xref: /openbmc/linux/fs/f2fs/f2fs.h (revision ced2c7ea8e99b46755a270872cd5ba61c27cffad)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_IO,
50 	FAULT_CHECKPOINT,
51 	FAULT_MAX,
52 };
53 
54 struct f2fs_fault_info {
55 	atomic_t inject_ops;
56 	unsigned int inject_rate;
57 	unsigned int inject_type;
58 };
59 
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63 
64 /*
65  * For mount options
66  */
67 #define F2FS_MOUNT_BG_GC		0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
69 #define F2FS_MOUNT_DISCARD		0x00000004
70 #define F2FS_MOUNT_NOHEAP		0x00000008
71 #define F2FS_MOUNT_XATTR_USER		0x00000010
72 #define F2FS_MOUNT_POSIX_ACL		0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
75 #define F2FS_MOUNT_INLINE_DATA		0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
78 #define F2FS_MOUNT_NOBARRIER		0x00000800
79 #define F2FS_MOUNT_FASTBOOT		0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
84 #define F2FS_MOUNT_ADAPTIVE		0x00020000
85 #define F2FS_MOUNT_LFS			0x00040000
86 
87 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
90 
91 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
92 		typecheck(unsigned long long, b) &&			\
93 		((long long)((a) - (b)) > 0))
94 
95 typedef u32 block_t;	/*
96 			 * should not change u32, since it is the on-disk block
97 			 * address format, __le32.
98 			 */
99 typedef u32 nid_t;
100 
101 struct f2fs_mount_info {
102 	unsigned int	opt;
103 };
104 
105 #define F2FS_FEATURE_ENCRYPT	0x0001
106 #define F2FS_FEATURE_BLKZONED	0x0002
107 
108 #define F2FS_HAS_FEATURE(sb, mask)					\
109 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask)					\
111 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
112 #define F2FS_CLEAR_FEATURE(sb, mask)					\
113 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
114 
115 /*
116  * For checkpoint manager
117  */
118 enum {
119 	NAT_BITMAP,
120 	SIT_BITMAP
121 };
122 
123 enum {
124 	CP_UMOUNT,
125 	CP_FASTBOOT,
126 	CP_SYNC,
127 	CP_RECOVERY,
128 	CP_DISCARD,
129 };
130 
131 #define DEF_BATCHED_TRIM_SECTIONS	2048
132 #define BATCHED_TRIM_SEGMENTS(sbi)	\
133 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi)	\
135 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define MAX_DISCARD_BLOCKS(sbi)						\
137 		((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
138 #define DISCARD_ISSUE_RATE	8
139 #define DEF_CP_INTERVAL			60	/* 60 secs */
140 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
141 
142 struct cp_control {
143 	int reason;
144 	__u64 trim_start;
145 	__u64 trim_end;
146 	__u64 trim_minlen;
147 	__u64 trimmed;
148 };
149 
150 /*
151  * For CP/NAT/SIT/SSA readahead
152  */
153 enum {
154 	META_CP,
155 	META_NAT,
156 	META_SIT,
157 	META_SSA,
158 	META_POR,
159 };
160 
161 /* for the list of ino */
162 enum {
163 	ORPHAN_INO,		/* for orphan ino list */
164 	APPEND_INO,		/* for append ino list */
165 	UPDATE_INO,		/* for update ino list */
166 	MAX_INO_ENTRY,		/* max. list */
167 };
168 
169 struct ino_entry {
170 	struct list_head list;	/* list head */
171 	nid_t ino;		/* inode number */
172 };
173 
174 /* for the list of inodes to be GCed */
175 struct inode_entry {
176 	struct list_head list;	/* list head */
177 	struct inode *inode;	/* vfs inode pointer */
178 };
179 
180 /* for the list of blockaddresses to be discarded */
181 struct discard_entry {
182 	struct list_head list;	/* list head */
183 	block_t blkaddr;	/* block address to be discarded */
184 	int len;		/* # of consecutive blocks of the discard */
185 };
186 
187 enum {
188 	D_PREP,
189 	D_SUBMIT,
190 	D_DONE,
191 };
192 
193 struct discard_cmd {
194 	struct list_head list;		/* command list */
195 	struct completion wait;		/* compleation */
196 	block_t lstart;			/* logical start address */
197 	block_t len;			/* length */
198 	struct bio *bio;		/* bio */
199 	int state;			/* state */
200 };
201 
202 struct discard_cmd_control {
203 	struct task_struct *f2fs_issue_discard;	/* discard thread */
204 	struct list_head discard_entry_list;	/* 4KB discard entry list */
205 	int nr_discards;			/* # of discards in the list */
206 	struct list_head discard_cmd_list;	/* discard cmd list */
207 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
208 	struct mutex cmd_lock;
209 	int max_discards;			/* max. discards to be issued */
210 	atomic_t submit_discard;		/* # of issued discard */
211 };
212 
213 /* for the list of fsync inodes, used only during recovery */
214 struct fsync_inode_entry {
215 	struct list_head list;	/* list head */
216 	struct inode *inode;	/* vfs inode pointer */
217 	block_t blkaddr;	/* block address locating the last fsync */
218 	block_t last_dentry;	/* block address locating the last dentry */
219 };
220 
221 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
222 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
223 
224 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
225 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
226 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
227 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
228 
229 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
230 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
231 
232 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
233 {
234 	int before = nats_in_cursum(journal);
235 
236 	journal->n_nats = cpu_to_le16(before + i);
237 	return before;
238 }
239 
240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241 {
242 	int before = sits_in_cursum(journal);
243 
244 	journal->n_sits = cpu_to_le16(before + i);
245 	return before;
246 }
247 
248 static inline bool __has_cursum_space(struct f2fs_journal *journal,
249 							int size, int type)
250 {
251 	if (type == NAT_JOURNAL)
252 		return size <= MAX_NAT_JENTRIES(journal);
253 	return size <= MAX_SIT_JENTRIES(journal);
254 }
255 
256 /*
257  * ioctl commands
258  */
259 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
260 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
261 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
262 
263 #define F2FS_IOCTL_MAGIC		0xf5
264 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
265 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
266 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
267 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
268 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
269 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
270 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
271 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
272 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
273 						struct f2fs_move_range)
274 
275 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
276 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
277 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
278 
279 /*
280  * should be same as XFS_IOC_GOINGDOWN.
281  * Flags for going down operation used by FS_IOC_GOINGDOWN
282  */
283 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
284 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
285 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
286 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
287 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
288 
289 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
290 /*
291  * ioctl commands in 32 bit emulation
292  */
293 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
294 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
295 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
296 #endif
297 
298 struct f2fs_defragment {
299 	u64 start;
300 	u64 len;
301 };
302 
303 struct f2fs_move_range {
304 	u32 dst_fd;		/* destination fd */
305 	u64 pos_in;		/* start position in src_fd */
306 	u64 pos_out;		/* start position in dst_fd */
307 	u64 len;		/* size to move */
308 };
309 
310 /*
311  * For INODE and NODE manager
312  */
313 /* for directory operations */
314 struct f2fs_dentry_ptr {
315 	struct inode *inode;
316 	const void *bitmap;
317 	struct f2fs_dir_entry *dentry;
318 	__u8 (*filename)[F2FS_SLOT_LEN];
319 	int max;
320 };
321 
322 static inline void make_dentry_ptr(struct inode *inode,
323 		struct f2fs_dentry_ptr *d, void *src, int type)
324 {
325 	d->inode = inode;
326 
327 	if (type == 1) {
328 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
329 
330 		d->max = NR_DENTRY_IN_BLOCK;
331 		d->bitmap = &t->dentry_bitmap;
332 		d->dentry = t->dentry;
333 		d->filename = t->filename;
334 	} else {
335 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
336 
337 		d->max = NR_INLINE_DENTRY;
338 		d->bitmap = &t->dentry_bitmap;
339 		d->dentry = t->dentry;
340 		d->filename = t->filename;
341 	}
342 }
343 
344 /*
345  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
346  * as its node offset to distinguish from index node blocks.
347  * But some bits are used to mark the node block.
348  */
349 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
350 				>> OFFSET_BIT_SHIFT)
351 enum {
352 	ALLOC_NODE,			/* allocate a new node page if needed */
353 	LOOKUP_NODE,			/* look up a node without readahead */
354 	LOOKUP_NODE_RA,			/*
355 					 * look up a node with readahead called
356 					 * by get_data_block.
357 					 */
358 };
359 
360 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
361 
362 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
363 
364 /* vector size for gang look-up from extent cache that consists of radix tree */
365 #define EXT_TREE_VEC_SIZE	64
366 
367 /* for in-memory extent cache entry */
368 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
369 
370 /* number of extent info in extent cache we try to shrink */
371 #define EXTENT_CACHE_SHRINK_NUMBER	128
372 
373 struct extent_info {
374 	unsigned int fofs;		/* start offset in a file */
375 	u32 blk;			/* start block address of the extent */
376 	unsigned int len;		/* length of the extent */
377 };
378 
379 struct extent_node {
380 	struct rb_node rb_node;		/* rb node located in rb-tree */
381 	struct list_head list;		/* node in global extent list of sbi */
382 	struct extent_info ei;		/* extent info */
383 	struct extent_tree *et;		/* extent tree pointer */
384 };
385 
386 struct extent_tree {
387 	nid_t ino;			/* inode number */
388 	struct rb_root root;		/* root of extent info rb-tree */
389 	struct extent_node *cached_en;	/* recently accessed extent node */
390 	struct extent_info largest;	/* largested extent info */
391 	struct list_head list;		/* to be used by sbi->zombie_list */
392 	rwlock_t lock;			/* protect extent info rb-tree */
393 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
394 };
395 
396 /*
397  * This structure is taken from ext4_map_blocks.
398  *
399  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
400  */
401 #define F2FS_MAP_NEW		(1 << BH_New)
402 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
403 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
404 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
405 				F2FS_MAP_UNWRITTEN)
406 
407 struct f2fs_map_blocks {
408 	block_t m_pblk;
409 	block_t m_lblk;
410 	unsigned int m_len;
411 	unsigned int m_flags;
412 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
413 };
414 
415 /* for flag in get_data_block */
416 #define F2FS_GET_BLOCK_READ		0
417 #define F2FS_GET_BLOCK_DIO		1
418 #define F2FS_GET_BLOCK_FIEMAP		2
419 #define F2FS_GET_BLOCK_BMAP		3
420 #define F2FS_GET_BLOCK_PRE_DIO		4
421 #define F2FS_GET_BLOCK_PRE_AIO		5
422 
423 /*
424  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
425  */
426 #define FADVISE_COLD_BIT	0x01
427 #define FADVISE_LOST_PINO_BIT	0x02
428 #define FADVISE_ENCRYPT_BIT	0x04
429 #define FADVISE_ENC_NAME_BIT	0x08
430 #define FADVISE_KEEP_SIZE_BIT	0x10
431 
432 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
433 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
434 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
435 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
436 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
437 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
438 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
439 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
440 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
441 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
442 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
443 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
444 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
445 
446 #define DEF_DIR_LEVEL		0
447 
448 struct f2fs_inode_info {
449 	struct inode vfs_inode;		/* serve a vfs inode */
450 	unsigned long i_flags;		/* keep an inode flags for ioctl */
451 	unsigned char i_advise;		/* use to give file attribute hints */
452 	unsigned char i_dir_level;	/* use for dentry level for large dir */
453 	unsigned int i_current_depth;	/* use only in directory structure */
454 	unsigned int i_pino;		/* parent inode number */
455 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
456 
457 	/* Use below internally in f2fs*/
458 	unsigned long flags;		/* use to pass per-file flags */
459 	struct rw_semaphore i_sem;	/* protect fi info */
460 	atomic_t dirty_pages;		/* # of dirty pages */
461 	f2fs_hash_t chash;		/* hash value of given file name */
462 	unsigned int clevel;		/* maximum level of given file name */
463 	struct task_struct *task;	/* lookup and create consistency */
464 	nid_t i_xattr_nid;		/* node id that contains xattrs */
465 	loff_t	last_disk_size;		/* lastly written file size */
466 
467 	struct list_head dirty_list;	/* dirty list for dirs and files */
468 	struct list_head gdirty_list;	/* linked in global dirty list */
469 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
470 	struct mutex inmem_lock;	/* lock for inmemory pages */
471 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
472 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
473 };
474 
475 static inline void get_extent_info(struct extent_info *ext,
476 					struct f2fs_extent *i_ext)
477 {
478 	ext->fofs = le32_to_cpu(i_ext->fofs);
479 	ext->blk = le32_to_cpu(i_ext->blk);
480 	ext->len = le32_to_cpu(i_ext->len);
481 }
482 
483 static inline void set_raw_extent(struct extent_info *ext,
484 					struct f2fs_extent *i_ext)
485 {
486 	i_ext->fofs = cpu_to_le32(ext->fofs);
487 	i_ext->blk = cpu_to_le32(ext->blk);
488 	i_ext->len = cpu_to_le32(ext->len);
489 }
490 
491 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
492 						u32 blk, unsigned int len)
493 {
494 	ei->fofs = fofs;
495 	ei->blk = blk;
496 	ei->len = len;
497 }
498 
499 static inline bool __is_extent_mergeable(struct extent_info *back,
500 						struct extent_info *front)
501 {
502 	return (back->fofs + back->len == front->fofs &&
503 			back->blk + back->len == front->blk);
504 }
505 
506 static inline bool __is_back_mergeable(struct extent_info *cur,
507 						struct extent_info *back)
508 {
509 	return __is_extent_mergeable(back, cur);
510 }
511 
512 static inline bool __is_front_mergeable(struct extent_info *cur,
513 						struct extent_info *front)
514 {
515 	return __is_extent_mergeable(cur, front);
516 }
517 
518 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
519 static inline void __try_update_largest_extent(struct inode *inode,
520 			struct extent_tree *et, struct extent_node *en)
521 {
522 	if (en->ei.len > et->largest.len) {
523 		et->largest = en->ei;
524 		f2fs_mark_inode_dirty_sync(inode, true);
525 	}
526 }
527 
528 enum nid_list {
529 	FREE_NID_LIST,
530 	ALLOC_NID_LIST,
531 	MAX_NID_LIST,
532 };
533 
534 struct f2fs_nm_info {
535 	block_t nat_blkaddr;		/* base disk address of NAT */
536 	nid_t max_nid;			/* maximum possible node ids */
537 	nid_t available_nids;		/* # of available node ids */
538 	nid_t next_scan_nid;		/* the next nid to be scanned */
539 	unsigned int ram_thresh;	/* control the memory footprint */
540 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
541 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
542 
543 	/* NAT cache management */
544 	struct radix_tree_root nat_root;/* root of the nat entry cache */
545 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
546 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
547 	struct list_head nat_entries;	/* cached nat entry list (clean) */
548 	unsigned int nat_cnt;		/* the # of cached nat entries */
549 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
550 	unsigned int nat_blocks;	/* # of nat blocks */
551 
552 	/* free node ids management */
553 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
554 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
555 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
556 	spinlock_t nid_list_lock;	/* protect nid lists ops */
557 	struct mutex build_lock;	/* lock for build free nids */
558 
559 	/* for checkpoint */
560 	char *nat_bitmap;		/* NAT bitmap pointer */
561 
562 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
563 	unsigned char *nat_bits;	/* NAT bits blocks */
564 	unsigned char *full_nat_bits;	/* full NAT pages */
565 	unsigned char *empty_nat_bits;	/* empty NAT pages */
566 #ifdef CONFIG_F2FS_CHECK_FS
567 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
568 #endif
569 	int bitmap_size;		/* bitmap size */
570 };
571 
572 /*
573  * this structure is used as one of function parameters.
574  * all the information are dedicated to a given direct node block determined
575  * by the data offset in a file.
576  */
577 struct dnode_of_data {
578 	struct inode *inode;		/* vfs inode pointer */
579 	struct page *inode_page;	/* its inode page, NULL is possible */
580 	struct page *node_page;		/* cached direct node page */
581 	nid_t nid;			/* node id of the direct node block */
582 	unsigned int ofs_in_node;	/* data offset in the node page */
583 	bool inode_page_locked;		/* inode page is locked or not */
584 	bool node_changed;		/* is node block changed */
585 	char cur_level;			/* level of hole node page */
586 	char max_level;			/* level of current page located */
587 	block_t	data_blkaddr;		/* block address of the node block */
588 };
589 
590 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
591 		struct page *ipage, struct page *npage, nid_t nid)
592 {
593 	memset(dn, 0, sizeof(*dn));
594 	dn->inode = inode;
595 	dn->inode_page = ipage;
596 	dn->node_page = npage;
597 	dn->nid = nid;
598 }
599 
600 /*
601  * For SIT manager
602  *
603  * By default, there are 6 active log areas across the whole main area.
604  * When considering hot and cold data separation to reduce cleaning overhead,
605  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
606  * respectively.
607  * In the current design, you should not change the numbers intentionally.
608  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
609  * logs individually according to the underlying devices. (default: 6)
610  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
611  * data and 8 for node logs.
612  */
613 #define	NR_CURSEG_DATA_TYPE	(3)
614 #define NR_CURSEG_NODE_TYPE	(3)
615 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
616 
617 enum {
618 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
619 	CURSEG_WARM_DATA,	/* data blocks */
620 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
621 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
622 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
623 	CURSEG_COLD_NODE,	/* indirect node blocks */
624 	NO_CHECK_TYPE,
625 };
626 
627 struct flush_cmd {
628 	struct completion wait;
629 	struct llist_node llnode;
630 	int ret;
631 };
632 
633 struct flush_cmd_control {
634 	struct task_struct *f2fs_issue_flush;	/* flush thread */
635 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
636 	atomic_t submit_flush;			/* # of issued flushes */
637 	struct llist_head issue_list;		/* list for command issue */
638 	struct llist_node *dispatch_list;	/* list for command dispatch */
639 };
640 
641 struct f2fs_sm_info {
642 	struct sit_info *sit_info;		/* whole segment information */
643 	struct free_segmap_info *free_info;	/* free segment information */
644 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
645 	struct curseg_info *curseg_array;	/* active segment information */
646 
647 	block_t seg0_blkaddr;		/* block address of 0'th segment */
648 	block_t main_blkaddr;		/* start block address of main area */
649 	block_t ssa_blkaddr;		/* start block address of SSA area */
650 
651 	unsigned int segment_count;	/* total # of segments */
652 	unsigned int main_segments;	/* # of segments in main area */
653 	unsigned int reserved_segments;	/* # of reserved segments */
654 	unsigned int ovp_segments;	/* # of overprovision segments */
655 
656 	/* a threshold to reclaim prefree segments */
657 	unsigned int rec_prefree_segments;
658 
659 	/* for batched trimming */
660 	unsigned int trim_sections;		/* # of sections to trim */
661 
662 	struct list_head sit_entry_set;	/* sit entry set list */
663 
664 	unsigned int ipu_policy;	/* in-place-update policy */
665 	unsigned int min_ipu_util;	/* in-place-update threshold */
666 	unsigned int min_fsync_blocks;	/* threshold for fsync */
667 
668 	/* for flush command control */
669 	struct flush_cmd_control *fcc_info;
670 
671 	/* for discard command control */
672 	struct discard_cmd_control *dcc_info;
673 };
674 
675 /*
676  * For superblock
677  */
678 /*
679  * COUNT_TYPE for monitoring
680  *
681  * f2fs monitors the number of several block types such as on-writeback,
682  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
683  */
684 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
685 enum count_type {
686 	F2FS_DIRTY_DENTS,
687 	F2FS_DIRTY_DATA,
688 	F2FS_DIRTY_NODES,
689 	F2FS_DIRTY_META,
690 	F2FS_INMEM_PAGES,
691 	F2FS_DIRTY_IMETA,
692 	F2FS_WB_CP_DATA,
693 	F2FS_WB_DATA,
694 	NR_COUNT_TYPE,
695 };
696 
697 /*
698  * The below are the page types of bios used in submit_bio().
699  * The available types are:
700  * DATA			User data pages. It operates as async mode.
701  * NODE			Node pages. It operates as async mode.
702  * META			FS metadata pages such as SIT, NAT, CP.
703  * NR_PAGE_TYPE		The number of page types.
704  * META_FLUSH		Make sure the previous pages are written
705  *			with waiting the bio's completion
706  * ...			Only can be used with META.
707  */
708 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
709 enum page_type {
710 	DATA,
711 	NODE,
712 	META,
713 	NR_PAGE_TYPE,
714 	META_FLUSH,
715 	INMEM,		/* the below types are used by tracepoints only. */
716 	INMEM_DROP,
717 	INMEM_REVOKE,
718 	IPU,
719 	OPU,
720 };
721 
722 struct f2fs_io_info {
723 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
724 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
725 	int op;			/* contains REQ_OP_ */
726 	int op_flags;		/* req_flag_bits */
727 	block_t new_blkaddr;	/* new block address to be written */
728 	block_t old_blkaddr;	/* old block address before Cow */
729 	struct page *page;	/* page to be written */
730 	struct page *encrypted_page;	/* encrypted page */
731 	bool submitted;		/* indicate IO submission */
732 };
733 
734 #define is_read_io(rw) (rw == READ)
735 struct f2fs_bio_info {
736 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
737 	struct bio *bio;		/* bios to merge */
738 	sector_t last_block_in_bio;	/* last block number */
739 	struct f2fs_io_info fio;	/* store buffered io info. */
740 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
741 };
742 
743 #define FDEV(i)				(sbi->devs[i])
744 #define RDEV(i)				(raw_super->devs[i])
745 struct f2fs_dev_info {
746 	struct block_device *bdev;
747 	char path[MAX_PATH_LEN];
748 	unsigned int total_segments;
749 	block_t start_blk;
750 	block_t end_blk;
751 #ifdef CONFIG_BLK_DEV_ZONED
752 	unsigned int nr_blkz;			/* Total number of zones */
753 	u8 *blkz_type;				/* Array of zones type */
754 #endif
755 };
756 
757 enum inode_type {
758 	DIR_INODE,			/* for dirty dir inode */
759 	FILE_INODE,			/* for dirty regular/symlink inode */
760 	DIRTY_META,			/* for all dirtied inode metadata */
761 	NR_INODE_TYPE,
762 };
763 
764 /* for inner inode cache management */
765 struct inode_management {
766 	struct radix_tree_root ino_root;	/* ino entry array */
767 	spinlock_t ino_lock;			/* for ino entry lock */
768 	struct list_head ino_list;		/* inode list head */
769 	unsigned long ino_num;			/* number of entries */
770 };
771 
772 /* For s_flag in struct f2fs_sb_info */
773 enum {
774 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
775 	SBI_IS_CLOSE,				/* specify unmounting */
776 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
777 	SBI_POR_DOING,				/* recovery is doing or not */
778 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
779 	SBI_NEED_CP,				/* need to checkpoint */
780 };
781 
782 enum {
783 	CP_TIME,
784 	REQ_TIME,
785 	MAX_TIME,
786 };
787 
788 #ifdef CONFIG_F2FS_FS_ENCRYPTION
789 #define F2FS_KEY_DESC_PREFIX "f2fs:"
790 #define F2FS_KEY_DESC_PREFIX_SIZE 5
791 #endif
792 struct f2fs_sb_info {
793 	struct super_block *sb;			/* pointer to VFS super block */
794 	struct proc_dir_entry *s_proc;		/* proc entry */
795 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
796 	int valid_super_block;			/* valid super block no */
797 	unsigned long s_flag;				/* flags for sbi */
798 
799 #ifdef CONFIG_F2FS_FS_ENCRYPTION
800 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
801 	u8 key_prefix_size;
802 #endif
803 
804 #ifdef CONFIG_BLK_DEV_ZONED
805 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
806 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
807 #endif
808 
809 	/* for node-related operations */
810 	struct f2fs_nm_info *nm_info;		/* node manager */
811 	struct inode *node_inode;		/* cache node blocks */
812 
813 	/* for segment-related operations */
814 	struct f2fs_sm_info *sm_info;		/* segment manager */
815 
816 	/* for bio operations */
817 	struct f2fs_bio_info read_io;			/* for read bios */
818 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
819 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
820 	int write_io_size_bits;			/* Write IO size bits */
821 	mempool_t *write_io_dummy;		/* Dummy pages */
822 
823 	/* for checkpoint */
824 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
825 	int cur_cp_pack;			/* remain current cp pack */
826 	spinlock_t cp_lock;			/* for flag in ckpt */
827 	struct inode *meta_inode;		/* cache meta blocks */
828 	struct mutex cp_mutex;			/* checkpoint procedure lock */
829 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
830 	struct rw_semaphore node_write;		/* locking node writes */
831 	wait_queue_head_t cp_wait;
832 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
833 	long interval_time[MAX_TIME];		/* to store thresholds */
834 
835 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
836 
837 	/* for orphan inode, use 0'th array */
838 	unsigned int max_orphans;		/* max orphan inodes */
839 
840 	/* for inode management */
841 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
842 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
843 
844 	/* for extent tree cache */
845 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
846 	struct mutex extent_tree_lock;	/* locking extent radix tree */
847 	struct list_head extent_list;		/* lru list for shrinker */
848 	spinlock_t extent_lock;			/* locking extent lru list */
849 	atomic_t total_ext_tree;		/* extent tree count */
850 	struct list_head zombie_list;		/* extent zombie tree list */
851 	atomic_t total_zombie_tree;		/* extent zombie tree count */
852 	atomic_t total_ext_node;		/* extent info count */
853 
854 	/* basic filesystem units */
855 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
856 	unsigned int log_blocksize;		/* log2 block size */
857 	unsigned int blocksize;			/* block size */
858 	unsigned int root_ino_num;		/* root inode number*/
859 	unsigned int node_ino_num;		/* node inode number*/
860 	unsigned int meta_ino_num;		/* meta inode number*/
861 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
862 	unsigned int blocks_per_seg;		/* blocks per segment */
863 	unsigned int segs_per_sec;		/* segments per section */
864 	unsigned int secs_per_zone;		/* sections per zone */
865 	unsigned int total_sections;		/* total section count */
866 	unsigned int total_node_count;		/* total node block count */
867 	unsigned int total_valid_node_count;	/* valid node block count */
868 	loff_t max_file_blocks;			/* max block index of file */
869 	int active_logs;			/* # of active logs */
870 	int dir_level;				/* directory level */
871 
872 	block_t user_block_count;		/* # of user blocks */
873 	block_t total_valid_block_count;	/* # of valid blocks */
874 	block_t discard_blks;			/* discard command candidats */
875 	block_t last_valid_block_count;		/* for recovery */
876 	u32 s_next_generation;			/* for NFS support */
877 
878 	/* # of pages, see count_type */
879 	atomic_t nr_pages[NR_COUNT_TYPE];
880 	/* # of allocated blocks */
881 	struct percpu_counter alloc_valid_block_count;
882 
883 	/* valid inode count */
884 	struct percpu_counter total_valid_inode_count;
885 
886 	struct f2fs_mount_info mount_opt;	/* mount options */
887 
888 	/* for cleaning operations */
889 	struct mutex gc_mutex;			/* mutex for GC */
890 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
891 	unsigned int cur_victim_sec;		/* current victim section num */
892 
893 	/* threshold for converting bg victims for fg */
894 	u64 fggc_threshold;
895 
896 	/* maximum # of trials to find a victim segment for SSR and GC */
897 	unsigned int max_victim_search;
898 
899 	/*
900 	 * for stat information.
901 	 * one is for the LFS mode, and the other is for the SSR mode.
902 	 */
903 #ifdef CONFIG_F2FS_STAT_FS
904 	struct f2fs_stat_info *stat_info;	/* FS status information */
905 	unsigned int segment_count[2];		/* # of allocated segments */
906 	unsigned int block_count[2];		/* # of allocated blocks */
907 	atomic_t inplace_count;		/* # of inplace update */
908 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
909 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
910 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
911 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
912 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
913 	atomic_t inline_inode;			/* # of inline_data inodes */
914 	atomic_t inline_dir;			/* # of inline_dentry inodes */
915 	atomic_t aw_cnt;			/* # of atomic writes */
916 	atomic_t max_aw_cnt;			/* max # of atomic writes */
917 	int bg_gc;				/* background gc calls */
918 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
919 #endif
920 	unsigned int last_victim[2];		/* last victim segment # */
921 	spinlock_t stat_lock;			/* lock for stat operations */
922 
923 	/* For sysfs suppport */
924 	struct kobject s_kobj;
925 	struct completion s_kobj_unregister;
926 
927 	/* For shrinker support */
928 	struct list_head s_list;
929 	int s_ndevs;				/* number of devices */
930 	struct f2fs_dev_info *devs;		/* for device list */
931 	struct mutex umount_mutex;
932 	unsigned int shrinker_run_no;
933 
934 	/* For write statistics */
935 	u64 sectors_written_start;
936 	u64 kbytes_written;
937 
938 	/* Reference to checksum algorithm driver via cryptoapi */
939 	struct crypto_shash *s_chksum_driver;
940 
941 	/* For fault injection */
942 #ifdef CONFIG_F2FS_FAULT_INJECTION
943 	struct f2fs_fault_info fault_info;
944 #endif
945 };
946 
947 #ifdef CONFIG_F2FS_FAULT_INJECTION
948 #define f2fs_show_injection_info(type)				\
949 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
950 		KERN_INFO, fault_name[type],			\
951 		__func__, __builtin_return_address(0))
952 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
953 {
954 	struct f2fs_fault_info *ffi = &sbi->fault_info;
955 
956 	if (!ffi->inject_rate)
957 		return false;
958 
959 	if (!IS_FAULT_SET(ffi, type))
960 		return false;
961 
962 	atomic_inc(&ffi->inject_ops);
963 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
964 		atomic_set(&ffi->inject_ops, 0);
965 		return true;
966 	}
967 	return false;
968 }
969 #endif
970 
971 /* For write statistics. Suppose sector size is 512 bytes,
972  * and the return value is in kbytes. s is of struct f2fs_sb_info.
973  */
974 #define BD_PART_WRITTEN(s)						 \
975 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
976 		s->sectors_written_start) >> 1)
977 
978 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
979 {
980 	sbi->last_time[type] = jiffies;
981 }
982 
983 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
984 {
985 	struct timespec ts = {sbi->interval_time[type], 0};
986 	unsigned long interval = timespec_to_jiffies(&ts);
987 
988 	return time_after(jiffies, sbi->last_time[type] + interval);
989 }
990 
991 static inline bool is_idle(struct f2fs_sb_info *sbi)
992 {
993 	struct block_device *bdev = sbi->sb->s_bdev;
994 	struct request_queue *q = bdev_get_queue(bdev);
995 	struct request_list *rl = &q->root_rl;
996 
997 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
998 		return 0;
999 
1000 	return f2fs_time_over(sbi, REQ_TIME);
1001 }
1002 
1003 /*
1004  * Inline functions
1005  */
1006 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1007 			   unsigned int length)
1008 {
1009 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1010 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1011 	int err;
1012 
1013 	shash->tfm = sbi->s_chksum_driver;
1014 	shash->flags = 0;
1015 	*ctx = F2FS_SUPER_MAGIC;
1016 
1017 	err = crypto_shash_update(shash, address, length);
1018 	BUG_ON(err);
1019 
1020 	return *ctx;
1021 }
1022 
1023 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1024 				  void *buf, size_t buf_size)
1025 {
1026 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1027 }
1028 
1029 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1030 {
1031 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1032 }
1033 
1034 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1035 {
1036 	return sb->s_fs_info;
1037 }
1038 
1039 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1040 {
1041 	return F2FS_SB(inode->i_sb);
1042 }
1043 
1044 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1045 {
1046 	return F2FS_I_SB(mapping->host);
1047 }
1048 
1049 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1050 {
1051 	return F2FS_M_SB(page->mapping);
1052 }
1053 
1054 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1055 {
1056 	return (struct f2fs_super_block *)(sbi->raw_super);
1057 }
1058 
1059 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1060 {
1061 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1062 }
1063 
1064 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1065 {
1066 	return (struct f2fs_node *)page_address(page);
1067 }
1068 
1069 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1070 {
1071 	return &((struct f2fs_node *)page_address(page))->i;
1072 }
1073 
1074 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1075 {
1076 	return (struct f2fs_nm_info *)(sbi->nm_info);
1077 }
1078 
1079 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1080 {
1081 	return (struct f2fs_sm_info *)(sbi->sm_info);
1082 }
1083 
1084 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1085 {
1086 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1087 }
1088 
1089 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1090 {
1091 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1092 }
1093 
1094 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1095 {
1096 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1097 }
1098 
1099 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1100 {
1101 	return sbi->meta_inode->i_mapping;
1102 }
1103 
1104 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1105 {
1106 	return sbi->node_inode->i_mapping;
1107 }
1108 
1109 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1110 {
1111 	return test_bit(type, &sbi->s_flag);
1112 }
1113 
1114 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1115 {
1116 	set_bit(type, &sbi->s_flag);
1117 }
1118 
1119 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1120 {
1121 	clear_bit(type, &sbi->s_flag);
1122 }
1123 
1124 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1125 {
1126 	return le64_to_cpu(cp->checkpoint_ver);
1127 }
1128 
1129 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1130 {
1131 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1132 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1133 }
1134 
1135 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1136 {
1137 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1138 
1139 	return ckpt_flags & f;
1140 }
1141 
1142 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1143 {
1144 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1145 }
1146 
1147 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1148 {
1149 	unsigned int ckpt_flags;
1150 
1151 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1152 	ckpt_flags |= f;
1153 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1154 }
1155 
1156 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1157 {
1158 	spin_lock(&sbi->cp_lock);
1159 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1160 	spin_unlock(&sbi->cp_lock);
1161 }
1162 
1163 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1164 {
1165 	unsigned int ckpt_flags;
1166 
1167 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1168 	ckpt_flags &= (~f);
1169 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1170 }
1171 
1172 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1173 {
1174 	spin_lock(&sbi->cp_lock);
1175 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1176 	spin_unlock(&sbi->cp_lock);
1177 }
1178 
1179 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1180 {
1181 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1182 
1183 	if (lock)
1184 		spin_lock(&sbi->cp_lock);
1185 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1186 	kfree(NM_I(sbi)->nat_bits);
1187 	NM_I(sbi)->nat_bits = NULL;
1188 	if (lock)
1189 		spin_unlock(&sbi->cp_lock);
1190 }
1191 
1192 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1193 					struct cp_control *cpc)
1194 {
1195 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1196 
1197 	return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1198 }
1199 
1200 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1201 {
1202 	down_read(&sbi->cp_rwsem);
1203 }
1204 
1205 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1206 {
1207 	up_read(&sbi->cp_rwsem);
1208 }
1209 
1210 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1211 {
1212 	down_write(&sbi->cp_rwsem);
1213 }
1214 
1215 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1216 {
1217 	up_write(&sbi->cp_rwsem);
1218 }
1219 
1220 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1221 {
1222 	int reason = CP_SYNC;
1223 
1224 	if (test_opt(sbi, FASTBOOT))
1225 		reason = CP_FASTBOOT;
1226 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1227 		reason = CP_UMOUNT;
1228 	return reason;
1229 }
1230 
1231 static inline bool __remain_node_summaries(int reason)
1232 {
1233 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1234 }
1235 
1236 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1237 {
1238 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1239 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1240 }
1241 
1242 /*
1243  * Check whether the given nid is within node id range.
1244  */
1245 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1246 {
1247 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1248 		return -EINVAL;
1249 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1250 		return -EINVAL;
1251 	return 0;
1252 }
1253 
1254 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1255 
1256 /*
1257  * Check whether the inode has blocks or not
1258  */
1259 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1260 {
1261 	if (F2FS_I(inode)->i_xattr_nid)
1262 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1263 	else
1264 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1265 }
1266 
1267 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1268 {
1269 	return ofs == XATTR_NODE_OFFSET;
1270 }
1271 
1272 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1273 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1274 				 struct inode *inode, blkcnt_t *count)
1275 {
1276 	blkcnt_t diff;
1277 
1278 #ifdef CONFIG_F2FS_FAULT_INJECTION
1279 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1280 		f2fs_show_injection_info(FAULT_BLOCK);
1281 		return false;
1282 	}
1283 #endif
1284 	/*
1285 	 * let's increase this in prior to actual block count change in order
1286 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1287 	 */
1288 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1289 
1290 	spin_lock(&sbi->stat_lock);
1291 	sbi->total_valid_block_count += (block_t)(*count);
1292 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1293 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1294 		*count -= diff;
1295 		sbi->total_valid_block_count = sbi->user_block_count;
1296 		if (!*count) {
1297 			spin_unlock(&sbi->stat_lock);
1298 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1299 			return false;
1300 		}
1301 	}
1302 	spin_unlock(&sbi->stat_lock);
1303 
1304 	f2fs_i_blocks_write(inode, *count, true);
1305 	return true;
1306 }
1307 
1308 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1309 						struct inode *inode,
1310 						blkcnt_t count)
1311 {
1312 	spin_lock(&sbi->stat_lock);
1313 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1314 	f2fs_bug_on(sbi, inode->i_blocks < count);
1315 	sbi->total_valid_block_count -= (block_t)count;
1316 	spin_unlock(&sbi->stat_lock);
1317 	f2fs_i_blocks_write(inode, count, false);
1318 }
1319 
1320 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1321 {
1322 	atomic_inc(&sbi->nr_pages[count_type]);
1323 
1324 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1325 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1326 		return;
1327 
1328 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1329 }
1330 
1331 static inline void inode_inc_dirty_pages(struct inode *inode)
1332 {
1333 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1334 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1335 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1336 }
1337 
1338 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1339 {
1340 	atomic_dec(&sbi->nr_pages[count_type]);
1341 }
1342 
1343 static inline void inode_dec_dirty_pages(struct inode *inode)
1344 {
1345 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1346 			!S_ISLNK(inode->i_mode))
1347 		return;
1348 
1349 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1350 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1351 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1352 }
1353 
1354 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1355 {
1356 	return atomic_read(&sbi->nr_pages[count_type]);
1357 }
1358 
1359 static inline int get_dirty_pages(struct inode *inode)
1360 {
1361 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1362 }
1363 
1364 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1365 {
1366 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1367 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1368 						sbi->log_blocks_per_seg;
1369 
1370 	return segs / sbi->segs_per_sec;
1371 }
1372 
1373 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1374 {
1375 	return sbi->total_valid_block_count;
1376 }
1377 
1378 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1379 {
1380 	return sbi->discard_blks;
1381 }
1382 
1383 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1384 {
1385 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1386 
1387 	/* return NAT or SIT bitmap */
1388 	if (flag == NAT_BITMAP)
1389 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1390 	else if (flag == SIT_BITMAP)
1391 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1392 
1393 	return 0;
1394 }
1395 
1396 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1397 {
1398 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1399 }
1400 
1401 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1402 {
1403 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1404 	int offset;
1405 
1406 	if (__cp_payload(sbi) > 0) {
1407 		if (flag == NAT_BITMAP)
1408 			return &ckpt->sit_nat_version_bitmap;
1409 		else
1410 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1411 	} else {
1412 		offset = (flag == NAT_BITMAP) ?
1413 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1414 		return &ckpt->sit_nat_version_bitmap + offset;
1415 	}
1416 }
1417 
1418 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1419 {
1420 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1421 
1422 	if (sbi->cur_cp_pack == 2)
1423 		start_addr += sbi->blocks_per_seg;
1424 	return start_addr;
1425 }
1426 
1427 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1428 {
1429 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1430 
1431 	if (sbi->cur_cp_pack == 1)
1432 		start_addr += sbi->blocks_per_seg;
1433 	return start_addr;
1434 }
1435 
1436 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1437 {
1438 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1439 }
1440 
1441 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1442 {
1443 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1444 }
1445 
1446 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1447 						struct inode *inode)
1448 {
1449 	block_t	valid_block_count;
1450 	unsigned int valid_node_count;
1451 
1452 	spin_lock(&sbi->stat_lock);
1453 
1454 	valid_block_count = sbi->total_valid_block_count + 1;
1455 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1456 		spin_unlock(&sbi->stat_lock);
1457 		return false;
1458 	}
1459 
1460 	valid_node_count = sbi->total_valid_node_count + 1;
1461 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1462 		spin_unlock(&sbi->stat_lock);
1463 		return false;
1464 	}
1465 
1466 	if (inode)
1467 		f2fs_i_blocks_write(inode, 1, true);
1468 
1469 	sbi->total_valid_node_count++;
1470 	sbi->total_valid_block_count++;
1471 	spin_unlock(&sbi->stat_lock);
1472 
1473 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1474 	return true;
1475 }
1476 
1477 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1478 						struct inode *inode)
1479 {
1480 	spin_lock(&sbi->stat_lock);
1481 
1482 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1483 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1484 	f2fs_bug_on(sbi, !inode->i_blocks);
1485 
1486 	f2fs_i_blocks_write(inode, 1, false);
1487 	sbi->total_valid_node_count--;
1488 	sbi->total_valid_block_count--;
1489 
1490 	spin_unlock(&sbi->stat_lock);
1491 }
1492 
1493 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1494 {
1495 	return sbi->total_valid_node_count;
1496 }
1497 
1498 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1499 {
1500 	percpu_counter_inc(&sbi->total_valid_inode_count);
1501 }
1502 
1503 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1504 {
1505 	percpu_counter_dec(&sbi->total_valid_inode_count);
1506 }
1507 
1508 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1509 {
1510 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1511 }
1512 
1513 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1514 						pgoff_t index, bool for_write)
1515 {
1516 #ifdef CONFIG_F2FS_FAULT_INJECTION
1517 	struct page *page = find_lock_page(mapping, index);
1518 
1519 	if (page)
1520 		return page;
1521 
1522 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1523 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1524 		return NULL;
1525 	}
1526 #endif
1527 	if (!for_write)
1528 		return grab_cache_page(mapping, index);
1529 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1530 }
1531 
1532 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1533 {
1534 	char *src_kaddr = kmap(src);
1535 	char *dst_kaddr = kmap(dst);
1536 
1537 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1538 	kunmap(dst);
1539 	kunmap(src);
1540 }
1541 
1542 static inline void f2fs_put_page(struct page *page, int unlock)
1543 {
1544 	if (!page)
1545 		return;
1546 
1547 	if (unlock) {
1548 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1549 		unlock_page(page);
1550 	}
1551 	put_page(page);
1552 }
1553 
1554 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1555 {
1556 	if (dn->node_page)
1557 		f2fs_put_page(dn->node_page, 1);
1558 	if (dn->inode_page && dn->node_page != dn->inode_page)
1559 		f2fs_put_page(dn->inode_page, 0);
1560 	dn->node_page = NULL;
1561 	dn->inode_page = NULL;
1562 }
1563 
1564 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1565 					size_t size)
1566 {
1567 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1568 }
1569 
1570 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1571 						gfp_t flags)
1572 {
1573 	void *entry;
1574 
1575 	entry = kmem_cache_alloc(cachep, flags);
1576 	if (!entry)
1577 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1578 	return entry;
1579 }
1580 
1581 static inline struct bio *f2fs_bio_alloc(int npages)
1582 {
1583 	struct bio *bio;
1584 
1585 	/* No failure on bio allocation */
1586 	bio = bio_alloc(GFP_NOIO, npages);
1587 	if (!bio)
1588 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1589 	return bio;
1590 }
1591 
1592 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1593 				unsigned long index, void *item)
1594 {
1595 	while (radix_tree_insert(root, index, item))
1596 		cond_resched();
1597 }
1598 
1599 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1600 
1601 static inline bool IS_INODE(struct page *page)
1602 {
1603 	struct f2fs_node *p = F2FS_NODE(page);
1604 
1605 	return RAW_IS_INODE(p);
1606 }
1607 
1608 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1609 {
1610 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1611 }
1612 
1613 static inline block_t datablock_addr(struct page *node_page,
1614 		unsigned int offset)
1615 {
1616 	struct f2fs_node *raw_node;
1617 	__le32 *addr_array;
1618 
1619 	raw_node = F2FS_NODE(node_page);
1620 	addr_array = blkaddr_in_node(raw_node);
1621 	return le32_to_cpu(addr_array[offset]);
1622 }
1623 
1624 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1625 {
1626 	int mask;
1627 
1628 	addr += (nr >> 3);
1629 	mask = 1 << (7 - (nr & 0x07));
1630 	return mask & *addr;
1631 }
1632 
1633 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1634 {
1635 	int mask;
1636 
1637 	addr += (nr >> 3);
1638 	mask = 1 << (7 - (nr & 0x07));
1639 	*addr |= mask;
1640 }
1641 
1642 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1643 {
1644 	int mask;
1645 
1646 	addr += (nr >> 3);
1647 	mask = 1 << (7 - (nr & 0x07));
1648 	*addr &= ~mask;
1649 }
1650 
1651 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1652 {
1653 	int mask;
1654 	int ret;
1655 
1656 	addr += (nr >> 3);
1657 	mask = 1 << (7 - (nr & 0x07));
1658 	ret = mask & *addr;
1659 	*addr |= mask;
1660 	return ret;
1661 }
1662 
1663 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1664 {
1665 	int mask;
1666 	int ret;
1667 
1668 	addr += (nr >> 3);
1669 	mask = 1 << (7 - (nr & 0x07));
1670 	ret = mask & *addr;
1671 	*addr &= ~mask;
1672 	return ret;
1673 }
1674 
1675 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1676 {
1677 	int mask;
1678 
1679 	addr += (nr >> 3);
1680 	mask = 1 << (7 - (nr & 0x07));
1681 	*addr ^= mask;
1682 }
1683 
1684 /* used for f2fs_inode_info->flags */
1685 enum {
1686 	FI_NEW_INODE,		/* indicate newly allocated inode */
1687 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1688 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1689 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1690 	FI_INC_LINK,		/* need to increment i_nlink */
1691 	FI_ACL_MODE,		/* indicate acl mode */
1692 	FI_NO_ALLOC,		/* should not allocate any blocks */
1693 	FI_FREE_NID,		/* free allocated nide */
1694 	FI_NO_EXTENT,		/* not to use the extent cache */
1695 	FI_INLINE_XATTR,	/* used for inline xattr */
1696 	FI_INLINE_DATA,		/* used for inline data*/
1697 	FI_INLINE_DENTRY,	/* used for inline dentry */
1698 	FI_APPEND_WRITE,	/* inode has appended data */
1699 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1700 	FI_NEED_IPU,		/* used for ipu per file */
1701 	FI_ATOMIC_FILE,		/* indicate atomic file */
1702 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1703 	FI_VOLATILE_FILE,	/* indicate volatile file */
1704 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1705 	FI_DROP_CACHE,		/* drop dirty page cache */
1706 	FI_DATA_EXIST,		/* indicate data exists */
1707 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1708 	FI_DO_DEFRAG,		/* indicate defragment is running */
1709 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1710 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1711 };
1712 
1713 static inline void __mark_inode_dirty_flag(struct inode *inode,
1714 						int flag, bool set)
1715 {
1716 	switch (flag) {
1717 	case FI_INLINE_XATTR:
1718 	case FI_INLINE_DATA:
1719 	case FI_INLINE_DENTRY:
1720 		if (set)
1721 			return;
1722 	case FI_DATA_EXIST:
1723 	case FI_INLINE_DOTS:
1724 		f2fs_mark_inode_dirty_sync(inode, true);
1725 	}
1726 }
1727 
1728 static inline void set_inode_flag(struct inode *inode, int flag)
1729 {
1730 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1731 		set_bit(flag, &F2FS_I(inode)->flags);
1732 	__mark_inode_dirty_flag(inode, flag, true);
1733 }
1734 
1735 static inline int is_inode_flag_set(struct inode *inode, int flag)
1736 {
1737 	return test_bit(flag, &F2FS_I(inode)->flags);
1738 }
1739 
1740 static inline void clear_inode_flag(struct inode *inode, int flag)
1741 {
1742 	if (test_bit(flag, &F2FS_I(inode)->flags))
1743 		clear_bit(flag, &F2FS_I(inode)->flags);
1744 	__mark_inode_dirty_flag(inode, flag, false);
1745 }
1746 
1747 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1748 {
1749 	F2FS_I(inode)->i_acl_mode = mode;
1750 	set_inode_flag(inode, FI_ACL_MODE);
1751 	f2fs_mark_inode_dirty_sync(inode, false);
1752 }
1753 
1754 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1755 {
1756 	if (inc)
1757 		inc_nlink(inode);
1758 	else
1759 		drop_nlink(inode);
1760 	f2fs_mark_inode_dirty_sync(inode, true);
1761 }
1762 
1763 static inline void f2fs_i_blocks_write(struct inode *inode,
1764 					blkcnt_t diff, bool add)
1765 {
1766 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1767 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1768 
1769 	inode->i_blocks = add ? inode->i_blocks + diff :
1770 				inode->i_blocks - diff;
1771 	f2fs_mark_inode_dirty_sync(inode, true);
1772 	if (clean || recover)
1773 		set_inode_flag(inode, FI_AUTO_RECOVER);
1774 }
1775 
1776 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1777 {
1778 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1779 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1780 
1781 	if (i_size_read(inode) == i_size)
1782 		return;
1783 
1784 	i_size_write(inode, i_size);
1785 	f2fs_mark_inode_dirty_sync(inode, true);
1786 	if (clean || recover)
1787 		set_inode_flag(inode, FI_AUTO_RECOVER);
1788 }
1789 
1790 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1791 {
1792 	F2FS_I(inode)->i_current_depth = depth;
1793 	f2fs_mark_inode_dirty_sync(inode, true);
1794 }
1795 
1796 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1797 {
1798 	F2FS_I(inode)->i_xattr_nid = xnid;
1799 	f2fs_mark_inode_dirty_sync(inode, true);
1800 }
1801 
1802 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1803 {
1804 	F2FS_I(inode)->i_pino = pino;
1805 	f2fs_mark_inode_dirty_sync(inode, true);
1806 }
1807 
1808 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1809 {
1810 	struct f2fs_inode_info *fi = F2FS_I(inode);
1811 
1812 	if (ri->i_inline & F2FS_INLINE_XATTR)
1813 		set_bit(FI_INLINE_XATTR, &fi->flags);
1814 	if (ri->i_inline & F2FS_INLINE_DATA)
1815 		set_bit(FI_INLINE_DATA, &fi->flags);
1816 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1817 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1818 	if (ri->i_inline & F2FS_DATA_EXIST)
1819 		set_bit(FI_DATA_EXIST, &fi->flags);
1820 	if (ri->i_inline & F2FS_INLINE_DOTS)
1821 		set_bit(FI_INLINE_DOTS, &fi->flags);
1822 }
1823 
1824 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1825 {
1826 	ri->i_inline = 0;
1827 
1828 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1829 		ri->i_inline |= F2FS_INLINE_XATTR;
1830 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1831 		ri->i_inline |= F2FS_INLINE_DATA;
1832 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1833 		ri->i_inline |= F2FS_INLINE_DENTRY;
1834 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1835 		ri->i_inline |= F2FS_DATA_EXIST;
1836 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1837 		ri->i_inline |= F2FS_INLINE_DOTS;
1838 }
1839 
1840 static inline int f2fs_has_inline_xattr(struct inode *inode)
1841 {
1842 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1843 }
1844 
1845 static inline unsigned int addrs_per_inode(struct inode *inode)
1846 {
1847 	if (f2fs_has_inline_xattr(inode))
1848 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1849 	return DEF_ADDRS_PER_INODE;
1850 }
1851 
1852 static inline void *inline_xattr_addr(struct page *page)
1853 {
1854 	struct f2fs_inode *ri = F2FS_INODE(page);
1855 
1856 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1857 					F2FS_INLINE_XATTR_ADDRS]);
1858 }
1859 
1860 static inline int inline_xattr_size(struct inode *inode)
1861 {
1862 	if (f2fs_has_inline_xattr(inode))
1863 		return F2FS_INLINE_XATTR_ADDRS << 2;
1864 	else
1865 		return 0;
1866 }
1867 
1868 static inline int f2fs_has_inline_data(struct inode *inode)
1869 {
1870 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1871 }
1872 
1873 static inline void f2fs_clear_inline_inode(struct inode *inode)
1874 {
1875 	clear_inode_flag(inode, FI_INLINE_DATA);
1876 	clear_inode_flag(inode, FI_DATA_EXIST);
1877 }
1878 
1879 static inline int f2fs_exist_data(struct inode *inode)
1880 {
1881 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1882 }
1883 
1884 static inline int f2fs_has_inline_dots(struct inode *inode)
1885 {
1886 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1887 }
1888 
1889 static inline bool f2fs_is_atomic_file(struct inode *inode)
1890 {
1891 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1892 }
1893 
1894 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1895 {
1896 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1897 }
1898 
1899 static inline bool f2fs_is_volatile_file(struct inode *inode)
1900 {
1901 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1902 }
1903 
1904 static inline bool f2fs_is_first_block_written(struct inode *inode)
1905 {
1906 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1907 }
1908 
1909 static inline bool f2fs_is_drop_cache(struct inode *inode)
1910 {
1911 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1912 }
1913 
1914 static inline void *inline_data_addr(struct page *page)
1915 {
1916 	struct f2fs_inode *ri = F2FS_INODE(page);
1917 
1918 	return (void *)&(ri->i_addr[1]);
1919 }
1920 
1921 static inline int f2fs_has_inline_dentry(struct inode *inode)
1922 {
1923 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1924 }
1925 
1926 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1927 {
1928 	if (!f2fs_has_inline_dentry(dir))
1929 		kunmap(page);
1930 }
1931 
1932 static inline int is_file(struct inode *inode, int type)
1933 {
1934 	return F2FS_I(inode)->i_advise & type;
1935 }
1936 
1937 static inline void set_file(struct inode *inode, int type)
1938 {
1939 	F2FS_I(inode)->i_advise |= type;
1940 	f2fs_mark_inode_dirty_sync(inode, true);
1941 }
1942 
1943 static inline void clear_file(struct inode *inode, int type)
1944 {
1945 	F2FS_I(inode)->i_advise &= ~type;
1946 	f2fs_mark_inode_dirty_sync(inode, true);
1947 }
1948 
1949 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1950 {
1951 	if (dsync) {
1952 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1953 		bool ret;
1954 
1955 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1956 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
1957 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1958 		return ret;
1959 	}
1960 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1961 			file_keep_isize(inode) ||
1962 			i_size_read(inode) & PAGE_MASK)
1963 		return false;
1964 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1965 }
1966 
1967 static inline int f2fs_readonly(struct super_block *sb)
1968 {
1969 	return sb->s_flags & MS_RDONLY;
1970 }
1971 
1972 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1973 {
1974 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1975 }
1976 
1977 static inline bool is_dot_dotdot(const struct qstr *str)
1978 {
1979 	if (str->len == 1 && str->name[0] == '.')
1980 		return true;
1981 
1982 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1983 		return true;
1984 
1985 	return false;
1986 }
1987 
1988 static inline bool f2fs_may_extent_tree(struct inode *inode)
1989 {
1990 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1991 			is_inode_flag_set(inode, FI_NO_EXTENT))
1992 		return false;
1993 
1994 	return S_ISREG(inode->i_mode);
1995 }
1996 
1997 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1998 					size_t size, gfp_t flags)
1999 {
2000 #ifdef CONFIG_F2FS_FAULT_INJECTION
2001 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2002 		f2fs_show_injection_info(FAULT_KMALLOC);
2003 		return NULL;
2004 	}
2005 #endif
2006 	return kmalloc(size, flags);
2007 }
2008 
2009 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2010 {
2011 	void *ret;
2012 
2013 	ret = kmalloc(size, flags | __GFP_NOWARN);
2014 	if (!ret)
2015 		ret = __vmalloc(size, flags, PAGE_KERNEL);
2016 	return ret;
2017 }
2018 
2019 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2020 {
2021 	void *ret;
2022 
2023 	ret = kzalloc(size, flags | __GFP_NOWARN);
2024 	if (!ret)
2025 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2026 	return ret;
2027 }
2028 
2029 #define get_inode_mode(i) \
2030 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2031 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2032 
2033 /* get offset of first page in next direct node */
2034 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
2035 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
2036 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
2037 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
2038 
2039 /*
2040  * file.c
2041  */
2042 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2043 void truncate_data_blocks(struct dnode_of_data *dn);
2044 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2045 int f2fs_truncate(struct inode *inode);
2046 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2047 			struct kstat *stat);
2048 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2049 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2050 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2051 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2052 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2053 
2054 /*
2055  * inode.c
2056  */
2057 void f2fs_set_inode_flags(struct inode *inode);
2058 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2059 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2060 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2061 int update_inode(struct inode *inode, struct page *node_page);
2062 int update_inode_page(struct inode *inode);
2063 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2064 void f2fs_evict_inode(struct inode *inode);
2065 void handle_failed_inode(struct inode *inode);
2066 
2067 /*
2068  * namei.c
2069  */
2070 struct dentry *f2fs_get_parent(struct dentry *child);
2071 
2072 /*
2073  * dir.c
2074  */
2075 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2076 unsigned char get_de_type(struct f2fs_dir_entry *de);
2077 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2078 			f2fs_hash_t namehash, int *max_slots,
2079 			struct f2fs_dentry_ptr *d);
2080 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2081 			unsigned int start_pos, struct fscrypt_str *fstr);
2082 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2083 			struct f2fs_dentry_ptr *d);
2084 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2085 			const struct qstr *new_name,
2086 			const struct qstr *orig_name, struct page *dpage);
2087 void update_parent_metadata(struct inode *dir, struct inode *inode,
2088 			unsigned int current_depth);
2089 int room_for_filename(const void *bitmap, int slots, int max_slots);
2090 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2091 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2092 			struct fscrypt_name *fname, struct page **res_page);
2093 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2094 			const struct qstr *child, struct page **res_page);
2095 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2096 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2097 			struct page **page);
2098 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2099 			struct page *page, struct inode *inode);
2100 int update_dent_inode(struct inode *inode, struct inode *to,
2101 			const struct qstr *name);
2102 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2103 			const struct qstr *name, f2fs_hash_t name_hash,
2104 			unsigned int bit_pos);
2105 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2106 			const struct qstr *orig_name,
2107 			struct inode *inode, nid_t ino, umode_t mode);
2108 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2109 			struct inode *inode, nid_t ino, umode_t mode);
2110 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2111 			struct inode *inode, nid_t ino, umode_t mode);
2112 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2113 			struct inode *dir, struct inode *inode);
2114 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2115 bool f2fs_empty_dir(struct inode *dir);
2116 
2117 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2118 {
2119 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2120 				inode, inode->i_ino, inode->i_mode);
2121 }
2122 
2123 /*
2124  * super.c
2125  */
2126 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2127 void f2fs_inode_synced(struct inode *inode);
2128 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2129 int f2fs_sync_fs(struct super_block *sb, int sync);
2130 extern __printf(3, 4)
2131 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2132 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2133 
2134 /*
2135  * hash.c
2136  */
2137 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2138 
2139 /*
2140  * node.c
2141  */
2142 struct dnode_of_data;
2143 struct node_info;
2144 
2145 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2146 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2147 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2148 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2149 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2150 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2151 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2152 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2153 int truncate_xattr_node(struct inode *inode, struct page *page);
2154 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2155 int remove_inode_page(struct inode *inode);
2156 struct page *new_inode_page(struct inode *inode);
2157 struct page *new_node_page(struct dnode_of_data *dn,
2158 			unsigned int ofs, struct page *ipage);
2159 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2160 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2161 struct page *get_node_page_ra(struct page *parent, int start);
2162 void move_node_page(struct page *node_page, int gc_type);
2163 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2164 			struct writeback_control *wbc, bool atomic);
2165 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2166 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2167 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2168 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2169 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2170 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2171 void recover_inline_xattr(struct inode *inode, struct page *page);
2172 int recover_xattr_data(struct inode *inode, struct page *page,
2173 			block_t blkaddr);
2174 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2175 int restore_node_summary(struct f2fs_sb_info *sbi,
2176 			unsigned int segno, struct f2fs_summary_block *sum);
2177 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2178 int build_node_manager(struct f2fs_sb_info *sbi);
2179 void destroy_node_manager(struct f2fs_sb_info *sbi);
2180 int __init create_node_manager_caches(void);
2181 void destroy_node_manager_caches(void);
2182 
2183 /*
2184  * segment.c
2185  */
2186 void register_inmem_page(struct inode *inode, struct page *page);
2187 void drop_inmem_pages(struct inode *inode);
2188 int commit_inmem_pages(struct inode *inode);
2189 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2191 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2192 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2193 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2194 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2195 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2196 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2197 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2198 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2199 void release_discard_addrs(struct f2fs_sb_info *sbi);
2200 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2201 void allocate_new_segments(struct f2fs_sb_info *sbi);
2202 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2203 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2204 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2205 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2206 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2207 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2208 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2209 void rewrite_data_page(struct f2fs_io_info *fio);
2210 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2211 			block_t old_blkaddr, block_t new_blkaddr,
2212 			bool recover_curseg, bool recover_newaddr);
2213 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2214 			block_t old_addr, block_t new_addr,
2215 			unsigned char version, bool recover_curseg,
2216 			bool recover_newaddr);
2217 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2218 			block_t old_blkaddr, block_t *new_blkaddr,
2219 			struct f2fs_summary *sum, int type);
2220 void f2fs_wait_on_page_writeback(struct page *page,
2221 			enum page_type type, bool ordered);
2222 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2223 			block_t blkaddr);
2224 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2225 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2226 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2227 			unsigned int val, int alloc);
2228 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2229 int build_segment_manager(struct f2fs_sb_info *sbi);
2230 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2231 int __init create_segment_manager_caches(void);
2232 void destroy_segment_manager_caches(void);
2233 
2234 /*
2235  * checkpoint.c
2236  */
2237 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2238 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2239 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2240 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2241 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2242 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2243 			int type, bool sync);
2244 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2245 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2246 			long nr_to_write);
2247 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2248 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2249 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2250 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2251 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2252 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2253 void release_orphan_inode(struct f2fs_sb_info *sbi);
2254 void add_orphan_inode(struct inode *inode);
2255 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2256 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2257 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2258 void update_dirty_page(struct inode *inode, struct page *page);
2259 void remove_dirty_inode(struct inode *inode);
2260 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2261 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2262 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2263 int __init create_checkpoint_caches(void);
2264 void destroy_checkpoint_caches(void);
2265 
2266 /*
2267  * data.c
2268  */
2269 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2270 			int rw);
2271 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2272 				struct inode *inode, nid_t ino, pgoff_t idx,
2273 				enum page_type type, int rw);
2274 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2275 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2276 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2277 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2278 			block_t blk_addr, struct bio *bio);
2279 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2280 void set_data_blkaddr(struct dnode_of_data *dn);
2281 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2282 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2283 int reserve_new_block(struct dnode_of_data *dn);
2284 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2285 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2286 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2287 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2288 			int op_flags, bool for_write);
2289 struct page *find_data_page(struct inode *inode, pgoff_t index);
2290 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2291 			bool for_write);
2292 struct page *get_new_data_page(struct inode *inode,
2293 			struct page *ipage, pgoff_t index, bool new_i_size);
2294 int do_write_data_page(struct f2fs_io_info *fio);
2295 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2296 			int create, int flag);
2297 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2298 			u64 start, u64 len);
2299 void f2fs_set_page_dirty_nobuffers(struct page *page);
2300 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2301 			unsigned int length);
2302 int f2fs_release_page(struct page *page, gfp_t wait);
2303 #ifdef CONFIG_MIGRATION
2304 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2305 			struct page *page, enum migrate_mode mode);
2306 #endif
2307 
2308 /*
2309  * gc.c
2310  */
2311 int start_gc_thread(struct f2fs_sb_info *sbi);
2312 void stop_gc_thread(struct f2fs_sb_info *sbi);
2313 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2314 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2315 void build_gc_manager(struct f2fs_sb_info *sbi);
2316 
2317 /*
2318  * recovery.c
2319  */
2320 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2321 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2322 
2323 /*
2324  * debug.c
2325  */
2326 #ifdef CONFIG_F2FS_STAT_FS
2327 struct f2fs_stat_info {
2328 	struct list_head stat_list;
2329 	struct f2fs_sb_info *sbi;
2330 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2331 	int main_area_segs, main_area_sections, main_area_zones;
2332 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2333 	unsigned long long hit_total, total_ext;
2334 	int ext_tree, zombie_tree, ext_node;
2335 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2336 	int inmem_pages;
2337 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2338 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2339 	int total_count, utilization;
2340 	int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2341 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2342 	int aw_cnt, max_aw_cnt;
2343 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2344 	unsigned int bimodal, avg_vblocks;
2345 	int util_free, util_valid, util_invalid;
2346 	int rsvd_segs, overp_segs;
2347 	int dirty_count, node_pages, meta_pages;
2348 	int prefree_count, call_count, cp_count, bg_cp_count;
2349 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2350 	int bg_node_segs, bg_data_segs;
2351 	int tot_blks, data_blks, node_blks;
2352 	int bg_data_blks, bg_node_blks;
2353 	int curseg[NR_CURSEG_TYPE];
2354 	int cursec[NR_CURSEG_TYPE];
2355 	int curzone[NR_CURSEG_TYPE];
2356 
2357 	unsigned int segment_count[2];
2358 	unsigned int block_count[2];
2359 	unsigned int inplace_count;
2360 	unsigned long long base_mem, cache_mem, page_mem;
2361 };
2362 
2363 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2364 {
2365 	return (struct f2fs_stat_info *)sbi->stat_info;
2366 }
2367 
2368 #define stat_inc_cp_count(si)		((si)->cp_count++)
2369 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2370 #define stat_inc_call_count(si)		((si)->call_count++)
2371 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2372 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2373 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2374 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2375 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2376 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2377 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2378 #define stat_inc_inline_xattr(inode)					\
2379 	do {								\
2380 		if (f2fs_has_inline_xattr(inode))			\
2381 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2382 	} while (0)
2383 #define stat_dec_inline_xattr(inode)					\
2384 	do {								\
2385 		if (f2fs_has_inline_xattr(inode))			\
2386 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2387 	} while (0)
2388 #define stat_inc_inline_inode(inode)					\
2389 	do {								\
2390 		if (f2fs_has_inline_data(inode))			\
2391 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2392 	} while (0)
2393 #define stat_dec_inline_inode(inode)					\
2394 	do {								\
2395 		if (f2fs_has_inline_data(inode))			\
2396 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2397 	} while (0)
2398 #define stat_inc_inline_dir(inode)					\
2399 	do {								\
2400 		if (f2fs_has_inline_dentry(inode))			\
2401 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2402 	} while (0)
2403 #define stat_dec_inline_dir(inode)					\
2404 	do {								\
2405 		if (f2fs_has_inline_dentry(inode))			\
2406 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2407 	} while (0)
2408 #define stat_inc_seg_type(sbi, curseg)					\
2409 		((sbi)->segment_count[(curseg)->alloc_type]++)
2410 #define stat_inc_block_count(sbi, curseg)				\
2411 		((sbi)->block_count[(curseg)->alloc_type]++)
2412 #define stat_inc_inplace_blocks(sbi)					\
2413 		(atomic_inc(&(sbi)->inplace_count))
2414 #define stat_inc_atomic_write(inode)					\
2415 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2416 #define stat_dec_atomic_write(inode)					\
2417 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2418 #define stat_update_max_atomic_write(inode)				\
2419 	do {								\
2420 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2421 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2422 		if (cur > max)						\
2423 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2424 	} while (0)
2425 #define stat_inc_seg_count(sbi, type, gc_type)				\
2426 	do {								\
2427 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2428 		(si)->tot_segs++;					\
2429 		if (type == SUM_TYPE_DATA) {				\
2430 			si->data_segs++;				\
2431 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2432 		} else {						\
2433 			si->node_segs++;				\
2434 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2435 		}							\
2436 	} while (0)
2437 
2438 #define stat_inc_tot_blk_count(si, blks)				\
2439 	(si->tot_blks += (blks))
2440 
2441 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2442 	do {								\
2443 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2444 		stat_inc_tot_blk_count(si, blks);			\
2445 		si->data_blks += (blks);				\
2446 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2447 	} while (0)
2448 
2449 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2450 	do {								\
2451 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2452 		stat_inc_tot_blk_count(si, blks);			\
2453 		si->node_blks += (blks);				\
2454 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2455 	} while (0)
2456 
2457 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2458 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2459 int __init f2fs_create_root_stats(void);
2460 void f2fs_destroy_root_stats(void);
2461 #else
2462 #define stat_inc_cp_count(si)
2463 #define stat_inc_bg_cp_count(si)
2464 #define stat_inc_call_count(si)
2465 #define stat_inc_bggc_count(si)
2466 #define stat_inc_dirty_inode(sbi, type)
2467 #define stat_dec_dirty_inode(sbi, type)
2468 #define stat_inc_total_hit(sb)
2469 #define stat_inc_rbtree_node_hit(sb)
2470 #define stat_inc_largest_node_hit(sbi)
2471 #define stat_inc_cached_node_hit(sbi)
2472 #define stat_inc_inline_xattr(inode)
2473 #define stat_dec_inline_xattr(inode)
2474 #define stat_inc_inline_inode(inode)
2475 #define stat_dec_inline_inode(inode)
2476 #define stat_inc_inline_dir(inode)
2477 #define stat_dec_inline_dir(inode)
2478 #define stat_inc_atomic_write(inode)
2479 #define stat_dec_atomic_write(inode)
2480 #define stat_update_max_atomic_write(inode)
2481 #define stat_inc_seg_type(sbi, curseg)
2482 #define stat_inc_block_count(sbi, curseg)
2483 #define stat_inc_inplace_blocks(sbi)
2484 #define stat_inc_seg_count(sbi, type, gc_type)
2485 #define stat_inc_tot_blk_count(si, blks)
2486 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2487 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2488 
2489 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2490 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2491 static inline int __init f2fs_create_root_stats(void) { return 0; }
2492 static inline void f2fs_destroy_root_stats(void) { }
2493 #endif
2494 
2495 extern const struct file_operations f2fs_dir_operations;
2496 extern const struct file_operations f2fs_file_operations;
2497 extern const struct inode_operations f2fs_file_inode_operations;
2498 extern const struct address_space_operations f2fs_dblock_aops;
2499 extern const struct address_space_operations f2fs_node_aops;
2500 extern const struct address_space_operations f2fs_meta_aops;
2501 extern const struct inode_operations f2fs_dir_inode_operations;
2502 extern const struct inode_operations f2fs_symlink_inode_operations;
2503 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2504 extern const struct inode_operations f2fs_special_inode_operations;
2505 extern struct kmem_cache *inode_entry_slab;
2506 
2507 /*
2508  * inline.c
2509  */
2510 bool f2fs_may_inline_data(struct inode *inode);
2511 bool f2fs_may_inline_dentry(struct inode *inode);
2512 void read_inline_data(struct page *page, struct page *ipage);
2513 bool truncate_inline_inode(struct page *ipage, u64 from);
2514 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2515 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2516 int f2fs_convert_inline_inode(struct inode *inode);
2517 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2518 bool recover_inline_data(struct inode *inode, struct page *npage);
2519 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2520 			struct fscrypt_name *fname, struct page **res_page);
2521 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2522 			struct page *ipage);
2523 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2524 			const struct qstr *orig_name,
2525 			struct inode *inode, nid_t ino, umode_t mode);
2526 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2527 			struct inode *dir, struct inode *inode);
2528 bool f2fs_empty_inline_dir(struct inode *dir);
2529 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2530 			struct fscrypt_str *fstr);
2531 int f2fs_inline_data_fiemap(struct inode *inode,
2532 			struct fiemap_extent_info *fieinfo,
2533 			__u64 start, __u64 len);
2534 
2535 /*
2536  * shrinker.c
2537  */
2538 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2539 			struct shrink_control *sc);
2540 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2541 			struct shrink_control *sc);
2542 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2543 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2544 
2545 /*
2546  * extent_cache.c
2547  */
2548 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2549 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2550 void f2fs_drop_extent_tree(struct inode *inode);
2551 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2552 void f2fs_destroy_extent_tree(struct inode *inode);
2553 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2554 			struct extent_info *ei);
2555 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2556 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2557 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2558 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2559 int __init create_extent_cache(void);
2560 void destroy_extent_cache(void);
2561 
2562 /*
2563  * crypto support
2564  */
2565 static inline bool f2fs_encrypted_inode(struct inode *inode)
2566 {
2567 	return file_is_encrypt(inode);
2568 }
2569 
2570 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2571 {
2572 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2573 	file_set_encrypt(inode);
2574 #endif
2575 }
2576 
2577 static inline bool f2fs_bio_encrypted(struct bio *bio)
2578 {
2579 	return bio->bi_private != NULL;
2580 }
2581 
2582 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2583 {
2584 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2585 }
2586 
2587 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2588 {
2589 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2590 }
2591 
2592 #ifdef CONFIG_BLK_DEV_ZONED
2593 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2594 			struct block_device *bdev, block_t blkaddr)
2595 {
2596 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2597 	int i;
2598 
2599 	for (i = 0; i < sbi->s_ndevs; i++)
2600 		if (FDEV(i).bdev == bdev)
2601 			return FDEV(i).blkz_type[zno];
2602 	return -EINVAL;
2603 }
2604 #endif
2605 
2606 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2607 {
2608 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2609 
2610 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2611 }
2612 
2613 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2614 {
2615 	clear_opt(sbi, ADAPTIVE);
2616 	clear_opt(sbi, LFS);
2617 
2618 	switch (mt) {
2619 	case F2FS_MOUNT_ADAPTIVE:
2620 		set_opt(sbi, ADAPTIVE);
2621 		break;
2622 	case F2FS_MOUNT_LFS:
2623 		set_opt(sbi, LFS);
2624 		break;
2625 	}
2626 }
2627 
2628 static inline bool f2fs_may_encrypt(struct inode *inode)
2629 {
2630 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2631 	umode_t mode = inode->i_mode;
2632 
2633 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2634 #else
2635 	return 0;
2636 #endif
2637 }
2638 
2639 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2640 #define fscrypt_set_d_op(i)
2641 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2642 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2643 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2644 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2645 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2646 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2647 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2648 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2649 #define fscrypt_ioctl_set_policy	fscrypt_notsupp_ioctl_set_policy
2650 #define fscrypt_ioctl_get_policy	fscrypt_notsupp_ioctl_get_policy
2651 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2652 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2653 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2654 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2655 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2656 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2657 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2658 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2659 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2660 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2661 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2662 #endif
2663 #endif
2664