&sbi->iostat_lock);
2841 }
2842 
2843 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2844 
2845 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2846 
2847 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2848 					block_t blkaddr, int type);
2849 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2850 					block_t blkaddr, int type)
2851 {
2852 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2853 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2854 			 blkaddr, type);
2855 		f2fs_bug_on(sbi, 1);
2856 	}
2857 }
2858 
2859 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2860 {
2861 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2862 		return false;
2863 	return true;
2864 }
2865 
2866 static inline void f2fs_set_page_private(struct page *page,
2867 						unsigned long data)
2868 {
2869 	if (PagePrivate(page))
2870 		return;
2871 
2872 	get_page(page);
2873 	SetPagePrivate(page);
2874 	set_page_private(page, data);
2875 }
2876 
2877 static inline void f2fs_clear_page_private(struct page *page)
2878 {
2879 	if (!PagePrivate(page))
2880 		return;
2881 
2882 	set_page_private(page, 0);
2883 	ClearPagePrivate(page);
2884 	f2fs_put_page(page, 0);
2885 }
2886 
2887 /*
2888  * file.c
2889  */
2890 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2891 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2892 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2893 int f2fs_truncate(struct inode *inode);
2894 int f2fs_getattr(const struct path *path, struct kstat *stat,
2895 			u32 request_mask, unsigned int flags);
2896 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2897 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2898 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2899 int f2fs_precache_extents(struct inode *inode);
2900 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2901 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2902 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2903 int f2fs_pin_file_control(struct inode *inode, bool inc);
2904 
2905 /*
2906  * inode.c
2907  */
2908 void f2fs_set_inode_flags(struct inode *inode);
2909 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2910 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2911 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2912 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2913 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2914 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2915 void f2fs_update_inode_page(struct inode *inode);
2916 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2917 void f2fs_evict_inode(struct inode *inode);
2918 void f2fs_handle_failed_inode(struct inode *inode);
2919 
2920 /*
2921  * namei.c
2922  */
2923 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2924 							bool hot, bool set);
2925 struct dentry *f2fs_get_parent(struct dentry *child);
2926 
2927 /*
2928  * dir.c
2929  */
2930 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2931 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2932 			f2fs_hash_t namehash, int *max_slots,
2933 			struct f2fs_dentry_ptr *d);
2934 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2935 			unsigned int start_pos, struct fscrypt_str *fstr);
2936 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2937 			struct f2fs_dentry_ptr *d);
2938 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2939 			const struct qstr *new_name,
2940 			const struct qstr *orig_name, struct page *dpage);
2941 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2942 			unsigned int current_depth);
2943 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2944 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2945 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2946 			struct fscrypt_name *fname, struct page **res_page);
2947 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2948 			const struct qstr *child, struct page **res_page);
2949 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2950 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2951 			struct page **page);
2952 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2953 			struct page *page, struct inode *inode);
2954 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2955 			const struct qstr *name, f2fs_hash_t name_hash,
2956 			unsigned int bit_pos);
2957 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2958 			const struct qstr *orig_name,
2959 			struct inode *inode, nid_t ino, umode_t mode);
2960 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2961 			struct inode *inode, nid_t ino, umode_t mode);
2962 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2963 			struct inode *inode, nid_t ino, umode_t mode);
2964 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2965 			struct inode *dir, struct inode *inode);
2966 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2967 bool f2fs_empty_dir(struct inode *dir);
2968 
2969 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2970 {
2971 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2972 				inode, inode->i_ino, inode->i_mode);
2973 }
2974 
2975 /*
2976  * super.c
2977  */
2978 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2979 void f2fs_inode_synced(struct inode *inode);
2980 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2981 int f2fs_quota_sync(struct super_block *sb, int type);
2982 void f2fs_quota_off_umount(struct super_block *sb);
2983 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2984 int f2fs_sync_fs(struct super_block *sb, int sync);
2985 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2986 
2987 /*
2988  * hash.c
2989  */
2990 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2991 				struct fscrypt_name *fname);
2992 
2993 /*
2994  * node.c
2995  */
2996 struct dnode_of_data;
2997 struct node_info;
2998 
2999 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3000 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3001 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3002 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3003 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3004 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3005 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3006 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3007 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3008 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3009 						struct node_info *ni);
3010 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3011 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3012 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3013 int f2fs_truncate_xattr_node(struct inode *inode);
3014 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3015 					unsigned int seq_id);
3016 int f2fs_remove_inode_page(struct inode *inode);
3017 struct page *f2fs_new_inode_page(struct inode *inode);
3018 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3019 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3020 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3021 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3022 int f2fs_move_node_page(struct page *node_page, int gc_type);
3023 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3024 			struct writeback_control *wbc, bool atomic,
3025 			unsigned int *seq_id);
3026 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3027 			struct writeback_control *wbc,
3028 			bool do_balance, enum iostat_type io_type);
3029 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3030 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3031 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3032 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3033 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3034 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3035 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3036 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3037 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3038 			unsigned int segno, struct f2fs_summary_block *sum);
3039 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3040 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3041 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3042 int __init f2fs_create_node_manager_caches(void);
3043 void f2fs_destroy_node_manager_caches(void);
3044 
3045 /*
3046  * segment.c
3047  */
3048 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3049 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3050 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3051 void f2fs_drop_inmem_pages(struct inode *inode);
3052 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3053 int f2fs_commit_inmem_pages(struct inode *inode);
3054 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3055 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3056 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3057 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3058 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3059 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3060 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3061 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3062 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3063 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3064 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3065 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3066 					struct cp_control *cpc);
3067 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3068 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3069 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3070 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3071 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3072 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3073 					unsigned int start, unsigned int end);
3074 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3075 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3076 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3077 					struct cp_control *cpc);
3078 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3079 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3080 					block_t blk_addr);
3081 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3082 						enum iostat_type io_type);
3083 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3084 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3085 			struct f2fs_io_info *fio);
3086 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3087 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3088 			block_t old_blkaddr, block_t new_blkaddr,
3089 			bool recover_curseg, bool recover_newaddr);
3090 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3091 			block_t old_addr, block_t new_addr,
3092 			unsigned char version, bool recover_curseg,
3093 			bool recover_newaddr);
3094 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3095 			block_t old_blkaddr, block_t *new_blkaddr,
3096 			struct f2fs_summary *sum, int type,
3097 			struct f2fs_io_info *fio, bool add_list);
3098 void f2fs_wait_on_page_writeback(struct page *page,
3099 			enum page_type type, bool ordered, bool locked);
3100 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3101 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3102 								block_t len);
3103 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3104 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3105 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3106 			unsigned int val, int alloc);
3107 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3108 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3109 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3110 int __init f2fs_create_segment_manager_caches(void);
3111 void f2fs_destroy_segment_manager_caches(void);
3112 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3113 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3114 			enum page_type type, enum temp_type temp);
3115 
3116 /*
3117  * checkpoint.c
3118  */
3119 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3120 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3121 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3122 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3123 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3124 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3125 					block_t blkaddr, int type);
3126 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3127 			int type, bool sync);
3128 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3129 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3130 			long nr_to_write, enum iostat_type io_type);
3131 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3132 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3133 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3134 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3135 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3136 					unsigned int devidx, int type);
3137 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3138 					unsigned int devidx, int type);
3139 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3140 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3141 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3142 void f2fs_add_orphan_inode(struct inode *inode);
3143 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3144 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3145 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3146 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3147 void f2fs_remove_dirty_inode(struct inode *inode);
3148 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3149 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3150 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3151 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3152 int __init f2fs_create_checkpoint_caches(void);
3153 void f2fs_destroy_checkpoint_caches(void);
3154 
3155 /*
3156  * data.c
3157  */
3158 int f2fs_init_post_read_processing(void);
3159 void f2fs_destroy_post_read_processing(void);
3160 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3161 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3162 				struct inode *inode, struct page *page,
3163 				nid_t ino, enum page_type type);
3164 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3165 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3166 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3167 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3168 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3169 			block_t blk_addr, struct bio *bio);
3170 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3171 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3172 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3173 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3174 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3175 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3176 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3177 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3178 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3179 			int op_flags, bool for_write);
3180 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3181 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3182 			bool for_write);
3183 struct page *f2fs_get_new_data_page(struct inode *inode,
3184 			struct page *ipage, pgoff_t index, bool new_i_size);
3185 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3186 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3187 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3188 			int create, int flag);
3189 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3190 			u64 start, u64 len);
3191 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3192 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3193 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3194 			unsigned int length);
3195 int f2fs_release_page(struct page *page, gfp_t wait);
3196 #ifdef CONFIG_MIGRATION
3197 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3198 			struct page *page, enum migrate_mode mode);
3199 #endif
3200 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3201 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3202 
3203 /*
3204  * gc.c
3205  */
3206 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3207 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3208 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3209 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3210 			unsigned int segno);
3211 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3212 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3213 
3214 /*
3215  * recovery.c
3216  */
3217 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3218 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3219 
3220 /*
3221  * debug.c
3222  */
3223 #ifdef CONFIG_F2FS_STAT_FS
3224 struct f2fs_stat_info {
3225 	struct list_head stat_list;
3226 	struct f2fs_sb_info *sbi;
3227 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3228 	int main_area_segs, main_area_sections, main_area_zones;
3229 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3230 	unsigned long long hit_total, total_ext;
3231 	int ext_tree, zombie_tree, ext_node;
3232 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3233 	int ndirty_data, ndirty_qdata;
3234 	int inmem_pages;
3235 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3236 	int nats, dirty_nats, sits, dirty_sits;
3237 	int free_nids, avail_nids, alloc_nids;
3238 	int total_count, utilization;
3239 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3240 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3241 	int nr_dio_read, nr_dio_write;
3242 	unsigned int io_skip_bggc, other_skip_bggc;
3243 	int nr_flushing, nr_flushed, flush_list_empty;
3244 	int nr_discarding, nr_discarded;
3245 	int nr_discard_cmd;
3246 	unsigned int undiscard_blks;
3247 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3248 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3249 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3250 	unsigned int bimodal, avg_vblocks;
3251 	int util_free, util_valid, util_invalid;
3252 	int rsvd_segs, overp_segs;
3253 	int dirty_count, node_pages, meta_pages;
3254 	int prefree_count, call_count, cp_count, bg_cp_count;
3255 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3256 	int bg_node_segs, bg_data_segs;
3257 	int tot_blks, data_blks, node_blks;
3258 	int bg_data_blks, bg_node_blks;
3259 	unsigned long long skipped_atomic_files[2];
3260 	int curseg[NR_CURSEG_TYPE];
3261 	int cursec[NR_CURSEG_TYPE];
3262 	int curzone[NR_CURSEG_TYPE];
3263 
3264 	unsigned int meta_count[META_MAX];
3265 	unsigned int segment_count[2];
3266 	unsigned int block_count[2];
3267 	unsigned int inplace_count;
3268 	unsigned long long base_mem, cache_mem, page_mem;
3269 };
3270 
3271 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3272 {
3273 	return (struct f2fs_stat_info *)sbi->stat_info;
3274 }
3275 
3276 #define stat_inc_cp_count(si)		((si)->cp_count++)
3277 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3278 #define stat_inc_call_count(si)		((si)->call_count++)
3279 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3280 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3281 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3282 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3283 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3284 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3285 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3286 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3287 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3288 #define stat_inc_inline_xattr(inode)					\
3289 	do {								\
3290 		if (f2fs_has_inline_xattr(inode))			\
3291 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3292 	} while (0)
3293 #define stat_dec_inline_xattr(inode)					\
3294 	do {								\
3295 		if (f2fs_has_inline_xattr(inode))			\
3296 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3297 	} while (0)
3298 #define stat_inc_inline_inode(inode)					\
3299 	do {								\
3300 		if (f2fs_has_inline_data(inode))			\
3301 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3302 	} while (0)
3303 #define stat_dec_inline_inode(inode)					\
3304 	do {								\
3305 		if (f2fs_has_inline_data(inode))			\
3306 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3307 	} while (0)
3308 #define stat_inc_inline_dir(inode)					\
3309 	do {								\
3310 		if (f2fs_has_inline_dentry(inode))			\
3311 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3312 	} while (0)
3313 #define stat_dec_inline_dir(inode)					\
3314 	do {								\
3315 		if (f2fs_has_inline_dentry(inode))			\
3316 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3317 	} while (0)
3318 #define stat_inc_meta_count(sbi, blkaddr)				\
3319 	do {								\
3320 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3321 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3322 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3323 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3324 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3325 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3326 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3327 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3328 	} while (0)
3329 #define stat_inc_seg_type(sbi, curseg)					\
3330 		((sbi)->segment_count[(curseg)->alloc_type]++)
3331 #define stat_inc_block_count(sbi, curseg)				\
3332 		((sbi)->block_count[(curseg)->alloc_type]++)
3333 #define stat_inc_inplace_blocks(sbi)					\
3334 		(atomic_inc(&(sbi)->inplace_count))
3335 #define stat_inc_atomic_write(inode)					\
3336 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3337 #define stat_dec_atomic_write(inode)					\
3338 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3339 #define stat_update_max_atomic_write(inode)				\
3340 	do {								\
3341 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3342 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3343 		if (cur > max)						\
3344 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3345 	} while (0)
3346 #define stat_inc_volatile_write(inode)					\
3347 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3348 #define stat_dec_volatile_write(inode)					\
3349 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3350 #define stat_update_max_volatile_write(inode)				\
3351 	do {								\
3352 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3353 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3354 		if (cur > max)						\
3355 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3356 	} while (0)
3357 #define stat_inc_seg_count(sbi, type, gc_type)				\
3358 	do {								\
3359 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3360 		si->tot_segs++;						\
3361 		if ((type) == SUM_TYPE_DATA) {				\
3362 			si->data_segs++;				\
3363 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3364 		} else {						\
3365 			si->node_segs++;				\
3366 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3367 		}							\
3368 	} while (0)
3369 
3370 #define stat_inc_tot_blk_count(si, blks)				\
3371 	((si)->tot_blks += (blks))
3372 
3373 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3374 	do {								\
3375 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3376 		stat_inc_tot_blk_count(si, blks);			\
3377 		si->data_blks += (blks);				\
3378 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3379 	} while (0)
3380 
3381 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3382 	do {								\
3383 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3384 		stat_inc_tot_blk_count(si, blks);			\
3385 		si->node_blks += (blks);				\
3386 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3387 	} while (0)
3388 
3389 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3390 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3391 void __init f2fs_create_root_stats(void);
3392 void f2fs_destroy_root_stats(void);
3393 #else
3394 #define stat_inc_cp_count(si)				do { } while (0)
3395 #define stat_inc_bg_cp_count(si)			do { } while (0)
3396 #define stat_inc_call_count(si)				do { } while (0)
3397 #define stat_inc_bggc_count(si)				do { } while (0)
3398 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3399 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3400 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3401 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3402 #define stat_inc_total_hit(sb)				do { } while (0)
3403 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3404 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3405 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3406 #define stat_inc_inline_xattr(inode)			do { } while (0)
3407 #define stat_dec_inline_xattr(inode)			do { } while (0)
3408 #define stat_inc_inline_inode(inode)			do { } while (0)
3409 #define stat_dec_inline_inode(inode)			do { } while (0)
3410 #define stat_inc_inline_dir(inode)			do { } while (0)
3411 #define stat_dec_inline_dir(inode)			do { } while (0)
3412 #define stat_inc_atomic_write(inode)			do { } while (0)
3413 #define stat_dec_atomic_write(inode)			do { } while (0)
3414 #define stat_update_max_atomic_write(inode)		do { } while (0)
3415 #define stat_inc_volatile_write(inode)			do { } while (0)
3416 #define stat_dec_volatile_write(inode)			do { } while (0)
3417 #define stat_update_max_volatile_write(inode)		do { } while (0)
3418 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3419 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3420 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3421 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3422 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3423 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3424 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3425 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3426 
3427 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3428 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3429 static inline void __init f2fs_create_root_stats(void) { }
3430 static inline void f2fs_destroy_root_stats(void) { }
3431 #endif
3432 
3433 extern const struct file_operations f2fs_dir_operations;
3434 extern const struct file_operations f2fs_file_operations;
3435 extern const struct inode_operations f2fs_file_inode_operations;
3436 extern const struct address_space_operations f2fs_dblock_aops;
3437 extern const struct address_space_operations f2fs_node_aops;
3438 extern const struct address_space_operations f2fs_meta_aops;
3439 extern const struct inode_operations f2fs_dir_inode_operations;
3440 extern const struct inode_operations f2fs_symlink_inode_operations;
3441 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3442 extern const struct inode_operations f2fs_special_inode_operations;
3443 extern struct kmem_cache *f2fs_inode_entry_slab;
3444 
3445 /*
3446  * inline.c
3447  */
3448 bool f2fs_may_inline_data(struct inode *inode);
3449 bool f2fs_may_inline_dentry(struct inode *inode);
3450 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3451 void f2fs_truncate_inline_inode(struct inode *inode,
3452 						struct page *ipage, u64 from);
3453 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3454 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3455 int f2fs_convert_inline_inode(struct inode *inode);
3456 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3457 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3458 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3459 			struct fscrypt_name *fname, struct page **res_page);
3460 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3461 			struct page *ipage);
3462 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3463 			const struct qstr *orig_name,
3464 			struct inode *inode, nid_t ino, umode_t mode);
3465 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3466 				struct page *page, struct inode *dir,
3467 				struct inode *inode);
3468 bool f2fs_empty_inline_dir(struct inode *dir);
3469 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3470 			struct fscrypt_str *fstr);
3471 int f2fs_inline_data_fiemap(struct inode *inode,
3472 			struct fiemap_extent_info *fieinfo,
3473 			__u64 start, __u64 len);
3474 
3475 /*
3476  * shrinker.c
3477  */
3478 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3479 			struct shrink_control *sc);
3480 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3481 			struct shrink_control *sc);
3482 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3483 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3484 
3485 /*
3486  * extent_cache.c
3487  */
3488 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3489 				struct rb_entry *cached_re, unsigned int ofs);
3490 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3491 				struct rb_root_cached *root,
3492 				struct rb_node **parent,
3493 				unsigned int ofs, bool *leftmost);
3494 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3495 		struct rb_entry *cached_re, unsigned int ofs,
3496 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3497 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3498 		bool force, bool *leftmost);
3499 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3500 						struct rb_root_cached *root);
3501 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3502 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3503 void f2fs_drop_extent_tree(struct inode *inode);
3504 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3505 void f2fs_destroy_extent_tree(struct inode *inode);
3506 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3507 			struct extent_info *ei);
3508 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3509 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3510 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3511 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3512 int __init f2fs_create_extent_cache(void);
3513 void f2fs_destroy_extent_cache(void);
3514 
3515 /*
3516  * sysfs.c
3517  */
3518 int __init f2fs_init_sysfs(void);
3519 void f2fs_exit_sysfs(void);
3520 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3521 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3522 
3523 /*
3524  * crypto support
3525  */
3526 static inline bool f2fs_encrypted_file(struct inode *inode)
3527 {
3528 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3529 }
3530 
3531 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3532 {
3533 #ifdef CONFIG_FS_ENCRYPTION
3534 	file_set_encrypt(inode);
3535 	f2fs_set_inode_flags(inode);
3536 #endif
3537 }
3538 
3539 /*
3540  * Returns true if the reads of the inode's data need to undergo some
3541  * postprocessing step, like decryption or authenticity verification.
3542  */
3543 static inline bool f2fs_post_read_required(struct inode *inode)
3544 {
3545 	return f2fs_encrypted_file(inode);
3546 }
3547 
3548 #define F2FS_FEATURE_FUNCS(name, flagname) \
3549 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3550 { \
3551 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3552 }
3553 
3554 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3555 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3556 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3557 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3558 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3559 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3560 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3561 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3562 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3563 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3564 
3565 #ifdef CONFIG_BLK_DEV_ZONED
3566 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3567 				    block_t blkaddr)
3568 {
3569 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3570 
3571 	return test_bit(zno, FDEV(devi).blkz_seq);
3572 }
3573 #endif
3574 
3575 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3576 {
3577 	return f2fs_sb_has_blkzoned(sbi);
3578 }
3579 
3580 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3581 {
3582 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3583 	       bdev_is_zoned(bdev);
3584 }
3585 
3586 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3587 {
3588 	int i;
3589 
3590 	if (!f2fs_is_multi_device(sbi))
3591 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3592 
3593 	for (i = 0; i < sbi->s_ndevs; i++)
3594 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3595 			return true;
3596 	return false;
3597 }
3598 
3599 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3600 {
3601 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3602 					f2fs_hw_should_discard(sbi);
3603 }
3604 
3605 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3606 {
3607 	int i;
3608 
3609 	if (!f2fs_is_multi_device(sbi))
3610 		return bdev_read_only(sbi->sb->s_bdev);
3611 
3612 	for (i = 0; i < sbi->s_ndevs; i++)
3613 		if (bdev_read_only(FDEV(i).bdev))
3614 			return true;
3615 	return false;
3616 }
3617 
3618 
3619 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3620 {
3621 	clear_opt(sbi, ADAPTIVE);
3622 	clear_opt(sbi, LFS);
3623 
3624 	switch (mt) {
3625 	case F2FS_MOUNT_ADAPTIVE:
3626 		set_opt(sbi, ADAPTIVE);
3627 		break;
3628 	case F2FS_MOUNT_LFS:
3629 		set_opt(sbi, LFS);
3630 		break;
3631 	}
3632 }
3633 
3634 static inline bool f2fs_may_encrypt(struct inode *inode)
3635 {
3636 #ifdef CONFIG_FS_ENCRYPTION
3637 	umode_t mode = inode->i_mode;
3638 
3639 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3640 #else
3641 	return false;
3642 #endif
3643 }
3644 
3645 static inline int block_unaligned_IO(struct inode *inode,
3646 				struct kiocb *iocb, struct iov_iter *iter)
3647 {
3648 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3649 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3650 	loff_t offset = iocb->ki_pos;
3651 	unsigned long align = offset | iov_iter_alignment(iter);
3652 
3653 	return align & blocksize_mask;
3654 }
3655 
3656 static inline int allow_outplace_dio(struct inode *inode,
3657 				struct kiocb *iocb, struct iov_iter *iter)
3658 {
3659 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3660 	int rw = iov_iter_rw(iter);
3661 
3662 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3663 				!block_unaligned_IO(inode, iocb, iter));
3664 }
3665 
3666 static inline bool f2fs_force_buffered_io(struct inode *inode,
3667 				struct kiocb *iocb, struct iov_iter *iter)
3668 {
3669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670 	int rw = iov_iter_rw(iter);
3671 
3672 	if (f2fs_post_read_required(inode))
3673 		return true;
3674 	if (f2fs_is_multi_device(sbi))
3675 		return true;
3676 	/*
3677 	 * for blkzoned device, fallback direct IO to buffered IO, so
3678 	 * all IOs can be serialized by log-structured write.
3679 	 */
3680 	if (f2fs_sb_has_blkzoned(sbi))
3681 		return true;
3682 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3683 				block_unaligned_IO(inode, iocb, iter))
3684 		return true;
3685 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3686 		return true;
3687 
3688 	return false;
3689 }
3690 
3691 #ifdef CONFIG_F2FS_FAULT_INJECTION
3692 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3693 							unsigned int type);
3694 #else
3695 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3696 #endif
3697 
3698 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3699 {
3700 #ifdef CONFIG_QUOTA
3701 	if (f2fs_sb_has_quota_ino(sbi))
3702 		return true;
3703 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3704 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3705 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3706 		return true;
3707 #endif
3708 	return false;
3709 }
3710 
3711 #endif /* _LINUX_F2FS_H */
3712