1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #ifdef CONFIG_F2FS_FS_ENCRYPTION 27 #include <linux/fscrypt_supp.h> 28 #else 29 #include <linux/fscrypt_notsupp.h> 30 #endif 31 #include <crypto/hash.h> 32 33 #ifdef CONFIG_F2FS_CHECK_FS 34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 35 #else 36 #define f2fs_bug_on(sbi, condition) \ 37 do { \ 38 if (unlikely(condition)) { \ 39 WARN_ON(1); \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } \ 42 } while (0) 43 #endif 44 45 #ifdef CONFIG_F2FS_FAULT_INJECTION 46 enum { 47 FAULT_KMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_IO, 56 FAULT_CHECKPOINT, 57 FAULT_MAX, 58 }; 59 60 struct f2fs_fault_info { 61 atomic_t inject_ops; 62 unsigned int inject_rate; 63 unsigned int inject_type; 64 }; 65 66 extern char *fault_name[FAULT_MAX]; 67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 68 #endif 69 70 /* 71 * For mount options 72 */ 73 #define F2FS_MOUNT_BG_GC 0x00000001 74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 75 #define F2FS_MOUNT_DISCARD 0x00000004 76 #define F2FS_MOUNT_NOHEAP 0x00000008 77 #define F2FS_MOUNT_XATTR_USER 0x00000010 78 #define F2FS_MOUNT_POSIX_ACL 0x00000020 79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 81 #define F2FS_MOUNT_INLINE_DATA 0x00000100 82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 84 #define F2FS_MOUNT_NOBARRIER 0x00000800 85 #define F2FS_MOUNT_FASTBOOT 0x00001000 86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_ADAPTIVE 0x00020000 91 #define F2FS_MOUNT_LFS 0x00040000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 96 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 97 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 98 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 99 100 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 101 typecheck(unsigned long long, b) && \ 102 ((long long)((a) - (b)) > 0)) 103 104 typedef u32 block_t; /* 105 * should not change u32, since it is the on-disk block 106 * address format, __le32. 107 */ 108 typedef u32 nid_t; 109 110 struct f2fs_mount_info { 111 unsigned int opt; 112 }; 113 114 #define F2FS_FEATURE_ENCRYPT 0x0001 115 #define F2FS_FEATURE_BLKZONED 0x0002 116 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 117 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 118 #define F2FS_FEATURE_PRJQUOTA 0x0010 119 120 #define F2FS_HAS_FEATURE(sb, mask) \ 121 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 122 #define F2FS_SET_FEATURE(sb, mask) \ 123 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 124 #define F2FS_CLEAR_FEATURE(sb, mask) \ 125 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 126 127 /* 128 * For checkpoint manager 129 */ 130 enum { 131 NAT_BITMAP, 132 SIT_BITMAP 133 }; 134 135 #define CP_UMOUNT 0x00000001 136 #define CP_FASTBOOT 0x00000002 137 #define CP_SYNC 0x00000004 138 #define CP_RECOVERY 0x00000008 139 #define CP_DISCARD 0x00000010 140 #define CP_TRIMMED 0x00000020 141 142 #define DEF_BATCHED_TRIM_SECTIONS 2048 143 #define BATCHED_TRIM_SEGMENTS(sbi) \ 144 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 145 #define BATCHED_TRIM_BLOCKS(sbi) \ 146 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 147 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 148 #define DISCARD_ISSUE_RATE 8 149 #define DEF_CP_INTERVAL 60 /* 60 secs */ 150 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 151 152 struct cp_control { 153 int reason; 154 __u64 trim_start; 155 __u64 trim_end; 156 __u64 trim_minlen; 157 __u64 trimmed; 158 }; 159 160 /* 161 * For CP/NAT/SIT/SSA readahead 162 */ 163 enum { 164 META_CP, 165 META_NAT, 166 META_SIT, 167 META_SSA, 168 META_POR, 169 }; 170 171 /* for the list of ino */ 172 enum { 173 ORPHAN_INO, /* for orphan ino list */ 174 APPEND_INO, /* for append ino list */ 175 UPDATE_INO, /* for update ino list */ 176 MAX_INO_ENTRY, /* max. list */ 177 }; 178 179 struct ino_entry { 180 struct list_head list; /* list head */ 181 nid_t ino; /* inode number */ 182 }; 183 184 /* for the list of inodes to be GCed */ 185 struct inode_entry { 186 struct list_head list; /* list head */ 187 struct inode *inode; /* vfs inode pointer */ 188 }; 189 190 /* for the bitmap indicate blocks to be discarded */ 191 struct discard_entry { 192 struct list_head list; /* list head */ 193 block_t start_blkaddr; /* start blockaddr of current segment */ 194 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 195 }; 196 197 /* max discard pend list number */ 198 #define MAX_PLIST_NUM 512 199 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 200 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 201 202 enum { 203 D_PREP, 204 D_SUBMIT, 205 D_DONE, 206 }; 207 208 struct discard_info { 209 block_t lstart; /* logical start address */ 210 block_t len; /* length */ 211 block_t start; /* actual start address in dev */ 212 }; 213 214 struct discard_cmd { 215 struct rb_node rb_node; /* rb node located in rb-tree */ 216 union { 217 struct { 218 block_t lstart; /* logical start address */ 219 block_t len; /* length */ 220 block_t start; /* actual start address in dev */ 221 }; 222 struct discard_info di; /* discard info */ 223 224 }; 225 struct list_head list; /* command list */ 226 struct completion wait; /* compleation */ 227 struct block_device *bdev; /* bdev */ 228 unsigned short ref; /* reference count */ 229 unsigned char state; /* state */ 230 int error; /* bio error */ 231 }; 232 233 struct discard_cmd_control { 234 struct task_struct *f2fs_issue_discard; /* discard thread */ 235 struct list_head entry_list; /* 4KB discard entry list */ 236 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 237 struct list_head wait_list; /* store on-flushing entries */ 238 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 239 struct mutex cmd_lock; 240 unsigned int nr_discards; /* # of discards in the list */ 241 unsigned int max_discards; /* max. discards to be issued */ 242 unsigned int undiscard_blks; /* # of undiscard blocks */ 243 atomic_t issued_discard; /* # of issued discard */ 244 atomic_t issing_discard; /* # of issing discard */ 245 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 246 struct rb_root root; /* root of discard rb-tree */ 247 }; 248 249 /* for the list of fsync inodes, used only during recovery */ 250 struct fsync_inode_entry { 251 struct list_head list; /* list head */ 252 struct inode *inode; /* vfs inode pointer */ 253 block_t blkaddr; /* block address locating the last fsync */ 254 block_t last_dentry; /* block address locating the last dentry */ 255 }; 256 257 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 258 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 259 260 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 261 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 262 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 263 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 264 265 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 266 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 267 268 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 269 { 270 int before = nats_in_cursum(journal); 271 272 journal->n_nats = cpu_to_le16(before + i); 273 return before; 274 } 275 276 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 277 { 278 int before = sits_in_cursum(journal); 279 280 journal->n_sits = cpu_to_le16(before + i); 281 return before; 282 } 283 284 static inline bool __has_cursum_space(struct f2fs_journal *journal, 285 int size, int type) 286 { 287 if (type == NAT_JOURNAL) 288 return size <= MAX_NAT_JENTRIES(journal); 289 return size <= MAX_SIT_JENTRIES(journal); 290 } 291 292 /* 293 * ioctl commands 294 */ 295 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 296 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 297 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 298 299 #define F2FS_IOCTL_MAGIC 0xf5 300 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 301 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 302 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 303 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 304 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 305 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 306 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 307 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 308 struct f2fs_defragment) 309 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 310 struct f2fs_move_range) 311 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 312 struct f2fs_flush_device) 313 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 314 struct f2fs_gc_range) 315 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 316 317 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 318 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 319 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 320 321 /* 322 * should be same as XFS_IOC_GOINGDOWN. 323 * Flags for going down operation used by FS_IOC_GOINGDOWN 324 */ 325 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 326 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 327 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 328 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 329 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 330 331 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 332 /* 333 * ioctl commands in 32 bit emulation 334 */ 335 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 336 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 337 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 338 #endif 339 340 struct f2fs_gc_range { 341 u32 sync; 342 u64 start; 343 u64 len; 344 }; 345 346 struct f2fs_defragment { 347 u64 start; 348 u64 len; 349 }; 350 351 struct f2fs_move_range { 352 u32 dst_fd; /* destination fd */ 353 u64 pos_in; /* start position in src_fd */ 354 u64 pos_out; /* start position in dst_fd */ 355 u64 len; /* size to move */ 356 }; 357 358 struct f2fs_flush_device { 359 u32 dev_num; /* device number to flush */ 360 u32 segments; /* # of segments to flush */ 361 }; 362 363 /* for inline stuff */ 364 #define DEF_INLINE_RESERVED_SIZE 1 365 static inline int get_extra_isize(struct inode *inode); 366 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 367 (CUR_ADDRS_PER_INODE(inode) - \ 368 DEF_INLINE_RESERVED_SIZE - \ 369 F2FS_INLINE_XATTR_ADDRS)) 370 371 /* for inline dir */ 372 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 373 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 374 BITS_PER_BYTE + 1)) 375 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 376 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 377 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 378 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 379 NR_INLINE_DENTRY(inode) + \ 380 INLINE_DENTRY_BITMAP_SIZE(inode))) 381 382 /* 383 * For INODE and NODE manager 384 */ 385 /* for directory operations */ 386 struct f2fs_dentry_ptr { 387 struct inode *inode; 388 void *bitmap; 389 struct f2fs_dir_entry *dentry; 390 __u8 (*filename)[F2FS_SLOT_LEN]; 391 int max; 392 int nr_bitmap; 393 }; 394 395 static inline void make_dentry_ptr_block(struct inode *inode, 396 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 397 { 398 d->inode = inode; 399 d->max = NR_DENTRY_IN_BLOCK; 400 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 401 d->bitmap = &t->dentry_bitmap; 402 d->dentry = t->dentry; 403 d->filename = t->filename; 404 } 405 406 static inline void make_dentry_ptr_inline(struct inode *inode, 407 struct f2fs_dentry_ptr *d, void *t) 408 { 409 int entry_cnt = NR_INLINE_DENTRY(inode); 410 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 411 int reserved_size = INLINE_RESERVED_SIZE(inode); 412 413 d->inode = inode; 414 d->max = entry_cnt; 415 d->nr_bitmap = bitmap_size; 416 d->bitmap = t; 417 d->dentry = t + bitmap_size + reserved_size; 418 d->filename = t + bitmap_size + reserved_size + 419 SIZE_OF_DIR_ENTRY * entry_cnt; 420 } 421 422 /* 423 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 424 * as its node offset to distinguish from index node blocks. 425 * But some bits are used to mark the node block. 426 */ 427 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 428 >> OFFSET_BIT_SHIFT) 429 enum { 430 ALLOC_NODE, /* allocate a new node page if needed */ 431 LOOKUP_NODE, /* look up a node without readahead */ 432 LOOKUP_NODE_RA, /* 433 * look up a node with readahead called 434 * by get_data_block. 435 */ 436 }; 437 438 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 439 440 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 441 442 /* vector size for gang look-up from extent cache that consists of radix tree */ 443 #define EXT_TREE_VEC_SIZE 64 444 445 /* for in-memory extent cache entry */ 446 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 447 448 /* number of extent info in extent cache we try to shrink */ 449 #define EXTENT_CACHE_SHRINK_NUMBER 128 450 451 struct rb_entry { 452 struct rb_node rb_node; /* rb node located in rb-tree */ 453 unsigned int ofs; /* start offset of the entry */ 454 unsigned int len; /* length of the entry */ 455 }; 456 457 struct extent_info { 458 unsigned int fofs; /* start offset in a file */ 459 unsigned int len; /* length of the extent */ 460 u32 blk; /* start block address of the extent */ 461 }; 462 463 struct extent_node { 464 struct rb_node rb_node; 465 union { 466 struct { 467 unsigned int fofs; 468 unsigned int len; 469 u32 blk; 470 }; 471 struct extent_info ei; /* extent info */ 472 473 }; 474 struct list_head list; /* node in global extent list of sbi */ 475 struct extent_tree *et; /* extent tree pointer */ 476 }; 477 478 struct extent_tree { 479 nid_t ino; /* inode number */ 480 struct rb_root root; /* root of extent info rb-tree */ 481 struct extent_node *cached_en; /* recently accessed extent node */ 482 struct extent_info largest; /* largested extent info */ 483 struct list_head list; /* to be used by sbi->zombie_list */ 484 rwlock_t lock; /* protect extent info rb-tree */ 485 atomic_t node_cnt; /* # of extent node in rb-tree*/ 486 }; 487 488 /* 489 * This structure is taken from ext4_map_blocks. 490 * 491 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 492 */ 493 #define F2FS_MAP_NEW (1 << BH_New) 494 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 495 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 496 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 497 F2FS_MAP_UNWRITTEN) 498 499 struct f2fs_map_blocks { 500 block_t m_pblk; 501 block_t m_lblk; 502 unsigned int m_len; 503 unsigned int m_flags; 504 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 505 }; 506 507 /* for flag in get_data_block */ 508 #define F2FS_GET_BLOCK_READ 0 509 #define F2FS_GET_BLOCK_DIO 1 510 #define F2FS_GET_BLOCK_FIEMAP 2 511 #define F2FS_GET_BLOCK_BMAP 3 512 #define F2FS_GET_BLOCK_PRE_DIO 4 513 #define F2FS_GET_BLOCK_PRE_AIO 5 514 515 /* 516 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 517 */ 518 #define FADVISE_COLD_BIT 0x01 519 #define FADVISE_LOST_PINO_BIT 0x02 520 #define FADVISE_ENCRYPT_BIT 0x04 521 #define FADVISE_ENC_NAME_BIT 0x08 522 #define FADVISE_KEEP_SIZE_BIT 0x10 523 524 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 525 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 526 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 527 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 528 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 529 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 530 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 531 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 532 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 533 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 534 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 535 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 536 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 537 538 #define DEF_DIR_LEVEL 0 539 540 struct f2fs_inode_info { 541 struct inode vfs_inode; /* serve a vfs inode */ 542 unsigned long i_flags; /* keep an inode flags for ioctl */ 543 unsigned char i_advise; /* use to give file attribute hints */ 544 unsigned char i_dir_level; /* use for dentry level for large dir */ 545 unsigned int i_current_depth; /* use only in directory structure */ 546 unsigned int i_pino; /* parent inode number */ 547 umode_t i_acl_mode; /* keep file acl mode temporarily */ 548 549 /* Use below internally in f2fs*/ 550 unsigned long flags; /* use to pass per-file flags */ 551 struct rw_semaphore i_sem; /* protect fi info */ 552 atomic_t dirty_pages; /* # of dirty pages */ 553 f2fs_hash_t chash; /* hash value of given file name */ 554 unsigned int clevel; /* maximum level of given file name */ 555 struct task_struct *task; /* lookup and create consistency */ 556 nid_t i_xattr_nid; /* node id that contains xattrs */ 557 loff_t last_disk_size; /* lastly written file size */ 558 559 #ifdef CONFIG_QUOTA 560 struct dquot *i_dquot[MAXQUOTAS]; 561 562 /* quota space reservation, managed internally by quota code */ 563 qsize_t i_reserved_quota; 564 #endif 565 struct list_head dirty_list; /* dirty list for dirs and files */ 566 struct list_head gdirty_list; /* linked in global dirty list */ 567 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 568 struct task_struct *inmem_task; /* store inmemory task */ 569 struct mutex inmem_lock; /* lock for inmemory pages */ 570 struct extent_tree *extent_tree; /* cached extent_tree entry */ 571 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 572 struct rw_semaphore i_mmap_sem; 573 574 int i_extra_isize; /* size of extra space located in i_addr */ 575 kprojid_t i_projid; /* id for project quota */ 576 }; 577 578 static inline void get_extent_info(struct extent_info *ext, 579 struct f2fs_extent *i_ext) 580 { 581 ext->fofs = le32_to_cpu(i_ext->fofs); 582 ext->blk = le32_to_cpu(i_ext->blk); 583 ext->len = le32_to_cpu(i_ext->len); 584 } 585 586 static inline void set_raw_extent(struct extent_info *ext, 587 struct f2fs_extent *i_ext) 588 { 589 i_ext->fofs = cpu_to_le32(ext->fofs); 590 i_ext->blk = cpu_to_le32(ext->blk); 591 i_ext->len = cpu_to_le32(ext->len); 592 } 593 594 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 595 u32 blk, unsigned int len) 596 { 597 ei->fofs = fofs; 598 ei->blk = blk; 599 ei->len = len; 600 } 601 602 static inline bool __is_discard_mergeable(struct discard_info *back, 603 struct discard_info *front) 604 { 605 return back->lstart + back->len == front->lstart; 606 } 607 608 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 609 struct discard_info *back) 610 { 611 return __is_discard_mergeable(back, cur); 612 } 613 614 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 615 struct discard_info *front) 616 { 617 return __is_discard_mergeable(cur, front); 618 } 619 620 static inline bool __is_extent_mergeable(struct extent_info *back, 621 struct extent_info *front) 622 { 623 return (back->fofs + back->len == front->fofs && 624 back->blk + back->len == front->blk); 625 } 626 627 static inline bool __is_back_mergeable(struct extent_info *cur, 628 struct extent_info *back) 629 { 630 return __is_extent_mergeable(back, cur); 631 } 632 633 static inline bool __is_front_mergeable(struct extent_info *cur, 634 struct extent_info *front) 635 { 636 return __is_extent_mergeable(cur, front); 637 } 638 639 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 640 static inline void __try_update_largest_extent(struct inode *inode, 641 struct extent_tree *et, struct extent_node *en) 642 { 643 if (en->ei.len > et->largest.len) { 644 et->largest = en->ei; 645 f2fs_mark_inode_dirty_sync(inode, true); 646 } 647 } 648 649 enum nid_list { 650 FREE_NID_LIST, 651 ALLOC_NID_LIST, 652 MAX_NID_LIST, 653 }; 654 655 struct f2fs_nm_info { 656 block_t nat_blkaddr; /* base disk address of NAT */ 657 nid_t max_nid; /* maximum possible node ids */ 658 nid_t available_nids; /* # of available node ids */ 659 nid_t next_scan_nid; /* the next nid to be scanned */ 660 unsigned int ram_thresh; /* control the memory footprint */ 661 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 662 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 663 664 /* NAT cache management */ 665 struct radix_tree_root nat_root;/* root of the nat entry cache */ 666 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 667 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 668 struct list_head nat_entries; /* cached nat entry list (clean) */ 669 unsigned int nat_cnt; /* the # of cached nat entries */ 670 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 671 unsigned int nat_blocks; /* # of nat blocks */ 672 673 /* free node ids management */ 674 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 675 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 676 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 677 spinlock_t nid_list_lock; /* protect nid lists ops */ 678 struct mutex build_lock; /* lock for build free nids */ 679 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 680 unsigned char *nat_block_bitmap; 681 unsigned short *free_nid_count; /* free nid count of NAT block */ 682 683 /* for checkpoint */ 684 char *nat_bitmap; /* NAT bitmap pointer */ 685 686 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 687 unsigned char *nat_bits; /* NAT bits blocks */ 688 unsigned char *full_nat_bits; /* full NAT pages */ 689 unsigned char *empty_nat_bits; /* empty NAT pages */ 690 #ifdef CONFIG_F2FS_CHECK_FS 691 char *nat_bitmap_mir; /* NAT bitmap mirror */ 692 #endif 693 int bitmap_size; /* bitmap size */ 694 }; 695 696 /* 697 * this structure is used as one of function parameters. 698 * all the information are dedicated to a given direct node block determined 699 * by the data offset in a file. 700 */ 701 struct dnode_of_data { 702 struct inode *inode; /* vfs inode pointer */ 703 struct page *inode_page; /* its inode page, NULL is possible */ 704 struct page *node_page; /* cached direct node page */ 705 nid_t nid; /* node id of the direct node block */ 706 unsigned int ofs_in_node; /* data offset in the node page */ 707 bool inode_page_locked; /* inode page is locked or not */ 708 bool node_changed; /* is node block changed */ 709 char cur_level; /* level of hole node page */ 710 char max_level; /* level of current page located */ 711 block_t data_blkaddr; /* block address of the node block */ 712 }; 713 714 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 715 struct page *ipage, struct page *npage, nid_t nid) 716 { 717 memset(dn, 0, sizeof(*dn)); 718 dn->inode = inode; 719 dn->inode_page = ipage; 720 dn->node_page = npage; 721 dn->nid = nid; 722 } 723 724 /* 725 * For SIT manager 726 * 727 * By default, there are 6 active log areas across the whole main area. 728 * When considering hot and cold data separation to reduce cleaning overhead, 729 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 730 * respectively. 731 * In the current design, you should not change the numbers intentionally. 732 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 733 * logs individually according to the underlying devices. (default: 6) 734 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 735 * data and 8 for node logs. 736 */ 737 #define NR_CURSEG_DATA_TYPE (3) 738 #define NR_CURSEG_NODE_TYPE (3) 739 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 740 741 enum { 742 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 743 CURSEG_WARM_DATA, /* data blocks */ 744 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 745 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 746 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 747 CURSEG_COLD_NODE, /* indirect node blocks */ 748 NO_CHECK_TYPE, 749 }; 750 751 struct flush_cmd { 752 struct completion wait; 753 struct llist_node llnode; 754 int ret; 755 }; 756 757 struct flush_cmd_control { 758 struct task_struct *f2fs_issue_flush; /* flush thread */ 759 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 760 atomic_t issued_flush; /* # of issued flushes */ 761 atomic_t issing_flush; /* # of issing flushes */ 762 struct llist_head issue_list; /* list for command issue */ 763 struct llist_node *dispatch_list; /* list for command dispatch */ 764 }; 765 766 struct f2fs_sm_info { 767 struct sit_info *sit_info; /* whole segment information */ 768 struct free_segmap_info *free_info; /* free segment information */ 769 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 770 struct curseg_info *curseg_array; /* active segment information */ 771 772 block_t seg0_blkaddr; /* block address of 0'th segment */ 773 block_t main_blkaddr; /* start block address of main area */ 774 block_t ssa_blkaddr; /* start block address of SSA area */ 775 776 unsigned int segment_count; /* total # of segments */ 777 unsigned int main_segments; /* # of segments in main area */ 778 unsigned int reserved_segments; /* # of reserved segments */ 779 unsigned int ovp_segments; /* # of overprovision segments */ 780 781 /* a threshold to reclaim prefree segments */ 782 unsigned int rec_prefree_segments; 783 784 /* for batched trimming */ 785 unsigned int trim_sections; /* # of sections to trim */ 786 787 struct list_head sit_entry_set; /* sit entry set list */ 788 789 unsigned int ipu_policy; /* in-place-update policy */ 790 unsigned int min_ipu_util; /* in-place-update threshold */ 791 unsigned int min_fsync_blocks; /* threshold for fsync */ 792 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 793 794 /* for flush command control */ 795 struct flush_cmd_control *fcc_info; 796 797 /* for discard command control */ 798 struct discard_cmd_control *dcc_info; 799 }; 800 801 /* 802 * For superblock 803 */ 804 /* 805 * COUNT_TYPE for monitoring 806 * 807 * f2fs monitors the number of several block types such as on-writeback, 808 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 809 */ 810 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 811 enum count_type { 812 F2FS_DIRTY_DENTS, 813 F2FS_DIRTY_DATA, 814 F2FS_DIRTY_NODES, 815 F2FS_DIRTY_META, 816 F2FS_INMEM_PAGES, 817 F2FS_DIRTY_IMETA, 818 F2FS_WB_CP_DATA, 819 F2FS_WB_DATA, 820 NR_COUNT_TYPE, 821 }; 822 823 /* 824 * The below are the page types of bios used in submit_bio(). 825 * The available types are: 826 * DATA User data pages. It operates as async mode. 827 * NODE Node pages. It operates as async mode. 828 * META FS metadata pages such as SIT, NAT, CP. 829 * NR_PAGE_TYPE The number of page types. 830 * META_FLUSH Make sure the previous pages are written 831 * with waiting the bio's completion 832 * ... Only can be used with META. 833 */ 834 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 835 enum page_type { 836 DATA, 837 NODE, 838 META, 839 NR_PAGE_TYPE, 840 META_FLUSH, 841 INMEM, /* the below types are used by tracepoints only. */ 842 INMEM_DROP, 843 INMEM_INVALIDATE, 844 INMEM_REVOKE, 845 IPU, 846 OPU, 847 }; 848 849 enum temp_type { 850 HOT = 0, /* must be zero for meta bio */ 851 WARM, 852 COLD, 853 NR_TEMP_TYPE, 854 }; 855 856 enum need_lock_type { 857 LOCK_REQ = 0, 858 LOCK_DONE, 859 LOCK_RETRY, 860 }; 861 862 struct f2fs_io_info { 863 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 864 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 865 enum temp_type temp; /* contains HOT/WARM/COLD */ 866 int op; /* contains REQ_OP_ */ 867 int op_flags; /* req_flag_bits */ 868 block_t new_blkaddr; /* new block address to be written */ 869 block_t old_blkaddr; /* old block address before Cow */ 870 struct page *page; /* page to be written */ 871 struct page *encrypted_page; /* encrypted page */ 872 struct list_head list; /* serialize IOs */ 873 bool submitted; /* indicate IO submission */ 874 int need_lock; /* indicate we need to lock cp_rwsem */ 875 bool in_list; /* indicate fio is in io_list */ 876 }; 877 878 #define is_read_io(rw) ((rw) == READ) 879 struct f2fs_bio_info { 880 struct f2fs_sb_info *sbi; /* f2fs superblock */ 881 struct bio *bio; /* bios to merge */ 882 sector_t last_block_in_bio; /* last block number */ 883 struct f2fs_io_info fio; /* store buffered io info. */ 884 struct rw_semaphore io_rwsem; /* blocking op for bio */ 885 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 886 struct list_head io_list; /* track fios */ 887 }; 888 889 #define FDEV(i) (sbi->devs[i]) 890 #define RDEV(i) (raw_super->devs[i]) 891 struct f2fs_dev_info { 892 struct block_device *bdev; 893 char path[MAX_PATH_LEN]; 894 unsigned int total_segments; 895 block_t start_blk; 896 block_t end_blk; 897 #ifdef CONFIG_BLK_DEV_ZONED 898 unsigned int nr_blkz; /* Total number of zones */ 899 u8 *blkz_type; /* Array of zones type */ 900 #endif 901 }; 902 903 enum inode_type { 904 DIR_INODE, /* for dirty dir inode */ 905 FILE_INODE, /* for dirty regular/symlink inode */ 906 DIRTY_META, /* for all dirtied inode metadata */ 907 NR_INODE_TYPE, 908 }; 909 910 /* for inner inode cache management */ 911 struct inode_management { 912 struct radix_tree_root ino_root; /* ino entry array */ 913 spinlock_t ino_lock; /* for ino entry lock */ 914 struct list_head ino_list; /* inode list head */ 915 unsigned long ino_num; /* number of entries */ 916 }; 917 918 /* For s_flag in struct f2fs_sb_info */ 919 enum { 920 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 921 SBI_IS_CLOSE, /* specify unmounting */ 922 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 923 SBI_POR_DOING, /* recovery is doing or not */ 924 SBI_NEED_SB_WRITE, /* need to recover superblock */ 925 SBI_NEED_CP, /* need to checkpoint */ 926 }; 927 928 enum { 929 CP_TIME, 930 REQ_TIME, 931 MAX_TIME, 932 }; 933 934 struct f2fs_sb_info { 935 struct super_block *sb; /* pointer to VFS super block */ 936 struct proc_dir_entry *s_proc; /* proc entry */ 937 struct f2fs_super_block *raw_super; /* raw super block pointer */ 938 int valid_super_block; /* valid super block no */ 939 unsigned long s_flag; /* flags for sbi */ 940 941 #ifdef CONFIG_BLK_DEV_ZONED 942 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 943 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 944 #endif 945 946 /* for node-related operations */ 947 struct f2fs_nm_info *nm_info; /* node manager */ 948 struct inode *node_inode; /* cache node blocks */ 949 950 /* for segment-related operations */ 951 struct f2fs_sm_info *sm_info; /* segment manager */ 952 953 /* for bio operations */ 954 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 955 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 956 /* bio ordering for NODE/DATA */ 957 int write_io_size_bits; /* Write IO size bits */ 958 mempool_t *write_io_dummy; /* Dummy pages */ 959 960 /* for checkpoint */ 961 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 962 int cur_cp_pack; /* remain current cp pack */ 963 spinlock_t cp_lock; /* for flag in ckpt */ 964 struct inode *meta_inode; /* cache meta blocks */ 965 struct mutex cp_mutex; /* checkpoint procedure lock */ 966 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 967 struct rw_semaphore node_write; /* locking node writes */ 968 struct rw_semaphore node_change; /* locking node change */ 969 wait_queue_head_t cp_wait; 970 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 971 long interval_time[MAX_TIME]; /* to store thresholds */ 972 973 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 974 975 /* for orphan inode, use 0'th array */ 976 unsigned int max_orphans; /* max orphan inodes */ 977 978 /* for inode management */ 979 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 980 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 981 982 /* for extent tree cache */ 983 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 984 struct mutex extent_tree_lock; /* locking extent radix tree */ 985 struct list_head extent_list; /* lru list for shrinker */ 986 spinlock_t extent_lock; /* locking extent lru list */ 987 atomic_t total_ext_tree; /* extent tree count */ 988 struct list_head zombie_list; /* extent zombie tree list */ 989 atomic_t total_zombie_tree; /* extent zombie tree count */ 990 atomic_t total_ext_node; /* extent info count */ 991 992 /* basic filesystem units */ 993 unsigned int log_sectors_per_block; /* log2 sectors per block */ 994 unsigned int log_blocksize; /* log2 block size */ 995 unsigned int blocksize; /* block size */ 996 unsigned int root_ino_num; /* root inode number*/ 997 unsigned int node_ino_num; /* node inode number*/ 998 unsigned int meta_ino_num; /* meta inode number*/ 999 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1000 unsigned int blocks_per_seg; /* blocks per segment */ 1001 unsigned int segs_per_sec; /* segments per section */ 1002 unsigned int secs_per_zone; /* sections per zone */ 1003 unsigned int total_sections; /* total section count */ 1004 unsigned int total_node_count; /* total node block count */ 1005 unsigned int total_valid_node_count; /* valid node block count */ 1006 loff_t max_file_blocks; /* max block index of file */ 1007 int active_logs; /* # of active logs */ 1008 int dir_level; /* directory level */ 1009 1010 block_t user_block_count; /* # of user blocks */ 1011 block_t total_valid_block_count; /* # of valid blocks */ 1012 block_t discard_blks; /* discard command candidats */ 1013 block_t last_valid_block_count; /* for recovery */ 1014 block_t reserved_blocks; /* configurable reserved blocks */ 1015 1016 u32 s_next_generation; /* for NFS support */ 1017 1018 /* # of pages, see count_type */ 1019 atomic_t nr_pages[NR_COUNT_TYPE]; 1020 /* # of allocated blocks */ 1021 struct percpu_counter alloc_valid_block_count; 1022 1023 /* writeback control */ 1024 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1025 1026 /* valid inode count */ 1027 struct percpu_counter total_valid_inode_count; 1028 1029 struct f2fs_mount_info mount_opt; /* mount options */ 1030 1031 /* for cleaning operations */ 1032 struct mutex gc_mutex; /* mutex for GC */ 1033 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1034 unsigned int cur_victim_sec; /* current victim section num */ 1035 1036 /* threshold for converting bg victims for fg */ 1037 u64 fggc_threshold; 1038 1039 /* maximum # of trials to find a victim segment for SSR and GC */ 1040 unsigned int max_victim_search; 1041 1042 /* 1043 * for stat information. 1044 * one is for the LFS mode, and the other is for the SSR mode. 1045 */ 1046 #ifdef CONFIG_F2FS_STAT_FS 1047 struct f2fs_stat_info *stat_info; /* FS status information */ 1048 unsigned int segment_count[2]; /* # of allocated segments */ 1049 unsigned int block_count[2]; /* # of allocated blocks */ 1050 atomic_t inplace_count; /* # of inplace update */ 1051 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1052 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1053 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1054 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1055 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1056 atomic_t inline_inode; /* # of inline_data inodes */ 1057 atomic_t inline_dir; /* # of inline_dentry inodes */ 1058 atomic_t aw_cnt; /* # of atomic writes */ 1059 atomic_t vw_cnt; /* # of volatile writes */ 1060 atomic_t max_aw_cnt; /* max # of atomic writes */ 1061 atomic_t max_vw_cnt; /* max # of volatile writes */ 1062 int bg_gc; /* background gc calls */ 1063 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1064 #endif 1065 spinlock_t stat_lock; /* lock for stat operations */ 1066 1067 /* For sysfs suppport */ 1068 struct kobject s_kobj; 1069 struct completion s_kobj_unregister; 1070 1071 /* For shrinker support */ 1072 struct list_head s_list; 1073 int s_ndevs; /* number of devices */ 1074 struct f2fs_dev_info *devs; /* for device list */ 1075 struct mutex umount_mutex; 1076 unsigned int shrinker_run_no; 1077 1078 /* For write statistics */ 1079 u64 sectors_written_start; 1080 u64 kbytes_written; 1081 1082 /* Reference to checksum algorithm driver via cryptoapi */ 1083 struct crypto_shash *s_chksum_driver; 1084 1085 /* For fault injection */ 1086 #ifdef CONFIG_F2FS_FAULT_INJECTION 1087 struct f2fs_fault_info fault_info; 1088 #endif 1089 }; 1090 1091 #ifdef CONFIG_F2FS_FAULT_INJECTION 1092 #define f2fs_show_injection_info(type) \ 1093 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1094 KERN_INFO, fault_name[type], \ 1095 __func__, __builtin_return_address(0)) 1096 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1097 { 1098 struct f2fs_fault_info *ffi = &sbi->fault_info; 1099 1100 if (!ffi->inject_rate) 1101 return false; 1102 1103 if (!IS_FAULT_SET(ffi, type)) 1104 return false; 1105 1106 atomic_inc(&ffi->inject_ops); 1107 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1108 atomic_set(&ffi->inject_ops, 0); 1109 return true; 1110 } 1111 return false; 1112 } 1113 #endif 1114 1115 /* For write statistics. Suppose sector size is 512 bytes, 1116 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1117 */ 1118 #define BD_PART_WRITTEN(s) \ 1119 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1120 (s)->sectors_written_start) >> 1) 1121 1122 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1123 { 1124 sbi->last_time[type] = jiffies; 1125 } 1126 1127 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1128 { 1129 struct timespec ts = {sbi->interval_time[type], 0}; 1130 unsigned long interval = timespec_to_jiffies(&ts); 1131 1132 return time_after(jiffies, sbi->last_time[type] + interval); 1133 } 1134 1135 static inline bool is_idle(struct f2fs_sb_info *sbi) 1136 { 1137 struct block_device *bdev = sbi->sb->s_bdev; 1138 struct request_queue *q = bdev_get_queue(bdev); 1139 struct request_list *rl = &q->root_rl; 1140 1141 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1142 return 0; 1143 1144 return f2fs_time_over(sbi, REQ_TIME); 1145 } 1146 1147 /* 1148 * Inline functions 1149 */ 1150 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1151 unsigned int length) 1152 { 1153 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1154 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1155 u32 retval; 1156 int err; 1157 1158 shash->tfm = sbi->s_chksum_driver; 1159 shash->flags = 0; 1160 *ctx = F2FS_SUPER_MAGIC; 1161 1162 err = crypto_shash_update(shash, address, length); 1163 BUG_ON(err); 1164 1165 retval = *ctx; 1166 barrier_data(ctx); 1167 return retval; 1168 } 1169 1170 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1171 void *buf, size_t buf_size) 1172 { 1173 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1174 } 1175 1176 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1177 { 1178 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1179 } 1180 1181 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1182 { 1183 return sb->s_fs_info; 1184 } 1185 1186 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1187 { 1188 return F2FS_SB(inode->i_sb); 1189 } 1190 1191 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1192 { 1193 return F2FS_I_SB(mapping->host); 1194 } 1195 1196 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1197 { 1198 return F2FS_M_SB(page->mapping); 1199 } 1200 1201 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1202 { 1203 return (struct f2fs_super_block *)(sbi->raw_super); 1204 } 1205 1206 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1207 { 1208 return (struct f2fs_checkpoint *)(sbi->ckpt); 1209 } 1210 1211 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1212 { 1213 return (struct f2fs_node *)page_address(page); 1214 } 1215 1216 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1217 { 1218 return &((struct f2fs_node *)page_address(page))->i; 1219 } 1220 1221 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1222 { 1223 return (struct f2fs_nm_info *)(sbi->nm_info); 1224 } 1225 1226 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1227 { 1228 return (struct f2fs_sm_info *)(sbi->sm_info); 1229 } 1230 1231 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1232 { 1233 return (struct sit_info *)(SM_I(sbi)->sit_info); 1234 } 1235 1236 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1237 { 1238 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1239 } 1240 1241 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1242 { 1243 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1244 } 1245 1246 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1247 { 1248 return sbi->meta_inode->i_mapping; 1249 } 1250 1251 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1252 { 1253 return sbi->node_inode->i_mapping; 1254 } 1255 1256 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1257 { 1258 return test_bit(type, &sbi->s_flag); 1259 } 1260 1261 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1262 { 1263 set_bit(type, &sbi->s_flag); 1264 } 1265 1266 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1267 { 1268 clear_bit(type, &sbi->s_flag); 1269 } 1270 1271 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1272 { 1273 return le64_to_cpu(cp->checkpoint_ver); 1274 } 1275 1276 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1277 { 1278 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1279 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1280 } 1281 1282 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1283 { 1284 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1285 1286 return ckpt_flags & f; 1287 } 1288 1289 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1290 { 1291 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1292 } 1293 1294 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1295 { 1296 unsigned int ckpt_flags; 1297 1298 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1299 ckpt_flags |= f; 1300 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1301 } 1302 1303 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1304 { 1305 unsigned long flags; 1306 1307 spin_lock_irqsave(&sbi->cp_lock, flags); 1308 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1309 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1310 } 1311 1312 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1313 { 1314 unsigned int ckpt_flags; 1315 1316 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1317 ckpt_flags &= (~f); 1318 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1319 } 1320 1321 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1322 { 1323 unsigned long flags; 1324 1325 spin_lock_irqsave(&sbi->cp_lock, flags); 1326 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1327 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1328 } 1329 1330 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1331 { 1332 unsigned long flags; 1333 1334 set_sbi_flag(sbi, SBI_NEED_FSCK); 1335 1336 if (lock) 1337 spin_lock_irqsave(&sbi->cp_lock, flags); 1338 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1339 kfree(NM_I(sbi)->nat_bits); 1340 NM_I(sbi)->nat_bits = NULL; 1341 if (lock) 1342 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1343 } 1344 1345 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1346 struct cp_control *cpc) 1347 { 1348 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1349 1350 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1351 } 1352 1353 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1354 { 1355 down_read(&sbi->cp_rwsem); 1356 } 1357 1358 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1359 { 1360 return down_read_trylock(&sbi->cp_rwsem); 1361 } 1362 1363 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1364 { 1365 up_read(&sbi->cp_rwsem); 1366 } 1367 1368 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1369 { 1370 down_write(&sbi->cp_rwsem); 1371 } 1372 1373 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1374 { 1375 up_write(&sbi->cp_rwsem); 1376 } 1377 1378 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1379 { 1380 int reason = CP_SYNC; 1381 1382 if (test_opt(sbi, FASTBOOT)) 1383 reason = CP_FASTBOOT; 1384 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1385 reason = CP_UMOUNT; 1386 return reason; 1387 } 1388 1389 static inline bool __remain_node_summaries(int reason) 1390 { 1391 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1392 } 1393 1394 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1395 { 1396 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1397 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1398 } 1399 1400 /* 1401 * Check whether the given nid is within node id range. 1402 */ 1403 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1404 { 1405 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1406 return -EINVAL; 1407 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1408 return -EINVAL; 1409 return 0; 1410 } 1411 1412 /* 1413 * Check whether the inode has blocks or not 1414 */ 1415 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1416 { 1417 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1418 1419 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1420 } 1421 1422 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1423 { 1424 return ofs == XATTR_NODE_OFFSET; 1425 } 1426 1427 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1428 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1429 struct inode *inode, blkcnt_t *count) 1430 { 1431 blkcnt_t diff = 0, release = 0; 1432 block_t avail_user_block_count; 1433 int ret; 1434 1435 ret = dquot_reserve_block(inode, *count); 1436 if (ret) 1437 return ret; 1438 1439 #ifdef CONFIG_F2FS_FAULT_INJECTION 1440 if (time_to_inject(sbi, FAULT_BLOCK)) { 1441 f2fs_show_injection_info(FAULT_BLOCK); 1442 release = *count; 1443 goto enospc; 1444 } 1445 #endif 1446 /* 1447 * let's increase this in prior to actual block count change in order 1448 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1449 */ 1450 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1451 1452 spin_lock(&sbi->stat_lock); 1453 sbi->total_valid_block_count += (block_t)(*count); 1454 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks; 1455 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1456 diff = sbi->total_valid_block_count - avail_user_block_count; 1457 *count -= diff; 1458 release = diff; 1459 sbi->total_valid_block_count = avail_user_block_count; 1460 if (!*count) { 1461 spin_unlock(&sbi->stat_lock); 1462 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1463 goto enospc; 1464 } 1465 } 1466 spin_unlock(&sbi->stat_lock); 1467 1468 if (release) 1469 dquot_release_reservation_block(inode, release); 1470 f2fs_i_blocks_write(inode, *count, true, true); 1471 return 0; 1472 1473 enospc: 1474 dquot_release_reservation_block(inode, release); 1475 return -ENOSPC; 1476 } 1477 1478 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1479 struct inode *inode, 1480 block_t count) 1481 { 1482 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1483 1484 spin_lock(&sbi->stat_lock); 1485 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1486 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1487 sbi->total_valid_block_count -= (block_t)count; 1488 spin_unlock(&sbi->stat_lock); 1489 f2fs_i_blocks_write(inode, count, false, true); 1490 } 1491 1492 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1493 { 1494 atomic_inc(&sbi->nr_pages[count_type]); 1495 1496 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1497 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1498 return; 1499 1500 set_sbi_flag(sbi, SBI_IS_DIRTY); 1501 } 1502 1503 static inline void inode_inc_dirty_pages(struct inode *inode) 1504 { 1505 atomic_inc(&F2FS_I(inode)->dirty_pages); 1506 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1507 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1508 } 1509 1510 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1511 { 1512 atomic_dec(&sbi->nr_pages[count_type]); 1513 } 1514 1515 static inline void inode_dec_dirty_pages(struct inode *inode) 1516 { 1517 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1518 !S_ISLNK(inode->i_mode)) 1519 return; 1520 1521 atomic_dec(&F2FS_I(inode)->dirty_pages); 1522 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1523 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1524 } 1525 1526 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1527 { 1528 return atomic_read(&sbi->nr_pages[count_type]); 1529 } 1530 1531 static inline int get_dirty_pages(struct inode *inode) 1532 { 1533 return atomic_read(&F2FS_I(inode)->dirty_pages); 1534 } 1535 1536 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1537 { 1538 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1539 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1540 sbi->log_blocks_per_seg; 1541 1542 return segs / sbi->segs_per_sec; 1543 } 1544 1545 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1546 { 1547 return sbi->total_valid_block_count; 1548 } 1549 1550 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1551 { 1552 return sbi->discard_blks; 1553 } 1554 1555 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1556 { 1557 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1558 1559 /* return NAT or SIT bitmap */ 1560 if (flag == NAT_BITMAP) 1561 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1562 else if (flag == SIT_BITMAP) 1563 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1564 1565 return 0; 1566 } 1567 1568 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1569 { 1570 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1571 } 1572 1573 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1574 { 1575 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1576 int offset; 1577 1578 if (__cp_payload(sbi) > 0) { 1579 if (flag == NAT_BITMAP) 1580 return &ckpt->sit_nat_version_bitmap; 1581 else 1582 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1583 } else { 1584 offset = (flag == NAT_BITMAP) ? 1585 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1586 return &ckpt->sit_nat_version_bitmap + offset; 1587 } 1588 } 1589 1590 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1591 { 1592 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1593 1594 if (sbi->cur_cp_pack == 2) 1595 start_addr += sbi->blocks_per_seg; 1596 return start_addr; 1597 } 1598 1599 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1600 { 1601 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1602 1603 if (sbi->cur_cp_pack == 1) 1604 start_addr += sbi->blocks_per_seg; 1605 return start_addr; 1606 } 1607 1608 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1609 { 1610 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1611 } 1612 1613 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1614 { 1615 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1616 } 1617 1618 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1619 struct inode *inode, bool is_inode) 1620 { 1621 block_t valid_block_count; 1622 unsigned int valid_node_count; 1623 bool quota = inode && !is_inode; 1624 1625 if (quota) { 1626 int ret = dquot_reserve_block(inode, 1); 1627 if (ret) 1628 return ret; 1629 } 1630 1631 spin_lock(&sbi->stat_lock); 1632 1633 valid_block_count = sbi->total_valid_block_count + 1; 1634 if (unlikely(valid_block_count + sbi->reserved_blocks > 1635 sbi->user_block_count)) { 1636 spin_unlock(&sbi->stat_lock); 1637 goto enospc; 1638 } 1639 1640 valid_node_count = sbi->total_valid_node_count + 1; 1641 if (unlikely(valid_node_count > sbi->total_node_count)) { 1642 spin_unlock(&sbi->stat_lock); 1643 goto enospc; 1644 } 1645 1646 sbi->total_valid_node_count++; 1647 sbi->total_valid_block_count++; 1648 spin_unlock(&sbi->stat_lock); 1649 1650 if (inode) { 1651 if (is_inode) 1652 f2fs_mark_inode_dirty_sync(inode, true); 1653 else 1654 f2fs_i_blocks_write(inode, 1, true, true); 1655 } 1656 1657 percpu_counter_inc(&sbi->alloc_valid_block_count); 1658 return 0; 1659 1660 enospc: 1661 if (quota) 1662 dquot_release_reservation_block(inode, 1); 1663 return -ENOSPC; 1664 } 1665 1666 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1667 struct inode *inode, bool is_inode) 1668 { 1669 spin_lock(&sbi->stat_lock); 1670 1671 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1672 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1673 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1674 1675 sbi->total_valid_node_count--; 1676 sbi->total_valid_block_count--; 1677 1678 spin_unlock(&sbi->stat_lock); 1679 1680 if (!is_inode) 1681 f2fs_i_blocks_write(inode, 1, false, true); 1682 } 1683 1684 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1685 { 1686 return sbi->total_valid_node_count; 1687 } 1688 1689 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1690 { 1691 percpu_counter_inc(&sbi->total_valid_inode_count); 1692 } 1693 1694 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1695 { 1696 percpu_counter_dec(&sbi->total_valid_inode_count); 1697 } 1698 1699 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1700 { 1701 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1702 } 1703 1704 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1705 pgoff_t index, bool for_write) 1706 { 1707 #ifdef CONFIG_F2FS_FAULT_INJECTION 1708 struct page *page = find_lock_page(mapping, index); 1709 1710 if (page) 1711 return page; 1712 1713 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1714 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1715 return NULL; 1716 } 1717 #endif 1718 if (!for_write) 1719 return grab_cache_page(mapping, index); 1720 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1721 } 1722 1723 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1724 { 1725 char *src_kaddr = kmap(src); 1726 char *dst_kaddr = kmap(dst); 1727 1728 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1729 kunmap(dst); 1730 kunmap(src); 1731 } 1732 1733 static inline void f2fs_put_page(struct page *page, int unlock) 1734 { 1735 if (!page) 1736 return; 1737 1738 if (unlock) { 1739 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1740 unlock_page(page); 1741 } 1742 put_page(page); 1743 } 1744 1745 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1746 { 1747 if (dn->node_page) 1748 f2fs_put_page(dn->node_page, 1); 1749 if (dn->inode_page && dn->node_page != dn->inode_page) 1750 f2fs_put_page(dn->inode_page, 0); 1751 dn->node_page = NULL; 1752 dn->inode_page = NULL; 1753 } 1754 1755 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1756 size_t size) 1757 { 1758 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1759 } 1760 1761 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1762 gfp_t flags) 1763 { 1764 void *entry; 1765 1766 entry = kmem_cache_alloc(cachep, flags); 1767 if (!entry) 1768 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1769 return entry; 1770 } 1771 1772 static inline struct bio *f2fs_bio_alloc(int npages) 1773 { 1774 struct bio *bio; 1775 1776 /* No failure on bio allocation */ 1777 bio = bio_alloc(GFP_NOIO, npages); 1778 if (!bio) 1779 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1780 return bio; 1781 } 1782 1783 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1784 unsigned long index, void *item) 1785 { 1786 while (radix_tree_insert(root, index, item)) 1787 cond_resched(); 1788 } 1789 1790 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1791 1792 static inline bool IS_INODE(struct page *page) 1793 { 1794 struct f2fs_node *p = F2FS_NODE(page); 1795 1796 return RAW_IS_INODE(p); 1797 } 1798 1799 static inline int offset_in_addr(struct f2fs_inode *i) 1800 { 1801 return (i->i_inline & F2FS_EXTRA_ATTR) ? 1802 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 1803 } 1804 1805 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1806 { 1807 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1808 } 1809 1810 static inline int f2fs_has_extra_attr(struct inode *inode); 1811 static inline block_t datablock_addr(struct inode *inode, 1812 struct page *node_page, unsigned int offset) 1813 { 1814 struct f2fs_node *raw_node; 1815 __le32 *addr_array; 1816 int base = 0; 1817 bool is_inode = IS_INODE(node_page); 1818 1819 raw_node = F2FS_NODE(node_page); 1820 1821 /* from GC path only */ 1822 if (!inode) { 1823 if (is_inode) 1824 base = offset_in_addr(&raw_node->i); 1825 } else if (f2fs_has_extra_attr(inode) && is_inode) { 1826 base = get_extra_isize(inode); 1827 } 1828 1829 addr_array = blkaddr_in_node(raw_node); 1830 return le32_to_cpu(addr_array[base + offset]); 1831 } 1832 1833 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1834 { 1835 int mask; 1836 1837 addr += (nr >> 3); 1838 mask = 1 << (7 - (nr & 0x07)); 1839 return mask & *addr; 1840 } 1841 1842 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1843 { 1844 int mask; 1845 1846 addr += (nr >> 3); 1847 mask = 1 << (7 - (nr & 0x07)); 1848 *addr |= mask; 1849 } 1850 1851 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1852 { 1853 int mask; 1854 1855 addr += (nr >> 3); 1856 mask = 1 << (7 - (nr & 0x07)); 1857 *addr &= ~mask; 1858 } 1859 1860 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1861 { 1862 int mask; 1863 int ret; 1864 1865 addr += (nr >> 3); 1866 mask = 1 << (7 - (nr & 0x07)); 1867 ret = mask & *addr; 1868 *addr |= mask; 1869 return ret; 1870 } 1871 1872 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1873 { 1874 int mask; 1875 int ret; 1876 1877 addr += (nr >> 3); 1878 mask = 1 << (7 - (nr & 0x07)); 1879 ret = mask & *addr; 1880 *addr &= ~mask; 1881 return ret; 1882 } 1883 1884 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1885 { 1886 int mask; 1887 1888 addr += (nr >> 3); 1889 mask = 1 << (7 - (nr & 0x07)); 1890 *addr ^= mask; 1891 } 1892 1893 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 1894 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 1895 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 1896 1897 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 1898 { 1899 if (S_ISDIR(mode)) 1900 return flags; 1901 else if (S_ISREG(mode)) 1902 return flags & F2FS_REG_FLMASK; 1903 else 1904 return flags & F2FS_OTHER_FLMASK; 1905 } 1906 1907 /* used for f2fs_inode_info->flags */ 1908 enum { 1909 FI_NEW_INODE, /* indicate newly allocated inode */ 1910 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1911 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1912 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1913 FI_INC_LINK, /* need to increment i_nlink */ 1914 FI_ACL_MODE, /* indicate acl mode */ 1915 FI_NO_ALLOC, /* should not allocate any blocks */ 1916 FI_FREE_NID, /* free allocated nide */ 1917 FI_NO_EXTENT, /* not to use the extent cache */ 1918 FI_INLINE_XATTR, /* used for inline xattr */ 1919 FI_INLINE_DATA, /* used for inline data*/ 1920 FI_INLINE_DENTRY, /* used for inline dentry */ 1921 FI_APPEND_WRITE, /* inode has appended data */ 1922 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1923 FI_NEED_IPU, /* used for ipu per file */ 1924 FI_ATOMIC_FILE, /* indicate atomic file */ 1925 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1926 FI_VOLATILE_FILE, /* indicate volatile file */ 1927 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1928 FI_DROP_CACHE, /* drop dirty page cache */ 1929 FI_DATA_EXIST, /* indicate data exists */ 1930 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1931 FI_DO_DEFRAG, /* indicate defragment is running */ 1932 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1933 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1934 FI_HOT_DATA, /* indicate file is hot */ 1935 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 1936 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 1937 }; 1938 1939 static inline void __mark_inode_dirty_flag(struct inode *inode, 1940 int flag, bool set) 1941 { 1942 switch (flag) { 1943 case FI_INLINE_XATTR: 1944 case FI_INLINE_DATA: 1945 case FI_INLINE_DENTRY: 1946 if (set) 1947 return; 1948 case FI_DATA_EXIST: 1949 case FI_INLINE_DOTS: 1950 f2fs_mark_inode_dirty_sync(inode, true); 1951 } 1952 } 1953 1954 static inline void set_inode_flag(struct inode *inode, int flag) 1955 { 1956 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1957 set_bit(flag, &F2FS_I(inode)->flags); 1958 __mark_inode_dirty_flag(inode, flag, true); 1959 } 1960 1961 static inline int is_inode_flag_set(struct inode *inode, int flag) 1962 { 1963 return test_bit(flag, &F2FS_I(inode)->flags); 1964 } 1965 1966 static inline void clear_inode_flag(struct inode *inode, int flag) 1967 { 1968 if (test_bit(flag, &F2FS_I(inode)->flags)) 1969 clear_bit(flag, &F2FS_I(inode)->flags); 1970 __mark_inode_dirty_flag(inode, flag, false); 1971 } 1972 1973 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1974 { 1975 F2FS_I(inode)->i_acl_mode = mode; 1976 set_inode_flag(inode, FI_ACL_MODE); 1977 f2fs_mark_inode_dirty_sync(inode, false); 1978 } 1979 1980 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1981 { 1982 if (inc) 1983 inc_nlink(inode); 1984 else 1985 drop_nlink(inode); 1986 f2fs_mark_inode_dirty_sync(inode, true); 1987 } 1988 1989 static inline void f2fs_i_blocks_write(struct inode *inode, 1990 block_t diff, bool add, bool claim) 1991 { 1992 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1993 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1994 1995 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 1996 if (add) { 1997 if (claim) 1998 dquot_claim_block(inode, diff); 1999 else 2000 dquot_alloc_block_nofail(inode, diff); 2001 } else { 2002 dquot_free_block(inode, diff); 2003 } 2004 2005 f2fs_mark_inode_dirty_sync(inode, true); 2006 if (clean || recover) 2007 set_inode_flag(inode, FI_AUTO_RECOVER); 2008 } 2009 2010 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2011 { 2012 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2013 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2014 2015 if (i_size_read(inode) == i_size) 2016 return; 2017 2018 i_size_write(inode, i_size); 2019 f2fs_mark_inode_dirty_sync(inode, true); 2020 if (clean || recover) 2021 set_inode_flag(inode, FI_AUTO_RECOVER); 2022 } 2023 2024 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2025 { 2026 F2FS_I(inode)->i_current_depth = depth; 2027 f2fs_mark_inode_dirty_sync(inode, true); 2028 } 2029 2030 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2031 { 2032 F2FS_I(inode)->i_xattr_nid = xnid; 2033 f2fs_mark_inode_dirty_sync(inode, true); 2034 } 2035 2036 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2037 { 2038 F2FS_I(inode)->i_pino = pino; 2039 f2fs_mark_inode_dirty_sync(inode, true); 2040 } 2041 2042 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2043 { 2044 struct f2fs_inode_info *fi = F2FS_I(inode); 2045 2046 if (ri->i_inline & F2FS_INLINE_XATTR) 2047 set_bit(FI_INLINE_XATTR, &fi->flags); 2048 if (ri->i_inline & F2FS_INLINE_DATA) 2049 set_bit(FI_INLINE_DATA, &fi->flags); 2050 if (ri->i_inline & F2FS_INLINE_DENTRY) 2051 set_bit(FI_INLINE_DENTRY, &fi->flags); 2052 if (ri->i_inline & F2FS_DATA_EXIST) 2053 set_bit(FI_DATA_EXIST, &fi->flags); 2054 if (ri->i_inline & F2FS_INLINE_DOTS) 2055 set_bit(FI_INLINE_DOTS, &fi->flags); 2056 if (ri->i_inline & F2FS_EXTRA_ATTR) 2057 set_bit(FI_EXTRA_ATTR, &fi->flags); 2058 } 2059 2060 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2061 { 2062 ri->i_inline = 0; 2063 2064 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2065 ri->i_inline |= F2FS_INLINE_XATTR; 2066 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2067 ri->i_inline |= F2FS_INLINE_DATA; 2068 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2069 ri->i_inline |= F2FS_INLINE_DENTRY; 2070 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2071 ri->i_inline |= F2FS_DATA_EXIST; 2072 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2073 ri->i_inline |= F2FS_INLINE_DOTS; 2074 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2075 ri->i_inline |= F2FS_EXTRA_ATTR; 2076 } 2077 2078 static inline int f2fs_has_extra_attr(struct inode *inode) 2079 { 2080 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2081 } 2082 2083 static inline int f2fs_has_inline_xattr(struct inode *inode) 2084 { 2085 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2086 } 2087 2088 static inline unsigned int addrs_per_inode(struct inode *inode) 2089 { 2090 if (f2fs_has_inline_xattr(inode)) 2091 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS; 2092 return CUR_ADDRS_PER_INODE(inode); 2093 } 2094 2095 static inline void *inline_xattr_addr(struct page *page) 2096 { 2097 struct f2fs_inode *ri = F2FS_INODE(page); 2098 2099 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2100 F2FS_INLINE_XATTR_ADDRS]); 2101 } 2102 2103 static inline int inline_xattr_size(struct inode *inode) 2104 { 2105 if (f2fs_has_inline_xattr(inode)) 2106 return F2FS_INLINE_XATTR_ADDRS << 2; 2107 else 2108 return 0; 2109 } 2110 2111 static inline int f2fs_has_inline_data(struct inode *inode) 2112 { 2113 return is_inode_flag_set(inode, FI_INLINE_DATA); 2114 } 2115 2116 static inline int f2fs_exist_data(struct inode *inode) 2117 { 2118 return is_inode_flag_set(inode, FI_DATA_EXIST); 2119 } 2120 2121 static inline int f2fs_has_inline_dots(struct inode *inode) 2122 { 2123 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2124 } 2125 2126 static inline bool f2fs_is_atomic_file(struct inode *inode) 2127 { 2128 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2129 } 2130 2131 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2132 { 2133 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2134 } 2135 2136 static inline bool f2fs_is_volatile_file(struct inode *inode) 2137 { 2138 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2139 } 2140 2141 static inline bool f2fs_is_first_block_written(struct inode *inode) 2142 { 2143 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2144 } 2145 2146 static inline bool f2fs_is_drop_cache(struct inode *inode) 2147 { 2148 return is_inode_flag_set(inode, FI_DROP_CACHE); 2149 } 2150 2151 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2152 { 2153 struct f2fs_inode *ri = F2FS_INODE(page); 2154 int extra_size = get_extra_isize(inode); 2155 2156 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2157 } 2158 2159 static inline int f2fs_has_inline_dentry(struct inode *inode) 2160 { 2161 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2162 } 2163 2164 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2165 { 2166 if (!f2fs_has_inline_dentry(dir)) 2167 kunmap(page); 2168 } 2169 2170 static inline int is_file(struct inode *inode, int type) 2171 { 2172 return F2FS_I(inode)->i_advise & type; 2173 } 2174 2175 static inline void set_file(struct inode *inode, int type) 2176 { 2177 F2FS_I(inode)->i_advise |= type; 2178 f2fs_mark_inode_dirty_sync(inode, true); 2179 } 2180 2181 static inline void clear_file(struct inode *inode, int type) 2182 { 2183 F2FS_I(inode)->i_advise &= ~type; 2184 f2fs_mark_inode_dirty_sync(inode, true); 2185 } 2186 2187 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2188 { 2189 if (dsync) { 2190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2191 bool ret; 2192 2193 spin_lock(&sbi->inode_lock[DIRTY_META]); 2194 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2195 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2196 return ret; 2197 } 2198 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2199 file_keep_isize(inode) || 2200 i_size_read(inode) & PAGE_MASK) 2201 return false; 2202 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 2203 } 2204 2205 static inline int f2fs_readonly(struct super_block *sb) 2206 { 2207 return sb->s_flags & MS_RDONLY; 2208 } 2209 2210 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2211 { 2212 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2213 } 2214 2215 static inline bool is_dot_dotdot(const struct qstr *str) 2216 { 2217 if (str->len == 1 && str->name[0] == '.') 2218 return true; 2219 2220 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2221 return true; 2222 2223 return false; 2224 } 2225 2226 static inline bool f2fs_may_extent_tree(struct inode *inode) 2227 { 2228 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2229 is_inode_flag_set(inode, FI_NO_EXTENT)) 2230 return false; 2231 2232 return S_ISREG(inode->i_mode); 2233 } 2234 2235 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2236 size_t size, gfp_t flags) 2237 { 2238 #ifdef CONFIG_F2FS_FAULT_INJECTION 2239 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2240 f2fs_show_injection_info(FAULT_KMALLOC); 2241 return NULL; 2242 } 2243 #endif 2244 return kmalloc(size, flags); 2245 } 2246 2247 static inline int get_extra_isize(struct inode *inode) 2248 { 2249 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2250 } 2251 2252 #define get_inode_mode(i) \ 2253 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2254 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2255 2256 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2257 (offsetof(struct f2fs_inode, i_extra_end) - \ 2258 offsetof(struct f2fs_inode, i_extra_isize)) \ 2259 2260 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2261 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2262 ((offsetof(typeof(*f2fs_inode), field) + \ 2263 sizeof((f2fs_inode)->field)) \ 2264 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2265 2266 /* 2267 * file.c 2268 */ 2269 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2270 void truncate_data_blocks(struct dnode_of_data *dn); 2271 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2272 int f2fs_truncate(struct inode *inode); 2273 int f2fs_getattr(const struct path *path, struct kstat *stat, 2274 u32 request_mask, unsigned int flags); 2275 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2276 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2277 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2278 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2279 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2280 2281 /* 2282 * inode.c 2283 */ 2284 void f2fs_set_inode_flags(struct inode *inode); 2285 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2286 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2287 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2288 int update_inode(struct inode *inode, struct page *node_page); 2289 int update_inode_page(struct inode *inode); 2290 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2291 void f2fs_evict_inode(struct inode *inode); 2292 void handle_failed_inode(struct inode *inode); 2293 2294 /* 2295 * namei.c 2296 */ 2297 struct dentry *f2fs_get_parent(struct dentry *child); 2298 2299 /* 2300 * dir.c 2301 */ 2302 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2303 unsigned char get_de_type(struct f2fs_dir_entry *de); 2304 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2305 f2fs_hash_t namehash, int *max_slots, 2306 struct f2fs_dentry_ptr *d); 2307 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2308 unsigned int start_pos, struct fscrypt_str *fstr); 2309 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2310 struct f2fs_dentry_ptr *d); 2311 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2312 const struct qstr *new_name, 2313 const struct qstr *orig_name, struct page *dpage); 2314 void update_parent_metadata(struct inode *dir, struct inode *inode, 2315 unsigned int current_depth); 2316 int room_for_filename(const void *bitmap, int slots, int max_slots); 2317 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2318 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2319 struct fscrypt_name *fname, struct page **res_page); 2320 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2321 const struct qstr *child, struct page **res_page); 2322 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2323 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2324 struct page **page); 2325 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2326 struct page *page, struct inode *inode); 2327 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2328 const struct qstr *name, f2fs_hash_t name_hash, 2329 unsigned int bit_pos); 2330 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2331 const struct qstr *orig_name, 2332 struct inode *inode, nid_t ino, umode_t mode); 2333 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2334 struct inode *inode, nid_t ino, umode_t mode); 2335 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2336 struct inode *inode, nid_t ino, umode_t mode); 2337 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2338 struct inode *dir, struct inode *inode); 2339 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2340 bool f2fs_empty_dir(struct inode *dir); 2341 2342 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2343 { 2344 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2345 inode, inode->i_ino, inode->i_mode); 2346 } 2347 2348 /* 2349 * super.c 2350 */ 2351 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2352 void f2fs_inode_synced(struct inode *inode); 2353 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2354 int f2fs_sync_fs(struct super_block *sb, int sync); 2355 extern __printf(3, 4) 2356 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2357 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2358 2359 /* 2360 * hash.c 2361 */ 2362 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2363 struct fscrypt_name *fname); 2364 2365 /* 2366 * node.c 2367 */ 2368 struct dnode_of_data; 2369 struct node_info; 2370 2371 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2372 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2373 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2374 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2375 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2376 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2377 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2378 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2379 int truncate_xattr_node(struct inode *inode, struct page *page); 2380 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2381 int remove_inode_page(struct inode *inode); 2382 struct page *new_inode_page(struct inode *inode); 2383 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2384 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2385 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2386 struct page *get_node_page_ra(struct page *parent, int start); 2387 void move_node_page(struct page *node_page, int gc_type); 2388 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2389 struct writeback_control *wbc, bool atomic); 2390 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2391 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2392 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2393 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2394 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2395 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2396 void recover_inline_xattr(struct inode *inode, struct page *page); 2397 int recover_xattr_data(struct inode *inode, struct page *page, 2398 block_t blkaddr); 2399 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2400 int restore_node_summary(struct f2fs_sb_info *sbi, 2401 unsigned int segno, struct f2fs_summary_block *sum); 2402 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2403 int build_node_manager(struct f2fs_sb_info *sbi); 2404 void destroy_node_manager(struct f2fs_sb_info *sbi); 2405 int __init create_node_manager_caches(void); 2406 void destroy_node_manager_caches(void); 2407 2408 /* 2409 * segment.c 2410 */ 2411 void register_inmem_page(struct inode *inode, struct page *page); 2412 void drop_inmem_pages(struct inode *inode); 2413 void drop_inmem_page(struct inode *inode, struct page *page); 2414 int commit_inmem_pages(struct inode *inode); 2415 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2416 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2417 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2418 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2419 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2420 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2421 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2422 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2423 void stop_discard_thread(struct f2fs_sb_info *sbi); 2424 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2425 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2426 void release_discard_addrs(struct f2fs_sb_info *sbi); 2427 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2428 void allocate_new_segments(struct f2fs_sb_info *sbi); 2429 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2430 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2431 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2432 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2433 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2434 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2435 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2436 int rewrite_data_page(struct f2fs_io_info *fio); 2437 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2438 block_t old_blkaddr, block_t new_blkaddr, 2439 bool recover_curseg, bool recover_newaddr); 2440 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2441 block_t old_addr, block_t new_addr, 2442 unsigned char version, bool recover_curseg, 2443 bool recover_newaddr); 2444 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2445 block_t old_blkaddr, block_t *new_blkaddr, 2446 struct f2fs_summary *sum, int type, 2447 struct f2fs_io_info *fio, bool add_list); 2448 void f2fs_wait_on_page_writeback(struct page *page, 2449 enum page_type type, bool ordered); 2450 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2451 block_t blkaddr); 2452 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2453 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2454 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2455 unsigned int val, int alloc); 2456 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2457 int build_segment_manager(struct f2fs_sb_info *sbi); 2458 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2459 int __init create_segment_manager_caches(void); 2460 void destroy_segment_manager_caches(void); 2461 2462 /* 2463 * checkpoint.c 2464 */ 2465 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2466 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2467 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2468 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2469 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2470 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2471 int type, bool sync); 2472 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2473 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2474 long nr_to_write); 2475 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2476 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2478 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2479 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2480 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2481 void release_orphan_inode(struct f2fs_sb_info *sbi); 2482 void add_orphan_inode(struct inode *inode); 2483 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2484 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2485 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2486 void update_dirty_page(struct inode *inode, struct page *page); 2487 void remove_dirty_inode(struct inode *inode); 2488 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2489 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2490 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2491 int __init create_checkpoint_caches(void); 2492 void destroy_checkpoint_caches(void); 2493 2494 /* 2495 * data.c 2496 */ 2497 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2498 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2499 struct inode *inode, nid_t ino, pgoff_t idx, 2500 enum page_type type); 2501 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2502 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2503 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2504 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2505 block_t blk_addr, struct bio *bio); 2506 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2507 void set_data_blkaddr(struct dnode_of_data *dn); 2508 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2509 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2510 int reserve_new_block(struct dnode_of_data *dn); 2511 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2512 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2513 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2514 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2515 int op_flags, bool for_write); 2516 struct page *find_data_page(struct inode *inode, pgoff_t index); 2517 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2518 bool for_write); 2519 struct page *get_new_data_page(struct inode *inode, 2520 struct page *ipage, pgoff_t index, bool new_i_size); 2521 int do_write_data_page(struct f2fs_io_info *fio); 2522 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2523 int create, int flag); 2524 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2525 u64 start, u64 len); 2526 void f2fs_set_page_dirty_nobuffers(struct page *page); 2527 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2528 unsigned int length); 2529 int f2fs_release_page(struct page *page, gfp_t wait); 2530 #ifdef CONFIG_MIGRATION 2531 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2532 struct page *page, enum migrate_mode mode); 2533 #endif 2534 2535 /* 2536 * gc.c 2537 */ 2538 int start_gc_thread(struct f2fs_sb_info *sbi); 2539 void stop_gc_thread(struct f2fs_sb_info *sbi); 2540 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2541 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2542 unsigned int segno); 2543 void build_gc_manager(struct f2fs_sb_info *sbi); 2544 2545 /* 2546 * recovery.c 2547 */ 2548 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2549 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2550 2551 /* 2552 * debug.c 2553 */ 2554 #ifdef CONFIG_F2FS_STAT_FS 2555 struct f2fs_stat_info { 2556 struct list_head stat_list; 2557 struct f2fs_sb_info *sbi; 2558 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2559 int main_area_segs, main_area_sections, main_area_zones; 2560 unsigned long long hit_largest, hit_cached, hit_rbtree; 2561 unsigned long long hit_total, total_ext; 2562 int ext_tree, zombie_tree, ext_node; 2563 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2564 int inmem_pages; 2565 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2566 int nats, dirty_nats, sits, dirty_sits; 2567 int free_nids, avail_nids, alloc_nids; 2568 int total_count, utilization; 2569 int bg_gc, nr_wb_cp_data, nr_wb_data; 2570 int nr_flushing, nr_flushed, nr_discarding, nr_discarded; 2571 int nr_discard_cmd; 2572 unsigned int undiscard_blks; 2573 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2574 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2575 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2576 unsigned int bimodal, avg_vblocks; 2577 int util_free, util_valid, util_invalid; 2578 int rsvd_segs, overp_segs; 2579 int dirty_count, node_pages, meta_pages; 2580 int prefree_count, call_count, cp_count, bg_cp_count; 2581 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2582 int bg_node_segs, bg_data_segs; 2583 int tot_blks, data_blks, node_blks; 2584 int bg_data_blks, bg_node_blks; 2585 int curseg[NR_CURSEG_TYPE]; 2586 int cursec[NR_CURSEG_TYPE]; 2587 int curzone[NR_CURSEG_TYPE]; 2588 2589 unsigned int segment_count[2]; 2590 unsigned int block_count[2]; 2591 unsigned int inplace_count; 2592 unsigned long long base_mem, cache_mem, page_mem; 2593 }; 2594 2595 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2596 { 2597 return (struct f2fs_stat_info *)sbi->stat_info; 2598 } 2599 2600 #define stat_inc_cp_count(si) ((si)->cp_count++) 2601 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2602 #define stat_inc_call_count(si) ((si)->call_count++) 2603 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2604 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2605 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2606 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2607 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2608 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2609 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2610 #define stat_inc_inline_xattr(inode) \ 2611 do { \ 2612 if (f2fs_has_inline_xattr(inode)) \ 2613 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2614 } while (0) 2615 #define stat_dec_inline_xattr(inode) \ 2616 do { \ 2617 if (f2fs_has_inline_xattr(inode)) \ 2618 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2619 } while (0) 2620 #define stat_inc_inline_inode(inode) \ 2621 do { \ 2622 if (f2fs_has_inline_data(inode)) \ 2623 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2624 } while (0) 2625 #define stat_dec_inline_inode(inode) \ 2626 do { \ 2627 if (f2fs_has_inline_data(inode)) \ 2628 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2629 } while (0) 2630 #define stat_inc_inline_dir(inode) \ 2631 do { \ 2632 if (f2fs_has_inline_dentry(inode)) \ 2633 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2634 } while (0) 2635 #define stat_dec_inline_dir(inode) \ 2636 do { \ 2637 if (f2fs_has_inline_dentry(inode)) \ 2638 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2639 } while (0) 2640 #define stat_inc_seg_type(sbi, curseg) \ 2641 ((sbi)->segment_count[(curseg)->alloc_type]++) 2642 #define stat_inc_block_count(sbi, curseg) \ 2643 ((sbi)->block_count[(curseg)->alloc_type]++) 2644 #define stat_inc_inplace_blocks(sbi) \ 2645 (atomic_inc(&(sbi)->inplace_count)) 2646 #define stat_inc_atomic_write(inode) \ 2647 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2648 #define stat_dec_atomic_write(inode) \ 2649 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2650 #define stat_update_max_atomic_write(inode) \ 2651 do { \ 2652 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2653 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2654 if (cur > max) \ 2655 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2656 } while (0) 2657 #define stat_inc_volatile_write(inode) \ 2658 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2659 #define stat_dec_volatile_write(inode) \ 2660 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2661 #define stat_update_max_volatile_write(inode) \ 2662 do { \ 2663 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2664 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2665 if (cur > max) \ 2666 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2667 } while (0) 2668 #define stat_inc_seg_count(sbi, type, gc_type) \ 2669 do { \ 2670 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2671 si->tot_segs++; \ 2672 if ((type) == SUM_TYPE_DATA) { \ 2673 si->data_segs++; \ 2674 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2675 } else { \ 2676 si->node_segs++; \ 2677 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2678 } \ 2679 } while (0) 2680 2681 #define stat_inc_tot_blk_count(si, blks) \ 2682 ((si)->tot_blks += (blks)) 2683 2684 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2685 do { \ 2686 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2687 stat_inc_tot_blk_count(si, blks); \ 2688 si->data_blks += (blks); \ 2689 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2690 } while (0) 2691 2692 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2693 do { \ 2694 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2695 stat_inc_tot_blk_count(si, blks); \ 2696 si->node_blks += (blks); \ 2697 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2698 } while (0) 2699 2700 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2701 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2702 int __init f2fs_create_root_stats(void); 2703 void f2fs_destroy_root_stats(void); 2704 #else 2705 #define stat_inc_cp_count(si) do { } while (0) 2706 #define stat_inc_bg_cp_count(si) do { } while (0) 2707 #define stat_inc_call_count(si) do { } while (0) 2708 #define stat_inc_bggc_count(si) do { } while (0) 2709 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2710 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2711 #define stat_inc_total_hit(sb) do { } while (0) 2712 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2713 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2714 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2715 #define stat_inc_inline_xattr(inode) do { } while (0) 2716 #define stat_dec_inline_xattr(inode) do { } while (0) 2717 #define stat_inc_inline_inode(inode) do { } while (0) 2718 #define stat_dec_inline_inode(inode) do { } while (0) 2719 #define stat_inc_inline_dir(inode) do { } while (0) 2720 #define stat_dec_inline_dir(inode) do { } while (0) 2721 #define stat_inc_atomic_write(inode) do { } while (0) 2722 #define stat_dec_atomic_write(inode) do { } while (0) 2723 #define stat_update_max_atomic_write(inode) do { } while (0) 2724 #define stat_inc_volatile_write(inode) do { } while (0) 2725 #define stat_dec_volatile_write(inode) do { } while (0) 2726 #define stat_update_max_volatile_write(inode) do { } while (0) 2727 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2728 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2729 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2730 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2731 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2732 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2733 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2734 2735 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2736 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2737 static inline int __init f2fs_create_root_stats(void) { return 0; } 2738 static inline void f2fs_destroy_root_stats(void) { } 2739 #endif 2740 2741 extern const struct file_operations f2fs_dir_operations; 2742 extern const struct file_operations f2fs_file_operations; 2743 extern const struct inode_operations f2fs_file_inode_operations; 2744 extern const struct address_space_operations f2fs_dblock_aops; 2745 extern const struct address_space_operations f2fs_node_aops; 2746 extern const struct address_space_operations f2fs_meta_aops; 2747 extern const struct inode_operations f2fs_dir_inode_operations; 2748 extern const struct inode_operations f2fs_symlink_inode_operations; 2749 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2750 extern const struct inode_operations f2fs_special_inode_operations; 2751 extern struct kmem_cache *inode_entry_slab; 2752 2753 /* 2754 * inline.c 2755 */ 2756 bool f2fs_may_inline_data(struct inode *inode); 2757 bool f2fs_may_inline_dentry(struct inode *inode); 2758 void read_inline_data(struct page *page, struct page *ipage); 2759 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2760 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2761 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2762 int f2fs_convert_inline_inode(struct inode *inode); 2763 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2764 bool recover_inline_data(struct inode *inode, struct page *npage); 2765 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2766 struct fscrypt_name *fname, struct page **res_page); 2767 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2768 struct page *ipage); 2769 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2770 const struct qstr *orig_name, 2771 struct inode *inode, nid_t ino, umode_t mode); 2772 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2773 struct inode *dir, struct inode *inode); 2774 bool f2fs_empty_inline_dir(struct inode *dir); 2775 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2776 struct fscrypt_str *fstr); 2777 int f2fs_inline_data_fiemap(struct inode *inode, 2778 struct fiemap_extent_info *fieinfo, 2779 __u64 start, __u64 len); 2780 2781 /* 2782 * shrinker.c 2783 */ 2784 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2785 struct shrink_control *sc); 2786 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2787 struct shrink_control *sc); 2788 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2789 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2790 2791 /* 2792 * extent_cache.c 2793 */ 2794 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 2795 struct rb_entry *cached_re, unsigned int ofs); 2796 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 2797 struct rb_root *root, struct rb_node **parent, 2798 unsigned int ofs); 2799 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 2800 struct rb_entry *cached_re, unsigned int ofs, 2801 struct rb_entry **prev_entry, struct rb_entry **next_entry, 2802 struct rb_node ***insert_p, struct rb_node **insert_parent, 2803 bool force); 2804 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 2805 struct rb_root *root); 2806 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2807 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2808 void f2fs_drop_extent_tree(struct inode *inode); 2809 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2810 void f2fs_destroy_extent_tree(struct inode *inode); 2811 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2812 struct extent_info *ei); 2813 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2814 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2815 pgoff_t fofs, block_t blkaddr, unsigned int len); 2816 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2817 int __init create_extent_cache(void); 2818 void destroy_extent_cache(void); 2819 2820 /* 2821 * sysfs.c 2822 */ 2823 int __init f2fs_init_sysfs(void); 2824 void f2fs_exit_sysfs(void); 2825 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 2826 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 2827 2828 /* 2829 * crypto support 2830 */ 2831 static inline bool f2fs_encrypted_inode(struct inode *inode) 2832 { 2833 return file_is_encrypt(inode); 2834 } 2835 2836 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2837 { 2838 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2839 file_set_encrypt(inode); 2840 #endif 2841 } 2842 2843 static inline bool f2fs_bio_encrypted(struct bio *bio) 2844 { 2845 return bio->bi_private != NULL; 2846 } 2847 2848 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2849 { 2850 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2851 } 2852 2853 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2854 { 2855 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2856 } 2857 2858 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 2859 { 2860 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 2861 } 2862 2863 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 2864 { 2865 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 2866 } 2867 2868 #ifdef CONFIG_BLK_DEV_ZONED 2869 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2870 struct block_device *bdev, block_t blkaddr) 2871 { 2872 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2873 int i; 2874 2875 for (i = 0; i < sbi->s_ndevs; i++) 2876 if (FDEV(i).bdev == bdev) 2877 return FDEV(i).blkz_type[zno]; 2878 return -EINVAL; 2879 } 2880 #endif 2881 2882 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2883 { 2884 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2885 2886 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2887 } 2888 2889 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2890 { 2891 clear_opt(sbi, ADAPTIVE); 2892 clear_opt(sbi, LFS); 2893 2894 switch (mt) { 2895 case F2FS_MOUNT_ADAPTIVE: 2896 set_opt(sbi, ADAPTIVE); 2897 break; 2898 case F2FS_MOUNT_LFS: 2899 set_opt(sbi, LFS); 2900 break; 2901 } 2902 } 2903 2904 static inline bool f2fs_may_encrypt(struct inode *inode) 2905 { 2906 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2907 umode_t mode = inode->i_mode; 2908 2909 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2910 #else 2911 return 0; 2912 #endif 2913 } 2914 2915 #endif 2916