1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 79 /* maximum retry count for injected failure */ 80 #define DEFAULT_FAILURE_RETRY_COUNT 8 81 #else 82 #define DEFAULT_FAILURE_RETRY_COUNT 1 83 #endif 84 85 /* 86 * For mount options 87 */ 88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 89 #define F2FS_MOUNT_DISCARD 0x00000002 90 #define F2FS_MOUNT_NOHEAP 0x00000004 91 #define F2FS_MOUNT_XATTR_USER 0x00000008 92 #define F2FS_MOUNT_POSIX_ACL 0x00000010 93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 94 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 95 #define F2FS_MOUNT_INLINE_DATA 0x00000080 96 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 97 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 98 #define F2FS_MOUNT_NOBARRIER 0x00000400 99 #define F2FS_MOUNT_FASTBOOT 0x00000800 100 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 101 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 102 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 103 #define F2FS_MOUNT_USRQUOTA 0x00008000 104 #define F2FS_MOUNT_GRPQUOTA 0x00010000 105 #define F2FS_MOUNT_PRJQUOTA 0x00020000 106 #define F2FS_MOUNT_QUOTA 0x00040000 107 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 108 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 109 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 110 #define F2FS_MOUNT_NORECOVERY 0x00400000 111 #define F2FS_MOUNT_ATGC 0x00800000 112 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 113 #define F2FS_MOUNT_GC_MERGE 0x02000000 114 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 115 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 116 117 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 118 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 119 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 120 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 121 122 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 123 typecheck(unsigned long long, b) && \ 124 ((long long)((a) - (b)) > 0)) 125 126 typedef u32 block_t; /* 127 * should not change u32, since it is the on-disk block 128 * address format, __le32. 129 */ 130 typedef u32 nid_t; 131 132 #define COMPRESS_EXT_NUM 16 133 134 /* 135 * An implementation of an rwsem that is explicitly unfair to readers. This 136 * prevents priority inversion when a low-priority reader acquires the read lock 137 * while sleeping on the write lock but the write lock is needed by 138 * higher-priority clients. 139 */ 140 141 struct f2fs_rwsem { 142 struct rw_semaphore internal_rwsem; 143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 144 wait_queue_head_t read_waiters; 145 #endif 146 }; 147 148 struct f2fs_mount_info { 149 unsigned int opt; 150 block_t root_reserved_blocks; /* root reserved blocks */ 151 kuid_t s_resuid; /* reserved blocks for uid */ 152 kgid_t s_resgid; /* reserved blocks for gid */ 153 int active_logs; /* # of active logs */ 154 int inline_xattr_size; /* inline xattr size */ 155 #ifdef CONFIG_F2FS_FAULT_INJECTION 156 struct f2fs_fault_info fault_info; /* For fault injection */ 157 #endif 158 #ifdef CONFIG_QUOTA 159 /* Names of quota files with journalled quota */ 160 char *s_qf_names[MAXQUOTAS]; 161 int s_jquota_fmt; /* Format of quota to use */ 162 #endif 163 /* For which write hints are passed down to block layer */ 164 int alloc_mode; /* segment allocation policy */ 165 int fsync_mode; /* fsync policy */ 166 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 167 int bggc_mode; /* bggc mode: off, on or sync */ 168 int memory_mode; /* memory mode */ 169 int errors; /* errors parameter */ 170 int discard_unit; /* 171 * discard command's offset/size should 172 * be aligned to this unit: block, 173 * segment or section 174 */ 175 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 176 block_t unusable_cap_perc; /* percentage for cap */ 177 block_t unusable_cap; /* Amount of space allowed to be 178 * unusable when disabling checkpoint 179 */ 180 181 /* For compression */ 182 unsigned char compress_algorithm; /* algorithm type */ 183 unsigned char compress_log_size; /* cluster log size */ 184 unsigned char compress_level; /* compress level */ 185 bool compress_chksum; /* compressed data chksum */ 186 unsigned char compress_ext_cnt; /* extension count */ 187 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 188 int compress_mode; /* compression mode */ 189 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 190 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 191 }; 192 193 #define F2FS_FEATURE_ENCRYPT 0x00000001 194 #define F2FS_FEATURE_BLKZONED 0x00000002 195 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 196 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 197 #define F2FS_FEATURE_PRJQUOTA 0x00000010 198 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 200 #define F2FS_FEATURE_QUOTA_INO 0x00000080 201 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 202 #define F2FS_FEATURE_LOST_FOUND 0x00000200 203 #define F2FS_FEATURE_VERITY 0x00000400 204 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 205 #define F2FS_FEATURE_CASEFOLD 0x00001000 206 #define F2FS_FEATURE_COMPRESSION 0x00002000 207 #define F2FS_FEATURE_RO 0x00004000 208 209 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 210 ((raw_super->feature & cpu_to_le32(mask)) != 0) 211 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 212 213 /* 214 * Default values for user and/or group using reserved blocks 215 */ 216 #define F2FS_DEF_RESUID 0 217 #define F2FS_DEF_RESGID 0 218 219 /* 220 * For checkpoint manager 221 */ 222 enum { 223 NAT_BITMAP, 224 SIT_BITMAP 225 }; 226 227 #define CP_UMOUNT 0x00000001 228 #define CP_FASTBOOT 0x00000002 229 #define CP_SYNC 0x00000004 230 #define CP_RECOVERY 0x00000008 231 #define CP_DISCARD 0x00000010 232 #define CP_TRIMMED 0x00000020 233 #define CP_PAUSE 0x00000040 234 #define CP_RESIZE 0x00000080 235 236 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 237 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 238 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 239 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 240 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 241 #define DEF_CP_INTERVAL 60 /* 60 secs */ 242 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 243 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 244 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 245 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 246 247 struct cp_control { 248 int reason; 249 __u64 trim_start; 250 __u64 trim_end; 251 __u64 trim_minlen; 252 }; 253 254 /* 255 * indicate meta/data type 256 */ 257 enum { 258 META_CP, 259 META_NAT, 260 META_SIT, 261 META_SSA, 262 META_MAX, 263 META_POR, 264 DATA_GENERIC, /* check range only */ 265 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 266 DATA_GENERIC_ENHANCE_READ, /* 267 * strong check on range and segment 268 * bitmap but no warning due to race 269 * condition of read on truncated area 270 * by extent_cache 271 */ 272 DATA_GENERIC_ENHANCE_UPDATE, /* 273 * strong check on range and segment 274 * bitmap for update case 275 */ 276 META_GENERIC, 277 }; 278 279 /* for the list of ino */ 280 enum { 281 ORPHAN_INO, /* for orphan ino list */ 282 APPEND_INO, /* for append ino list */ 283 UPDATE_INO, /* for update ino list */ 284 TRANS_DIR_INO, /* for transactions dir ino list */ 285 FLUSH_INO, /* for multiple device flushing */ 286 MAX_INO_ENTRY, /* max. list */ 287 }; 288 289 struct ino_entry { 290 struct list_head list; /* list head */ 291 nid_t ino; /* inode number */ 292 unsigned int dirty_device; /* dirty device bitmap */ 293 }; 294 295 /* for the list of inodes to be GCed */ 296 struct inode_entry { 297 struct list_head list; /* list head */ 298 struct inode *inode; /* vfs inode pointer */ 299 }; 300 301 struct fsync_node_entry { 302 struct list_head list; /* list head */ 303 struct page *page; /* warm node page pointer */ 304 unsigned int seq_id; /* sequence id */ 305 }; 306 307 struct ckpt_req { 308 struct completion wait; /* completion for checkpoint done */ 309 struct llist_node llnode; /* llist_node to be linked in wait queue */ 310 int ret; /* return code of checkpoint */ 311 ktime_t queue_time; /* request queued time */ 312 }; 313 314 struct ckpt_req_control { 315 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 316 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 317 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 318 atomic_t issued_ckpt; /* # of actually issued ckpts */ 319 atomic_t total_ckpt; /* # of total ckpts */ 320 atomic_t queued_ckpt; /* # of queued ckpts */ 321 struct llist_head issue_list; /* list for command issue */ 322 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 323 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 324 unsigned int peak_time; /* peak wait time in msec until now */ 325 }; 326 327 /* for the bitmap indicate blocks to be discarded */ 328 struct discard_entry { 329 struct list_head list; /* list head */ 330 block_t start_blkaddr; /* start blockaddr of current segment */ 331 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 332 }; 333 334 /* minimum discard granularity, unit: block count */ 335 #define MIN_DISCARD_GRANULARITY 1 336 /* default discard granularity of inner discard thread, unit: block count */ 337 #define DEFAULT_DISCARD_GRANULARITY 16 338 /* default maximum discard granularity of ordered discard, unit: block count */ 339 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 340 341 /* max discard pend list number */ 342 #define MAX_PLIST_NUM 512 343 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 344 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 345 346 enum { 347 D_PREP, /* initial */ 348 D_PARTIAL, /* partially submitted */ 349 D_SUBMIT, /* all submitted */ 350 D_DONE, /* finished */ 351 }; 352 353 struct discard_info { 354 block_t lstart; /* logical start address */ 355 block_t len; /* length */ 356 block_t start; /* actual start address in dev */ 357 }; 358 359 struct discard_cmd { 360 struct rb_node rb_node; /* rb node located in rb-tree */ 361 struct discard_info di; /* discard info */ 362 struct list_head list; /* command list */ 363 struct completion wait; /* compleation */ 364 struct block_device *bdev; /* bdev */ 365 unsigned short ref; /* reference count */ 366 unsigned char state; /* state */ 367 unsigned char queued; /* queued discard */ 368 int error; /* bio error */ 369 spinlock_t lock; /* for state/bio_ref updating */ 370 unsigned short bio_ref; /* bio reference count */ 371 }; 372 373 enum { 374 DPOLICY_BG, 375 DPOLICY_FORCE, 376 DPOLICY_FSTRIM, 377 DPOLICY_UMOUNT, 378 MAX_DPOLICY, 379 }; 380 381 struct discard_policy { 382 int type; /* type of discard */ 383 unsigned int min_interval; /* used for candidates exist */ 384 unsigned int mid_interval; /* used for device busy */ 385 unsigned int max_interval; /* used for candidates not exist */ 386 unsigned int max_requests; /* # of discards issued per round */ 387 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 388 bool io_aware; /* issue discard in idle time */ 389 bool sync; /* submit discard with REQ_SYNC flag */ 390 bool ordered; /* issue discard by lba order */ 391 bool timeout; /* discard timeout for put_super */ 392 unsigned int granularity; /* discard granularity */ 393 }; 394 395 struct discard_cmd_control { 396 struct task_struct *f2fs_issue_discard; /* discard thread */ 397 struct list_head entry_list; /* 4KB discard entry list */ 398 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 399 struct list_head wait_list; /* store on-flushing entries */ 400 struct list_head fstrim_list; /* in-flight discard from fstrim */ 401 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 402 struct mutex cmd_lock; 403 unsigned int nr_discards; /* # of discards in the list */ 404 unsigned int max_discards; /* max. discards to be issued */ 405 unsigned int max_discard_request; /* max. discard request per round */ 406 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 407 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 408 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 409 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 410 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 411 unsigned int discard_granularity; /* discard granularity */ 412 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 413 unsigned int undiscard_blks; /* # of undiscard blocks */ 414 unsigned int next_pos; /* next discard position */ 415 atomic_t issued_discard; /* # of issued discard */ 416 atomic_t queued_discard; /* # of queued discard */ 417 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 418 struct rb_root_cached root; /* root of discard rb-tree */ 419 bool rbtree_check; /* config for consistence check */ 420 bool discard_wake; /* to wake up discard thread */ 421 }; 422 423 /* for the list of fsync inodes, used only during recovery */ 424 struct fsync_inode_entry { 425 struct list_head list; /* list head */ 426 struct inode *inode; /* vfs inode pointer */ 427 block_t blkaddr; /* block address locating the last fsync */ 428 block_t last_dentry; /* block address locating the last dentry */ 429 }; 430 431 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 432 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 433 434 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 435 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 436 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 437 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 438 439 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 440 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 441 442 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 443 { 444 int before = nats_in_cursum(journal); 445 446 journal->n_nats = cpu_to_le16(before + i); 447 return before; 448 } 449 450 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 451 { 452 int before = sits_in_cursum(journal); 453 454 journal->n_sits = cpu_to_le16(before + i); 455 return before; 456 } 457 458 static inline bool __has_cursum_space(struct f2fs_journal *journal, 459 int size, int type) 460 { 461 if (type == NAT_JOURNAL) 462 return size <= MAX_NAT_JENTRIES(journal); 463 return size <= MAX_SIT_JENTRIES(journal); 464 } 465 466 /* for inline stuff */ 467 #define DEF_INLINE_RESERVED_SIZE 1 468 static inline int get_extra_isize(struct inode *inode); 469 static inline int get_inline_xattr_addrs(struct inode *inode); 470 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 471 (CUR_ADDRS_PER_INODE(inode) - \ 472 get_inline_xattr_addrs(inode) - \ 473 DEF_INLINE_RESERVED_SIZE)) 474 475 /* for inline dir */ 476 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 477 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 478 BITS_PER_BYTE + 1)) 479 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 480 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 481 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 482 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 483 NR_INLINE_DENTRY(inode) + \ 484 INLINE_DENTRY_BITMAP_SIZE(inode))) 485 486 /* 487 * For INODE and NODE manager 488 */ 489 /* for directory operations */ 490 491 struct f2fs_filename { 492 /* 493 * The filename the user specified. This is NULL for some 494 * filesystem-internal operations, e.g. converting an inline directory 495 * to a non-inline one, or roll-forward recovering an encrypted dentry. 496 */ 497 const struct qstr *usr_fname; 498 499 /* 500 * The on-disk filename. For encrypted directories, this is encrypted. 501 * This may be NULL for lookups in an encrypted dir without the key. 502 */ 503 struct fscrypt_str disk_name; 504 505 /* The dirhash of this filename */ 506 f2fs_hash_t hash; 507 508 #ifdef CONFIG_FS_ENCRYPTION 509 /* 510 * For lookups in encrypted directories: either the buffer backing 511 * disk_name, or a buffer that holds the decoded no-key name. 512 */ 513 struct fscrypt_str crypto_buf; 514 #endif 515 #if IS_ENABLED(CONFIG_UNICODE) 516 /* 517 * For casefolded directories: the casefolded name, but it's left NULL 518 * if the original name is not valid Unicode, if the original name is 519 * "." or "..", if the directory is both casefolded and encrypted and 520 * its encryption key is unavailable, or if the filesystem is doing an 521 * internal operation where usr_fname is also NULL. In all these cases 522 * we fall back to treating the name as an opaque byte sequence. 523 */ 524 struct fscrypt_str cf_name; 525 #endif 526 }; 527 528 struct f2fs_dentry_ptr { 529 struct inode *inode; 530 void *bitmap; 531 struct f2fs_dir_entry *dentry; 532 __u8 (*filename)[F2FS_SLOT_LEN]; 533 int max; 534 int nr_bitmap; 535 }; 536 537 static inline void make_dentry_ptr_block(struct inode *inode, 538 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 539 { 540 d->inode = inode; 541 d->max = NR_DENTRY_IN_BLOCK; 542 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 543 d->bitmap = t->dentry_bitmap; 544 d->dentry = t->dentry; 545 d->filename = t->filename; 546 } 547 548 static inline void make_dentry_ptr_inline(struct inode *inode, 549 struct f2fs_dentry_ptr *d, void *t) 550 { 551 int entry_cnt = NR_INLINE_DENTRY(inode); 552 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 553 int reserved_size = INLINE_RESERVED_SIZE(inode); 554 555 d->inode = inode; 556 d->max = entry_cnt; 557 d->nr_bitmap = bitmap_size; 558 d->bitmap = t; 559 d->dentry = t + bitmap_size + reserved_size; 560 d->filename = t + bitmap_size + reserved_size + 561 SIZE_OF_DIR_ENTRY * entry_cnt; 562 } 563 564 /* 565 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 566 * as its node offset to distinguish from index node blocks. 567 * But some bits are used to mark the node block. 568 */ 569 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 570 >> OFFSET_BIT_SHIFT) 571 enum { 572 ALLOC_NODE, /* allocate a new node page if needed */ 573 LOOKUP_NODE, /* look up a node without readahead */ 574 LOOKUP_NODE_RA, /* 575 * look up a node with readahead called 576 * by get_data_block. 577 */ 578 }; 579 580 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 581 582 /* congestion wait timeout value, default: 20ms */ 583 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 584 585 /* maximum retry quota flush count */ 586 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 587 588 /* maximum retry of EIO'ed page */ 589 #define MAX_RETRY_PAGE_EIO 100 590 591 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 592 593 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 594 595 /* dirty segments threshold for triggering CP */ 596 #define DEFAULT_DIRTY_THRESHOLD 4 597 598 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 599 #define RECOVERY_MIN_RA_BLOCKS 1 600 601 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 602 603 /* for in-memory extent cache entry */ 604 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 605 606 /* number of extent info in extent cache we try to shrink */ 607 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 608 609 /* number of age extent info in extent cache we try to shrink */ 610 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 611 #define LAST_AGE_WEIGHT 30 612 #define SAME_AGE_REGION 1024 613 614 /* 615 * Define data block with age less than 1GB as hot data 616 * define data block with age less than 10GB but more than 1GB as warm data 617 */ 618 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 619 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 620 621 /* extent cache type */ 622 enum extent_type { 623 EX_READ, 624 EX_BLOCK_AGE, 625 NR_EXTENT_CACHES, 626 }; 627 628 struct extent_info { 629 unsigned int fofs; /* start offset in a file */ 630 unsigned int len; /* length of the extent */ 631 union { 632 /* read extent_cache */ 633 struct { 634 /* start block address of the extent */ 635 block_t blk; 636 #ifdef CONFIG_F2FS_FS_COMPRESSION 637 /* physical extent length of compressed blocks */ 638 unsigned int c_len; 639 #endif 640 }; 641 /* block age extent_cache */ 642 struct { 643 /* block age of the extent */ 644 unsigned long long age; 645 /* last total blocks allocated */ 646 unsigned long long last_blocks; 647 }; 648 }; 649 }; 650 651 struct extent_node { 652 struct rb_node rb_node; /* rb node located in rb-tree */ 653 struct extent_info ei; /* extent info */ 654 struct list_head list; /* node in global extent list of sbi */ 655 struct extent_tree *et; /* extent tree pointer */ 656 }; 657 658 struct extent_tree { 659 nid_t ino; /* inode number */ 660 enum extent_type type; /* keep the extent tree type */ 661 struct rb_root_cached root; /* root of extent info rb-tree */ 662 struct extent_node *cached_en; /* recently accessed extent node */ 663 struct list_head list; /* to be used by sbi->zombie_list */ 664 rwlock_t lock; /* protect extent info rb-tree */ 665 atomic_t node_cnt; /* # of extent node in rb-tree*/ 666 bool largest_updated; /* largest extent updated */ 667 struct extent_info largest; /* largest cached extent for EX_READ */ 668 }; 669 670 struct extent_tree_info { 671 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 672 struct mutex extent_tree_lock; /* locking extent radix tree */ 673 struct list_head extent_list; /* lru list for shrinker */ 674 spinlock_t extent_lock; /* locking extent lru list */ 675 atomic_t total_ext_tree; /* extent tree count */ 676 struct list_head zombie_list; /* extent zombie tree list */ 677 atomic_t total_zombie_tree; /* extent zombie tree count */ 678 atomic_t total_ext_node; /* extent info count */ 679 }; 680 681 /* 682 * State of block returned by f2fs_map_blocks. 683 */ 684 #define F2FS_MAP_NEW (1U << 0) 685 #define F2FS_MAP_MAPPED (1U << 1) 686 #define F2FS_MAP_DELALLOC (1U << 2) 687 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 688 F2FS_MAP_DELALLOC) 689 690 struct f2fs_map_blocks { 691 struct block_device *m_bdev; /* for multi-device dio */ 692 block_t m_pblk; 693 block_t m_lblk; 694 unsigned int m_len; 695 unsigned int m_flags; 696 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 697 pgoff_t *m_next_extent; /* point to next possible extent */ 698 int m_seg_type; 699 bool m_may_create; /* indicate it is from write path */ 700 bool m_multidev_dio; /* indicate it allows multi-device dio */ 701 }; 702 703 /* for flag in get_data_block */ 704 enum { 705 F2FS_GET_BLOCK_DEFAULT, 706 F2FS_GET_BLOCK_FIEMAP, 707 F2FS_GET_BLOCK_BMAP, 708 F2FS_GET_BLOCK_DIO, 709 F2FS_GET_BLOCK_PRE_DIO, 710 F2FS_GET_BLOCK_PRE_AIO, 711 F2FS_GET_BLOCK_PRECACHE, 712 }; 713 714 /* 715 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 716 */ 717 #define FADVISE_COLD_BIT 0x01 718 #define FADVISE_LOST_PINO_BIT 0x02 719 #define FADVISE_ENCRYPT_BIT 0x04 720 #define FADVISE_ENC_NAME_BIT 0x08 721 #define FADVISE_KEEP_SIZE_BIT 0x10 722 #define FADVISE_HOT_BIT 0x20 723 #define FADVISE_VERITY_BIT 0x40 724 #define FADVISE_TRUNC_BIT 0x80 725 726 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 727 728 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 729 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 730 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 731 732 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 733 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 734 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 735 736 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 737 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 738 739 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 740 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 741 742 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 743 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 744 745 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 746 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 747 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 748 749 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 750 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 751 752 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 753 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 754 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 755 756 #define DEF_DIR_LEVEL 0 757 758 enum { 759 GC_FAILURE_PIN, 760 MAX_GC_FAILURE 761 }; 762 763 /* used for f2fs_inode_info->flags */ 764 enum { 765 FI_NEW_INODE, /* indicate newly allocated inode */ 766 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 767 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 768 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 769 FI_INC_LINK, /* need to increment i_nlink */ 770 FI_ACL_MODE, /* indicate acl mode */ 771 FI_NO_ALLOC, /* should not allocate any blocks */ 772 FI_FREE_NID, /* free allocated nide */ 773 FI_NO_EXTENT, /* not to use the extent cache */ 774 FI_INLINE_XATTR, /* used for inline xattr */ 775 FI_INLINE_DATA, /* used for inline data*/ 776 FI_INLINE_DENTRY, /* used for inline dentry */ 777 FI_APPEND_WRITE, /* inode has appended data */ 778 FI_UPDATE_WRITE, /* inode has in-place-update data */ 779 FI_NEED_IPU, /* used for ipu per file */ 780 FI_ATOMIC_FILE, /* indicate atomic file */ 781 FI_DATA_EXIST, /* indicate data exists */ 782 FI_INLINE_DOTS, /* indicate inline dot dentries */ 783 FI_SKIP_WRITES, /* should skip data page writeback */ 784 FI_OPU_WRITE, /* used for opu per file */ 785 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 786 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 787 FI_HOT_DATA, /* indicate file is hot */ 788 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 789 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 790 FI_PIN_FILE, /* indicate file should not be gced */ 791 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 792 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 793 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 794 FI_MMAP_FILE, /* indicate file was mmapped */ 795 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 796 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 797 FI_ALIGNED_WRITE, /* enable aligned write */ 798 FI_COW_FILE, /* indicate COW file */ 799 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 800 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 801 FI_OPENED_FILE, /* indicate file has been opened */ 802 FI_MAX, /* max flag, never be used */ 803 }; 804 805 struct f2fs_inode_info { 806 struct inode vfs_inode; /* serve a vfs inode */ 807 unsigned long i_flags; /* keep an inode flags for ioctl */ 808 unsigned char i_advise; /* use to give file attribute hints */ 809 unsigned char i_dir_level; /* use for dentry level for large dir */ 810 unsigned int i_current_depth; /* only for directory depth */ 811 /* for gc failure statistic */ 812 unsigned int i_gc_failures[MAX_GC_FAILURE]; 813 unsigned int i_pino; /* parent inode number */ 814 umode_t i_acl_mode; /* keep file acl mode temporarily */ 815 816 /* Use below internally in f2fs*/ 817 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 818 struct f2fs_rwsem i_sem; /* protect fi info */ 819 atomic_t dirty_pages; /* # of dirty pages */ 820 f2fs_hash_t chash; /* hash value of given file name */ 821 unsigned int clevel; /* maximum level of given file name */ 822 struct task_struct *task; /* lookup and create consistency */ 823 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 824 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 825 nid_t i_xattr_nid; /* node id that contains xattrs */ 826 loff_t last_disk_size; /* lastly written file size */ 827 spinlock_t i_size_lock; /* protect last_disk_size */ 828 829 #ifdef CONFIG_QUOTA 830 struct dquot __rcu *i_dquot[MAXQUOTAS]; 831 832 /* quota space reservation, managed internally by quota code */ 833 qsize_t i_reserved_quota; 834 #endif 835 struct list_head dirty_list; /* dirty list for dirs and files */ 836 struct list_head gdirty_list; /* linked in global dirty list */ 837 struct task_struct *atomic_write_task; /* store atomic write task */ 838 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 839 /* cached extent_tree entry */ 840 union { 841 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 842 struct inode *atomic_inode; 843 /* point to atomic_inode, available only for cow_inode */ 844 }; 845 846 /* avoid racing between foreground op and gc */ 847 struct f2fs_rwsem i_gc_rwsem[2]; 848 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 849 850 int i_extra_isize; /* size of extra space located in i_addr */ 851 kprojid_t i_projid; /* id for project quota */ 852 int i_inline_xattr_size; /* inline xattr size */ 853 struct timespec64 i_crtime; /* inode creation time */ 854 struct timespec64 i_disk_time[3];/* inode disk times */ 855 856 /* for file compress */ 857 atomic_t i_compr_blocks; /* # of compressed blocks */ 858 unsigned char i_compress_algorithm; /* algorithm type */ 859 unsigned char i_log_cluster_size; /* log of cluster size */ 860 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 861 unsigned char i_compress_flag; /* compress flag */ 862 unsigned int i_cluster_size; /* cluster size */ 863 864 unsigned int atomic_write_cnt; 865 loff_t original_i_size; /* original i_size before atomic write */ 866 }; 867 868 static inline void get_read_extent_info(struct extent_info *ext, 869 struct f2fs_extent *i_ext) 870 { 871 ext->fofs = le32_to_cpu(i_ext->fofs); 872 ext->blk = le32_to_cpu(i_ext->blk); 873 ext->len = le32_to_cpu(i_ext->len); 874 } 875 876 static inline void set_raw_read_extent(struct extent_info *ext, 877 struct f2fs_extent *i_ext) 878 { 879 i_ext->fofs = cpu_to_le32(ext->fofs); 880 i_ext->blk = cpu_to_le32(ext->blk); 881 i_ext->len = cpu_to_le32(ext->len); 882 } 883 884 static inline bool __is_discard_mergeable(struct discard_info *back, 885 struct discard_info *front, unsigned int max_len) 886 { 887 return (back->lstart + back->len == front->lstart) && 888 (back->len + front->len <= max_len); 889 } 890 891 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 892 struct discard_info *back, unsigned int max_len) 893 { 894 return __is_discard_mergeable(back, cur, max_len); 895 } 896 897 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 898 struct discard_info *front, unsigned int max_len) 899 { 900 return __is_discard_mergeable(cur, front, max_len); 901 } 902 903 /* 904 * For free nid management 905 */ 906 enum nid_state { 907 FREE_NID, /* newly added to free nid list */ 908 PREALLOC_NID, /* it is preallocated */ 909 MAX_NID_STATE, 910 }; 911 912 enum nat_state { 913 TOTAL_NAT, 914 DIRTY_NAT, 915 RECLAIMABLE_NAT, 916 MAX_NAT_STATE, 917 }; 918 919 struct f2fs_nm_info { 920 block_t nat_blkaddr; /* base disk address of NAT */ 921 nid_t max_nid; /* maximum possible node ids */ 922 nid_t available_nids; /* # of available node ids */ 923 nid_t next_scan_nid; /* the next nid to be scanned */ 924 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 925 unsigned int ram_thresh; /* control the memory footprint */ 926 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 927 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 928 929 /* NAT cache management */ 930 struct radix_tree_root nat_root;/* root of the nat entry cache */ 931 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 932 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 933 struct list_head nat_entries; /* cached nat entry list (clean) */ 934 spinlock_t nat_list_lock; /* protect clean nat entry list */ 935 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 936 unsigned int nat_blocks; /* # of nat blocks */ 937 938 /* free node ids management */ 939 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 940 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 941 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 942 spinlock_t nid_list_lock; /* protect nid lists ops */ 943 struct mutex build_lock; /* lock for build free nids */ 944 unsigned char **free_nid_bitmap; 945 unsigned char *nat_block_bitmap; 946 unsigned short *free_nid_count; /* free nid count of NAT block */ 947 948 /* for checkpoint */ 949 char *nat_bitmap; /* NAT bitmap pointer */ 950 951 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 952 unsigned char *nat_bits; /* NAT bits blocks */ 953 unsigned char *full_nat_bits; /* full NAT pages */ 954 unsigned char *empty_nat_bits; /* empty NAT pages */ 955 #ifdef CONFIG_F2FS_CHECK_FS 956 char *nat_bitmap_mir; /* NAT bitmap mirror */ 957 #endif 958 int bitmap_size; /* bitmap size */ 959 }; 960 961 /* 962 * this structure is used as one of function parameters. 963 * all the information are dedicated to a given direct node block determined 964 * by the data offset in a file. 965 */ 966 struct dnode_of_data { 967 struct inode *inode; /* vfs inode pointer */ 968 struct page *inode_page; /* its inode page, NULL is possible */ 969 struct page *node_page; /* cached direct node page */ 970 nid_t nid; /* node id of the direct node block */ 971 unsigned int ofs_in_node; /* data offset in the node page */ 972 bool inode_page_locked; /* inode page is locked or not */ 973 bool node_changed; /* is node block changed */ 974 char cur_level; /* level of hole node page */ 975 char max_level; /* level of current page located */ 976 block_t data_blkaddr; /* block address of the node block */ 977 }; 978 979 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 980 struct page *ipage, struct page *npage, nid_t nid) 981 { 982 memset(dn, 0, sizeof(*dn)); 983 dn->inode = inode; 984 dn->inode_page = ipage; 985 dn->node_page = npage; 986 dn->nid = nid; 987 } 988 989 /* 990 * For SIT manager 991 * 992 * By default, there are 6 active log areas across the whole main area. 993 * When considering hot and cold data separation to reduce cleaning overhead, 994 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 995 * respectively. 996 * In the current design, you should not change the numbers intentionally. 997 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 998 * logs individually according to the underlying devices. (default: 6) 999 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1000 * data and 8 for node logs. 1001 */ 1002 #define NR_CURSEG_DATA_TYPE (3) 1003 #define NR_CURSEG_NODE_TYPE (3) 1004 #define NR_CURSEG_INMEM_TYPE (2) 1005 #define NR_CURSEG_RO_TYPE (2) 1006 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1007 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1008 1009 enum { 1010 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1011 CURSEG_WARM_DATA, /* data blocks */ 1012 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1013 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1014 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1015 CURSEG_COLD_NODE, /* indirect node blocks */ 1016 NR_PERSISTENT_LOG, /* number of persistent log */ 1017 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1018 /* pinned file that needs consecutive block address */ 1019 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1020 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1021 }; 1022 1023 struct flush_cmd { 1024 struct completion wait; 1025 struct llist_node llnode; 1026 nid_t ino; 1027 int ret; 1028 }; 1029 1030 struct flush_cmd_control { 1031 struct task_struct *f2fs_issue_flush; /* flush thread */ 1032 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1033 atomic_t issued_flush; /* # of issued flushes */ 1034 atomic_t queued_flush; /* # of queued flushes */ 1035 struct llist_head issue_list; /* list for command issue */ 1036 struct llist_node *dispatch_list; /* list for command dispatch */ 1037 }; 1038 1039 struct f2fs_sm_info { 1040 struct sit_info *sit_info; /* whole segment information */ 1041 struct free_segmap_info *free_info; /* free segment information */ 1042 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1043 struct curseg_info *curseg_array; /* active segment information */ 1044 1045 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1046 1047 block_t seg0_blkaddr; /* block address of 0'th segment */ 1048 block_t main_blkaddr; /* start block address of main area */ 1049 block_t ssa_blkaddr; /* start block address of SSA area */ 1050 1051 unsigned int segment_count; /* total # of segments */ 1052 unsigned int main_segments; /* # of segments in main area */ 1053 unsigned int reserved_segments; /* # of reserved segments */ 1054 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1055 unsigned int ovp_segments; /* # of overprovision segments */ 1056 1057 /* a threshold to reclaim prefree segments */ 1058 unsigned int rec_prefree_segments; 1059 1060 struct list_head sit_entry_set; /* sit entry set list */ 1061 1062 unsigned int ipu_policy; /* in-place-update policy */ 1063 unsigned int min_ipu_util; /* in-place-update threshold */ 1064 unsigned int min_fsync_blocks; /* threshold for fsync */ 1065 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1066 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1067 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1068 1069 /* for flush command control */ 1070 struct flush_cmd_control *fcc_info; 1071 1072 /* for discard command control */ 1073 struct discard_cmd_control *dcc_info; 1074 }; 1075 1076 /* 1077 * For superblock 1078 */ 1079 /* 1080 * COUNT_TYPE for monitoring 1081 * 1082 * f2fs monitors the number of several block types such as on-writeback, 1083 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1084 */ 1085 #define WB_DATA_TYPE(p, f) \ 1086 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1087 enum count_type { 1088 F2FS_DIRTY_DENTS, 1089 F2FS_DIRTY_DATA, 1090 F2FS_DIRTY_QDATA, 1091 F2FS_DIRTY_NODES, 1092 F2FS_DIRTY_META, 1093 F2FS_DIRTY_IMETA, 1094 F2FS_WB_CP_DATA, 1095 F2FS_WB_DATA, 1096 F2FS_RD_DATA, 1097 F2FS_RD_NODE, 1098 F2FS_RD_META, 1099 F2FS_DIO_WRITE, 1100 F2FS_DIO_READ, 1101 NR_COUNT_TYPE, 1102 }; 1103 1104 /* 1105 * The below are the page types of bios used in submit_bio(). 1106 * The available types are: 1107 * DATA User data pages. It operates as async mode. 1108 * NODE Node pages. It operates as async mode. 1109 * META FS metadata pages such as SIT, NAT, CP. 1110 * NR_PAGE_TYPE The number of page types. 1111 * META_FLUSH Make sure the previous pages are written 1112 * with waiting the bio's completion 1113 * ... Only can be used with META. 1114 */ 1115 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1116 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) 1117 enum page_type { 1118 DATA = 0, 1119 NODE = 1, /* should not change this */ 1120 META, 1121 NR_PAGE_TYPE, 1122 META_FLUSH, 1123 IPU, /* the below types are used by tracepoints only. */ 1124 OPU, 1125 }; 1126 1127 enum temp_type { 1128 HOT = 0, /* must be zero for meta bio */ 1129 WARM, 1130 COLD, 1131 NR_TEMP_TYPE, 1132 }; 1133 1134 enum need_lock_type { 1135 LOCK_REQ = 0, 1136 LOCK_DONE, 1137 LOCK_RETRY, 1138 }; 1139 1140 enum cp_reason_type { 1141 CP_NO_NEEDED, 1142 CP_NON_REGULAR, 1143 CP_COMPRESSED, 1144 CP_HARDLINK, 1145 CP_SB_NEED_CP, 1146 CP_WRONG_PINO, 1147 CP_NO_SPC_ROLL, 1148 CP_NODE_NEED_CP, 1149 CP_FASTBOOT_MODE, 1150 CP_SPEC_LOG_NUM, 1151 CP_RECOVER_DIR, 1152 }; 1153 1154 enum iostat_type { 1155 /* WRITE IO */ 1156 APP_DIRECT_IO, /* app direct write IOs */ 1157 APP_BUFFERED_IO, /* app buffered write IOs */ 1158 APP_WRITE_IO, /* app write IOs */ 1159 APP_MAPPED_IO, /* app mapped IOs */ 1160 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1161 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1162 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1163 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1164 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1165 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1166 FS_GC_DATA_IO, /* data IOs from forground gc */ 1167 FS_GC_NODE_IO, /* node IOs from forground gc */ 1168 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1169 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1170 FS_CP_META_IO, /* meta IOs from checkpoint */ 1171 1172 /* READ IO */ 1173 APP_DIRECT_READ_IO, /* app direct read IOs */ 1174 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1175 APP_READ_IO, /* app read IOs */ 1176 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1177 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1178 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1179 FS_DATA_READ_IO, /* data read IOs */ 1180 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1181 FS_CDATA_READ_IO, /* compressed data read IOs */ 1182 FS_NODE_READ_IO, /* node read IOs */ 1183 FS_META_READ_IO, /* meta read IOs */ 1184 1185 /* other */ 1186 FS_DISCARD_IO, /* discard */ 1187 FS_FLUSH_IO, /* flush */ 1188 FS_ZONE_RESET_IO, /* zone reset */ 1189 NR_IO_TYPE, 1190 }; 1191 1192 struct f2fs_io_info { 1193 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1194 nid_t ino; /* inode number */ 1195 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1196 enum temp_type temp; /* contains HOT/WARM/COLD */ 1197 enum req_op op; /* contains REQ_OP_ */ 1198 blk_opf_t op_flags; /* req_flag_bits */ 1199 block_t new_blkaddr; /* new block address to be written */ 1200 block_t old_blkaddr; /* old block address before Cow */ 1201 struct page *page; /* page to be written */ 1202 struct page *encrypted_page; /* encrypted page */ 1203 struct page *compressed_page; /* compressed page */ 1204 struct list_head list; /* serialize IOs */ 1205 unsigned int compr_blocks; /* # of compressed block addresses */ 1206 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1207 unsigned int version:8; /* version of the node */ 1208 unsigned int submitted:1; /* indicate IO submission */ 1209 unsigned int in_list:1; /* indicate fio is in io_list */ 1210 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1211 unsigned int encrypted:1; /* indicate file is encrypted */ 1212 unsigned int meta_gc:1; /* require meta inode GC */ 1213 enum iostat_type io_type; /* io type */ 1214 struct writeback_control *io_wbc; /* writeback control */ 1215 struct bio **bio; /* bio for ipu */ 1216 sector_t *last_block; /* last block number in bio */ 1217 }; 1218 1219 struct bio_entry { 1220 struct bio *bio; 1221 struct list_head list; 1222 }; 1223 1224 #define is_read_io(rw) ((rw) == READ) 1225 struct f2fs_bio_info { 1226 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1227 struct bio *bio; /* bios to merge */ 1228 sector_t last_block_in_bio; /* last block number */ 1229 struct f2fs_io_info fio; /* store buffered io info. */ 1230 #ifdef CONFIG_BLK_DEV_ZONED 1231 struct completion zone_wait; /* condition value for the previous open zone to close */ 1232 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1233 void *bi_private; /* previous bi_private for pending bio */ 1234 #endif 1235 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1236 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1237 struct list_head io_list; /* track fios */ 1238 struct list_head bio_list; /* bio entry list head */ 1239 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1240 }; 1241 1242 #define FDEV(i) (sbi->devs[i]) 1243 #define RDEV(i) (raw_super->devs[i]) 1244 struct f2fs_dev_info { 1245 struct block_device *bdev; 1246 char path[MAX_PATH_LEN]; 1247 unsigned int total_segments; 1248 block_t start_blk; 1249 block_t end_blk; 1250 #ifdef CONFIG_BLK_DEV_ZONED 1251 unsigned int nr_blkz; /* Total number of zones */ 1252 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1253 #endif 1254 }; 1255 1256 enum inode_type { 1257 DIR_INODE, /* for dirty dir inode */ 1258 FILE_INODE, /* for dirty regular/symlink inode */ 1259 DIRTY_META, /* for all dirtied inode metadata */ 1260 NR_INODE_TYPE, 1261 }; 1262 1263 /* for inner inode cache management */ 1264 struct inode_management { 1265 struct radix_tree_root ino_root; /* ino entry array */ 1266 spinlock_t ino_lock; /* for ino entry lock */ 1267 struct list_head ino_list; /* inode list head */ 1268 unsigned long ino_num; /* number of entries */ 1269 }; 1270 1271 /* for GC_AT */ 1272 struct atgc_management { 1273 bool atgc_enabled; /* ATGC is enabled or not */ 1274 struct rb_root_cached root; /* root of victim rb-tree */ 1275 struct list_head victim_list; /* linked with all victim entries */ 1276 unsigned int victim_count; /* victim count in rb-tree */ 1277 unsigned int candidate_ratio; /* candidate ratio */ 1278 unsigned int max_candidate_count; /* max candidate count */ 1279 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1280 unsigned long long age_threshold; /* age threshold */ 1281 }; 1282 1283 struct f2fs_gc_control { 1284 unsigned int victim_segno; /* target victim segment number */ 1285 int init_gc_type; /* FG_GC or BG_GC */ 1286 bool no_bg_gc; /* check the space and stop bg_gc */ 1287 bool should_migrate_blocks; /* should migrate blocks */ 1288 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1289 unsigned int nr_free_secs; /* # of free sections to do GC */ 1290 }; 1291 1292 /* 1293 * For s_flag in struct f2fs_sb_info 1294 * Modification on enum should be synchronized with s_flag array 1295 */ 1296 enum { 1297 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1298 SBI_IS_CLOSE, /* specify unmounting */ 1299 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1300 SBI_POR_DOING, /* recovery is doing or not */ 1301 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1302 SBI_NEED_CP, /* need to checkpoint */ 1303 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1304 SBI_IS_RECOVERED, /* recovered orphan/data */ 1305 SBI_CP_DISABLED, /* CP was disabled last mount */ 1306 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1307 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1308 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1309 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1310 SBI_IS_RESIZEFS, /* resizefs is in process */ 1311 SBI_IS_FREEZING, /* freezefs is in process */ 1312 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1313 MAX_SBI_FLAG, 1314 }; 1315 1316 enum { 1317 CP_TIME, 1318 REQ_TIME, 1319 DISCARD_TIME, 1320 GC_TIME, 1321 DISABLE_TIME, 1322 UMOUNT_DISCARD_TIMEOUT, 1323 MAX_TIME, 1324 }; 1325 1326 /* Note that you need to keep synchronization with this gc_mode_names array */ 1327 enum { 1328 GC_NORMAL, 1329 GC_IDLE_CB, 1330 GC_IDLE_GREEDY, 1331 GC_IDLE_AT, 1332 GC_URGENT_HIGH, 1333 GC_URGENT_LOW, 1334 GC_URGENT_MID, 1335 MAX_GC_MODE, 1336 }; 1337 1338 enum { 1339 BGGC_MODE_ON, /* background gc is on */ 1340 BGGC_MODE_OFF, /* background gc is off */ 1341 BGGC_MODE_SYNC, /* 1342 * background gc is on, migrating blocks 1343 * like foreground gc 1344 */ 1345 }; 1346 1347 enum { 1348 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1349 FS_MODE_LFS, /* use lfs allocation only */ 1350 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1351 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1352 }; 1353 1354 enum { 1355 ALLOC_MODE_DEFAULT, /* stay default */ 1356 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1357 }; 1358 1359 enum fsync_mode { 1360 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1361 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1362 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1363 }; 1364 1365 enum { 1366 COMPR_MODE_FS, /* 1367 * automatically compress compression 1368 * enabled files 1369 */ 1370 COMPR_MODE_USER, /* 1371 * automatical compression is disabled. 1372 * user can control the file compression 1373 * using ioctls 1374 */ 1375 }; 1376 1377 enum { 1378 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1379 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1380 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1381 }; 1382 1383 enum { 1384 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1385 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1386 }; 1387 1388 enum errors_option { 1389 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1390 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1391 MOUNT_ERRORS_PANIC, /* panic on errors */ 1392 }; 1393 1394 enum { 1395 BACKGROUND, 1396 FOREGROUND, 1397 MAX_CALL_TYPE, 1398 TOTAL_CALL = FOREGROUND, 1399 }; 1400 1401 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1402 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1403 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1404 1405 /* 1406 * Layout of f2fs page.private: 1407 * 1408 * Layout A: lowest bit should be 1 1409 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1410 * bit 0 PAGE_PRIVATE_NOT_POINTER 1411 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION 1412 * bit 2 PAGE_PRIVATE_INLINE_INODE 1413 * bit 3 PAGE_PRIVATE_REF_RESOURCE 1414 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE 1415 * bit 5- f2fs private data 1416 * 1417 * Layout B: lowest bit should be 0 1418 * page.private is a wrapped pointer. 1419 */ 1420 enum { 1421 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1422 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1423 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1424 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1425 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1426 PAGE_PRIVATE_MAX 1427 }; 1428 1429 /* For compression */ 1430 enum compress_algorithm_type { 1431 COMPRESS_LZO, 1432 COMPRESS_LZ4, 1433 COMPRESS_ZSTD, 1434 COMPRESS_LZORLE, 1435 COMPRESS_MAX, 1436 }; 1437 1438 enum compress_flag { 1439 COMPRESS_CHKSUM, 1440 COMPRESS_MAX_FLAG, 1441 }; 1442 1443 #define COMPRESS_WATERMARK 20 1444 #define COMPRESS_PERCENT 20 1445 1446 #define COMPRESS_DATA_RESERVED_SIZE 4 1447 struct compress_data { 1448 __le32 clen; /* compressed data size */ 1449 __le32 chksum; /* compressed data chksum */ 1450 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1451 u8 cdata[]; /* compressed data */ 1452 }; 1453 1454 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1455 1456 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1457 1458 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1459 1460 #define COMPRESS_LEVEL_OFFSET 8 1461 1462 /* compress context */ 1463 struct compress_ctx { 1464 struct inode *inode; /* inode the context belong to */ 1465 pgoff_t cluster_idx; /* cluster index number */ 1466 unsigned int cluster_size; /* page count in cluster */ 1467 unsigned int log_cluster_size; /* log of cluster size */ 1468 struct page **rpages; /* pages store raw data in cluster */ 1469 unsigned int nr_rpages; /* total page number in rpages */ 1470 struct page **cpages; /* pages store compressed data in cluster */ 1471 unsigned int nr_cpages; /* total page number in cpages */ 1472 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1473 void *rbuf; /* virtual mapped address on rpages */ 1474 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1475 size_t rlen; /* valid data length in rbuf */ 1476 size_t clen; /* valid data length in cbuf */ 1477 void *private; /* payload buffer for specified compression algorithm */ 1478 void *private2; /* extra payload buffer */ 1479 }; 1480 1481 /* compress context for write IO path */ 1482 struct compress_io_ctx { 1483 u32 magic; /* magic number to indicate page is compressed */ 1484 struct inode *inode; /* inode the context belong to */ 1485 struct page **rpages; /* pages store raw data in cluster */ 1486 unsigned int nr_rpages; /* total page number in rpages */ 1487 atomic_t pending_pages; /* in-flight compressed page count */ 1488 }; 1489 1490 /* Context for decompressing one cluster on the read IO path */ 1491 struct decompress_io_ctx { 1492 u32 magic; /* magic number to indicate page is compressed */ 1493 struct inode *inode; /* inode the context belong to */ 1494 pgoff_t cluster_idx; /* cluster index number */ 1495 unsigned int cluster_size; /* page count in cluster */ 1496 unsigned int log_cluster_size; /* log of cluster size */ 1497 struct page **rpages; /* pages store raw data in cluster */ 1498 unsigned int nr_rpages; /* total page number in rpages */ 1499 struct page **cpages; /* pages store compressed data in cluster */ 1500 unsigned int nr_cpages; /* total page number in cpages */ 1501 struct page **tpages; /* temp pages to pad holes in cluster */ 1502 void *rbuf; /* virtual mapped address on rpages */ 1503 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1504 size_t rlen; /* valid data length in rbuf */ 1505 size_t clen; /* valid data length in cbuf */ 1506 1507 /* 1508 * The number of compressed pages remaining to be read in this cluster. 1509 * This is initially nr_cpages. It is decremented by 1 each time a page 1510 * has been read (or failed to be read). When it reaches 0, the cluster 1511 * is decompressed (or an error is reported). 1512 * 1513 * If an error occurs before all the pages have been submitted for I/O, 1514 * then this will never reach 0. In this case the I/O submitter is 1515 * responsible for calling f2fs_decompress_end_io() instead. 1516 */ 1517 atomic_t remaining_pages; 1518 1519 /* 1520 * Number of references to this decompress_io_ctx. 1521 * 1522 * One reference is held for I/O completion. This reference is dropped 1523 * after the pagecache pages are updated and unlocked -- either after 1524 * decompression (and verity if enabled), or after an error. 1525 * 1526 * In addition, each compressed page holds a reference while it is in a 1527 * bio. These references are necessary prevent compressed pages from 1528 * being freed while they are still in a bio. 1529 */ 1530 refcount_t refcnt; 1531 1532 bool failed; /* IO error occurred before decompression? */ 1533 bool need_verity; /* need fs-verity verification after decompression? */ 1534 void *private; /* payload buffer for specified decompression algorithm */ 1535 void *private2; /* extra payload buffer */ 1536 struct work_struct verity_work; /* work to verify the decompressed pages */ 1537 struct work_struct free_work; /* work for late free this structure itself */ 1538 }; 1539 1540 #define NULL_CLUSTER ((unsigned int)(~0)) 1541 #define MIN_COMPRESS_LOG_SIZE 2 1542 #define MAX_COMPRESS_LOG_SIZE 8 1543 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1544 1545 struct f2fs_sb_info { 1546 struct super_block *sb; /* pointer to VFS super block */ 1547 struct proc_dir_entry *s_proc; /* proc entry */ 1548 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1549 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1550 int valid_super_block; /* valid super block no */ 1551 unsigned long s_flag; /* flags for sbi */ 1552 struct mutex writepages; /* mutex for writepages() */ 1553 1554 #ifdef CONFIG_BLK_DEV_ZONED 1555 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1556 #endif 1557 1558 /* for node-related operations */ 1559 struct f2fs_nm_info *nm_info; /* node manager */ 1560 struct inode *node_inode; /* cache node blocks */ 1561 1562 /* for segment-related operations */ 1563 struct f2fs_sm_info *sm_info; /* segment manager */ 1564 1565 /* for bio operations */ 1566 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1567 /* keep migration IO order for LFS mode */ 1568 struct f2fs_rwsem io_order_lock; 1569 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1570 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1571 1572 /* for checkpoint */ 1573 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1574 int cur_cp_pack; /* remain current cp pack */ 1575 spinlock_t cp_lock; /* for flag in ckpt */ 1576 struct inode *meta_inode; /* cache meta blocks */ 1577 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1578 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1579 struct f2fs_rwsem node_write; /* locking node writes */ 1580 struct f2fs_rwsem node_change; /* locking node change */ 1581 wait_queue_head_t cp_wait; 1582 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1583 long interval_time[MAX_TIME]; /* to store thresholds */ 1584 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1585 1586 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1587 1588 spinlock_t fsync_node_lock; /* for node entry lock */ 1589 struct list_head fsync_node_list; /* node list head */ 1590 unsigned int fsync_seg_id; /* sequence id */ 1591 unsigned int fsync_node_num; /* number of node entries */ 1592 1593 /* for orphan inode, use 0'th array */ 1594 unsigned int max_orphans; /* max orphan inodes */ 1595 1596 /* for inode management */ 1597 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1598 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1599 struct mutex flush_lock; /* for flush exclusion */ 1600 1601 /* for extent tree cache */ 1602 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1603 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1604 1605 /* The threshold used for hot and warm data seperation*/ 1606 unsigned int hot_data_age_threshold; 1607 unsigned int warm_data_age_threshold; 1608 unsigned int last_age_weight; 1609 1610 /* basic filesystem units */ 1611 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1612 unsigned int log_blocksize; /* log2 block size */ 1613 unsigned int blocksize; /* block size */ 1614 unsigned int root_ino_num; /* root inode number*/ 1615 unsigned int node_ino_num; /* node inode number*/ 1616 unsigned int meta_ino_num; /* meta inode number*/ 1617 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1618 unsigned int blocks_per_seg; /* blocks per segment */ 1619 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1620 unsigned int segs_per_sec; /* segments per section */ 1621 unsigned int secs_per_zone; /* sections per zone */ 1622 unsigned int total_sections; /* total section count */ 1623 unsigned int total_node_count; /* total node block count */ 1624 unsigned int total_valid_node_count; /* valid node block count */ 1625 int dir_level; /* directory level */ 1626 bool readdir_ra; /* readahead inode in readdir */ 1627 u64 max_io_bytes; /* max io bytes to merge IOs */ 1628 1629 block_t user_block_count; /* # of user blocks */ 1630 block_t total_valid_block_count; /* # of valid blocks */ 1631 block_t discard_blks; /* discard command candidats */ 1632 block_t last_valid_block_count; /* for recovery */ 1633 block_t reserved_blocks; /* configurable reserved blocks */ 1634 block_t current_reserved_blocks; /* current reserved blocks */ 1635 1636 /* Additional tracking for no checkpoint mode */ 1637 block_t unusable_block_count; /* # of blocks saved by last cp */ 1638 1639 unsigned int nquota_files; /* # of quota sysfile */ 1640 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1641 1642 /* # of pages, see count_type */ 1643 atomic_t nr_pages[NR_COUNT_TYPE]; 1644 /* # of allocated blocks */ 1645 struct percpu_counter alloc_valid_block_count; 1646 /* # of node block writes as roll forward recovery */ 1647 struct percpu_counter rf_node_block_count; 1648 1649 /* writeback control */ 1650 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1651 1652 /* valid inode count */ 1653 struct percpu_counter total_valid_inode_count; 1654 1655 struct f2fs_mount_info mount_opt; /* mount options */ 1656 1657 /* for cleaning operations */ 1658 struct f2fs_rwsem gc_lock; /* 1659 * semaphore for GC, avoid 1660 * race between GC and GC or CP 1661 */ 1662 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1663 struct atgc_management am; /* atgc management */ 1664 unsigned int cur_victim_sec; /* current victim section num */ 1665 unsigned int gc_mode; /* current GC state */ 1666 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1667 spinlock_t gc_remaining_trials_lock; 1668 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1669 unsigned int gc_remaining_trials; 1670 1671 /* for skip statistic */ 1672 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1673 1674 /* threshold for gc trials on pinned files */ 1675 u64 gc_pin_file_threshold; 1676 struct f2fs_rwsem pin_sem; 1677 1678 /* maximum # of trials to find a victim segment for SSR and GC */ 1679 unsigned int max_victim_search; 1680 /* migration granularity of garbage collection, unit: segment */ 1681 unsigned int migration_granularity; 1682 1683 /* 1684 * for stat information. 1685 * one is for the LFS mode, and the other is for the SSR mode. 1686 */ 1687 #ifdef CONFIG_F2FS_STAT_FS 1688 struct f2fs_stat_info *stat_info; /* FS status information */ 1689 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1690 unsigned int segment_count[2]; /* # of allocated segments */ 1691 unsigned int block_count[2]; /* # of allocated blocks */ 1692 atomic_t inplace_count; /* # of inplace update */ 1693 /* # of lookup extent cache */ 1694 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1695 /* # of hit rbtree extent node */ 1696 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1697 /* # of hit cached extent node */ 1698 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1699 /* # of hit largest extent node in read extent cache */ 1700 atomic64_t read_hit_largest; 1701 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1702 atomic_t inline_inode; /* # of inline_data inodes */ 1703 atomic_t inline_dir; /* # of inline_dentry inodes */ 1704 atomic_t compr_inode; /* # of compressed inodes */ 1705 atomic64_t compr_blocks; /* # of compressed blocks */ 1706 atomic_t swapfile_inode; /* # of swapfile inodes */ 1707 atomic_t atomic_files; /* # of opened atomic file */ 1708 atomic_t max_aw_cnt; /* max # of atomic writes */ 1709 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1710 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1711 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1712 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1713 #endif 1714 spinlock_t stat_lock; /* lock for stat operations */ 1715 1716 /* to attach REQ_META|REQ_FUA flags */ 1717 unsigned int data_io_flag; 1718 unsigned int node_io_flag; 1719 1720 /* For sysfs support */ 1721 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1722 struct completion s_kobj_unregister; 1723 1724 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1725 struct completion s_stat_kobj_unregister; 1726 1727 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1728 struct completion s_feature_list_kobj_unregister; 1729 1730 /* For shrinker support */ 1731 struct list_head s_list; 1732 struct mutex umount_mutex; 1733 unsigned int shrinker_run_no; 1734 1735 /* For multi devices */ 1736 int s_ndevs; /* number of devices */ 1737 struct f2fs_dev_info *devs; /* for device list */ 1738 unsigned int dirty_device; /* for checkpoint data flush */ 1739 spinlock_t dev_lock; /* protect dirty_device */ 1740 bool aligned_blksize; /* all devices has the same logical blksize */ 1741 1742 /* For write statistics */ 1743 u64 sectors_written_start; 1744 u64 kbytes_written; 1745 1746 /* Reference to checksum algorithm driver via cryptoapi */ 1747 struct crypto_shash *s_chksum_driver; 1748 1749 /* Precomputed FS UUID checksum for seeding other checksums */ 1750 __u32 s_chksum_seed; 1751 1752 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1753 1754 /* 1755 * If we are in irq context, let's update error information into 1756 * on-disk superblock in the work. 1757 */ 1758 struct work_struct s_error_work; 1759 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1760 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1761 spinlock_t error_lock; /* protect errors/stop_reason array */ 1762 bool error_dirty; /* errors of sb is dirty */ 1763 1764 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1765 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1766 1767 /* For reclaimed segs statistics per each GC mode */ 1768 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1769 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1770 1771 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1772 1773 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1774 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1775 1776 /* For atomic write statistics */ 1777 atomic64_t current_atomic_write; 1778 s64 peak_atomic_write; 1779 u64 committed_atomic_block; 1780 u64 revoked_atomic_block; 1781 1782 #ifdef CONFIG_F2FS_FS_COMPRESSION 1783 struct kmem_cache *page_array_slab; /* page array entry */ 1784 unsigned int page_array_slab_size; /* default page array slab size */ 1785 1786 /* For runtime compression statistics */ 1787 u64 compr_written_block; 1788 u64 compr_saved_block; 1789 u32 compr_new_inode; 1790 1791 /* For compressed block cache */ 1792 struct inode *compress_inode; /* cache compressed blocks */ 1793 unsigned int compress_percent; /* cache page percentage */ 1794 unsigned int compress_watermark; /* cache page watermark */ 1795 atomic_t compress_page_hit; /* cache hit count */ 1796 #endif 1797 1798 #ifdef CONFIG_F2FS_IOSTAT 1799 /* For app/fs IO statistics */ 1800 spinlock_t iostat_lock; 1801 unsigned long long iostat_count[NR_IO_TYPE]; 1802 unsigned long long iostat_bytes[NR_IO_TYPE]; 1803 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1804 bool iostat_enable; 1805 unsigned long iostat_next_period; 1806 unsigned int iostat_period_ms; 1807 1808 /* For io latency related statistics info in one iostat period */ 1809 spinlock_t iostat_lat_lock; 1810 struct iostat_lat_info *iostat_io_lat; 1811 #endif 1812 }; 1813 1814 /* Definitions to access f2fs_sb_info */ 1815 #define BLKS_PER_SEG(sbi) \ 1816 ((sbi)->blocks_per_seg) 1817 #define BLKS_PER_SEC(sbi) \ 1818 ((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg) 1819 #define SEGS_PER_SEC(sbi) \ 1820 ((sbi)->segs_per_sec) 1821 1822 __printf(3, 4) 1823 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); 1824 1825 #define f2fs_err(sbi, fmt, ...) \ 1826 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) 1827 #define f2fs_warn(sbi, fmt, ...) \ 1828 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) 1829 #define f2fs_notice(sbi, fmt, ...) \ 1830 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) 1831 #define f2fs_info(sbi, fmt, ...) \ 1832 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) 1833 #define f2fs_debug(sbi, fmt, ...) \ 1834 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) 1835 1836 #define f2fs_err_ratelimited(sbi, fmt, ...) \ 1837 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) 1838 #define f2fs_warn_ratelimited(sbi, fmt, ...) \ 1839 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) 1840 #define f2fs_info_ratelimited(sbi, fmt, ...) \ 1841 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) 1842 1843 #ifdef CONFIG_F2FS_FAULT_INJECTION 1844 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1845 __builtin_return_address(0)) 1846 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1847 const char *func, const char *parent_func) 1848 { 1849 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1850 1851 if (!ffi->inject_rate) 1852 return false; 1853 1854 if (!IS_FAULT_SET(ffi, type)) 1855 return false; 1856 1857 atomic_inc(&ffi->inject_ops); 1858 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1859 atomic_set(&ffi->inject_ops, 0); 1860 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", 1861 f2fs_fault_name[type], func, parent_func); 1862 return true; 1863 } 1864 return false; 1865 } 1866 #else 1867 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1868 { 1869 return false; 1870 } 1871 #endif 1872 1873 /* 1874 * Test if the mounted volume is a multi-device volume. 1875 * - For a single regular disk volume, sbi->s_ndevs is 0. 1876 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1877 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1878 */ 1879 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1880 { 1881 return sbi->s_ndevs > 1; 1882 } 1883 1884 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1885 { 1886 unsigned long now = jiffies; 1887 1888 sbi->last_time[type] = now; 1889 1890 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1891 if (type == REQ_TIME) { 1892 sbi->last_time[DISCARD_TIME] = now; 1893 sbi->last_time[GC_TIME] = now; 1894 } 1895 } 1896 1897 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1898 { 1899 unsigned long interval = sbi->interval_time[type] * HZ; 1900 1901 return time_after(jiffies, sbi->last_time[type] + interval); 1902 } 1903 1904 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1905 int type) 1906 { 1907 unsigned long interval = sbi->interval_time[type] * HZ; 1908 unsigned int wait_ms = 0; 1909 long delta; 1910 1911 delta = (sbi->last_time[type] + interval) - jiffies; 1912 if (delta > 0) 1913 wait_ms = jiffies_to_msecs(delta); 1914 1915 return wait_ms; 1916 } 1917 1918 /* 1919 * Inline functions 1920 */ 1921 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1922 const void *address, unsigned int length) 1923 { 1924 struct { 1925 struct shash_desc shash; 1926 char ctx[4]; 1927 } desc; 1928 int err; 1929 1930 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1931 1932 desc.shash.tfm = sbi->s_chksum_driver; 1933 *(u32 *)desc.ctx = crc; 1934 1935 err = crypto_shash_update(&desc.shash, address, length); 1936 BUG_ON(err); 1937 1938 return *(u32 *)desc.ctx; 1939 } 1940 1941 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1942 unsigned int length) 1943 { 1944 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1945 } 1946 1947 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1948 void *buf, size_t buf_size) 1949 { 1950 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1951 } 1952 1953 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1954 const void *address, unsigned int length) 1955 { 1956 return __f2fs_crc32(sbi, crc, address, length); 1957 } 1958 1959 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1960 { 1961 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1962 } 1963 1964 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1965 { 1966 return sb->s_fs_info; 1967 } 1968 1969 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1970 { 1971 return F2FS_SB(inode->i_sb); 1972 } 1973 1974 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1975 { 1976 return F2FS_I_SB(mapping->host); 1977 } 1978 1979 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1980 { 1981 return F2FS_M_SB(page_file_mapping(page)); 1982 } 1983 1984 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1985 { 1986 return (struct f2fs_super_block *)(sbi->raw_super); 1987 } 1988 1989 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1990 { 1991 return (struct f2fs_checkpoint *)(sbi->ckpt); 1992 } 1993 1994 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1995 { 1996 return (struct f2fs_node *)page_address(page); 1997 } 1998 1999 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2000 { 2001 return &((struct f2fs_node *)page_address(page))->i; 2002 } 2003 2004 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2005 { 2006 return (struct f2fs_nm_info *)(sbi->nm_info); 2007 } 2008 2009 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2010 { 2011 return (struct f2fs_sm_info *)(sbi->sm_info); 2012 } 2013 2014 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2015 { 2016 return (struct sit_info *)(SM_I(sbi)->sit_info); 2017 } 2018 2019 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2020 { 2021 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2022 } 2023 2024 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2025 { 2026 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2027 } 2028 2029 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2030 { 2031 return sbi->meta_inode->i_mapping; 2032 } 2033 2034 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2035 { 2036 return sbi->node_inode->i_mapping; 2037 } 2038 2039 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2040 { 2041 return test_bit(type, &sbi->s_flag); 2042 } 2043 2044 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2045 { 2046 set_bit(type, &sbi->s_flag); 2047 } 2048 2049 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2050 { 2051 clear_bit(type, &sbi->s_flag); 2052 } 2053 2054 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2055 { 2056 return le64_to_cpu(cp->checkpoint_ver); 2057 } 2058 2059 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2060 { 2061 if (type < F2FS_MAX_QUOTAS) 2062 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2063 return 0; 2064 } 2065 2066 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2067 { 2068 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2069 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2070 } 2071 2072 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2073 { 2074 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2075 2076 return ckpt_flags & f; 2077 } 2078 2079 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2080 { 2081 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2082 } 2083 2084 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2085 { 2086 unsigned int ckpt_flags; 2087 2088 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2089 ckpt_flags |= f; 2090 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2091 } 2092 2093 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2094 { 2095 unsigned long flags; 2096 2097 spin_lock_irqsave(&sbi->cp_lock, flags); 2098 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2099 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2100 } 2101 2102 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2103 { 2104 unsigned int ckpt_flags; 2105 2106 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2107 ckpt_flags &= (~f); 2108 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2109 } 2110 2111 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2112 { 2113 unsigned long flags; 2114 2115 spin_lock_irqsave(&sbi->cp_lock, flags); 2116 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2117 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2118 } 2119 2120 #define init_f2fs_rwsem(sem) \ 2121 do { \ 2122 static struct lock_class_key __key; \ 2123 \ 2124 __init_f2fs_rwsem((sem), #sem, &__key); \ 2125 } while (0) 2126 2127 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2128 const char *sem_name, struct lock_class_key *key) 2129 { 2130 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2131 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2132 init_waitqueue_head(&sem->read_waiters); 2133 #endif 2134 } 2135 2136 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2137 { 2138 return rwsem_is_locked(&sem->internal_rwsem); 2139 } 2140 2141 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2142 { 2143 return rwsem_is_contended(&sem->internal_rwsem); 2144 } 2145 2146 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2147 { 2148 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2149 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2150 #else 2151 down_read(&sem->internal_rwsem); 2152 #endif 2153 } 2154 2155 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2156 { 2157 return down_read_trylock(&sem->internal_rwsem); 2158 } 2159 2160 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2161 { 2162 up_read(&sem->internal_rwsem); 2163 } 2164 2165 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2166 { 2167 down_write(&sem->internal_rwsem); 2168 } 2169 2170 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2171 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2172 { 2173 down_read_nested(&sem->internal_rwsem, subclass); 2174 } 2175 2176 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2177 { 2178 down_write_nested(&sem->internal_rwsem, subclass); 2179 } 2180 #else 2181 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2182 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2183 #endif 2184 2185 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2186 { 2187 return down_write_trylock(&sem->internal_rwsem); 2188 } 2189 2190 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2191 { 2192 up_write(&sem->internal_rwsem); 2193 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2194 wake_up_all(&sem->read_waiters); 2195 #endif 2196 } 2197 2198 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2199 { 2200 f2fs_down_read(&sbi->cp_rwsem); 2201 } 2202 2203 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2204 { 2205 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2206 return 0; 2207 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2208 } 2209 2210 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2211 { 2212 f2fs_up_read(&sbi->cp_rwsem); 2213 } 2214 2215 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2216 { 2217 f2fs_down_write(&sbi->cp_rwsem); 2218 } 2219 2220 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2221 { 2222 f2fs_up_write(&sbi->cp_rwsem); 2223 } 2224 2225 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2226 { 2227 int reason = CP_SYNC; 2228 2229 if (test_opt(sbi, FASTBOOT)) 2230 reason = CP_FASTBOOT; 2231 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2232 reason = CP_UMOUNT; 2233 return reason; 2234 } 2235 2236 static inline bool __remain_node_summaries(int reason) 2237 { 2238 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2239 } 2240 2241 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2242 { 2243 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2244 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2245 } 2246 2247 /* 2248 * Check whether the inode has blocks or not 2249 */ 2250 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2251 { 2252 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2253 2254 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2255 } 2256 2257 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2258 { 2259 return ofs == XATTR_NODE_OFFSET; 2260 } 2261 2262 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2263 struct inode *inode, bool cap) 2264 { 2265 if (!inode) 2266 return true; 2267 if (!test_opt(sbi, RESERVE_ROOT)) 2268 return false; 2269 if (IS_NOQUOTA(inode)) 2270 return true; 2271 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2272 return true; 2273 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2274 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2275 return true; 2276 if (cap && capable(CAP_SYS_RESOURCE)) 2277 return true; 2278 return false; 2279 } 2280 2281 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, 2282 struct inode *inode, bool cap) 2283 { 2284 block_t avail_user_block_count; 2285 2286 avail_user_block_count = sbi->user_block_count - 2287 sbi->current_reserved_blocks; 2288 2289 if (!__allow_reserved_blocks(sbi, inode, cap)) 2290 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2291 2292 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2293 if (avail_user_block_count > sbi->unusable_block_count) 2294 avail_user_block_count -= sbi->unusable_block_count; 2295 else 2296 avail_user_block_count = 0; 2297 } 2298 2299 return avail_user_block_count; 2300 } 2301 2302 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2303 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2304 struct inode *inode, blkcnt_t *count, bool partial) 2305 { 2306 long long diff = 0, release = 0; 2307 block_t avail_user_block_count; 2308 int ret; 2309 2310 ret = dquot_reserve_block(inode, *count); 2311 if (ret) 2312 return ret; 2313 2314 if (time_to_inject(sbi, FAULT_BLOCK)) { 2315 release = *count; 2316 goto release_quota; 2317 } 2318 2319 /* 2320 * let's increase this in prior to actual block count change in order 2321 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2322 */ 2323 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2324 2325 spin_lock(&sbi->stat_lock); 2326 2327 avail_user_block_count = get_available_block_count(sbi, inode, true); 2328 diff = (long long)sbi->total_valid_block_count + *count - 2329 avail_user_block_count; 2330 if (unlikely(diff > 0)) { 2331 if (!partial) { 2332 spin_unlock(&sbi->stat_lock); 2333 release = *count; 2334 goto enospc; 2335 } 2336 if (diff > *count) 2337 diff = *count; 2338 *count -= diff; 2339 release = diff; 2340 if (!*count) { 2341 spin_unlock(&sbi->stat_lock); 2342 goto enospc; 2343 } 2344 } 2345 sbi->total_valid_block_count += (block_t)(*count); 2346 2347 spin_unlock(&sbi->stat_lock); 2348 2349 if (unlikely(release)) { 2350 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2351 dquot_release_reservation_block(inode, release); 2352 } 2353 f2fs_i_blocks_write(inode, *count, true, true); 2354 return 0; 2355 2356 enospc: 2357 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2358 release_quota: 2359 dquot_release_reservation_block(inode, release); 2360 return -ENOSPC; 2361 } 2362 2363 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2364 static inline bool page_private_##name(struct page *page) \ 2365 { \ 2366 return PagePrivate(page) && \ 2367 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2368 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2369 } 2370 2371 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2372 static inline void set_page_private_##name(struct page *page) \ 2373 { \ 2374 if (!PagePrivate(page)) \ 2375 attach_page_private(page, (void *)0); \ 2376 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2377 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2378 } 2379 2380 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2381 static inline void clear_page_private_##name(struct page *page) \ 2382 { \ 2383 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2384 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2385 detach_page_private(page); \ 2386 } 2387 2388 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2389 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2390 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2391 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 2392 2393 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2394 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2395 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2396 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 2397 2398 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2399 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2400 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2401 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 2402 2403 static inline unsigned long get_page_private_data(struct page *page) 2404 { 2405 unsigned long data = page_private(page); 2406 2407 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2408 return 0; 2409 return data >> PAGE_PRIVATE_MAX; 2410 } 2411 2412 static inline void set_page_private_data(struct page *page, unsigned long data) 2413 { 2414 if (!PagePrivate(page)) 2415 attach_page_private(page, (void *)0); 2416 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2417 page_private(page) |= data << PAGE_PRIVATE_MAX; 2418 } 2419 2420 static inline void clear_page_private_data(struct page *page) 2421 { 2422 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2423 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2424 detach_page_private(page); 2425 } 2426 2427 static inline void clear_page_private_all(struct page *page) 2428 { 2429 clear_page_private_data(page); 2430 clear_page_private_reference(page); 2431 clear_page_private_gcing(page); 2432 clear_page_private_inline(page); 2433 clear_page_private_atomic(page); 2434 2435 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2436 } 2437 2438 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2439 struct inode *inode, 2440 block_t count) 2441 { 2442 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2443 2444 spin_lock(&sbi->stat_lock); 2445 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2446 sbi->total_valid_block_count -= (block_t)count; 2447 if (sbi->reserved_blocks && 2448 sbi->current_reserved_blocks < sbi->reserved_blocks) 2449 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2450 sbi->current_reserved_blocks + count); 2451 spin_unlock(&sbi->stat_lock); 2452 if (unlikely(inode->i_blocks < sectors)) { 2453 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2454 inode->i_ino, 2455 (unsigned long long)inode->i_blocks, 2456 (unsigned long long)sectors); 2457 set_sbi_flag(sbi, SBI_NEED_FSCK); 2458 return; 2459 } 2460 f2fs_i_blocks_write(inode, count, false, true); 2461 } 2462 2463 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2464 { 2465 atomic_inc(&sbi->nr_pages[count_type]); 2466 2467 if (count_type == F2FS_DIRTY_DENTS || 2468 count_type == F2FS_DIRTY_NODES || 2469 count_type == F2FS_DIRTY_META || 2470 count_type == F2FS_DIRTY_QDATA || 2471 count_type == F2FS_DIRTY_IMETA) 2472 set_sbi_flag(sbi, SBI_IS_DIRTY); 2473 } 2474 2475 static inline void inode_inc_dirty_pages(struct inode *inode) 2476 { 2477 atomic_inc(&F2FS_I(inode)->dirty_pages); 2478 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2479 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2480 if (IS_NOQUOTA(inode)) 2481 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2482 } 2483 2484 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2485 { 2486 atomic_dec(&sbi->nr_pages[count_type]); 2487 } 2488 2489 static inline void inode_dec_dirty_pages(struct inode *inode) 2490 { 2491 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2492 !S_ISLNK(inode->i_mode)) 2493 return; 2494 2495 atomic_dec(&F2FS_I(inode)->dirty_pages); 2496 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2497 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2498 if (IS_NOQUOTA(inode)) 2499 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2500 } 2501 2502 static inline void inc_atomic_write_cnt(struct inode *inode) 2503 { 2504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2505 struct f2fs_inode_info *fi = F2FS_I(inode); 2506 u64 current_write; 2507 2508 fi->atomic_write_cnt++; 2509 atomic64_inc(&sbi->current_atomic_write); 2510 current_write = atomic64_read(&sbi->current_atomic_write); 2511 if (current_write > sbi->peak_atomic_write) 2512 sbi->peak_atomic_write = current_write; 2513 } 2514 2515 static inline void release_atomic_write_cnt(struct inode *inode) 2516 { 2517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2518 struct f2fs_inode_info *fi = F2FS_I(inode); 2519 2520 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2521 fi->atomic_write_cnt = 0; 2522 } 2523 2524 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2525 { 2526 return atomic_read(&sbi->nr_pages[count_type]); 2527 } 2528 2529 static inline int get_dirty_pages(struct inode *inode) 2530 { 2531 return atomic_read(&F2FS_I(inode)->dirty_pages); 2532 } 2533 2534 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2535 { 2536 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, 2537 BLKS_PER_SEC(sbi)); 2538 } 2539 2540 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2541 { 2542 return sbi->total_valid_block_count; 2543 } 2544 2545 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2546 { 2547 return sbi->discard_blks; 2548 } 2549 2550 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2551 { 2552 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2553 2554 /* return NAT or SIT bitmap */ 2555 if (flag == NAT_BITMAP) 2556 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2557 else if (flag == SIT_BITMAP) 2558 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2559 2560 return 0; 2561 } 2562 2563 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2564 { 2565 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2566 } 2567 2568 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2569 { 2570 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2571 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2572 int offset; 2573 2574 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2575 offset = (flag == SIT_BITMAP) ? 2576 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2577 /* 2578 * if large_nat_bitmap feature is enabled, leave checksum 2579 * protection for all nat/sit bitmaps. 2580 */ 2581 return tmp_ptr + offset + sizeof(__le32); 2582 } 2583 2584 if (__cp_payload(sbi) > 0) { 2585 if (flag == NAT_BITMAP) 2586 return tmp_ptr; 2587 else 2588 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2589 } else { 2590 offset = (flag == NAT_BITMAP) ? 2591 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2592 return tmp_ptr + offset; 2593 } 2594 } 2595 2596 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2597 { 2598 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2599 2600 if (sbi->cur_cp_pack == 2) 2601 start_addr += BLKS_PER_SEG(sbi); 2602 return start_addr; 2603 } 2604 2605 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2606 { 2607 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2608 2609 if (sbi->cur_cp_pack == 1) 2610 start_addr += BLKS_PER_SEG(sbi); 2611 return start_addr; 2612 } 2613 2614 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2615 { 2616 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2617 } 2618 2619 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2620 { 2621 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2622 } 2623 2624 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2625 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2626 struct inode *inode, bool is_inode) 2627 { 2628 block_t valid_block_count; 2629 unsigned int valid_node_count; 2630 unsigned int avail_user_block_count; 2631 int err; 2632 2633 if (is_inode) { 2634 if (inode) { 2635 err = dquot_alloc_inode(inode); 2636 if (err) 2637 return err; 2638 } 2639 } else { 2640 err = dquot_reserve_block(inode, 1); 2641 if (err) 2642 return err; 2643 } 2644 2645 if (time_to_inject(sbi, FAULT_BLOCK)) 2646 goto enospc; 2647 2648 spin_lock(&sbi->stat_lock); 2649 2650 valid_block_count = sbi->total_valid_block_count + 1; 2651 avail_user_block_count = get_available_block_count(sbi, inode, false); 2652 2653 if (unlikely(valid_block_count > avail_user_block_count)) { 2654 spin_unlock(&sbi->stat_lock); 2655 goto enospc; 2656 } 2657 2658 valid_node_count = sbi->total_valid_node_count + 1; 2659 if (unlikely(valid_node_count > sbi->total_node_count)) { 2660 spin_unlock(&sbi->stat_lock); 2661 goto enospc; 2662 } 2663 2664 sbi->total_valid_node_count++; 2665 sbi->total_valid_block_count++; 2666 spin_unlock(&sbi->stat_lock); 2667 2668 if (inode) { 2669 if (is_inode) 2670 f2fs_mark_inode_dirty_sync(inode, true); 2671 else 2672 f2fs_i_blocks_write(inode, 1, true, true); 2673 } 2674 2675 percpu_counter_inc(&sbi->alloc_valid_block_count); 2676 return 0; 2677 2678 enospc: 2679 if (is_inode) { 2680 if (inode) 2681 dquot_free_inode(inode); 2682 } else { 2683 dquot_release_reservation_block(inode, 1); 2684 } 2685 return -ENOSPC; 2686 } 2687 2688 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2689 struct inode *inode, bool is_inode) 2690 { 2691 spin_lock(&sbi->stat_lock); 2692 2693 if (unlikely(!sbi->total_valid_block_count || 2694 !sbi->total_valid_node_count)) { 2695 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2696 sbi->total_valid_block_count, 2697 sbi->total_valid_node_count); 2698 set_sbi_flag(sbi, SBI_NEED_FSCK); 2699 } else { 2700 sbi->total_valid_block_count--; 2701 sbi->total_valid_node_count--; 2702 } 2703 2704 if (sbi->reserved_blocks && 2705 sbi->current_reserved_blocks < sbi->reserved_blocks) 2706 sbi->current_reserved_blocks++; 2707 2708 spin_unlock(&sbi->stat_lock); 2709 2710 if (is_inode) { 2711 dquot_free_inode(inode); 2712 } else { 2713 if (unlikely(inode->i_blocks == 0)) { 2714 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2715 inode->i_ino, 2716 (unsigned long long)inode->i_blocks); 2717 set_sbi_flag(sbi, SBI_NEED_FSCK); 2718 return; 2719 } 2720 f2fs_i_blocks_write(inode, 1, false, true); 2721 } 2722 } 2723 2724 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2725 { 2726 return sbi->total_valid_node_count; 2727 } 2728 2729 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2730 { 2731 percpu_counter_inc(&sbi->total_valid_inode_count); 2732 } 2733 2734 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2735 { 2736 percpu_counter_dec(&sbi->total_valid_inode_count); 2737 } 2738 2739 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2740 { 2741 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2742 } 2743 2744 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2745 pgoff_t index, bool for_write) 2746 { 2747 struct page *page; 2748 unsigned int flags; 2749 2750 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2751 if (!for_write) 2752 page = find_get_page_flags(mapping, index, 2753 FGP_LOCK | FGP_ACCESSED); 2754 else 2755 page = find_lock_page(mapping, index); 2756 if (page) 2757 return page; 2758 2759 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2760 return NULL; 2761 } 2762 2763 if (!for_write) 2764 return grab_cache_page(mapping, index); 2765 2766 flags = memalloc_nofs_save(); 2767 page = grab_cache_page_write_begin(mapping, index); 2768 memalloc_nofs_restore(flags); 2769 2770 return page; 2771 } 2772 2773 static inline struct page *f2fs_pagecache_get_page( 2774 struct address_space *mapping, pgoff_t index, 2775 fgf_t fgp_flags, gfp_t gfp_mask) 2776 { 2777 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2778 return NULL; 2779 2780 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2781 } 2782 2783 static inline void f2fs_put_page(struct page *page, int unlock) 2784 { 2785 if (!page) 2786 return; 2787 2788 if (unlock) { 2789 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2790 unlock_page(page); 2791 } 2792 put_page(page); 2793 } 2794 2795 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2796 { 2797 if (dn->node_page) 2798 f2fs_put_page(dn->node_page, 1); 2799 if (dn->inode_page && dn->node_page != dn->inode_page) 2800 f2fs_put_page(dn->inode_page, 0); 2801 dn->node_page = NULL; 2802 dn->inode_page = NULL; 2803 } 2804 2805 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2806 size_t size) 2807 { 2808 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2809 } 2810 2811 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2812 gfp_t flags) 2813 { 2814 void *entry; 2815 2816 entry = kmem_cache_alloc(cachep, flags); 2817 if (!entry) 2818 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2819 return entry; 2820 } 2821 2822 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2823 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2824 { 2825 if (nofail) 2826 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2827 2828 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2829 return NULL; 2830 2831 return kmem_cache_alloc(cachep, flags); 2832 } 2833 2834 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2835 { 2836 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2837 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2838 get_pages(sbi, F2FS_WB_CP_DATA) || 2839 get_pages(sbi, F2FS_DIO_READ) || 2840 get_pages(sbi, F2FS_DIO_WRITE)) 2841 return true; 2842 2843 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2844 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2845 return true; 2846 2847 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2848 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2849 return true; 2850 return false; 2851 } 2852 2853 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2854 { 2855 if (sbi->gc_mode == GC_URGENT_HIGH) 2856 return true; 2857 2858 if (is_inflight_io(sbi, type)) 2859 return false; 2860 2861 if (sbi->gc_mode == GC_URGENT_MID) 2862 return true; 2863 2864 if (sbi->gc_mode == GC_URGENT_LOW && 2865 (type == DISCARD_TIME || type == GC_TIME)) 2866 return true; 2867 2868 return f2fs_time_over(sbi, type); 2869 } 2870 2871 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2872 unsigned long index, void *item) 2873 { 2874 while (radix_tree_insert(root, index, item)) 2875 cond_resched(); 2876 } 2877 2878 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2879 2880 static inline bool IS_INODE(struct page *page) 2881 { 2882 struct f2fs_node *p = F2FS_NODE(page); 2883 2884 return RAW_IS_INODE(p); 2885 } 2886 2887 static inline int offset_in_addr(struct f2fs_inode *i) 2888 { 2889 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2890 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2891 } 2892 2893 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2894 { 2895 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2896 } 2897 2898 static inline int f2fs_has_extra_attr(struct inode *inode); 2899 static inline block_t data_blkaddr(struct inode *inode, 2900 struct page *node_page, unsigned int offset) 2901 { 2902 struct f2fs_node *raw_node; 2903 __le32 *addr_array; 2904 int base = 0; 2905 bool is_inode = IS_INODE(node_page); 2906 2907 raw_node = F2FS_NODE(node_page); 2908 2909 if (is_inode) { 2910 if (!inode) 2911 /* from GC path only */ 2912 base = offset_in_addr(&raw_node->i); 2913 else if (f2fs_has_extra_attr(inode)) 2914 base = get_extra_isize(inode); 2915 } 2916 2917 addr_array = blkaddr_in_node(raw_node); 2918 return le32_to_cpu(addr_array[base + offset]); 2919 } 2920 2921 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2922 { 2923 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2924 } 2925 2926 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2927 { 2928 int mask; 2929 2930 addr += (nr >> 3); 2931 mask = BIT(7 - (nr & 0x07)); 2932 return mask & *addr; 2933 } 2934 2935 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2936 { 2937 int mask; 2938 2939 addr += (nr >> 3); 2940 mask = BIT(7 - (nr & 0x07)); 2941 *addr |= mask; 2942 } 2943 2944 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2945 { 2946 int mask; 2947 2948 addr += (nr >> 3); 2949 mask = BIT(7 - (nr & 0x07)); 2950 *addr &= ~mask; 2951 } 2952 2953 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2954 { 2955 int mask; 2956 int ret; 2957 2958 addr += (nr >> 3); 2959 mask = BIT(7 - (nr & 0x07)); 2960 ret = mask & *addr; 2961 *addr |= mask; 2962 return ret; 2963 } 2964 2965 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2966 { 2967 int mask; 2968 int ret; 2969 2970 addr += (nr >> 3); 2971 mask = BIT(7 - (nr & 0x07)); 2972 ret = mask & *addr; 2973 *addr &= ~mask; 2974 return ret; 2975 } 2976 2977 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2978 { 2979 int mask; 2980 2981 addr += (nr >> 3); 2982 mask = BIT(7 - (nr & 0x07)); 2983 *addr ^= mask; 2984 } 2985 2986 /* 2987 * On-disk inode flags (f2fs_inode::i_flags) 2988 */ 2989 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2990 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2991 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2992 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2993 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2994 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2995 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2996 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2997 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2998 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2999 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 3000 3001 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 3002 3003 /* Flags that should be inherited by new inodes from their parent. */ 3004 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 3005 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3006 F2FS_CASEFOLD_FL) 3007 3008 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 3009 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3010 F2FS_CASEFOLD_FL)) 3011 3012 /* Flags that are appropriate for non-directories/regular files. */ 3013 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3014 3015 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3016 { 3017 if (S_ISDIR(mode)) 3018 return flags; 3019 else if (S_ISREG(mode)) 3020 return flags & F2FS_REG_FLMASK; 3021 else 3022 return flags & F2FS_OTHER_FLMASK; 3023 } 3024 3025 static inline void __mark_inode_dirty_flag(struct inode *inode, 3026 int flag, bool set) 3027 { 3028 switch (flag) { 3029 case FI_INLINE_XATTR: 3030 case FI_INLINE_DATA: 3031 case FI_INLINE_DENTRY: 3032 case FI_NEW_INODE: 3033 if (set) 3034 return; 3035 fallthrough; 3036 case FI_DATA_EXIST: 3037 case FI_INLINE_DOTS: 3038 case FI_PIN_FILE: 3039 case FI_COMPRESS_RELEASED: 3040 case FI_ATOMIC_COMMITTED: 3041 f2fs_mark_inode_dirty_sync(inode, true); 3042 } 3043 } 3044 3045 static inline void set_inode_flag(struct inode *inode, int flag) 3046 { 3047 set_bit(flag, F2FS_I(inode)->flags); 3048 __mark_inode_dirty_flag(inode, flag, true); 3049 } 3050 3051 static inline int is_inode_flag_set(struct inode *inode, int flag) 3052 { 3053 return test_bit(flag, F2FS_I(inode)->flags); 3054 } 3055 3056 static inline void clear_inode_flag(struct inode *inode, int flag) 3057 { 3058 clear_bit(flag, F2FS_I(inode)->flags); 3059 __mark_inode_dirty_flag(inode, flag, false); 3060 } 3061 3062 static inline bool f2fs_verity_in_progress(struct inode *inode) 3063 { 3064 return IS_ENABLED(CONFIG_FS_VERITY) && 3065 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3066 } 3067 3068 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3069 { 3070 F2FS_I(inode)->i_acl_mode = mode; 3071 set_inode_flag(inode, FI_ACL_MODE); 3072 f2fs_mark_inode_dirty_sync(inode, false); 3073 } 3074 3075 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3076 { 3077 if (inc) 3078 inc_nlink(inode); 3079 else 3080 drop_nlink(inode); 3081 f2fs_mark_inode_dirty_sync(inode, true); 3082 } 3083 3084 static inline void f2fs_i_blocks_write(struct inode *inode, 3085 block_t diff, bool add, bool claim) 3086 { 3087 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3088 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3089 3090 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3091 if (add) { 3092 if (claim) 3093 dquot_claim_block(inode, diff); 3094 else 3095 dquot_alloc_block_nofail(inode, diff); 3096 } else { 3097 dquot_free_block(inode, diff); 3098 } 3099 3100 f2fs_mark_inode_dirty_sync(inode, true); 3101 if (clean || recover) 3102 set_inode_flag(inode, FI_AUTO_RECOVER); 3103 } 3104 3105 static inline bool f2fs_is_atomic_file(struct inode *inode); 3106 3107 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3108 { 3109 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3110 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3111 3112 if (i_size_read(inode) == i_size) 3113 return; 3114 3115 i_size_write(inode, i_size); 3116 3117 if (f2fs_is_atomic_file(inode)) 3118 return; 3119 3120 f2fs_mark_inode_dirty_sync(inode, true); 3121 if (clean || recover) 3122 set_inode_flag(inode, FI_AUTO_RECOVER); 3123 } 3124 3125 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3126 { 3127 F2FS_I(inode)->i_current_depth = depth; 3128 f2fs_mark_inode_dirty_sync(inode, true); 3129 } 3130 3131 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3132 unsigned int count) 3133 { 3134 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3135 f2fs_mark_inode_dirty_sync(inode, true); 3136 } 3137 3138 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3139 { 3140 F2FS_I(inode)->i_xattr_nid = xnid; 3141 f2fs_mark_inode_dirty_sync(inode, true); 3142 } 3143 3144 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3145 { 3146 F2FS_I(inode)->i_pino = pino; 3147 f2fs_mark_inode_dirty_sync(inode, true); 3148 } 3149 3150 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3151 { 3152 struct f2fs_inode_info *fi = F2FS_I(inode); 3153 3154 if (ri->i_inline & F2FS_INLINE_XATTR) 3155 set_bit(FI_INLINE_XATTR, fi->flags); 3156 if (ri->i_inline & F2FS_INLINE_DATA) 3157 set_bit(FI_INLINE_DATA, fi->flags); 3158 if (ri->i_inline & F2FS_INLINE_DENTRY) 3159 set_bit(FI_INLINE_DENTRY, fi->flags); 3160 if (ri->i_inline & F2FS_DATA_EXIST) 3161 set_bit(FI_DATA_EXIST, fi->flags); 3162 if (ri->i_inline & F2FS_INLINE_DOTS) 3163 set_bit(FI_INLINE_DOTS, fi->flags); 3164 if (ri->i_inline & F2FS_EXTRA_ATTR) 3165 set_bit(FI_EXTRA_ATTR, fi->flags); 3166 if (ri->i_inline & F2FS_PIN_FILE) 3167 set_bit(FI_PIN_FILE, fi->flags); 3168 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3169 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3170 } 3171 3172 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3173 { 3174 ri->i_inline = 0; 3175 3176 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3177 ri->i_inline |= F2FS_INLINE_XATTR; 3178 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3179 ri->i_inline |= F2FS_INLINE_DATA; 3180 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3181 ri->i_inline |= F2FS_INLINE_DENTRY; 3182 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3183 ri->i_inline |= F2FS_DATA_EXIST; 3184 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3185 ri->i_inline |= F2FS_INLINE_DOTS; 3186 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3187 ri->i_inline |= F2FS_EXTRA_ATTR; 3188 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3189 ri->i_inline |= F2FS_PIN_FILE; 3190 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3191 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3192 } 3193 3194 static inline int f2fs_has_extra_attr(struct inode *inode) 3195 { 3196 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3197 } 3198 3199 static inline int f2fs_has_inline_xattr(struct inode *inode) 3200 { 3201 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3202 } 3203 3204 static inline int f2fs_compressed_file(struct inode *inode) 3205 { 3206 return S_ISREG(inode->i_mode) && 3207 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3208 } 3209 3210 static inline bool f2fs_need_compress_data(struct inode *inode) 3211 { 3212 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3213 3214 if (!f2fs_compressed_file(inode)) 3215 return false; 3216 3217 if (compress_mode == COMPR_MODE_FS) 3218 return true; 3219 else if (compress_mode == COMPR_MODE_USER && 3220 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3221 return true; 3222 3223 return false; 3224 } 3225 3226 static inline unsigned int addrs_per_inode(struct inode *inode) 3227 { 3228 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3229 get_inline_xattr_addrs(inode); 3230 3231 if (!f2fs_compressed_file(inode)) 3232 return addrs; 3233 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3234 } 3235 3236 static inline unsigned int addrs_per_block(struct inode *inode) 3237 { 3238 if (!f2fs_compressed_file(inode)) 3239 return DEF_ADDRS_PER_BLOCK; 3240 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3241 } 3242 3243 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3244 { 3245 struct f2fs_inode *ri = F2FS_INODE(page); 3246 3247 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3248 get_inline_xattr_addrs(inode)]); 3249 } 3250 3251 static inline int inline_xattr_size(struct inode *inode) 3252 { 3253 if (f2fs_has_inline_xattr(inode)) 3254 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3255 return 0; 3256 } 3257 3258 /* 3259 * Notice: check inline_data flag without inode page lock is unsafe. 3260 * It could change at any time by f2fs_convert_inline_page(). 3261 */ 3262 static inline int f2fs_has_inline_data(struct inode *inode) 3263 { 3264 return is_inode_flag_set(inode, FI_INLINE_DATA); 3265 } 3266 3267 static inline int f2fs_exist_data(struct inode *inode) 3268 { 3269 return is_inode_flag_set(inode, FI_DATA_EXIST); 3270 } 3271 3272 static inline int f2fs_has_inline_dots(struct inode *inode) 3273 { 3274 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3275 } 3276 3277 static inline int f2fs_is_mmap_file(struct inode *inode) 3278 { 3279 return is_inode_flag_set(inode, FI_MMAP_FILE); 3280 } 3281 3282 static inline bool f2fs_is_pinned_file(struct inode *inode) 3283 { 3284 return is_inode_flag_set(inode, FI_PIN_FILE); 3285 } 3286 3287 static inline bool f2fs_is_atomic_file(struct inode *inode) 3288 { 3289 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3290 } 3291 3292 static inline bool f2fs_is_cow_file(struct inode *inode) 3293 { 3294 return is_inode_flag_set(inode, FI_COW_FILE); 3295 } 3296 3297 static inline __le32 *get_dnode_addr(struct inode *inode, 3298 struct page *node_page); 3299 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3300 { 3301 __le32 *addr = get_dnode_addr(inode, page); 3302 3303 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3304 } 3305 3306 static inline int f2fs_has_inline_dentry(struct inode *inode) 3307 { 3308 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3309 } 3310 3311 static inline int is_file(struct inode *inode, int type) 3312 { 3313 return F2FS_I(inode)->i_advise & type; 3314 } 3315 3316 static inline void set_file(struct inode *inode, int type) 3317 { 3318 if (is_file(inode, type)) 3319 return; 3320 F2FS_I(inode)->i_advise |= type; 3321 f2fs_mark_inode_dirty_sync(inode, true); 3322 } 3323 3324 static inline void clear_file(struct inode *inode, int type) 3325 { 3326 if (!is_file(inode, type)) 3327 return; 3328 F2FS_I(inode)->i_advise &= ~type; 3329 f2fs_mark_inode_dirty_sync(inode, true); 3330 } 3331 3332 static inline bool f2fs_is_time_consistent(struct inode *inode) 3333 { 3334 struct timespec64 ctime = inode_get_ctime(inode); 3335 3336 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3337 return false; 3338 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime)) 3339 return false; 3340 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3341 return false; 3342 return true; 3343 } 3344 3345 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3346 { 3347 bool ret; 3348 3349 if (dsync) { 3350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3351 3352 spin_lock(&sbi->inode_lock[DIRTY_META]); 3353 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3354 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3355 return ret; 3356 } 3357 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3358 file_keep_isize(inode) || 3359 i_size_read(inode) & ~PAGE_MASK) 3360 return false; 3361 3362 if (!f2fs_is_time_consistent(inode)) 3363 return false; 3364 3365 spin_lock(&F2FS_I(inode)->i_size_lock); 3366 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3367 spin_unlock(&F2FS_I(inode)->i_size_lock); 3368 3369 return ret; 3370 } 3371 3372 static inline bool f2fs_readonly(struct super_block *sb) 3373 { 3374 return sb_rdonly(sb); 3375 } 3376 3377 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3378 { 3379 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3380 } 3381 3382 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3383 { 3384 if (len == 1 && name[0] == '.') 3385 return true; 3386 3387 if (len == 2 && name[0] == '.' && name[1] == '.') 3388 return true; 3389 3390 return false; 3391 } 3392 3393 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3394 size_t size, gfp_t flags) 3395 { 3396 if (time_to_inject(sbi, FAULT_KMALLOC)) 3397 return NULL; 3398 3399 return kmalloc(size, flags); 3400 } 3401 3402 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3403 { 3404 if (time_to_inject(sbi, FAULT_KMALLOC)) 3405 return NULL; 3406 3407 return __getname(); 3408 } 3409 3410 static inline void f2fs_putname(char *buf) 3411 { 3412 __putname(buf); 3413 } 3414 3415 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3416 size_t size, gfp_t flags) 3417 { 3418 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3419 } 3420 3421 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3422 size_t size, gfp_t flags) 3423 { 3424 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3425 return NULL; 3426 3427 return kvmalloc(size, flags); 3428 } 3429 3430 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3431 size_t size, gfp_t flags) 3432 { 3433 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3434 } 3435 3436 static inline int get_extra_isize(struct inode *inode) 3437 { 3438 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3439 } 3440 3441 static inline int get_inline_xattr_addrs(struct inode *inode) 3442 { 3443 return F2FS_I(inode)->i_inline_xattr_size; 3444 } 3445 3446 static inline __le32 *get_dnode_addr(struct inode *inode, 3447 struct page *node_page) 3448 { 3449 int base = 0; 3450 3451 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) 3452 base = get_extra_isize(inode); 3453 3454 return blkaddr_in_node(F2FS_NODE(node_page)) + base; 3455 } 3456 3457 #define f2fs_get_inode_mode(i) \ 3458 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3459 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3460 3461 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3462 3463 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3464 (offsetof(struct f2fs_inode, i_extra_end) - \ 3465 offsetof(struct f2fs_inode, i_extra_isize)) \ 3466 3467 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3468 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3469 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3470 sizeof((f2fs_inode)->field)) \ 3471 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3472 3473 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) 3474 3475 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3476 3477 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3478 block_t blkaddr, int type); 3479 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3480 block_t blkaddr, int type) 3481 { 3482 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3483 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3484 blkaddr, type); 3485 } 3486 3487 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3488 { 3489 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3490 blkaddr == COMPRESS_ADDR) 3491 return false; 3492 return true; 3493 } 3494 3495 /* 3496 * file.c 3497 */ 3498 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3499 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3500 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3501 int f2fs_truncate(struct inode *inode); 3502 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3503 struct kstat *stat, u32 request_mask, unsigned int flags); 3504 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3505 struct iattr *attr); 3506 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3507 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3508 int f2fs_precache_extents(struct inode *inode); 3509 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3510 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3511 struct dentry *dentry, struct fileattr *fa); 3512 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3513 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3514 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3515 int f2fs_pin_file_control(struct inode *inode, bool inc); 3516 3517 /* 3518 * inode.c 3519 */ 3520 void f2fs_set_inode_flags(struct inode *inode); 3521 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3522 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3523 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3524 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3525 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3526 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3527 void f2fs_update_inode_page(struct inode *inode); 3528 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3529 void f2fs_evict_inode(struct inode *inode); 3530 void f2fs_handle_failed_inode(struct inode *inode); 3531 3532 /* 3533 * namei.c 3534 */ 3535 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3536 bool hot, bool set); 3537 struct dentry *f2fs_get_parent(struct dentry *child); 3538 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3539 struct inode **new_inode); 3540 3541 /* 3542 * dir.c 3543 */ 3544 int f2fs_init_casefolded_name(const struct inode *dir, 3545 struct f2fs_filename *fname); 3546 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3547 int lookup, struct f2fs_filename *fname); 3548 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3549 struct f2fs_filename *fname); 3550 void f2fs_free_filename(struct f2fs_filename *fname); 3551 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3552 const struct f2fs_filename *fname, int *max_slots); 3553 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3554 unsigned int start_pos, struct fscrypt_str *fstr); 3555 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3556 struct f2fs_dentry_ptr *d); 3557 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3558 const struct f2fs_filename *fname, struct page *dpage); 3559 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3560 unsigned int current_depth); 3561 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3562 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3563 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3564 const struct f2fs_filename *fname, 3565 struct page **res_page); 3566 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3567 const struct qstr *child, struct page **res_page); 3568 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3569 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3570 struct page **page); 3571 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3572 struct page *page, struct inode *inode); 3573 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3574 const struct f2fs_filename *fname); 3575 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3576 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3577 unsigned int bit_pos); 3578 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3579 struct inode *inode, nid_t ino, umode_t mode); 3580 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3581 struct inode *inode, nid_t ino, umode_t mode); 3582 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3583 struct inode *inode, nid_t ino, umode_t mode); 3584 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3585 struct inode *dir, struct inode *inode); 3586 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3587 struct f2fs_filename *fname); 3588 bool f2fs_empty_dir(struct inode *dir); 3589 3590 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3591 { 3592 if (fscrypt_is_nokey_name(dentry)) 3593 return -ENOKEY; 3594 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3595 inode, inode->i_ino, inode->i_mode); 3596 } 3597 3598 /* 3599 * super.c 3600 */ 3601 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3602 void f2fs_inode_synced(struct inode *inode); 3603 int f2fs_dquot_initialize(struct inode *inode); 3604 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3605 int f2fs_quota_sync(struct super_block *sb, int type); 3606 loff_t max_file_blocks(struct inode *inode); 3607 void f2fs_quota_off_umount(struct super_block *sb); 3608 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3609 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3610 bool irq_context); 3611 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3612 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3613 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3614 int f2fs_sync_fs(struct super_block *sb, int sync); 3615 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3616 3617 /* 3618 * hash.c 3619 */ 3620 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3621 3622 /* 3623 * node.c 3624 */ 3625 struct node_info; 3626 3627 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3628 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3629 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3630 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3631 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3632 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3633 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3634 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3635 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3636 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3637 struct node_info *ni, bool checkpoint_context); 3638 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3639 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3640 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3641 int f2fs_truncate_xattr_node(struct inode *inode); 3642 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3643 unsigned int seq_id); 3644 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3645 int f2fs_remove_inode_page(struct inode *inode); 3646 struct page *f2fs_new_inode_page(struct inode *inode); 3647 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3648 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3649 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3650 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3651 int f2fs_move_node_page(struct page *node_page, int gc_type); 3652 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3653 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3654 struct writeback_control *wbc, bool atomic, 3655 unsigned int *seq_id); 3656 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3657 struct writeback_control *wbc, 3658 bool do_balance, enum iostat_type io_type); 3659 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3660 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3661 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3662 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3663 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3664 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3665 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3666 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3667 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3668 unsigned int segno, struct f2fs_summary_block *sum); 3669 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3670 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3671 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3672 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3673 int __init f2fs_create_node_manager_caches(void); 3674 void f2fs_destroy_node_manager_caches(void); 3675 3676 /* 3677 * segment.c 3678 */ 3679 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3680 int f2fs_commit_atomic_write(struct inode *inode); 3681 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3682 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3683 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3684 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3685 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3686 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3687 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3688 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3689 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3690 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3691 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3692 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3693 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3694 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3695 struct cp_control *cpc); 3696 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3697 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3698 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3699 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3700 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3701 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3702 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3703 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3704 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3705 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3706 unsigned int *newseg, bool new_sec, int dir); 3707 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3708 unsigned int start, unsigned int end); 3709 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3710 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); 3711 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3712 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3713 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3714 struct cp_control *cpc); 3715 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3716 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3717 block_t blk_addr); 3718 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3719 enum iostat_type io_type); 3720 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3721 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3722 struct f2fs_io_info *fio); 3723 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3724 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3725 block_t old_blkaddr, block_t new_blkaddr, 3726 bool recover_curseg, bool recover_newaddr, 3727 bool from_gc); 3728 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3729 block_t old_addr, block_t new_addr, 3730 unsigned char version, bool recover_curseg, 3731 bool recover_newaddr); 3732 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3733 block_t old_blkaddr, block_t *new_blkaddr, 3734 struct f2fs_summary *sum, int type, 3735 struct f2fs_io_info *fio); 3736 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3737 block_t blkaddr, unsigned int blkcnt); 3738 void f2fs_wait_on_page_writeback(struct page *page, 3739 enum page_type type, bool ordered, bool locked); 3740 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3741 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3742 block_t len); 3743 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3744 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3745 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3746 unsigned int val, int alloc); 3747 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3748 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3749 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3750 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3751 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3752 int __init f2fs_create_segment_manager_caches(void); 3753 void f2fs_destroy_segment_manager_caches(void); 3754 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3755 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3756 unsigned int segno); 3757 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3758 unsigned int segno); 3759 3760 #define DEF_FRAGMENT_SIZE 4 3761 #define MIN_FRAGMENT_SIZE 1 3762 #define MAX_FRAGMENT_SIZE 512 3763 3764 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3765 { 3766 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3767 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3768 } 3769 3770 /* 3771 * checkpoint.c 3772 */ 3773 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3774 unsigned char reason); 3775 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3776 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3777 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3778 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3779 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3780 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3781 block_t blkaddr, int type); 3782 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3783 int type, bool sync); 3784 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3785 unsigned int ra_blocks); 3786 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3787 long nr_to_write, enum iostat_type io_type); 3788 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3789 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3790 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3791 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3792 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3793 unsigned int devidx, int type); 3794 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3795 unsigned int devidx, int type); 3796 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3797 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3798 void f2fs_add_orphan_inode(struct inode *inode); 3799 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3800 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3801 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3802 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3803 void f2fs_remove_dirty_inode(struct inode *inode); 3804 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3805 bool from_cp); 3806 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3807 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3808 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3809 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3810 int __init f2fs_create_checkpoint_caches(void); 3811 void f2fs_destroy_checkpoint_caches(void); 3812 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3813 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3814 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3815 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3816 3817 /* 3818 * data.c 3819 */ 3820 int __init f2fs_init_bioset(void); 3821 void f2fs_destroy_bioset(void); 3822 bool f2fs_is_cp_guaranteed(struct page *page); 3823 int f2fs_init_bio_entry_cache(void); 3824 void f2fs_destroy_bio_entry_cache(void); 3825 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3826 enum page_type type); 3827 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3828 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3829 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3830 struct inode *inode, struct page *page, 3831 nid_t ino, enum page_type type); 3832 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3833 struct bio **bio, struct page *page); 3834 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3835 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3836 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3837 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3838 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3839 block_t blk_addr, sector_t *sector); 3840 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3841 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3842 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3843 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3844 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3845 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3846 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3847 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3848 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3849 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3850 pgoff_t *next_pgofs); 3851 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3852 bool for_write); 3853 struct page *f2fs_get_new_data_page(struct inode *inode, 3854 struct page *ipage, pgoff_t index, bool new_i_size); 3855 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3856 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3857 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3858 u64 start, u64 len); 3859 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3860 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3861 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3862 int f2fs_write_single_data_page(struct page *page, int *submitted, 3863 struct bio **bio, sector_t *last_block, 3864 struct writeback_control *wbc, 3865 enum iostat_type io_type, 3866 int compr_blocks, bool allow_balance); 3867 void f2fs_write_failed(struct inode *inode, loff_t to); 3868 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3869 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3870 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3871 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3872 int f2fs_init_post_read_processing(void); 3873 void f2fs_destroy_post_read_processing(void); 3874 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3875 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3876 extern const struct iomap_ops f2fs_iomap_ops; 3877 3878 /* 3879 * gc.c 3880 */ 3881 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3882 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3883 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3884 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3885 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3886 int f2fs_gc_range(struct f2fs_sb_info *sbi, 3887 unsigned int start_seg, unsigned int end_seg, 3888 bool dry_run, unsigned int dry_run_sections); 3889 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3890 int __init f2fs_create_garbage_collection_cache(void); 3891 void f2fs_destroy_garbage_collection_cache(void); 3892 /* victim selection function for cleaning and SSR */ 3893 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3894 int gc_type, int type, char alloc_mode, 3895 unsigned long long age); 3896 3897 /* 3898 * recovery.c 3899 */ 3900 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3901 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3902 int __init f2fs_create_recovery_cache(void); 3903 void f2fs_destroy_recovery_cache(void); 3904 3905 /* 3906 * debug.c 3907 */ 3908 #ifdef CONFIG_F2FS_STAT_FS 3909 struct f2fs_stat_info { 3910 struct list_head stat_list; 3911 struct f2fs_sb_info *sbi; 3912 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3913 int main_area_segs, main_area_sections, main_area_zones; 3914 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3915 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3916 unsigned long long total_ext[NR_EXTENT_CACHES]; 3917 unsigned long long hit_total[NR_EXTENT_CACHES]; 3918 int ext_tree[NR_EXTENT_CACHES]; 3919 int zombie_tree[NR_EXTENT_CACHES]; 3920 int ext_node[NR_EXTENT_CACHES]; 3921 /* to count memory footprint */ 3922 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3923 /* for read extent cache */ 3924 unsigned long long hit_largest; 3925 /* for block age extent cache */ 3926 unsigned long long allocated_data_blocks; 3927 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3928 int ndirty_data, ndirty_qdata; 3929 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3930 int nats, dirty_nats, sits, dirty_sits; 3931 int free_nids, avail_nids, alloc_nids; 3932 int total_count, utilization; 3933 int nr_wb_cp_data, nr_wb_data; 3934 int nr_rd_data, nr_rd_node, nr_rd_meta; 3935 int nr_dio_read, nr_dio_write; 3936 unsigned int io_skip_bggc, other_skip_bggc; 3937 int nr_flushing, nr_flushed, flush_list_empty; 3938 int nr_discarding, nr_discarded; 3939 int nr_discard_cmd; 3940 unsigned int undiscard_blks; 3941 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3942 unsigned int cur_ckpt_time, peak_ckpt_time; 3943 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3944 int compr_inode, swapfile_inode; 3945 unsigned long long compr_blocks; 3946 int aw_cnt, max_aw_cnt; 3947 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3948 unsigned int bimodal, avg_vblocks; 3949 int util_free, util_valid, util_invalid; 3950 int rsvd_segs, overp_segs; 3951 int dirty_count, node_pages, meta_pages, compress_pages; 3952 int compress_page_hit; 3953 int prefree_count, free_segs, free_secs; 3954 int cp_call_count[MAX_CALL_TYPE], cp_count; 3955 int gc_call_count[MAX_CALL_TYPE]; 3956 int gc_segs[2][2]; 3957 int gc_secs[2][2]; 3958 int tot_blks, data_blks, node_blks; 3959 int bg_data_blks, bg_node_blks; 3960 int curseg[NR_CURSEG_TYPE]; 3961 int cursec[NR_CURSEG_TYPE]; 3962 int curzone[NR_CURSEG_TYPE]; 3963 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3964 unsigned int full_seg[NR_CURSEG_TYPE]; 3965 unsigned int valid_blks[NR_CURSEG_TYPE]; 3966 3967 unsigned int meta_count[META_MAX]; 3968 unsigned int segment_count[2]; 3969 unsigned int block_count[2]; 3970 unsigned int inplace_count; 3971 unsigned long long base_mem, cache_mem, page_mem; 3972 }; 3973 3974 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3975 { 3976 return (struct f2fs_stat_info *)sbi->stat_info; 3977 } 3978 3979 #define stat_inc_cp_call_count(sbi, foreground) \ 3980 atomic_inc(&sbi->cp_call_count[(foreground)]) 3981 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3982 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3983 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3984 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3985 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3986 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3987 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3988 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3989 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3990 #define stat_inc_inline_xattr(inode) \ 3991 do { \ 3992 if (f2fs_has_inline_xattr(inode)) \ 3993 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3994 } while (0) 3995 #define stat_dec_inline_xattr(inode) \ 3996 do { \ 3997 if (f2fs_has_inline_xattr(inode)) \ 3998 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3999 } while (0) 4000 #define stat_inc_inline_inode(inode) \ 4001 do { \ 4002 if (f2fs_has_inline_data(inode)) \ 4003 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 4004 } while (0) 4005 #define stat_dec_inline_inode(inode) \ 4006 do { \ 4007 if (f2fs_has_inline_data(inode)) \ 4008 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 4009 } while (0) 4010 #define stat_inc_inline_dir(inode) \ 4011 do { \ 4012 if (f2fs_has_inline_dentry(inode)) \ 4013 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 4014 } while (0) 4015 #define stat_dec_inline_dir(inode) \ 4016 do { \ 4017 if (f2fs_has_inline_dentry(inode)) \ 4018 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4019 } while (0) 4020 #define stat_inc_compr_inode(inode) \ 4021 do { \ 4022 if (f2fs_compressed_file(inode)) \ 4023 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4024 } while (0) 4025 #define stat_dec_compr_inode(inode) \ 4026 do { \ 4027 if (f2fs_compressed_file(inode)) \ 4028 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4029 } while (0) 4030 #define stat_add_compr_blocks(inode, blocks) \ 4031 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4032 #define stat_sub_compr_blocks(inode, blocks) \ 4033 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4034 #define stat_inc_swapfile_inode(inode) \ 4035 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4036 #define stat_dec_swapfile_inode(inode) \ 4037 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4038 #define stat_inc_atomic_inode(inode) \ 4039 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4040 #define stat_dec_atomic_inode(inode) \ 4041 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4042 #define stat_inc_meta_count(sbi, blkaddr) \ 4043 do { \ 4044 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4045 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4046 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4047 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4048 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4049 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4050 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4051 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4052 } while (0) 4053 #define stat_inc_seg_type(sbi, curseg) \ 4054 ((sbi)->segment_count[(curseg)->alloc_type]++) 4055 #define stat_inc_block_count(sbi, curseg) \ 4056 ((sbi)->block_count[(curseg)->alloc_type]++) 4057 #define stat_inc_inplace_blocks(sbi) \ 4058 (atomic_inc(&(sbi)->inplace_count)) 4059 #define stat_update_max_atomic_write(inode) \ 4060 do { \ 4061 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4062 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4063 if (cur > max) \ 4064 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4065 } while (0) 4066 #define stat_inc_gc_call_count(sbi, foreground) \ 4067 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4068 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4069 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4070 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4071 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4072 4073 #define stat_inc_tot_blk_count(si, blks) \ 4074 ((si)->tot_blks += (blks)) 4075 4076 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4077 do { \ 4078 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4079 stat_inc_tot_blk_count(si, blks); \ 4080 si->data_blks += (blks); \ 4081 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4082 } while (0) 4083 4084 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4085 do { \ 4086 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4087 stat_inc_tot_blk_count(si, blks); \ 4088 si->node_blks += (blks); \ 4089 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4090 } while (0) 4091 4092 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4093 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4094 void __init f2fs_create_root_stats(void); 4095 void f2fs_destroy_root_stats(void); 4096 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4097 #else 4098 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4099 #define stat_inc_cp_count(sbi) do { } while (0) 4100 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4101 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4102 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4103 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4104 #define stat_inc_total_hit(sbi, type) do { } while (0) 4105 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4106 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4107 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4108 #define stat_inc_inline_xattr(inode) do { } while (0) 4109 #define stat_dec_inline_xattr(inode) do { } while (0) 4110 #define stat_inc_inline_inode(inode) do { } while (0) 4111 #define stat_dec_inline_inode(inode) do { } while (0) 4112 #define stat_inc_inline_dir(inode) do { } while (0) 4113 #define stat_dec_inline_dir(inode) do { } while (0) 4114 #define stat_inc_compr_inode(inode) do { } while (0) 4115 #define stat_dec_compr_inode(inode) do { } while (0) 4116 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4117 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4118 #define stat_inc_swapfile_inode(inode) do { } while (0) 4119 #define stat_dec_swapfile_inode(inode) do { } while (0) 4120 #define stat_inc_atomic_inode(inode) do { } while (0) 4121 #define stat_dec_atomic_inode(inode) do { } while (0) 4122 #define stat_update_max_atomic_write(inode) do { } while (0) 4123 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4124 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4125 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4126 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4127 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4128 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4129 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4130 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4131 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4132 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4133 4134 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4135 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4136 static inline void __init f2fs_create_root_stats(void) { } 4137 static inline void f2fs_destroy_root_stats(void) { } 4138 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4139 #endif 4140 4141 extern const struct file_operations f2fs_dir_operations; 4142 extern const struct file_operations f2fs_file_operations; 4143 extern const struct inode_operations f2fs_file_inode_operations; 4144 extern const struct address_space_operations f2fs_dblock_aops; 4145 extern const struct address_space_operations f2fs_node_aops; 4146 extern const struct address_space_operations f2fs_meta_aops; 4147 extern const struct inode_operations f2fs_dir_inode_operations; 4148 extern const struct inode_operations f2fs_symlink_inode_operations; 4149 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4150 extern const struct inode_operations f2fs_special_inode_operations; 4151 extern struct kmem_cache *f2fs_inode_entry_slab; 4152 4153 /* 4154 * inline.c 4155 */ 4156 bool f2fs_may_inline_data(struct inode *inode); 4157 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage); 4158 bool f2fs_may_inline_dentry(struct inode *inode); 4159 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4160 void f2fs_truncate_inline_inode(struct inode *inode, 4161 struct page *ipage, u64 from); 4162 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4163 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4164 int f2fs_convert_inline_inode(struct inode *inode); 4165 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4166 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4167 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4168 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4169 const struct f2fs_filename *fname, 4170 struct page **res_page); 4171 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4172 struct page *ipage); 4173 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4174 struct inode *inode, nid_t ino, umode_t mode); 4175 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4176 struct page *page, struct inode *dir, 4177 struct inode *inode); 4178 bool f2fs_empty_inline_dir(struct inode *dir); 4179 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4180 struct fscrypt_str *fstr); 4181 int f2fs_inline_data_fiemap(struct inode *inode, 4182 struct fiemap_extent_info *fieinfo, 4183 __u64 start, __u64 len); 4184 4185 /* 4186 * shrinker.c 4187 */ 4188 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4189 struct shrink_control *sc); 4190 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4191 struct shrink_control *sc); 4192 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4193 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4194 4195 /* 4196 * extent_cache.c 4197 */ 4198 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage); 4199 void f2fs_init_extent_tree(struct inode *inode); 4200 void f2fs_drop_extent_tree(struct inode *inode); 4201 void f2fs_destroy_extent_node(struct inode *inode); 4202 void f2fs_destroy_extent_tree(struct inode *inode); 4203 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4204 int __init f2fs_create_extent_cache(void); 4205 void f2fs_destroy_extent_cache(void); 4206 4207 /* read extent cache ops */ 4208 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4209 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4210 struct extent_info *ei); 4211 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4212 block_t *blkaddr); 4213 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4214 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4215 pgoff_t fofs, block_t blkaddr, unsigned int len); 4216 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4217 int nr_shrink); 4218 4219 /* block age extent cache ops */ 4220 void f2fs_init_age_extent_tree(struct inode *inode); 4221 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4222 struct extent_info *ei); 4223 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4224 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4225 pgoff_t fofs, unsigned int len); 4226 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4227 int nr_shrink); 4228 4229 /* 4230 * sysfs.c 4231 */ 4232 #define MIN_RA_MUL 2 4233 #define MAX_RA_MUL 256 4234 4235 int __init f2fs_init_sysfs(void); 4236 void f2fs_exit_sysfs(void); 4237 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4238 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4239 4240 /* verity.c */ 4241 extern const struct fsverity_operations f2fs_verityops; 4242 4243 /* 4244 * crypto support 4245 */ 4246 static inline bool f2fs_encrypted_file(struct inode *inode) 4247 { 4248 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4249 } 4250 4251 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4252 { 4253 #ifdef CONFIG_FS_ENCRYPTION 4254 file_set_encrypt(inode); 4255 f2fs_set_inode_flags(inode); 4256 #endif 4257 } 4258 4259 /* 4260 * Returns true if the reads of the inode's data need to undergo some 4261 * postprocessing step, like decryption or authenticity verification. 4262 */ 4263 static inline bool f2fs_post_read_required(struct inode *inode) 4264 { 4265 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4266 f2fs_compressed_file(inode); 4267 } 4268 4269 static inline bool f2fs_used_in_atomic_write(struct inode *inode) 4270 { 4271 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); 4272 } 4273 4274 static inline bool f2fs_meta_inode_gc_required(struct inode *inode) 4275 { 4276 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); 4277 } 4278 4279 /* 4280 * compress.c 4281 */ 4282 #ifdef CONFIG_F2FS_FS_COMPRESSION 4283 bool f2fs_is_compressed_page(struct page *page); 4284 struct page *f2fs_compress_control_page(struct page *page); 4285 int f2fs_prepare_compress_overwrite(struct inode *inode, 4286 struct page **pagep, pgoff_t index, void **fsdata); 4287 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4288 pgoff_t index, unsigned copied); 4289 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4290 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4291 bool f2fs_is_compress_backend_ready(struct inode *inode); 4292 bool f2fs_is_compress_level_valid(int alg, int lvl); 4293 int __init f2fs_init_compress_mempool(void); 4294 void f2fs_destroy_compress_mempool(void); 4295 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4296 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4297 block_t blkaddr, bool in_task); 4298 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4299 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4300 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4301 int index, int nr_pages, bool uptodate); 4302 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4303 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4304 int f2fs_write_multi_pages(struct compress_ctx *cc, 4305 int *submitted, 4306 struct writeback_control *wbc, 4307 enum iostat_type io_type); 4308 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4309 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4310 pgoff_t fofs, block_t blkaddr, 4311 unsigned int llen, unsigned int c_len); 4312 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4313 unsigned nr_pages, sector_t *last_block_in_bio, 4314 bool is_readahead, bool for_write); 4315 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4316 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4317 bool in_task); 4318 void f2fs_put_page_dic(struct page *page, bool in_task); 4319 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4320 unsigned int ofs_in_node); 4321 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4322 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4323 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4324 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4325 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4326 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4327 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4328 int __init f2fs_init_compress_cache(void); 4329 void f2fs_destroy_compress_cache(void); 4330 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4331 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4332 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4333 nid_t ino, block_t blkaddr); 4334 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4335 block_t blkaddr); 4336 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4337 #define inc_compr_inode_stat(inode) \ 4338 do { \ 4339 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4340 sbi->compr_new_inode++; \ 4341 } while (0) 4342 #define add_compr_block_stat(inode, blocks) \ 4343 do { \ 4344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4345 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4346 sbi->compr_written_block += blocks; \ 4347 sbi->compr_saved_block += diff; \ 4348 } while (0) 4349 #else 4350 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4351 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4352 { 4353 if (!f2fs_compressed_file(inode)) 4354 return true; 4355 /* not support compression */ 4356 return false; 4357 } 4358 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4359 static inline struct page *f2fs_compress_control_page(struct page *page) 4360 { 4361 WARN_ON_ONCE(1); 4362 return ERR_PTR(-EINVAL); 4363 } 4364 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4365 static inline void f2fs_destroy_compress_mempool(void) { } 4366 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4367 bool in_task) { } 4368 static inline void f2fs_end_read_compressed_page(struct page *page, 4369 bool failed, block_t blkaddr, bool in_task) 4370 { 4371 WARN_ON_ONCE(1); 4372 } 4373 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4374 { 4375 WARN_ON_ONCE(1); 4376 } 4377 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4378 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4379 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4380 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4381 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4382 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4383 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4384 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4385 static inline void f2fs_destroy_compress_cache(void) { } 4386 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4387 block_t blkaddr) { } 4388 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4389 struct page *page, nid_t ino, block_t blkaddr) { } 4390 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4391 struct page *page, block_t blkaddr) { return false; } 4392 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4393 nid_t ino) { } 4394 #define inc_compr_inode_stat(inode) do { } while (0) 4395 static inline void f2fs_update_read_extent_tree_range_compressed( 4396 struct inode *inode, 4397 pgoff_t fofs, block_t blkaddr, 4398 unsigned int llen, unsigned int c_len) { } 4399 #endif 4400 4401 static inline int set_compress_context(struct inode *inode) 4402 { 4403 #ifdef CONFIG_F2FS_FS_COMPRESSION 4404 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4405 4406 F2FS_I(inode)->i_compress_algorithm = 4407 F2FS_OPTION(sbi).compress_algorithm; 4408 F2FS_I(inode)->i_log_cluster_size = 4409 F2FS_OPTION(sbi).compress_log_size; 4410 F2FS_I(inode)->i_compress_flag = 4411 F2FS_OPTION(sbi).compress_chksum ? 4412 BIT(COMPRESS_CHKSUM) : 0; 4413 F2FS_I(inode)->i_cluster_size = 4414 BIT(F2FS_I(inode)->i_log_cluster_size); 4415 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4416 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4417 F2FS_OPTION(sbi).compress_level) 4418 F2FS_I(inode)->i_compress_level = 4419 F2FS_OPTION(sbi).compress_level; 4420 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4421 set_inode_flag(inode, FI_COMPRESSED_FILE); 4422 stat_inc_compr_inode(inode); 4423 inc_compr_inode_stat(inode); 4424 f2fs_mark_inode_dirty_sync(inode, true); 4425 return 0; 4426 #else 4427 return -EOPNOTSUPP; 4428 #endif 4429 } 4430 4431 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4432 { 4433 struct f2fs_inode_info *fi = F2FS_I(inode); 4434 4435 f2fs_down_write(&F2FS_I(inode)->i_sem); 4436 4437 if (!f2fs_compressed_file(inode)) { 4438 f2fs_up_write(&F2FS_I(inode)->i_sem); 4439 return true; 4440 } 4441 if (f2fs_is_mmap_file(inode) || 4442 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4443 f2fs_up_write(&F2FS_I(inode)->i_sem); 4444 return false; 4445 } 4446 4447 fi->i_flags &= ~F2FS_COMPR_FL; 4448 stat_dec_compr_inode(inode); 4449 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4450 f2fs_mark_inode_dirty_sync(inode, true); 4451 4452 f2fs_up_write(&F2FS_I(inode)->i_sem); 4453 return true; 4454 } 4455 4456 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4457 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4458 { \ 4459 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4460 } 4461 4462 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4463 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4464 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4465 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4466 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4467 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4468 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4469 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4470 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4471 F2FS_FEATURE_FUNCS(verity, VERITY); 4472 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4473 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4474 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4475 F2FS_FEATURE_FUNCS(readonly, RO); 4476 4477 #ifdef CONFIG_BLK_DEV_ZONED 4478 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4479 block_t blkaddr) 4480 { 4481 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4482 4483 return test_bit(zno, FDEV(devi).blkz_seq); 4484 } 4485 #endif 4486 4487 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4488 struct block_device *bdev) 4489 { 4490 int i; 4491 4492 if (!f2fs_is_multi_device(sbi)) 4493 return 0; 4494 4495 for (i = 0; i < sbi->s_ndevs; i++) 4496 if (FDEV(i).bdev == bdev) 4497 return i; 4498 4499 WARN_ON(1); 4500 return -1; 4501 } 4502 4503 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4504 { 4505 return f2fs_sb_has_blkzoned(sbi); 4506 } 4507 4508 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4509 { 4510 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4511 } 4512 4513 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4514 { 4515 int i; 4516 4517 if (!f2fs_is_multi_device(sbi)) 4518 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4519 4520 for (i = 0; i < sbi->s_ndevs; i++) 4521 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4522 return true; 4523 return false; 4524 } 4525 4526 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4527 { 4528 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4529 f2fs_hw_should_discard(sbi); 4530 } 4531 4532 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4533 { 4534 int i; 4535 4536 if (!f2fs_is_multi_device(sbi)) 4537 return bdev_read_only(sbi->sb->s_bdev); 4538 4539 for (i = 0; i < sbi->s_ndevs; i++) 4540 if (bdev_read_only(FDEV(i).bdev)) 4541 return true; 4542 return false; 4543 } 4544 4545 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4546 { 4547 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4548 } 4549 4550 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4551 { 4552 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4553 } 4554 4555 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, 4556 block_t blkaddr) 4557 { 4558 if (f2fs_sb_has_blkzoned(sbi)) { 4559 int devi = f2fs_target_device_index(sbi, blkaddr); 4560 4561 return !bdev_is_zoned(FDEV(devi).bdev); 4562 } 4563 return true; 4564 } 4565 4566 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4567 { 4568 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4569 } 4570 4571 static inline bool f2fs_may_compress(struct inode *inode) 4572 { 4573 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4574 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4575 f2fs_is_mmap_file(inode)) 4576 return false; 4577 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4578 } 4579 4580 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4581 u64 blocks, bool add) 4582 { 4583 struct f2fs_inode_info *fi = F2FS_I(inode); 4584 int diff = fi->i_cluster_size - blocks; 4585 4586 /* don't update i_compr_blocks if saved blocks were released */ 4587 if (!add && !atomic_read(&fi->i_compr_blocks)) 4588 return; 4589 4590 if (add) { 4591 atomic_add(diff, &fi->i_compr_blocks); 4592 stat_add_compr_blocks(inode, diff); 4593 } else { 4594 atomic_sub(diff, &fi->i_compr_blocks); 4595 stat_sub_compr_blocks(inode, diff); 4596 } 4597 f2fs_mark_inode_dirty_sync(inode, true); 4598 } 4599 4600 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4601 int flag) 4602 { 4603 if (!f2fs_is_multi_device(sbi)) 4604 return false; 4605 if (flag != F2FS_GET_BLOCK_DIO) 4606 return false; 4607 return sbi->aligned_blksize; 4608 } 4609 4610 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4611 { 4612 return fsverity_active(inode) && 4613 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4614 } 4615 4616 #ifdef CONFIG_F2FS_FAULT_INJECTION 4617 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 4618 unsigned long type); 4619 #else 4620 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 4621 unsigned long rate, unsigned long type) 4622 { 4623 return 0; 4624 } 4625 #endif 4626 4627 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4628 { 4629 #ifdef CONFIG_QUOTA 4630 if (f2fs_sb_has_quota_ino(sbi)) 4631 return true; 4632 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4633 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4634 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4635 return true; 4636 #endif 4637 return false; 4638 } 4639 4640 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4641 { 4642 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4643 } 4644 4645 static inline void f2fs_io_schedule_timeout(long timeout) 4646 { 4647 set_current_state(TASK_UNINTERRUPTIBLE); 4648 io_schedule_timeout(timeout); 4649 } 4650 4651 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4652 enum page_type type) 4653 { 4654 if (unlikely(f2fs_cp_error(sbi))) 4655 return; 4656 4657 if (ofs == sbi->page_eio_ofs[type]) { 4658 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4659 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4660 } else { 4661 sbi->page_eio_ofs[type] = ofs; 4662 sbi->page_eio_cnt[type] = 0; 4663 } 4664 } 4665 4666 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4667 { 4668 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4669 } 4670 4671 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4672 block_t blkaddr, unsigned int cnt) 4673 { 4674 bool need_submit = false; 4675 int i = 0; 4676 4677 do { 4678 struct page *page; 4679 4680 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4681 if (page) { 4682 if (PageWriteback(page)) 4683 need_submit = true; 4684 f2fs_put_page(page, 0); 4685 } 4686 } while (++i < cnt && !need_submit); 4687 4688 if (need_submit) 4689 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4690 NULL, 0, DATA); 4691 4692 truncate_inode_pages_range(META_MAPPING(sbi), 4693 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4694 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4695 } 4696 4697 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4698 block_t blkaddr) 4699 { 4700 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4701 f2fs_invalidate_compress_page(sbi, blkaddr); 4702 } 4703 4704 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4705 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4706 4707 #endif /* _LINUX_F2FS_H */ 4708