1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_IO, 50 FAULT_CHECKPOINT, 51 FAULT_MAX, 52 }; 53 54 struct f2fs_fault_info { 55 atomic_t inject_ops; 56 unsigned int inject_rate; 57 unsigned int inject_type; 58 }; 59 60 extern char *fault_name[FAULT_MAX]; 61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 62 #endif 63 64 /* 65 * For mount options 66 */ 67 #define F2FS_MOUNT_BG_GC 0x00000001 68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 69 #define F2FS_MOUNT_DISCARD 0x00000004 70 #define F2FS_MOUNT_NOHEAP 0x00000008 71 #define F2FS_MOUNT_XATTR_USER 0x00000010 72 #define F2FS_MOUNT_POSIX_ACL 0x00000020 73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 75 #define F2FS_MOUNT_INLINE_DATA 0x00000100 76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 78 #define F2FS_MOUNT_NOBARRIER 0x00000800 79 #define F2FS_MOUNT_FASTBOOT 0x00001000 80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 84 #define F2FS_MOUNT_ADAPTIVE 0x00020000 85 #define F2FS_MOUNT_LFS 0x00040000 86 87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 90 91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 92 typecheck(unsigned long long, b) && \ 93 ((long long)((a) - (b)) > 0)) 94 95 typedef u32 block_t; /* 96 * should not change u32, since it is the on-disk block 97 * address format, __le32. 98 */ 99 typedef u32 nid_t; 100 101 struct f2fs_mount_info { 102 unsigned int opt; 103 }; 104 105 #define F2FS_FEATURE_ENCRYPT 0x0001 106 #define F2FS_FEATURE_BLKZONED 0x0002 107 108 #define F2FS_HAS_FEATURE(sb, mask) \ 109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 110 #define F2FS_SET_FEATURE(sb, mask) \ 111 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 112 #define F2FS_CLEAR_FEATURE(sb, mask) \ 113 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 114 115 /* 116 * For checkpoint manager 117 */ 118 enum { 119 NAT_BITMAP, 120 SIT_BITMAP 121 }; 122 123 enum { 124 CP_UMOUNT, 125 CP_FASTBOOT, 126 CP_SYNC, 127 CP_RECOVERY, 128 CP_DISCARD, 129 }; 130 131 #define DEF_BATCHED_TRIM_SECTIONS 2048 132 #define BATCHED_TRIM_SEGMENTS(sbi) \ 133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 134 #define BATCHED_TRIM_BLOCKS(sbi) \ 135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 136 #define MAX_DISCARD_BLOCKS(sbi) \ 137 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec) 138 #define DISCARD_ISSUE_RATE 8 139 #define DEF_CP_INTERVAL 60 /* 60 secs */ 140 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 141 142 struct cp_control { 143 int reason; 144 __u64 trim_start; 145 __u64 trim_end; 146 __u64 trim_minlen; 147 __u64 trimmed; 148 }; 149 150 /* 151 * For CP/NAT/SIT/SSA readahead 152 */ 153 enum { 154 META_CP, 155 META_NAT, 156 META_SIT, 157 META_SSA, 158 META_POR, 159 }; 160 161 /* for the list of ino */ 162 enum { 163 ORPHAN_INO, /* for orphan ino list */ 164 APPEND_INO, /* for append ino list */ 165 UPDATE_INO, /* for update ino list */ 166 MAX_INO_ENTRY, /* max. list */ 167 }; 168 169 struct ino_entry { 170 struct list_head list; /* list head */ 171 nid_t ino; /* inode number */ 172 }; 173 174 /* for the list of inodes to be GCed */ 175 struct inode_entry { 176 struct list_head list; /* list head */ 177 struct inode *inode; /* vfs inode pointer */ 178 }; 179 180 /* for the list of blockaddresses to be discarded */ 181 struct discard_entry { 182 struct list_head list; /* list head */ 183 block_t blkaddr; /* block address to be discarded */ 184 int len; /* # of consecutive blocks of the discard */ 185 }; 186 187 enum { 188 D_PREP, 189 D_SUBMIT, 190 D_DONE, 191 }; 192 193 struct discard_cmd { 194 struct list_head list; /* command list */ 195 struct completion wait; /* compleation */ 196 block_t lstart; /* logical start address */ 197 block_t len; /* length */ 198 struct bio *bio; /* bio */ 199 int state; /* state */ 200 }; 201 202 struct discard_cmd_control { 203 struct task_struct *f2fs_issue_discard; /* discard thread */ 204 struct list_head discard_entry_list; /* 4KB discard entry list */ 205 int nr_discards; /* # of discards in the list */ 206 struct list_head discard_cmd_list; /* discard cmd list */ 207 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 208 struct mutex cmd_lock; 209 int max_discards; /* max. discards to be issued */ 210 atomic_t submit_discard; /* # of issued discard */ 211 }; 212 213 /* for the list of fsync inodes, used only during recovery */ 214 struct fsync_inode_entry { 215 struct list_head list; /* list head */ 216 struct inode *inode; /* vfs inode pointer */ 217 block_t blkaddr; /* block address locating the last fsync */ 218 block_t last_dentry; /* block address locating the last dentry */ 219 }; 220 221 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 222 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 223 224 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 225 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 226 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 227 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 228 229 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 230 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 231 232 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 233 { 234 int before = nats_in_cursum(journal); 235 236 journal->n_nats = cpu_to_le16(before + i); 237 return before; 238 } 239 240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 241 { 242 int before = sits_in_cursum(journal); 243 244 journal->n_sits = cpu_to_le16(before + i); 245 return before; 246 } 247 248 static inline bool __has_cursum_space(struct f2fs_journal *journal, 249 int size, int type) 250 { 251 if (type == NAT_JOURNAL) 252 return size <= MAX_NAT_JENTRIES(journal); 253 return size <= MAX_SIT_JENTRIES(journal); 254 } 255 256 /* 257 * ioctl commands 258 */ 259 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 260 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 261 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 262 263 #define F2FS_IOCTL_MAGIC 0xf5 264 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 265 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 266 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 267 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 268 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 269 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 270 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 271 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 272 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 273 struct f2fs_move_range) 274 275 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 276 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 277 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 278 279 /* 280 * should be same as XFS_IOC_GOINGDOWN. 281 * Flags for going down operation used by FS_IOC_GOINGDOWN 282 */ 283 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 284 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 285 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 286 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 287 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 288 289 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 290 /* 291 * ioctl commands in 32 bit emulation 292 */ 293 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 294 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 295 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 296 #endif 297 298 struct f2fs_defragment { 299 u64 start; 300 u64 len; 301 }; 302 303 struct f2fs_move_range { 304 u32 dst_fd; /* destination fd */ 305 u64 pos_in; /* start position in src_fd */ 306 u64 pos_out; /* start position in dst_fd */ 307 u64 len; /* size to move */ 308 }; 309 310 /* 311 * For INODE and NODE manager 312 */ 313 /* for directory operations */ 314 struct f2fs_dentry_ptr { 315 struct inode *inode; 316 const void *bitmap; 317 struct f2fs_dir_entry *dentry; 318 __u8 (*filename)[F2FS_SLOT_LEN]; 319 int max; 320 }; 321 322 static inline void make_dentry_ptr(struct inode *inode, 323 struct f2fs_dentry_ptr *d, void *src, int type) 324 { 325 d->inode = inode; 326 327 if (type == 1) { 328 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 329 330 d->max = NR_DENTRY_IN_BLOCK; 331 d->bitmap = &t->dentry_bitmap; 332 d->dentry = t->dentry; 333 d->filename = t->filename; 334 } else { 335 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 336 337 d->max = NR_INLINE_DENTRY; 338 d->bitmap = &t->dentry_bitmap; 339 d->dentry = t->dentry; 340 d->filename = t->filename; 341 } 342 } 343 344 /* 345 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 346 * as its node offset to distinguish from index node blocks. 347 * But some bits are used to mark the node block. 348 */ 349 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 350 >> OFFSET_BIT_SHIFT) 351 enum { 352 ALLOC_NODE, /* allocate a new node page if needed */ 353 LOOKUP_NODE, /* look up a node without readahead */ 354 LOOKUP_NODE_RA, /* 355 * look up a node with readahead called 356 * by get_data_block. 357 */ 358 }; 359 360 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 361 362 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 363 364 /* vector size for gang look-up from extent cache that consists of radix tree */ 365 #define EXT_TREE_VEC_SIZE 64 366 367 /* for in-memory extent cache entry */ 368 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 369 370 /* number of extent info in extent cache we try to shrink */ 371 #define EXTENT_CACHE_SHRINK_NUMBER 128 372 373 struct extent_info { 374 unsigned int fofs; /* start offset in a file */ 375 u32 blk; /* start block address of the extent */ 376 unsigned int len; /* length of the extent */ 377 }; 378 379 struct extent_node { 380 struct rb_node rb_node; /* rb node located in rb-tree */ 381 struct list_head list; /* node in global extent list of sbi */ 382 struct extent_info ei; /* extent info */ 383 struct extent_tree *et; /* extent tree pointer */ 384 }; 385 386 struct extent_tree { 387 nid_t ino; /* inode number */ 388 struct rb_root root; /* root of extent info rb-tree */ 389 struct extent_node *cached_en; /* recently accessed extent node */ 390 struct extent_info largest; /* largested extent info */ 391 struct list_head list; /* to be used by sbi->zombie_list */ 392 rwlock_t lock; /* protect extent info rb-tree */ 393 atomic_t node_cnt; /* # of extent node in rb-tree*/ 394 }; 395 396 /* 397 * This structure is taken from ext4_map_blocks. 398 * 399 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 400 */ 401 #define F2FS_MAP_NEW (1 << BH_New) 402 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 403 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 404 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 405 F2FS_MAP_UNWRITTEN) 406 407 struct f2fs_map_blocks { 408 block_t m_pblk; 409 block_t m_lblk; 410 unsigned int m_len; 411 unsigned int m_flags; 412 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 413 }; 414 415 /* for flag in get_data_block */ 416 #define F2FS_GET_BLOCK_READ 0 417 #define F2FS_GET_BLOCK_DIO 1 418 #define F2FS_GET_BLOCK_FIEMAP 2 419 #define F2FS_GET_BLOCK_BMAP 3 420 #define F2FS_GET_BLOCK_PRE_DIO 4 421 #define F2FS_GET_BLOCK_PRE_AIO 5 422 423 /* 424 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 425 */ 426 #define FADVISE_COLD_BIT 0x01 427 #define FADVISE_LOST_PINO_BIT 0x02 428 #define FADVISE_ENCRYPT_BIT 0x04 429 #define FADVISE_ENC_NAME_BIT 0x08 430 #define FADVISE_KEEP_SIZE_BIT 0x10 431 432 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 433 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 434 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 435 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 436 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 437 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 438 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 439 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 440 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 441 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 442 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 443 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 444 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 445 446 #define DEF_DIR_LEVEL 0 447 448 struct f2fs_inode_info { 449 struct inode vfs_inode; /* serve a vfs inode */ 450 unsigned long i_flags; /* keep an inode flags for ioctl */ 451 unsigned char i_advise; /* use to give file attribute hints */ 452 unsigned char i_dir_level; /* use for dentry level for large dir */ 453 unsigned int i_current_depth; /* use only in directory structure */ 454 unsigned int i_pino; /* parent inode number */ 455 umode_t i_acl_mode; /* keep file acl mode temporarily */ 456 457 /* Use below internally in f2fs*/ 458 unsigned long flags; /* use to pass per-file flags */ 459 struct rw_semaphore i_sem; /* protect fi info */ 460 atomic_t dirty_pages; /* # of dirty pages */ 461 f2fs_hash_t chash; /* hash value of given file name */ 462 unsigned int clevel; /* maximum level of given file name */ 463 struct task_struct *task; /* lookup and create consistency */ 464 nid_t i_xattr_nid; /* node id that contains xattrs */ 465 loff_t last_disk_size; /* lastly written file size */ 466 467 struct list_head dirty_list; /* dirty list for dirs and files */ 468 struct list_head gdirty_list; /* linked in global dirty list */ 469 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 470 struct mutex inmem_lock; /* lock for inmemory pages */ 471 struct extent_tree *extent_tree; /* cached extent_tree entry */ 472 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 473 }; 474 475 static inline void get_extent_info(struct extent_info *ext, 476 struct f2fs_extent *i_ext) 477 { 478 ext->fofs = le32_to_cpu(i_ext->fofs); 479 ext->blk = le32_to_cpu(i_ext->blk); 480 ext->len = le32_to_cpu(i_ext->len); 481 } 482 483 static inline void set_raw_extent(struct extent_info *ext, 484 struct f2fs_extent *i_ext) 485 { 486 i_ext->fofs = cpu_to_le32(ext->fofs); 487 i_ext->blk = cpu_to_le32(ext->blk); 488 i_ext->len = cpu_to_le32(ext->len); 489 } 490 491 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 492 u32 blk, unsigned int len) 493 { 494 ei->fofs = fofs; 495 ei->blk = blk; 496 ei->len = len; 497 } 498 499 static inline bool __is_extent_mergeable(struct extent_info *back, 500 struct extent_info *front) 501 { 502 return (back->fofs + back->len == front->fofs && 503 back->blk + back->len == front->blk); 504 } 505 506 static inline bool __is_back_mergeable(struct extent_info *cur, 507 struct extent_info *back) 508 { 509 return __is_extent_mergeable(back, cur); 510 } 511 512 static inline bool __is_front_mergeable(struct extent_info *cur, 513 struct extent_info *front) 514 { 515 return __is_extent_mergeable(cur, front); 516 } 517 518 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 519 static inline void __try_update_largest_extent(struct inode *inode, 520 struct extent_tree *et, struct extent_node *en) 521 { 522 if (en->ei.len > et->largest.len) { 523 et->largest = en->ei; 524 f2fs_mark_inode_dirty_sync(inode, true); 525 } 526 } 527 528 enum nid_list { 529 FREE_NID_LIST, 530 ALLOC_NID_LIST, 531 MAX_NID_LIST, 532 }; 533 534 struct f2fs_nm_info { 535 block_t nat_blkaddr; /* base disk address of NAT */ 536 nid_t max_nid; /* maximum possible node ids */ 537 nid_t available_nids; /* # of available node ids */ 538 nid_t next_scan_nid; /* the next nid to be scanned */ 539 unsigned int ram_thresh; /* control the memory footprint */ 540 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 541 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 542 543 /* NAT cache management */ 544 struct radix_tree_root nat_root;/* root of the nat entry cache */ 545 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 546 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 547 struct list_head nat_entries; /* cached nat entry list (clean) */ 548 unsigned int nat_cnt; /* the # of cached nat entries */ 549 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 550 unsigned int nat_blocks; /* # of nat blocks */ 551 552 /* free node ids management */ 553 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 554 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 555 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 556 spinlock_t nid_list_lock; /* protect nid lists ops */ 557 struct mutex build_lock; /* lock for build free nids */ 558 559 /* for checkpoint */ 560 char *nat_bitmap; /* NAT bitmap pointer */ 561 562 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 563 unsigned char *nat_bits; /* NAT bits blocks */ 564 unsigned char *full_nat_bits; /* full NAT pages */ 565 unsigned char *empty_nat_bits; /* empty NAT pages */ 566 #ifdef CONFIG_F2FS_CHECK_FS 567 char *nat_bitmap_mir; /* NAT bitmap mirror */ 568 #endif 569 int bitmap_size; /* bitmap size */ 570 }; 571 572 /* 573 * this structure is used as one of function parameters. 574 * all the information are dedicated to a given direct node block determined 575 * by the data offset in a file. 576 */ 577 struct dnode_of_data { 578 struct inode *inode; /* vfs inode pointer */ 579 struct page *inode_page; /* its inode page, NULL is possible */ 580 struct page *node_page; /* cached direct node page */ 581 nid_t nid; /* node id of the direct node block */ 582 unsigned int ofs_in_node; /* data offset in the node page */ 583 bool inode_page_locked; /* inode page is locked or not */ 584 bool node_changed; /* is node block changed */ 585 char cur_level; /* level of hole node page */ 586 char max_level; /* level of current page located */ 587 block_t data_blkaddr; /* block address of the node block */ 588 }; 589 590 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 591 struct page *ipage, struct page *npage, nid_t nid) 592 { 593 memset(dn, 0, sizeof(*dn)); 594 dn->inode = inode; 595 dn->inode_page = ipage; 596 dn->node_page = npage; 597 dn->nid = nid; 598 } 599 600 /* 601 * For SIT manager 602 * 603 * By default, there are 6 active log areas across the whole main area. 604 * When considering hot and cold data separation to reduce cleaning overhead, 605 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 606 * respectively. 607 * In the current design, you should not change the numbers intentionally. 608 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 609 * logs individually according to the underlying devices. (default: 6) 610 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 611 * data and 8 for node logs. 612 */ 613 #define NR_CURSEG_DATA_TYPE (3) 614 #define NR_CURSEG_NODE_TYPE (3) 615 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 616 617 enum { 618 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 619 CURSEG_WARM_DATA, /* data blocks */ 620 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 621 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 622 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 623 CURSEG_COLD_NODE, /* indirect node blocks */ 624 NO_CHECK_TYPE, 625 }; 626 627 struct flush_cmd { 628 struct completion wait; 629 struct llist_node llnode; 630 int ret; 631 }; 632 633 struct flush_cmd_control { 634 struct task_struct *f2fs_issue_flush; /* flush thread */ 635 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 636 atomic_t submit_flush; /* # of issued flushes */ 637 struct llist_head issue_list; /* list for command issue */ 638 struct llist_node *dispatch_list; /* list for command dispatch */ 639 }; 640 641 struct f2fs_sm_info { 642 struct sit_info *sit_info; /* whole segment information */ 643 struct free_segmap_info *free_info; /* free segment information */ 644 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 645 struct curseg_info *curseg_array; /* active segment information */ 646 647 block_t seg0_blkaddr; /* block address of 0'th segment */ 648 block_t main_blkaddr; /* start block address of main area */ 649 block_t ssa_blkaddr; /* start block address of SSA area */ 650 651 unsigned int segment_count; /* total # of segments */ 652 unsigned int main_segments; /* # of segments in main area */ 653 unsigned int reserved_segments; /* # of reserved segments */ 654 unsigned int ovp_segments; /* # of overprovision segments */ 655 656 /* a threshold to reclaim prefree segments */ 657 unsigned int rec_prefree_segments; 658 659 /* for batched trimming */ 660 unsigned int trim_sections; /* # of sections to trim */ 661 662 struct list_head sit_entry_set; /* sit entry set list */ 663 664 unsigned int ipu_policy; /* in-place-update policy */ 665 unsigned int min_ipu_util; /* in-place-update threshold */ 666 unsigned int min_fsync_blocks; /* threshold for fsync */ 667 668 /* for flush command control */ 669 struct flush_cmd_control *fcc_info; 670 671 /* for discard command control */ 672 struct discard_cmd_control *dcc_info; 673 }; 674 675 /* 676 * For superblock 677 */ 678 /* 679 * COUNT_TYPE for monitoring 680 * 681 * f2fs monitors the number of several block types such as on-writeback, 682 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 683 */ 684 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 685 enum count_type { 686 F2FS_DIRTY_DENTS, 687 F2FS_DIRTY_DATA, 688 F2FS_DIRTY_NODES, 689 F2FS_DIRTY_META, 690 F2FS_INMEM_PAGES, 691 F2FS_DIRTY_IMETA, 692 F2FS_WB_CP_DATA, 693 F2FS_WB_DATA, 694 NR_COUNT_TYPE, 695 }; 696 697 /* 698 * The below are the page types of bios used in submit_bio(). 699 * The available types are: 700 * DATA User data pages. It operates as async mode. 701 * NODE Node pages. It operates as async mode. 702 * META FS metadata pages such as SIT, NAT, CP. 703 * NR_PAGE_TYPE The number of page types. 704 * META_FLUSH Make sure the previous pages are written 705 * with waiting the bio's completion 706 * ... Only can be used with META. 707 */ 708 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 709 enum page_type { 710 DATA, 711 NODE, 712 META, 713 NR_PAGE_TYPE, 714 META_FLUSH, 715 INMEM, /* the below types are used by tracepoints only. */ 716 INMEM_DROP, 717 INMEM_REVOKE, 718 IPU, 719 OPU, 720 }; 721 722 struct f2fs_io_info { 723 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 724 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 725 int op; /* contains REQ_OP_ */ 726 int op_flags; /* req_flag_bits */ 727 block_t new_blkaddr; /* new block address to be written */ 728 block_t old_blkaddr; /* old block address before Cow */ 729 struct page *page; /* page to be written */ 730 struct page *encrypted_page; /* encrypted page */ 731 bool submitted; /* indicate IO submission */ 732 }; 733 734 #define is_read_io(rw) (rw == READ) 735 struct f2fs_bio_info { 736 struct f2fs_sb_info *sbi; /* f2fs superblock */ 737 struct bio *bio; /* bios to merge */ 738 sector_t last_block_in_bio; /* last block number */ 739 struct f2fs_io_info fio; /* store buffered io info. */ 740 struct rw_semaphore io_rwsem; /* blocking op for bio */ 741 }; 742 743 #define FDEV(i) (sbi->devs[i]) 744 #define RDEV(i) (raw_super->devs[i]) 745 struct f2fs_dev_info { 746 struct block_device *bdev; 747 char path[MAX_PATH_LEN]; 748 unsigned int total_segments; 749 block_t start_blk; 750 block_t end_blk; 751 #ifdef CONFIG_BLK_DEV_ZONED 752 unsigned int nr_blkz; /* Total number of zones */ 753 u8 *blkz_type; /* Array of zones type */ 754 #endif 755 }; 756 757 enum inode_type { 758 DIR_INODE, /* for dirty dir inode */ 759 FILE_INODE, /* for dirty regular/symlink inode */ 760 DIRTY_META, /* for all dirtied inode metadata */ 761 NR_INODE_TYPE, 762 }; 763 764 /* for inner inode cache management */ 765 struct inode_management { 766 struct radix_tree_root ino_root; /* ino entry array */ 767 spinlock_t ino_lock; /* for ino entry lock */ 768 struct list_head ino_list; /* inode list head */ 769 unsigned long ino_num; /* number of entries */ 770 }; 771 772 /* For s_flag in struct f2fs_sb_info */ 773 enum { 774 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 775 SBI_IS_CLOSE, /* specify unmounting */ 776 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 777 SBI_POR_DOING, /* recovery is doing or not */ 778 SBI_NEED_SB_WRITE, /* need to recover superblock */ 779 SBI_NEED_CP, /* need to checkpoint */ 780 }; 781 782 enum { 783 CP_TIME, 784 REQ_TIME, 785 MAX_TIME, 786 }; 787 788 #ifdef CONFIG_F2FS_FS_ENCRYPTION 789 #define F2FS_KEY_DESC_PREFIX "f2fs:" 790 #define F2FS_KEY_DESC_PREFIX_SIZE 5 791 #endif 792 struct f2fs_sb_info { 793 struct super_block *sb; /* pointer to VFS super block */ 794 struct proc_dir_entry *s_proc; /* proc entry */ 795 struct f2fs_super_block *raw_super; /* raw super block pointer */ 796 int valid_super_block; /* valid super block no */ 797 unsigned long s_flag; /* flags for sbi */ 798 799 #ifdef CONFIG_F2FS_FS_ENCRYPTION 800 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 801 u8 key_prefix_size; 802 #endif 803 804 #ifdef CONFIG_BLK_DEV_ZONED 805 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 806 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 807 #endif 808 809 /* for node-related operations */ 810 struct f2fs_nm_info *nm_info; /* node manager */ 811 struct inode *node_inode; /* cache node blocks */ 812 813 /* for segment-related operations */ 814 struct f2fs_sm_info *sm_info; /* segment manager */ 815 816 /* for bio operations */ 817 struct f2fs_bio_info read_io; /* for read bios */ 818 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 819 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 820 int write_io_size_bits; /* Write IO size bits */ 821 mempool_t *write_io_dummy; /* Dummy pages */ 822 823 /* for checkpoint */ 824 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 825 int cur_cp_pack; /* remain current cp pack */ 826 spinlock_t cp_lock; /* for flag in ckpt */ 827 struct inode *meta_inode; /* cache meta blocks */ 828 struct mutex cp_mutex; /* checkpoint procedure lock */ 829 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 830 struct rw_semaphore node_write; /* locking node writes */ 831 wait_queue_head_t cp_wait; 832 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 833 long interval_time[MAX_TIME]; /* to store thresholds */ 834 835 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 836 837 /* for orphan inode, use 0'th array */ 838 unsigned int max_orphans; /* max orphan inodes */ 839 840 /* for inode management */ 841 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 842 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 843 844 /* for extent tree cache */ 845 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 846 struct mutex extent_tree_lock; /* locking extent radix tree */ 847 struct list_head extent_list; /* lru list for shrinker */ 848 spinlock_t extent_lock; /* locking extent lru list */ 849 atomic_t total_ext_tree; /* extent tree count */ 850 struct list_head zombie_list; /* extent zombie tree list */ 851 atomic_t total_zombie_tree; /* extent zombie tree count */ 852 atomic_t total_ext_node; /* extent info count */ 853 854 /* basic filesystem units */ 855 unsigned int log_sectors_per_block; /* log2 sectors per block */ 856 unsigned int log_blocksize; /* log2 block size */ 857 unsigned int blocksize; /* block size */ 858 unsigned int root_ino_num; /* root inode number*/ 859 unsigned int node_ino_num; /* node inode number*/ 860 unsigned int meta_ino_num; /* meta inode number*/ 861 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 862 unsigned int blocks_per_seg; /* blocks per segment */ 863 unsigned int segs_per_sec; /* segments per section */ 864 unsigned int secs_per_zone; /* sections per zone */ 865 unsigned int total_sections; /* total section count */ 866 unsigned int total_node_count; /* total node block count */ 867 unsigned int total_valid_node_count; /* valid node block count */ 868 loff_t max_file_blocks; /* max block index of file */ 869 int active_logs; /* # of active logs */ 870 int dir_level; /* directory level */ 871 872 block_t user_block_count; /* # of user blocks */ 873 block_t total_valid_block_count; /* # of valid blocks */ 874 block_t discard_blks; /* discard command candidats */ 875 block_t last_valid_block_count; /* for recovery */ 876 u32 s_next_generation; /* for NFS support */ 877 878 /* # of pages, see count_type */ 879 atomic_t nr_pages[NR_COUNT_TYPE]; 880 /* # of allocated blocks */ 881 struct percpu_counter alloc_valid_block_count; 882 883 /* valid inode count */ 884 struct percpu_counter total_valid_inode_count; 885 886 struct f2fs_mount_info mount_opt; /* mount options */ 887 888 /* for cleaning operations */ 889 struct mutex gc_mutex; /* mutex for GC */ 890 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 891 unsigned int cur_victim_sec; /* current victim section num */ 892 893 /* threshold for converting bg victims for fg */ 894 u64 fggc_threshold; 895 896 /* maximum # of trials to find a victim segment for SSR and GC */ 897 unsigned int max_victim_search; 898 899 /* 900 * for stat information. 901 * one is for the LFS mode, and the other is for the SSR mode. 902 */ 903 #ifdef CONFIG_F2FS_STAT_FS 904 struct f2fs_stat_info *stat_info; /* FS status information */ 905 unsigned int segment_count[2]; /* # of allocated segments */ 906 unsigned int block_count[2]; /* # of allocated blocks */ 907 atomic_t inplace_count; /* # of inplace update */ 908 atomic64_t total_hit_ext; /* # of lookup extent cache */ 909 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 910 atomic64_t read_hit_largest; /* # of hit largest extent node */ 911 atomic64_t read_hit_cached; /* # of hit cached extent node */ 912 atomic_t inline_xattr; /* # of inline_xattr inodes */ 913 atomic_t inline_inode; /* # of inline_data inodes */ 914 atomic_t inline_dir; /* # of inline_dentry inodes */ 915 atomic_t aw_cnt; /* # of atomic writes */ 916 atomic_t max_aw_cnt; /* max # of atomic writes */ 917 int bg_gc; /* background gc calls */ 918 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 919 #endif 920 unsigned int last_victim[2]; /* last victim segment # */ 921 spinlock_t stat_lock; /* lock for stat operations */ 922 923 /* For sysfs suppport */ 924 struct kobject s_kobj; 925 struct completion s_kobj_unregister; 926 927 /* For shrinker support */ 928 struct list_head s_list; 929 int s_ndevs; /* number of devices */ 930 struct f2fs_dev_info *devs; /* for device list */ 931 struct mutex umount_mutex; 932 unsigned int shrinker_run_no; 933 934 /* For write statistics */ 935 u64 sectors_written_start; 936 u64 kbytes_written; 937 938 /* Reference to checksum algorithm driver via cryptoapi */ 939 struct crypto_shash *s_chksum_driver; 940 941 /* For fault injection */ 942 #ifdef CONFIG_F2FS_FAULT_INJECTION 943 struct f2fs_fault_info fault_info; 944 #endif 945 }; 946 947 #ifdef CONFIG_F2FS_FAULT_INJECTION 948 #define f2fs_show_injection_info(type) \ 949 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 950 KERN_INFO, fault_name[type], \ 951 __func__, __builtin_return_address(0)) 952 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 953 { 954 struct f2fs_fault_info *ffi = &sbi->fault_info; 955 956 if (!ffi->inject_rate) 957 return false; 958 959 if (!IS_FAULT_SET(ffi, type)) 960 return false; 961 962 atomic_inc(&ffi->inject_ops); 963 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 964 atomic_set(&ffi->inject_ops, 0); 965 return true; 966 } 967 return false; 968 } 969 #endif 970 971 /* For write statistics. Suppose sector size is 512 bytes, 972 * and the return value is in kbytes. s is of struct f2fs_sb_info. 973 */ 974 #define BD_PART_WRITTEN(s) \ 975 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 976 s->sectors_written_start) >> 1) 977 978 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 979 { 980 sbi->last_time[type] = jiffies; 981 } 982 983 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 984 { 985 struct timespec ts = {sbi->interval_time[type], 0}; 986 unsigned long interval = timespec_to_jiffies(&ts); 987 988 return time_after(jiffies, sbi->last_time[type] + interval); 989 } 990 991 static inline bool is_idle(struct f2fs_sb_info *sbi) 992 { 993 struct block_device *bdev = sbi->sb->s_bdev; 994 struct request_queue *q = bdev_get_queue(bdev); 995 struct request_list *rl = &q->root_rl; 996 997 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 998 return 0; 999 1000 return f2fs_time_over(sbi, REQ_TIME); 1001 } 1002 1003 /* 1004 * Inline functions 1005 */ 1006 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1007 unsigned int length) 1008 { 1009 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1010 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1011 int err; 1012 1013 shash->tfm = sbi->s_chksum_driver; 1014 shash->flags = 0; 1015 *ctx = F2FS_SUPER_MAGIC; 1016 1017 err = crypto_shash_update(shash, address, length); 1018 BUG_ON(err); 1019 1020 return *ctx; 1021 } 1022 1023 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1024 void *buf, size_t buf_size) 1025 { 1026 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1027 } 1028 1029 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1030 { 1031 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1032 } 1033 1034 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1035 { 1036 return sb->s_fs_info; 1037 } 1038 1039 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1040 { 1041 return F2FS_SB(inode->i_sb); 1042 } 1043 1044 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1045 { 1046 return F2FS_I_SB(mapping->host); 1047 } 1048 1049 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1050 { 1051 return F2FS_M_SB(page->mapping); 1052 } 1053 1054 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1055 { 1056 return (struct f2fs_super_block *)(sbi->raw_super); 1057 } 1058 1059 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1060 { 1061 return (struct f2fs_checkpoint *)(sbi->ckpt); 1062 } 1063 1064 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1065 { 1066 return (struct f2fs_node *)page_address(page); 1067 } 1068 1069 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1070 { 1071 return &((struct f2fs_node *)page_address(page))->i; 1072 } 1073 1074 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1075 { 1076 return (struct f2fs_nm_info *)(sbi->nm_info); 1077 } 1078 1079 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1080 { 1081 return (struct f2fs_sm_info *)(sbi->sm_info); 1082 } 1083 1084 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1085 { 1086 return (struct sit_info *)(SM_I(sbi)->sit_info); 1087 } 1088 1089 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1090 { 1091 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1092 } 1093 1094 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1095 { 1096 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1097 } 1098 1099 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1100 { 1101 return sbi->meta_inode->i_mapping; 1102 } 1103 1104 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1105 { 1106 return sbi->node_inode->i_mapping; 1107 } 1108 1109 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1110 { 1111 return test_bit(type, &sbi->s_flag); 1112 } 1113 1114 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1115 { 1116 set_bit(type, &sbi->s_flag); 1117 } 1118 1119 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1120 { 1121 clear_bit(type, &sbi->s_flag); 1122 } 1123 1124 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1125 { 1126 return le64_to_cpu(cp->checkpoint_ver); 1127 } 1128 1129 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1130 { 1131 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1132 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1133 } 1134 1135 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1136 { 1137 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1138 1139 return ckpt_flags & f; 1140 } 1141 1142 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1143 { 1144 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1145 } 1146 1147 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1148 { 1149 unsigned int ckpt_flags; 1150 1151 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1152 ckpt_flags |= f; 1153 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1154 } 1155 1156 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1157 { 1158 spin_lock(&sbi->cp_lock); 1159 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1160 spin_unlock(&sbi->cp_lock); 1161 } 1162 1163 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1164 { 1165 unsigned int ckpt_flags; 1166 1167 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1168 ckpt_flags &= (~f); 1169 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1170 } 1171 1172 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1173 { 1174 spin_lock(&sbi->cp_lock); 1175 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1176 spin_unlock(&sbi->cp_lock); 1177 } 1178 1179 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1180 { 1181 set_sbi_flag(sbi, SBI_NEED_FSCK); 1182 1183 if (lock) 1184 spin_lock(&sbi->cp_lock); 1185 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1186 kfree(NM_I(sbi)->nat_bits); 1187 NM_I(sbi)->nat_bits = NULL; 1188 if (lock) 1189 spin_unlock(&sbi->cp_lock); 1190 } 1191 1192 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1193 struct cp_control *cpc) 1194 { 1195 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1196 1197 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set; 1198 } 1199 1200 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1201 { 1202 down_read(&sbi->cp_rwsem); 1203 } 1204 1205 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1206 { 1207 up_read(&sbi->cp_rwsem); 1208 } 1209 1210 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1211 { 1212 down_write(&sbi->cp_rwsem); 1213 } 1214 1215 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1216 { 1217 up_write(&sbi->cp_rwsem); 1218 } 1219 1220 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1221 { 1222 int reason = CP_SYNC; 1223 1224 if (test_opt(sbi, FASTBOOT)) 1225 reason = CP_FASTBOOT; 1226 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1227 reason = CP_UMOUNT; 1228 return reason; 1229 } 1230 1231 static inline bool __remain_node_summaries(int reason) 1232 { 1233 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1234 } 1235 1236 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1237 { 1238 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1239 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1240 } 1241 1242 /* 1243 * Check whether the given nid is within node id range. 1244 */ 1245 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1246 { 1247 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1248 return -EINVAL; 1249 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1250 return -EINVAL; 1251 return 0; 1252 } 1253 1254 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1255 1256 /* 1257 * Check whether the inode has blocks or not 1258 */ 1259 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1260 { 1261 if (F2FS_I(inode)->i_xattr_nid) 1262 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1263 else 1264 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1265 } 1266 1267 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1268 { 1269 return ofs == XATTR_NODE_OFFSET; 1270 } 1271 1272 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1273 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1274 struct inode *inode, blkcnt_t *count) 1275 { 1276 blkcnt_t diff; 1277 1278 #ifdef CONFIG_F2FS_FAULT_INJECTION 1279 if (time_to_inject(sbi, FAULT_BLOCK)) { 1280 f2fs_show_injection_info(FAULT_BLOCK); 1281 return false; 1282 } 1283 #endif 1284 /* 1285 * let's increase this in prior to actual block count change in order 1286 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1287 */ 1288 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1289 1290 spin_lock(&sbi->stat_lock); 1291 sbi->total_valid_block_count += (block_t)(*count); 1292 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1293 diff = sbi->total_valid_block_count - sbi->user_block_count; 1294 *count -= diff; 1295 sbi->total_valid_block_count = sbi->user_block_count; 1296 if (!*count) { 1297 spin_unlock(&sbi->stat_lock); 1298 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1299 return false; 1300 } 1301 } 1302 spin_unlock(&sbi->stat_lock); 1303 1304 f2fs_i_blocks_write(inode, *count, true); 1305 return true; 1306 } 1307 1308 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1309 struct inode *inode, 1310 blkcnt_t count) 1311 { 1312 spin_lock(&sbi->stat_lock); 1313 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1314 f2fs_bug_on(sbi, inode->i_blocks < count); 1315 sbi->total_valid_block_count -= (block_t)count; 1316 spin_unlock(&sbi->stat_lock); 1317 f2fs_i_blocks_write(inode, count, false); 1318 } 1319 1320 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1321 { 1322 atomic_inc(&sbi->nr_pages[count_type]); 1323 1324 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1325 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1326 return; 1327 1328 set_sbi_flag(sbi, SBI_IS_DIRTY); 1329 } 1330 1331 static inline void inode_inc_dirty_pages(struct inode *inode) 1332 { 1333 atomic_inc(&F2FS_I(inode)->dirty_pages); 1334 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1335 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1336 } 1337 1338 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1339 { 1340 atomic_dec(&sbi->nr_pages[count_type]); 1341 } 1342 1343 static inline void inode_dec_dirty_pages(struct inode *inode) 1344 { 1345 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1346 !S_ISLNK(inode->i_mode)) 1347 return; 1348 1349 atomic_dec(&F2FS_I(inode)->dirty_pages); 1350 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1351 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1352 } 1353 1354 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1355 { 1356 return atomic_read(&sbi->nr_pages[count_type]); 1357 } 1358 1359 static inline int get_dirty_pages(struct inode *inode) 1360 { 1361 return atomic_read(&F2FS_I(inode)->dirty_pages); 1362 } 1363 1364 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1365 { 1366 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1367 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1368 sbi->log_blocks_per_seg; 1369 1370 return segs / sbi->segs_per_sec; 1371 } 1372 1373 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1374 { 1375 return sbi->total_valid_block_count; 1376 } 1377 1378 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1379 { 1380 return sbi->discard_blks; 1381 } 1382 1383 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1384 { 1385 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1386 1387 /* return NAT or SIT bitmap */ 1388 if (flag == NAT_BITMAP) 1389 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1390 else if (flag == SIT_BITMAP) 1391 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1392 1393 return 0; 1394 } 1395 1396 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1397 { 1398 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1399 } 1400 1401 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1402 { 1403 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1404 int offset; 1405 1406 if (__cp_payload(sbi) > 0) { 1407 if (flag == NAT_BITMAP) 1408 return &ckpt->sit_nat_version_bitmap; 1409 else 1410 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1411 } else { 1412 offset = (flag == NAT_BITMAP) ? 1413 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1414 return &ckpt->sit_nat_version_bitmap + offset; 1415 } 1416 } 1417 1418 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1419 { 1420 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1421 1422 if (sbi->cur_cp_pack == 2) 1423 start_addr += sbi->blocks_per_seg; 1424 return start_addr; 1425 } 1426 1427 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1428 { 1429 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1430 1431 if (sbi->cur_cp_pack == 1) 1432 start_addr += sbi->blocks_per_seg; 1433 return start_addr; 1434 } 1435 1436 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1437 { 1438 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1439 } 1440 1441 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1442 { 1443 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1444 } 1445 1446 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1447 struct inode *inode) 1448 { 1449 block_t valid_block_count; 1450 unsigned int valid_node_count; 1451 1452 spin_lock(&sbi->stat_lock); 1453 1454 valid_block_count = sbi->total_valid_block_count + 1; 1455 if (unlikely(valid_block_count > sbi->user_block_count)) { 1456 spin_unlock(&sbi->stat_lock); 1457 return false; 1458 } 1459 1460 valid_node_count = sbi->total_valid_node_count + 1; 1461 if (unlikely(valid_node_count > sbi->total_node_count)) { 1462 spin_unlock(&sbi->stat_lock); 1463 return false; 1464 } 1465 1466 if (inode) 1467 f2fs_i_blocks_write(inode, 1, true); 1468 1469 sbi->total_valid_node_count++; 1470 sbi->total_valid_block_count++; 1471 spin_unlock(&sbi->stat_lock); 1472 1473 percpu_counter_inc(&sbi->alloc_valid_block_count); 1474 return true; 1475 } 1476 1477 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1478 struct inode *inode) 1479 { 1480 spin_lock(&sbi->stat_lock); 1481 1482 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1483 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1484 f2fs_bug_on(sbi, !inode->i_blocks); 1485 1486 f2fs_i_blocks_write(inode, 1, false); 1487 sbi->total_valid_node_count--; 1488 sbi->total_valid_block_count--; 1489 1490 spin_unlock(&sbi->stat_lock); 1491 } 1492 1493 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1494 { 1495 return sbi->total_valid_node_count; 1496 } 1497 1498 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1499 { 1500 percpu_counter_inc(&sbi->total_valid_inode_count); 1501 } 1502 1503 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1504 { 1505 percpu_counter_dec(&sbi->total_valid_inode_count); 1506 } 1507 1508 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1509 { 1510 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1511 } 1512 1513 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1514 pgoff_t index, bool for_write) 1515 { 1516 #ifdef CONFIG_F2FS_FAULT_INJECTION 1517 struct page *page = find_lock_page(mapping, index); 1518 1519 if (page) 1520 return page; 1521 1522 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1523 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1524 return NULL; 1525 } 1526 #endif 1527 if (!for_write) 1528 return grab_cache_page(mapping, index); 1529 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1530 } 1531 1532 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1533 { 1534 char *src_kaddr = kmap(src); 1535 char *dst_kaddr = kmap(dst); 1536 1537 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1538 kunmap(dst); 1539 kunmap(src); 1540 } 1541 1542 static inline void f2fs_put_page(struct page *page, int unlock) 1543 { 1544 if (!page) 1545 return; 1546 1547 if (unlock) { 1548 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1549 unlock_page(page); 1550 } 1551 put_page(page); 1552 } 1553 1554 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1555 { 1556 if (dn->node_page) 1557 f2fs_put_page(dn->node_page, 1); 1558 if (dn->inode_page && dn->node_page != dn->inode_page) 1559 f2fs_put_page(dn->inode_page, 0); 1560 dn->node_page = NULL; 1561 dn->inode_page = NULL; 1562 } 1563 1564 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1565 size_t size) 1566 { 1567 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1568 } 1569 1570 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1571 gfp_t flags) 1572 { 1573 void *entry; 1574 1575 entry = kmem_cache_alloc(cachep, flags); 1576 if (!entry) 1577 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1578 return entry; 1579 } 1580 1581 static inline struct bio *f2fs_bio_alloc(int npages) 1582 { 1583 struct bio *bio; 1584 1585 /* No failure on bio allocation */ 1586 bio = bio_alloc(GFP_NOIO, npages); 1587 if (!bio) 1588 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1589 return bio; 1590 } 1591 1592 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1593 unsigned long index, void *item) 1594 { 1595 while (radix_tree_insert(root, index, item)) 1596 cond_resched(); 1597 } 1598 1599 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1600 1601 static inline bool IS_INODE(struct page *page) 1602 { 1603 struct f2fs_node *p = F2FS_NODE(page); 1604 1605 return RAW_IS_INODE(p); 1606 } 1607 1608 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1609 { 1610 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1611 } 1612 1613 static inline block_t datablock_addr(struct page *node_page, 1614 unsigned int offset) 1615 { 1616 struct f2fs_node *raw_node; 1617 __le32 *addr_array; 1618 1619 raw_node = F2FS_NODE(node_page); 1620 addr_array = blkaddr_in_node(raw_node); 1621 return le32_to_cpu(addr_array[offset]); 1622 } 1623 1624 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1625 { 1626 int mask; 1627 1628 addr += (nr >> 3); 1629 mask = 1 << (7 - (nr & 0x07)); 1630 return mask & *addr; 1631 } 1632 1633 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1634 { 1635 int mask; 1636 1637 addr += (nr >> 3); 1638 mask = 1 << (7 - (nr & 0x07)); 1639 *addr |= mask; 1640 } 1641 1642 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1643 { 1644 int mask; 1645 1646 addr += (nr >> 3); 1647 mask = 1 << (7 - (nr & 0x07)); 1648 *addr &= ~mask; 1649 } 1650 1651 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1652 { 1653 int mask; 1654 int ret; 1655 1656 addr += (nr >> 3); 1657 mask = 1 << (7 - (nr & 0x07)); 1658 ret = mask & *addr; 1659 *addr |= mask; 1660 return ret; 1661 } 1662 1663 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1664 { 1665 int mask; 1666 int ret; 1667 1668 addr += (nr >> 3); 1669 mask = 1 << (7 - (nr & 0x07)); 1670 ret = mask & *addr; 1671 *addr &= ~mask; 1672 return ret; 1673 } 1674 1675 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1676 { 1677 int mask; 1678 1679 addr += (nr >> 3); 1680 mask = 1 << (7 - (nr & 0x07)); 1681 *addr ^= mask; 1682 } 1683 1684 /* used for f2fs_inode_info->flags */ 1685 enum { 1686 FI_NEW_INODE, /* indicate newly allocated inode */ 1687 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1688 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1689 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1690 FI_INC_LINK, /* need to increment i_nlink */ 1691 FI_ACL_MODE, /* indicate acl mode */ 1692 FI_NO_ALLOC, /* should not allocate any blocks */ 1693 FI_FREE_NID, /* free allocated nide */ 1694 FI_NO_EXTENT, /* not to use the extent cache */ 1695 FI_INLINE_XATTR, /* used for inline xattr */ 1696 FI_INLINE_DATA, /* used for inline data*/ 1697 FI_INLINE_DENTRY, /* used for inline dentry */ 1698 FI_APPEND_WRITE, /* inode has appended data */ 1699 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1700 FI_NEED_IPU, /* used for ipu per file */ 1701 FI_ATOMIC_FILE, /* indicate atomic file */ 1702 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1703 FI_VOLATILE_FILE, /* indicate volatile file */ 1704 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1705 FI_DROP_CACHE, /* drop dirty page cache */ 1706 FI_DATA_EXIST, /* indicate data exists */ 1707 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1708 FI_DO_DEFRAG, /* indicate defragment is running */ 1709 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1710 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1711 }; 1712 1713 static inline void __mark_inode_dirty_flag(struct inode *inode, 1714 int flag, bool set) 1715 { 1716 switch (flag) { 1717 case FI_INLINE_XATTR: 1718 case FI_INLINE_DATA: 1719 case FI_INLINE_DENTRY: 1720 if (set) 1721 return; 1722 case FI_DATA_EXIST: 1723 case FI_INLINE_DOTS: 1724 f2fs_mark_inode_dirty_sync(inode, true); 1725 } 1726 } 1727 1728 static inline void set_inode_flag(struct inode *inode, int flag) 1729 { 1730 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1731 set_bit(flag, &F2FS_I(inode)->flags); 1732 __mark_inode_dirty_flag(inode, flag, true); 1733 } 1734 1735 static inline int is_inode_flag_set(struct inode *inode, int flag) 1736 { 1737 return test_bit(flag, &F2FS_I(inode)->flags); 1738 } 1739 1740 static inline void clear_inode_flag(struct inode *inode, int flag) 1741 { 1742 if (test_bit(flag, &F2FS_I(inode)->flags)) 1743 clear_bit(flag, &F2FS_I(inode)->flags); 1744 __mark_inode_dirty_flag(inode, flag, false); 1745 } 1746 1747 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1748 { 1749 F2FS_I(inode)->i_acl_mode = mode; 1750 set_inode_flag(inode, FI_ACL_MODE); 1751 f2fs_mark_inode_dirty_sync(inode, false); 1752 } 1753 1754 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1755 { 1756 if (inc) 1757 inc_nlink(inode); 1758 else 1759 drop_nlink(inode); 1760 f2fs_mark_inode_dirty_sync(inode, true); 1761 } 1762 1763 static inline void f2fs_i_blocks_write(struct inode *inode, 1764 blkcnt_t diff, bool add) 1765 { 1766 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1767 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1768 1769 inode->i_blocks = add ? inode->i_blocks + diff : 1770 inode->i_blocks - diff; 1771 f2fs_mark_inode_dirty_sync(inode, true); 1772 if (clean || recover) 1773 set_inode_flag(inode, FI_AUTO_RECOVER); 1774 } 1775 1776 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1777 { 1778 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1779 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1780 1781 if (i_size_read(inode) == i_size) 1782 return; 1783 1784 i_size_write(inode, i_size); 1785 f2fs_mark_inode_dirty_sync(inode, true); 1786 if (clean || recover) 1787 set_inode_flag(inode, FI_AUTO_RECOVER); 1788 } 1789 1790 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1791 { 1792 F2FS_I(inode)->i_current_depth = depth; 1793 f2fs_mark_inode_dirty_sync(inode, true); 1794 } 1795 1796 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1797 { 1798 F2FS_I(inode)->i_xattr_nid = xnid; 1799 f2fs_mark_inode_dirty_sync(inode, true); 1800 } 1801 1802 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1803 { 1804 F2FS_I(inode)->i_pino = pino; 1805 f2fs_mark_inode_dirty_sync(inode, true); 1806 } 1807 1808 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1809 { 1810 struct f2fs_inode_info *fi = F2FS_I(inode); 1811 1812 if (ri->i_inline & F2FS_INLINE_XATTR) 1813 set_bit(FI_INLINE_XATTR, &fi->flags); 1814 if (ri->i_inline & F2FS_INLINE_DATA) 1815 set_bit(FI_INLINE_DATA, &fi->flags); 1816 if (ri->i_inline & F2FS_INLINE_DENTRY) 1817 set_bit(FI_INLINE_DENTRY, &fi->flags); 1818 if (ri->i_inline & F2FS_DATA_EXIST) 1819 set_bit(FI_DATA_EXIST, &fi->flags); 1820 if (ri->i_inline & F2FS_INLINE_DOTS) 1821 set_bit(FI_INLINE_DOTS, &fi->flags); 1822 } 1823 1824 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1825 { 1826 ri->i_inline = 0; 1827 1828 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1829 ri->i_inline |= F2FS_INLINE_XATTR; 1830 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1831 ri->i_inline |= F2FS_INLINE_DATA; 1832 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1833 ri->i_inline |= F2FS_INLINE_DENTRY; 1834 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1835 ri->i_inline |= F2FS_DATA_EXIST; 1836 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1837 ri->i_inline |= F2FS_INLINE_DOTS; 1838 } 1839 1840 static inline int f2fs_has_inline_xattr(struct inode *inode) 1841 { 1842 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1843 } 1844 1845 static inline unsigned int addrs_per_inode(struct inode *inode) 1846 { 1847 if (f2fs_has_inline_xattr(inode)) 1848 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1849 return DEF_ADDRS_PER_INODE; 1850 } 1851 1852 static inline void *inline_xattr_addr(struct page *page) 1853 { 1854 struct f2fs_inode *ri = F2FS_INODE(page); 1855 1856 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1857 F2FS_INLINE_XATTR_ADDRS]); 1858 } 1859 1860 static inline int inline_xattr_size(struct inode *inode) 1861 { 1862 if (f2fs_has_inline_xattr(inode)) 1863 return F2FS_INLINE_XATTR_ADDRS << 2; 1864 else 1865 return 0; 1866 } 1867 1868 static inline int f2fs_has_inline_data(struct inode *inode) 1869 { 1870 return is_inode_flag_set(inode, FI_INLINE_DATA); 1871 } 1872 1873 static inline void f2fs_clear_inline_inode(struct inode *inode) 1874 { 1875 clear_inode_flag(inode, FI_INLINE_DATA); 1876 clear_inode_flag(inode, FI_DATA_EXIST); 1877 } 1878 1879 static inline int f2fs_exist_data(struct inode *inode) 1880 { 1881 return is_inode_flag_set(inode, FI_DATA_EXIST); 1882 } 1883 1884 static inline int f2fs_has_inline_dots(struct inode *inode) 1885 { 1886 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1887 } 1888 1889 static inline bool f2fs_is_atomic_file(struct inode *inode) 1890 { 1891 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1892 } 1893 1894 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 1895 { 1896 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 1897 } 1898 1899 static inline bool f2fs_is_volatile_file(struct inode *inode) 1900 { 1901 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1902 } 1903 1904 static inline bool f2fs_is_first_block_written(struct inode *inode) 1905 { 1906 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1907 } 1908 1909 static inline bool f2fs_is_drop_cache(struct inode *inode) 1910 { 1911 return is_inode_flag_set(inode, FI_DROP_CACHE); 1912 } 1913 1914 static inline void *inline_data_addr(struct page *page) 1915 { 1916 struct f2fs_inode *ri = F2FS_INODE(page); 1917 1918 return (void *)&(ri->i_addr[1]); 1919 } 1920 1921 static inline int f2fs_has_inline_dentry(struct inode *inode) 1922 { 1923 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1924 } 1925 1926 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1927 { 1928 if (!f2fs_has_inline_dentry(dir)) 1929 kunmap(page); 1930 } 1931 1932 static inline int is_file(struct inode *inode, int type) 1933 { 1934 return F2FS_I(inode)->i_advise & type; 1935 } 1936 1937 static inline void set_file(struct inode *inode, int type) 1938 { 1939 F2FS_I(inode)->i_advise |= type; 1940 f2fs_mark_inode_dirty_sync(inode, true); 1941 } 1942 1943 static inline void clear_file(struct inode *inode, int type) 1944 { 1945 F2FS_I(inode)->i_advise &= ~type; 1946 f2fs_mark_inode_dirty_sync(inode, true); 1947 } 1948 1949 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 1950 { 1951 if (dsync) { 1952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1953 bool ret; 1954 1955 spin_lock(&sbi->inode_lock[DIRTY_META]); 1956 ret = list_empty(&F2FS_I(inode)->gdirty_list); 1957 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1958 return ret; 1959 } 1960 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 1961 file_keep_isize(inode) || 1962 i_size_read(inode) & PAGE_MASK) 1963 return false; 1964 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1965 } 1966 1967 static inline int f2fs_readonly(struct super_block *sb) 1968 { 1969 return sb->s_flags & MS_RDONLY; 1970 } 1971 1972 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1973 { 1974 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1975 } 1976 1977 static inline bool is_dot_dotdot(const struct qstr *str) 1978 { 1979 if (str->len == 1 && str->name[0] == '.') 1980 return true; 1981 1982 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1983 return true; 1984 1985 return false; 1986 } 1987 1988 static inline bool f2fs_may_extent_tree(struct inode *inode) 1989 { 1990 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1991 is_inode_flag_set(inode, FI_NO_EXTENT)) 1992 return false; 1993 1994 return S_ISREG(inode->i_mode); 1995 } 1996 1997 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1998 size_t size, gfp_t flags) 1999 { 2000 #ifdef CONFIG_F2FS_FAULT_INJECTION 2001 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2002 f2fs_show_injection_info(FAULT_KMALLOC); 2003 return NULL; 2004 } 2005 #endif 2006 return kmalloc(size, flags); 2007 } 2008 2009 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 2010 { 2011 void *ret; 2012 2013 ret = kmalloc(size, flags | __GFP_NOWARN); 2014 if (!ret) 2015 ret = __vmalloc(size, flags, PAGE_KERNEL); 2016 return ret; 2017 } 2018 2019 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 2020 { 2021 void *ret; 2022 2023 ret = kzalloc(size, flags | __GFP_NOWARN); 2024 if (!ret) 2025 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 2026 return ret; 2027 } 2028 2029 #define get_inode_mode(i) \ 2030 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2031 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2032 2033 /* get offset of first page in next direct node */ 2034 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 2035 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 2036 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 2037 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 2038 2039 /* 2040 * file.c 2041 */ 2042 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2043 void truncate_data_blocks(struct dnode_of_data *dn); 2044 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2045 int f2fs_truncate(struct inode *inode); 2046 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry, 2047 struct kstat *stat); 2048 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2049 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2050 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2051 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2052 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2053 2054 /* 2055 * inode.c 2056 */ 2057 void f2fs_set_inode_flags(struct inode *inode); 2058 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2059 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2060 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2061 int update_inode(struct inode *inode, struct page *node_page); 2062 int update_inode_page(struct inode *inode); 2063 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2064 void f2fs_evict_inode(struct inode *inode); 2065 void handle_failed_inode(struct inode *inode); 2066 2067 /* 2068 * namei.c 2069 */ 2070 struct dentry *f2fs_get_parent(struct dentry *child); 2071 2072 /* 2073 * dir.c 2074 */ 2075 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2076 unsigned char get_de_type(struct f2fs_dir_entry *de); 2077 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2078 f2fs_hash_t namehash, int *max_slots, 2079 struct f2fs_dentry_ptr *d); 2080 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2081 unsigned int start_pos, struct fscrypt_str *fstr); 2082 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2083 struct f2fs_dentry_ptr *d); 2084 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2085 const struct qstr *new_name, 2086 const struct qstr *orig_name, struct page *dpage); 2087 void update_parent_metadata(struct inode *dir, struct inode *inode, 2088 unsigned int current_depth); 2089 int room_for_filename(const void *bitmap, int slots, int max_slots); 2090 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2091 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2092 struct fscrypt_name *fname, struct page **res_page); 2093 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2094 const struct qstr *child, struct page **res_page); 2095 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2096 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2097 struct page **page); 2098 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2099 struct page *page, struct inode *inode); 2100 int update_dent_inode(struct inode *inode, struct inode *to, 2101 const struct qstr *name); 2102 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2103 const struct qstr *name, f2fs_hash_t name_hash, 2104 unsigned int bit_pos); 2105 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2106 const struct qstr *orig_name, 2107 struct inode *inode, nid_t ino, umode_t mode); 2108 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2109 struct inode *inode, nid_t ino, umode_t mode); 2110 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2111 struct inode *inode, nid_t ino, umode_t mode); 2112 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2113 struct inode *dir, struct inode *inode); 2114 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2115 bool f2fs_empty_dir(struct inode *dir); 2116 2117 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2118 { 2119 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2120 inode, inode->i_ino, inode->i_mode); 2121 } 2122 2123 /* 2124 * super.c 2125 */ 2126 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2127 void f2fs_inode_synced(struct inode *inode); 2128 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2129 int f2fs_sync_fs(struct super_block *sb, int sync); 2130 extern __printf(3, 4) 2131 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2132 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2133 2134 /* 2135 * hash.c 2136 */ 2137 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info); 2138 2139 /* 2140 * node.c 2141 */ 2142 struct dnode_of_data; 2143 struct node_info; 2144 2145 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2146 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2147 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2148 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2149 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2150 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2151 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2152 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2153 int truncate_xattr_node(struct inode *inode, struct page *page); 2154 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2155 int remove_inode_page(struct inode *inode); 2156 struct page *new_inode_page(struct inode *inode); 2157 struct page *new_node_page(struct dnode_of_data *dn, 2158 unsigned int ofs, struct page *ipage); 2159 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2160 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2161 struct page *get_node_page_ra(struct page *parent, int start); 2162 void move_node_page(struct page *node_page, int gc_type); 2163 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2164 struct writeback_control *wbc, bool atomic); 2165 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2166 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2167 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2168 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2169 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2170 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2171 void recover_inline_xattr(struct inode *inode, struct page *page); 2172 int recover_xattr_data(struct inode *inode, struct page *page, 2173 block_t blkaddr); 2174 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2175 int restore_node_summary(struct f2fs_sb_info *sbi, 2176 unsigned int segno, struct f2fs_summary_block *sum); 2177 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2178 int build_node_manager(struct f2fs_sb_info *sbi); 2179 void destroy_node_manager(struct f2fs_sb_info *sbi); 2180 int __init create_node_manager_caches(void); 2181 void destroy_node_manager_caches(void); 2182 2183 /* 2184 * segment.c 2185 */ 2186 void register_inmem_page(struct inode *inode, struct page *page); 2187 void drop_inmem_pages(struct inode *inode); 2188 int commit_inmem_pages(struct inode *inode); 2189 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2191 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2192 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2193 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2194 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2195 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2196 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2197 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr); 2198 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2199 void release_discard_addrs(struct f2fs_sb_info *sbi); 2200 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2201 void allocate_new_segments(struct f2fs_sb_info *sbi); 2202 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2203 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2204 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2205 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2206 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2207 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2208 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2209 void rewrite_data_page(struct f2fs_io_info *fio); 2210 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2211 block_t old_blkaddr, block_t new_blkaddr, 2212 bool recover_curseg, bool recover_newaddr); 2213 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2214 block_t old_addr, block_t new_addr, 2215 unsigned char version, bool recover_curseg, 2216 bool recover_newaddr); 2217 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2218 block_t old_blkaddr, block_t *new_blkaddr, 2219 struct f2fs_summary *sum, int type); 2220 void f2fs_wait_on_page_writeback(struct page *page, 2221 enum page_type type, bool ordered); 2222 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2223 block_t blkaddr); 2224 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2225 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2226 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2227 unsigned int val, int alloc); 2228 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2229 int build_segment_manager(struct f2fs_sb_info *sbi); 2230 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2231 int __init create_segment_manager_caches(void); 2232 void destroy_segment_manager_caches(void); 2233 2234 /* 2235 * checkpoint.c 2236 */ 2237 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2238 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2239 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2240 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2241 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2242 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2243 int type, bool sync); 2244 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2245 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2246 long nr_to_write); 2247 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2248 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2249 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2250 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2251 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2252 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2253 void release_orphan_inode(struct f2fs_sb_info *sbi); 2254 void add_orphan_inode(struct inode *inode); 2255 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2256 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2257 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2258 void update_dirty_page(struct inode *inode, struct page *page); 2259 void remove_dirty_inode(struct inode *inode); 2260 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2261 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2262 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2263 int __init create_checkpoint_caches(void); 2264 void destroy_checkpoint_caches(void); 2265 2266 /* 2267 * data.c 2268 */ 2269 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 2270 int rw); 2271 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 2272 struct inode *inode, nid_t ino, pgoff_t idx, 2273 enum page_type type, int rw); 2274 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); 2275 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2276 int f2fs_submit_page_mbio(struct f2fs_io_info *fio); 2277 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2278 block_t blk_addr, struct bio *bio); 2279 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2280 void set_data_blkaddr(struct dnode_of_data *dn); 2281 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2282 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2283 int reserve_new_block(struct dnode_of_data *dn); 2284 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2285 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2286 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2287 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2288 int op_flags, bool for_write); 2289 struct page *find_data_page(struct inode *inode, pgoff_t index); 2290 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2291 bool for_write); 2292 struct page *get_new_data_page(struct inode *inode, 2293 struct page *ipage, pgoff_t index, bool new_i_size); 2294 int do_write_data_page(struct f2fs_io_info *fio); 2295 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2296 int create, int flag); 2297 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2298 u64 start, u64 len); 2299 void f2fs_set_page_dirty_nobuffers(struct page *page); 2300 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2301 unsigned int length); 2302 int f2fs_release_page(struct page *page, gfp_t wait); 2303 #ifdef CONFIG_MIGRATION 2304 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2305 struct page *page, enum migrate_mode mode); 2306 #endif 2307 2308 /* 2309 * gc.c 2310 */ 2311 int start_gc_thread(struct f2fs_sb_info *sbi); 2312 void stop_gc_thread(struct f2fs_sb_info *sbi); 2313 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2314 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background); 2315 void build_gc_manager(struct f2fs_sb_info *sbi); 2316 2317 /* 2318 * recovery.c 2319 */ 2320 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2321 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2322 2323 /* 2324 * debug.c 2325 */ 2326 #ifdef CONFIG_F2FS_STAT_FS 2327 struct f2fs_stat_info { 2328 struct list_head stat_list; 2329 struct f2fs_sb_info *sbi; 2330 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2331 int main_area_segs, main_area_sections, main_area_zones; 2332 unsigned long long hit_largest, hit_cached, hit_rbtree; 2333 unsigned long long hit_total, total_ext; 2334 int ext_tree, zombie_tree, ext_node; 2335 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2336 int inmem_pages; 2337 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2338 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2339 int total_count, utilization; 2340 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard; 2341 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2342 int aw_cnt, max_aw_cnt; 2343 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2344 unsigned int bimodal, avg_vblocks; 2345 int util_free, util_valid, util_invalid; 2346 int rsvd_segs, overp_segs; 2347 int dirty_count, node_pages, meta_pages; 2348 int prefree_count, call_count, cp_count, bg_cp_count; 2349 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2350 int bg_node_segs, bg_data_segs; 2351 int tot_blks, data_blks, node_blks; 2352 int bg_data_blks, bg_node_blks; 2353 int curseg[NR_CURSEG_TYPE]; 2354 int cursec[NR_CURSEG_TYPE]; 2355 int curzone[NR_CURSEG_TYPE]; 2356 2357 unsigned int segment_count[2]; 2358 unsigned int block_count[2]; 2359 unsigned int inplace_count; 2360 unsigned long long base_mem, cache_mem, page_mem; 2361 }; 2362 2363 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2364 { 2365 return (struct f2fs_stat_info *)sbi->stat_info; 2366 } 2367 2368 #define stat_inc_cp_count(si) ((si)->cp_count++) 2369 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2370 #define stat_inc_call_count(si) ((si)->call_count++) 2371 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2372 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2373 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2374 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2375 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2376 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2377 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2378 #define stat_inc_inline_xattr(inode) \ 2379 do { \ 2380 if (f2fs_has_inline_xattr(inode)) \ 2381 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2382 } while (0) 2383 #define stat_dec_inline_xattr(inode) \ 2384 do { \ 2385 if (f2fs_has_inline_xattr(inode)) \ 2386 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2387 } while (0) 2388 #define stat_inc_inline_inode(inode) \ 2389 do { \ 2390 if (f2fs_has_inline_data(inode)) \ 2391 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2392 } while (0) 2393 #define stat_dec_inline_inode(inode) \ 2394 do { \ 2395 if (f2fs_has_inline_data(inode)) \ 2396 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2397 } while (0) 2398 #define stat_inc_inline_dir(inode) \ 2399 do { \ 2400 if (f2fs_has_inline_dentry(inode)) \ 2401 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2402 } while (0) 2403 #define stat_dec_inline_dir(inode) \ 2404 do { \ 2405 if (f2fs_has_inline_dentry(inode)) \ 2406 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2407 } while (0) 2408 #define stat_inc_seg_type(sbi, curseg) \ 2409 ((sbi)->segment_count[(curseg)->alloc_type]++) 2410 #define stat_inc_block_count(sbi, curseg) \ 2411 ((sbi)->block_count[(curseg)->alloc_type]++) 2412 #define stat_inc_inplace_blocks(sbi) \ 2413 (atomic_inc(&(sbi)->inplace_count)) 2414 #define stat_inc_atomic_write(inode) \ 2415 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2416 #define stat_dec_atomic_write(inode) \ 2417 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2418 #define stat_update_max_atomic_write(inode) \ 2419 do { \ 2420 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2421 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2422 if (cur > max) \ 2423 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2424 } while (0) 2425 #define stat_inc_seg_count(sbi, type, gc_type) \ 2426 do { \ 2427 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2428 (si)->tot_segs++; \ 2429 if (type == SUM_TYPE_DATA) { \ 2430 si->data_segs++; \ 2431 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2432 } else { \ 2433 si->node_segs++; \ 2434 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2435 } \ 2436 } while (0) 2437 2438 #define stat_inc_tot_blk_count(si, blks) \ 2439 (si->tot_blks += (blks)) 2440 2441 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2442 do { \ 2443 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2444 stat_inc_tot_blk_count(si, blks); \ 2445 si->data_blks += (blks); \ 2446 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2447 } while (0) 2448 2449 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2450 do { \ 2451 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2452 stat_inc_tot_blk_count(si, blks); \ 2453 si->node_blks += (blks); \ 2454 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2455 } while (0) 2456 2457 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2458 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2459 int __init f2fs_create_root_stats(void); 2460 void f2fs_destroy_root_stats(void); 2461 #else 2462 #define stat_inc_cp_count(si) 2463 #define stat_inc_bg_cp_count(si) 2464 #define stat_inc_call_count(si) 2465 #define stat_inc_bggc_count(si) 2466 #define stat_inc_dirty_inode(sbi, type) 2467 #define stat_dec_dirty_inode(sbi, type) 2468 #define stat_inc_total_hit(sb) 2469 #define stat_inc_rbtree_node_hit(sb) 2470 #define stat_inc_largest_node_hit(sbi) 2471 #define stat_inc_cached_node_hit(sbi) 2472 #define stat_inc_inline_xattr(inode) 2473 #define stat_dec_inline_xattr(inode) 2474 #define stat_inc_inline_inode(inode) 2475 #define stat_dec_inline_inode(inode) 2476 #define stat_inc_inline_dir(inode) 2477 #define stat_dec_inline_dir(inode) 2478 #define stat_inc_atomic_write(inode) 2479 #define stat_dec_atomic_write(inode) 2480 #define stat_update_max_atomic_write(inode) 2481 #define stat_inc_seg_type(sbi, curseg) 2482 #define stat_inc_block_count(sbi, curseg) 2483 #define stat_inc_inplace_blocks(sbi) 2484 #define stat_inc_seg_count(sbi, type, gc_type) 2485 #define stat_inc_tot_blk_count(si, blks) 2486 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2487 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2488 2489 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2490 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2491 static inline int __init f2fs_create_root_stats(void) { return 0; } 2492 static inline void f2fs_destroy_root_stats(void) { } 2493 #endif 2494 2495 extern const struct file_operations f2fs_dir_operations; 2496 extern const struct file_operations f2fs_file_operations; 2497 extern const struct inode_operations f2fs_file_inode_operations; 2498 extern const struct address_space_operations f2fs_dblock_aops; 2499 extern const struct address_space_operations f2fs_node_aops; 2500 extern const struct address_space_operations f2fs_meta_aops; 2501 extern const struct inode_operations f2fs_dir_inode_operations; 2502 extern const struct inode_operations f2fs_symlink_inode_operations; 2503 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2504 extern const struct inode_operations f2fs_special_inode_operations; 2505 extern struct kmem_cache *inode_entry_slab; 2506 2507 /* 2508 * inline.c 2509 */ 2510 bool f2fs_may_inline_data(struct inode *inode); 2511 bool f2fs_may_inline_dentry(struct inode *inode); 2512 void read_inline_data(struct page *page, struct page *ipage); 2513 bool truncate_inline_inode(struct page *ipage, u64 from); 2514 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2515 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2516 int f2fs_convert_inline_inode(struct inode *inode); 2517 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2518 bool recover_inline_data(struct inode *inode, struct page *npage); 2519 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2520 struct fscrypt_name *fname, struct page **res_page); 2521 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2522 struct page *ipage); 2523 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2524 const struct qstr *orig_name, 2525 struct inode *inode, nid_t ino, umode_t mode); 2526 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2527 struct inode *dir, struct inode *inode); 2528 bool f2fs_empty_inline_dir(struct inode *dir); 2529 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2530 struct fscrypt_str *fstr); 2531 int f2fs_inline_data_fiemap(struct inode *inode, 2532 struct fiemap_extent_info *fieinfo, 2533 __u64 start, __u64 len); 2534 2535 /* 2536 * shrinker.c 2537 */ 2538 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2539 struct shrink_control *sc); 2540 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2541 struct shrink_control *sc); 2542 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2543 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2544 2545 /* 2546 * extent_cache.c 2547 */ 2548 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2549 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2550 void f2fs_drop_extent_tree(struct inode *inode); 2551 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2552 void f2fs_destroy_extent_tree(struct inode *inode); 2553 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2554 struct extent_info *ei); 2555 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2556 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2557 pgoff_t fofs, block_t blkaddr, unsigned int len); 2558 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2559 int __init create_extent_cache(void); 2560 void destroy_extent_cache(void); 2561 2562 /* 2563 * crypto support 2564 */ 2565 static inline bool f2fs_encrypted_inode(struct inode *inode) 2566 { 2567 return file_is_encrypt(inode); 2568 } 2569 2570 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2571 { 2572 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2573 file_set_encrypt(inode); 2574 #endif 2575 } 2576 2577 static inline bool f2fs_bio_encrypted(struct bio *bio) 2578 { 2579 return bio->bi_private != NULL; 2580 } 2581 2582 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2583 { 2584 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2585 } 2586 2587 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2588 { 2589 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2590 } 2591 2592 #ifdef CONFIG_BLK_DEV_ZONED 2593 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2594 struct block_device *bdev, block_t blkaddr) 2595 { 2596 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2597 int i; 2598 2599 for (i = 0; i < sbi->s_ndevs; i++) 2600 if (FDEV(i).bdev == bdev) 2601 return FDEV(i).blkz_type[zno]; 2602 return -EINVAL; 2603 } 2604 #endif 2605 2606 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2607 { 2608 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2609 2610 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2611 } 2612 2613 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2614 { 2615 clear_opt(sbi, ADAPTIVE); 2616 clear_opt(sbi, LFS); 2617 2618 switch (mt) { 2619 case F2FS_MOUNT_ADAPTIVE: 2620 set_opt(sbi, ADAPTIVE); 2621 break; 2622 case F2FS_MOUNT_LFS: 2623 set_opt(sbi, LFS); 2624 break; 2625 } 2626 } 2627 2628 static inline bool f2fs_may_encrypt(struct inode *inode) 2629 { 2630 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2631 umode_t mode = inode->i_mode; 2632 2633 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2634 #else 2635 return 0; 2636 #endif 2637 } 2638 2639 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2640 #define fscrypt_set_d_op(i) 2641 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2642 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2643 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2644 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2645 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2646 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2647 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2648 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2649 #define fscrypt_ioctl_set_policy fscrypt_notsupp_ioctl_set_policy 2650 #define fscrypt_ioctl_get_policy fscrypt_notsupp_ioctl_get_policy 2651 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2652 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2653 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2654 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2655 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2656 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2657 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2658 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2659 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2660 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2661 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2662 #endif 2663 #endif 2664