1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <crypto/hash.h> 27 28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 29 #include <linux/fscrypt.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (unlikely(condition)) { \ 37 WARN_ON(1); \ 38 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 39 } \ 40 } while (0) 41 #endif 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 enum { 45 FAULT_KMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_PAGE_GET, 48 FAULT_ALLOC_BIO, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_IO, 56 FAULT_CHECKPOINT, 57 FAULT_MAX, 58 }; 59 60 struct f2fs_fault_info { 61 atomic_t inject_ops; 62 unsigned int inject_rate; 63 unsigned int inject_type; 64 }; 65 66 extern char *fault_name[FAULT_MAX]; 67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 68 #endif 69 70 /* 71 * For mount options 72 */ 73 #define F2FS_MOUNT_BG_GC 0x00000001 74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 75 #define F2FS_MOUNT_DISCARD 0x00000004 76 #define F2FS_MOUNT_NOHEAP 0x00000008 77 #define F2FS_MOUNT_XATTR_USER 0x00000010 78 #define F2FS_MOUNT_POSIX_ACL 0x00000020 79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 81 #define F2FS_MOUNT_INLINE_DATA 0x00000100 82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 84 #define F2FS_MOUNT_NOBARRIER 0x00000800 85 #define F2FS_MOUNT_FASTBOOT 0x00001000 86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_ADAPTIVE 0x00020000 91 #define F2FS_MOUNT_LFS 0x00040000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 #define F2FS_MOUNT_QUOTA 0x00400000 96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 97 98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 101 102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 103 typecheck(unsigned long long, b) && \ 104 ((long long)((a) - (b)) > 0)) 105 106 typedef u32 block_t; /* 107 * should not change u32, since it is the on-disk block 108 * address format, __le32. 109 */ 110 typedef u32 nid_t; 111 112 struct f2fs_mount_info { 113 unsigned int opt; 114 }; 115 116 #define F2FS_FEATURE_ENCRYPT 0x0001 117 #define F2FS_FEATURE_BLKZONED 0x0002 118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 120 #define F2FS_FEATURE_PRJQUOTA 0x0010 121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 123 #define F2FS_FEATURE_QUOTA_INO 0x0080 124 125 #define F2FS_HAS_FEATURE(sb, mask) \ 126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 127 #define F2FS_SET_FEATURE(sb, mask) \ 128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 129 #define F2FS_CLEAR_FEATURE(sb, mask) \ 130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 131 132 /* 133 * For checkpoint manager 134 */ 135 enum { 136 NAT_BITMAP, 137 SIT_BITMAP 138 }; 139 140 #define CP_UMOUNT 0x00000001 141 #define CP_FASTBOOT 0x00000002 142 #define CP_SYNC 0x00000004 143 #define CP_RECOVERY 0x00000008 144 #define CP_DISCARD 0x00000010 145 #define CP_TRIMMED 0x00000020 146 147 #define DEF_BATCHED_TRIM_SECTIONS 2048 148 #define BATCHED_TRIM_SEGMENTS(sbi) \ 149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 150 #define BATCHED_TRIM_BLOCKS(sbi) \ 151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 156 #define DEF_CP_INTERVAL 60 /* 60 secs */ 157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 158 159 struct cp_control { 160 int reason; 161 __u64 trim_start; 162 __u64 trim_end; 163 __u64 trim_minlen; 164 }; 165 166 /* 167 * For CP/NAT/SIT/SSA readahead 168 */ 169 enum { 170 META_CP, 171 META_NAT, 172 META_SIT, 173 META_SSA, 174 META_POR, 175 }; 176 177 /* for the list of ino */ 178 enum { 179 ORPHAN_INO, /* for orphan ino list */ 180 APPEND_INO, /* for append ino list */ 181 UPDATE_INO, /* for update ino list */ 182 FLUSH_INO, /* for multiple device flushing */ 183 MAX_INO_ENTRY, /* max. list */ 184 }; 185 186 struct ino_entry { 187 struct list_head list; /* list head */ 188 nid_t ino; /* inode number */ 189 unsigned int dirty_device; /* dirty device bitmap */ 190 }; 191 192 /* for the list of inodes to be GCed */ 193 struct inode_entry { 194 struct list_head list; /* list head */ 195 struct inode *inode; /* vfs inode pointer */ 196 }; 197 198 /* for the bitmap indicate blocks to be discarded */ 199 struct discard_entry { 200 struct list_head list; /* list head */ 201 block_t start_blkaddr; /* start blockaddr of current segment */ 202 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 203 }; 204 205 /* default discard granularity of inner discard thread, unit: block count */ 206 #define DEFAULT_DISCARD_GRANULARITY 16 207 208 /* max discard pend list number */ 209 #define MAX_PLIST_NUM 512 210 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 211 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 212 213 enum { 214 D_PREP, 215 D_SUBMIT, 216 D_DONE, 217 }; 218 219 struct discard_info { 220 block_t lstart; /* logical start address */ 221 block_t len; /* length */ 222 block_t start; /* actual start address in dev */ 223 }; 224 225 struct discard_cmd { 226 struct rb_node rb_node; /* rb node located in rb-tree */ 227 union { 228 struct { 229 block_t lstart; /* logical start address */ 230 block_t len; /* length */ 231 block_t start; /* actual start address in dev */ 232 }; 233 struct discard_info di; /* discard info */ 234 235 }; 236 struct list_head list; /* command list */ 237 struct completion wait; /* compleation */ 238 struct block_device *bdev; /* bdev */ 239 unsigned short ref; /* reference count */ 240 unsigned char state; /* state */ 241 int error; /* bio error */ 242 }; 243 244 enum { 245 DPOLICY_BG, 246 DPOLICY_FORCE, 247 DPOLICY_FSTRIM, 248 DPOLICY_UMOUNT, 249 MAX_DPOLICY, 250 }; 251 252 struct discard_policy { 253 int type; /* type of discard */ 254 unsigned int min_interval; /* used for candidates exist */ 255 unsigned int max_interval; /* used for candidates not exist */ 256 unsigned int max_requests; /* # of discards issued per round */ 257 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 258 bool io_aware; /* issue discard in idle time */ 259 bool sync; /* submit discard with REQ_SYNC flag */ 260 unsigned int granularity; /* discard granularity */ 261 }; 262 263 struct discard_cmd_control { 264 struct task_struct *f2fs_issue_discard; /* discard thread */ 265 struct list_head entry_list; /* 4KB discard entry list */ 266 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 267 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */ 268 struct list_head wait_list; /* store on-flushing entries */ 269 struct list_head fstrim_list; /* in-flight discard from fstrim */ 270 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 271 unsigned int discard_wake; /* to wake up discard thread */ 272 struct mutex cmd_lock; 273 unsigned int nr_discards; /* # of discards in the list */ 274 unsigned int max_discards; /* max. discards to be issued */ 275 unsigned int discard_granularity; /* discard granularity */ 276 unsigned int undiscard_blks; /* # of undiscard blocks */ 277 atomic_t issued_discard; /* # of issued discard */ 278 atomic_t issing_discard; /* # of issing discard */ 279 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 280 struct rb_root root; /* root of discard rb-tree */ 281 }; 282 283 /* for the list of fsync inodes, used only during recovery */ 284 struct fsync_inode_entry { 285 struct list_head list; /* list head */ 286 struct inode *inode; /* vfs inode pointer */ 287 block_t blkaddr; /* block address locating the last fsync */ 288 block_t last_dentry; /* block address locating the last dentry */ 289 }; 290 291 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 292 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 293 294 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 295 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 296 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 297 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 298 299 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 300 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 301 302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 303 { 304 int before = nats_in_cursum(journal); 305 306 journal->n_nats = cpu_to_le16(before + i); 307 return before; 308 } 309 310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 311 { 312 int before = sits_in_cursum(journal); 313 314 journal->n_sits = cpu_to_le16(before + i); 315 return before; 316 } 317 318 static inline bool __has_cursum_space(struct f2fs_journal *journal, 319 int size, int type) 320 { 321 if (type == NAT_JOURNAL) 322 return size <= MAX_NAT_JENTRIES(journal); 323 return size <= MAX_SIT_JENTRIES(journal); 324 } 325 326 /* 327 * ioctl commands 328 */ 329 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 330 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 331 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 332 333 #define F2FS_IOCTL_MAGIC 0xf5 334 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 336 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 338 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 339 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 340 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 341 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 342 struct f2fs_defragment) 343 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 344 struct f2fs_move_range) 345 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 346 struct f2fs_flush_device) 347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 348 struct f2fs_gc_range) 349 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 350 351 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 352 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 354 355 /* 356 * should be same as XFS_IOC_GOINGDOWN. 357 * Flags for going down operation used by FS_IOC_GOINGDOWN 358 */ 359 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 360 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 361 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 362 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 363 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 364 365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 366 /* 367 * ioctl commands in 32 bit emulation 368 */ 369 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 370 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 371 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 372 #endif 373 374 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 375 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 376 377 struct f2fs_gc_range { 378 u32 sync; 379 u64 start; 380 u64 len; 381 }; 382 383 struct f2fs_defragment { 384 u64 start; 385 u64 len; 386 }; 387 388 struct f2fs_move_range { 389 u32 dst_fd; /* destination fd */ 390 u64 pos_in; /* start position in src_fd */ 391 u64 pos_out; /* start position in dst_fd */ 392 u64 len; /* size to move */ 393 }; 394 395 struct f2fs_flush_device { 396 u32 dev_num; /* device number to flush */ 397 u32 segments; /* # of segments to flush */ 398 }; 399 400 /* for inline stuff */ 401 #define DEF_INLINE_RESERVED_SIZE 1 402 #define DEF_MIN_INLINE_SIZE 1 403 static inline int get_extra_isize(struct inode *inode); 404 static inline int get_inline_xattr_addrs(struct inode *inode); 405 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode) 406 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 407 (CUR_ADDRS_PER_INODE(inode) - \ 408 F2FS_INLINE_XATTR_ADDRS(inode) - \ 409 DEF_INLINE_RESERVED_SIZE)) 410 411 /* for inline dir */ 412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 413 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 414 BITS_PER_BYTE + 1)) 415 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 416 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 417 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 418 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 419 NR_INLINE_DENTRY(inode) + \ 420 INLINE_DENTRY_BITMAP_SIZE(inode))) 421 422 /* 423 * For INODE and NODE manager 424 */ 425 /* for directory operations */ 426 struct f2fs_dentry_ptr { 427 struct inode *inode; 428 void *bitmap; 429 struct f2fs_dir_entry *dentry; 430 __u8 (*filename)[F2FS_SLOT_LEN]; 431 int max; 432 int nr_bitmap; 433 }; 434 435 static inline void make_dentry_ptr_block(struct inode *inode, 436 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 437 { 438 d->inode = inode; 439 d->max = NR_DENTRY_IN_BLOCK; 440 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 441 d->bitmap = &t->dentry_bitmap; 442 d->dentry = t->dentry; 443 d->filename = t->filename; 444 } 445 446 static inline void make_dentry_ptr_inline(struct inode *inode, 447 struct f2fs_dentry_ptr *d, void *t) 448 { 449 int entry_cnt = NR_INLINE_DENTRY(inode); 450 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 451 int reserved_size = INLINE_RESERVED_SIZE(inode); 452 453 d->inode = inode; 454 d->max = entry_cnt; 455 d->nr_bitmap = bitmap_size; 456 d->bitmap = t; 457 d->dentry = t + bitmap_size + reserved_size; 458 d->filename = t + bitmap_size + reserved_size + 459 SIZE_OF_DIR_ENTRY * entry_cnt; 460 } 461 462 /* 463 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 464 * as its node offset to distinguish from index node blocks. 465 * But some bits are used to mark the node block. 466 */ 467 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 468 >> OFFSET_BIT_SHIFT) 469 enum { 470 ALLOC_NODE, /* allocate a new node page if needed */ 471 LOOKUP_NODE, /* look up a node without readahead */ 472 LOOKUP_NODE_RA, /* 473 * look up a node with readahead called 474 * by get_data_block. 475 */ 476 }; 477 478 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 479 480 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 481 482 /* vector size for gang look-up from extent cache that consists of radix tree */ 483 #define EXT_TREE_VEC_SIZE 64 484 485 /* for in-memory extent cache entry */ 486 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 487 488 /* number of extent info in extent cache we try to shrink */ 489 #define EXTENT_CACHE_SHRINK_NUMBER 128 490 491 struct rb_entry { 492 struct rb_node rb_node; /* rb node located in rb-tree */ 493 unsigned int ofs; /* start offset of the entry */ 494 unsigned int len; /* length of the entry */ 495 }; 496 497 struct extent_info { 498 unsigned int fofs; /* start offset in a file */ 499 unsigned int len; /* length of the extent */ 500 u32 blk; /* start block address of the extent */ 501 }; 502 503 struct extent_node { 504 struct rb_node rb_node; 505 union { 506 struct { 507 unsigned int fofs; 508 unsigned int len; 509 u32 blk; 510 }; 511 struct extent_info ei; /* extent info */ 512 513 }; 514 struct list_head list; /* node in global extent list of sbi */ 515 struct extent_tree *et; /* extent tree pointer */ 516 }; 517 518 struct extent_tree { 519 nid_t ino; /* inode number */ 520 struct rb_root root; /* root of extent info rb-tree */ 521 struct extent_node *cached_en; /* recently accessed extent node */ 522 struct extent_info largest; /* largested extent info */ 523 struct list_head list; /* to be used by sbi->zombie_list */ 524 rwlock_t lock; /* protect extent info rb-tree */ 525 atomic_t node_cnt; /* # of extent node in rb-tree*/ 526 }; 527 528 /* 529 * This structure is taken from ext4_map_blocks. 530 * 531 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 532 */ 533 #define F2FS_MAP_NEW (1 << BH_New) 534 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 535 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 536 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 537 F2FS_MAP_UNWRITTEN) 538 539 struct f2fs_map_blocks { 540 block_t m_pblk; 541 block_t m_lblk; 542 unsigned int m_len; 543 unsigned int m_flags; 544 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 545 int m_seg_type; 546 }; 547 548 /* for flag in get_data_block */ 549 enum { 550 F2FS_GET_BLOCK_DEFAULT, 551 F2FS_GET_BLOCK_FIEMAP, 552 F2FS_GET_BLOCK_BMAP, 553 F2FS_GET_BLOCK_PRE_DIO, 554 F2FS_GET_BLOCK_PRE_AIO, 555 }; 556 557 /* 558 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 559 */ 560 #define FADVISE_COLD_BIT 0x01 561 #define FADVISE_LOST_PINO_BIT 0x02 562 #define FADVISE_ENCRYPT_BIT 0x04 563 #define FADVISE_ENC_NAME_BIT 0x08 564 #define FADVISE_KEEP_SIZE_BIT 0x10 565 566 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 567 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 568 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 569 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 570 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 571 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 572 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 573 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 574 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 575 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 576 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 577 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 578 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 579 580 #define DEF_DIR_LEVEL 0 581 582 struct f2fs_inode_info { 583 struct inode vfs_inode; /* serve a vfs inode */ 584 unsigned long i_flags; /* keep an inode flags for ioctl */ 585 unsigned char i_advise; /* use to give file attribute hints */ 586 unsigned char i_dir_level; /* use for dentry level for large dir */ 587 unsigned int i_current_depth; /* use only in directory structure */ 588 unsigned int i_pino; /* parent inode number */ 589 umode_t i_acl_mode; /* keep file acl mode temporarily */ 590 591 /* Use below internally in f2fs*/ 592 unsigned long flags; /* use to pass per-file flags */ 593 struct rw_semaphore i_sem; /* protect fi info */ 594 atomic_t dirty_pages; /* # of dirty pages */ 595 f2fs_hash_t chash; /* hash value of given file name */ 596 unsigned int clevel; /* maximum level of given file name */ 597 struct task_struct *task; /* lookup and create consistency */ 598 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 599 nid_t i_xattr_nid; /* node id that contains xattrs */ 600 loff_t last_disk_size; /* lastly written file size */ 601 602 #ifdef CONFIG_QUOTA 603 struct dquot *i_dquot[MAXQUOTAS]; 604 605 /* quota space reservation, managed internally by quota code */ 606 qsize_t i_reserved_quota; 607 #endif 608 struct list_head dirty_list; /* dirty list for dirs and files */ 609 struct list_head gdirty_list; /* linked in global dirty list */ 610 struct list_head inmem_ilist; /* list for inmem inodes */ 611 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 612 struct task_struct *inmem_task; /* store inmemory task */ 613 struct mutex inmem_lock; /* lock for inmemory pages */ 614 struct extent_tree *extent_tree; /* cached extent_tree entry */ 615 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 616 struct rw_semaphore i_mmap_sem; 617 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 618 619 int i_extra_isize; /* size of extra space located in i_addr */ 620 kprojid_t i_projid; /* id for project quota */ 621 int i_inline_xattr_size; /* inline xattr size */ 622 }; 623 624 static inline void get_extent_info(struct extent_info *ext, 625 struct f2fs_extent *i_ext) 626 { 627 ext->fofs = le32_to_cpu(i_ext->fofs); 628 ext->blk = le32_to_cpu(i_ext->blk); 629 ext->len = le32_to_cpu(i_ext->len); 630 } 631 632 static inline void set_raw_extent(struct extent_info *ext, 633 struct f2fs_extent *i_ext) 634 { 635 i_ext->fofs = cpu_to_le32(ext->fofs); 636 i_ext->blk = cpu_to_le32(ext->blk); 637 i_ext->len = cpu_to_le32(ext->len); 638 } 639 640 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 641 u32 blk, unsigned int len) 642 { 643 ei->fofs = fofs; 644 ei->blk = blk; 645 ei->len = len; 646 } 647 648 static inline bool __is_discard_mergeable(struct discard_info *back, 649 struct discard_info *front) 650 { 651 return back->lstart + back->len == front->lstart; 652 } 653 654 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 655 struct discard_info *back) 656 { 657 return __is_discard_mergeable(back, cur); 658 } 659 660 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 661 struct discard_info *front) 662 { 663 return __is_discard_mergeable(cur, front); 664 } 665 666 static inline bool __is_extent_mergeable(struct extent_info *back, 667 struct extent_info *front) 668 { 669 return (back->fofs + back->len == front->fofs && 670 back->blk + back->len == front->blk); 671 } 672 673 static inline bool __is_back_mergeable(struct extent_info *cur, 674 struct extent_info *back) 675 { 676 return __is_extent_mergeable(back, cur); 677 } 678 679 static inline bool __is_front_mergeable(struct extent_info *cur, 680 struct extent_info *front) 681 { 682 return __is_extent_mergeable(cur, front); 683 } 684 685 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 686 static inline void __try_update_largest_extent(struct inode *inode, 687 struct extent_tree *et, struct extent_node *en) 688 { 689 if (en->ei.len > et->largest.len) { 690 et->largest = en->ei; 691 f2fs_mark_inode_dirty_sync(inode, true); 692 } 693 } 694 695 /* 696 * For free nid management 697 */ 698 enum nid_state { 699 FREE_NID, /* newly added to free nid list */ 700 PREALLOC_NID, /* it is preallocated */ 701 MAX_NID_STATE, 702 }; 703 704 struct f2fs_nm_info { 705 block_t nat_blkaddr; /* base disk address of NAT */ 706 nid_t max_nid; /* maximum possible node ids */ 707 nid_t available_nids; /* # of available node ids */ 708 nid_t next_scan_nid; /* the next nid to be scanned */ 709 unsigned int ram_thresh; /* control the memory footprint */ 710 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 711 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 712 713 /* NAT cache management */ 714 struct radix_tree_root nat_root;/* root of the nat entry cache */ 715 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 716 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 717 struct list_head nat_entries; /* cached nat entry list (clean) */ 718 unsigned int nat_cnt; /* the # of cached nat entries */ 719 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 720 unsigned int nat_blocks; /* # of nat blocks */ 721 722 /* free node ids management */ 723 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 724 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 725 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 726 spinlock_t nid_list_lock; /* protect nid lists ops */ 727 struct mutex build_lock; /* lock for build free nids */ 728 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 729 unsigned char *nat_block_bitmap; 730 unsigned short *free_nid_count; /* free nid count of NAT block */ 731 732 /* for checkpoint */ 733 char *nat_bitmap; /* NAT bitmap pointer */ 734 735 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 736 unsigned char *nat_bits; /* NAT bits blocks */ 737 unsigned char *full_nat_bits; /* full NAT pages */ 738 unsigned char *empty_nat_bits; /* empty NAT pages */ 739 #ifdef CONFIG_F2FS_CHECK_FS 740 char *nat_bitmap_mir; /* NAT bitmap mirror */ 741 #endif 742 int bitmap_size; /* bitmap size */ 743 }; 744 745 /* 746 * this structure is used as one of function parameters. 747 * all the information are dedicated to a given direct node block determined 748 * by the data offset in a file. 749 */ 750 struct dnode_of_data { 751 struct inode *inode; /* vfs inode pointer */ 752 struct page *inode_page; /* its inode page, NULL is possible */ 753 struct page *node_page; /* cached direct node page */ 754 nid_t nid; /* node id of the direct node block */ 755 unsigned int ofs_in_node; /* data offset in the node page */ 756 bool inode_page_locked; /* inode page is locked or not */ 757 bool node_changed; /* is node block changed */ 758 char cur_level; /* level of hole node page */ 759 char max_level; /* level of current page located */ 760 block_t data_blkaddr; /* block address of the node block */ 761 }; 762 763 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 764 struct page *ipage, struct page *npage, nid_t nid) 765 { 766 memset(dn, 0, sizeof(*dn)); 767 dn->inode = inode; 768 dn->inode_page = ipage; 769 dn->node_page = npage; 770 dn->nid = nid; 771 } 772 773 /* 774 * For SIT manager 775 * 776 * By default, there are 6 active log areas across the whole main area. 777 * When considering hot and cold data separation to reduce cleaning overhead, 778 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 779 * respectively. 780 * In the current design, you should not change the numbers intentionally. 781 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 782 * logs individually according to the underlying devices. (default: 6) 783 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 784 * data and 8 for node logs. 785 */ 786 #define NR_CURSEG_DATA_TYPE (3) 787 #define NR_CURSEG_NODE_TYPE (3) 788 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 789 790 enum { 791 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 792 CURSEG_WARM_DATA, /* data blocks */ 793 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 794 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 795 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 796 CURSEG_COLD_NODE, /* indirect node blocks */ 797 NO_CHECK_TYPE, 798 }; 799 800 struct flush_cmd { 801 struct completion wait; 802 struct llist_node llnode; 803 nid_t ino; 804 int ret; 805 }; 806 807 struct flush_cmd_control { 808 struct task_struct *f2fs_issue_flush; /* flush thread */ 809 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 810 atomic_t issued_flush; /* # of issued flushes */ 811 atomic_t issing_flush; /* # of issing flushes */ 812 struct llist_head issue_list; /* list for command issue */ 813 struct llist_node *dispatch_list; /* list for command dispatch */ 814 }; 815 816 struct f2fs_sm_info { 817 struct sit_info *sit_info; /* whole segment information */ 818 struct free_segmap_info *free_info; /* free segment information */ 819 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 820 struct curseg_info *curseg_array; /* active segment information */ 821 822 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 823 824 block_t seg0_blkaddr; /* block address of 0'th segment */ 825 block_t main_blkaddr; /* start block address of main area */ 826 block_t ssa_blkaddr; /* start block address of SSA area */ 827 828 unsigned int segment_count; /* total # of segments */ 829 unsigned int main_segments; /* # of segments in main area */ 830 unsigned int reserved_segments; /* # of reserved segments */ 831 unsigned int ovp_segments; /* # of overprovision segments */ 832 833 /* a threshold to reclaim prefree segments */ 834 unsigned int rec_prefree_segments; 835 836 /* for batched trimming */ 837 unsigned int trim_sections; /* # of sections to trim */ 838 839 struct list_head sit_entry_set; /* sit entry set list */ 840 841 unsigned int ipu_policy; /* in-place-update policy */ 842 unsigned int min_ipu_util; /* in-place-update threshold */ 843 unsigned int min_fsync_blocks; /* threshold for fsync */ 844 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 845 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 846 847 /* for flush command control */ 848 struct flush_cmd_control *fcc_info; 849 850 /* for discard command control */ 851 struct discard_cmd_control *dcc_info; 852 }; 853 854 /* 855 * For superblock 856 */ 857 /* 858 * COUNT_TYPE for monitoring 859 * 860 * f2fs monitors the number of several block types such as on-writeback, 861 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 862 */ 863 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 864 enum count_type { 865 F2FS_DIRTY_DENTS, 866 F2FS_DIRTY_DATA, 867 F2FS_DIRTY_QDATA, 868 F2FS_DIRTY_NODES, 869 F2FS_DIRTY_META, 870 F2FS_INMEM_PAGES, 871 F2FS_DIRTY_IMETA, 872 F2FS_WB_CP_DATA, 873 F2FS_WB_DATA, 874 NR_COUNT_TYPE, 875 }; 876 877 /* 878 * The below are the page types of bios used in submit_bio(). 879 * The available types are: 880 * DATA User data pages. It operates as async mode. 881 * NODE Node pages. It operates as async mode. 882 * META FS metadata pages such as SIT, NAT, CP. 883 * NR_PAGE_TYPE The number of page types. 884 * META_FLUSH Make sure the previous pages are written 885 * with waiting the bio's completion 886 * ... Only can be used with META. 887 */ 888 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 889 enum page_type { 890 DATA, 891 NODE, 892 META, 893 NR_PAGE_TYPE, 894 META_FLUSH, 895 INMEM, /* the below types are used by tracepoints only. */ 896 INMEM_DROP, 897 INMEM_INVALIDATE, 898 INMEM_REVOKE, 899 IPU, 900 OPU, 901 }; 902 903 enum temp_type { 904 HOT = 0, /* must be zero for meta bio */ 905 WARM, 906 COLD, 907 NR_TEMP_TYPE, 908 }; 909 910 enum need_lock_type { 911 LOCK_REQ = 0, 912 LOCK_DONE, 913 LOCK_RETRY, 914 }; 915 916 enum cp_reason_type { 917 CP_NO_NEEDED, 918 CP_NON_REGULAR, 919 CP_HARDLINK, 920 CP_SB_NEED_CP, 921 CP_WRONG_PINO, 922 CP_NO_SPC_ROLL, 923 CP_NODE_NEED_CP, 924 CP_FASTBOOT_MODE, 925 CP_SPEC_LOG_NUM, 926 }; 927 928 enum iostat_type { 929 APP_DIRECT_IO, /* app direct IOs */ 930 APP_BUFFERED_IO, /* app buffered IOs */ 931 APP_WRITE_IO, /* app write IOs */ 932 APP_MAPPED_IO, /* app mapped IOs */ 933 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 934 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 935 FS_META_IO, /* meta IOs from kworker/reclaimer */ 936 FS_GC_DATA_IO, /* data IOs from forground gc */ 937 FS_GC_NODE_IO, /* node IOs from forground gc */ 938 FS_CP_DATA_IO, /* data IOs from checkpoint */ 939 FS_CP_NODE_IO, /* node IOs from checkpoint */ 940 FS_CP_META_IO, /* meta IOs from checkpoint */ 941 FS_DISCARD, /* discard */ 942 NR_IO_TYPE, 943 }; 944 945 struct f2fs_io_info { 946 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 947 nid_t ino; /* inode number */ 948 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 949 enum temp_type temp; /* contains HOT/WARM/COLD */ 950 int op; /* contains REQ_OP_ */ 951 int op_flags; /* req_flag_bits */ 952 block_t new_blkaddr; /* new block address to be written */ 953 block_t old_blkaddr; /* old block address before Cow */ 954 struct page *page; /* page to be written */ 955 struct page *encrypted_page; /* encrypted page */ 956 struct list_head list; /* serialize IOs */ 957 bool submitted; /* indicate IO submission */ 958 int need_lock; /* indicate we need to lock cp_rwsem */ 959 bool in_list; /* indicate fio is in io_list */ 960 enum iostat_type io_type; /* io type */ 961 }; 962 963 #define is_read_io(rw) ((rw) == READ) 964 struct f2fs_bio_info { 965 struct f2fs_sb_info *sbi; /* f2fs superblock */ 966 struct bio *bio; /* bios to merge */ 967 sector_t last_block_in_bio; /* last block number */ 968 struct f2fs_io_info fio; /* store buffered io info. */ 969 struct rw_semaphore io_rwsem; /* blocking op for bio */ 970 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 971 struct list_head io_list; /* track fios */ 972 }; 973 974 #define FDEV(i) (sbi->devs[i]) 975 #define RDEV(i) (raw_super->devs[i]) 976 struct f2fs_dev_info { 977 struct block_device *bdev; 978 char path[MAX_PATH_LEN]; 979 unsigned int total_segments; 980 block_t start_blk; 981 block_t end_blk; 982 #ifdef CONFIG_BLK_DEV_ZONED 983 unsigned int nr_blkz; /* Total number of zones */ 984 u8 *blkz_type; /* Array of zones type */ 985 #endif 986 }; 987 988 enum inode_type { 989 DIR_INODE, /* for dirty dir inode */ 990 FILE_INODE, /* for dirty regular/symlink inode */ 991 DIRTY_META, /* for all dirtied inode metadata */ 992 ATOMIC_FILE, /* for all atomic files */ 993 NR_INODE_TYPE, 994 }; 995 996 /* for inner inode cache management */ 997 struct inode_management { 998 struct radix_tree_root ino_root; /* ino entry array */ 999 spinlock_t ino_lock; /* for ino entry lock */ 1000 struct list_head ino_list; /* inode list head */ 1001 unsigned long ino_num; /* number of entries */ 1002 }; 1003 1004 /* For s_flag in struct f2fs_sb_info */ 1005 enum { 1006 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1007 SBI_IS_CLOSE, /* specify unmounting */ 1008 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1009 SBI_POR_DOING, /* recovery is doing or not */ 1010 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1011 SBI_NEED_CP, /* need to checkpoint */ 1012 }; 1013 1014 enum { 1015 CP_TIME, 1016 REQ_TIME, 1017 MAX_TIME, 1018 }; 1019 1020 struct f2fs_sb_info { 1021 struct super_block *sb; /* pointer to VFS super block */ 1022 struct proc_dir_entry *s_proc; /* proc entry */ 1023 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1024 int valid_super_block; /* valid super block no */ 1025 unsigned long s_flag; /* flags for sbi */ 1026 1027 #ifdef CONFIG_BLK_DEV_ZONED 1028 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1029 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1030 #endif 1031 1032 /* for node-related operations */ 1033 struct f2fs_nm_info *nm_info; /* node manager */ 1034 struct inode *node_inode; /* cache node blocks */ 1035 1036 /* for segment-related operations */ 1037 struct f2fs_sm_info *sm_info; /* segment manager */ 1038 1039 /* for bio operations */ 1040 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1041 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1042 /* bio ordering for NODE/DATA */ 1043 int write_io_size_bits; /* Write IO size bits */ 1044 mempool_t *write_io_dummy; /* Dummy pages */ 1045 1046 /* for checkpoint */ 1047 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1048 int cur_cp_pack; /* remain current cp pack */ 1049 spinlock_t cp_lock; /* for flag in ckpt */ 1050 struct inode *meta_inode; /* cache meta blocks */ 1051 struct mutex cp_mutex; /* checkpoint procedure lock */ 1052 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1053 struct rw_semaphore node_write; /* locking node writes */ 1054 struct rw_semaphore node_change; /* locking node change */ 1055 wait_queue_head_t cp_wait; 1056 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1057 long interval_time[MAX_TIME]; /* to store thresholds */ 1058 1059 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1060 1061 /* for orphan inode, use 0'th array */ 1062 unsigned int max_orphans; /* max orphan inodes */ 1063 1064 /* for inode management */ 1065 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1066 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1067 1068 /* for extent tree cache */ 1069 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1070 struct mutex extent_tree_lock; /* locking extent radix tree */ 1071 struct list_head extent_list; /* lru list for shrinker */ 1072 spinlock_t extent_lock; /* locking extent lru list */ 1073 atomic_t total_ext_tree; /* extent tree count */ 1074 struct list_head zombie_list; /* extent zombie tree list */ 1075 atomic_t total_zombie_tree; /* extent zombie tree count */ 1076 atomic_t total_ext_node; /* extent info count */ 1077 1078 /* basic filesystem units */ 1079 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1080 unsigned int log_blocksize; /* log2 block size */ 1081 unsigned int blocksize; /* block size */ 1082 unsigned int root_ino_num; /* root inode number*/ 1083 unsigned int node_ino_num; /* node inode number*/ 1084 unsigned int meta_ino_num; /* meta inode number*/ 1085 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1086 unsigned int blocks_per_seg; /* blocks per segment */ 1087 unsigned int segs_per_sec; /* segments per section */ 1088 unsigned int secs_per_zone; /* sections per zone */ 1089 unsigned int total_sections; /* total section count */ 1090 unsigned int total_node_count; /* total node block count */ 1091 unsigned int total_valid_node_count; /* valid node block count */ 1092 loff_t max_file_blocks; /* max block index of file */ 1093 int active_logs; /* # of active logs */ 1094 int dir_level; /* directory level */ 1095 int inline_xattr_size; /* inline xattr size */ 1096 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1097 int readdir_ra; /* readahead inode in readdir */ 1098 1099 block_t user_block_count; /* # of user blocks */ 1100 block_t total_valid_block_count; /* # of valid blocks */ 1101 block_t discard_blks; /* discard command candidats */ 1102 block_t last_valid_block_count; /* for recovery */ 1103 block_t reserved_blocks; /* configurable reserved blocks */ 1104 block_t current_reserved_blocks; /* current reserved blocks */ 1105 1106 unsigned int nquota_files; /* # of quota sysfile */ 1107 1108 u32 s_next_generation; /* for NFS support */ 1109 1110 /* # of pages, see count_type */ 1111 atomic_t nr_pages[NR_COUNT_TYPE]; 1112 /* # of allocated blocks */ 1113 struct percpu_counter alloc_valid_block_count; 1114 1115 /* writeback control */ 1116 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1117 1118 /* valid inode count */ 1119 struct percpu_counter total_valid_inode_count; 1120 1121 struct f2fs_mount_info mount_opt; /* mount options */ 1122 1123 /* for cleaning operations */ 1124 struct mutex gc_mutex; /* mutex for GC */ 1125 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1126 unsigned int cur_victim_sec; /* current victim section num */ 1127 1128 /* threshold for converting bg victims for fg */ 1129 u64 fggc_threshold; 1130 1131 /* maximum # of trials to find a victim segment for SSR and GC */ 1132 unsigned int max_victim_search; 1133 1134 /* 1135 * for stat information. 1136 * one is for the LFS mode, and the other is for the SSR mode. 1137 */ 1138 #ifdef CONFIG_F2FS_STAT_FS 1139 struct f2fs_stat_info *stat_info; /* FS status information */ 1140 unsigned int segment_count[2]; /* # of allocated segments */ 1141 unsigned int block_count[2]; /* # of allocated blocks */ 1142 atomic_t inplace_count; /* # of inplace update */ 1143 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1144 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1145 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1146 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1147 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1148 atomic_t inline_inode; /* # of inline_data inodes */ 1149 atomic_t inline_dir; /* # of inline_dentry inodes */ 1150 atomic_t aw_cnt; /* # of atomic writes */ 1151 atomic_t vw_cnt; /* # of volatile writes */ 1152 atomic_t max_aw_cnt; /* max # of atomic writes */ 1153 atomic_t max_vw_cnt; /* max # of volatile writes */ 1154 int bg_gc; /* background gc calls */ 1155 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1156 #endif 1157 spinlock_t stat_lock; /* lock for stat operations */ 1158 1159 /* For app/fs IO statistics */ 1160 spinlock_t iostat_lock; 1161 unsigned long long write_iostat[NR_IO_TYPE]; 1162 bool iostat_enable; 1163 1164 /* For sysfs suppport */ 1165 struct kobject s_kobj; 1166 struct completion s_kobj_unregister; 1167 1168 /* For shrinker support */ 1169 struct list_head s_list; 1170 int s_ndevs; /* number of devices */ 1171 struct f2fs_dev_info *devs; /* for device list */ 1172 unsigned int dirty_device; /* for checkpoint data flush */ 1173 spinlock_t dev_lock; /* protect dirty_device */ 1174 struct mutex umount_mutex; 1175 unsigned int shrinker_run_no; 1176 1177 /* For write statistics */ 1178 u64 sectors_written_start; 1179 u64 kbytes_written; 1180 1181 /* Reference to checksum algorithm driver via cryptoapi */ 1182 struct crypto_shash *s_chksum_driver; 1183 1184 /* Precomputed FS UUID checksum for seeding other checksums */ 1185 __u32 s_chksum_seed; 1186 1187 /* For fault injection */ 1188 #ifdef CONFIG_F2FS_FAULT_INJECTION 1189 struct f2fs_fault_info fault_info; 1190 #endif 1191 1192 #ifdef CONFIG_QUOTA 1193 /* Names of quota files with journalled quota */ 1194 char *s_qf_names[MAXQUOTAS]; 1195 int s_jquota_fmt; /* Format of quota to use */ 1196 #endif 1197 }; 1198 1199 #ifdef CONFIG_F2FS_FAULT_INJECTION 1200 #define f2fs_show_injection_info(type) \ 1201 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1202 KERN_INFO, fault_name[type], \ 1203 __func__, __builtin_return_address(0)) 1204 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1205 { 1206 struct f2fs_fault_info *ffi = &sbi->fault_info; 1207 1208 if (!ffi->inject_rate) 1209 return false; 1210 1211 if (!IS_FAULT_SET(ffi, type)) 1212 return false; 1213 1214 atomic_inc(&ffi->inject_ops); 1215 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1216 atomic_set(&ffi->inject_ops, 0); 1217 return true; 1218 } 1219 return false; 1220 } 1221 #endif 1222 1223 /* For write statistics. Suppose sector size is 512 bytes, 1224 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1225 */ 1226 #define BD_PART_WRITTEN(s) \ 1227 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1228 (s)->sectors_written_start) >> 1) 1229 1230 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1231 { 1232 sbi->last_time[type] = jiffies; 1233 } 1234 1235 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1236 { 1237 unsigned long interval = sbi->interval_time[type] * HZ; 1238 1239 return time_after(jiffies, sbi->last_time[type] + interval); 1240 } 1241 1242 static inline bool is_idle(struct f2fs_sb_info *sbi) 1243 { 1244 struct block_device *bdev = sbi->sb->s_bdev; 1245 struct request_queue *q = bdev_get_queue(bdev); 1246 struct request_list *rl = &q->root_rl; 1247 1248 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1249 return 0; 1250 1251 return f2fs_time_over(sbi, REQ_TIME); 1252 } 1253 1254 /* 1255 * Inline functions 1256 */ 1257 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1258 unsigned int length) 1259 { 1260 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1261 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1262 u32 retval; 1263 int err; 1264 1265 shash->tfm = sbi->s_chksum_driver; 1266 shash->flags = 0; 1267 *ctx = F2FS_SUPER_MAGIC; 1268 1269 err = crypto_shash_update(shash, address, length); 1270 BUG_ON(err); 1271 1272 retval = *ctx; 1273 barrier_data(ctx); 1274 return retval; 1275 } 1276 1277 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1278 void *buf, size_t buf_size) 1279 { 1280 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1281 } 1282 1283 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1284 const void *address, unsigned int length) 1285 { 1286 struct { 1287 struct shash_desc shash; 1288 char ctx[4]; 1289 } desc; 1290 int err; 1291 1292 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1293 1294 desc.shash.tfm = sbi->s_chksum_driver; 1295 desc.shash.flags = 0; 1296 *(u32 *)desc.ctx = crc; 1297 1298 err = crypto_shash_update(&desc.shash, address, length); 1299 BUG_ON(err); 1300 1301 return *(u32 *)desc.ctx; 1302 } 1303 1304 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1305 { 1306 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1307 } 1308 1309 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1310 { 1311 return sb->s_fs_info; 1312 } 1313 1314 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1315 { 1316 return F2FS_SB(inode->i_sb); 1317 } 1318 1319 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1320 { 1321 return F2FS_I_SB(mapping->host); 1322 } 1323 1324 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1325 { 1326 return F2FS_M_SB(page->mapping); 1327 } 1328 1329 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1330 { 1331 return (struct f2fs_super_block *)(sbi->raw_super); 1332 } 1333 1334 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1335 { 1336 return (struct f2fs_checkpoint *)(sbi->ckpt); 1337 } 1338 1339 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1340 { 1341 return (struct f2fs_node *)page_address(page); 1342 } 1343 1344 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1345 { 1346 return &((struct f2fs_node *)page_address(page))->i; 1347 } 1348 1349 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1350 { 1351 return (struct f2fs_nm_info *)(sbi->nm_info); 1352 } 1353 1354 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1355 { 1356 return (struct f2fs_sm_info *)(sbi->sm_info); 1357 } 1358 1359 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1360 { 1361 return (struct sit_info *)(SM_I(sbi)->sit_info); 1362 } 1363 1364 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1365 { 1366 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1367 } 1368 1369 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1370 { 1371 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1372 } 1373 1374 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1375 { 1376 return sbi->meta_inode->i_mapping; 1377 } 1378 1379 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1380 { 1381 return sbi->node_inode->i_mapping; 1382 } 1383 1384 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1385 { 1386 return test_bit(type, &sbi->s_flag); 1387 } 1388 1389 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1390 { 1391 set_bit(type, &sbi->s_flag); 1392 } 1393 1394 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1395 { 1396 clear_bit(type, &sbi->s_flag); 1397 } 1398 1399 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1400 { 1401 return le64_to_cpu(cp->checkpoint_ver); 1402 } 1403 1404 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1405 { 1406 if (type < F2FS_MAX_QUOTAS) 1407 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1408 return 0; 1409 } 1410 1411 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1412 { 1413 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1414 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1415 } 1416 1417 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1418 { 1419 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1420 1421 return ckpt_flags & f; 1422 } 1423 1424 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1425 { 1426 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1427 } 1428 1429 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1430 { 1431 unsigned int ckpt_flags; 1432 1433 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1434 ckpt_flags |= f; 1435 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1436 } 1437 1438 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1439 { 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&sbi->cp_lock, flags); 1443 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1444 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1445 } 1446 1447 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1448 { 1449 unsigned int ckpt_flags; 1450 1451 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1452 ckpt_flags &= (~f); 1453 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1454 } 1455 1456 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1457 { 1458 unsigned long flags; 1459 1460 spin_lock_irqsave(&sbi->cp_lock, flags); 1461 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1462 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1463 } 1464 1465 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1466 { 1467 unsigned long flags; 1468 1469 set_sbi_flag(sbi, SBI_NEED_FSCK); 1470 1471 if (lock) 1472 spin_lock_irqsave(&sbi->cp_lock, flags); 1473 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1474 kfree(NM_I(sbi)->nat_bits); 1475 NM_I(sbi)->nat_bits = NULL; 1476 if (lock) 1477 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1478 } 1479 1480 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1481 struct cp_control *cpc) 1482 { 1483 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1484 1485 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1486 } 1487 1488 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1489 { 1490 down_read(&sbi->cp_rwsem); 1491 } 1492 1493 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1494 { 1495 return down_read_trylock(&sbi->cp_rwsem); 1496 } 1497 1498 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1499 { 1500 up_read(&sbi->cp_rwsem); 1501 } 1502 1503 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1504 { 1505 down_write(&sbi->cp_rwsem); 1506 } 1507 1508 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1509 { 1510 up_write(&sbi->cp_rwsem); 1511 } 1512 1513 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1514 { 1515 int reason = CP_SYNC; 1516 1517 if (test_opt(sbi, FASTBOOT)) 1518 reason = CP_FASTBOOT; 1519 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1520 reason = CP_UMOUNT; 1521 return reason; 1522 } 1523 1524 static inline bool __remain_node_summaries(int reason) 1525 { 1526 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1527 } 1528 1529 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1530 { 1531 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1532 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1533 } 1534 1535 /* 1536 * Check whether the given nid is within node id range. 1537 */ 1538 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1539 { 1540 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1541 return -EINVAL; 1542 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1543 return -EINVAL; 1544 return 0; 1545 } 1546 1547 /* 1548 * Check whether the inode has blocks or not 1549 */ 1550 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1551 { 1552 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1553 1554 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1555 } 1556 1557 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1558 { 1559 return ofs == XATTR_NODE_OFFSET; 1560 } 1561 1562 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1563 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1564 struct inode *inode, blkcnt_t *count) 1565 { 1566 blkcnt_t diff = 0, release = 0; 1567 block_t avail_user_block_count; 1568 int ret; 1569 1570 ret = dquot_reserve_block(inode, *count); 1571 if (ret) 1572 return ret; 1573 1574 #ifdef CONFIG_F2FS_FAULT_INJECTION 1575 if (time_to_inject(sbi, FAULT_BLOCK)) { 1576 f2fs_show_injection_info(FAULT_BLOCK); 1577 release = *count; 1578 goto enospc; 1579 } 1580 #endif 1581 /* 1582 * let's increase this in prior to actual block count change in order 1583 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1584 */ 1585 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1586 1587 spin_lock(&sbi->stat_lock); 1588 sbi->total_valid_block_count += (block_t)(*count); 1589 avail_user_block_count = sbi->user_block_count - 1590 sbi->current_reserved_blocks; 1591 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1592 diff = sbi->total_valid_block_count - avail_user_block_count; 1593 *count -= diff; 1594 release = diff; 1595 sbi->total_valid_block_count = avail_user_block_count; 1596 if (!*count) { 1597 spin_unlock(&sbi->stat_lock); 1598 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1599 goto enospc; 1600 } 1601 } 1602 spin_unlock(&sbi->stat_lock); 1603 1604 if (release) 1605 dquot_release_reservation_block(inode, release); 1606 f2fs_i_blocks_write(inode, *count, true, true); 1607 return 0; 1608 1609 enospc: 1610 dquot_release_reservation_block(inode, release); 1611 return -ENOSPC; 1612 } 1613 1614 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1615 struct inode *inode, 1616 block_t count) 1617 { 1618 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1619 1620 spin_lock(&sbi->stat_lock); 1621 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1622 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1623 sbi->total_valid_block_count -= (block_t)count; 1624 if (sbi->reserved_blocks && 1625 sbi->current_reserved_blocks < sbi->reserved_blocks) 1626 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1627 sbi->current_reserved_blocks + count); 1628 spin_unlock(&sbi->stat_lock); 1629 f2fs_i_blocks_write(inode, count, false, true); 1630 } 1631 1632 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1633 { 1634 atomic_inc(&sbi->nr_pages[count_type]); 1635 1636 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1637 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1638 return; 1639 1640 set_sbi_flag(sbi, SBI_IS_DIRTY); 1641 } 1642 1643 static inline void inode_inc_dirty_pages(struct inode *inode) 1644 { 1645 atomic_inc(&F2FS_I(inode)->dirty_pages); 1646 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1647 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1648 if (IS_NOQUOTA(inode)) 1649 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1650 } 1651 1652 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1653 { 1654 atomic_dec(&sbi->nr_pages[count_type]); 1655 } 1656 1657 static inline void inode_dec_dirty_pages(struct inode *inode) 1658 { 1659 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1660 !S_ISLNK(inode->i_mode)) 1661 return; 1662 1663 atomic_dec(&F2FS_I(inode)->dirty_pages); 1664 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1665 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1666 if (IS_NOQUOTA(inode)) 1667 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1668 } 1669 1670 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1671 { 1672 return atomic_read(&sbi->nr_pages[count_type]); 1673 } 1674 1675 static inline int get_dirty_pages(struct inode *inode) 1676 { 1677 return atomic_read(&F2FS_I(inode)->dirty_pages); 1678 } 1679 1680 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1681 { 1682 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1683 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1684 sbi->log_blocks_per_seg; 1685 1686 return segs / sbi->segs_per_sec; 1687 } 1688 1689 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1690 { 1691 return sbi->total_valid_block_count; 1692 } 1693 1694 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1695 { 1696 return sbi->discard_blks; 1697 } 1698 1699 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1700 { 1701 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1702 1703 /* return NAT or SIT bitmap */ 1704 if (flag == NAT_BITMAP) 1705 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1706 else if (flag == SIT_BITMAP) 1707 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1708 1709 return 0; 1710 } 1711 1712 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1713 { 1714 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1715 } 1716 1717 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1718 { 1719 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1720 int offset; 1721 1722 if (__cp_payload(sbi) > 0) { 1723 if (flag == NAT_BITMAP) 1724 return &ckpt->sit_nat_version_bitmap; 1725 else 1726 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1727 } else { 1728 offset = (flag == NAT_BITMAP) ? 1729 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1730 return &ckpt->sit_nat_version_bitmap + offset; 1731 } 1732 } 1733 1734 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1735 { 1736 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1737 1738 if (sbi->cur_cp_pack == 2) 1739 start_addr += sbi->blocks_per_seg; 1740 return start_addr; 1741 } 1742 1743 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1744 { 1745 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1746 1747 if (sbi->cur_cp_pack == 1) 1748 start_addr += sbi->blocks_per_seg; 1749 return start_addr; 1750 } 1751 1752 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1753 { 1754 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1755 } 1756 1757 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1758 { 1759 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1760 } 1761 1762 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1763 struct inode *inode, bool is_inode) 1764 { 1765 block_t valid_block_count; 1766 unsigned int valid_node_count; 1767 bool quota = inode && !is_inode; 1768 1769 if (quota) { 1770 int ret = dquot_reserve_block(inode, 1); 1771 if (ret) 1772 return ret; 1773 } 1774 1775 #ifdef CONFIG_F2FS_FAULT_INJECTION 1776 if (time_to_inject(sbi, FAULT_BLOCK)) { 1777 f2fs_show_injection_info(FAULT_BLOCK); 1778 goto enospc; 1779 } 1780 #endif 1781 1782 spin_lock(&sbi->stat_lock); 1783 1784 valid_block_count = sbi->total_valid_block_count + 1; 1785 if (unlikely(valid_block_count + sbi->current_reserved_blocks > 1786 sbi->user_block_count)) { 1787 spin_unlock(&sbi->stat_lock); 1788 goto enospc; 1789 } 1790 1791 valid_node_count = sbi->total_valid_node_count + 1; 1792 if (unlikely(valid_node_count > sbi->total_node_count)) { 1793 spin_unlock(&sbi->stat_lock); 1794 goto enospc; 1795 } 1796 1797 sbi->total_valid_node_count++; 1798 sbi->total_valid_block_count++; 1799 spin_unlock(&sbi->stat_lock); 1800 1801 if (inode) { 1802 if (is_inode) 1803 f2fs_mark_inode_dirty_sync(inode, true); 1804 else 1805 f2fs_i_blocks_write(inode, 1, true, true); 1806 } 1807 1808 percpu_counter_inc(&sbi->alloc_valid_block_count); 1809 return 0; 1810 1811 enospc: 1812 if (quota) 1813 dquot_release_reservation_block(inode, 1); 1814 return -ENOSPC; 1815 } 1816 1817 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1818 struct inode *inode, bool is_inode) 1819 { 1820 spin_lock(&sbi->stat_lock); 1821 1822 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1823 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1824 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1825 1826 sbi->total_valid_node_count--; 1827 sbi->total_valid_block_count--; 1828 if (sbi->reserved_blocks && 1829 sbi->current_reserved_blocks < sbi->reserved_blocks) 1830 sbi->current_reserved_blocks++; 1831 1832 spin_unlock(&sbi->stat_lock); 1833 1834 if (!is_inode) 1835 f2fs_i_blocks_write(inode, 1, false, true); 1836 } 1837 1838 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1839 { 1840 return sbi->total_valid_node_count; 1841 } 1842 1843 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1844 { 1845 percpu_counter_inc(&sbi->total_valid_inode_count); 1846 } 1847 1848 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1849 { 1850 percpu_counter_dec(&sbi->total_valid_inode_count); 1851 } 1852 1853 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1854 { 1855 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1856 } 1857 1858 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1859 pgoff_t index, bool for_write) 1860 { 1861 #ifdef CONFIG_F2FS_FAULT_INJECTION 1862 struct page *page = find_lock_page(mapping, index); 1863 1864 if (page) 1865 return page; 1866 1867 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1868 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1869 return NULL; 1870 } 1871 #endif 1872 if (!for_write) 1873 return grab_cache_page(mapping, index); 1874 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1875 } 1876 1877 static inline struct page *f2fs_pagecache_get_page( 1878 struct address_space *mapping, pgoff_t index, 1879 int fgp_flags, gfp_t gfp_mask) 1880 { 1881 #ifdef CONFIG_F2FS_FAULT_INJECTION 1882 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1883 f2fs_show_injection_info(FAULT_PAGE_GET); 1884 return NULL; 1885 } 1886 #endif 1887 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1888 } 1889 1890 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1891 { 1892 char *src_kaddr = kmap(src); 1893 char *dst_kaddr = kmap(dst); 1894 1895 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1896 kunmap(dst); 1897 kunmap(src); 1898 } 1899 1900 static inline void f2fs_put_page(struct page *page, int unlock) 1901 { 1902 if (!page) 1903 return; 1904 1905 if (unlock) { 1906 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1907 unlock_page(page); 1908 } 1909 put_page(page); 1910 } 1911 1912 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1913 { 1914 if (dn->node_page) 1915 f2fs_put_page(dn->node_page, 1); 1916 if (dn->inode_page && dn->node_page != dn->inode_page) 1917 f2fs_put_page(dn->inode_page, 0); 1918 dn->node_page = NULL; 1919 dn->inode_page = NULL; 1920 } 1921 1922 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1923 size_t size) 1924 { 1925 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1926 } 1927 1928 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1929 gfp_t flags) 1930 { 1931 void *entry; 1932 1933 entry = kmem_cache_alloc(cachep, flags); 1934 if (!entry) 1935 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1936 return entry; 1937 } 1938 1939 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1940 int npages, bool no_fail) 1941 { 1942 struct bio *bio; 1943 1944 if (no_fail) { 1945 /* No failure on bio allocation */ 1946 bio = bio_alloc(GFP_NOIO, npages); 1947 if (!bio) 1948 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1949 return bio; 1950 } 1951 #ifdef CONFIG_F2FS_FAULT_INJECTION 1952 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 1953 f2fs_show_injection_info(FAULT_ALLOC_BIO); 1954 return NULL; 1955 } 1956 #endif 1957 return bio_alloc(GFP_KERNEL, npages); 1958 } 1959 1960 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1961 unsigned long index, void *item) 1962 { 1963 while (radix_tree_insert(root, index, item)) 1964 cond_resched(); 1965 } 1966 1967 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1968 1969 static inline bool IS_INODE(struct page *page) 1970 { 1971 struct f2fs_node *p = F2FS_NODE(page); 1972 1973 return RAW_IS_INODE(p); 1974 } 1975 1976 static inline int offset_in_addr(struct f2fs_inode *i) 1977 { 1978 return (i->i_inline & F2FS_EXTRA_ATTR) ? 1979 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 1980 } 1981 1982 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1983 { 1984 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1985 } 1986 1987 static inline int f2fs_has_extra_attr(struct inode *inode); 1988 static inline block_t datablock_addr(struct inode *inode, 1989 struct page *node_page, unsigned int offset) 1990 { 1991 struct f2fs_node *raw_node; 1992 __le32 *addr_array; 1993 int base = 0; 1994 bool is_inode = IS_INODE(node_page); 1995 1996 raw_node = F2FS_NODE(node_page); 1997 1998 /* from GC path only */ 1999 if (!inode) { 2000 if (is_inode) 2001 base = offset_in_addr(&raw_node->i); 2002 } else if (f2fs_has_extra_attr(inode) && is_inode) { 2003 base = get_extra_isize(inode); 2004 } 2005 2006 addr_array = blkaddr_in_node(raw_node); 2007 return le32_to_cpu(addr_array[base + offset]); 2008 } 2009 2010 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2011 { 2012 int mask; 2013 2014 addr += (nr >> 3); 2015 mask = 1 << (7 - (nr & 0x07)); 2016 return mask & *addr; 2017 } 2018 2019 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2020 { 2021 int mask; 2022 2023 addr += (nr >> 3); 2024 mask = 1 << (7 - (nr & 0x07)); 2025 *addr |= mask; 2026 } 2027 2028 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2029 { 2030 int mask; 2031 2032 addr += (nr >> 3); 2033 mask = 1 << (7 - (nr & 0x07)); 2034 *addr &= ~mask; 2035 } 2036 2037 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2038 { 2039 int mask; 2040 int ret; 2041 2042 addr += (nr >> 3); 2043 mask = 1 << (7 - (nr & 0x07)); 2044 ret = mask & *addr; 2045 *addr |= mask; 2046 return ret; 2047 } 2048 2049 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2050 { 2051 int mask; 2052 int ret; 2053 2054 addr += (nr >> 3); 2055 mask = 1 << (7 - (nr & 0x07)); 2056 ret = mask & *addr; 2057 *addr &= ~mask; 2058 return ret; 2059 } 2060 2061 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2062 { 2063 int mask; 2064 2065 addr += (nr >> 3); 2066 mask = 1 << (7 - (nr & 0x07)); 2067 *addr ^= mask; 2068 } 2069 2070 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2071 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2072 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2073 2074 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2075 { 2076 if (S_ISDIR(mode)) 2077 return flags; 2078 else if (S_ISREG(mode)) 2079 return flags & F2FS_REG_FLMASK; 2080 else 2081 return flags & F2FS_OTHER_FLMASK; 2082 } 2083 2084 /* used for f2fs_inode_info->flags */ 2085 enum { 2086 FI_NEW_INODE, /* indicate newly allocated inode */ 2087 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2088 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2089 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2090 FI_INC_LINK, /* need to increment i_nlink */ 2091 FI_ACL_MODE, /* indicate acl mode */ 2092 FI_NO_ALLOC, /* should not allocate any blocks */ 2093 FI_FREE_NID, /* free allocated nide */ 2094 FI_NO_EXTENT, /* not to use the extent cache */ 2095 FI_INLINE_XATTR, /* used for inline xattr */ 2096 FI_INLINE_DATA, /* used for inline data*/ 2097 FI_INLINE_DENTRY, /* used for inline dentry */ 2098 FI_APPEND_WRITE, /* inode has appended data */ 2099 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2100 FI_NEED_IPU, /* used for ipu per file */ 2101 FI_ATOMIC_FILE, /* indicate atomic file */ 2102 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2103 FI_VOLATILE_FILE, /* indicate volatile file */ 2104 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2105 FI_DROP_CACHE, /* drop dirty page cache */ 2106 FI_DATA_EXIST, /* indicate data exists */ 2107 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2108 FI_DO_DEFRAG, /* indicate defragment is running */ 2109 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2110 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2111 FI_HOT_DATA, /* indicate file is hot */ 2112 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2113 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2114 }; 2115 2116 static inline void __mark_inode_dirty_flag(struct inode *inode, 2117 int flag, bool set) 2118 { 2119 switch (flag) { 2120 case FI_INLINE_XATTR: 2121 case FI_INLINE_DATA: 2122 case FI_INLINE_DENTRY: 2123 if (set) 2124 return; 2125 case FI_DATA_EXIST: 2126 case FI_INLINE_DOTS: 2127 f2fs_mark_inode_dirty_sync(inode, true); 2128 } 2129 } 2130 2131 static inline void set_inode_flag(struct inode *inode, int flag) 2132 { 2133 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2134 set_bit(flag, &F2FS_I(inode)->flags); 2135 __mark_inode_dirty_flag(inode, flag, true); 2136 } 2137 2138 static inline int is_inode_flag_set(struct inode *inode, int flag) 2139 { 2140 return test_bit(flag, &F2FS_I(inode)->flags); 2141 } 2142 2143 static inline void clear_inode_flag(struct inode *inode, int flag) 2144 { 2145 if (test_bit(flag, &F2FS_I(inode)->flags)) 2146 clear_bit(flag, &F2FS_I(inode)->flags); 2147 __mark_inode_dirty_flag(inode, flag, false); 2148 } 2149 2150 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2151 { 2152 F2FS_I(inode)->i_acl_mode = mode; 2153 set_inode_flag(inode, FI_ACL_MODE); 2154 f2fs_mark_inode_dirty_sync(inode, false); 2155 } 2156 2157 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2158 { 2159 if (inc) 2160 inc_nlink(inode); 2161 else 2162 drop_nlink(inode); 2163 f2fs_mark_inode_dirty_sync(inode, true); 2164 } 2165 2166 static inline void f2fs_i_blocks_write(struct inode *inode, 2167 block_t diff, bool add, bool claim) 2168 { 2169 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2170 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2171 2172 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2173 if (add) { 2174 if (claim) 2175 dquot_claim_block(inode, diff); 2176 else 2177 dquot_alloc_block_nofail(inode, diff); 2178 } else { 2179 dquot_free_block(inode, diff); 2180 } 2181 2182 f2fs_mark_inode_dirty_sync(inode, true); 2183 if (clean || recover) 2184 set_inode_flag(inode, FI_AUTO_RECOVER); 2185 } 2186 2187 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2188 { 2189 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2190 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2191 2192 if (i_size_read(inode) == i_size) 2193 return; 2194 2195 i_size_write(inode, i_size); 2196 f2fs_mark_inode_dirty_sync(inode, true); 2197 if (clean || recover) 2198 set_inode_flag(inode, FI_AUTO_RECOVER); 2199 } 2200 2201 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2202 { 2203 F2FS_I(inode)->i_current_depth = depth; 2204 f2fs_mark_inode_dirty_sync(inode, true); 2205 } 2206 2207 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2208 { 2209 F2FS_I(inode)->i_xattr_nid = xnid; 2210 f2fs_mark_inode_dirty_sync(inode, true); 2211 } 2212 2213 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2214 { 2215 F2FS_I(inode)->i_pino = pino; 2216 f2fs_mark_inode_dirty_sync(inode, true); 2217 } 2218 2219 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2220 { 2221 struct f2fs_inode_info *fi = F2FS_I(inode); 2222 2223 if (ri->i_inline & F2FS_INLINE_XATTR) 2224 set_bit(FI_INLINE_XATTR, &fi->flags); 2225 if (ri->i_inline & F2FS_INLINE_DATA) 2226 set_bit(FI_INLINE_DATA, &fi->flags); 2227 if (ri->i_inline & F2FS_INLINE_DENTRY) 2228 set_bit(FI_INLINE_DENTRY, &fi->flags); 2229 if (ri->i_inline & F2FS_DATA_EXIST) 2230 set_bit(FI_DATA_EXIST, &fi->flags); 2231 if (ri->i_inline & F2FS_INLINE_DOTS) 2232 set_bit(FI_INLINE_DOTS, &fi->flags); 2233 if (ri->i_inline & F2FS_EXTRA_ATTR) 2234 set_bit(FI_EXTRA_ATTR, &fi->flags); 2235 } 2236 2237 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2238 { 2239 ri->i_inline = 0; 2240 2241 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2242 ri->i_inline |= F2FS_INLINE_XATTR; 2243 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2244 ri->i_inline |= F2FS_INLINE_DATA; 2245 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2246 ri->i_inline |= F2FS_INLINE_DENTRY; 2247 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2248 ri->i_inline |= F2FS_DATA_EXIST; 2249 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2250 ri->i_inline |= F2FS_INLINE_DOTS; 2251 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2252 ri->i_inline |= F2FS_EXTRA_ATTR; 2253 } 2254 2255 static inline int f2fs_has_extra_attr(struct inode *inode) 2256 { 2257 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2258 } 2259 2260 static inline int f2fs_has_inline_xattr(struct inode *inode) 2261 { 2262 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2263 } 2264 2265 static inline unsigned int addrs_per_inode(struct inode *inode) 2266 { 2267 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode); 2268 } 2269 2270 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2271 { 2272 struct f2fs_inode *ri = F2FS_INODE(page); 2273 2274 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2275 F2FS_INLINE_XATTR_ADDRS(inode)]); 2276 } 2277 2278 static inline int inline_xattr_size(struct inode *inode) 2279 { 2280 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2281 } 2282 2283 static inline int f2fs_has_inline_data(struct inode *inode) 2284 { 2285 return is_inode_flag_set(inode, FI_INLINE_DATA); 2286 } 2287 2288 static inline int f2fs_exist_data(struct inode *inode) 2289 { 2290 return is_inode_flag_set(inode, FI_DATA_EXIST); 2291 } 2292 2293 static inline int f2fs_has_inline_dots(struct inode *inode) 2294 { 2295 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2296 } 2297 2298 static inline bool f2fs_is_atomic_file(struct inode *inode) 2299 { 2300 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2301 } 2302 2303 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2304 { 2305 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2306 } 2307 2308 static inline bool f2fs_is_volatile_file(struct inode *inode) 2309 { 2310 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2311 } 2312 2313 static inline bool f2fs_is_first_block_written(struct inode *inode) 2314 { 2315 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2316 } 2317 2318 static inline bool f2fs_is_drop_cache(struct inode *inode) 2319 { 2320 return is_inode_flag_set(inode, FI_DROP_CACHE); 2321 } 2322 2323 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2324 { 2325 struct f2fs_inode *ri = F2FS_INODE(page); 2326 int extra_size = get_extra_isize(inode); 2327 2328 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2329 } 2330 2331 static inline int f2fs_has_inline_dentry(struct inode *inode) 2332 { 2333 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2334 } 2335 2336 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2337 { 2338 if (!f2fs_has_inline_dentry(dir)) 2339 kunmap(page); 2340 } 2341 2342 static inline int is_file(struct inode *inode, int type) 2343 { 2344 return F2FS_I(inode)->i_advise & type; 2345 } 2346 2347 static inline void set_file(struct inode *inode, int type) 2348 { 2349 F2FS_I(inode)->i_advise |= type; 2350 f2fs_mark_inode_dirty_sync(inode, true); 2351 } 2352 2353 static inline void clear_file(struct inode *inode, int type) 2354 { 2355 F2FS_I(inode)->i_advise &= ~type; 2356 f2fs_mark_inode_dirty_sync(inode, true); 2357 } 2358 2359 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2360 { 2361 bool ret; 2362 2363 if (dsync) { 2364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2365 2366 spin_lock(&sbi->inode_lock[DIRTY_META]); 2367 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2368 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2369 return ret; 2370 } 2371 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2372 file_keep_isize(inode) || 2373 i_size_read(inode) & PAGE_MASK) 2374 return false; 2375 2376 down_read(&F2FS_I(inode)->i_sem); 2377 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2378 up_read(&F2FS_I(inode)->i_sem); 2379 2380 return ret; 2381 } 2382 2383 static inline int f2fs_readonly(struct super_block *sb) 2384 { 2385 return sb->s_flags & SB_RDONLY; 2386 } 2387 2388 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2389 { 2390 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2391 } 2392 2393 static inline bool is_dot_dotdot(const struct qstr *str) 2394 { 2395 if (str->len == 1 && str->name[0] == '.') 2396 return true; 2397 2398 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2399 return true; 2400 2401 return false; 2402 } 2403 2404 static inline bool f2fs_may_extent_tree(struct inode *inode) 2405 { 2406 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2407 is_inode_flag_set(inode, FI_NO_EXTENT)) 2408 return false; 2409 2410 return S_ISREG(inode->i_mode); 2411 } 2412 2413 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2414 size_t size, gfp_t flags) 2415 { 2416 #ifdef CONFIG_F2FS_FAULT_INJECTION 2417 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2418 f2fs_show_injection_info(FAULT_KMALLOC); 2419 return NULL; 2420 } 2421 #endif 2422 return kmalloc(size, flags); 2423 } 2424 2425 static inline int get_extra_isize(struct inode *inode) 2426 { 2427 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2428 } 2429 2430 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb); 2431 static inline int get_inline_xattr_addrs(struct inode *inode) 2432 { 2433 return F2FS_I(inode)->i_inline_xattr_size; 2434 } 2435 2436 #define get_inode_mode(i) \ 2437 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2438 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2439 2440 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2441 (offsetof(struct f2fs_inode, i_extra_end) - \ 2442 offsetof(struct f2fs_inode, i_extra_isize)) \ 2443 2444 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2445 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2446 ((offsetof(typeof(*f2fs_inode), field) + \ 2447 sizeof((f2fs_inode)->field)) \ 2448 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2449 2450 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2451 { 2452 int i; 2453 2454 spin_lock(&sbi->iostat_lock); 2455 for (i = 0; i < NR_IO_TYPE; i++) 2456 sbi->write_iostat[i] = 0; 2457 spin_unlock(&sbi->iostat_lock); 2458 } 2459 2460 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2461 enum iostat_type type, unsigned long long io_bytes) 2462 { 2463 if (!sbi->iostat_enable) 2464 return; 2465 spin_lock(&sbi->iostat_lock); 2466 sbi->write_iostat[type] += io_bytes; 2467 2468 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2469 sbi->write_iostat[APP_BUFFERED_IO] = 2470 sbi->write_iostat[APP_WRITE_IO] - 2471 sbi->write_iostat[APP_DIRECT_IO]; 2472 spin_unlock(&sbi->iostat_lock); 2473 } 2474 2475 /* 2476 * file.c 2477 */ 2478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2479 void truncate_data_blocks(struct dnode_of_data *dn); 2480 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2481 int f2fs_truncate(struct inode *inode); 2482 int f2fs_getattr(const struct path *path, struct kstat *stat, 2483 u32 request_mask, unsigned int flags); 2484 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2485 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2486 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2487 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2488 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2489 2490 /* 2491 * inode.c 2492 */ 2493 void f2fs_set_inode_flags(struct inode *inode); 2494 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2495 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2496 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2497 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2498 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2499 int update_inode(struct inode *inode, struct page *node_page); 2500 int update_inode_page(struct inode *inode); 2501 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2502 void f2fs_evict_inode(struct inode *inode); 2503 void handle_failed_inode(struct inode *inode); 2504 2505 /* 2506 * namei.c 2507 */ 2508 struct dentry *f2fs_get_parent(struct dentry *child); 2509 2510 /* 2511 * dir.c 2512 */ 2513 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2514 unsigned char get_de_type(struct f2fs_dir_entry *de); 2515 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2516 f2fs_hash_t namehash, int *max_slots, 2517 struct f2fs_dentry_ptr *d); 2518 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2519 unsigned int start_pos, struct fscrypt_str *fstr); 2520 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2521 struct f2fs_dentry_ptr *d); 2522 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2523 const struct qstr *new_name, 2524 const struct qstr *orig_name, struct page *dpage); 2525 void update_parent_metadata(struct inode *dir, struct inode *inode, 2526 unsigned int current_depth); 2527 int room_for_filename(const void *bitmap, int slots, int max_slots); 2528 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2529 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2530 struct fscrypt_name *fname, struct page **res_page); 2531 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2532 const struct qstr *child, struct page **res_page); 2533 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2534 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2535 struct page **page); 2536 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2537 struct page *page, struct inode *inode); 2538 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2539 const struct qstr *name, f2fs_hash_t name_hash, 2540 unsigned int bit_pos); 2541 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2542 const struct qstr *orig_name, 2543 struct inode *inode, nid_t ino, umode_t mode); 2544 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2545 struct inode *inode, nid_t ino, umode_t mode); 2546 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2547 struct inode *inode, nid_t ino, umode_t mode); 2548 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2549 struct inode *dir, struct inode *inode); 2550 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2551 bool f2fs_empty_dir(struct inode *dir); 2552 2553 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2554 { 2555 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2556 inode, inode->i_ino, inode->i_mode); 2557 } 2558 2559 /* 2560 * super.c 2561 */ 2562 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2563 void f2fs_inode_synced(struct inode *inode); 2564 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2565 void f2fs_quota_off_umount(struct super_block *sb); 2566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2567 int f2fs_sync_fs(struct super_block *sb, int sync); 2568 extern __printf(3, 4) 2569 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2570 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2571 2572 /* 2573 * hash.c 2574 */ 2575 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2576 struct fscrypt_name *fname); 2577 2578 /* 2579 * node.c 2580 */ 2581 struct dnode_of_data; 2582 struct node_info; 2583 2584 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2585 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2586 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2587 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2588 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2589 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2590 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2591 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2592 int truncate_xattr_node(struct inode *inode); 2593 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2594 int remove_inode_page(struct inode *inode); 2595 struct page *new_inode_page(struct inode *inode); 2596 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2597 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2598 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2599 struct page *get_node_page_ra(struct page *parent, int start); 2600 void move_node_page(struct page *node_page, int gc_type); 2601 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2602 struct writeback_control *wbc, bool atomic); 2603 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2604 bool do_balance, enum iostat_type io_type); 2605 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2606 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2607 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2608 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2609 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2610 void recover_inline_xattr(struct inode *inode, struct page *page); 2611 int recover_xattr_data(struct inode *inode, struct page *page); 2612 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2613 int restore_node_summary(struct f2fs_sb_info *sbi, 2614 unsigned int segno, struct f2fs_summary_block *sum); 2615 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2616 int build_node_manager(struct f2fs_sb_info *sbi); 2617 void destroy_node_manager(struct f2fs_sb_info *sbi); 2618 int __init create_node_manager_caches(void); 2619 void destroy_node_manager_caches(void); 2620 2621 /* 2622 * segment.c 2623 */ 2624 bool need_SSR(struct f2fs_sb_info *sbi); 2625 void register_inmem_page(struct inode *inode, struct page *page); 2626 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2627 void drop_inmem_pages(struct inode *inode); 2628 void drop_inmem_page(struct inode *inode, struct page *page); 2629 int commit_inmem_pages(struct inode *inode); 2630 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2631 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2632 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2633 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2634 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2635 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2636 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2637 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2638 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2639 unsigned int granularity); 2640 void stop_discard_thread(struct f2fs_sb_info *sbi); 2641 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2642 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2643 void release_discard_addrs(struct f2fs_sb_info *sbi); 2644 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2645 void allocate_new_segments(struct f2fs_sb_info *sbi); 2646 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2647 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2648 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2649 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2650 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2651 enum iostat_type io_type); 2652 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2653 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2654 int rewrite_data_page(struct f2fs_io_info *fio); 2655 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2656 block_t old_blkaddr, block_t new_blkaddr, 2657 bool recover_curseg, bool recover_newaddr); 2658 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2659 block_t old_addr, block_t new_addr, 2660 unsigned char version, bool recover_curseg, 2661 bool recover_newaddr); 2662 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2663 block_t old_blkaddr, block_t *new_blkaddr, 2664 struct f2fs_summary *sum, int type, 2665 struct f2fs_io_info *fio, bool add_list); 2666 void f2fs_wait_on_page_writeback(struct page *page, 2667 enum page_type type, bool ordered); 2668 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2669 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2670 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2671 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2672 unsigned int val, int alloc); 2673 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2674 int build_segment_manager(struct f2fs_sb_info *sbi); 2675 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2676 int __init create_segment_manager_caches(void); 2677 void destroy_segment_manager_caches(void); 2678 int rw_hint_to_seg_type(enum rw_hint hint); 2679 2680 /* 2681 * checkpoint.c 2682 */ 2683 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2684 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2685 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2686 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2687 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2688 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2689 int type, bool sync); 2690 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2691 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2692 long nr_to_write, enum iostat_type io_type); 2693 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2694 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2695 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2696 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2697 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2698 unsigned int devidx, int type); 2699 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2700 unsigned int devidx, int type); 2701 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2702 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2703 void release_orphan_inode(struct f2fs_sb_info *sbi); 2704 void add_orphan_inode(struct inode *inode); 2705 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2706 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2707 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2708 void update_dirty_page(struct inode *inode, struct page *page); 2709 void remove_dirty_inode(struct inode *inode); 2710 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2711 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2712 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2713 int __init create_checkpoint_caches(void); 2714 void destroy_checkpoint_caches(void); 2715 2716 /* 2717 * data.c 2718 */ 2719 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2720 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2721 struct inode *inode, nid_t ino, pgoff_t idx, 2722 enum page_type type); 2723 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2724 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2725 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2726 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2727 block_t blk_addr, struct bio *bio); 2728 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2729 void set_data_blkaddr(struct dnode_of_data *dn); 2730 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2731 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2732 int reserve_new_block(struct dnode_of_data *dn); 2733 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2734 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2735 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2736 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2737 int op_flags, bool for_write); 2738 struct page *find_data_page(struct inode *inode, pgoff_t index); 2739 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2740 bool for_write); 2741 struct page *get_new_data_page(struct inode *inode, 2742 struct page *ipage, pgoff_t index, bool new_i_size); 2743 int do_write_data_page(struct f2fs_io_info *fio); 2744 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2745 int create, int flag); 2746 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2747 u64 start, u64 len); 2748 void f2fs_set_page_dirty_nobuffers(struct page *page); 2749 int __f2fs_write_data_pages(struct address_space *mapping, 2750 struct writeback_control *wbc, 2751 enum iostat_type io_type); 2752 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2753 unsigned int length); 2754 int f2fs_release_page(struct page *page, gfp_t wait); 2755 #ifdef CONFIG_MIGRATION 2756 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2757 struct page *page, enum migrate_mode mode); 2758 #endif 2759 2760 /* 2761 * gc.c 2762 */ 2763 int start_gc_thread(struct f2fs_sb_info *sbi); 2764 void stop_gc_thread(struct f2fs_sb_info *sbi); 2765 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2766 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2767 unsigned int segno); 2768 void build_gc_manager(struct f2fs_sb_info *sbi); 2769 2770 /* 2771 * recovery.c 2772 */ 2773 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2774 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2775 2776 /* 2777 * debug.c 2778 */ 2779 #ifdef CONFIG_F2FS_STAT_FS 2780 struct f2fs_stat_info { 2781 struct list_head stat_list; 2782 struct f2fs_sb_info *sbi; 2783 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2784 int main_area_segs, main_area_sections, main_area_zones; 2785 unsigned long long hit_largest, hit_cached, hit_rbtree; 2786 unsigned long long hit_total, total_ext; 2787 int ext_tree, zombie_tree, ext_node; 2788 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2789 int ndirty_data, ndirty_qdata; 2790 int inmem_pages; 2791 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2792 int nats, dirty_nats, sits, dirty_sits; 2793 int free_nids, avail_nids, alloc_nids; 2794 int total_count, utilization; 2795 int bg_gc, nr_wb_cp_data, nr_wb_data; 2796 int nr_flushing, nr_flushed, flush_list_empty; 2797 int nr_discarding, nr_discarded; 2798 int nr_discard_cmd; 2799 unsigned int undiscard_blks; 2800 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2801 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2802 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2803 unsigned int bimodal, avg_vblocks; 2804 int util_free, util_valid, util_invalid; 2805 int rsvd_segs, overp_segs; 2806 int dirty_count, node_pages, meta_pages; 2807 int prefree_count, call_count, cp_count, bg_cp_count; 2808 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2809 int bg_node_segs, bg_data_segs; 2810 int tot_blks, data_blks, node_blks; 2811 int bg_data_blks, bg_node_blks; 2812 int curseg[NR_CURSEG_TYPE]; 2813 int cursec[NR_CURSEG_TYPE]; 2814 int curzone[NR_CURSEG_TYPE]; 2815 2816 unsigned int segment_count[2]; 2817 unsigned int block_count[2]; 2818 unsigned int inplace_count; 2819 unsigned long long base_mem, cache_mem, page_mem; 2820 }; 2821 2822 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2823 { 2824 return (struct f2fs_stat_info *)sbi->stat_info; 2825 } 2826 2827 #define stat_inc_cp_count(si) ((si)->cp_count++) 2828 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2829 #define stat_inc_call_count(si) ((si)->call_count++) 2830 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2831 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2832 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2833 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2834 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2835 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2836 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2837 #define stat_inc_inline_xattr(inode) \ 2838 do { \ 2839 if (f2fs_has_inline_xattr(inode)) \ 2840 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2841 } while (0) 2842 #define stat_dec_inline_xattr(inode) \ 2843 do { \ 2844 if (f2fs_has_inline_xattr(inode)) \ 2845 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2846 } while (0) 2847 #define stat_inc_inline_inode(inode) \ 2848 do { \ 2849 if (f2fs_has_inline_data(inode)) \ 2850 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2851 } while (0) 2852 #define stat_dec_inline_inode(inode) \ 2853 do { \ 2854 if (f2fs_has_inline_data(inode)) \ 2855 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2856 } while (0) 2857 #define stat_inc_inline_dir(inode) \ 2858 do { \ 2859 if (f2fs_has_inline_dentry(inode)) \ 2860 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2861 } while (0) 2862 #define stat_dec_inline_dir(inode) \ 2863 do { \ 2864 if (f2fs_has_inline_dentry(inode)) \ 2865 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2866 } while (0) 2867 #define stat_inc_seg_type(sbi, curseg) \ 2868 ((sbi)->segment_count[(curseg)->alloc_type]++) 2869 #define stat_inc_block_count(sbi, curseg) \ 2870 ((sbi)->block_count[(curseg)->alloc_type]++) 2871 #define stat_inc_inplace_blocks(sbi) \ 2872 (atomic_inc(&(sbi)->inplace_count)) 2873 #define stat_inc_atomic_write(inode) \ 2874 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2875 #define stat_dec_atomic_write(inode) \ 2876 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2877 #define stat_update_max_atomic_write(inode) \ 2878 do { \ 2879 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2880 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2881 if (cur > max) \ 2882 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2883 } while (0) 2884 #define stat_inc_volatile_write(inode) \ 2885 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2886 #define stat_dec_volatile_write(inode) \ 2887 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2888 #define stat_update_max_volatile_write(inode) \ 2889 do { \ 2890 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2891 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2892 if (cur > max) \ 2893 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2894 } while (0) 2895 #define stat_inc_seg_count(sbi, type, gc_type) \ 2896 do { \ 2897 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2898 si->tot_segs++; \ 2899 if ((type) == SUM_TYPE_DATA) { \ 2900 si->data_segs++; \ 2901 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2902 } else { \ 2903 si->node_segs++; \ 2904 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2905 } \ 2906 } while (0) 2907 2908 #define stat_inc_tot_blk_count(si, blks) \ 2909 ((si)->tot_blks += (blks)) 2910 2911 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2912 do { \ 2913 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2914 stat_inc_tot_blk_count(si, blks); \ 2915 si->data_blks += (blks); \ 2916 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2917 } while (0) 2918 2919 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2920 do { \ 2921 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2922 stat_inc_tot_blk_count(si, blks); \ 2923 si->node_blks += (blks); \ 2924 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2925 } while (0) 2926 2927 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2928 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2929 int __init f2fs_create_root_stats(void); 2930 void f2fs_destroy_root_stats(void); 2931 #else 2932 #define stat_inc_cp_count(si) do { } while (0) 2933 #define stat_inc_bg_cp_count(si) do { } while (0) 2934 #define stat_inc_call_count(si) do { } while (0) 2935 #define stat_inc_bggc_count(si) do { } while (0) 2936 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2937 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2938 #define stat_inc_total_hit(sb) do { } while (0) 2939 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2940 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2941 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2942 #define stat_inc_inline_xattr(inode) do { } while (0) 2943 #define stat_dec_inline_xattr(inode) do { } while (0) 2944 #define stat_inc_inline_inode(inode) do { } while (0) 2945 #define stat_dec_inline_inode(inode) do { } while (0) 2946 #define stat_inc_inline_dir(inode) do { } while (0) 2947 #define stat_dec_inline_dir(inode) do { } while (0) 2948 #define stat_inc_atomic_write(inode) do { } while (0) 2949 #define stat_dec_atomic_write(inode) do { } while (0) 2950 #define stat_update_max_atomic_write(inode) do { } while (0) 2951 #define stat_inc_volatile_write(inode) do { } while (0) 2952 #define stat_dec_volatile_write(inode) do { } while (0) 2953 #define stat_update_max_volatile_write(inode) do { } while (0) 2954 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2955 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2956 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2957 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2958 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2959 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2960 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2961 2962 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2963 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2964 static inline int __init f2fs_create_root_stats(void) { return 0; } 2965 static inline void f2fs_destroy_root_stats(void) { } 2966 #endif 2967 2968 extern const struct file_operations f2fs_dir_operations; 2969 extern const struct file_operations f2fs_file_operations; 2970 extern const struct inode_operations f2fs_file_inode_operations; 2971 extern const struct address_space_operations f2fs_dblock_aops; 2972 extern const struct address_space_operations f2fs_node_aops; 2973 extern const struct address_space_operations f2fs_meta_aops; 2974 extern const struct inode_operations f2fs_dir_inode_operations; 2975 extern const struct inode_operations f2fs_symlink_inode_operations; 2976 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2977 extern const struct inode_operations f2fs_special_inode_operations; 2978 extern struct kmem_cache *inode_entry_slab; 2979 2980 /* 2981 * inline.c 2982 */ 2983 bool f2fs_may_inline_data(struct inode *inode); 2984 bool f2fs_may_inline_dentry(struct inode *inode); 2985 void read_inline_data(struct page *page, struct page *ipage); 2986 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2987 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2988 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2989 int f2fs_convert_inline_inode(struct inode *inode); 2990 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2991 bool recover_inline_data(struct inode *inode, struct page *npage); 2992 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2993 struct fscrypt_name *fname, struct page **res_page); 2994 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2995 struct page *ipage); 2996 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2997 const struct qstr *orig_name, 2998 struct inode *inode, nid_t ino, umode_t mode); 2999 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3000 struct inode *dir, struct inode *inode); 3001 bool f2fs_empty_inline_dir(struct inode *dir); 3002 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3003 struct fscrypt_str *fstr); 3004 int f2fs_inline_data_fiemap(struct inode *inode, 3005 struct fiemap_extent_info *fieinfo, 3006 __u64 start, __u64 len); 3007 3008 /* 3009 * shrinker.c 3010 */ 3011 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3012 struct shrink_control *sc); 3013 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3014 struct shrink_control *sc); 3015 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3016 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3017 3018 /* 3019 * extent_cache.c 3020 */ 3021 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3022 struct rb_entry *cached_re, unsigned int ofs); 3023 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3024 struct rb_root *root, struct rb_node **parent, 3025 unsigned int ofs); 3026 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3027 struct rb_entry *cached_re, unsigned int ofs, 3028 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3029 struct rb_node ***insert_p, struct rb_node **insert_parent, 3030 bool force); 3031 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3032 struct rb_root *root); 3033 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3034 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3035 void f2fs_drop_extent_tree(struct inode *inode); 3036 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3037 void f2fs_destroy_extent_tree(struct inode *inode); 3038 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3039 struct extent_info *ei); 3040 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3041 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3042 pgoff_t fofs, block_t blkaddr, unsigned int len); 3043 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3044 int __init create_extent_cache(void); 3045 void destroy_extent_cache(void); 3046 3047 /* 3048 * sysfs.c 3049 */ 3050 int __init f2fs_init_sysfs(void); 3051 void f2fs_exit_sysfs(void); 3052 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3053 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3054 3055 /* 3056 * crypto support 3057 */ 3058 static inline bool f2fs_encrypted_inode(struct inode *inode) 3059 { 3060 return file_is_encrypt(inode); 3061 } 3062 3063 static inline bool f2fs_encrypted_file(struct inode *inode) 3064 { 3065 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3066 } 3067 3068 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3069 { 3070 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3071 file_set_encrypt(inode); 3072 inode->i_flags |= S_ENCRYPTED; 3073 #endif 3074 } 3075 3076 static inline bool f2fs_bio_encrypted(struct bio *bio) 3077 { 3078 return bio->bi_private != NULL; 3079 } 3080 3081 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3082 { 3083 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3084 } 3085 3086 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3087 { 3088 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3089 } 3090 3091 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3092 { 3093 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3094 } 3095 3096 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3097 { 3098 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3099 } 3100 3101 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3102 { 3103 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3104 } 3105 3106 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3107 { 3108 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3109 } 3110 3111 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3112 { 3113 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3114 } 3115 3116 #ifdef CONFIG_BLK_DEV_ZONED 3117 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3118 struct block_device *bdev, block_t blkaddr) 3119 { 3120 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3121 int i; 3122 3123 for (i = 0; i < sbi->s_ndevs; i++) 3124 if (FDEV(i).bdev == bdev) 3125 return FDEV(i).blkz_type[zno]; 3126 return -EINVAL; 3127 } 3128 #endif 3129 3130 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3131 { 3132 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3133 3134 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3135 } 3136 3137 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3138 { 3139 clear_opt(sbi, ADAPTIVE); 3140 clear_opt(sbi, LFS); 3141 3142 switch (mt) { 3143 case F2FS_MOUNT_ADAPTIVE: 3144 set_opt(sbi, ADAPTIVE); 3145 break; 3146 case F2FS_MOUNT_LFS: 3147 set_opt(sbi, LFS); 3148 break; 3149 } 3150 } 3151 3152 static inline bool f2fs_may_encrypt(struct inode *inode) 3153 { 3154 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3155 umode_t mode = inode->i_mode; 3156 3157 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3158 #else 3159 return 0; 3160 #endif 3161 } 3162 3163 #endif 3164