xref: /openbmc/linux/fs/f2fs/f2fs.h (revision d5097be55c21c103d2227591708425aab2e9682d)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27 
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_MAX,
58 };
59 
60 struct f2fs_fault_info {
61 	atomic_t inject_ops;
62 	unsigned int inject_rate;
63 	unsigned int inject_type;
64 };
65 
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69 
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC		0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
75 #define F2FS_MOUNT_DISCARD		0x00000004
76 #define F2FS_MOUNT_NOHEAP		0x00000008
77 #define F2FS_MOUNT_XATTR_USER		0x00000010
78 #define F2FS_MOUNT_POSIX_ACL		0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
81 #define F2FS_MOUNT_INLINE_DATA		0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
84 #define F2FS_MOUNT_NOBARRIER		0x00000800
85 #define F2FS_MOUNT_FASTBOOT		0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_ADAPTIVE		0x00020000
91 #define F2FS_MOUNT_LFS			0x00040000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
97 
98 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101 
102 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
103 		typecheck(unsigned long long, b) &&			\
104 		((long long)((a) - (b)) > 0))
105 
106 typedef u32 block_t;	/*
107 			 * should not change u32, since it is the on-disk block
108 			 * address format, __le32.
109 			 */
110 typedef u32 nid_t;
111 
112 struct f2fs_mount_info {
113 	unsigned int	opt;
114 };
115 
116 #define F2FS_FEATURE_ENCRYPT		0x0001
117 #define F2FS_FEATURE_BLKZONED		0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
120 #define F2FS_FEATURE_PRJQUOTA		0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
123 #define F2FS_FEATURE_QUOTA_INO		0x0080
124 
125 #define F2FS_HAS_FEATURE(sb, mask)					\
126 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask)					\
128 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask)					\
130 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131 
132 /*
133  * For checkpoint manager
134  */
135 enum {
136 	NAT_BITMAP,
137 	SIT_BITMAP
138 };
139 
140 #define	CP_UMOUNT	0x00000001
141 #define	CP_FASTBOOT	0x00000002
142 #define	CP_SYNC		0x00000004
143 #define	CP_RECOVERY	0x00000008
144 #define	CP_DISCARD	0x00000010
145 #define CP_TRIMMED	0x00000020
146 
147 #define DEF_BATCHED_TRIM_SECTIONS	2048
148 #define BATCHED_TRIM_SEGMENTS(sbi)	\
149 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi)	\
151 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL			60	/* 60 secs */
157 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
158 
159 struct cp_control {
160 	int reason;
161 	__u64 trim_start;
162 	__u64 trim_end;
163 	__u64 trim_minlen;
164 };
165 
166 /*
167  * For CP/NAT/SIT/SSA readahead
168  */
169 enum {
170 	META_CP,
171 	META_NAT,
172 	META_SIT,
173 	META_SSA,
174 	META_POR,
175 };
176 
177 /* for the list of ino */
178 enum {
179 	ORPHAN_INO,		/* for orphan ino list */
180 	APPEND_INO,		/* for append ino list */
181 	UPDATE_INO,		/* for update ino list */
182 	FLUSH_INO,		/* for multiple device flushing */
183 	MAX_INO_ENTRY,		/* max. list */
184 };
185 
186 struct ino_entry {
187 	struct list_head list;		/* list head */
188 	nid_t ino;			/* inode number */
189 	unsigned int dirty_device;	/* dirty device bitmap */
190 };
191 
192 /* for the list of inodes to be GCed */
193 struct inode_entry {
194 	struct list_head list;	/* list head */
195 	struct inode *inode;	/* vfs inode pointer */
196 };
197 
198 /* for the bitmap indicate blocks to be discarded */
199 struct discard_entry {
200 	struct list_head list;	/* list head */
201 	block_t start_blkaddr;	/* start blockaddr of current segment */
202 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
203 };
204 
205 /* default discard granularity of inner discard thread, unit: block count */
206 #define DEFAULT_DISCARD_GRANULARITY		16
207 
208 /* max discard pend list number */
209 #define MAX_PLIST_NUM		512
210 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
211 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
212 
213 enum {
214 	D_PREP,
215 	D_SUBMIT,
216 	D_DONE,
217 };
218 
219 struct discard_info {
220 	block_t lstart;			/* logical start address */
221 	block_t len;			/* length */
222 	block_t start;			/* actual start address in dev */
223 };
224 
225 struct discard_cmd {
226 	struct rb_node rb_node;		/* rb node located in rb-tree */
227 	union {
228 		struct {
229 			block_t lstart;	/* logical start address */
230 			block_t len;	/* length */
231 			block_t start;	/* actual start address in dev */
232 		};
233 		struct discard_info di;	/* discard info */
234 
235 	};
236 	struct list_head list;		/* command list */
237 	struct completion wait;		/* compleation */
238 	struct block_device *bdev;	/* bdev */
239 	unsigned short ref;		/* reference count */
240 	unsigned char state;		/* state */
241 	int error;			/* bio error */
242 };
243 
244 enum {
245 	DPOLICY_BG,
246 	DPOLICY_FORCE,
247 	DPOLICY_FSTRIM,
248 	DPOLICY_UMOUNT,
249 	MAX_DPOLICY,
250 };
251 
252 struct discard_policy {
253 	int type;			/* type of discard */
254 	unsigned int min_interval;	/* used for candidates exist */
255 	unsigned int max_interval;	/* used for candidates not exist */
256 	unsigned int max_requests;	/* # of discards issued per round */
257 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
258 	bool io_aware;			/* issue discard in idle time */
259 	bool sync;			/* submit discard with REQ_SYNC flag */
260 	unsigned int granularity;	/* discard granularity */
261 };
262 
263 struct discard_cmd_control {
264 	struct task_struct *f2fs_issue_discard;	/* discard thread */
265 	struct list_head entry_list;		/* 4KB discard entry list */
266 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
267 	unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
268 	struct list_head wait_list;		/* store on-flushing entries */
269 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
270 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
271 	unsigned int discard_wake;		/* to wake up discard thread */
272 	struct mutex cmd_lock;
273 	unsigned int nr_discards;		/* # of discards in the list */
274 	unsigned int max_discards;		/* max. discards to be issued */
275 	unsigned int discard_granularity;	/* discard granularity */
276 	unsigned int undiscard_blks;		/* # of undiscard blocks */
277 	atomic_t issued_discard;		/* # of issued discard */
278 	atomic_t issing_discard;		/* # of issing discard */
279 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
280 	struct rb_root root;			/* root of discard rb-tree */
281 };
282 
283 /* for the list of fsync inodes, used only during recovery */
284 struct fsync_inode_entry {
285 	struct list_head list;	/* list head */
286 	struct inode *inode;	/* vfs inode pointer */
287 	block_t blkaddr;	/* block address locating the last fsync */
288 	block_t last_dentry;	/* block address locating the last dentry */
289 };
290 
291 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
292 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
293 
294 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
295 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
296 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
297 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
298 
299 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
300 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
301 
302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
303 {
304 	int before = nats_in_cursum(journal);
305 
306 	journal->n_nats = cpu_to_le16(before + i);
307 	return before;
308 }
309 
310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
311 {
312 	int before = sits_in_cursum(journal);
313 
314 	journal->n_sits = cpu_to_le16(before + i);
315 	return before;
316 }
317 
318 static inline bool __has_cursum_space(struct f2fs_journal *journal,
319 							int size, int type)
320 {
321 	if (type == NAT_JOURNAL)
322 		return size <= MAX_NAT_JENTRIES(journal);
323 	return size <= MAX_SIT_JENTRIES(journal);
324 }
325 
326 /*
327  * ioctl commands
328  */
329 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
330 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
331 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
332 
333 #define F2FS_IOCTL_MAGIC		0xf5
334 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
336 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
338 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
339 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
340 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
341 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
342 						struct f2fs_defragment)
343 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
344 						struct f2fs_move_range)
345 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
346 						struct f2fs_flush_device)
347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
348 						struct f2fs_gc_range)
349 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
350 
351 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
352 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
354 
355 /*
356  * should be same as XFS_IOC_GOINGDOWN.
357  * Flags for going down operation used by FS_IOC_GOINGDOWN
358  */
359 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
360 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
361 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
362 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
363 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
364 
365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
366 /*
367  * ioctl commands in 32 bit emulation
368  */
369 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
370 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
371 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
372 #endif
373 
374 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
375 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
376 
377 struct f2fs_gc_range {
378 	u32 sync;
379 	u64 start;
380 	u64 len;
381 };
382 
383 struct f2fs_defragment {
384 	u64 start;
385 	u64 len;
386 };
387 
388 struct f2fs_move_range {
389 	u32 dst_fd;		/* destination fd */
390 	u64 pos_in;		/* start position in src_fd */
391 	u64 pos_out;		/* start position in dst_fd */
392 	u64 len;		/* size to move */
393 };
394 
395 struct f2fs_flush_device {
396 	u32 dev_num;		/* device number to flush */
397 	u32 segments;		/* # of segments to flush */
398 };
399 
400 /* for inline stuff */
401 #define DEF_INLINE_RESERVED_SIZE	1
402 #define DEF_MIN_INLINE_SIZE		1
403 static inline int get_extra_isize(struct inode *inode);
404 static inline int get_inline_xattr_addrs(struct inode *inode);
405 #define F2FS_INLINE_XATTR_ADDRS(inode)	get_inline_xattr_addrs(inode)
406 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
407 				(CUR_ADDRS_PER_INODE(inode) -		\
408 				F2FS_INLINE_XATTR_ADDRS(inode) -	\
409 				DEF_INLINE_RESERVED_SIZE))
410 
411 /* for inline dir */
412 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
413 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
414 				BITS_PER_BYTE + 1))
415 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
416 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
417 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
418 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
419 				NR_INLINE_DENTRY(inode) + \
420 				INLINE_DENTRY_BITMAP_SIZE(inode)))
421 
422 /*
423  * For INODE and NODE manager
424  */
425 /* for directory operations */
426 struct f2fs_dentry_ptr {
427 	struct inode *inode;
428 	void *bitmap;
429 	struct f2fs_dir_entry *dentry;
430 	__u8 (*filename)[F2FS_SLOT_LEN];
431 	int max;
432 	int nr_bitmap;
433 };
434 
435 static inline void make_dentry_ptr_block(struct inode *inode,
436 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
437 {
438 	d->inode = inode;
439 	d->max = NR_DENTRY_IN_BLOCK;
440 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
441 	d->bitmap = &t->dentry_bitmap;
442 	d->dentry = t->dentry;
443 	d->filename = t->filename;
444 }
445 
446 static inline void make_dentry_ptr_inline(struct inode *inode,
447 					struct f2fs_dentry_ptr *d, void *t)
448 {
449 	int entry_cnt = NR_INLINE_DENTRY(inode);
450 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
451 	int reserved_size = INLINE_RESERVED_SIZE(inode);
452 
453 	d->inode = inode;
454 	d->max = entry_cnt;
455 	d->nr_bitmap = bitmap_size;
456 	d->bitmap = t;
457 	d->dentry = t + bitmap_size + reserved_size;
458 	d->filename = t + bitmap_size + reserved_size +
459 					SIZE_OF_DIR_ENTRY * entry_cnt;
460 }
461 
462 /*
463  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
464  * as its node offset to distinguish from index node blocks.
465  * But some bits are used to mark the node block.
466  */
467 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
468 				>> OFFSET_BIT_SHIFT)
469 enum {
470 	ALLOC_NODE,			/* allocate a new node page if needed */
471 	LOOKUP_NODE,			/* look up a node without readahead */
472 	LOOKUP_NODE_RA,			/*
473 					 * look up a node with readahead called
474 					 * by get_data_block.
475 					 */
476 };
477 
478 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
479 
480 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
481 
482 /* vector size for gang look-up from extent cache that consists of radix tree */
483 #define EXT_TREE_VEC_SIZE	64
484 
485 /* for in-memory extent cache entry */
486 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
487 
488 /* number of extent info in extent cache we try to shrink */
489 #define EXTENT_CACHE_SHRINK_NUMBER	128
490 
491 struct rb_entry {
492 	struct rb_node rb_node;		/* rb node located in rb-tree */
493 	unsigned int ofs;		/* start offset of the entry */
494 	unsigned int len;		/* length of the entry */
495 };
496 
497 struct extent_info {
498 	unsigned int fofs;		/* start offset in a file */
499 	unsigned int len;		/* length of the extent */
500 	u32 blk;			/* start block address of the extent */
501 };
502 
503 struct extent_node {
504 	struct rb_node rb_node;
505 	union {
506 		struct {
507 			unsigned int fofs;
508 			unsigned int len;
509 			u32 blk;
510 		};
511 		struct extent_info ei;	/* extent info */
512 
513 	};
514 	struct list_head list;		/* node in global extent list of sbi */
515 	struct extent_tree *et;		/* extent tree pointer */
516 };
517 
518 struct extent_tree {
519 	nid_t ino;			/* inode number */
520 	struct rb_root root;		/* root of extent info rb-tree */
521 	struct extent_node *cached_en;	/* recently accessed extent node */
522 	struct extent_info largest;	/* largested extent info */
523 	struct list_head list;		/* to be used by sbi->zombie_list */
524 	rwlock_t lock;			/* protect extent info rb-tree */
525 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
526 };
527 
528 /*
529  * This structure is taken from ext4_map_blocks.
530  *
531  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
532  */
533 #define F2FS_MAP_NEW		(1 << BH_New)
534 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
535 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
536 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
537 				F2FS_MAP_UNWRITTEN)
538 
539 struct f2fs_map_blocks {
540 	block_t m_pblk;
541 	block_t m_lblk;
542 	unsigned int m_len;
543 	unsigned int m_flags;
544 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
545 	int m_seg_type;
546 };
547 
548 /* for flag in get_data_block */
549 enum {
550 	F2FS_GET_BLOCK_DEFAULT,
551 	F2FS_GET_BLOCK_FIEMAP,
552 	F2FS_GET_BLOCK_BMAP,
553 	F2FS_GET_BLOCK_PRE_DIO,
554 	F2FS_GET_BLOCK_PRE_AIO,
555 };
556 
557 /*
558  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
559  */
560 #define FADVISE_COLD_BIT	0x01
561 #define FADVISE_LOST_PINO_BIT	0x02
562 #define FADVISE_ENCRYPT_BIT	0x04
563 #define FADVISE_ENC_NAME_BIT	0x08
564 #define FADVISE_KEEP_SIZE_BIT	0x10
565 
566 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
567 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
568 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
569 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
570 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
571 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
572 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
573 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
574 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
575 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
576 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
577 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
578 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
579 
580 #define DEF_DIR_LEVEL		0
581 
582 struct f2fs_inode_info {
583 	struct inode vfs_inode;		/* serve a vfs inode */
584 	unsigned long i_flags;		/* keep an inode flags for ioctl */
585 	unsigned char i_advise;		/* use to give file attribute hints */
586 	unsigned char i_dir_level;	/* use for dentry level for large dir */
587 	unsigned int i_current_depth;	/* use only in directory structure */
588 	unsigned int i_pino;		/* parent inode number */
589 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
590 
591 	/* Use below internally in f2fs*/
592 	unsigned long flags;		/* use to pass per-file flags */
593 	struct rw_semaphore i_sem;	/* protect fi info */
594 	atomic_t dirty_pages;		/* # of dirty pages */
595 	f2fs_hash_t chash;		/* hash value of given file name */
596 	unsigned int clevel;		/* maximum level of given file name */
597 	struct task_struct *task;	/* lookup and create consistency */
598 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
599 	nid_t i_xattr_nid;		/* node id that contains xattrs */
600 	loff_t	last_disk_size;		/* lastly written file size */
601 
602 #ifdef CONFIG_QUOTA
603 	struct dquot *i_dquot[MAXQUOTAS];
604 
605 	/* quota space reservation, managed internally by quota code */
606 	qsize_t i_reserved_quota;
607 #endif
608 	struct list_head dirty_list;	/* dirty list for dirs and files */
609 	struct list_head gdirty_list;	/* linked in global dirty list */
610 	struct list_head inmem_ilist;	/* list for inmem inodes */
611 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
612 	struct task_struct *inmem_task;	/* store inmemory task */
613 	struct mutex inmem_lock;	/* lock for inmemory pages */
614 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
615 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
616 	struct rw_semaphore i_mmap_sem;
617 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
618 
619 	int i_extra_isize;		/* size of extra space located in i_addr */
620 	kprojid_t i_projid;		/* id for project quota */
621 	int i_inline_xattr_size;	/* inline xattr size */
622 };
623 
624 static inline void get_extent_info(struct extent_info *ext,
625 					struct f2fs_extent *i_ext)
626 {
627 	ext->fofs = le32_to_cpu(i_ext->fofs);
628 	ext->blk = le32_to_cpu(i_ext->blk);
629 	ext->len = le32_to_cpu(i_ext->len);
630 }
631 
632 static inline void set_raw_extent(struct extent_info *ext,
633 					struct f2fs_extent *i_ext)
634 {
635 	i_ext->fofs = cpu_to_le32(ext->fofs);
636 	i_ext->blk = cpu_to_le32(ext->blk);
637 	i_ext->len = cpu_to_le32(ext->len);
638 }
639 
640 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
641 						u32 blk, unsigned int len)
642 {
643 	ei->fofs = fofs;
644 	ei->blk = blk;
645 	ei->len = len;
646 }
647 
648 static inline bool __is_discard_mergeable(struct discard_info *back,
649 						struct discard_info *front)
650 {
651 	return back->lstart + back->len == front->lstart;
652 }
653 
654 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
655 						struct discard_info *back)
656 {
657 	return __is_discard_mergeable(back, cur);
658 }
659 
660 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
661 						struct discard_info *front)
662 {
663 	return __is_discard_mergeable(cur, front);
664 }
665 
666 static inline bool __is_extent_mergeable(struct extent_info *back,
667 						struct extent_info *front)
668 {
669 	return (back->fofs + back->len == front->fofs &&
670 			back->blk + back->len == front->blk);
671 }
672 
673 static inline bool __is_back_mergeable(struct extent_info *cur,
674 						struct extent_info *back)
675 {
676 	return __is_extent_mergeable(back, cur);
677 }
678 
679 static inline bool __is_front_mergeable(struct extent_info *cur,
680 						struct extent_info *front)
681 {
682 	return __is_extent_mergeable(cur, front);
683 }
684 
685 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
686 static inline void __try_update_largest_extent(struct inode *inode,
687 			struct extent_tree *et, struct extent_node *en)
688 {
689 	if (en->ei.len > et->largest.len) {
690 		et->largest = en->ei;
691 		f2fs_mark_inode_dirty_sync(inode, true);
692 	}
693 }
694 
695 /*
696  * For free nid management
697  */
698 enum nid_state {
699 	FREE_NID,		/* newly added to free nid list */
700 	PREALLOC_NID,		/* it is preallocated */
701 	MAX_NID_STATE,
702 };
703 
704 struct f2fs_nm_info {
705 	block_t nat_blkaddr;		/* base disk address of NAT */
706 	nid_t max_nid;			/* maximum possible node ids */
707 	nid_t available_nids;		/* # of available node ids */
708 	nid_t next_scan_nid;		/* the next nid to be scanned */
709 	unsigned int ram_thresh;	/* control the memory footprint */
710 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
711 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
712 
713 	/* NAT cache management */
714 	struct radix_tree_root nat_root;/* root of the nat entry cache */
715 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
716 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
717 	struct list_head nat_entries;	/* cached nat entry list (clean) */
718 	unsigned int nat_cnt;		/* the # of cached nat entries */
719 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
720 	unsigned int nat_blocks;	/* # of nat blocks */
721 
722 	/* free node ids management */
723 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
724 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
725 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
726 	spinlock_t nid_list_lock;	/* protect nid lists ops */
727 	struct mutex build_lock;	/* lock for build free nids */
728 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
729 	unsigned char *nat_block_bitmap;
730 	unsigned short *free_nid_count;	/* free nid count of NAT block */
731 
732 	/* for checkpoint */
733 	char *nat_bitmap;		/* NAT bitmap pointer */
734 
735 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
736 	unsigned char *nat_bits;	/* NAT bits blocks */
737 	unsigned char *full_nat_bits;	/* full NAT pages */
738 	unsigned char *empty_nat_bits;	/* empty NAT pages */
739 #ifdef CONFIG_F2FS_CHECK_FS
740 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
741 #endif
742 	int bitmap_size;		/* bitmap size */
743 };
744 
745 /*
746  * this structure is used as one of function parameters.
747  * all the information are dedicated to a given direct node block determined
748  * by the data offset in a file.
749  */
750 struct dnode_of_data {
751 	struct inode *inode;		/* vfs inode pointer */
752 	struct page *inode_page;	/* its inode page, NULL is possible */
753 	struct page *node_page;		/* cached direct node page */
754 	nid_t nid;			/* node id of the direct node block */
755 	unsigned int ofs_in_node;	/* data offset in the node page */
756 	bool inode_page_locked;		/* inode page is locked or not */
757 	bool node_changed;		/* is node block changed */
758 	char cur_level;			/* level of hole node page */
759 	char max_level;			/* level of current page located */
760 	block_t	data_blkaddr;		/* block address of the node block */
761 };
762 
763 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
764 		struct page *ipage, struct page *npage, nid_t nid)
765 {
766 	memset(dn, 0, sizeof(*dn));
767 	dn->inode = inode;
768 	dn->inode_page = ipage;
769 	dn->node_page = npage;
770 	dn->nid = nid;
771 }
772 
773 /*
774  * For SIT manager
775  *
776  * By default, there are 6 active log areas across the whole main area.
777  * When considering hot and cold data separation to reduce cleaning overhead,
778  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
779  * respectively.
780  * In the current design, you should not change the numbers intentionally.
781  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
782  * logs individually according to the underlying devices. (default: 6)
783  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
784  * data and 8 for node logs.
785  */
786 #define	NR_CURSEG_DATA_TYPE	(3)
787 #define NR_CURSEG_NODE_TYPE	(3)
788 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
789 
790 enum {
791 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
792 	CURSEG_WARM_DATA,	/* data blocks */
793 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
794 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
795 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
796 	CURSEG_COLD_NODE,	/* indirect node blocks */
797 	NO_CHECK_TYPE,
798 };
799 
800 struct flush_cmd {
801 	struct completion wait;
802 	struct llist_node llnode;
803 	nid_t ino;
804 	int ret;
805 };
806 
807 struct flush_cmd_control {
808 	struct task_struct *f2fs_issue_flush;	/* flush thread */
809 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
810 	atomic_t issued_flush;			/* # of issued flushes */
811 	atomic_t issing_flush;			/* # of issing flushes */
812 	struct llist_head issue_list;		/* list for command issue */
813 	struct llist_node *dispatch_list;	/* list for command dispatch */
814 };
815 
816 struct f2fs_sm_info {
817 	struct sit_info *sit_info;		/* whole segment information */
818 	struct free_segmap_info *free_info;	/* free segment information */
819 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
820 	struct curseg_info *curseg_array;	/* active segment information */
821 
822 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
823 
824 	block_t seg0_blkaddr;		/* block address of 0'th segment */
825 	block_t main_blkaddr;		/* start block address of main area */
826 	block_t ssa_blkaddr;		/* start block address of SSA area */
827 
828 	unsigned int segment_count;	/* total # of segments */
829 	unsigned int main_segments;	/* # of segments in main area */
830 	unsigned int reserved_segments;	/* # of reserved segments */
831 	unsigned int ovp_segments;	/* # of overprovision segments */
832 
833 	/* a threshold to reclaim prefree segments */
834 	unsigned int rec_prefree_segments;
835 
836 	/* for batched trimming */
837 	unsigned int trim_sections;		/* # of sections to trim */
838 
839 	struct list_head sit_entry_set;	/* sit entry set list */
840 
841 	unsigned int ipu_policy;	/* in-place-update policy */
842 	unsigned int min_ipu_util;	/* in-place-update threshold */
843 	unsigned int min_fsync_blocks;	/* threshold for fsync */
844 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
845 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
846 
847 	/* for flush command control */
848 	struct flush_cmd_control *fcc_info;
849 
850 	/* for discard command control */
851 	struct discard_cmd_control *dcc_info;
852 };
853 
854 /*
855  * For superblock
856  */
857 /*
858  * COUNT_TYPE for monitoring
859  *
860  * f2fs monitors the number of several block types such as on-writeback,
861  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
862  */
863 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
864 enum count_type {
865 	F2FS_DIRTY_DENTS,
866 	F2FS_DIRTY_DATA,
867 	F2FS_DIRTY_QDATA,
868 	F2FS_DIRTY_NODES,
869 	F2FS_DIRTY_META,
870 	F2FS_INMEM_PAGES,
871 	F2FS_DIRTY_IMETA,
872 	F2FS_WB_CP_DATA,
873 	F2FS_WB_DATA,
874 	NR_COUNT_TYPE,
875 };
876 
877 /*
878  * The below are the page types of bios used in submit_bio().
879  * The available types are:
880  * DATA			User data pages. It operates as async mode.
881  * NODE			Node pages. It operates as async mode.
882  * META			FS metadata pages such as SIT, NAT, CP.
883  * NR_PAGE_TYPE		The number of page types.
884  * META_FLUSH		Make sure the previous pages are written
885  *			with waiting the bio's completion
886  * ...			Only can be used with META.
887  */
888 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
889 enum page_type {
890 	DATA,
891 	NODE,
892 	META,
893 	NR_PAGE_TYPE,
894 	META_FLUSH,
895 	INMEM,		/* the below types are used by tracepoints only. */
896 	INMEM_DROP,
897 	INMEM_INVALIDATE,
898 	INMEM_REVOKE,
899 	IPU,
900 	OPU,
901 };
902 
903 enum temp_type {
904 	HOT = 0,	/* must be zero for meta bio */
905 	WARM,
906 	COLD,
907 	NR_TEMP_TYPE,
908 };
909 
910 enum need_lock_type {
911 	LOCK_REQ = 0,
912 	LOCK_DONE,
913 	LOCK_RETRY,
914 };
915 
916 enum cp_reason_type {
917 	CP_NO_NEEDED,
918 	CP_NON_REGULAR,
919 	CP_HARDLINK,
920 	CP_SB_NEED_CP,
921 	CP_WRONG_PINO,
922 	CP_NO_SPC_ROLL,
923 	CP_NODE_NEED_CP,
924 	CP_FASTBOOT_MODE,
925 	CP_SPEC_LOG_NUM,
926 };
927 
928 enum iostat_type {
929 	APP_DIRECT_IO,			/* app direct IOs */
930 	APP_BUFFERED_IO,		/* app buffered IOs */
931 	APP_WRITE_IO,			/* app write IOs */
932 	APP_MAPPED_IO,			/* app mapped IOs */
933 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
934 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
935 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
936 	FS_GC_DATA_IO,			/* data IOs from forground gc */
937 	FS_GC_NODE_IO,			/* node IOs from forground gc */
938 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
939 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
940 	FS_CP_META_IO,			/* meta IOs from checkpoint */
941 	FS_DISCARD,			/* discard */
942 	NR_IO_TYPE,
943 };
944 
945 struct f2fs_io_info {
946 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
947 	nid_t ino;		/* inode number */
948 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
949 	enum temp_type temp;	/* contains HOT/WARM/COLD */
950 	int op;			/* contains REQ_OP_ */
951 	int op_flags;		/* req_flag_bits */
952 	block_t new_blkaddr;	/* new block address to be written */
953 	block_t old_blkaddr;	/* old block address before Cow */
954 	struct page *page;	/* page to be written */
955 	struct page *encrypted_page;	/* encrypted page */
956 	struct list_head list;		/* serialize IOs */
957 	bool submitted;		/* indicate IO submission */
958 	int need_lock;		/* indicate we need to lock cp_rwsem */
959 	bool in_list;		/* indicate fio is in io_list */
960 	enum iostat_type io_type;	/* io type */
961 };
962 
963 #define is_read_io(rw) ((rw) == READ)
964 struct f2fs_bio_info {
965 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
966 	struct bio *bio;		/* bios to merge */
967 	sector_t last_block_in_bio;	/* last block number */
968 	struct f2fs_io_info fio;	/* store buffered io info. */
969 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
970 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
971 	struct list_head io_list;	/* track fios */
972 };
973 
974 #define FDEV(i)				(sbi->devs[i])
975 #define RDEV(i)				(raw_super->devs[i])
976 struct f2fs_dev_info {
977 	struct block_device *bdev;
978 	char path[MAX_PATH_LEN];
979 	unsigned int total_segments;
980 	block_t start_blk;
981 	block_t end_blk;
982 #ifdef CONFIG_BLK_DEV_ZONED
983 	unsigned int nr_blkz;			/* Total number of zones */
984 	u8 *blkz_type;				/* Array of zones type */
985 #endif
986 };
987 
988 enum inode_type {
989 	DIR_INODE,			/* for dirty dir inode */
990 	FILE_INODE,			/* for dirty regular/symlink inode */
991 	DIRTY_META,			/* for all dirtied inode metadata */
992 	ATOMIC_FILE,			/* for all atomic files */
993 	NR_INODE_TYPE,
994 };
995 
996 /* for inner inode cache management */
997 struct inode_management {
998 	struct radix_tree_root ino_root;	/* ino entry array */
999 	spinlock_t ino_lock;			/* for ino entry lock */
1000 	struct list_head ino_list;		/* inode list head */
1001 	unsigned long ino_num;			/* number of entries */
1002 };
1003 
1004 /* For s_flag in struct f2fs_sb_info */
1005 enum {
1006 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1007 	SBI_IS_CLOSE,				/* specify unmounting */
1008 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1009 	SBI_POR_DOING,				/* recovery is doing or not */
1010 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1011 	SBI_NEED_CP,				/* need to checkpoint */
1012 };
1013 
1014 enum {
1015 	CP_TIME,
1016 	REQ_TIME,
1017 	MAX_TIME,
1018 };
1019 
1020 struct f2fs_sb_info {
1021 	struct super_block *sb;			/* pointer to VFS super block */
1022 	struct proc_dir_entry *s_proc;		/* proc entry */
1023 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1024 	int valid_super_block;			/* valid super block no */
1025 	unsigned long s_flag;				/* flags for sbi */
1026 
1027 #ifdef CONFIG_BLK_DEV_ZONED
1028 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1029 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1030 #endif
1031 
1032 	/* for node-related operations */
1033 	struct f2fs_nm_info *nm_info;		/* node manager */
1034 	struct inode *node_inode;		/* cache node blocks */
1035 
1036 	/* for segment-related operations */
1037 	struct f2fs_sm_info *sm_info;		/* segment manager */
1038 
1039 	/* for bio operations */
1040 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1041 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1042 						/* bio ordering for NODE/DATA */
1043 	int write_io_size_bits;			/* Write IO size bits */
1044 	mempool_t *write_io_dummy;		/* Dummy pages */
1045 
1046 	/* for checkpoint */
1047 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1048 	int cur_cp_pack;			/* remain current cp pack */
1049 	spinlock_t cp_lock;			/* for flag in ckpt */
1050 	struct inode *meta_inode;		/* cache meta blocks */
1051 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1052 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1053 	struct rw_semaphore node_write;		/* locking node writes */
1054 	struct rw_semaphore node_change;	/* locking node change */
1055 	wait_queue_head_t cp_wait;
1056 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1057 	long interval_time[MAX_TIME];		/* to store thresholds */
1058 
1059 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1060 
1061 	/* for orphan inode, use 0'th array */
1062 	unsigned int max_orphans;		/* max orphan inodes */
1063 
1064 	/* for inode management */
1065 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1066 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1067 
1068 	/* for extent tree cache */
1069 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1070 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1071 	struct list_head extent_list;		/* lru list for shrinker */
1072 	spinlock_t extent_lock;			/* locking extent lru list */
1073 	atomic_t total_ext_tree;		/* extent tree count */
1074 	struct list_head zombie_list;		/* extent zombie tree list */
1075 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1076 	atomic_t total_ext_node;		/* extent info count */
1077 
1078 	/* basic filesystem units */
1079 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1080 	unsigned int log_blocksize;		/* log2 block size */
1081 	unsigned int blocksize;			/* block size */
1082 	unsigned int root_ino_num;		/* root inode number*/
1083 	unsigned int node_ino_num;		/* node inode number*/
1084 	unsigned int meta_ino_num;		/* meta inode number*/
1085 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1086 	unsigned int blocks_per_seg;		/* blocks per segment */
1087 	unsigned int segs_per_sec;		/* segments per section */
1088 	unsigned int secs_per_zone;		/* sections per zone */
1089 	unsigned int total_sections;		/* total section count */
1090 	unsigned int total_node_count;		/* total node block count */
1091 	unsigned int total_valid_node_count;	/* valid node block count */
1092 	loff_t max_file_blocks;			/* max block index of file */
1093 	int active_logs;			/* # of active logs */
1094 	int dir_level;				/* directory level */
1095 	int inline_xattr_size;			/* inline xattr size */
1096 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1097 	int readdir_ra;				/* readahead inode in readdir */
1098 
1099 	block_t user_block_count;		/* # of user blocks */
1100 	block_t total_valid_block_count;	/* # of valid blocks */
1101 	block_t discard_blks;			/* discard command candidats */
1102 	block_t last_valid_block_count;		/* for recovery */
1103 	block_t reserved_blocks;		/* configurable reserved blocks */
1104 	block_t current_reserved_blocks;	/* current reserved blocks */
1105 
1106 	unsigned int nquota_files;		/* # of quota sysfile */
1107 
1108 	u32 s_next_generation;			/* for NFS support */
1109 
1110 	/* # of pages, see count_type */
1111 	atomic_t nr_pages[NR_COUNT_TYPE];
1112 	/* # of allocated blocks */
1113 	struct percpu_counter alloc_valid_block_count;
1114 
1115 	/* writeback control */
1116 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1117 
1118 	/* valid inode count */
1119 	struct percpu_counter total_valid_inode_count;
1120 
1121 	struct f2fs_mount_info mount_opt;	/* mount options */
1122 
1123 	/* for cleaning operations */
1124 	struct mutex gc_mutex;			/* mutex for GC */
1125 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1126 	unsigned int cur_victim_sec;		/* current victim section num */
1127 
1128 	/* threshold for converting bg victims for fg */
1129 	u64 fggc_threshold;
1130 
1131 	/* maximum # of trials to find a victim segment for SSR and GC */
1132 	unsigned int max_victim_search;
1133 
1134 	/*
1135 	 * for stat information.
1136 	 * one is for the LFS mode, and the other is for the SSR mode.
1137 	 */
1138 #ifdef CONFIG_F2FS_STAT_FS
1139 	struct f2fs_stat_info *stat_info;	/* FS status information */
1140 	unsigned int segment_count[2];		/* # of allocated segments */
1141 	unsigned int block_count[2];		/* # of allocated blocks */
1142 	atomic_t inplace_count;		/* # of inplace update */
1143 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1144 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1145 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1146 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1147 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1148 	atomic_t inline_inode;			/* # of inline_data inodes */
1149 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1150 	atomic_t aw_cnt;			/* # of atomic writes */
1151 	atomic_t vw_cnt;			/* # of volatile writes */
1152 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1153 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1154 	int bg_gc;				/* background gc calls */
1155 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1156 #endif
1157 	spinlock_t stat_lock;			/* lock for stat operations */
1158 
1159 	/* For app/fs IO statistics */
1160 	spinlock_t iostat_lock;
1161 	unsigned long long write_iostat[NR_IO_TYPE];
1162 	bool iostat_enable;
1163 
1164 	/* For sysfs suppport */
1165 	struct kobject s_kobj;
1166 	struct completion s_kobj_unregister;
1167 
1168 	/* For shrinker support */
1169 	struct list_head s_list;
1170 	int s_ndevs;				/* number of devices */
1171 	struct f2fs_dev_info *devs;		/* for device list */
1172 	unsigned int dirty_device;		/* for checkpoint data flush */
1173 	spinlock_t dev_lock;			/* protect dirty_device */
1174 	struct mutex umount_mutex;
1175 	unsigned int shrinker_run_no;
1176 
1177 	/* For write statistics */
1178 	u64 sectors_written_start;
1179 	u64 kbytes_written;
1180 
1181 	/* Reference to checksum algorithm driver via cryptoapi */
1182 	struct crypto_shash *s_chksum_driver;
1183 
1184 	/* Precomputed FS UUID checksum for seeding other checksums */
1185 	__u32 s_chksum_seed;
1186 
1187 	/* For fault injection */
1188 #ifdef CONFIG_F2FS_FAULT_INJECTION
1189 	struct f2fs_fault_info fault_info;
1190 #endif
1191 
1192 #ifdef CONFIG_QUOTA
1193 	/* Names of quota files with journalled quota */
1194 	char *s_qf_names[MAXQUOTAS];
1195 	int s_jquota_fmt;			/* Format of quota to use */
1196 #endif
1197 };
1198 
1199 #ifdef CONFIG_F2FS_FAULT_INJECTION
1200 #define f2fs_show_injection_info(type)				\
1201 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1202 		KERN_INFO, fault_name[type],			\
1203 		__func__, __builtin_return_address(0))
1204 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1205 {
1206 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1207 
1208 	if (!ffi->inject_rate)
1209 		return false;
1210 
1211 	if (!IS_FAULT_SET(ffi, type))
1212 		return false;
1213 
1214 	atomic_inc(&ffi->inject_ops);
1215 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1216 		atomic_set(&ffi->inject_ops, 0);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 #endif
1222 
1223 /* For write statistics. Suppose sector size is 512 bytes,
1224  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1225  */
1226 #define BD_PART_WRITTEN(s)						 \
1227 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1228 		(s)->sectors_written_start) >> 1)
1229 
1230 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1231 {
1232 	sbi->last_time[type] = jiffies;
1233 }
1234 
1235 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1236 {
1237 	unsigned long interval = sbi->interval_time[type] * HZ;
1238 
1239 	return time_after(jiffies, sbi->last_time[type] + interval);
1240 }
1241 
1242 static inline bool is_idle(struct f2fs_sb_info *sbi)
1243 {
1244 	struct block_device *bdev = sbi->sb->s_bdev;
1245 	struct request_queue *q = bdev_get_queue(bdev);
1246 	struct request_list *rl = &q->root_rl;
1247 
1248 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1249 		return 0;
1250 
1251 	return f2fs_time_over(sbi, REQ_TIME);
1252 }
1253 
1254 /*
1255  * Inline functions
1256  */
1257 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1258 			   unsigned int length)
1259 {
1260 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1261 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1262 	u32 retval;
1263 	int err;
1264 
1265 	shash->tfm = sbi->s_chksum_driver;
1266 	shash->flags = 0;
1267 	*ctx = F2FS_SUPER_MAGIC;
1268 
1269 	err = crypto_shash_update(shash, address, length);
1270 	BUG_ON(err);
1271 
1272 	retval = *ctx;
1273 	barrier_data(ctx);
1274 	return retval;
1275 }
1276 
1277 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1278 				  void *buf, size_t buf_size)
1279 {
1280 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1281 }
1282 
1283 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1284 			      const void *address, unsigned int length)
1285 {
1286 	struct {
1287 		struct shash_desc shash;
1288 		char ctx[4];
1289 	} desc;
1290 	int err;
1291 
1292 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1293 
1294 	desc.shash.tfm = sbi->s_chksum_driver;
1295 	desc.shash.flags = 0;
1296 	*(u32 *)desc.ctx = crc;
1297 
1298 	err = crypto_shash_update(&desc.shash, address, length);
1299 	BUG_ON(err);
1300 
1301 	return *(u32 *)desc.ctx;
1302 }
1303 
1304 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1305 {
1306 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1307 }
1308 
1309 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1310 {
1311 	return sb->s_fs_info;
1312 }
1313 
1314 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1315 {
1316 	return F2FS_SB(inode->i_sb);
1317 }
1318 
1319 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1320 {
1321 	return F2FS_I_SB(mapping->host);
1322 }
1323 
1324 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1325 {
1326 	return F2FS_M_SB(page->mapping);
1327 }
1328 
1329 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1330 {
1331 	return (struct f2fs_super_block *)(sbi->raw_super);
1332 }
1333 
1334 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1335 {
1336 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1337 }
1338 
1339 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1340 {
1341 	return (struct f2fs_node *)page_address(page);
1342 }
1343 
1344 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1345 {
1346 	return &((struct f2fs_node *)page_address(page))->i;
1347 }
1348 
1349 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1350 {
1351 	return (struct f2fs_nm_info *)(sbi->nm_info);
1352 }
1353 
1354 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1355 {
1356 	return (struct f2fs_sm_info *)(sbi->sm_info);
1357 }
1358 
1359 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1360 {
1361 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1362 }
1363 
1364 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1365 {
1366 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1367 }
1368 
1369 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1370 {
1371 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1372 }
1373 
1374 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1375 {
1376 	return sbi->meta_inode->i_mapping;
1377 }
1378 
1379 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1380 {
1381 	return sbi->node_inode->i_mapping;
1382 }
1383 
1384 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1385 {
1386 	return test_bit(type, &sbi->s_flag);
1387 }
1388 
1389 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1390 {
1391 	set_bit(type, &sbi->s_flag);
1392 }
1393 
1394 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1395 {
1396 	clear_bit(type, &sbi->s_flag);
1397 }
1398 
1399 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1400 {
1401 	return le64_to_cpu(cp->checkpoint_ver);
1402 }
1403 
1404 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1405 {
1406 	if (type < F2FS_MAX_QUOTAS)
1407 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1408 	return 0;
1409 }
1410 
1411 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1412 {
1413 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1414 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1415 }
1416 
1417 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1418 {
1419 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1420 
1421 	return ckpt_flags & f;
1422 }
1423 
1424 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1425 {
1426 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1427 }
1428 
1429 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1430 {
1431 	unsigned int ckpt_flags;
1432 
1433 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1434 	ckpt_flags |= f;
1435 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1436 }
1437 
1438 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1439 {
1440 	unsigned long flags;
1441 
1442 	spin_lock_irqsave(&sbi->cp_lock, flags);
1443 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1444 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1445 }
1446 
1447 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1448 {
1449 	unsigned int ckpt_flags;
1450 
1451 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1452 	ckpt_flags &= (~f);
1453 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1454 }
1455 
1456 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1457 {
1458 	unsigned long flags;
1459 
1460 	spin_lock_irqsave(&sbi->cp_lock, flags);
1461 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1462 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1463 }
1464 
1465 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1466 {
1467 	unsigned long flags;
1468 
1469 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1470 
1471 	if (lock)
1472 		spin_lock_irqsave(&sbi->cp_lock, flags);
1473 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1474 	kfree(NM_I(sbi)->nat_bits);
1475 	NM_I(sbi)->nat_bits = NULL;
1476 	if (lock)
1477 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1478 }
1479 
1480 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1481 					struct cp_control *cpc)
1482 {
1483 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1484 
1485 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1486 }
1487 
1488 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1489 {
1490 	down_read(&sbi->cp_rwsem);
1491 }
1492 
1493 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1494 {
1495 	return down_read_trylock(&sbi->cp_rwsem);
1496 }
1497 
1498 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1499 {
1500 	up_read(&sbi->cp_rwsem);
1501 }
1502 
1503 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1504 {
1505 	down_write(&sbi->cp_rwsem);
1506 }
1507 
1508 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1509 {
1510 	up_write(&sbi->cp_rwsem);
1511 }
1512 
1513 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1514 {
1515 	int reason = CP_SYNC;
1516 
1517 	if (test_opt(sbi, FASTBOOT))
1518 		reason = CP_FASTBOOT;
1519 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1520 		reason = CP_UMOUNT;
1521 	return reason;
1522 }
1523 
1524 static inline bool __remain_node_summaries(int reason)
1525 {
1526 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1527 }
1528 
1529 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1530 {
1531 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1532 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1533 }
1534 
1535 /*
1536  * Check whether the given nid is within node id range.
1537  */
1538 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1539 {
1540 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1541 		return -EINVAL;
1542 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1543 		return -EINVAL;
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Check whether the inode has blocks or not
1549  */
1550 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1551 {
1552 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1553 
1554 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1555 }
1556 
1557 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1558 {
1559 	return ofs == XATTR_NODE_OFFSET;
1560 }
1561 
1562 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1563 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1564 				 struct inode *inode, blkcnt_t *count)
1565 {
1566 	blkcnt_t diff = 0, release = 0;
1567 	block_t avail_user_block_count;
1568 	int ret;
1569 
1570 	ret = dquot_reserve_block(inode, *count);
1571 	if (ret)
1572 		return ret;
1573 
1574 #ifdef CONFIG_F2FS_FAULT_INJECTION
1575 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1576 		f2fs_show_injection_info(FAULT_BLOCK);
1577 		release = *count;
1578 		goto enospc;
1579 	}
1580 #endif
1581 	/*
1582 	 * let's increase this in prior to actual block count change in order
1583 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1584 	 */
1585 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1586 
1587 	spin_lock(&sbi->stat_lock);
1588 	sbi->total_valid_block_count += (block_t)(*count);
1589 	avail_user_block_count = sbi->user_block_count -
1590 					sbi->current_reserved_blocks;
1591 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1592 		diff = sbi->total_valid_block_count - avail_user_block_count;
1593 		*count -= diff;
1594 		release = diff;
1595 		sbi->total_valid_block_count = avail_user_block_count;
1596 		if (!*count) {
1597 			spin_unlock(&sbi->stat_lock);
1598 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1599 			goto enospc;
1600 		}
1601 	}
1602 	spin_unlock(&sbi->stat_lock);
1603 
1604 	if (release)
1605 		dquot_release_reservation_block(inode, release);
1606 	f2fs_i_blocks_write(inode, *count, true, true);
1607 	return 0;
1608 
1609 enospc:
1610 	dquot_release_reservation_block(inode, release);
1611 	return -ENOSPC;
1612 }
1613 
1614 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1615 						struct inode *inode,
1616 						block_t count)
1617 {
1618 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1619 
1620 	spin_lock(&sbi->stat_lock);
1621 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1622 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1623 	sbi->total_valid_block_count -= (block_t)count;
1624 	if (sbi->reserved_blocks &&
1625 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1626 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1627 					sbi->current_reserved_blocks + count);
1628 	spin_unlock(&sbi->stat_lock);
1629 	f2fs_i_blocks_write(inode, count, false, true);
1630 }
1631 
1632 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1633 {
1634 	atomic_inc(&sbi->nr_pages[count_type]);
1635 
1636 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1637 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1638 		return;
1639 
1640 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1641 }
1642 
1643 static inline void inode_inc_dirty_pages(struct inode *inode)
1644 {
1645 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1646 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1647 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1648 	if (IS_NOQUOTA(inode))
1649 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1650 }
1651 
1652 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1653 {
1654 	atomic_dec(&sbi->nr_pages[count_type]);
1655 }
1656 
1657 static inline void inode_dec_dirty_pages(struct inode *inode)
1658 {
1659 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1660 			!S_ISLNK(inode->i_mode))
1661 		return;
1662 
1663 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1664 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1665 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1666 	if (IS_NOQUOTA(inode))
1667 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1668 }
1669 
1670 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1671 {
1672 	return atomic_read(&sbi->nr_pages[count_type]);
1673 }
1674 
1675 static inline int get_dirty_pages(struct inode *inode)
1676 {
1677 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1678 }
1679 
1680 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1681 {
1682 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1683 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1684 						sbi->log_blocks_per_seg;
1685 
1686 	return segs / sbi->segs_per_sec;
1687 }
1688 
1689 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1690 {
1691 	return sbi->total_valid_block_count;
1692 }
1693 
1694 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1695 {
1696 	return sbi->discard_blks;
1697 }
1698 
1699 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1700 {
1701 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1702 
1703 	/* return NAT or SIT bitmap */
1704 	if (flag == NAT_BITMAP)
1705 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1706 	else if (flag == SIT_BITMAP)
1707 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1708 
1709 	return 0;
1710 }
1711 
1712 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1713 {
1714 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1715 }
1716 
1717 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1718 {
1719 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1720 	int offset;
1721 
1722 	if (__cp_payload(sbi) > 0) {
1723 		if (flag == NAT_BITMAP)
1724 			return &ckpt->sit_nat_version_bitmap;
1725 		else
1726 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1727 	} else {
1728 		offset = (flag == NAT_BITMAP) ?
1729 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1730 		return &ckpt->sit_nat_version_bitmap + offset;
1731 	}
1732 }
1733 
1734 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1735 {
1736 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1737 
1738 	if (sbi->cur_cp_pack == 2)
1739 		start_addr += sbi->blocks_per_seg;
1740 	return start_addr;
1741 }
1742 
1743 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1744 {
1745 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1746 
1747 	if (sbi->cur_cp_pack == 1)
1748 		start_addr += sbi->blocks_per_seg;
1749 	return start_addr;
1750 }
1751 
1752 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1753 {
1754 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1755 }
1756 
1757 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1758 {
1759 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1760 }
1761 
1762 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1763 					struct inode *inode, bool is_inode)
1764 {
1765 	block_t	valid_block_count;
1766 	unsigned int valid_node_count;
1767 	bool quota = inode && !is_inode;
1768 
1769 	if (quota) {
1770 		int ret = dquot_reserve_block(inode, 1);
1771 		if (ret)
1772 			return ret;
1773 	}
1774 
1775 #ifdef CONFIG_F2FS_FAULT_INJECTION
1776 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1777 		f2fs_show_injection_info(FAULT_BLOCK);
1778 		goto enospc;
1779 	}
1780 #endif
1781 
1782 	spin_lock(&sbi->stat_lock);
1783 
1784 	valid_block_count = sbi->total_valid_block_count + 1;
1785 	if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1786 						sbi->user_block_count)) {
1787 		spin_unlock(&sbi->stat_lock);
1788 		goto enospc;
1789 	}
1790 
1791 	valid_node_count = sbi->total_valid_node_count + 1;
1792 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1793 		spin_unlock(&sbi->stat_lock);
1794 		goto enospc;
1795 	}
1796 
1797 	sbi->total_valid_node_count++;
1798 	sbi->total_valid_block_count++;
1799 	spin_unlock(&sbi->stat_lock);
1800 
1801 	if (inode) {
1802 		if (is_inode)
1803 			f2fs_mark_inode_dirty_sync(inode, true);
1804 		else
1805 			f2fs_i_blocks_write(inode, 1, true, true);
1806 	}
1807 
1808 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1809 	return 0;
1810 
1811 enospc:
1812 	if (quota)
1813 		dquot_release_reservation_block(inode, 1);
1814 	return -ENOSPC;
1815 }
1816 
1817 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1818 					struct inode *inode, bool is_inode)
1819 {
1820 	spin_lock(&sbi->stat_lock);
1821 
1822 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1823 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1824 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1825 
1826 	sbi->total_valid_node_count--;
1827 	sbi->total_valid_block_count--;
1828 	if (sbi->reserved_blocks &&
1829 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1830 		sbi->current_reserved_blocks++;
1831 
1832 	spin_unlock(&sbi->stat_lock);
1833 
1834 	if (!is_inode)
1835 		f2fs_i_blocks_write(inode, 1, false, true);
1836 }
1837 
1838 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1839 {
1840 	return sbi->total_valid_node_count;
1841 }
1842 
1843 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1844 {
1845 	percpu_counter_inc(&sbi->total_valid_inode_count);
1846 }
1847 
1848 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1849 {
1850 	percpu_counter_dec(&sbi->total_valid_inode_count);
1851 }
1852 
1853 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1854 {
1855 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1856 }
1857 
1858 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1859 						pgoff_t index, bool for_write)
1860 {
1861 #ifdef CONFIG_F2FS_FAULT_INJECTION
1862 	struct page *page = find_lock_page(mapping, index);
1863 
1864 	if (page)
1865 		return page;
1866 
1867 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1868 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1869 		return NULL;
1870 	}
1871 #endif
1872 	if (!for_write)
1873 		return grab_cache_page(mapping, index);
1874 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1875 }
1876 
1877 static inline struct page *f2fs_pagecache_get_page(
1878 				struct address_space *mapping, pgoff_t index,
1879 				int fgp_flags, gfp_t gfp_mask)
1880 {
1881 #ifdef CONFIG_F2FS_FAULT_INJECTION
1882 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1883 		f2fs_show_injection_info(FAULT_PAGE_GET);
1884 		return NULL;
1885 	}
1886 #endif
1887 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1888 }
1889 
1890 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1891 {
1892 	char *src_kaddr = kmap(src);
1893 	char *dst_kaddr = kmap(dst);
1894 
1895 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1896 	kunmap(dst);
1897 	kunmap(src);
1898 }
1899 
1900 static inline void f2fs_put_page(struct page *page, int unlock)
1901 {
1902 	if (!page)
1903 		return;
1904 
1905 	if (unlock) {
1906 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1907 		unlock_page(page);
1908 	}
1909 	put_page(page);
1910 }
1911 
1912 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1913 {
1914 	if (dn->node_page)
1915 		f2fs_put_page(dn->node_page, 1);
1916 	if (dn->inode_page && dn->node_page != dn->inode_page)
1917 		f2fs_put_page(dn->inode_page, 0);
1918 	dn->node_page = NULL;
1919 	dn->inode_page = NULL;
1920 }
1921 
1922 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1923 					size_t size)
1924 {
1925 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1926 }
1927 
1928 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1929 						gfp_t flags)
1930 {
1931 	void *entry;
1932 
1933 	entry = kmem_cache_alloc(cachep, flags);
1934 	if (!entry)
1935 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1936 	return entry;
1937 }
1938 
1939 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1940 						int npages, bool no_fail)
1941 {
1942 	struct bio *bio;
1943 
1944 	if (no_fail) {
1945 		/* No failure on bio allocation */
1946 		bio = bio_alloc(GFP_NOIO, npages);
1947 		if (!bio)
1948 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1949 		return bio;
1950 	}
1951 #ifdef CONFIG_F2FS_FAULT_INJECTION
1952 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1953 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
1954 		return NULL;
1955 	}
1956 #endif
1957 	return bio_alloc(GFP_KERNEL, npages);
1958 }
1959 
1960 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1961 				unsigned long index, void *item)
1962 {
1963 	while (radix_tree_insert(root, index, item))
1964 		cond_resched();
1965 }
1966 
1967 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1968 
1969 static inline bool IS_INODE(struct page *page)
1970 {
1971 	struct f2fs_node *p = F2FS_NODE(page);
1972 
1973 	return RAW_IS_INODE(p);
1974 }
1975 
1976 static inline int offset_in_addr(struct f2fs_inode *i)
1977 {
1978 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
1979 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1980 }
1981 
1982 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1983 {
1984 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1985 }
1986 
1987 static inline int f2fs_has_extra_attr(struct inode *inode);
1988 static inline block_t datablock_addr(struct inode *inode,
1989 			struct page *node_page, unsigned int offset)
1990 {
1991 	struct f2fs_node *raw_node;
1992 	__le32 *addr_array;
1993 	int base = 0;
1994 	bool is_inode = IS_INODE(node_page);
1995 
1996 	raw_node = F2FS_NODE(node_page);
1997 
1998 	/* from GC path only */
1999 	if (!inode) {
2000 		if (is_inode)
2001 			base = offset_in_addr(&raw_node->i);
2002 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
2003 		base = get_extra_isize(inode);
2004 	}
2005 
2006 	addr_array = blkaddr_in_node(raw_node);
2007 	return le32_to_cpu(addr_array[base + offset]);
2008 }
2009 
2010 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2011 {
2012 	int mask;
2013 
2014 	addr += (nr >> 3);
2015 	mask = 1 << (7 - (nr & 0x07));
2016 	return mask & *addr;
2017 }
2018 
2019 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2020 {
2021 	int mask;
2022 
2023 	addr += (nr >> 3);
2024 	mask = 1 << (7 - (nr & 0x07));
2025 	*addr |= mask;
2026 }
2027 
2028 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2029 {
2030 	int mask;
2031 
2032 	addr += (nr >> 3);
2033 	mask = 1 << (7 - (nr & 0x07));
2034 	*addr &= ~mask;
2035 }
2036 
2037 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2038 {
2039 	int mask;
2040 	int ret;
2041 
2042 	addr += (nr >> 3);
2043 	mask = 1 << (7 - (nr & 0x07));
2044 	ret = mask & *addr;
2045 	*addr |= mask;
2046 	return ret;
2047 }
2048 
2049 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2050 {
2051 	int mask;
2052 	int ret;
2053 
2054 	addr += (nr >> 3);
2055 	mask = 1 << (7 - (nr & 0x07));
2056 	ret = mask & *addr;
2057 	*addr &= ~mask;
2058 	return ret;
2059 }
2060 
2061 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2062 {
2063 	int mask;
2064 
2065 	addr += (nr >> 3);
2066 	mask = 1 << (7 - (nr & 0x07));
2067 	*addr ^= mask;
2068 }
2069 
2070 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2071 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2072 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2073 
2074 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2075 {
2076 	if (S_ISDIR(mode))
2077 		return flags;
2078 	else if (S_ISREG(mode))
2079 		return flags & F2FS_REG_FLMASK;
2080 	else
2081 		return flags & F2FS_OTHER_FLMASK;
2082 }
2083 
2084 /* used for f2fs_inode_info->flags */
2085 enum {
2086 	FI_NEW_INODE,		/* indicate newly allocated inode */
2087 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2088 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2089 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2090 	FI_INC_LINK,		/* need to increment i_nlink */
2091 	FI_ACL_MODE,		/* indicate acl mode */
2092 	FI_NO_ALLOC,		/* should not allocate any blocks */
2093 	FI_FREE_NID,		/* free allocated nide */
2094 	FI_NO_EXTENT,		/* not to use the extent cache */
2095 	FI_INLINE_XATTR,	/* used for inline xattr */
2096 	FI_INLINE_DATA,		/* used for inline data*/
2097 	FI_INLINE_DENTRY,	/* used for inline dentry */
2098 	FI_APPEND_WRITE,	/* inode has appended data */
2099 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2100 	FI_NEED_IPU,		/* used for ipu per file */
2101 	FI_ATOMIC_FILE,		/* indicate atomic file */
2102 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2103 	FI_VOLATILE_FILE,	/* indicate volatile file */
2104 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2105 	FI_DROP_CACHE,		/* drop dirty page cache */
2106 	FI_DATA_EXIST,		/* indicate data exists */
2107 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2108 	FI_DO_DEFRAG,		/* indicate defragment is running */
2109 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2110 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2111 	FI_HOT_DATA,		/* indicate file is hot */
2112 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2113 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2114 };
2115 
2116 static inline void __mark_inode_dirty_flag(struct inode *inode,
2117 						int flag, bool set)
2118 {
2119 	switch (flag) {
2120 	case FI_INLINE_XATTR:
2121 	case FI_INLINE_DATA:
2122 	case FI_INLINE_DENTRY:
2123 		if (set)
2124 			return;
2125 	case FI_DATA_EXIST:
2126 	case FI_INLINE_DOTS:
2127 		f2fs_mark_inode_dirty_sync(inode, true);
2128 	}
2129 }
2130 
2131 static inline void set_inode_flag(struct inode *inode, int flag)
2132 {
2133 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2134 		set_bit(flag, &F2FS_I(inode)->flags);
2135 	__mark_inode_dirty_flag(inode, flag, true);
2136 }
2137 
2138 static inline int is_inode_flag_set(struct inode *inode, int flag)
2139 {
2140 	return test_bit(flag, &F2FS_I(inode)->flags);
2141 }
2142 
2143 static inline void clear_inode_flag(struct inode *inode, int flag)
2144 {
2145 	if (test_bit(flag, &F2FS_I(inode)->flags))
2146 		clear_bit(flag, &F2FS_I(inode)->flags);
2147 	__mark_inode_dirty_flag(inode, flag, false);
2148 }
2149 
2150 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2151 {
2152 	F2FS_I(inode)->i_acl_mode = mode;
2153 	set_inode_flag(inode, FI_ACL_MODE);
2154 	f2fs_mark_inode_dirty_sync(inode, false);
2155 }
2156 
2157 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2158 {
2159 	if (inc)
2160 		inc_nlink(inode);
2161 	else
2162 		drop_nlink(inode);
2163 	f2fs_mark_inode_dirty_sync(inode, true);
2164 }
2165 
2166 static inline void f2fs_i_blocks_write(struct inode *inode,
2167 					block_t diff, bool add, bool claim)
2168 {
2169 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2170 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2171 
2172 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2173 	if (add) {
2174 		if (claim)
2175 			dquot_claim_block(inode, diff);
2176 		else
2177 			dquot_alloc_block_nofail(inode, diff);
2178 	} else {
2179 		dquot_free_block(inode, diff);
2180 	}
2181 
2182 	f2fs_mark_inode_dirty_sync(inode, true);
2183 	if (clean || recover)
2184 		set_inode_flag(inode, FI_AUTO_RECOVER);
2185 }
2186 
2187 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2188 {
2189 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2190 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2191 
2192 	if (i_size_read(inode) == i_size)
2193 		return;
2194 
2195 	i_size_write(inode, i_size);
2196 	f2fs_mark_inode_dirty_sync(inode, true);
2197 	if (clean || recover)
2198 		set_inode_flag(inode, FI_AUTO_RECOVER);
2199 }
2200 
2201 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2202 {
2203 	F2FS_I(inode)->i_current_depth = depth;
2204 	f2fs_mark_inode_dirty_sync(inode, true);
2205 }
2206 
2207 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2208 {
2209 	F2FS_I(inode)->i_xattr_nid = xnid;
2210 	f2fs_mark_inode_dirty_sync(inode, true);
2211 }
2212 
2213 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2214 {
2215 	F2FS_I(inode)->i_pino = pino;
2216 	f2fs_mark_inode_dirty_sync(inode, true);
2217 }
2218 
2219 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2220 {
2221 	struct f2fs_inode_info *fi = F2FS_I(inode);
2222 
2223 	if (ri->i_inline & F2FS_INLINE_XATTR)
2224 		set_bit(FI_INLINE_XATTR, &fi->flags);
2225 	if (ri->i_inline & F2FS_INLINE_DATA)
2226 		set_bit(FI_INLINE_DATA, &fi->flags);
2227 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2228 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2229 	if (ri->i_inline & F2FS_DATA_EXIST)
2230 		set_bit(FI_DATA_EXIST, &fi->flags);
2231 	if (ri->i_inline & F2FS_INLINE_DOTS)
2232 		set_bit(FI_INLINE_DOTS, &fi->flags);
2233 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2234 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2235 }
2236 
2237 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2238 {
2239 	ri->i_inline = 0;
2240 
2241 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2242 		ri->i_inline |= F2FS_INLINE_XATTR;
2243 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2244 		ri->i_inline |= F2FS_INLINE_DATA;
2245 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2246 		ri->i_inline |= F2FS_INLINE_DENTRY;
2247 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2248 		ri->i_inline |= F2FS_DATA_EXIST;
2249 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2250 		ri->i_inline |= F2FS_INLINE_DOTS;
2251 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2252 		ri->i_inline |= F2FS_EXTRA_ATTR;
2253 }
2254 
2255 static inline int f2fs_has_extra_attr(struct inode *inode)
2256 {
2257 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2258 }
2259 
2260 static inline int f2fs_has_inline_xattr(struct inode *inode)
2261 {
2262 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2263 }
2264 
2265 static inline unsigned int addrs_per_inode(struct inode *inode)
2266 {
2267 	return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2268 }
2269 
2270 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2271 {
2272 	struct f2fs_inode *ri = F2FS_INODE(page);
2273 
2274 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2275 					F2FS_INLINE_XATTR_ADDRS(inode)]);
2276 }
2277 
2278 static inline int inline_xattr_size(struct inode *inode)
2279 {
2280 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2281 }
2282 
2283 static inline int f2fs_has_inline_data(struct inode *inode)
2284 {
2285 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2286 }
2287 
2288 static inline int f2fs_exist_data(struct inode *inode)
2289 {
2290 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2291 }
2292 
2293 static inline int f2fs_has_inline_dots(struct inode *inode)
2294 {
2295 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2296 }
2297 
2298 static inline bool f2fs_is_atomic_file(struct inode *inode)
2299 {
2300 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2301 }
2302 
2303 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2304 {
2305 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2306 }
2307 
2308 static inline bool f2fs_is_volatile_file(struct inode *inode)
2309 {
2310 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2311 }
2312 
2313 static inline bool f2fs_is_first_block_written(struct inode *inode)
2314 {
2315 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2316 }
2317 
2318 static inline bool f2fs_is_drop_cache(struct inode *inode)
2319 {
2320 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2321 }
2322 
2323 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2324 {
2325 	struct f2fs_inode *ri = F2FS_INODE(page);
2326 	int extra_size = get_extra_isize(inode);
2327 
2328 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2329 }
2330 
2331 static inline int f2fs_has_inline_dentry(struct inode *inode)
2332 {
2333 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2334 }
2335 
2336 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2337 {
2338 	if (!f2fs_has_inline_dentry(dir))
2339 		kunmap(page);
2340 }
2341 
2342 static inline int is_file(struct inode *inode, int type)
2343 {
2344 	return F2FS_I(inode)->i_advise & type;
2345 }
2346 
2347 static inline void set_file(struct inode *inode, int type)
2348 {
2349 	F2FS_I(inode)->i_advise |= type;
2350 	f2fs_mark_inode_dirty_sync(inode, true);
2351 }
2352 
2353 static inline void clear_file(struct inode *inode, int type)
2354 {
2355 	F2FS_I(inode)->i_advise &= ~type;
2356 	f2fs_mark_inode_dirty_sync(inode, true);
2357 }
2358 
2359 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2360 {
2361 	bool ret;
2362 
2363 	if (dsync) {
2364 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2365 
2366 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2367 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2368 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2369 		return ret;
2370 	}
2371 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2372 			file_keep_isize(inode) ||
2373 			i_size_read(inode) & PAGE_MASK)
2374 		return false;
2375 
2376 	down_read(&F2FS_I(inode)->i_sem);
2377 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2378 	up_read(&F2FS_I(inode)->i_sem);
2379 
2380 	return ret;
2381 }
2382 
2383 static inline int f2fs_readonly(struct super_block *sb)
2384 {
2385 	return sb->s_flags & SB_RDONLY;
2386 }
2387 
2388 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2389 {
2390 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2391 }
2392 
2393 static inline bool is_dot_dotdot(const struct qstr *str)
2394 {
2395 	if (str->len == 1 && str->name[0] == '.')
2396 		return true;
2397 
2398 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2399 		return true;
2400 
2401 	return false;
2402 }
2403 
2404 static inline bool f2fs_may_extent_tree(struct inode *inode)
2405 {
2406 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2407 			is_inode_flag_set(inode, FI_NO_EXTENT))
2408 		return false;
2409 
2410 	return S_ISREG(inode->i_mode);
2411 }
2412 
2413 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2414 					size_t size, gfp_t flags)
2415 {
2416 #ifdef CONFIG_F2FS_FAULT_INJECTION
2417 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2418 		f2fs_show_injection_info(FAULT_KMALLOC);
2419 		return NULL;
2420 	}
2421 #endif
2422 	return kmalloc(size, flags);
2423 }
2424 
2425 static inline int get_extra_isize(struct inode *inode)
2426 {
2427 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2428 }
2429 
2430 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2431 static inline int get_inline_xattr_addrs(struct inode *inode)
2432 {
2433 	return F2FS_I(inode)->i_inline_xattr_size;
2434 }
2435 
2436 #define get_inode_mode(i) \
2437 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2438 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2439 
2440 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2441 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2442 	offsetof(struct f2fs_inode, i_extra_isize))	\
2443 
2444 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2445 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2446 		((offsetof(typeof(*f2fs_inode), field) +	\
2447 		sizeof((f2fs_inode)->field))			\
2448 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2449 
2450 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2451 {
2452 	int i;
2453 
2454 	spin_lock(&sbi->iostat_lock);
2455 	for (i = 0; i < NR_IO_TYPE; i++)
2456 		sbi->write_iostat[i] = 0;
2457 	spin_unlock(&sbi->iostat_lock);
2458 }
2459 
2460 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2461 			enum iostat_type type, unsigned long long io_bytes)
2462 {
2463 	if (!sbi->iostat_enable)
2464 		return;
2465 	spin_lock(&sbi->iostat_lock);
2466 	sbi->write_iostat[type] += io_bytes;
2467 
2468 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2469 		sbi->write_iostat[APP_BUFFERED_IO] =
2470 			sbi->write_iostat[APP_WRITE_IO] -
2471 			sbi->write_iostat[APP_DIRECT_IO];
2472 	spin_unlock(&sbi->iostat_lock);
2473 }
2474 
2475 /*
2476  * file.c
2477  */
2478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2479 void truncate_data_blocks(struct dnode_of_data *dn);
2480 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2481 int f2fs_truncate(struct inode *inode);
2482 int f2fs_getattr(const struct path *path, struct kstat *stat,
2483 			u32 request_mask, unsigned int flags);
2484 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2485 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2486 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2487 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2488 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2489 
2490 /*
2491  * inode.c
2492  */
2493 void f2fs_set_inode_flags(struct inode *inode);
2494 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2495 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2496 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2497 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2498 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2499 int update_inode(struct inode *inode, struct page *node_page);
2500 int update_inode_page(struct inode *inode);
2501 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2502 void f2fs_evict_inode(struct inode *inode);
2503 void handle_failed_inode(struct inode *inode);
2504 
2505 /*
2506  * namei.c
2507  */
2508 struct dentry *f2fs_get_parent(struct dentry *child);
2509 
2510 /*
2511  * dir.c
2512  */
2513 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2514 unsigned char get_de_type(struct f2fs_dir_entry *de);
2515 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2516 			f2fs_hash_t namehash, int *max_slots,
2517 			struct f2fs_dentry_ptr *d);
2518 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2519 			unsigned int start_pos, struct fscrypt_str *fstr);
2520 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2521 			struct f2fs_dentry_ptr *d);
2522 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2523 			const struct qstr *new_name,
2524 			const struct qstr *orig_name, struct page *dpage);
2525 void update_parent_metadata(struct inode *dir, struct inode *inode,
2526 			unsigned int current_depth);
2527 int room_for_filename(const void *bitmap, int slots, int max_slots);
2528 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2529 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2530 			struct fscrypt_name *fname, struct page **res_page);
2531 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2532 			const struct qstr *child, struct page **res_page);
2533 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2534 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2535 			struct page **page);
2536 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2537 			struct page *page, struct inode *inode);
2538 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2539 			const struct qstr *name, f2fs_hash_t name_hash,
2540 			unsigned int bit_pos);
2541 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2542 			const struct qstr *orig_name,
2543 			struct inode *inode, nid_t ino, umode_t mode);
2544 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2545 			struct inode *inode, nid_t ino, umode_t mode);
2546 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2547 			struct inode *inode, nid_t ino, umode_t mode);
2548 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2549 			struct inode *dir, struct inode *inode);
2550 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2551 bool f2fs_empty_dir(struct inode *dir);
2552 
2553 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2554 {
2555 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2556 				inode, inode->i_ino, inode->i_mode);
2557 }
2558 
2559 /*
2560  * super.c
2561  */
2562 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2563 void f2fs_inode_synced(struct inode *inode);
2564 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2565 void f2fs_quota_off_umount(struct super_block *sb);
2566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2567 int f2fs_sync_fs(struct super_block *sb, int sync);
2568 extern __printf(3, 4)
2569 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2570 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2571 
2572 /*
2573  * hash.c
2574  */
2575 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2576 				struct fscrypt_name *fname);
2577 
2578 /*
2579  * node.c
2580  */
2581 struct dnode_of_data;
2582 struct node_info;
2583 
2584 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2585 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2586 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2587 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2588 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2589 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2590 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2591 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2592 int truncate_xattr_node(struct inode *inode);
2593 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2594 int remove_inode_page(struct inode *inode);
2595 struct page *new_inode_page(struct inode *inode);
2596 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2597 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2598 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2599 struct page *get_node_page_ra(struct page *parent, int start);
2600 void move_node_page(struct page *node_page, int gc_type);
2601 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2602 			struct writeback_control *wbc, bool atomic);
2603 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2604 			bool do_balance, enum iostat_type io_type);
2605 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2606 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2607 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2608 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2609 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2610 void recover_inline_xattr(struct inode *inode, struct page *page);
2611 int recover_xattr_data(struct inode *inode, struct page *page);
2612 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2613 int restore_node_summary(struct f2fs_sb_info *sbi,
2614 			unsigned int segno, struct f2fs_summary_block *sum);
2615 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2616 int build_node_manager(struct f2fs_sb_info *sbi);
2617 void destroy_node_manager(struct f2fs_sb_info *sbi);
2618 int __init create_node_manager_caches(void);
2619 void destroy_node_manager_caches(void);
2620 
2621 /*
2622  * segment.c
2623  */
2624 bool need_SSR(struct f2fs_sb_info *sbi);
2625 void register_inmem_page(struct inode *inode, struct page *page);
2626 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2627 void drop_inmem_pages(struct inode *inode);
2628 void drop_inmem_page(struct inode *inode, struct page *page);
2629 int commit_inmem_pages(struct inode *inode);
2630 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2631 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2632 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2633 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2634 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2635 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2636 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2637 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2638 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2639 						unsigned int granularity);
2640 void stop_discard_thread(struct f2fs_sb_info *sbi);
2641 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2642 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2643 void release_discard_addrs(struct f2fs_sb_info *sbi);
2644 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2645 void allocate_new_segments(struct f2fs_sb_info *sbi);
2646 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2647 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2648 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2649 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2650 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2651 						enum iostat_type io_type);
2652 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2653 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2654 int rewrite_data_page(struct f2fs_io_info *fio);
2655 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2656 			block_t old_blkaddr, block_t new_blkaddr,
2657 			bool recover_curseg, bool recover_newaddr);
2658 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2659 			block_t old_addr, block_t new_addr,
2660 			unsigned char version, bool recover_curseg,
2661 			bool recover_newaddr);
2662 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2663 			block_t old_blkaddr, block_t *new_blkaddr,
2664 			struct f2fs_summary *sum, int type,
2665 			struct f2fs_io_info *fio, bool add_list);
2666 void f2fs_wait_on_page_writeback(struct page *page,
2667 			enum page_type type, bool ordered);
2668 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2669 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2670 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2671 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2672 			unsigned int val, int alloc);
2673 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2674 int build_segment_manager(struct f2fs_sb_info *sbi);
2675 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2676 int __init create_segment_manager_caches(void);
2677 void destroy_segment_manager_caches(void);
2678 int rw_hint_to_seg_type(enum rw_hint hint);
2679 
2680 /*
2681  * checkpoint.c
2682  */
2683 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2684 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2685 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2686 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2687 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2688 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2689 			int type, bool sync);
2690 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2691 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2692 			long nr_to_write, enum iostat_type io_type);
2693 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2694 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2695 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2696 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2697 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2698 					unsigned int devidx, int type);
2699 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2700 					unsigned int devidx, int type);
2701 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2702 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2703 void release_orphan_inode(struct f2fs_sb_info *sbi);
2704 void add_orphan_inode(struct inode *inode);
2705 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2706 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2707 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2708 void update_dirty_page(struct inode *inode, struct page *page);
2709 void remove_dirty_inode(struct inode *inode);
2710 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2711 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2712 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2713 int __init create_checkpoint_caches(void);
2714 void destroy_checkpoint_caches(void);
2715 
2716 /*
2717  * data.c
2718  */
2719 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2720 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2721 				struct inode *inode, nid_t ino, pgoff_t idx,
2722 				enum page_type type);
2723 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2724 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2725 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2726 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2727 			block_t blk_addr, struct bio *bio);
2728 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2729 void set_data_blkaddr(struct dnode_of_data *dn);
2730 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2731 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2732 int reserve_new_block(struct dnode_of_data *dn);
2733 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2734 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2735 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2736 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2737 			int op_flags, bool for_write);
2738 struct page *find_data_page(struct inode *inode, pgoff_t index);
2739 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2740 			bool for_write);
2741 struct page *get_new_data_page(struct inode *inode,
2742 			struct page *ipage, pgoff_t index, bool new_i_size);
2743 int do_write_data_page(struct f2fs_io_info *fio);
2744 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2745 			int create, int flag);
2746 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2747 			u64 start, u64 len);
2748 void f2fs_set_page_dirty_nobuffers(struct page *page);
2749 int __f2fs_write_data_pages(struct address_space *mapping,
2750 						struct writeback_control *wbc,
2751 						enum iostat_type io_type);
2752 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2753 			unsigned int length);
2754 int f2fs_release_page(struct page *page, gfp_t wait);
2755 #ifdef CONFIG_MIGRATION
2756 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2757 			struct page *page, enum migrate_mode mode);
2758 #endif
2759 
2760 /*
2761  * gc.c
2762  */
2763 int start_gc_thread(struct f2fs_sb_info *sbi);
2764 void stop_gc_thread(struct f2fs_sb_info *sbi);
2765 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2766 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2767 			unsigned int segno);
2768 void build_gc_manager(struct f2fs_sb_info *sbi);
2769 
2770 /*
2771  * recovery.c
2772  */
2773 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2774 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2775 
2776 /*
2777  * debug.c
2778  */
2779 #ifdef CONFIG_F2FS_STAT_FS
2780 struct f2fs_stat_info {
2781 	struct list_head stat_list;
2782 	struct f2fs_sb_info *sbi;
2783 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2784 	int main_area_segs, main_area_sections, main_area_zones;
2785 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2786 	unsigned long long hit_total, total_ext;
2787 	int ext_tree, zombie_tree, ext_node;
2788 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2789 	int ndirty_data, ndirty_qdata;
2790 	int inmem_pages;
2791 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2792 	int nats, dirty_nats, sits, dirty_sits;
2793 	int free_nids, avail_nids, alloc_nids;
2794 	int total_count, utilization;
2795 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2796 	int nr_flushing, nr_flushed, flush_list_empty;
2797 	int nr_discarding, nr_discarded;
2798 	int nr_discard_cmd;
2799 	unsigned int undiscard_blks;
2800 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2801 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2802 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2803 	unsigned int bimodal, avg_vblocks;
2804 	int util_free, util_valid, util_invalid;
2805 	int rsvd_segs, overp_segs;
2806 	int dirty_count, node_pages, meta_pages;
2807 	int prefree_count, call_count, cp_count, bg_cp_count;
2808 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2809 	int bg_node_segs, bg_data_segs;
2810 	int tot_blks, data_blks, node_blks;
2811 	int bg_data_blks, bg_node_blks;
2812 	int curseg[NR_CURSEG_TYPE];
2813 	int cursec[NR_CURSEG_TYPE];
2814 	int curzone[NR_CURSEG_TYPE];
2815 
2816 	unsigned int segment_count[2];
2817 	unsigned int block_count[2];
2818 	unsigned int inplace_count;
2819 	unsigned long long base_mem, cache_mem, page_mem;
2820 };
2821 
2822 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2823 {
2824 	return (struct f2fs_stat_info *)sbi->stat_info;
2825 }
2826 
2827 #define stat_inc_cp_count(si)		((si)->cp_count++)
2828 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2829 #define stat_inc_call_count(si)		((si)->call_count++)
2830 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2831 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2832 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2833 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2834 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2835 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2836 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2837 #define stat_inc_inline_xattr(inode)					\
2838 	do {								\
2839 		if (f2fs_has_inline_xattr(inode))			\
2840 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2841 	} while (0)
2842 #define stat_dec_inline_xattr(inode)					\
2843 	do {								\
2844 		if (f2fs_has_inline_xattr(inode))			\
2845 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2846 	} while (0)
2847 #define stat_inc_inline_inode(inode)					\
2848 	do {								\
2849 		if (f2fs_has_inline_data(inode))			\
2850 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2851 	} while (0)
2852 #define stat_dec_inline_inode(inode)					\
2853 	do {								\
2854 		if (f2fs_has_inline_data(inode))			\
2855 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2856 	} while (0)
2857 #define stat_inc_inline_dir(inode)					\
2858 	do {								\
2859 		if (f2fs_has_inline_dentry(inode))			\
2860 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2861 	} while (0)
2862 #define stat_dec_inline_dir(inode)					\
2863 	do {								\
2864 		if (f2fs_has_inline_dentry(inode))			\
2865 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2866 	} while (0)
2867 #define stat_inc_seg_type(sbi, curseg)					\
2868 		((sbi)->segment_count[(curseg)->alloc_type]++)
2869 #define stat_inc_block_count(sbi, curseg)				\
2870 		((sbi)->block_count[(curseg)->alloc_type]++)
2871 #define stat_inc_inplace_blocks(sbi)					\
2872 		(atomic_inc(&(sbi)->inplace_count))
2873 #define stat_inc_atomic_write(inode)					\
2874 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2875 #define stat_dec_atomic_write(inode)					\
2876 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2877 #define stat_update_max_atomic_write(inode)				\
2878 	do {								\
2879 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2880 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2881 		if (cur > max)						\
2882 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2883 	} while (0)
2884 #define stat_inc_volatile_write(inode)					\
2885 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2886 #define stat_dec_volatile_write(inode)					\
2887 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2888 #define stat_update_max_volatile_write(inode)				\
2889 	do {								\
2890 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2891 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2892 		if (cur > max)						\
2893 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2894 	} while (0)
2895 #define stat_inc_seg_count(sbi, type, gc_type)				\
2896 	do {								\
2897 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2898 		si->tot_segs++;						\
2899 		if ((type) == SUM_TYPE_DATA) {				\
2900 			si->data_segs++;				\
2901 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2902 		} else {						\
2903 			si->node_segs++;				\
2904 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2905 		}							\
2906 	} while (0)
2907 
2908 #define stat_inc_tot_blk_count(si, blks)				\
2909 	((si)->tot_blks += (blks))
2910 
2911 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2912 	do {								\
2913 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2914 		stat_inc_tot_blk_count(si, blks);			\
2915 		si->data_blks += (blks);				\
2916 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2917 	} while (0)
2918 
2919 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2920 	do {								\
2921 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2922 		stat_inc_tot_blk_count(si, blks);			\
2923 		si->node_blks += (blks);				\
2924 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2925 	} while (0)
2926 
2927 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2928 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2929 int __init f2fs_create_root_stats(void);
2930 void f2fs_destroy_root_stats(void);
2931 #else
2932 #define stat_inc_cp_count(si)				do { } while (0)
2933 #define stat_inc_bg_cp_count(si)			do { } while (0)
2934 #define stat_inc_call_count(si)				do { } while (0)
2935 #define stat_inc_bggc_count(si)				do { } while (0)
2936 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2937 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2938 #define stat_inc_total_hit(sb)				do { } while (0)
2939 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2940 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2941 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2942 #define stat_inc_inline_xattr(inode)			do { } while (0)
2943 #define stat_dec_inline_xattr(inode)			do { } while (0)
2944 #define stat_inc_inline_inode(inode)			do { } while (0)
2945 #define stat_dec_inline_inode(inode)			do { } while (0)
2946 #define stat_inc_inline_dir(inode)			do { } while (0)
2947 #define stat_dec_inline_dir(inode)			do { } while (0)
2948 #define stat_inc_atomic_write(inode)			do { } while (0)
2949 #define stat_dec_atomic_write(inode)			do { } while (0)
2950 #define stat_update_max_atomic_write(inode)		do { } while (0)
2951 #define stat_inc_volatile_write(inode)			do { } while (0)
2952 #define stat_dec_volatile_write(inode)			do { } while (0)
2953 #define stat_update_max_volatile_write(inode)		do { } while (0)
2954 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2955 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2956 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2957 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2958 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2959 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2960 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2961 
2962 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2963 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2964 static inline int __init f2fs_create_root_stats(void) { return 0; }
2965 static inline void f2fs_destroy_root_stats(void) { }
2966 #endif
2967 
2968 extern const struct file_operations f2fs_dir_operations;
2969 extern const struct file_operations f2fs_file_operations;
2970 extern const struct inode_operations f2fs_file_inode_operations;
2971 extern const struct address_space_operations f2fs_dblock_aops;
2972 extern const struct address_space_operations f2fs_node_aops;
2973 extern const struct address_space_operations f2fs_meta_aops;
2974 extern const struct inode_operations f2fs_dir_inode_operations;
2975 extern const struct inode_operations f2fs_symlink_inode_operations;
2976 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2977 extern const struct inode_operations f2fs_special_inode_operations;
2978 extern struct kmem_cache *inode_entry_slab;
2979 
2980 /*
2981  * inline.c
2982  */
2983 bool f2fs_may_inline_data(struct inode *inode);
2984 bool f2fs_may_inline_dentry(struct inode *inode);
2985 void read_inline_data(struct page *page, struct page *ipage);
2986 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2987 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2988 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2989 int f2fs_convert_inline_inode(struct inode *inode);
2990 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2991 bool recover_inline_data(struct inode *inode, struct page *npage);
2992 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2993 			struct fscrypt_name *fname, struct page **res_page);
2994 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2995 			struct page *ipage);
2996 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2997 			const struct qstr *orig_name,
2998 			struct inode *inode, nid_t ino, umode_t mode);
2999 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3000 			struct inode *dir, struct inode *inode);
3001 bool f2fs_empty_inline_dir(struct inode *dir);
3002 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3003 			struct fscrypt_str *fstr);
3004 int f2fs_inline_data_fiemap(struct inode *inode,
3005 			struct fiemap_extent_info *fieinfo,
3006 			__u64 start, __u64 len);
3007 
3008 /*
3009  * shrinker.c
3010  */
3011 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3012 			struct shrink_control *sc);
3013 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3014 			struct shrink_control *sc);
3015 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3016 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3017 
3018 /*
3019  * extent_cache.c
3020  */
3021 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3022 				struct rb_entry *cached_re, unsigned int ofs);
3023 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3024 				struct rb_root *root, struct rb_node **parent,
3025 				unsigned int ofs);
3026 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3027 		struct rb_entry *cached_re, unsigned int ofs,
3028 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3029 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3030 		bool force);
3031 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3032 						struct rb_root *root);
3033 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3034 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3035 void f2fs_drop_extent_tree(struct inode *inode);
3036 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3037 void f2fs_destroy_extent_tree(struct inode *inode);
3038 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3039 			struct extent_info *ei);
3040 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3041 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3042 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3043 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3044 int __init create_extent_cache(void);
3045 void destroy_extent_cache(void);
3046 
3047 /*
3048  * sysfs.c
3049  */
3050 int __init f2fs_init_sysfs(void);
3051 void f2fs_exit_sysfs(void);
3052 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3053 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3054 
3055 /*
3056  * crypto support
3057  */
3058 static inline bool f2fs_encrypted_inode(struct inode *inode)
3059 {
3060 	return file_is_encrypt(inode);
3061 }
3062 
3063 static inline bool f2fs_encrypted_file(struct inode *inode)
3064 {
3065 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3066 }
3067 
3068 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3069 {
3070 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3071 	file_set_encrypt(inode);
3072 	inode->i_flags |= S_ENCRYPTED;
3073 #endif
3074 }
3075 
3076 static inline bool f2fs_bio_encrypted(struct bio *bio)
3077 {
3078 	return bio->bi_private != NULL;
3079 }
3080 
3081 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3082 {
3083 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3084 }
3085 
3086 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3087 {
3088 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3089 }
3090 
3091 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3092 {
3093 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3094 }
3095 
3096 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3097 {
3098 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3099 }
3100 
3101 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3102 {
3103 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3104 }
3105 
3106 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3107 {
3108 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3109 }
3110 
3111 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3112 {
3113 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3114 }
3115 
3116 #ifdef CONFIG_BLK_DEV_ZONED
3117 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3118 			struct block_device *bdev, block_t blkaddr)
3119 {
3120 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3121 	int i;
3122 
3123 	for (i = 0; i < sbi->s_ndevs; i++)
3124 		if (FDEV(i).bdev == bdev)
3125 			return FDEV(i).blkz_type[zno];
3126 	return -EINVAL;
3127 }
3128 #endif
3129 
3130 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3131 {
3132 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3133 
3134 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3135 }
3136 
3137 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3138 {
3139 	clear_opt(sbi, ADAPTIVE);
3140 	clear_opt(sbi, LFS);
3141 
3142 	switch (mt) {
3143 	case F2FS_MOUNT_ADAPTIVE:
3144 		set_opt(sbi, ADAPTIVE);
3145 		break;
3146 	case F2FS_MOUNT_LFS:
3147 		set_opt(sbi, LFS);
3148 		break;
3149 	}
3150 }
3151 
3152 static inline bool f2fs_may_encrypt(struct inode *inode)
3153 {
3154 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3155 	umode_t mode = inode->i_mode;
3156 
3157 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3158 #else
3159 	return 0;
3160 #endif
3161 }
3162 
3163 #endif
3164