xref: /openbmc/linux/fs/f2fs/f2fs.h (revision caf0047e7e1e60a7ad1d655d3b81b32e2dfb6095)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 #define F2FS_MOUNT_FASTBOOT		0x00001000
53 
54 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
57 
58 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
59 		typecheck(unsigned long long, b) &&			\
60 		((long long)((a) - (b)) > 0))
61 
62 typedef u32 block_t;	/*
63 			 * should not change u32, since it is the on-disk block
64 			 * address format, __le32.
65 			 */
66 typedef u32 nid_t;
67 
68 struct f2fs_mount_info {
69 	unsigned int	opt;
70 };
71 
72 #define CRCPOLY_LE 0xedb88320
73 
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 	unsigned char *p = (unsigned char *)buf;
77 	__u32 crc = F2FS_SUPER_MAGIC;
78 	int i;
79 
80 	while (len--) {
81 		crc ^= *p++;
82 		for (i = 0; i < 8; i++)
83 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 	}
85 	return crc;
86 }
87 
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 	return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92 
93 /*
94  * For checkpoint manager
95  */
96 enum {
97 	NAT_BITMAP,
98 	SIT_BITMAP
99 };
100 
101 enum {
102 	CP_UMOUNT,
103 	CP_SYNC,
104 	CP_DISCARD,
105 };
106 
107 struct cp_control {
108 	int reason;
109 	__u64 trim_start;
110 	__u64 trim_end;
111 	__u64 trim_minlen;
112 	__u64 trimmed;
113 };
114 
115 /*
116  * For CP/NAT/SIT/SSA readahead
117  */
118 enum {
119 	META_CP,
120 	META_NAT,
121 	META_SIT,
122 	META_SSA,
123 	META_POR,
124 };
125 
126 /* for the list of ino */
127 enum {
128 	ORPHAN_INO,		/* for orphan ino list */
129 	APPEND_INO,		/* for append ino list */
130 	UPDATE_INO,		/* for update ino list */
131 	MAX_INO_ENTRY,		/* max. list */
132 };
133 
134 struct ino_entry {
135 	struct list_head list;	/* list head */
136 	nid_t ino;		/* inode number */
137 };
138 
139 /*
140  * for the list of directory inodes or gc inodes.
141  * NOTE: there are two slab users for this structure, if we add/modify/delete
142  * fields in structure for one of slab users, it may affect fields or size of
143  * other one, in this condition, it's better to split both of slab and related
144  * data structure.
145  */
146 struct inode_entry {
147 	struct list_head list;	/* list head */
148 	struct inode *inode;	/* vfs inode pointer */
149 };
150 
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 	struct list_head list;	/* list head */
154 	block_t blkaddr;	/* block address to be discarded */
155 	int len;		/* # of consecutive blocks of the discard */
156 };
157 
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 	struct list_head list;	/* list head */
161 	struct inode *inode;	/* vfs inode pointer */
162 	block_t blkaddr;	/* block address locating the last fsync */
163 	block_t last_dentry;	/* block address locating the last dentry */
164 	block_t last_inode;	/* block address locating the last inode */
165 };
166 
167 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
169 
170 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
174 
175 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177 
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 	int before = nats_in_cursum(rs);
181 	rs->n_nats = cpu_to_le16(before + i);
182 	return before;
183 }
184 
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 	int before = sits_in_cursum(rs);
188 	rs->n_sits = cpu_to_le16(before + i);
189 	return before;
190 }
191 
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 								int type)
194 {
195 	if (type == NAT_JOURNAL)
196 		return size <= MAX_NAT_JENTRIES(sum);
197 	return size <= MAX_SIT_JENTRIES(sum);
198 }
199 
200 /*
201  * ioctl commands
202  */
203 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
205 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
206 
207 #define F2FS_IOCTL_MAGIC		0xf5
208 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
209 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
210 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
211 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
212 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
213 
214 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
215 /*
216  * ioctl commands in 32 bit emulation
217  */
218 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
219 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
220 #endif
221 
222 /*
223  * For INODE and NODE manager
224  */
225 /* for directory operations */
226 struct f2fs_dentry_ptr {
227 	const void *bitmap;
228 	struct f2fs_dir_entry *dentry;
229 	__u8 (*filename)[F2FS_SLOT_LEN];
230 	int max;
231 };
232 
233 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
234 					void *src, int type)
235 {
236 	if (type == 1) {
237 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
238 		d->max = NR_DENTRY_IN_BLOCK;
239 		d->bitmap = &t->dentry_bitmap;
240 		d->dentry = t->dentry;
241 		d->filename = t->filename;
242 	} else {
243 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
244 		d->max = NR_INLINE_DENTRY;
245 		d->bitmap = &t->dentry_bitmap;
246 		d->dentry = t->dentry;
247 		d->filename = t->filename;
248 	}
249 }
250 
251 /*
252  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
253  * as its node offset to distinguish from index node blocks.
254  * But some bits are used to mark the node block.
255  */
256 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
257 				>> OFFSET_BIT_SHIFT)
258 enum {
259 	ALLOC_NODE,			/* allocate a new node page if needed */
260 	LOOKUP_NODE,			/* look up a node without readahead */
261 	LOOKUP_NODE_RA,			/*
262 					 * look up a node with readahead called
263 					 * by get_data_block.
264 					 */
265 };
266 
267 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
268 
269 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
270 
271 /* for in-memory extent cache entry */
272 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
273 
274 struct extent_info {
275 	rwlock_t ext_lock;	/* rwlock for consistency */
276 	unsigned int fofs;	/* start offset in a file */
277 	u32 blk_addr;		/* start block address of the extent */
278 	unsigned int len;	/* length of the extent */
279 };
280 
281 /*
282  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
283  */
284 #define FADVISE_COLD_BIT	0x01
285 #define FADVISE_LOST_PINO_BIT	0x02
286 
287 #define DEF_DIR_LEVEL		0
288 
289 struct f2fs_inode_info {
290 	struct inode vfs_inode;		/* serve a vfs inode */
291 	unsigned long i_flags;		/* keep an inode flags for ioctl */
292 	unsigned char i_advise;		/* use to give file attribute hints */
293 	unsigned char i_dir_level;	/* use for dentry level for large dir */
294 	unsigned int i_current_depth;	/* use only in directory structure */
295 	unsigned int i_pino;		/* parent inode number */
296 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
297 
298 	/* Use below internally in f2fs*/
299 	unsigned long flags;		/* use to pass per-file flags */
300 	struct rw_semaphore i_sem;	/* protect fi info */
301 	atomic_t dirty_pages;		/* # of dirty pages */
302 	f2fs_hash_t chash;		/* hash value of given file name */
303 	unsigned int clevel;		/* maximum level of given file name */
304 	nid_t i_xattr_nid;		/* node id that contains xattrs */
305 	unsigned long long xattr_ver;	/* cp version of xattr modification */
306 	struct extent_info ext;		/* in-memory extent cache entry */
307 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
308 
309 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
310 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
311 	struct mutex inmem_lock;	/* lock for inmemory pages */
312 };
313 
314 static inline void get_extent_info(struct extent_info *ext,
315 					struct f2fs_extent i_ext)
316 {
317 	write_lock(&ext->ext_lock);
318 	ext->fofs = le32_to_cpu(i_ext.fofs);
319 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
320 	ext->len = le32_to_cpu(i_ext.len);
321 	write_unlock(&ext->ext_lock);
322 }
323 
324 static inline void set_raw_extent(struct extent_info *ext,
325 					struct f2fs_extent *i_ext)
326 {
327 	read_lock(&ext->ext_lock);
328 	i_ext->fofs = cpu_to_le32(ext->fofs);
329 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
330 	i_ext->len = cpu_to_le32(ext->len);
331 	read_unlock(&ext->ext_lock);
332 }
333 
334 struct f2fs_nm_info {
335 	block_t nat_blkaddr;		/* base disk address of NAT */
336 	nid_t max_nid;			/* maximum possible node ids */
337 	nid_t available_nids;		/* maximum available node ids */
338 	nid_t next_scan_nid;		/* the next nid to be scanned */
339 	unsigned int ram_thresh;	/* control the memory footprint */
340 
341 	/* NAT cache management */
342 	struct radix_tree_root nat_root;/* root of the nat entry cache */
343 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
344 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
345 	struct list_head nat_entries;	/* cached nat entry list (clean) */
346 	unsigned int nat_cnt;		/* the # of cached nat entries */
347 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
348 
349 	/* free node ids management */
350 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
351 	struct list_head free_nid_list;	/* a list for free nids */
352 	spinlock_t free_nid_list_lock;	/* protect free nid list */
353 	unsigned int fcnt;		/* the number of free node id */
354 	struct mutex build_lock;	/* lock for build free nids */
355 
356 	/* for checkpoint */
357 	char *nat_bitmap;		/* NAT bitmap pointer */
358 	int bitmap_size;		/* bitmap size */
359 };
360 
361 /*
362  * this structure is used as one of function parameters.
363  * all the information are dedicated to a given direct node block determined
364  * by the data offset in a file.
365  */
366 struct dnode_of_data {
367 	struct inode *inode;		/* vfs inode pointer */
368 	struct page *inode_page;	/* its inode page, NULL is possible */
369 	struct page *node_page;		/* cached direct node page */
370 	nid_t nid;			/* node id of the direct node block */
371 	unsigned int ofs_in_node;	/* data offset in the node page */
372 	bool inode_page_locked;		/* inode page is locked or not */
373 	block_t	data_blkaddr;		/* block address of the node block */
374 };
375 
376 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
377 		struct page *ipage, struct page *npage, nid_t nid)
378 {
379 	memset(dn, 0, sizeof(*dn));
380 	dn->inode = inode;
381 	dn->inode_page = ipage;
382 	dn->node_page = npage;
383 	dn->nid = nid;
384 }
385 
386 /*
387  * For SIT manager
388  *
389  * By default, there are 6 active log areas across the whole main area.
390  * When considering hot and cold data separation to reduce cleaning overhead,
391  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
392  * respectively.
393  * In the current design, you should not change the numbers intentionally.
394  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
395  * logs individually according to the underlying devices. (default: 6)
396  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
397  * data and 8 for node logs.
398  */
399 #define	NR_CURSEG_DATA_TYPE	(3)
400 #define NR_CURSEG_NODE_TYPE	(3)
401 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
402 
403 enum {
404 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
405 	CURSEG_WARM_DATA,	/* data blocks */
406 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
407 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
408 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
409 	CURSEG_COLD_NODE,	/* indirect node blocks */
410 	NO_CHECK_TYPE,
411 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
412 };
413 
414 struct flush_cmd {
415 	struct completion wait;
416 	struct llist_node llnode;
417 	int ret;
418 };
419 
420 struct flush_cmd_control {
421 	struct task_struct *f2fs_issue_flush;	/* flush thread */
422 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
423 	struct llist_head issue_list;		/* list for command issue */
424 	struct llist_node *dispatch_list;	/* list for command dispatch */
425 };
426 
427 struct f2fs_sm_info {
428 	struct sit_info *sit_info;		/* whole segment information */
429 	struct free_segmap_info *free_info;	/* free segment information */
430 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
431 	struct curseg_info *curseg_array;	/* active segment information */
432 
433 	block_t seg0_blkaddr;		/* block address of 0'th segment */
434 	block_t main_blkaddr;		/* start block address of main area */
435 	block_t ssa_blkaddr;		/* start block address of SSA area */
436 
437 	unsigned int segment_count;	/* total # of segments */
438 	unsigned int main_segments;	/* # of segments in main area */
439 	unsigned int reserved_segments;	/* # of reserved segments */
440 	unsigned int ovp_segments;	/* # of overprovision segments */
441 
442 	/* a threshold to reclaim prefree segments */
443 	unsigned int rec_prefree_segments;
444 
445 	/* for small discard management */
446 	struct list_head discard_list;		/* 4KB discard list */
447 	int nr_discards;			/* # of discards in the list */
448 	int max_discards;			/* max. discards to be issued */
449 
450 	struct list_head sit_entry_set;	/* sit entry set list */
451 
452 	unsigned int ipu_policy;	/* in-place-update policy */
453 	unsigned int min_ipu_util;	/* in-place-update threshold */
454 	unsigned int min_fsync_blocks;	/* threshold for fsync */
455 
456 	/* for flush command control */
457 	struct flush_cmd_control *cmd_control_info;
458 
459 };
460 
461 /*
462  * For superblock
463  */
464 /*
465  * COUNT_TYPE for monitoring
466  *
467  * f2fs monitors the number of several block types such as on-writeback,
468  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
469  */
470 enum count_type {
471 	F2FS_WRITEBACK,
472 	F2FS_DIRTY_DENTS,
473 	F2FS_DIRTY_NODES,
474 	F2FS_DIRTY_META,
475 	F2FS_INMEM_PAGES,
476 	NR_COUNT_TYPE,
477 };
478 
479 /*
480  * The below are the page types of bios used in submit_bio().
481  * The available types are:
482  * DATA			User data pages. It operates as async mode.
483  * NODE			Node pages. It operates as async mode.
484  * META			FS metadata pages such as SIT, NAT, CP.
485  * NR_PAGE_TYPE		The number of page types.
486  * META_FLUSH		Make sure the previous pages are written
487  *			with waiting the bio's completion
488  * ...			Only can be used with META.
489  */
490 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
491 enum page_type {
492 	DATA,
493 	NODE,
494 	META,
495 	NR_PAGE_TYPE,
496 	META_FLUSH,
497 };
498 
499 struct f2fs_io_info {
500 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
501 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
502 	block_t blk_addr;	/* block address to be written */
503 };
504 
505 #define is_read_io(rw)	(((rw) & 1) == READ)
506 struct f2fs_bio_info {
507 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
508 	struct bio *bio;		/* bios to merge */
509 	sector_t last_block_in_bio;	/* last block number */
510 	struct f2fs_io_info fio;	/* store buffered io info. */
511 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
512 };
513 
514 /* for inner inode cache management */
515 struct inode_management {
516 	struct radix_tree_root ino_root;	/* ino entry array */
517 	spinlock_t ino_lock;			/* for ino entry lock */
518 	struct list_head ino_list;		/* inode list head */
519 	unsigned long ino_num;			/* number of entries */
520 };
521 
522 /* For s_flag in struct f2fs_sb_info */
523 enum {
524 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
525 	SBI_IS_CLOSE,				/* specify unmounting */
526 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
527 	SBI_POR_DOING,				/* recovery is doing or not */
528 };
529 
530 struct f2fs_sb_info {
531 	struct super_block *sb;			/* pointer to VFS super block */
532 	struct proc_dir_entry *s_proc;		/* proc entry */
533 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
534 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
535 	int s_flag;				/* flags for sbi */
536 
537 	/* for node-related operations */
538 	struct f2fs_nm_info *nm_info;		/* node manager */
539 	struct inode *node_inode;		/* cache node blocks */
540 
541 	/* for segment-related operations */
542 	struct f2fs_sm_info *sm_info;		/* segment manager */
543 
544 	/* for bio operations */
545 	struct f2fs_bio_info read_io;			/* for read bios */
546 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
547 
548 	/* for checkpoint */
549 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
550 	struct inode *meta_inode;		/* cache meta blocks */
551 	struct mutex cp_mutex;			/* checkpoint procedure lock */
552 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
553 	struct rw_semaphore node_write;		/* locking node writes */
554 	struct mutex writepages;		/* mutex for writepages() */
555 	wait_queue_head_t cp_wait;
556 
557 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
558 
559 	/* for orphan inode, use 0'th array */
560 	unsigned int max_orphans;		/* max orphan inodes */
561 
562 	/* for directory inode management */
563 	struct list_head dir_inode_list;	/* dir inode list */
564 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
565 
566 	/* basic filesystem units */
567 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
568 	unsigned int log_blocksize;		/* log2 block size */
569 	unsigned int blocksize;			/* block size */
570 	unsigned int root_ino_num;		/* root inode number*/
571 	unsigned int node_ino_num;		/* node inode number*/
572 	unsigned int meta_ino_num;		/* meta inode number*/
573 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
574 	unsigned int blocks_per_seg;		/* blocks per segment */
575 	unsigned int segs_per_sec;		/* segments per section */
576 	unsigned int secs_per_zone;		/* sections per zone */
577 	unsigned int total_sections;		/* total section count */
578 	unsigned int total_node_count;		/* total node block count */
579 	unsigned int total_valid_node_count;	/* valid node block count */
580 	unsigned int total_valid_inode_count;	/* valid inode count */
581 	int active_logs;			/* # of active logs */
582 	int dir_level;				/* directory level */
583 
584 	block_t user_block_count;		/* # of user blocks */
585 	block_t total_valid_block_count;	/* # of valid blocks */
586 	block_t alloc_valid_block_count;	/* # of allocated blocks */
587 	block_t last_valid_block_count;		/* for recovery */
588 	u32 s_next_generation;			/* for NFS support */
589 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
590 
591 	struct f2fs_mount_info mount_opt;	/* mount options */
592 
593 	/* for cleaning operations */
594 	struct mutex gc_mutex;			/* mutex for GC */
595 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
596 	unsigned int cur_victim_sec;		/* current victim section num */
597 
598 	/* maximum # of trials to find a victim segment for SSR and GC */
599 	unsigned int max_victim_search;
600 
601 	/*
602 	 * for stat information.
603 	 * one is for the LFS mode, and the other is for the SSR mode.
604 	 */
605 #ifdef CONFIG_F2FS_STAT_FS
606 	struct f2fs_stat_info *stat_info;	/* FS status information */
607 	unsigned int segment_count[2];		/* # of allocated segments */
608 	unsigned int block_count[2];		/* # of allocated blocks */
609 	atomic_t inplace_count;		/* # of inplace update */
610 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
611 	atomic_t inline_inode;			/* # of inline_data inodes */
612 	atomic_t inline_dir;			/* # of inline_dentry inodes */
613 	int bg_gc;				/* background gc calls */
614 	unsigned int n_dirty_dirs;		/* # of dir inodes */
615 #endif
616 	unsigned int last_victim[2];		/* last victim segment # */
617 	spinlock_t stat_lock;			/* lock for stat operations */
618 
619 	/* For sysfs suppport */
620 	struct kobject s_kobj;
621 	struct completion s_kobj_unregister;
622 };
623 
624 /*
625  * Inline functions
626  */
627 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
628 {
629 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
630 }
631 
632 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
633 {
634 	return sb->s_fs_info;
635 }
636 
637 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
638 {
639 	return F2FS_SB(inode->i_sb);
640 }
641 
642 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
643 {
644 	return F2FS_I_SB(mapping->host);
645 }
646 
647 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
648 {
649 	return F2FS_M_SB(page->mapping);
650 }
651 
652 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
653 {
654 	return (struct f2fs_super_block *)(sbi->raw_super);
655 }
656 
657 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
658 {
659 	return (struct f2fs_checkpoint *)(sbi->ckpt);
660 }
661 
662 static inline struct f2fs_node *F2FS_NODE(struct page *page)
663 {
664 	return (struct f2fs_node *)page_address(page);
665 }
666 
667 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
668 {
669 	return &((struct f2fs_node *)page_address(page))->i;
670 }
671 
672 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
673 {
674 	return (struct f2fs_nm_info *)(sbi->nm_info);
675 }
676 
677 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
678 {
679 	return (struct f2fs_sm_info *)(sbi->sm_info);
680 }
681 
682 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
683 {
684 	return (struct sit_info *)(SM_I(sbi)->sit_info);
685 }
686 
687 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
688 {
689 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
690 }
691 
692 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
693 {
694 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
695 }
696 
697 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
698 {
699 	return sbi->meta_inode->i_mapping;
700 }
701 
702 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
703 {
704 	return sbi->node_inode->i_mapping;
705 }
706 
707 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
708 {
709 	return sbi->s_flag & (0x01 << type);
710 }
711 
712 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
713 {
714 	sbi->s_flag |= (0x01 << type);
715 }
716 
717 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
718 {
719 	sbi->s_flag &= ~(0x01 << type);
720 }
721 
722 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
723 {
724 	return le64_to_cpu(cp->checkpoint_ver);
725 }
726 
727 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
728 {
729 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
730 	return ckpt_flags & f;
731 }
732 
733 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
734 {
735 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
736 	ckpt_flags |= f;
737 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
738 }
739 
740 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
741 {
742 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
743 	ckpt_flags &= (~f);
744 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
745 }
746 
747 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
748 {
749 	down_read(&sbi->cp_rwsem);
750 }
751 
752 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
753 {
754 	up_read(&sbi->cp_rwsem);
755 }
756 
757 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
758 {
759 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
760 }
761 
762 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
763 {
764 	up_write(&sbi->cp_rwsem);
765 }
766 
767 /*
768  * Check whether the given nid is within node id range.
769  */
770 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
771 {
772 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
773 		return -EINVAL;
774 	if (unlikely(nid >= NM_I(sbi)->max_nid))
775 		return -EINVAL;
776 	return 0;
777 }
778 
779 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
780 
781 /*
782  * Check whether the inode has blocks or not
783  */
784 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
785 {
786 	if (F2FS_I(inode)->i_xattr_nid)
787 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
788 	else
789 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
790 }
791 
792 static inline bool f2fs_has_xattr_block(unsigned int ofs)
793 {
794 	return ofs == XATTR_NODE_OFFSET;
795 }
796 
797 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
798 				 struct inode *inode, blkcnt_t count)
799 {
800 	block_t	valid_block_count;
801 
802 	spin_lock(&sbi->stat_lock);
803 	valid_block_count =
804 		sbi->total_valid_block_count + (block_t)count;
805 	if (unlikely(valid_block_count > sbi->user_block_count)) {
806 		spin_unlock(&sbi->stat_lock);
807 		return false;
808 	}
809 	inode->i_blocks += count;
810 	sbi->total_valid_block_count = valid_block_count;
811 	sbi->alloc_valid_block_count += (block_t)count;
812 	spin_unlock(&sbi->stat_lock);
813 	return true;
814 }
815 
816 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
817 						struct inode *inode,
818 						blkcnt_t count)
819 {
820 	spin_lock(&sbi->stat_lock);
821 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
822 	f2fs_bug_on(sbi, inode->i_blocks < count);
823 	inode->i_blocks -= count;
824 	sbi->total_valid_block_count -= (block_t)count;
825 	spin_unlock(&sbi->stat_lock);
826 }
827 
828 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
829 {
830 	atomic_inc(&sbi->nr_pages[count_type]);
831 	set_sbi_flag(sbi, SBI_IS_DIRTY);
832 }
833 
834 static inline void inode_inc_dirty_pages(struct inode *inode)
835 {
836 	atomic_inc(&F2FS_I(inode)->dirty_pages);
837 	if (S_ISDIR(inode->i_mode))
838 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
839 }
840 
841 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
842 {
843 	atomic_dec(&sbi->nr_pages[count_type]);
844 }
845 
846 static inline void inode_dec_dirty_pages(struct inode *inode)
847 {
848 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
849 		return;
850 
851 	atomic_dec(&F2FS_I(inode)->dirty_pages);
852 
853 	if (S_ISDIR(inode->i_mode))
854 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
855 }
856 
857 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
858 {
859 	return atomic_read(&sbi->nr_pages[count_type]);
860 }
861 
862 static inline int get_dirty_pages(struct inode *inode)
863 {
864 	return atomic_read(&F2FS_I(inode)->dirty_pages);
865 }
866 
867 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
868 {
869 	unsigned int pages_per_sec = sbi->segs_per_sec *
870 					(1 << sbi->log_blocks_per_seg);
871 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
872 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
873 }
874 
875 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
876 {
877 	return sbi->total_valid_block_count;
878 }
879 
880 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
881 {
882 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
883 
884 	/* return NAT or SIT bitmap */
885 	if (flag == NAT_BITMAP)
886 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
887 	else if (flag == SIT_BITMAP)
888 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
889 
890 	return 0;
891 }
892 
893 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
894 {
895 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
896 	int offset;
897 
898 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
899 		if (flag == NAT_BITMAP)
900 			return &ckpt->sit_nat_version_bitmap;
901 		else
902 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
903 	} else {
904 		offset = (flag == NAT_BITMAP) ?
905 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
906 		return &ckpt->sit_nat_version_bitmap + offset;
907 	}
908 }
909 
910 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
911 {
912 	block_t start_addr;
913 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
914 	unsigned long long ckpt_version = cur_cp_version(ckpt);
915 
916 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
917 
918 	/*
919 	 * odd numbered checkpoint should at cp segment 0
920 	 * and even segment must be at cp segment 1
921 	 */
922 	if (!(ckpt_version & 1))
923 		start_addr += sbi->blocks_per_seg;
924 
925 	return start_addr;
926 }
927 
928 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
929 {
930 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
931 }
932 
933 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
934 						struct inode *inode)
935 {
936 	block_t	valid_block_count;
937 	unsigned int valid_node_count;
938 
939 	spin_lock(&sbi->stat_lock);
940 
941 	valid_block_count = sbi->total_valid_block_count + 1;
942 	if (unlikely(valid_block_count > sbi->user_block_count)) {
943 		spin_unlock(&sbi->stat_lock);
944 		return false;
945 	}
946 
947 	valid_node_count = sbi->total_valid_node_count + 1;
948 	if (unlikely(valid_node_count > sbi->total_node_count)) {
949 		spin_unlock(&sbi->stat_lock);
950 		return false;
951 	}
952 
953 	if (inode)
954 		inode->i_blocks++;
955 
956 	sbi->alloc_valid_block_count++;
957 	sbi->total_valid_node_count++;
958 	sbi->total_valid_block_count++;
959 	spin_unlock(&sbi->stat_lock);
960 
961 	return true;
962 }
963 
964 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
965 						struct inode *inode)
966 {
967 	spin_lock(&sbi->stat_lock);
968 
969 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
970 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
971 	f2fs_bug_on(sbi, !inode->i_blocks);
972 
973 	inode->i_blocks--;
974 	sbi->total_valid_node_count--;
975 	sbi->total_valid_block_count--;
976 
977 	spin_unlock(&sbi->stat_lock);
978 }
979 
980 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
981 {
982 	return sbi->total_valid_node_count;
983 }
984 
985 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
986 {
987 	spin_lock(&sbi->stat_lock);
988 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
989 	sbi->total_valid_inode_count++;
990 	spin_unlock(&sbi->stat_lock);
991 }
992 
993 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
994 {
995 	spin_lock(&sbi->stat_lock);
996 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
997 	sbi->total_valid_inode_count--;
998 	spin_unlock(&sbi->stat_lock);
999 }
1000 
1001 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1002 {
1003 	return sbi->total_valid_inode_count;
1004 }
1005 
1006 static inline void f2fs_put_page(struct page *page, int unlock)
1007 {
1008 	if (!page)
1009 		return;
1010 
1011 	if (unlock) {
1012 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1013 		unlock_page(page);
1014 	}
1015 	page_cache_release(page);
1016 }
1017 
1018 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1019 {
1020 	if (dn->node_page)
1021 		f2fs_put_page(dn->node_page, 1);
1022 	if (dn->inode_page && dn->node_page != dn->inode_page)
1023 		f2fs_put_page(dn->inode_page, 0);
1024 	dn->node_page = NULL;
1025 	dn->inode_page = NULL;
1026 }
1027 
1028 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1029 					size_t size)
1030 {
1031 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1032 }
1033 
1034 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1035 						gfp_t flags)
1036 {
1037 	void *entry;
1038 retry:
1039 	entry = kmem_cache_alloc(cachep, flags);
1040 	if (!entry) {
1041 		cond_resched();
1042 		goto retry;
1043 	}
1044 
1045 	return entry;
1046 }
1047 
1048 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1049 				unsigned long index, void *item)
1050 {
1051 	while (radix_tree_insert(root, index, item))
1052 		cond_resched();
1053 }
1054 
1055 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1056 
1057 static inline bool IS_INODE(struct page *page)
1058 {
1059 	struct f2fs_node *p = F2FS_NODE(page);
1060 	return RAW_IS_INODE(p);
1061 }
1062 
1063 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1064 {
1065 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1066 }
1067 
1068 static inline block_t datablock_addr(struct page *node_page,
1069 		unsigned int offset)
1070 {
1071 	struct f2fs_node *raw_node;
1072 	__le32 *addr_array;
1073 	raw_node = F2FS_NODE(node_page);
1074 	addr_array = blkaddr_in_node(raw_node);
1075 	return le32_to_cpu(addr_array[offset]);
1076 }
1077 
1078 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1079 {
1080 	int mask;
1081 
1082 	addr += (nr >> 3);
1083 	mask = 1 << (7 - (nr & 0x07));
1084 	return mask & *addr;
1085 }
1086 
1087 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1088 {
1089 	int mask;
1090 	int ret;
1091 
1092 	addr += (nr >> 3);
1093 	mask = 1 << (7 - (nr & 0x07));
1094 	ret = mask & *addr;
1095 	*addr |= mask;
1096 	return ret;
1097 }
1098 
1099 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1100 {
1101 	int mask;
1102 	int ret;
1103 
1104 	addr += (nr >> 3);
1105 	mask = 1 << (7 - (nr & 0x07));
1106 	ret = mask & *addr;
1107 	*addr &= ~mask;
1108 	return ret;
1109 }
1110 
1111 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1112 {
1113 	int mask;
1114 
1115 	addr += (nr >> 3);
1116 	mask = 1 << (7 - (nr & 0x07));
1117 	*addr ^= mask;
1118 }
1119 
1120 /* used for f2fs_inode_info->flags */
1121 enum {
1122 	FI_NEW_INODE,		/* indicate newly allocated inode */
1123 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1124 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1125 	FI_INC_LINK,		/* need to increment i_nlink */
1126 	FI_ACL_MODE,		/* indicate acl mode */
1127 	FI_NO_ALLOC,		/* should not allocate any blocks */
1128 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1129 	FI_DELAY_IPUT,		/* used for the recovery */
1130 	FI_NO_EXTENT,		/* not to use the extent cache */
1131 	FI_INLINE_XATTR,	/* used for inline xattr */
1132 	FI_INLINE_DATA,		/* used for inline data*/
1133 	FI_INLINE_DENTRY,	/* used for inline dentry */
1134 	FI_APPEND_WRITE,	/* inode has appended data */
1135 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1136 	FI_NEED_IPU,		/* used for ipu per file */
1137 	FI_ATOMIC_FILE,		/* indicate atomic file */
1138 	FI_VOLATILE_FILE,	/* indicate volatile file */
1139 	FI_DROP_CACHE,		/* drop dirty page cache */
1140 	FI_DATA_EXIST,		/* indicate data exists */
1141 };
1142 
1143 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1144 {
1145 	if (!test_bit(flag, &fi->flags))
1146 		set_bit(flag, &fi->flags);
1147 }
1148 
1149 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1150 {
1151 	return test_bit(flag, &fi->flags);
1152 }
1153 
1154 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1155 {
1156 	if (test_bit(flag, &fi->flags))
1157 		clear_bit(flag, &fi->flags);
1158 }
1159 
1160 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1161 {
1162 	fi->i_acl_mode = mode;
1163 	set_inode_flag(fi, FI_ACL_MODE);
1164 }
1165 
1166 static inline void get_inline_info(struct f2fs_inode_info *fi,
1167 					struct f2fs_inode *ri)
1168 {
1169 	if (ri->i_inline & F2FS_INLINE_XATTR)
1170 		set_inode_flag(fi, FI_INLINE_XATTR);
1171 	if (ri->i_inline & F2FS_INLINE_DATA)
1172 		set_inode_flag(fi, FI_INLINE_DATA);
1173 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1174 		set_inode_flag(fi, FI_INLINE_DENTRY);
1175 	if (ri->i_inline & F2FS_DATA_EXIST)
1176 		set_inode_flag(fi, FI_DATA_EXIST);
1177 }
1178 
1179 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1180 					struct f2fs_inode *ri)
1181 {
1182 	ri->i_inline = 0;
1183 
1184 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1185 		ri->i_inline |= F2FS_INLINE_XATTR;
1186 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1187 		ri->i_inline |= F2FS_INLINE_DATA;
1188 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1189 		ri->i_inline |= F2FS_INLINE_DENTRY;
1190 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1191 		ri->i_inline |= F2FS_DATA_EXIST;
1192 }
1193 
1194 static inline int f2fs_has_inline_xattr(struct inode *inode)
1195 {
1196 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1197 }
1198 
1199 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1200 {
1201 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1202 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1203 	return DEF_ADDRS_PER_INODE;
1204 }
1205 
1206 static inline void *inline_xattr_addr(struct page *page)
1207 {
1208 	struct f2fs_inode *ri = F2FS_INODE(page);
1209 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1210 					F2FS_INLINE_XATTR_ADDRS]);
1211 }
1212 
1213 static inline int inline_xattr_size(struct inode *inode)
1214 {
1215 	if (f2fs_has_inline_xattr(inode))
1216 		return F2FS_INLINE_XATTR_ADDRS << 2;
1217 	else
1218 		return 0;
1219 }
1220 
1221 static inline int f2fs_has_inline_data(struct inode *inode)
1222 {
1223 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1224 }
1225 
1226 static inline void f2fs_clear_inline_inode(struct inode *inode)
1227 {
1228 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1229 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1230 }
1231 
1232 static inline int f2fs_exist_data(struct inode *inode)
1233 {
1234 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1235 }
1236 
1237 static inline bool f2fs_is_atomic_file(struct inode *inode)
1238 {
1239 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1240 }
1241 
1242 static inline bool f2fs_is_volatile_file(struct inode *inode)
1243 {
1244 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1245 }
1246 
1247 static inline bool f2fs_is_drop_cache(struct inode *inode)
1248 {
1249 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1250 }
1251 
1252 static inline void *inline_data_addr(struct page *page)
1253 {
1254 	struct f2fs_inode *ri = F2FS_INODE(page);
1255 	return (void *)&(ri->i_addr[1]);
1256 }
1257 
1258 static inline int f2fs_has_inline_dentry(struct inode *inode)
1259 {
1260 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1261 }
1262 
1263 static inline void *inline_dentry_addr(struct page *page)
1264 {
1265 	struct f2fs_inode *ri = F2FS_INODE(page);
1266 	return (void *)&(ri->i_addr[1]);
1267 }
1268 
1269 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1270 {
1271 	if (!f2fs_has_inline_dentry(dir))
1272 		kunmap(page);
1273 }
1274 
1275 static inline int f2fs_readonly(struct super_block *sb)
1276 {
1277 	return sb->s_flags & MS_RDONLY;
1278 }
1279 
1280 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1281 {
1282 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1283 }
1284 
1285 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1286 {
1287 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1288 	sbi->sb->s_flags |= MS_RDONLY;
1289 }
1290 
1291 #define get_inode_mode(i) \
1292 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1293 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1294 
1295 /* get offset of first page in next direct node */
1296 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1297 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1298 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1299 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1300 
1301 /*
1302  * file.c
1303  */
1304 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1305 void truncate_data_blocks(struct dnode_of_data *);
1306 int truncate_blocks(struct inode *, u64, bool);
1307 void f2fs_truncate(struct inode *);
1308 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1309 int f2fs_setattr(struct dentry *, struct iattr *);
1310 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1311 int truncate_data_blocks_range(struct dnode_of_data *, int);
1312 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1313 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1314 
1315 /*
1316  * inode.c
1317  */
1318 void f2fs_set_inode_flags(struct inode *);
1319 struct inode *f2fs_iget(struct super_block *, unsigned long);
1320 int try_to_free_nats(struct f2fs_sb_info *, int);
1321 void update_inode(struct inode *, struct page *);
1322 void update_inode_page(struct inode *);
1323 int f2fs_write_inode(struct inode *, struct writeback_control *);
1324 void f2fs_evict_inode(struct inode *);
1325 void handle_failed_inode(struct inode *);
1326 
1327 /*
1328  * namei.c
1329  */
1330 struct dentry *f2fs_get_parent(struct dentry *child);
1331 
1332 /*
1333  * dir.c
1334  */
1335 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1336 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1337 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1338 			struct f2fs_dentry_ptr *);
1339 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1340 			unsigned int);
1341 void do_make_empty_dir(struct inode *, struct inode *,
1342 			struct f2fs_dentry_ptr *);
1343 struct page *init_inode_metadata(struct inode *, struct inode *,
1344 			const struct qstr *, struct page *);
1345 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1346 int room_for_filename(const void *, int, int);
1347 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1348 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1349 							struct page **);
1350 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1351 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1352 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1353 				struct page *, struct inode *);
1354 int update_dent_inode(struct inode *, const struct qstr *);
1355 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1356 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1357 							struct inode *);
1358 int f2fs_do_tmpfile(struct inode *, struct inode *);
1359 int f2fs_make_empty(struct inode *, struct inode *);
1360 bool f2fs_empty_dir(struct inode *);
1361 
1362 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1363 {
1364 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1365 				inode);
1366 }
1367 
1368 /*
1369  * super.c
1370  */
1371 int f2fs_sync_fs(struct super_block *, int);
1372 extern __printf(3, 4)
1373 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1374 
1375 /*
1376  * hash.c
1377  */
1378 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1379 
1380 /*
1381  * node.c
1382  */
1383 struct dnode_of_data;
1384 struct node_info;
1385 
1386 bool available_free_memory(struct f2fs_sb_info *, int);
1387 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1388 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1389 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1390 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1391 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1392 int truncate_inode_blocks(struct inode *, pgoff_t);
1393 int truncate_xattr_node(struct inode *, struct page *);
1394 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1395 void remove_inode_page(struct inode *);
1396 struct page *new_inode_page(struct inode *);
1397 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1398 void ra_node_page(struct f2fs_sb_info *, nid_t);
1399 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1400 struct page *get_node_page_ra(struct page *, int);
1401 void sync_inode_page(struct dnode_of_data *);
1402 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1403 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1404 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1405 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1406 void recover_inline_xattr(struct inode *, struct page *);
1407 void recover_xattr_data(struct inode *, struct page *, block_t);
1408 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1409 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1410 				struct f2fs_summary_block *);
1411 void flush_nat_entries(struct f2fs_sb_info *);
1412 int build_node_manager(struct f2fs_sb_info *);
1413 void destroy_node_manager(struct f2fs_sb_info *);
1414 int __init create_node_manager_caches(void);
1415 void destroy_node_manager_caches(void);
1416 
1417 /*
1418  * segment.c
1419  */
1420 void register_inmem_page(struct inode *, struct page *);
1421 void commit_inmem_pages(struct inode *, bool);
1422 void f2fs_balance_fs(struct f2fs_sb_info *);
1423 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1424 int f2fs_issue_flush(struct f2fs_sb_info *);
1425 int create_flush_cmd_control(struct f2fs_sb_info *);
1426 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1427 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1428 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1429 void clear_prefree_segments(struct f2fs_sb_info *);
1430 void release_discard_addrs(struct f2fs_sb_info *);
1431 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1432 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1433 void allocate_new_segments(struct f2fs_sb_info *);
1434 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1435 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1436 void write_meta_page(struct f2fs_sb_info *, struct page *);
1437 void write_node_page(struct f2fs_sb_info *, struct page *,
1438 				unsigned int, struct f2fs_io_info *);
1439 void write_data_page(struct page *, struct dnode_of_data *,
1440 			struct f2fs_io_info *);
1441 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1442 void recover_data_page(struct f2fs_sb_info *, struct page *,
1443 				struct f2fs_summary *, block_t, block_t);
1444 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1445 		block_t, block_t *, struct f2fs_summary *, int);
1446 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1447 void write_data_summaries(struct f2fs_sb_info *, block_t);
1448 void write_node_summaries(struct f2fs_sb_info *, block_t);
1449 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1450 					int, unsigned int, int);
1451 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1452 int build_segment_manager(struct f2fs_sb_info *);
1453 void destroy_segment_manager(struct f2fs_sb_info *);
1454 int __init create_segment_manager_caches(void);
1455 void destroy_segment_manager_caches(void);
1456 
1457 /*
1458  * checkpoint.c
1459  */
1460 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1461 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1462 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1463 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1464 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1465 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1466 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1467 void release_dirty_inode(struct f2fs_sb_info *);
1468 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1469 int acquire_orphan_inode(struct f2fs_sb_info *);
1470 void release_orphan_inode(struct f2fs_sb_info *);
1471 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1472 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1473 void recover_orphan_inodes(struct f2fs_sb_info *);
1474 int get_valid_checkpoint(struct f2fs_sb_info *);
1475 void update_dirty_page(struct inode *, struct page *);
1476 void add_dirty_dir_inode(struct inode *);
1477 void remove_dirty_dir_inode(struct inode *);
1478 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1479 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1480 void init_ino_entry_info(struct f2fs_sb_info *);
1481 int __init create_checkpoint_caches(void);
1482 void destroy_checkpoint_caches(void);
1483 
1484 /*
1485  * data.c
1486  */
1487 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1488 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1489 						struct f2fs_io_info *);
1490 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1491 						struct f2fs_io_info *);
1492 int reserve_new_block(struct dnode_of_data *);
1493 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1494 void update_extent_cache(struct dnode_of_data *);
1495 struct page *find_data_page(struct inode *, pgoff_t, bool);
1496 struct page *get_lock_data_page(struct inode *, pgoff_t);
1497 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1498 int do_write_data_page(struct page *, struct f2fs_io_info *);
1499 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1500 
1501 /*
1502  * gc.c
1503  */
1504 int start_gc_thread(struct f2fs_sb_info *);
1505 void stop_gc_thread(struct f2fs_sb_info *);
1506 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1507 int f2fs_gc(struct f2fs_sb_info *);
1508 void build_gc_manager(struct f2fs_sb_info *);
1509 
1510 /*
1511  * recovery.c
1512  */
1513 int recover_fsync_data(struct f2fs_sb_info *);
1514 bool space_for_roll_forward(struct f2fs_sb_info *);
1515 
1516 /*
1517  * debug.c
1518  */
1519 #ifdef CONFIG_F2FS_STAT_FS
1520 struct f2fs_stat_info {
1521 	struct list_head stat_list;
1522 	struct f2fs_sb_info *sbi;
1523 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1524 	int main_area_segs, main_area_sections, main_area_zones;
1525 	int hit_ext, total_ext;
1526 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1527 	int nats, dirty_nats, sits, dirty_sits, fnids;
1528 	int total_count, utilization;
1529 	int bg_gc, inline_inode, inline_dir, inmem_pages;
1530 	unsigned int valid_count, valid_node_count, valid_inode_count;
1531 	unsigned int bimodal, avg_vblocks;
1532 	int util_free, util_valid, util_invalid;
1533 	int rsvd_segs, overp_segs;
1534 	int dirty_count, node_pages, meta_pages;
1535 	int prefree_count, call_count, cp_count;
1536 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1537 	int tot_blks, data_blks, node_blks;
1538 	int curseg[NR_CURSEG_TYPE];
1539 	int cursec[NR_CURSEG_TYPE];
1540 	int curzone[NR_CURSEG_TYPE];
1541 
1542 	unsigned int segment_count[2];
1543 	unsigned int block_count[2];
1544 	unsigned int inplace_count;
1545 	unsigned base_mem, cache_mem, page_mem;
1546 };
1547 
1548 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1549 {
1550 	return (struct f2fs_stat_info *)sbi->stat_info;
1551 }
1552 
1553 #define stat_inc_cp_count(si)		((si)->cp_count++)
1554 #define stat_inc_call_count(si)		((si)->call_count++)
1555 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1556 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1557 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1558 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1559 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1560 #define stat_inc_inline_inode(inode)					\
1561 	do {								\
1562 		if (f2fs_has_inline_data(inode))			\
1563 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1564 	} while (0)
1565 #define stat_dec_inline_inode(inode)					\
1566 	do {								\
1567 		if (f2fs_has_inline_data(inode))			\
1568 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1569 	} while (0)
1570 #define stat_inc_inline_dir(inode)					\
1571 	do {								\
1572 		if (f2fs_has_inline_dentry(inode))			\
1573 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1574 	} while (0)
1575 #define stat_dec_inline_dir(inode)					\
1576 	do {								\
1577 		if (f2fs_has_inline_dentry(inode))			\
1578 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1579 	} while (0)
1580 #define stat_inc_seg_type(sbi, curseg)					\
1581 		((sbi)->segment_count[(curseg)->alloc_type]++)
1582 #define stat_inc_block_count(sbi, curseg)				\
1583 		((sbi)->block_count[(curseg)->alloc_type]++)
1584 #define stat_inc_inplace_blocks(sbi)					\
1585 		(atomic_inc(&(sbi)->inplace_count))
1586 #define stat_inc_seg_count(sbi, type)					\
1587 	do {								\
1588 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1589 		(si)->tot_segs++;					\
1590 		if (type == SUM_TYPE_DATA)				\
1591 			si->data_segs++;				\
1592 		else							\
1593 			si->node_segs++;				\
1594 	} while (0)
1595 
1596 #define stat_inc_tot_blk_count(si, blks)				\
1597 	(si->tot_blks += (blks))
1598 
1599 #define stat_inc_data_blk_count(sbi, blks)				\
1600 	do {								\
1601 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1602 		stat_inc_tot_blk_count(si, blks);			\
1603 		si->data_blks += (blks);				\
1604 	} while (0)
1605 
1606 #define stat_inc_node_blk_count(sbi, blks)				\
1607 	do {								\
1608 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1609 		stat_inc_tot_blk_count(si, blks);			\
1610 		si->node_blks += (blks);				\
1611 	} while (0)
1612 
1613 int f2fs_build_stats(struct f2fs_sb_info *);
1614 void f2fs_destroy_stats(struct f2fs_sb_info *);
1615 void __init f2fs_create_root_stats(void);
1616 void f2fs_destroy_root_stats(void);
1617 #else
1618 #define stat_inc_cp_count(si)
1619 #define stat_inc_call_count(si)
1620 #define stat_inc_bggc_count(si)
1621 #define stat_inc_dirty_dir(sbi)
1622 #define stat_dec_dirty_dir(sbi)
1623 #define stat_inc_total_hit(sb)
1624 #define stat_inc_read_hit(sb)
1625 #define stat_inc_inline_inode(inode)
1626 #define stat_dec_inline_inode(inode)
1627 #define stat_inc_inline_dir(inode)
1628 #define stat_dec_inline_dir(inode)
1629 #define stat_inc_seg_type(sbi, curseg)
1630 #define stat_inc_block_count(sbi, curseg)
1631 #define stat_inc_inplace_blocks(sbi)
1632 #define stat_inc_seg_count(si, type)
1633 #define stat_inc_tot_blk_count(si, blks)
1634 #define stat_inc_data_blk_count(si, blks)
1635 #define stat_inc_node_blk_count(sbi, blks)
1636 
1637 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1638 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1639 static inline void __init f2fs_create_root_stats(void) { }
1640 static inline void f2fs_destroy_root_stats(void) { }
1641 #endif
1642 
1643 extern const struct file_operations f2fs_dir_operations;
1644 extern const struct file_operations f2fs_file_operations;
1645 extern const struct inode_operations f2fs_file_inode_operations;
1646 extern const struct address_space_operations f2fs_dblock_aops;
1647 extern const struct address_space_operations f2fs_node_aops;
1648 extern const struct address_space_operations f2fs_meta_aops;
1649 extern const struct inode_operations f2fs_dir_inode_operations;
1650 extern const struct inode_operations f2fs_symlink_inode_operations;
1651 extern const struct inode_operations f2fs_special_inode_operations;
1652 
1653 /*
1654  * inline.c
1655  */
1656 bool f2fs_may_inline(struct inode *);
1657 void read_inline_data(struct page *, struct page *);
1658 int f2fs_read_inline_data(struct inode *, struct page *);
1659 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1660 int f2fs_convert_inline_inode(struct inode *);
1661 int f2fs_write_inline_data(struct inode *, struct page *);
1662 bool recover_inline_data(struct inode *, struct page *);
1663 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1664 							struct page **);
1665 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1666 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1667 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1668 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1669 						struct inode *, struct inode *);
1670 bool f2fs_empty_inline_dir(struct inode *);
1671 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1672 #endif
1673