1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 105 106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 107 typecheck(unsigned long long, b) && \ 108 ((long long)((a) - (b)) > 0)) 109 110 typedef u32 block_t; /* 111 * should not change u32, since it is the on-disk block 112 * address format, __le32. 113 */ 114 typedef u32 nid_t; 115 116 struct f2fs_mount_info { 117 unsigned int opt; 118 int write_io_size_bits; /* Write IO size bits */ 119 block_t root_reserved_blocks; /* root reserved blocks */ 120 kuid_t s_resuid; /* reserved blocks for uid */ 121 kgid_t s_resgid; /* reserved blocks for gid */ 122 int active_logs; /* # of active logs */ 123 int inline_xattr_size; /* inline xattr size */ 124 #ifdef CONFIG_F2FS_FAULT_INJECTION 125 struct f2fs_fault_info fault_info; /* For fault injection */ 126 #endif 127 #ifdef CONFIG_QUOTA 128 /* Names of quota files with journalled quota */ 129 char *s_qf_names[MAXQUOTAS]; 130 int s_jquota_fmt; /* Format of quota to use */ 131 #endif 132 /* For which write hints are passed down to block layer */ 133 int whint_mode; 134 int alloc_mode; /* segment allocation policy */ 135 int fsync_mode; /* fsync policy */ 136 bool test_dummy_encryption; /* test dummy encryption */ 137 }; 138 139 #define F2FS_FEATURE_ENCRYPT 0x0001 140 #define F2FS_FEATURE_BLKZONED 0x0002 141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 143 #define F2FS_FEATURE_PRJQUOTA 0x0010 144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 146 #define F2FS_FEATURE_QUOTA_INO 0x0080 147 #define F2FS_FEATURE_INODE_CRTIME 0x0100 148 #define F2FS_FEATURE_LOST_FOUND 0x0200 149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 150 151 #define F2FS_HAS_FEATURE(sb, mask) \ 152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 153 #define F2FS_SET_FEATURE(sb, mask) \ 154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 155 #define F2FS_CLEAR_FEATURE(sb, mask) \ 156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 157 158 /* 159 * Default values for user and/or group using reserved blocks 160 */ 161 #define F2FS_DEF_RESUID 0 162 #define F2FS_DEF_RESGID 0 163 164 /* 165 * For checkpoint manager 166 */ 167 enum { 168 NAT_BITMAP, 169 SIT_BITMAP 170 }; 171 172 #define CP_UMOUNT 0x00000001 173 #define CP_FASTBOOT 0x00000002 174 #define CP_SYNC 0x00000004 175 #define CP_RECOVERY 0x00000008 176 #define CP_DISCARD 0x00000010 177 #define CP_TRIMMED 0x00000020 178 179 #define DEF_BATCHED_TRIM_SECTIONS 2048 180 #define BATCHED_TRIM_SEGMENTS(sbi) \ 181 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 182 #define BATCHED_TRIM_BLOCKS(sbi) \ 183 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 184 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 185 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 186 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 187 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 188 #define DEF_CP_INTERVAL 60 /* 60 secs */ 189 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 190 191 struct cp_control { 192 int reason; 193 __u64 trim_start; 194 __u64 trim_end; 195 __u64 trim_minlen; 196 }; 197 198 /* 199 * For CP/NAT/SIT/SSA readahead 200 */ 201 enum { 202 META_CP, 203 META_NAT, 204 META_SIT, 205 META_SSA, 206 META_POR, 207 }; 208 209 /* for the list of ino */ 210 enum { 211 ORPHAN_INO, /* for orphan ino list */ 212 APPEND_INO, /* for append ino list */ 213 UPDATE_INO, /* for update ino list */ 214 TRANS_DIR_INO, /* for trasactions dir ino list */ 215 FLUSH_INO, /* for multiple device flushing */ 216 MAX_INO_ENTRY, /* max. list */ 217 }; 218 219 struct ino_entry { 220 struct list_head list; /* list head */ 221 nid_t ino; /* inode number */ 222 unsigned int dirty_device; /* dirty device bitmap */ 223 }; 224 225 /* for the list of inodes to be GCed */ 226 struct inode_entry { 227 struct list_head list; /* list head */ 228 struct inode *inode; /* vfs inode pointer */ 229 }; 230 231 /* for the bitmap indicate blocks to be discarded */ 232 struct discard_entry { 233 struct list_head list; /* list head */ 234 block_t start_blkaddr; /* start blockaddr of current segment */ 235 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 236 }; 237 238 /* default discard granularity of inner discard thread, unit: block count */ 239 #define DEFAULT_DISCARD_GRANULARITY 16 240 241 /* max discard pend list number */ 242 #define MAX_PLIST_NUM 512 243 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 244 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 245 246 enum { 247 D_PREP, 248 D_SUBMIT, 249 D_DONE, 250 }; 251 252 struct discard_info { 253 block_t lstart; /* logical start address */ 254 block_t len; /* length */ 255 block_t start; /* actual start address in dev */ 256 }; 257 258 struct discard_cmd { 259 struct rb_node rb_node; /* rb node located in rb-tree */ 260 union { 261 struct { 262 block_t lstart; /* logical start address */ 263 block_t len; /* length */ 264 block_t start; /* actual start address in dev */ 265 }; 266 struct discard_info di; /* discard info */ 267 268 }; 269 struct list_head list; /* command list */ 270 struct completion wait; /* compleation */ 271 struct block_device *bdev; /* bdev */ 272 unsigned short ref; /* reference count */ 273 unsigned char state; /* state */ 274 int error; /* bio error */ 275 }; 276 277 enum { 278 DPOLICY_BG, 279 DPOLICY_FORCE, 280 DPOLICY_FSTRIM, 281 DPOLICY_UMOUNT, 282 MAX_DPOLICY, 283 }; 284 285 struct discard_policy { 286 int type; /* type of discard */ 287 unsigned int min_interval; /* used for candidates exist */ 288 unsigned int max_interval; /* used for candidates not exist */ 289 unsigned int max_requests; /* # of discards issued per round */ 290 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 291 bool io_aware; /* issue discard in idle time */ 292 bool sync; /* submit discard with REQ_SYNC flag */ 293 unsigned int granularity; /* discard granularity */ 294 }; 295 296 struct discard_cmd_control { 297 struct task_struct *f2fs_issue_discard; /* discard thread */ 298 struct list_head entry_list; /* 4KB discard entry list */ 299 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 300 struct list_head wait_list; /* store on-flushing entries */ 301 struct list_head fstrim_list; /* in-flight discard from fstrim */ 302 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 303 unsigned int discard_wake; /* to wake up discard thread */ 304 struct mutex cmd_lock; 305 unsigned int nr_discards; /* # of discards in the list */ 306 unsigned int max_discards; /* max. discards to be issued */ 307 unsigned int discard_granularity; /* discard granularity */ 308 unsigned int undiscard_blks; /* # of undiscard blocks */ 309 atomic_t issued_discard; /* # of issued discard */ 310 atomic_t issing_discard; /* # of issing discard */ 311 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 312 struct rb_root root; /* root of discard rb-tree */ 313 }; 314 315 /* for the list of fsync inodes, used only during recovery */ 316 struct fsync_inode_entry { 317 struct list_head list; /* list head */ 318 struct inode *inode; /* vfs inode pointer */ 319 block_t blkaddr; /* block address locating the last fsync */ 320 block_t last_dentry; /* block address locating the last dentry */ 321 }; 322 323 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 324 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 325 326 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 327 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 328 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 329 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 330 331 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 332 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 333 334 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 335 { 336 int before = nats_in_cursum(journal); 337 338 journal->n_nats = cpu_to_le16(before + i); 339 return before; 340 } 341 342 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 343 { 344 int before = sits_in_cursum(journal); 345 346 journal->n_sits = cpu_to_le16(before + i); 347 return before; 348 } 349 350 static inline bool __has_cursum_space(struct f2fs_journal *journal, 351 int size, int type) 352 { 353 if (type == NAT_JOURNAL) 354 return size <= MAX_NAT_JENTRIES(journal); 355 return size <= MAX_SIT_JENTRIES(journal); 356 } 357 358 /* 359 * ioctl commands 360 */ 361 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 362 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 363 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 364 365 #define F2FS_IOCTL_MAGIC 0xf5 366 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 367 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 368 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 369 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 370 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 371 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 372 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 373 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 374 struct f2fs_defragment) 375 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 376 struct f2fs_move_range) 377 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 378 struct f2fs_flush_device) 379 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 380 struct f2fs_gc_range) 381 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 382 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 383 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 384 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 385 386 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 387 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 388 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 389 390 /* 391 * should be same as XFS_IOC_GOINGDOWN. 392 * Flags for going down operation used by FS_IOC_GOINGDOWN 393 */ 394 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 395 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 396 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 397 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 398 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 399 400 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 401 /* 402 * ioctl commands in 32 bit emulation 403 */ 404 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 405 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 406 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 407 #endif 408 409 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 410 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 411 412 struct f2fs_gc_range { 413 u32 sync; 414 u64 start; 415 u64 len; 416 }; 417 418 struct f2fs_defragment { 419 u64 start; 420 u64 len; 421 }; 422 423 struct f2fs_move_range { 424 u32 dst_fd; /* destination fd */ 425 u64 pos_in; /* start position in src_fd */ 426 u64 pos_out; /* start position in dst_fd */ 427 u64 len; /* size to move */ 428 }; 429 430 struct f2fs_flush_device { 431 u32 dev_num; /* device number to flush */ 432 u32 segments; /* # of segments to flush */ 433 }; 434 435 /* for inline stuff */ 436 #define DEF_INLINE_RESERVED_SIZE 1 437 #define DEF_MIN_INLINE_SIZE 1 438 static inline int get_extra_isize(struct inode *inode); 439 static inline int get_inline_xattr_addrs(struct inode *inode); 440 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 441 (CUR_ADDRS_PER_INODE(inode) - \ 442 get_inline_xattr_addrs(inode) - \ 443 DEF_INLINE_RESERVED_SIZE)) 444 445 /* for inline dir */ 446 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 447 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 448 BITS_PER_BYTE + 1)) 449 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 450 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 451 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 452 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 453 NR_INLINE_DENTRY(inode) + \ 454 INLINE_DENTRY_BITMAP_SIZE(inode))) 455 456 /* 457 * For INODE and NODE manager 458 */ 459 /* for directory operations */ 460 struct f2fs_dentry_ptr { 461 struct inode *inode; 462 void *bitmap; 463 struct f2fs_dir_entry *dentry; 464 __u8 (*filename)[F2FS_SLOT_LEN]; 465 int max; 466 int nr_bitmap; 467 }; 468 469 static inline void make_dentry_ptr_block(struct inode *inode, 470 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 471 { 472 d->inode = inode; 473 d->max = NR_DENTRY_IN_BLOCK; 474 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 475 d->bitmap = t->dentry_bitmap; 476 d->dentry = t->dentry; 477 d->filename = t->filename; 478 } 479 480 static inline void make_dentry_ptr_inline(struct inode *inode, 481 struct f2fs_dentry_ptr *d, void *t) 482 { 483 int entry_cnt = NR_INLINE_DENTRY(inode); 484 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 485 int reserved_size = INLINE_RESERVED_SIZE(inode); 486 487 d->inode = inode; 488 d->max = entry_cnt; 489 d->nr_bitmap = bitmap_size; 490 d->bitmap = t; 491 d->dentry = t + bitmap_size + reserved_size; 492 d->filename = t + bitmap_size + reserved_size + 493 SIZE_OF_DIR_ENTRY * entry_cnt; 494 } 495 496 /* 497 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 498 * as its node offset to distinguish from index node blocks. 499 * But some bits are used to mark the node block. 500 */ 501 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 502 >> OFFSET_BIT_SHIFT) 503 enum { 504 ALLOC_NODE, /* allocate a new node page if needed */ 505 LOOKUP_NODE, /* look up a node without readahead */ 506 LOOKUP_NODE_RA, /* 507 * look up a node with readahead called 508 * by get_data_block. 509 */ 510 }; 511 512 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 513 514 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 515 516 /* vector size for gang look-up from extent cache that consists of radix tree */ 517 #define EXT_TREE_VEC_SIZE 64 518 519 /* for in-memory extent cache entry */ 520 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 521 522 /* number of extent info in extent cache we try to shrink */ 523 #define EXTENT_CACHE_SHRINK_NUMBER 128 524 525 struct rb_entry { 526 struct rb_node rb_node; /* rb node located in rb-tree */ 527 unsigned int ofs; /* start offset of the entry */ 528 unsigned int len; /* length of the entry */ 529 }; 530 531 struct extent_info { 532 unsigned int fofs; /* start offset in a file */ 533 unsigned int len; /* length of the extent */ 534 u32 blk; /* start block address of the extent */ 535 }; 536 537 struct extent_node { 538 struct rb_node rb_node; 539 union { 540 struct { 541 unsigned int fofs; 542 unsigned int len; 543 u32 blk; 544 }; 545 struct extent_info ei; /* extent info */ 546 547 }; 548 struct list_head list; /* node in global extent list of sbi */ 549 struct extent_tree *et; /* extent tree pointer */ 550 }; 551 552 struct extent_tree { 553 nid_t ino; /* inode number */ 554 struct rb_root root; /* root of extent info rb-tree */ 555 struct extent_node *cached_en; /* recently accessed extent node */ 556 struct extent_info largest; /* largested extent info */ 557 struct list_head list; /* to be used by sbi->zombie_list */ 558 rwlock_t lock; /* protect extent info rb-tree */ 559 atomic_t node_cnt; /* # of extent node in rb-tree*/ 560 }; 561 562 /* 563 * This structure is taken from ext4_map_blocks. 564 * 565 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 566 */ 567 #define F2FS_MAP_NEW (1 << BH_New) 568 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 569 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 570 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 571 F2FS_MAP_UNWRITTEN) 572 573 struct f2fs_map_blocks { 574 block_t m_pblk; 575 block_t m_lblk; 576 unsigned int m_len; 577 unsigned int m_flags; 578 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 579 pgoff_t *m_next_extent; /* point to next possible extent */ 580 int m_seg_type; 581 }; 582 583 /* for flag in get_data_block */ 584 enum { 585 F2FS_GET_BLOCK_DEFAULT, 586 F2FS_GET_BLOCK_FIEMAP, 587 F2FS_GET_BLOCK_BMAP, 588 F2FS_GET_BLOCK_PRE_DIO, 589 F2FS_GET_BLOCK_PRE_AIO, 590 F2FS_GET_BLOCK_PRECACHE, 591 }; 592 593 /* 594 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 595 */ 596 #define FADVISE_COLD_BIT 0x01 597 #define FADVISE_LOST_PINO_BIT 0x02 598 #define FADVISE_ENCRYPT_BIT 0x04 599 #define FADVISE_ENC_NAME_BIT 0x08 600 #define FADVISE_KEEP_SIZE_BIT 0x10 601 #define FADVISE_HOT_BIT 0x20 602 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 603 604 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 605 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 606 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 607 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 608 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 609 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 610 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 611 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 612 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 613 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 614 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 615 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 616 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 617 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 618 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 619 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 620 621 #define DEF_DIR_LEVEL 0 622 623 struct f2fs_inode_info { 624 struct inode vfs_inode; /* serve a vfs inode */ 625 unsigned long i_flags; /* keep an inode flags for ioctl */ 626 unsigned char i_advise; /* use to give file attribute hints */ 627 unsigned char i_dir_level; /* use for dentry level for large dir */ 628 union { 629 unsigned int i_current_depth; /* only for directory depth */ 630 unsigned short i_gc_failures; /* only for regular file */ 631 }; 632 unsigned int i_pino; /* parent inode number */ 633 umode_t i_acl_mode; /* keep file acl mode temporarily */ 634 635 /* Use below internally in f2fs*/ 636 unsigned long flags; /* use to pass per-file flags */ 637 struct rw_semaphore i_sem; /* protect fi info */ 638 atomic_t dirty_pages; /* # of dirty pages */ 639 f2fs_hash_t chash; /* hash value of given file name */ 640 unsigned int clevel; /* maximum level of given file name */ 641 struct task_struct *task; /* lookup and create consistency */ 642 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 643 nid_t i_xattr_nid; /* node id that contains xattrs */ 644 loff_t last_disk_size; /* lastly written file size */ 645 646 #ifdef CONFIG_QUOTA 647 struct dquot *i_dquot[MAXQUOTAS]; 648 649 /* quota space reservation, managed internally by quota code */ 650 qsize_t i_reserved_quota; 651 #endif 652 struct list_head dirty_list; /* dirty list for dirs and files */ 653 struct list_head gdirty_list; /* linked in global dirty list */ 654 struct list_head inmem_ilist; /* list for inmem inodes */ 655 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 656 struct task_struct *inmem_task; /* store inmemory task */ 657 struct mutex inmem_lock; /* lock for inmemory pages */ 658 struct extent_tree *extent_tree; /* cached extent_tree entry */ 659 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 660 struct rw_semaphore i_mmap_sem; 661 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 662 663 int i_extra_isize; /* size of extra space located in i_addr */ 664 kprojid_t i_projid; /* id for project quota */ 665 int i_inline_xattr_size; /* inline xattr size */ 666 struct timespec i_crtime; /* inode creation time */ 667 }; 668 669 static inline void get_extent_info(struct extent_info *ext, 670 struct f2fs_extent *i_ext) 671 { 672 ext->fofs = le32_to_cpu(i_ext->fofs); 673 ext->blk = le32_to_cpu(i_ext->blk); 674 ext->len = le32_to_cpu(i_ext->len); 675 } 676 677 static inline void set_raw_extent(struct extent_info *ext, 678 struct f2fs_extent *i_ext) 679 { 680 i_ext->fofs = cpu_to_le32(ext->fofs); 681 i_ext->blk = cpu_to_le32(ext->blk); 682 i_ext->len = cpu_to_le32(ext->len); 683 } 684 685 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 686 u32 blk, unsigned int len) 687 { 688 ei->fofs = fofs; 689 ei->blk = blk; 690 ei->len = len; 691 } 692 693 static inline bool __is_discard_mergeable(struct discard_info *back, 694 struct discard_info *front) 695 { 696 return back->lstart + back->len == front->lstart; 697 } 698 699 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 700 struct discard_info *back) 701 { 702 return __is_discard_mergeable(back, cur); 703 } 704 705 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 706 struct discard_info *front) 707 { 708 return __is_discard_mergeable(cur, front); 709 } 710 711 static inline bool __is_extent_mergeable(struct extent_info *back, 712 struct extent_info *front) 713 { 714 return (back->fofs + back->len == front->fofs && 715 back->blk + back->len == front->blk); 716 } 717 718 static inline bool __is_back_mergeable(struct extent_info *cur, 719 struct extent_info *back) 720 { 721 return __is_extent_mergeable(back, cur); 722 } 723 724 static inline bool __is_front_mergeable(struct extent_info *cur, 725 struct extent_info *front) 726 { 727 return __is_extent_mergeable(cur, front); 728 } 729 730 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 731 static inline void __try_update_largest_extent(struct inode *inode, 732 struct extent_tree *et, struct extent_node *en) 733 { 734 if (en->ei.len > et->largest.len) { 735 et->largest = en->ei; 736 f2fs_mark_inode_dirty_sync(inode, true); 737 } 738 } 739 740 /* 741 * For free nid management 742 */ 743 enum nid_state { 744 FREE_NID, /* newly added to free nid list */ 745 PREALLOC_NID, /* it is preallocated */ 746 MAX_NID_STATE, 747 }; 748 749 struct f2fs_nm_info { 750 block_t nat_blkaddr; /* base disk address of NAT */ 751 nid_t max_nid; /* maximum possible node ids */ 752 nid_t available_nids; /* # of available node ids */ 753 nid_t next_scan_nid; /* the next nid to be scanned */ 754 unsigned int ram_thresh; /* control the memory footprint */ 755 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 756 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 757 758 /* NAT cache management */ 759 struct radix_tree_root nat_root;/* root of the nat entry cache */ 760 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 761 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 762 struct list_head nat_entries; /* cached nat entry list (clean) */ 763 unsigned int nat_cnt; /* the # of cached nat entries */ 764 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 765 unsigned int nat_blocks; /* # of nat blocks */ 766 767 /* free node ids management */ 768 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 769 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 770 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 771 spinlock_t nid_list_lock; /* protect nid lists ops */ 772 struct mutex build_lock; /* lock for build free nids */ 773 unsigned char **free_nid_bitmap; 774 unsigned char *nat_block_bitmap; 775 unsigned short *free_nid_count; /* free nid count of NAT block */ 776 777 /* for checkpoint */ 778 char *nat_bitmap; /* NAT bitmap pointer */ 779 780 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 781 unsigned char *nat_bits; /* NAT bits blocks */ 782 unsigned char *full_nat_bits; /* full NAT pages */ 783 unsigned char *empty_nat_bits; /* empty NAT pages */ 784 #ifdef CONFIG_F2FS_CHECK_FS 785 char *nat_bitmap_mir; /* NAT bitmap mirror */ 786 #endif 787 int bitmap_size; /* bitmap size */ 788 }; 789 790 /* 791 * this structure is used as one of function parameters. 792 * all the information are dedicated to a given direct node block determined 793 * by the data offset in a file. 794 */ 795 struct dnode_of_data { 796 struct inode *inode; /* vfs inode pointer */ 797 struct page *inode_page; /* its inode page, NULL is possible */ 798 struct page *node_page; /* cached direct node page */ 799 nid_t nid; /* node id of the direct node block */ 800 unsigned int ofs_in_node; /* data offset in the node page */ 801 bool inode_page_locked; /* inode page is locked or not */ 802 bool node_changed; /* is node block changed */ 803 char cur_level; /* level of hole node page */ 804 char max_level; /* level of current page located */ 805 block_t data_blkaddr; /* block address of the node block */ 806 }; 807 808 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 809 struct page *ipage, struct page *npage, nid_t nid) 810 { 811 memset(dn, 0, sizeof(*dn)); 812 dn->inode = inode; 813 dn->inode_page = ipage; 814 dn->node_page = npage; 815 dn->nid = nid; 816 } 817 818 /* 819 * For SIT manager 820 * 821 * By default, there are 6 active log areas across the whole main area. 822 * When considering hot and cold data separation to reduce cleaning overhead, 823 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 824 * respectively. 825 * In the current design, you should not change the numbers intentionally. 826 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 827 * logs individually according to the underlying devices. (default: 6) 828 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 829 * data and 8 for node logs. 830 */ 831 #define NR_CURSEG_DATA_TYPE (3) 832 #define NR_CURSEG_NODE_TYPE (3) 833 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 834 835 enum { 836 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 837 CURSEG_WARM_DATA, /* data blocks */ 838 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 839 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 840 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 841 CURSEG_COLD_NODE, /* indirect node blocks */ 842 NO_CHECK_TYPE, 843 }; 844 845 struct flush_cmd { 846 struct completion wait; 847 struct llist_node llnode; 848 nid_t ino; 849 int ret; 850 }; 851 852 struct flush_cmd_control { 853 struct task_struct *f2fs_issue_flush; /* flush thread */ 854 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 855 atomic_t issued_flush; /* # of issued flushes */ 856 atomic_t issing_flush; /* # of issing flushes */ 857 struct llist_head issue_list; /* list for command issue */ 858 struct llist_node *dispatch_list; /* list for command dispatch */ 859 }; 860 861 struct f2fs_sm_info { 862 struct sit_info *sit_info; /* whole segment information */ 863 struct free_segmap_info *free_info; /* free segment information */ 864 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 865 struct curseg_info *curseg_array; /* active segment information */ 866 867 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 868 869 block_t seg0_blkaddr; /* block address of 0'th segment */ 870 block_t main_blkaddr; /* start block address of main area */ 871 block_t ssa_blkaddr; /* start block address of SSA area */ 872 873 unsigned int segment_count; /* total # of segments */ 874 unsigned int main_segments; /* # of segments in main area */ 875 unsigned int reserved_segments; /* # of reserved segments */ 876 unsigned int ovp_segments; /* # of overprovision segments */ 877 878 /* a threshold to reclaim prefree segments */ 879 unsigned int rec_prefree_segments; 880 881 /* for batched trimming */ 882 unsigned int trim_sections; /* # of sections to trim */ 883 884 struct list_head sit_entry_set; /* sit entry set list */ 885 886 unsigned int ipu_policy; /* in-place-update policy */ 887 unsigned int min_ipu_util; /* in-place-update threshold */ 888 unsigned int min_fsync_blocks; /* threshold for fsync */ 889 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 890 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 891 892 /* for flush command control */ 893 struct flush_cmd_control *fcc_info; 894 895 /* for discard command control */ 896 struct discard_cmd_control *dcc_info; 897 }; 898 899 /* 900 * For superblock 901 */ 902 /* 903 * COUNT_TYPE for monitoring 904 * 905 * f2fs monitors the number of several block types such as on-writeback, 906 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 907 */ 908 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 909 enum count_type { 910 F2FS_DIRTY_DENTS, 911 F2FS_DIRTY_DATA, 912 F2FS_DIRTY_QDATA, 913 F2FS_DIRTY_NODES, 914 F2FS_DIRTY_META, 915 F2FS_INMEM_PAGES, 916 F2FS_DIRTY_IMETA, 917 F2FS_WB_CP_DATA, 918 F2FS_WB_DATA, 919 NR_COUNT_TYPE, 920 }; 921 922 /* 923 * The below are the page types of bios used in submit_bio(). 924 * The available types are: 925 * DATA User data pages. It operates as async mode. 926 * NODE Node pages. It operates as async mode. 927 * META FS metadata pages such as SIT, NAT, CP. 928 * NR_PAGE_TYPE The number of page types. 929 * META_FLUSH Make sure the previous pages are written 930 * with waiting the bio's completion 931 * ... Only can be used with META. 932 */ 933 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 934 enum page_type { 935 DATA, 936 NODE, 937 META, 938 NR_PAGE_TYPE, 939 META_FLUSH, 940 INMEM, /* the below types are used by tracepoints only. */ 941 INMEM_DROP, 942 INMEM_INVALIDATE, 943 INMEM_REVOKE, 944 IPU, 945 OPU, 946 }; 947 948 enum temp_type { 949 HOT = 0, /* must be zero for meta bio */ 950 WARM, 951 COLD, 952 NR_TEMP_TYPE, 953 }; 954 955 enum need_lock_type { 956 LOCK_REQ = 0, 957 LOCK_DONE, 958 LOCK_RETRY, 959 }; 960 961 enum cp_reason_type { 962 CP_NO_NEEDED, 963 CP_NON_REGULAR, 964 CP_HARDLINK, 965 CP_SB_NEED_CP, 966 CP_WRONG_PINO, 967 CP_NO_SPC_ROLL, 968 CP_NODE_NEED_CP, 969 CP_FASTBOOT_MODE, 970 CP_SPEC_LOG_NUM, 971 CP_RECOVER_DIR, 972 }; 973 974 enum iostat_type { 975 APP_DIRECT_IO, /* app direct IOs */ 976 APP_BUFFERED_IO, /* app buffered IOs */ 977 APP_WRITE_IO, /* app write IOs */ 978 APP_MAPPED_IO, /* app mapped IOs */ 979 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 980 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 981 FS_META_IO, /* meta IOs from kworker/reclaimer */ 982 FS_GC_DATA_IO, /* data IOs from forground gc */ 983 FS_GC_NODE_IO, /* node IOs from forground gc */ 984 FS_CP_DATA_IO, /* data IOs from checkpoint */ 985 FS_CP_NODE_IO, /* node IOs from checkpoint */ 986 FS_CP_META_IO, /* meta IOs from checkpoint */ 987 FS_DISCARD, /* discard */ 988 NR_IO_TYPE, 989 }; 990 991 struct f2fs_io_info { 992 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 993 nid_t ino; /* inode number */ 994 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 995 enum temp_type temp; /* contains HOT/WARM/COLD */ 996 int op; /* contains REQ_OP_ */ 997 int op_flags; /* req_flag_bits */ 998 block_t new_blkaddr; /* new block address to be written */ 999 block_t old_blkaddr; /* old block address before Cow */ 1000 struct page *page; /* page to be written */ 1001 struct page *encrypted_page; /* encrypted page */ 1002 struct list_head list; /* serialize IOs */ 1003 bool submitted; /* indicate IO submission */ 1004 int need_lock; /* indicate we need to lock cp_rwsem */ 1005 bool in_list; /* indicate fio is in io_list */ 1006 bool is_meta; /* indicate borrow meta inode mapping or not */ 1007 enum iostat_type io_type; /* io type */ 1008 struct writeback_control *io_wbc; /* writeback control */ 1009 }; 1010 1011 #define is_read_io(rw) ((rw) == READ) 1012 struct f2fs_bio_info { 1013 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1014 struct bio *bio; /* bios to merge */ 1015 sector_t last_block_in_bio; /* last block number */ 1016 struct f2fs_io_info fio; /* store buffered io info. */ 1017 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1018 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1019 struct list_head io_list; /* track fios */ 1020 }; 1021 1022 #define FDEV(i) (sbi->devs[i]) 1023 #define RDEV(i) (raw_super->devs[i]) 1024 struct f2fs_dev_info { 1025 struct block_device *bdev; 1026 char path[MAX_PATH_LEN]; 1027 unsigned int total_segments; 1028 block_t start_blk; 1029 block_t end_blk; 1030 #ifdef CONFIG_BLK_DEV_ZONED 1031 unsigned int nr_blkz; /* Total number of zones */ 1032 u8 *blkz_type; /* Array of zones type */ 1033 #endif 1034 }; 1035 1036 enum inode_type { 1037 DIR_INODE, /* for dirty dir inode */ 1038 FILE_INODE, /* for dirty regular/symlink inode */ 1039 DIRTY_META, /* for all dirtied inode metadata */ 1040 ATOMIC_FILE, /* for all atomic files */ 1041 NR_INODE_TYPE, 1042 }; 1043 1044 /* for inner inode cache management */ 1045 struct inode_management { 1046 struct radix_tree_root ino_root; /* ino entry array */ 1047 spinlock_t ino_lock; /* for ino entry lock */ 1048 struct list_head ino_list; /* inode list head */ 1049 unsigned long ino_num; /* number of entries */ 1050 }; 1051 1052 /* For s_flag in struct f2fs_sb_info */ 1053 enum { 1054 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1055 SBI_IS_CLOSE, /* specify unmounting */ 1056 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1057 SBI_POR_DOING, /* recovery is doing or not */ 1058 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1059 SBI_NEED_CP, /* need to checkpoint */ 1060 }; 1061 1062 enum { 1063 CP_TIME, 1064 REQ_TIME, 1065 MAX_TIME, 1066 }; 1067 1068 enum { 1069 WHINT_MODE_OFF, /* not pass down write hints */ 1070 WHINT_MODE_USER, /* try to pass down hints given by users */ 1071 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1072 }; 1073 1074 enum { 1075 ALLOC_MODE_DEFAULT, /* stay default */ 1076 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1077 }; 1078 1079 enum fsync_mode { 1080 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1081 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1082 }; 1083 1084 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1085 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1086 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1087 #else 1088 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1089 #endif 1090 1091 struct f2fs_sb_info { 1092 struct super_block *sb; /* pointer to VFS super block */ 1093 struct proc_dir_entry *s_proc; /* proc entry */ 1094 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1095 struct rw_semaphore sb_lock; /* lock for raw super block */ 1096 int valid_super_block; /* valid super block no */ 1097 unsigned long s_flag; /* flags for sbi */ 1098 1099 #ifdef CONFIG_BLK_DEV_ZONED 1100 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1101 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1102 #endif 1103 1104 /* for node-related operations */ 1105 struct f2fs_nm_info *nm_info; /* node manager */ 1106 struct inode *node_inode; /* cache node blocks */ 1107 1108 /* for segment-related operations */ 1109 struct f2fs_sm_info *sm_info; /* segment manager */ 1110 1111 /* for bio operations */ 1112 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1113 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1114 /* bio ordering for NODE/DATA */ 1115 mempool_t *write_io_dummy; /* Dummy pages */ 1116 1117 /* for checkpoint */ 1118 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1119 int cur_cp_pack; /* remain current cp pack */ 1120 spinlock_t cp_lock; /* for flag in ckpt */ 1121 struct inode *meta_inode; /* cache meta blocks */ 1122 struct mutex cp_mutex; /* checkpoint procedure lock */ 1123 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1124 struct rw_semaphore node_write; /* locking node writes */ 1125 struct rw_semaphore node_change; /* locking node change */ 1126 wait_queue_head_t cp_wait; 1127 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1128 long interval_time[MAX_TIME]; /* to store thresholds */ 1129 1130 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1131 1132 /* for orphan inode, use 0'th array */ 1133 unsigned int max_orphans; /* max orphan inodes */ 1134 1135 /* for inode management */ 1136 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1137 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1138 1139 /* for extent tree cache */ 1140 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1141 struct mutex extent_tree_lock; /* locking extent radix tree */ 1142 struct list_head extent_list; /* lru list for shrinker */ 1143 spinlock_t extent_lock; /* locking extent lru list */ 1144 atomic_t total_ext_tree; /* extent tree count */ 1145 struct list_head zombie_list; /* extent zombie tree list */ 1146 atomic_t total_zombie_tree; /* extent zombie tree count */ 1147 atomic_t total_ext_node; /* extent info count */ 1148 1149 /* basic filesystem units */ 1150 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1151 unsigned int log_blocksize; /* log2 block size */ 1152 unsigned int blocksize; /* block size */ 1153 unsigned int root_ino_num; /* root inode number*/ 1154 unsigned int node_ino_num; /* node inode number*/ 1155 unsigned int meta_ino_num; /* meta inode number*/ 1156 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1157 unsigned int blocks_per_seg; /* blocks per segment */ 1158 unsigned int segs_per_sec; /* segments per section */ 1159 unsigned int secs_per_zone; /* sections per zone */ 1160 unsigned int total_sections; /* total section count */ 1161 unsigned int total_node_count; /* total node block count */ 1162 unsigned int total_valid_node_count; /* valid node block count */ 1163 loff_t max_file_blocks; /* max block index of file */ 1164 int dir_level; /* directory level */ 1165 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1166 int readdir_ra; /* readahead inode in readdir */ 1167 1168 block_t user_block_count; /* # of user blocks */ 1169 block_t total_valid_block_count; /* # of valid blocks */ 1170 block_t discard_blks; /* discard command candidats */ 1171 block_t last_valid_block_count; /* for recovery */ 1172 block_t reserved_blocks; /* configurable reserved blocks */ 1173 block_t current_reserved_blocks; /* current reserved blocks */ 1174 1175 unsigned int nquota_files; /* # of quota sysfile */ 1176 1177 u32 s_next_generation; /* for NFS support */ 1178 1179 /* # of pages, see count_type */ 1180 atomic_t nr_pages[NR_COUNT_TYPE]; 1181 /* # of allocated blocks */ 1182 struct percpu_counter alloc_valid_block_count; 1183 1184 /* writeback control */ 1185 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1186 1187 /* valid inode count */ 1188 struct percpu_counter total_valid_inode_count; 1189 1190 struct f2fs_mount_info mount_opt; /* mount options */ 1191 1192 /* for cleaning operations */ 1193 struct mutex gc_mutex; /* mutex for GC */ 1194 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1195 unsigned int cur_victim_sec; /* current victim section num */ 1196 1197 /* threshold for converting bg victims for fg */ 1198 u64 fggc_threshold; 1199 1200 /* threshold for gc trials on pinned files */ 1201 u64 gc_pin_file_threshold; 1202 1203 /* maximum # of trials to find a victim segment for SSR and GC */ 1204 unsigned int max_victim_search; 1205 1206 /* 1207 * for stat information. 1208 * one is for the LFS mode, and the other is for the SSR mode. 1209 */ 1210 #ifdef CONFIG_F2FS_STAT_FS 1211 struct f2fs_stat_info *stat_info; /* FS status information */ 1212 unsigned int segment_count[2]; /* # of allocated segments */ 1213 unsigned int block_count[2]; /* # of allocated blocks */ 1214 atomic_t inplace_count; /* # of inplace update */ 1215 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1216 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1217 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1218 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1219 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1220 atomic_t inline_inode; /* # of inline_data inodes */ 1221 atomic_t inline_dir; /* # of inline_dentry inodes */ 1222 atomic_t aw_cnt; /* # of atomic writes */ 1223 atomic_t vw_cnt; /* # of volatile writes */ 1224 atomic_t max_aw_cnt; /* max # of atomic writes */ 1225 atomic_t max_vw_cnt; /* max # of volatile writes */ 1226 int bg_gc; /* background gc calls */ 1227 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1228 #endif 1229 spinlock_t stat_lock; /* lock for stat operations */ 1230 1231 /* For app/fs IO statistics */ 1232 spinlock_t iostat_lock; 1233 unsigned long long write_iostat[NR_IO_TYPE]; 1234 bool iostat_enable; 1235 1236 /* For sysfs suppport */ 1237 struct kobject s_kobj; 1238 struct completion s_kobj_unregister; 1239 1240 /* For shrinker support */ 1241 struct list_head s_list; 1242 int s_ndevs; /* number of devices */ 1243 struct f2fs_dev_info *devs; /* for device list */ 1244 unsigned int dirty_device; /* for checkpoint data flush */ 1245 spinlock_t dev_lock; /* protect dirty_device */ 1246 struct mutex umount_mutex; 1247 unsigned int shrinker_run_no; 1248 1249 /* For write statistics */ 1250 u64 sectors_written_start; 1251 u64 kbytes_written; 1252 1253 /* Reference to checksum algorithm driver via cryptoapi */ 1254 struct crypto_shash *s_chksum_driver; 1255 1256 /* Precomputed FS UUID checksum for seeding other checksums */ 1257 __u32 s_chksum_seed; 1258 }; 1259 1260 #ifdef CONFIG_F2FS_FAULT_INJECTION 1261 #define f2fs_show_injection_info(type) \ 1262 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1263 KERN_INFO, fault_name[type], \ 1264 __func__, __builtin_return_address(0)) 1265 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1266 { 1267 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1268 1269 if (!ffi->inject_rate) 1270 return false; 1271 1272 if (!IS_FAULT_SET(ffi, type)) 1273 return false; 1274 1275 atomic_inc(&ffi->inject_ops); 1276 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1277 atomic_set(&ffi->inject_ops, 0); 1278 return true; 1279 } 1280 return false; 1281 } 1282 #endif 1283 1284 /* For write statistics. Suppose sector size is 512 bytes, 1285 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1286 */ 1287 #define BD_PART_WRITTEN(s) \ 1288 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1289 (s)->sectors_written_start) >> 1) 1290 1291 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1292 { 1293 sbi->last_time[type] = jiffies; 1294 } 1295 1296 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1297 { 1298 unsigned long interval = sbi->interval_time[type] * HZ; 1299 1300 return time_after(jiffies, sbi->last_time[type] + interval); 1301 } 1302 1303 static inline bool is_idle(struct f2fs_sb_info *sbi) 1304 { 1305 struct block_device *bdev = sbi->sb->s_bdev; 1306 struct request_queue *q = bdev_get_queue(bdev); 1307 struct request_list *rl = &q->root_rl; 1308 1309 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1310 return 0; 1311 1312 return f2fs_time_over(sbi, REQ_TIME); 1313 } 1314 1315 /* 1316 * Inline functions 1317 */ 1318 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1319 const void *address, unsigned int length) 1320 { 1321 struct { 1322 struct shash_desc shash; 1323 char ctx[4]; 1324 } desc; 1325 int err; 1326 1327 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1328 1329 desc.shash.tfm = sbi->s_chksum_driver; 1330 desc.shash.flags = 0; 1331 *(u32 *)desc.ctx = crc; 1332 1333 err = crypto_shash_update(&desc.shash, address, length); 1334 BUG_ON(err); 1335 1336 return *(u32 *)desc.ctx; 1337 } 1338 1339 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1340 unsigned int length) 1341 { 1342 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1343 } 1344 1345 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1346 void *buf, size_t buf_size) 1347 { 1348 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1349 } 1350 1351 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1352 const void *address, unsigned int length) 1353 { 1354 return __f2fs_crc32(sbi, crc, address, length); 1355 } 1356 1357 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1358 { 1359 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1360 } 1361 1362 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1363 { 1364 return sb->s_fs_info; 1365 } 1366 1367 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1368 { 1369 return F2FS_SB(inode->i_sb); 1370 } 1371 1372 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1373 { 1374 return F2FS_I_SB(mapping->host); 1375 } 1376 1377 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1378 { 1379 return F2FS_M_SB(page->mapping); 1380 } 1381 1382 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1383 { 1384 return (struct f2fs_super_block *)(sbi->raw_super); 1385 } 1386 1387 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1388 { 1389 return (struct f2fs_checkpoint *)(sbi->ckpt); 1390 } 1391 1392 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1393 { 1394 return (struct f2fs_node *)page_address(page); 1395 } 1396 1397 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1398 { 1399 return &((struct f2fs_node *)page_address(page))->i; 1400 } 1401 1402 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1403 { 1404 return (struct f2fs_nm_info *)(sbi->nm_info); 1405 } 1406 1407 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1408 { 1409 return (struct f2fs_sm_info *)(sbi->sm_info); 1410 } 1411 1412 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1413 { 1414 return (struct sit_info *)(SM_I(sbi)->sit_info); 1415 } 1416 1417 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1418 { 1419 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1420 } 1421 1422 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1423 { 1424 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1425 } 1426 1427 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1428 { 1429 return sbi->meta_inode->i_mapping; 1430 } 1431 1432 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1433 { 1434 return sbi->node_inode->i_mapping; 1435 } 1436 1437 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1438 { 1439 return test_bit(type, &sbi->s_flag); 1440 } 1441 1442 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1443 { 1444 set_bit(type, &sbi->s_flag); 1445 } 1446 1447 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1448 { 1449 clear_bit(type, &sbi->s_flag); 1450 } 1451 1452 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1453 { 1454 return le64_to_cpu(cp->checkpoint_ver); 1455 } 1456 1457 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1458 { 1459 if (type < F2FS_MAX_QUOTAS) 1460 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1461 return 0; 1462 } 1463 1464 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1465 { 1466 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1467 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1468 } 1469 1470 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1471 { 1472 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1473 1474 return ckpt_flags & f; 1475 } 1476 1477 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1478 { 1479 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1480 } 1481 1482 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1483 { 1484 unsigned int ckpt_flags; 1485 1486 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1487 ckpt_flags |= f; 1488 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1489 } 1490 1491 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1492 { 1493 unsigned long flags; 1494 1495 spin_lock_irqsave(&sbi->cp_lock, flags); 1496 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1497 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1498 } 1499 1500 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1501 { 1502 unsigned int ckpt_flags; 1503 1504 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1505 ckpt_flags &= (~f); 1506 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1507 } 1508 1509 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1510 { 1511 unsigned long flags; 1512 1513 spin_lock_irqsave(&sbi->cp_lock, flags); 1514 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1515 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1516 } 1517 1518 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1519 { 1520 unsigned long flags; 1521 1522 set_sbi_flag(sbi, SBI_NEED_FSCK); 1523 1524 if (lock) 1525 spin_lock_irqsave(&sbi->cp_lock, flags); 1526 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1527 kfree(NM_I(sbi)->nat_bits); 1528 NM_I(sbi)->nat_bits = NULL; 1529 if (lock) 1530 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1531 } 1532 1533 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1534 struct cp_control *cpc) 1535 { 1536 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1537 1538 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1539 } 1540 1541 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1542 { 1543 down_read(&sbi->cp_rwsem); 1544 } 1545 1546 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1547 { 1548 return down_read_trylock(&sbi->cp_rwsem); 1549 } 1550 1551 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1552 { 1553 up_read(&sbi->cp_rwsem); 1554 } 1555 1556 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1557 { 1558 down_write(&sbi->cp_rwsem); 1559 } 1560 1561 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1562 { 1563 up_write(&sbi->cp_rwsem); 1564 } 1565 1566 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1567 { 1568 int reason = CP_SYNC; 1569 1570 if (test_opt(sbi, FASTBOOT)) 1571 reason = CP_FASTBOOT; 1572 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1573 reason = CP_UMOUNT; 1574 return reason; 1575 } 1576 1577 static inline bool __remain_node_summaries(int reason) 1578 { 1579 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1580 } 1581 1582 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1583 { 1584 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1585 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1586 } 1587 1588 /* 1589 * Check whether the given nid is within node id range. 1590 */ 1591 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1592 { 1593 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1594 return -EINVAL; 1595 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1596 return -EINVAL; 1597 return 0; 1598 } 1599 1600 /* 1601 * Check whether the inode has blocks or not 1602 */ 1603 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1604 { 1605 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1606 1607 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1608 } 1609 1610 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1611 { 1612 return ofs == XATTR_NODE_OFFSET; 1613 } 1614 1615 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1616 struct inode *inode) 1617 { 1618 if (!inode) 1619 return true; 1620 if (!test_opt(sbi, RESERVE_ROOT)) 1621 return false; 1622 if (IS_NOQUOTA(inode)) 1623 return true; 1624 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1625 return true; 1626 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1627 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1628 return true; 1629 if (capable(CAP_SYS_RESOURCE)) 1630 return true; 1631 return false; 1632 } 1633 1634 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1635 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1636 struct inode *inode, blkcnt_t *count) 1637 { 1638 blkcnt_t diff = 0, release = 0; 1639 block_t avail_user_block_count; 1640 int ret; 1641 1642 ret = dquot_reserve_block(inode, *count); 1643 if (ret) 1644 return ret; 1645 1646 #ifdef CONFIG_F2FS_FAULT_INJECTION 1647 if (time_to_inject(sbi, FAULT_BLOCK)) { 1648 f2fs_show_injection_info(FAULT_BLOCK); 1649 release = *count; 1650 goto enospc; 1651 } 1652 #endif 1653 /* 1654 * let's increase this in prior to actual block count change in order 1655 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1656 */ 1657 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1658 1659 spin_lock(&sbi->stat_lock); 1660 sbi->total_valid_block_count += (block_t)(*count); 1661 avail_user_block_count = sbi->user_block_count - 1662 sbi->current_reserved_blocks; 1663 1664 if (!__allow_reserved_blocks(sbi, inode)) 1665 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1666 1667 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1668 diff = sbi->total_valid_block_count - avail_user_block_count; 1669 if (diff > *count) 1670 diff = *count; 1671 *count -= diff; 1672 release = diff; 1673 sbi->total_valid_block_count -= diff; 1674 if (!*count) { 1675 spin_unlock(&sbi->stat_lock); 1676 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1677 goto enospc; 1678 } 1679 } 1680 spin_unlock(&sbi->stat_lock); 1681 1682 if (unlikely(release)) 1683 dquot_release_reservation_block(inode, release); 1684 f2fs_i_blocks_write(inode, *count, true, true); 1685 return 0; 1686 1687 enospc: 1688 dquot_release_reservation_block(inode, release); 1689 return -ENOSPC; 1690 } 1691 1692 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1693 struct inode *inode, 1694 block_t count) 1695 { 1696 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1697 1698 spin_lock(&sbi->stat_lock); 1699 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1700 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1701 sbi->total_valid_block_count -= (block_t)count; 1702 if (sbi->reserved_blocks && 1703 sbi->current_reserved_blocks < sbi->reserved_blocks) 1704 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1705 sbi->current_reserved_blocks + count); 1706 spin_unlock(&sbi->stat_lock); 1707 f2fs_i_blocks_write(inode, count, false, true); 1708 } 1709 1710 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1711 { 1712 atomic_inc(&sbi->nr_pages[count_type]); 1713 1714 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1715 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1716 return; 1717 1718 set_sbi_flag(sbi, SBI_IS_DIRTY); 1719 } 1720 1721 static inline void inode_inc_dirty_pages(struct inode *inode) 1722 { 1723 atomic_inc(&F2FS_I(inode)->dirty_pages); 1724 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1725 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1726 if (IS_NOQUOTA(inode)) 1727 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1728 } 1729 1730 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1731 { 1732 atomic_dec(&sbi->nr_pages[count_type]); 1733 } 1734 1735 static inline void inode_dec_dirty_pages(struct inode *inode) 1736 { 1737 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1738 !S_ISLNK(inode->i_mode)) 1739 return; 1740 1741 atomic_dec(&F2FS_I(inode)->dirty_pages); 1742 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1743 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1744 if (IS_NOQUOTA(inode)) 1745 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1746 } 1747 1748 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1749 { 1750 return atomic_read(&sbi->nr_pages[count_type]); 1751 } 1752 1753 static inline int get_dirty_pages(struct inode *inode) 1754 { 1755 return atomic_read(&F2FS_I(inode)->dirty_pages); 1756 } 1757 1758 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1759 { 1760 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1761 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1762 sbi->log_blocks_per_seg; 1763 1764 return segs / sbi->segs_per_sec; 1765 } 1766 1767 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1768 { 1769 return sbi->total_valid_block_count; 1770 } 1771 1772 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1773 { 1774 return sbi->discard_blks; 1775 } 1776 1777 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1778 { 1779 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1780 1781 /* return NAT or SIT bitmap */ 1782 if (flag == NAT_BITMAP) 1783 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1784 else if (flag == SIT_BITMAP) 1785 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1786 1787 return 0; 1788 } 1789 1790 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1791 { 1792 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1793 } 1794 1795 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1796 { 1797 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1798 int offset; 1799 1800 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1801 offset = (flag == SIT_BITMAP) ? 1802 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1803 return &ckpt->sit_nat_version_bitmap + offset; 1804 } 1805 1806 if (__cp_payload(sbi) > 0) { 1807 if (flag == NAT_BITMAP) 1808 return &ckpt->sit_nat_version_bitmap; 1809 else 1810 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1811 } else { 1812 offset = (flag == NAT_BITMAP) ? 1813 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1814 return &ckpt->sit_nat_version_bitmap + offset; 1815 } 1816 } 1817 1818 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1819 { 1820 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1821 1822 if (sbi->cur_cp_pack == 2) 1823 start_addr += sbi->blocks_per_seg; 1824 return start_addr; 1825 } 1826 1827 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1828 { 1829 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1830 1831 if (sbi->cur_cp_pack == 1) 1832 start_addr += sbi->blocks_per_seg; 1833 return start_addr; 1834 } 1835 1836 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1837 { 1838 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1839 } 1840 1841 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1842 { 1843 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1844 } 1845 1846 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1847 struct inode *inode, bool is_inode) 1848 { 1849 block_t valid_block_count; 1850 unsigned int valid_node_count; 1851 bool quota = inode && !is_inode; 1852 1853 if (quota) { 1854 int ret = dquot_reserve_block(inode, 1); 1855 if (ret) 1856 return ret; 1857 } 1858 1859 #ifdef CONFIG_F2FS_FAULT_INJECTION 1860 if (time_to_inject(sbi, FAULT_BLOCK)) { 1861 f2fs_show_injection_info(FAULT_BLOCK); 1862 goto enospc; 1863 } 1864 #endif 1865 1866 spin_lock(&sbi->stat_lock); 1867 1868 valid_block_count = sbi->total_valid_block_count + 1869 sbi->current_reserved_blocks + 1; 1870 1871 if (!__allow_reserved_blocks(sbi, inode)) 1872 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1873 1874 if (unlikely(valid_block_count > sbi->user_block_count)) { 1875 spin_unlock(&sbi->stat_lock); 1876 goto enospc; 1877 } 1878 1879 valid_node_count = sbi->total_valid_node_count + 1; 1880 if (unlikely(valid_node_count > sbi->total_node_count)) { 1881 spin_unlock(&sbi->stat_lock); 1882 goto enospc; 1883 } 1884 1885 sbi->total_valid_node_count++; 1886 sbi->total_valid_block_count++; 1887 spin_unlock(&sbi->stat_lock); 1888 1889 if (inode) { 1890 if (is_inode) 1891 f2fs_mark_inode_dirty_sync(inode, true); 1892 else 1893 f2fs_i_blocks_write(inode, 1, true, true); 1894 } 1895 1896 percpu_counter_inc(&sbi->alloc_valid_block_count); 1897 return 0; 1898 1899 enospc: 1900 if (quota) 1901 dquot_release_reservation_block(inode, 1); 1902 return -ENOSPC; 1903 } 1904 1905 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1906 struct inode *inode, bool is_inode) 1907 { 1908 spin_lock(&sbi->stat_lock); 1909 1910 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1911 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1912 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1913 1914 sbi->total_valid_node_count--; 1915 sbi->total_valid_block_count--; 1916 if (sbi->reserved_blocks && 1917 sbi->current_reserved_blocks < sbi->reserved_blocks) 1918 sbi->current_reserved_blocks++; 1919 1920 spin_unlock(&sbi->stat_lock); 1921 1922 if (!is_inode) 1923 f2fs_i_blocks_write(inode, 1, false, true); 1924 } 1925 1926 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1927 { 1928 return sbi->total_valid_node_count; 1929 } 1930 1931 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1932 { 1933 percpu_counter_inc(&sbi->total_valid_inode_count); 1934 } 1935 1936 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1937 { 1938 percpu_counter_dec(&sbi->total_valid_inode_count); 1939 } 1940 1941 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1942 { 1943 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1944 } 1945 1946 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1947 pgoff_t index, bool for_write) 1948 { 1949 #ifdef CONFIG_F2FS_FAULT_INJECTION 1950 struct page *page = find_lock_page(mapping, index); 1951 1952 if (page) 1953 return page; 1954 1955 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1956 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1957 return NULL; 1958 } 1959 #endif 1960 if (!for_write) 1961 return grab_cache_page(mapping, index); 1962 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1963 } 1964 1965 static inline struct page *f2fs_pagecache_get_page( 1966 struct address_space *mapping, pgoff_t index, 1967 int fgp_flags, gfp_t gfp_mask) 1968 { 1969 #ifdef CONFIG_F2FS_FAULT_INJECTION 1970 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1971 f2fs_show_injection_info(FAULT_PAGE_GET); 1972 return NULL; 1973 } 1974 #endif 1975 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1976 } 1977 1978 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1979 { 1980 char *src_kaddr = kmap(src); 1981 char *dst_kaddr = kmap(dst); 1982 1983 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1984 kunmap(dst); 1985 kunmap(src); 1986 } 1987 1988 static inline void f2fs_put_page(struct page *page, int unlock) 1989 { 1990 if (!page) 1991 return; 1992 1993 if (unlock) { 1994 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1995 unlock_page(page); 1996 } 1997 put_page(page); 1998 } 1999 2000 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2001 { 2002 if (dn->node_page) 2003 f2fs_put_page(dn->node_page, 1); 2004 if (dn->inode_page && dn->node_page != dn->inode_page) 2005 f2fs_put_page(dn->inode_page, 0); 2006 dn->node_page = NULL; 2007 dn->inode_page = NULL; 2008 } 2009 2010 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2011 size_t size) 2012 { 2013 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2014 } 2015 2016 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2017 gfp_t flags) 2018 { 2019 void *entry; 2020 2021 entry = kmem_cache_alloc(cachep, flags); 2022 if (!entry) 2023 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2024 return entry; 2025 } 2026 2027 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2028 int npages, bool no_fail) 2029 { 2030 struct bio *bio; 2031 2032 if (no_fail) { 2033 /* No failure on bio allocation */ 2034 bio = bio_alloc(GFP_NOIO, npages); 2035 if (!bio) 2036 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2037 return bio; 2038 } 2039 #ifdef CONFIG_F2FS_FAULT_INJECTION 2040 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2041 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2042 return NULL; 2043 } 2044 #endif 2045 return bio_alloc(GFP_KERNEL, npages); 2046 } 2047 2048 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2049 unsigned long index, void *item) 2050 { 2051 while (radix_tree_insert(root, index, item)) 2052 cond_resched(); 2053 } 2054 2055 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2056 2057 static inline bool IS_INODE(struct page *page) 2058 { 2059 struct f2fs_node *p = F2FS_NODE(page); 2060 2061 return RAW_IS_INODE(p); 2062 } 2063 2064 static inline int offset_in_addr(struct f2fs_inode *i) 2065 { 2066 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2067 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2068 } 2069 2070 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2071 { 2072 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2073 } 2074 2075 static inline int f2fs_has_extra_attr(struct inode *inode); 2076 static inline block_t datablock_addr(struct inode *inode, 2077 struct page *node_page, unsigned int offset) 2078 { 2079 struct f2fs_node *raw_node; 2080 __le32 *addr_array; 2081 int base = 0; 2082 bool is_inode = IS_INODE(node_page); 2083 2084 raw_node = F2FS_NODE(node_page); 2085 2086 /* from GC path only */ 2087 if (is_inode) { 2088 if (!inode) 2089 base = offset_in_addr(&raw_node->i); 2090 else if (f2fs_has_extra_attr(inode)) 2091 base = get_extra_isize(inode); 2092 } 2093 2094 addr_array = blkaddr_in_node(raw_node); 2095 return le32_to_cpu(addr_array[base + offset]); 2096 } 2097 2098 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2099 { 2100 int mask; 2101 2102 addr += (nr >> 3); 2103 mask = 1 << (7 - (nr & 0x07)); 2104 return mask & *addr; 2105 } 2106 2107 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2108 { 2109 int mask; 2110 2111 addr += (nr >> 3); 2112 mask = 1 << (7 - (nr & 0x07)); 2113 *addr |= mask; 2114 } 2115 2116 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2117 { 2118 int mask; 2119 2120 addr += (nr >> 3); 2121 mask = 1 << (7 - (nr & 0x07)); 2122 *addr &= ~mask; 2123 } 2124 2125 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2126 { 2127 int mask; 2128 int ret; 2129 2130 addr += (nr >> 3); 2131 mask = 1 << (7 - (nr & 0x07)); 2132 ret = mask & *addr; 2133 *addr |= mask; 2134 return ret; 2135 } 2136 2137 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2138 { 2139 int mask; 2140 int ret; 2141 2142 addr += (nr >> 3); 2143 mask = 1 << (7 - (nr & 0x07)); 2144 ret = mask & *addr; 2145 *addr &= ~mask; 2146 return ret; 2147 } 2148 2149 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2150 { 2151 int mask; 2152 2153 addr += (nr >> 3); 2154 mask = 1 << (7 - (nr & 0x07)); 2155 *addr ^= mask; 2156 } 2157 2158 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2159 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2160 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2161 2162 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2163 { 2164 if (S_ISDIR(mode)) 2165 return flags; 2166 else if (S_ISREG(mode)) 2167 return flags & F2FS_REG_FLMASK; 2168 else 2169 return flags & F2FS_OTHER_FLMASK; 2170 } 2171 2172 /* used for f2fs_inode_info->flags */ 2173 enum { 2174 FI_NEW_INODE, /* indicate newly allocated inode */ 2175 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2176 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2177 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2178 FI_INC_LINK, /* need to increment i_nlink */ 2179 FI_ACL_MODE, /* indicate acl mode */ 2180 FI_NO_ALLOC, /* should not allocate any blocks */ 2181 FI_FREE_NID, /* free allocated nide */ 2182 FI_NO_EXTENT, /* not to use the extent cache */ 2183 FI_INLINE_XATTR, /* used for inline xattr */ 2184 FI_INLINE_DATA, /* used for inline data*/ 2185 FI_INLINE_DENTRY, /* used for inline dentry */ 2186 FI_APPEND_WRITE, /* inode has appended data */ 2187 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2188 FI_NEED_IPU, /* used for ipu per file */ 2189 FI_ATOMIC_FILE, /* indicate atomic file */ 2190 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2191 FI_VOLATILE_FILE, /* indicate volatile file */ 2192 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2193 FI_DROP_CACHE, /* drop dirty page cache */ 2194 FI_DATA_EXIST, /* indicate data exists */ 2195 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2196 FI_DO_DEFRAG, /* indicate defragment is running */ 2197 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2198 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2199 FI_HOT_DATA, /* indicate file is hot */ 2200 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2201 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2202 FI_PIN_FILE, /* indicate file should not be gced */ 2203 }; 2204 2205 static inline void __mark_inode_dirty_flag(struct inode *inode, 2206 int flag, bool set) 2207 { 2208 switch (flag) { 2209 case FI_INLINE_XATTR: 2210 case FI_INLINE_DATA: 2211 case FI_INLINE_DENTRY: 2212 case FI_NEW_INODE: 2213 if (set) 2214 return; 2215 case FI_DATA_EXIST: 2216 case FI_INLINE_DOTS: 2217 case FI_PIN_FILE: 2218 f2fs_mark_inode_dirty_sync(inode, true); 2219 } 2220 } 2221 2222 static inline void set_inode_flag(struct inode *inode, int flag) 2223 { 2224 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2225 set_bit(flag, &F2FS_I(inode)->flags); 2226 __mark_inode_dirty_flag(inode, flag, true); 2227 } 2228 2229 static inline int is_inode_flag_set(struct inode *inode, int flag) 2230 { 2231 return test_bit(flag, &F2FS_I(inode)->flags); 2232 } 2233 2234 static inline void clear_inode_flag(struct inode *inode, int flag) 2235 { 2236 if (test_bit(flag, &F2FS_I(inode)->flags)) 2237 clear_bit(flag, &F2FS_I(inode)->flags); 2238 __mark_inode_dirty_flag(inode, flag, false); 2239 } 2240 2241 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2242 { 2243 F2FS_I(inode)->i_acl_mode = mode; 2244 set_inode_flag(inode, FI_ACL_MODE); 2245 f2fs_mark_inode_dirty_sync(inode, false); 2246 } 2247 2248 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2249 { 2250 if (inc) 2251 inc_nlink(inode); 2252 else 2253 drop_nlink(inode); 2254 f2fs_mark_inode_dirty_sync(inode, true); 2255 } 2256 2257 static inline void f2fs_i_blocks_write(struct inode *inode, 2258 block_t diff, bool add, bool claim) 2259 { 2260 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2261 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2262 2263 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2264 if (add) { 2265 if (claim) 2266 dquot_claim_block(inode, diff); 2267 else 2268 dquot_alloc_block_nofail(inode, diff); 2269 } else { 2270 dquot_free_block(inode, diff); 2271 } 2272 2273 f2fs_mark_inode_dirty_sync(inode, true); 2274 if (clean || recover) 2275 set_inode_flag(inode, FI_AUTO_RECOVER); 2276 } 2277 2278 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2279 { 2280 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2281 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2282 2283 if (i_size_read(inode) == i_size) 2284 return; 2285 2286 i_size_write(inode, i_size); 2287 f2fs_mark_inode_dirty_sync(inode, true); 2288 if (clean || recover) 2289 set_inode_flag(inode, FI_AUTO_RECOVER); 2290 } 2291 2292 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2293 { 2294 F2FS_I(inode)->i_current_depth = depth; 2295 f2fs_mark_inode_dirty_sync(inode, true); 2296 } 2297 2298 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2299 unsigned int count) 2300 { 2301 F2FS_I(inode)->i_gc_failures = count; 2302 f2fs_mark_inode_dirty_sync(inode, true); 2303 } 2304 2305 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2306 { 2307 F2FS_I(inode)->i_xattr_nid = xnid; 2308 f2fs_mark_inode_dirty_sync(inode, true); 2309 } 2310 2311 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2312 { 2313 F2FS_I(inode)->i_pino = pino; 2314 f2fs_mark_inode_dirty_sync(inode, true); 2315 } 2316 2317 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2318 { 2319 struct f2fs_inode_info *fi = F2FS_I(inode); 2320 2321 if (ri->i_inline & F2FS_INLINE_XATTR) 2322 set_bit(FI_INLINE_XATTR, &fi->flags); 2323 if (ri->i_inline & F2FS_INLINE_DATA) 2324 set_bit(FI_INLINE_DATA, &fi->flags); 2325 if (ri->i_inline & F2FS_INLINE_DENTRY) 2326 set_bit(FI_INLINE_DENTRY, &fi->flags); 2327 if (ri->i_inline & F2FS_DATA_EXIST) 2328 set_bit(FI_DATA_EXIST, &fi->flags); 2329 if (ri->i_inline & F2FS_INLINE_DOTS) 2330 set_bit(FI_INLINE_DOTS, &fi->flags); 2331 if (ri->i_inline & F2FS_EXTRA_ATTR) 2332 set_bit(FI_EXTRA_ATTR, &fi->flags); 2333 if (ri->i_inline & F2FS_PIN_FILE) 2334 set_bit(FI_PIN_FILE, &fi->flags); 2335 } 2336 2337 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2338 { 2339 ri->i_inline = 0; 2340 2341 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2342 ri->i_inline |= F2FS_INLINE_XATTR; 2343 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2344 ri->i_inline |= F2FS_INLINE_DATA; 2345 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2346 ri->i_inline |= F2FS_INLINE_DENTRY; 2347 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2348 ri->i_inline |= F2FS_DATA_EXIST; 2349 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2350 ri->i_inline |= F2FS_INLINE_DOTS; 2351 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2352 ri->i_inline |= F2FS_EXTRA_ATTR; 2353 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2354 ri->i_inline |= F2FS_PIN_FILE; 2355 } 2356 2357 static inline int f2fs_has_extra_attr(struct inode *inode) 2358 { 2359 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2360 } 2361 2362 static inline int f2fs_has_inline_xattr(struct inode *inode) 2363 { 2364 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2365 } 2366 2367 static inline unsigned int addrs_per_inode(struct inode *inode) 2368 { 2369 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2370 } 2371 2372 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2373 { 2374 struct f2fs_inode *ri = F2FS_INODE(page); 2375 2376 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2377 get_inline_xattr_addrs(inode)]); 2378 } 2379 2380 static inline int inline_xattr_size(struct inode *inode) 2381 { 2382 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2383 } 2384 2385 static inline int f2fs_has_inline_data(struct inode *inode) 2386 { 2387 return is_inode_flag_set(inode, FI_INLINE_DATA); 2388 } 2389 2390 static inline int f2fs_exist_data(struct inode *inode) 2391 { 2392 return is_inode_flag_set(inode, FI_DATA_EXIST); 2393 } 2394 2395 static inline int f2fs_has_inline_dots(struct inode *inode) 2396 { 2397 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2398 } 2399 2400 static inline bool f2fs_is_pinned_file(struct inode *inode) 2401 { 2402 return is_inode_flag_set(inode, FI_PIN_FILE); 2403 } 2404 2405 static inline bool f2fs_is_atomic_file(struct inode *inode) 2406 { 2407 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2408 } 2409 2410 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2411 { 2412 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2413 } 2414 2415 static inline bool f2fs_is_volatile_file(struct inode *inode) 2416 { 2417 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2418 } 2419 2420 static inline bool f2fs_is_first_block_written(struct inode *inode) 2421 { 2422 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2423 } 2424 2425 static inline bool f2fs_is_drop_cache(struct inode *inode) 2426 { 2427 return is_inode_flag_set(inode, FI_DROP_CACHE); 2428 } 2429 2430 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2431 { 2432 struct f2fs_inode *ri = F2FS_INODE(page); 2433 int extra_size = get_extra_isize(inode); 2434 2435 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2436 } 2437 2438 static inline int f2fs_has_inline_dentry(struct inode *inode) 2439 { 2440 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2441 } 2442 2443 static inline int is_file(struct inode *inode, int type) 2444 { 2445 return F2FS_I(inode)->i_advise & type; 2446 } 2447 2448 static inline void set_file(struct inode *inode, int type) 2449 { 2450 F2FS_I(inode)->i_advise |= type; 2451 f2fs_mark_inode_dirty_sync(inode, true); 2452 } 2453 2454 static inline void clear_file(struct inode *inode, int type) 2455 { 2456 F2FS_I(inode)->i_advise &= ~type; 2457 f2fs_mark_inode_dirty_sync(inode, true); 2458 } 2459 2460 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2461 { 2462 bool ret; 2463 2464 if (dsync) { 2465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2466 2467 spin_lock(&sbi->inode_lock[DIRTY_META]); 2468 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2469 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2470 return ret; 2471 } 2472 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2473 file_keep_isize(inode) || 2474 i_size_read(inode) & ~PAGE_MASK) 2475 return false; 2476 2477 down_read(&F2FS_I(inode)->i_sem); 2478 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2479 up_read(&F2FS_I(inode)->i_sem); 2480 2481 return ret; 2482 } 2483 2484 static inline bool f2fs_readonly(struct super_block *sb) 2485 { 2486 return sb_rdonly(sb); 2487 } 2488 2489 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2490 { 2491 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2492 } 2493 2494 static inline bool is_dot_dotdot(const struct qstr *str) 2495 { 2496 if (str->len == 1 && str->name[0] == '.') 2497 return true; 2498 2499 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2500 return true; 2501 2502 return false; 2503 } 2504 2505 static inline bool f2fs_may_extent_tree(struct inode *inode) 2506 { 2507 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2508 is_inode_flag_set(inode, FI_NO_EXTENT)) 2509 return false; 2510 2511 return S_ISREG(inode->i_mode); 2512 } 2513 2514 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2515 size_t size, gfp_t flags) 2516 { 2517 #ifdef CONFIG_F2FS_FAULT_INJECTION 2518 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2519 f2fs_show_injection_info(FAULT_KMALLOC); 2520 return NULL; 2521 } 2522 #endif 2523 return kmalloc(size, flags); 2524 } 2525 2526 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2527 size_t size, gfp_t flags) 2528 { 2529 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2530 } 2531 2532 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2533 size_t size, gfp_t flags) 2534 { 2535 #ifdef CONFIG_F2FS_FAULT_INJECTION 2536 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2537 f2fs_show_injection_info(FAULT_KVMALLOC); 2538 return NULL; 2539 } 2540 #endif 2541 return kvmalloc(size, flags); 2542 } 2543 2544 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2545 size_t size, gfp_t flags) 2546 { 2547 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2548 } 2549 2550 static inline int get_extra_isize(struct inode *inode) 2551 { 2552 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2553 } 2554 2555 static inline int get_inline_xattr_addrs(struct inode *inode) 2556 { 2557 return F2FS_I(inode)->i_inline_xattr_size; 2558 } 2559 2560 #define get_inode_mode(i) \ 2561 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2562 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2563 2564 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2565 (offsetof(struct f2fs_inode, i_extra_end) - \ 2566 offsetof(struct f2fs_inode, i_extra_isize)) \ 2567 2568 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2569 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2570 ((offsetof(typeof(*f2fs_inode), field) + \ 2571 sizeof((f2fs_inode)->field)) \ 2572 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2573 2574 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2575 { 2576 int i; 2577 2578 spin_lock(&sbi->iostat_lock); 2579 for (i = 0; i < NR_IO_TYPE; i++) 2580 sbi->write_iostat[i] = 0; 2581 spin_unlock(&sbi->iostat_lock); 2582 } 2583 2584 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2585 enum iostat_type type, unsigned long long io_bytes) 2586 { 2587 if (!sbi->iostat_enable) 2588 return; 2589 spin_lock(&sbi->iostat_lock); 2590 sbi->write_iostat[type] += io_bytes; 2591 2592 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2593 sbi->write_iostat[APP_BUFFERED_IO] = 2594 sbi->write_iostat[APP_WRITE_IO] - 2595 sbi->write_iostat[APP_DIRECT_IO]; 2596 spin_unlock(&sbi->iostat_lock); 2597 } 2598 2599 /* 2600 * file.c 2601 */ 2602 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2603 void truncate_data_blocks(struct dnode_of_data *dn); 2604 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2605 int f2fs_truncate(struct inode *inode); 2606 int f2fs_getattr(const struct path *path, struct kstat *stat, 2607 u32 request_mask, unsigned int flags); 2608 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2609 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2610 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2611 int f2fs_precache_extents(struct inode *inode); 2612 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2613 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2614 int f2fs_pin_file_control(struct inode *inode, bool inc); 2615 2616 /* 2617 * inode.c 2618 */ 2619 void f2fs_set_inode_flags(struct inode *inode); 2620 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2621 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2622 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2623 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2624 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2625 void update_inode(struct inode *inode, struct page *node_page); 2626 void update_inode_page(struct inode *inode); 2627 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2628 void f2fs_evict_inode(struct inode *inode); 2629 void handle_failed_inode(struct inode *inode); 2630 2631 /* 2632 * namei.c 2633 */ 2634 int update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2635 bool hot, bool set); 2636 struct dentry *f2fs_get_parent(struct dentry *child); 2637 2638 /* 2639 * dir.c 2640 */ 2641 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2642 unsigned char get_de_type(struct f2fs_dir_entry *de); 2643 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2644 f2fs_hash_t namehash, int *max_slots, 2645 struct f2fs_dentry_ptr *d); 2646 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2647 unsigned int start_pos, struct fscrypt_str *fstr); 2648 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2649 struct f2fs_dentry_ptr *d); 2650 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2651 const struct qstr *new_name, 2652 const struct qstr *orig_name, struct page *dpage); 2653 void update_parent_metadata(struct inode *dir, struct inode *inode, 2654 unsigned int current_depth); 2655 int room_for_filename(const void *bitmap, int slots, int max_slots); 2656 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2657 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2658 struct fscrypt_name *fname, struct page **res_page); 2659 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2660 const struct qstr *child, struct page **res_page); 2661 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2662 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2663 struct page **page); 2664 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2665 struct page *page, struct inode *inode); 2666 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2667 const struct qstr *name, f2fs_hash_t name_hash, 2668 unsigned int bit_pos); 2669 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2670 const struct qstr *orig_name, 2671 struct inode *inode, nid_t ino, umode_t mode); 2672 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2673 struct inode *inode, nid_t ino, umode_t mode); 2674 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2675 struct inode *inode, nid_t ino, umode_t mode); 2676 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2677 struct inode *dir, struct inode *inode); 2678 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2679 bool f2fs_empty_dir(struct inode *dir); 2680 2681 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2682 { 2683 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2684 inode, inode->i_ino, inode->i_mode); 2685 } 2686 2687 /* 2688 * super.c 2689 */ 2690 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2691 void f2fs_inode_synced(struct inode *inode); 2692 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2693 void f2fs_quota_off_umount(struct super_block *sb); 2694 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2695 int f2fs_sync_fs(struct super_block *sb, int sync); 2696 extern __printf(3, 4) 2697 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2698 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2699 2700 /* 2701 * hash.c 2702 */ 2703 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2704 struct fscrypt_name *fname); 2705 2706 /* 2707 * node.c 2708 */ 2709 struct dnode_of_data; 2710 struct node_info; 2711 2712 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2713 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2714 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2715 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2716 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2717 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2718 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2719 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2720 int truncate_xattr_node(struct inode *inode); 2721 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2722 int remove_inode_page(struct inode *inode); 2723 struct page *new_inode_page(struct inode *inode); 2724 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2725 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2726 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2727 struct page *get_node_page_ra(struct page *parent, int start); 2728 void move_node_page(struct page *node_page, int gc_type); 2729 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2730 struct writeback_control *wbc, bool atomic); 2731 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2732 bool do_balance, enum iostat_type io_type); 2733 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2734 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2735 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2736 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2737 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2738 void recover_inline_xattr(struct inode *inode, struct page *page); 2739 int recover_xattr_data(struct inode *inode, struct page *page); 2740 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2741 void restore_node_summary(struct f2fs_sb_info *sbi, 2742 unsigned int segno, struct f2fs_summary_block *sum); 2743 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2744 int build_node_manager(struct f2fs_sb_info *sbi); 2745 void destroy_node_manager(struct f2fs_sb_info *sbi); 2746 int __init create_node_manager_caches(void); 2747 void destroy_node_manager_caches(void); 2748 2749 /* 2750 * segment.c 2751 */ 2752 bool need_SSR(struct f2fs_sb_info *sbi); 2753 void register_inmem_page(struct inode *inode, struct page *page); 2754 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2755 void drop_inmem_pages(struct inode *inode); 2756 void drop_inmem_page(struct inode *inode, struct page *page); 2757 int commit_inmem_pages(struct inode *inode); 2758 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2759 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2760 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2761 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2762 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2763 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2764 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2765 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2766 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2767 unsigned int granularity); 2768 void drop_discard_cmd(struct f2fs_sb_info *sbi); 2769 void stop_discard_thread(struct f2fs_sb_info *sbi); 2770 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2771 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2772 void release_discard_addrs(struct f2fs_sb_info *sbi); 2773 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2774 void allocate_new_segments(struct f2fs_sb_info *sbi); 2775 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2776 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2777 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2778 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2779 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2780 enum iostat_type io_type); 2781 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2782 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2783 int rewrite_data_page(struct f2fs_io_info *fio); 2784 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2785 block_t old_blkaddr, block_t new_blkaddr, 2786 bool recover_curseg, bool recover_newaddr); 2787 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2788 block_t old_addr, block_t new_addr, 2789 unsigned char version, bool recover_curseg, 2790 bool recover_newaddr); 2791 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2792 block_t old_blkaddr, block_t *new_blkaddr, 2793 struct f2fs_summary *sum, int type, 2794 struct f2fs_io_info *fio, bool add_list); 2795 void f2fs_wait_on_page_writeback(struct page *page, 2796 enum page_type type, bool ordered); 2797 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2798 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2799 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2800 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2801 unsigned int val, int alloc); 2802 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2803 int build_segment_manager(struct f2fs_sb_info *sbi); 2804 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2805 int __init create_segment_manager_caches(void); 2806 void destroy_segment_manager_caches(void); 2807 int rw_hint_to_seg_type(enum rw_hint hint); 2808 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type, 2809 enum temp_type temp); 2810 2811 /* 2812 * checkpoint.c 2813 */ 2814 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2815 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2816 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2817 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2818 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2819 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2820 int type, bool sync); 2821 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2822 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2823 long nr_to_write, enum iostat_type io_type); 2824 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2825 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2826 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2827 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2828 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2829 unsigned int devidx, int type); 2830 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2831 unsigned int devidx, int type); 2832 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2833 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2834 void release_orphan_inode(struct f2fs_sb_info *sbi); 2835 void add_orphan_inode(struct inode *inode); 2836 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2837 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2838 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2839 void update_dirty_page(struct inode *inode, struct page *page); 2840 void remove_dirty_inode(struct inode *inode); 2841 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2842 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2843 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2844 int __init create_checkpoint_caches(void); 2845 void destroy_checkpoint_caches(void); 2846 2847 /* 2848 * data.c 2849 */ 2850 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2851 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2852 struct inode *inode, nid_t ino, pgoff_t idx, 2853 enum page_type type); 2854 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2855 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2856 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2857 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2858 block_t blk_addr, struct bio *bio); 2859 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2860 void set_data_blkaddr(struct dnode_of_data *dn); 2861 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2862 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2863 int reserve_new_block(struct dnode_of_data *dn); 2864 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2865 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2866 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2867 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2868 int op_flags, bool for_write); 2869 struct page *find_data_page(struct inode *inode, pgoff_t index); 2870 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2871 bool for_write); 2872 struct page *get_new_data_page(struct inode *inode, 2873 struct page *ipage, pgoff_t index, bool new_i_size); 2874 int do_write_data_page(struct f2fs_io_info *fio); 2875 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2876 int create, int flag); 2877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2878 u64 start, u64 len); 2879 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2880 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2881 void f2fs_set_page_dirty_nobuffers(struct page *page); 2882 int __f2fs_write_data_pages(struct address_space *mapping, 2883 struct writeback_control *wbc, 2884 enum iostat_type io_type); 2885 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2886 unsigned int length); 2887 int f2fs_release_page(struct page *page, gfp_t wait); 2888 #ifdef CONFIG_MIGRATION 2889 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2890 struct page *page, enum migrate_mode mode); 2891 #endif 2892 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 2893 2894 /* 2895 * gc.c 2896 */ 2897 int start_gc_thread(struct f2fs_sb_info *sbi); 2898 void stop_gc_thread(struct f2fs_sb_info *sbi); 2899 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2900 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2901 unsigned int segno); 2902 void build_gc_manager(struct f2fs_sb_info *sbi); 2903 2904 /* 2905 * recovery.c 2906 */ 2907 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2908 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2909 2910 /* 2911 * debug.c 2912 */ 2913 #ifdef CONFIG_F2FS_STAT_FS 2914 struct f2fs_stat_info { 2915 struct list_head stat_list; 2916 struct f2fs_sb_info *sbi; 2917 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2918 int main_area_segs, main_area_sections, main_area_zones; 2919 unsigned long long hit_largest, hit_cached, hit_rbtree; 2920 unsigned long long hit_total, total_ext; 2921 int ext_tree, zombie_tree, ext_node; 2922 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2923 int ndirty_data, ndirty_qdata; 2924 int inmem_pages; 2925 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2926 int nats, dirty_nats, sits, dirty_sits; 2927 int free_nids, avail_nids, alloc_nids; 2928 int total_count, utilization; 2929 int bg_gc, nr_wb_cp_data, nr_wb_data; 2930 int nr_flushing, nr_flushed, flush_list_empty; 2931 int nr_discarding, nr_discarded; 2932 int nr_discard_cmd; 2933 unsigned int undiscard_blks; 2934 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2935 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2936 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2937 unsigned int bimodal, avg_vblocks; 2938 int util_free, util_valid, util_invalid; 2939 int rsvd_segs, overp_segs; 2940 int dirty_count, node_pages, meta_pages; 2941 int prefree_count, call_count, cp_count, bg_cp_count; 2942 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2943 int bg_node_segs, bg_data_segs; 2944 int tot_blks, data_blks, node_blks; 2945 int bg_data_blks, bg_node_blks; 2946 int curseg[NR_CURSEG_TYPE]; 2947 int cursec[NR_CURSEG_TYPE]; 2948 int curzone[NR_CURSEG_TYPE]; 2949 2950 unsigned int segment_count[2]; 2951 unsigned int block_count[2]; 2952 unsigned int inplace_count; 2953 unsigned long long base_mem, cache_mem, page_mem; 2954 }; 2955 2956 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2957 { 2958 return (struct f2fs_stat_info *)sbi->stat_info; 2959 } 2960 2961 #define stat_inc_cp_count(si) ((si)->cp_count++) 2962 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2963 #define stat_inc_call_count(si) ((si)->call_count++) 2964 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2965 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2966 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2967 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2968 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2969 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2970 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2971 #define stat_inc_inline_xattr(inode) \ 2972 do { \ 2973 if (f2fs_has_inline_xattr(inode)) \ 2974 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2975 } while (0) 2976 #define stat_dec_inline_xattr(inode) \ 2977 do { \ 2978 if (f2fs_has_inline_xattr(inode)) \ 2979 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2980 } while (0) 2981 #define stat_inc_inline_inode(inode) \ 2982 do { \ 2983 if (f2fs_has_inline_data(inode)) \ 2984 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2985 } while (0) 2986 #define stat_dec_inline_inode(inode) \ 2987 do { \ 2988 if (f2fs_has_inline_data(inode)) \ 2989 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2990 } while (0) 2991 #define stat_inc_inline_dir(inode) \ 2992 do { \ 2993 if (f2fs_has_inline_dentry(inode)) \ 2994 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2995 } while (0) 2996 #define stat_dec_inline_dir(inode) \ 2997 do { \ 2998 if (f2fs_has_inline_dentry(inode)) \ 2999 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3000 } while (0) 3001 #define stat_inc_seg_type(sbi, curseg) \ 3002 ((sbi)->segment_count[(curseg)->alloc_type]++) 3003 #define stat_inc_block_count(sbi, curseg) \ 3004 ((sbi)->block_count[(curseg)->alloc_type]++) 3005 #define stat_inc_inplace_blocks(sbi) \ 3006 (atomic_inc(&(sbi)->inplace_count)) 3007 #define stat_inc_atomic_write(inode) \ 3008 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3009 #define stat_dec_atomic_write(inode) \ 3010 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3011 #define stat_update_max_atomic_write(inode) \ 3012 do { \ 3013 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3014 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3015 if (cur > max) \ 3016 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3017 } while (0) 3018 #define stat_inc_volatile_write(inode) \ 3019 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3020 #define stat_dec_volatile_write(inode) \ 3021 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3022 #define stat_update_max_volatile_write(inode) \ 3023 do { \ 3024 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3025 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3026 if (cur > max) \ 3027 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3028 } while (0) 3029 #define stat_inc_seg_count(sbi, type, gc_type) \ 3030 do { \ 3031 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3032 si->tot_segs++; \ 3033 if ((type) == SUM_TYPE_DATA) { \ 3034 si->data_segs++; \ 3035 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3036 } else { \ 3037 si->node_segs++; \ 3038 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3039 } \ 3040 } while (0) 3041 3042 #define stat_inc_tot_blk_count(si, blks) \ 3043 ((si)->tot_blks += (blks)) 3044 3045 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3046 do { \ 3047 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3048 stat_inc_tot_blk_count(si, blks); \ 3049 si->data_blks += (blks); \ 3050 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3051 } while (0) 3052 3053 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3054 do { \ 3055 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3056 stat_inc_tot_blk_count(si, blks); \ 3057 si->node_blks += (blks); \ 3058 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3059 } while (0) 3060 3061 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3062 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3063 int __init f2fs_create_root_stats(void); 3064 void f2fs_destroy_root_stats(void); 3065 #else 3066 #define stat_inc_cp_count(si) do { } while (0) 3067 #define stat_inc_bg_cp_count(si) do { } while (0) 3068 #define stat_inc_call_count(si) do { } while (0) 3069 #define stat_inc_bggc_count(si) do { } while (0) 3070 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3071 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3072 #define stat_inc_total_hit(sb) do { } while (0) 3073 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3074 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3075 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3076 #define stat_inc_inline_xattr(inode) do { } while (0) 3077 #define stat_dec_inline_xattr(inode) do { } while (0) 3078 #define stat_inc_inline_inode(inode) do { } while (0) 3079 #define stat_dec_inline_inode(inode) do { } while (0) 3080 #define stat_inc_inline_dir(inode) do { } while (0) 3081 #define stat_dec_inline_dir(inode) do { } while (0) 3082 #define stat_inc_atomic_write(inode) do { } while (0) 3083 #define stat_dec_atomic_write(inode) do { } while (0) 3084 #define stat_update_max_atomic_write(inode) do { } while (0) 3085 #define stat_inc_volatile_write(inode) do { } while (0) 3086 #define stat_dec_volatile_write(inode) do { } while (0) 3087 #define stat_update_max_volatile_write(inode) do { } while (0) 3088 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3089 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3090 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3091 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3092 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3093 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3094 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3095 3096 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3097 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3098 static inline int __init f2fs_create_root_stats(void) { return 0; } 3099 static inline void f2fs_destroy_root_stats(void) { } 3100 #endif 3101 3102 extern const struct file_operations f2fs_dir_operations; 3103 extern const struct file_operations f2fs_file_operations; 3104 extern const struct inode_operations f2fs_file_inode_operations; 3105 extern const struct address_space_operations f2fs_dblock_aops; 3106 extern const struct address_space_operations f2fs_node_aops; 3107 extern const struct address_space_operations f2fs_meta_aops; 3108 extern const struct inode_operations f2fs_dir_inode_operations; 3109 extern const struct inode_operations f2fs_symlink_inode_operations; 3110 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3111 extern const struct inode_operations f2fs_special_inode_operations; 3112 extern struct kmem_cache *inode_entry_slab; 3113 3114 /* 3115 * inline.c 3116 */ 3117 bool f2fs_may_inline_data(struct inode *inode); 3118 bool f2fs_may_inline_dentry(struct inode *inode); 3119 void read_inline_data(struct page *page, struct page *ipage); 3120 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3121 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3122 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3123 int f2fs_convert_inline_inode(struct inode *inode); 3124 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3125 bool recover_inline_data(struct inode *inode, struct page *npage); 3126 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3127 struct fscrypt_name *fname, struct page **res_page); 3128 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3129 struct page *ipage); 3130 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3131 const struct qstr *orig_name, 3132 struct inode *inode, nid_t ino, umode_t mode); 3133 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3134 struct inode *dir, struct inode *inode); 3135 bool f2fs_empty_inline_dir(struct inode *dir); 3136 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3137 struct fscrypt_str *fstr); 3138 int f2fs_inline_data_fiemap(struct inode *inode, 3139 struct fiemap_extent_info *fieinfo, 3140 __u64 start, __u64 len); 3141 3142 /* 3143 * shrinker.c 3144 */ 3145 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3146 struct shrink_control *sc); 3147 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3148 struct shrink_control *sc); 3149 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3150 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3151 3152 /* 3153 * extent_cache.c 3154 */ 3155 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3156 struct rb_entry *cached_re, unsigned int ofs); 3157 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3158 struct rb_root *root, struct rb_node **parent, 3159 unsigned int ofs); 3160 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3161 struct rb_entry *cached_re, unsigned int ofs, 3162 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3163 struct rb_node ***insert_p, struct rb_node **insert_parent, 3164 bool force); 3165 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3166 struct rb_root *root); 3167 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3168 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3169 void f2fs_drop_extent_tree(struct inode *inode); 3170 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3171 void f2fs_destroy_extent_tree(struct inode *inode); 3172 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3173 struct extent_info *ei); 3174 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3175 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3176 pgoff_t fofs, block_t blkaddr, unsigned int len); 3177 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3178 int __init create_extent_cache(void); 3179 void destroy_extent_cache(void); 3180 3181 /* 3182 * sysfs.c 3183 */ 3184 int __init f2fs_init_sysfs(void); 3185 void f2fs_exit_sysfs(void); 3186 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3187 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3188 3189 /* 3190 * crypto support 3191 */ 3192 static inline bool f2fs_encrypted_inode(struct inode *inode) 3193 { 3194 return file_is_encrypt(inode); 3195 } 3196 3197 static inline bool f2fs_encrypted_file(struct inode *inode) 3198 { 3199 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3200 } 3201 3202 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3203 { 3204 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3205 file_set_encrypt(inode); 3206 inode->i_flags |= S_ENCRYPTED; 3207 #endif 3208 } 3209 3210 static inline bool f2fs_bio_encrypted(struct bio *bio) 3211 { 3212 return bio->bi_private != NULL; 3213 } 3214 3215 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3216 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3217 { \ 3218 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3219 } 3220 3221 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3222 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3223 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3224 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3225 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3226 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3227 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3228 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3229 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3230 3231 #ifdef CONFIG_BLK_DEV_ZONED 3232 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3233 struct block_device *bdev, block_t blkaddr) 3234 { 3235 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3236 int i; 3237 3238 for (i = 0; i < sbi->s_ndevs; i++) 3239 if (FDEV(i).bdev == bdev) 3240 return FDEV(i).blkz_type[zno]; 3241 return -EINVAL; 3242 } 3243 #endif 3244 3245 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3246 { 3247 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3248 3249 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3250 } 3251 3252 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3253 { 3254 clear_opt(sbi, ADAPTIVE); 3255 clear_opt(sbi, LFS); 3256 3257 switch (mt) { 3258 case F2FS_MOUNT_ADAPTIVE: 3259 set_opt(sbi, ADAPTIVE); 3260 break; 3261 case F2FS_MOUNT_LFS: 3262 set_opt(sbi, LFS); 3263 break; 3264 } 3265 } 3266 3267 static inline bool f2fs_may_encrypt(struct inode *inode) 3268 { 3269 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3270 umode_t mode = inode->i_mode; 3271 3272 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3273 #else 3274 return 0; 3275 #endif 3276 } 3277 3278 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3279 { 3280 return (f2fs_encrypted_file(inode) || 3281 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3282 F2FS_I_SB(inode)->s_ndevs); 3283 } 3284 3285 #endif 3286