xref: /openbmc/linux/fs/f2fs/f2fs.h (revision c79d152094d228080e9895a92feb44ba9d60c798)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 struct f2fs_mount_info {
117 	unsigned int opt;
118 	int write_io_size_bits;		/* Write IO size bits */
119 	block_t root_reserved_blocks;	/* root reserved blocks */
120 	kuid_t s_resuid;		/* reserved blocks for uid */
121 	kgid_t s_resgid;		/* reserved blocks for gid */
122 	int active_logs;		/* # of active logs */
123 	int inline_xattr_size;		/* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 	struct f2fs_fault_info fault_info;	/* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 	/* Names of quota files with journalled quota */
129 	char *s_qf_names[MAXQUOTAS];
130 	int s_jquota_fmt;			/* Format of quota to use */
131 #endif
132 	/* For which write hints are passed down to block layer */
133 	int whint_mode;
134 	int alloc_mode;			/* segment allocation policy */
135 	int fsync_mode;			/* fsync policy */
136 	bool test_dummy_encryption;	/* test dummy encryption */
137 };
138 
139 #define F2FS_FEATURE_ENCRYPT		0x0001
140 #define F2FS_FEATURE_BLKZONED		0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
143 #define F2FS_FEATURE_PRJQUOTA		0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
146 #define F2FS_FEATURE_QUOTA_INO		0x0080
147 #define F2FS_FEATURE_INODE_CRTIME	0x0100
148 #define F2FS_FEATURE_LOST_FOUND		0x0200
149 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
150 
151 #define F2FS_HAS_FEATURE(sb, mask)					\
152 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask)					\
154 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask)					\
156 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157 
158 /*
159  * Default values for user and/or group using reserved blocks
160  */
161 #define	F2FS_DEF_RESUID		0
162 #define	F2FS_DEF_RESGID		0
163 
164 /*
165  * For checkpoint manager
166  */
167 enum {
168 	NAT_BITMAP,
169 	SIT_BITMAP
170 };
171 
172 #define	CP_UMOUNT	0x00000001
173 #define	CP_FASTBOOT	0x00000002
174 #define	CP_SYNC		0x00000004
175 #define	CP_RECOVERY	0x00000008
176 #define	CP_DISCARD	0x00000010
177 #define CP_TRIMMED	0x00000020
178 
179 #define DEF_BATCHED_TRIM_SECTIONS	2048
180 #define BATCHED_TRIM_SEGMENTS(sbi)	\
181 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
182 #define BATCHED_TRIM_BLOCKS(sbi)	\
183 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
188 #define DEF_CP_INTERVAL			60	/* 60 secs */
189 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
190 
191 struct cp_control {
192 	int reason;
193 	__u64 trim_start;
194 	__u64 trim_end;
195 	__u64 trim_minlen;
196 };
197 
198 /*
199  * For CP/NAT/SIT/SSA readahead
200  */
201 enum {
202 	META_CP,
203 	META_NAT,
204 	META_SIT,
205 	META_SSA,
206 	META_POR,
207 };
208 
209 /* for the list of ino */
210 enum {
211 	ORPHAN_INO,		/* for orphan ino list */
212 	APPEND_INO,		/* for append ino list */
213 	UPDATE_INO,		/* for update ino list */
214 	TRANS_DIR_INO,		/* for trasactions dir ino list */
215 	FLUSH_INO,		/* for multiple device flushing */
216 	MAX_INO_ENTRY,		/* max. list */
217 };
218 
219 struct ino_entry {
220 	struct list_head list;		/* list head */
221 	nid_t ino;			/* inode number */
222 	unsigned int dirty_device;	/* dirty device bitmap */
223 };
224 
225 /* for the list of inodes to be GCed */
226 struct inode_entry {
227 	struct list_head list;	/* list head */
228 	struct inode *inode;	/* vfs inode pointer */
229 };
230 
231 /* for the bitmap indicate blocks to be discarded */
232 struct discard_entry {
233 	struct list_head list;	/* list head */
234 	block_t start_blkaddr;	/* start blockaddr of current segment */
235 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
236 };
237 
238 /* default discard granularity of inner discard thread, unit: block count */
239 #define DEFAULT_DISCARD_GRANULARITY		16
240 
241 /* max discard pend list number */
242 #define MAX_PLIST_NUM		512
243 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
244 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
245 
246 enum {
247 	D_PREP,
248 	D_SUBMIT,
249 	D_DONE,
250 };
251 
252 struct discard_info {
253 	block_t lstart;			/* logical start address */
254 	block_t len;			/* length */
255 	block_t start;			/* actual start address in dev */
256 };
257 
258 struct discard_cmd {
259 	struct rb_node rb_node;		/* rb node located in rb-tree */
260 	union {
261 		struct {
262 			block_t lstart;	/* logical start address */
263 			block_t len;	/* length */
264 			block_t start;	/* actual start address in dev */
265 		};
266 		struct discard_info di;	/* discard info */
267 
268 	};
269 	struct list_head list;		/* command list */
270 	struct completion wait;		/* compleation */
271 	struct block_device *bdev;	/* bdev */
272 	unsigned short ref;		/* reference count */
273 	unsigned char state;		/* state */
274 	int error;			/* bio error */
275 };
276 
277 enum {
278 	DPOLICY_BG,
279 	DPOLICY_FORCE,
280 	DPOLICY_FSTRIM,
281 	DPOLICY_UMOUNT,
282 	MAX_DPOLICY,
283 };
284 
285 struct discard_policy {
286 	int type;			/* type of discard */
287 	unsigned int min_interval;	/* used for candidates exist */
288 	unsigned int max_interval;	/* used for candidates not exist */
289 	unsigned int max_requests;	/* # of discards issued per round */
290 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
291 	bool io_aware;			/* issue discard in idle time */
292 	bool sync;			/* submit discard with REQ_SYNC flag */
293 	unsigned int granularity;	/* discard granularity */
294 };
295 
296 struct discard_cmd_control {
297 	struct task_struct *f2fs_issue_discard;	/* discard thread */
298 	struct list_head entry_list;		/* 4KB discard entry list */
299 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
300 	struct list_head wait_list;		/* store on-flushing entries */
301 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
302 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
303 	unsigned int discard_wake;		/* to wake up discard thread */
304 	struct mutex cmd_lock;
305 	unsigned int nr_discards;		/* # of discards in the list */
306 	unsigned int max_discards;		/* max. discards to be issued */
307 	unsigned int discard_granularity;	/* discard granularity */
308 	unsigned int undiscard_blks;		/* # of undiscard blocks */
309 	atomic_t issued_discard;		/* # of issued discard */
310 	atomic_t issing_discard;		/* # of issing discard */
311 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
312 	struct rb_root root;			/* root of discard rb-tree */
313 };
314 
315 /* for the list of fsync inodes, used only during recovery */
316 struct fsync_inode_entry {
317 	struct list_head list;	/* list head */
318 	struct inode *inode;	/* vfs inode pointer */
319 	block_t blkaddr;	/* block address locating the last fsync */
320 	block_t last_dentry;	/* block address locating the last dentry */
321 };
322 
323 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
324 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
325 
326 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
327 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
328 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
329 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
330 
331 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
332 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
333 
334 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
335 {
336 	int before = nats_in_cursum(journal);
337 
338 	journal->n_nats = cpu_to_le16(before + i);
339 	return before;
340 }
341 
342 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
343 {
344 	int before = sits_in_cursum(journal);
345 
346 	journal->n_sits = cpu_to_le16(before + i);
347 	return before;
348 }
349 
350 static inline bool __has_cursum_space(struct f2fs_journal *journal,
351 							int size, int type)
352 {
353 	if (type == NAT_JOURNAL)
354 		return size <= MAX_NAT_JENTRIES(journal);
355 	return size <= MAX_SIT_JENTRIES(journal);
356 }
357 
358 /*
359  * ioctl commands
360  */
361 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
362 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
363 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
364 
365 #define F2FS_IOCTL_MAGIC		0xf5
366 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
367 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
368 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
369 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
370 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
371 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
372 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
373 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
374 						struct f2fs_defragment)
375 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
376 						struct f2fs_move_range)
377 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
378 						struct f2fs_flush_device)
379 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
380 						struct f2fs_gc_range)
381 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
382 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
383 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
384 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
385 
386 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
387 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
388 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
389 
390 /*
391  * should be same as XFS_IOC_GOINGDOWN.
392  * Flags for going down operation used by FS_IOC_GOINGDOWN
393  */
394 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
395 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
396 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
397 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
398 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
399 
400 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
401 /*
402  * ioctl commands in 32 bit emulation
403  */
404 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
405 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
406 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
407 #endif
408 
409 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
410 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
411 
412 struct f2fs_gc_range {
413 	u32 sync;
414 	u64 start;
415 	u64 len;
416 };
417 
418 struct f2fs_defragment {
419 	u64 start;
420 	u64 len;
421 };
422 
423 struct f2fs_move_range {
424 	u32 dst_fd;		/* destination fd */
425 	u64 pos_in;		/* start position in src_fd */
426 	u64 pos_out;		/* start position in dst_fd */
427 	u64 len;		/* size to move */
428 };
429 
430 struct f2fs_flush_device {
431 	u32 dev_num;		/* device number to flush */
432 	u32 segments;		/* # of segments to flush */
433 };
434 
435 /* for inline stuff */
436 #define DEF_INLINE_RESERVED_SIZE	1
437 #define DEF_MIN_INLINE_SIZE		1
438 static inline int get_extra_isize(struct inode *inode);
439 static inline int get_inline_xattr_addrs(struct inode *inode);
440 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
441 				(CUR_ADDRS_PER_INODE(inode) -		\
442 				get_inline_xattr_addrs(inode) -	\
443 				DEF_INLINE_RESERVED_SIZE))
444 
445 /* for inline dir */
446 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
447 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
448 				BITS_PER_BYTE + 1))
449 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
450 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
451 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
452 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
453 				NR_INLINE_DENTRY(inode) + \
454 				INLINE_DENTRY_BITMAP_SIZE(inode)))
455 
456 /*
457  * For INODE and NODE manager
458  */
459 /* for directory operations */
460 struct f2fs_dentry_ptr {
461 	struct inode *inode;
462 	void *bitmap;
463 	struct f2fs_dir_entry *dentry;
464 	__u8 (*filename)[F2FS_SLOT_LEN];
465 	int max;
466 	int nr_bitmap;
467 };
468 
469 static inline void make_dentry_ptr_block(struct inode *inode,
470 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
471 {
472 	d->inode = inode;
473 	d->max = NR_DENTRY_IN_BLOCK;
474 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
475 	d->bitmap = t->dentry_bitmap;
476 	d->dentry = t->dentry;
477 	d->filename = t->filename;
478 }
479 
480 static inline void make_dentry_ptr_inline(struct inode *inode,
481 					struct f2fs_dentry_ptr *d, void *t)
482 {
483 	int entry_cnt = NR_INLINE_DENTRY(inode);
484 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
485 	int reserved_size = INLINE_RESERVED_SIZE(inode);
486 
487 	d->inode = inode;
488 	d->max = entry_cnt;
489 	d->nr_bitmap = bitmap_size;
490 	d->bitmap = t;
491 	d->dentry = t + bitmap_size + reserved_size;
492 	d->filename = t + bitmap_size + reserved_size +
493 					SIZE_OF_DIR_ENTRY * entry_cnt;
494 }
495 
496 /*
497  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
498  * as its node offset to distinguish from index node blocks.
499  * But some bits are used to mark the node block.
500  */
501 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
502 				>> OFFSET_BIT_SHIFT)
503 enum {
504 	ALLOC_NODE,			/* allocate a new node page if needed */
505 	LOOKUP_NODE,			/* look up a node without readahead */
506 	LOOKUP_NODE_RA,			/*
507 					 * look up a node with readahead called
508 					 * by get_data_block.
509 					 */
510 };
511 
512 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
513 
514 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
515 
516 /* vector size for gang look-up from extent cache that consists of radix tree */
517 #define EXT_TREE_VEC_SIZE	64
518 
519 /* for in-memory extent cache entry */
520 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
521 
522 /* number of extent info in extent cache we try to shrink */
523 #define EXTENT_CACHE_SHRINK_NUMBER	128
524 
525 struct rb_entry {
526 	struct rb_node rb_node;		/* rb node located in rb-tree */
527 	unsigned int ofs;		/* start offset of the entry */
528 	unsigned int len;		/* length of the entry */
529 };
530 
531 struct extent_info {
532 	unsigned int fofs;		/* start offset in a file */
533 	unsigned int len;		/* length of the extent */
534 	u32 blk;			/* start block address of the extent */
535 };
536 
537 struct extent_node {
538 	struct rb_node rb_node;
539 	union {
540 		struct {
541 			unsigned int fofs;
542 			unsigned int len;
543 			u32 blk;
544 		};
545 		struct extent_info ei;	/* extent info */
546 
547 	};
548 	struct list_head list;		/* node in global extent list of sbi */
549 	struct extent_tree *et;		/* extent tree pointer */
550 };
551 
552 struct extent_tree {
553 	nid_t ino;			/* inode number */
554 	struct rb_root root;		/* root of extent info rb-tree */
555 	struct extent_node *cached_en;	/* recently accessed extent node */
556 	struct extent_info largest;	/* largested extent info */
557 	struct list_head list;		/* to be used by sbi->zombie_list */
558 	rwlock_t lock;			/* protect extent info rb-tree */
559 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
560 };
561 
562 /*
563  * This structure is taken from ext4_map_blocks.
564  *
565  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
566  */
567 #define F2FS_MAP_NEW		(1 << BH_New)
568 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
569 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
570 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
571 				F2FS_MAP_UNWRITTEN)
572 
573 struct f2fs_map_blocks {
574 	block_t m_pblk;
575 	block_t m_lblk;
576 	unsigned int m_len;
577 	unsigned int m_flags;
578 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
579 	pgoff_t *m_next_extent;		/* point to next possible extent */
580 	int m_seg_type;
581 };
582 
583 /* for flag in get_data_block */
584 enum {
585 	F2FS_GET_BLOCK_DEFAULT,
586 	F2FS_GET_BLOCK_FIEMAP,
587 	F2FS_GET_BLOCK_BMAP,
588 	F2FS_GET_BLOCK_PRE_DIO,
589 	F2FS_GET_BLOCK_PRE_AIO,
590 	F2FS_GET_BLOCK_PRECACHE,
591 };
592 
593 /*
594  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
595  */
596 #define FADVISE_COLD_BIT	0x01
597 #define FADVISE_LOST_PINO_BIT	0x02
598 #define FADVISE_ENCRYPT_BIT	0x04
599 #define FADVISE_ENC_NAME_BIT	0x08
600 #define FADVISE_KEEP_SIZE_BIT	0x10
601 #define FADVISE_HOT_BIT		0x20
602 #define FADVISE_VERITY_BIT	0x40	/* reserved */
603 
604 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
605 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
606 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
607 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
608 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
609 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
610 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
611 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
612 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
613 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
614 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
615 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
616 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
617 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
618 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
619 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
620 
621 #define DEF_DIR_LEVEL		0
622 
623 struct f2fs_inode_info {
624 	struct inode vfs_inode;		/* serve a vfs inode */
625 	unsigned long i_flags;		/* keep an inode flags for ioctl */
626 	unsigned char i_advise;		/* use to give file attribute hints */
627 	unsigned char i_dir_level;	/* use for dentry level for large dir */
628 	union {
629 		unsigned int i_current_depth;	/* only for directory depth */
630 		unsigned short i_gc_failures;	/* only for regular file */
631 	};
632 	unsigned int i_pino;		/* parent inode number */
633 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
634 
635 	/* Use below internally in f2fs*/
636 	unsigned long flags;		/* use to pass per-file flags */
637 	struct rw_semaphore i_sem;	/* protect fi info */
638 	atomic_t dirty_pages;		/* # of dirty pages */
639 	f2fs_hash_t chash;		/* hash value of given file name */
640 	unsigned int clevel;		/* maximum level of given file name */
641 	struct task_struct *task;	/* lookup and create consistency */
642 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
643 	nid_t i_xattr_nid;		/* node id that contains xattrs */
644 	loff_t	last_disk_size;		/* lastly written file size */
645 
646 #ifdef CONFIG_QUOTA
647 	struct dquot *i_dquot[MAXQUOTAS];
648 
649 	/* quota space reservation, managed internally by quota code */
650 	qsize_t i_reserved_quota;
651 #endif
652 	struct list_head dirty_list;	/* dirty list for dirs and files */
653 	struct list_head gdirty_list;	/* linked in global dirty list */
654 	struct list_head inmem_ilist;	/* list for inmem inodes */
655 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
656 	struct task_struct *inmem_task;	/* store inmemory task */
657 	struct mutex inmem_lock;	/* lock for inmemory pages */
658 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
659 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
660 	struct rw_semaphore i_mmap_sem;
661 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
662 
663 	int i_extra_isize;		/* size of extra space located in i_addr */
664 	kprojid_t i_projid;		/* id for project quota */
665 	int i_inline_xattr_size;	/* inline xattr size */
666 	struct timespec i_crtime;	/* inode creation time */
667 };
668 
669 static inline void get_extent_info(struct extent_info *ext,
670 					struct f2fs_extent *i_ext)
671 {
672 	ext->fofs = le32_to_cpu(i_ext->fofs);
673 	ext->blk = le32_to_cpu(i_ext->blk);
674 	ext->len = le32_to_cpu(i_ext->len);
675 }
676 
677 static inline void set_raw_extent(struct extent_info *ext,
678 					struct f2fs_extent *i_ext)
679 {
680 	i_ext->fofs = cpu_to_le32(ext->fofs);
681 	i_ext->blk = cpu_to_le32(ext->blk);
682 	i_ext->len = cpu_to_le32(ext->len);
683 }
684 
685 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
686 						u32 blk, unsigned int len)
687 {
688 	ei->fofs = fofs;
689 	ei->blk = blk;
690 	ei->len = len;
691 }
692 
693 static inline bool __is_discard_mergeable(struct discard_info *back,
694 						struct discard_info *front)
695 {
696 	return back->lstart + back->len == front->lstart;
697 }
698 
699 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
700 						struct discard_info *back)
701 {
702 	return __is_discard_mergeable(back, cur);
703 }
704 
705 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
706 						struct discard_info *front)
707 {
708 	return __is_discard_mergeable(cur, front);
709 }
710 
711 static inline bool __is_extent_mergeable(struct extent_info *back,
712 						struct extent_info *front)
713 {
714 	return (back->fofs + back->len == front->fofs &&
715 			back->blk + back->len == front->blk);
716 }
717 
718 static inline bool __is_back_mergeable(struct extent_info *cur,
719 						struct extent_info *back)
720 {
721 	return __is_extent_mergeable(back, cur);
722 }
723 
724 static inline bool __is_front_mergeable(struct extent_info *cur,
725 						struct extent_info *front)
726 {
727 	return __is_extent_mergeable(cur, front);
728 }
729 
730 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
731 static inline void __try_update_largest_extent(struct inode *inode,
732 			struct extent_tree *et, struct extent_node *en)
733 {
734 	if (en->ei.len > et->largest.len) {
735 		et->largest = en->ei;
736 		f2fs_mark_inode_dirty_sync(inode, true);
737 	}
738 }
739 
740 /*
741  * For free nid management
742  */
743 enum nid_state {
744 	FREE_NID,		/* newly added to free nid list */
745 	PREALLOC_NID,		/* it is preallocated */
746 	MAX_NID_STATE,
747 };
748 
749 struct f2fs_nm_info {
750 	block_t nat_blkaddr;		/* base disk address of NAT */
751 	nid_t max_nid;			/* maximum possible node ids */
752 	nid_t available_nids;		/* # of available node ids */
753 	nid_t next_scan_nid;		/* the next nid to be scanned */
754 	unsigned int ram_thresh;	/* control the memory footprint */
755 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
756 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
757 
758 	/* NAT cache management */
759 	struct radix_tree_root nat_root;/* root of the nat entry cache */
760 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
761 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
762 	struct list_head nat_entries;	/* cached nat entry list (clean) */
763 	unsigned int nat_cnt;		/* the # of cached nat entries */
764 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
765 	unsigned int nat_blocks;	/* # of nat blocks */
766 
767 	/* free node ids management */
768 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
769 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
770 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
771 	spinlock_t nid_list_lock;	/* protect nid lists ops */
772 	struct mutex build_lock;	/* lock for build free nids */
773 	unsigned char **free_nid_bitmap;
774 	unsigned char *nat_block_bitmap;
775 	unsigned short *free_nid_count;	/* free nid count of NAT block */
776 
777 	/* for checkpoint */
778 	char *nat_bitmap;		/* NAT bitmap pointer */
779 
780 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
781 	unsigned char *nat_bits;	/* NAT bits blocks */
782 	unsigned char *full_nat_bits;	/* full NAT pages */
783 	unsigned char *empty_nat_bits;	/* empty NAT pages */
784 #ifdef CONFIG_F2FS_CHECK_FS
785 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
786 #endif
787 	int bitmap_size;		/* bitmap size */
788 };
789 
790 /*
791  * this structure is used as one of function parameters.
792  * all the information are dedicated to a given direct node block determined
793  * by the data offset in a file.
794  */
795 struct dnode_of_data {
796 	struct inode *inode;		/* vfs inode pointer */
797 	struct page *inode_page;	/* its inode page, NULL is possible */
798 	struct page *node_page;		/* cached direct node page */
799 	nid_t nid;			/* node id of the direct node block */
800 	unsigned int ofs_in_node;	/* data offset in the node page */
801 	bool inode_page_locked;		/* inode page is locked or not */
802 	bool node_changed;		/* is node block changed */
803 	char cur_level;			/* level of hole node page */
804 	char max_level;			/* level of current page located */
805 	block_t	data_blkaddr;		/* block address of the node block */
806 };
807 
808 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
809 		struct page *ipage, struct page *npage, nid_t nid)
810 {
811 	memset(dn, 0, sizeof(*dn));
812 	dn->inode = inode;
813 	dn->inode_page = ipage;
814 	dn->node_page = npage;
815 	dn->nid = nid;
816 }
817 
818 /*
819  * For SIT manager
820  *
821  * By default, there are 6 active log areas across the whole main area.
822  * When considering hot and cold data separation to reduce cleaning overhead,
823  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
824  * respectively.
825  * In the current design, you should not change the numbers intentionally.
826  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
827  * logs individually according to the underlying devices. (default: 6)
828  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
829  * data and 8 for node logs.
830  */
831 #define	NR_CURSEG_DATA_TYPE	(3)
832 #define NR_CURSEG_NODE_TYPE	(3)
833 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
834 
835 enum {
836 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
837 	CURSEG_WARM_DATA,	/* data blocks */
838 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
839 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
840 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
841 	CURSEG_COLD_NODE,	/* indirect node blocks */
842 	NO_CHECK_TYPE,
843 };
844 
845 struct flush_cmd {
846 	struct completion wait;
847 	struct llist_node llnode;
848 	nid_t ino;
849 	int ret;
850 };
851 
852 struct flush_cmd_control {
853 	struct task_struct *f2fs_issue_flush;	/* flush thread */
854 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
855 	atomic_t issued_flush;			/* # of issued flushes */
856 	atomic_t issing_flush;			/* # of issing flushes */
857 	struct llist_head issue_list;		/* list for command issue */
858 	struct llist_node *dispatch_list;	/* list for command dispatch */
859 };
860 
861 struct f2fs_sm_info {
862 	struct sit_info *sit_info;		/* whole segment information */
863 	struct free_segmap_info *free_info;	/* free segment information */
864 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
865 	struct curseg_info *curseg_array;	/* active segment information */
866 
867 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
868 
869 	block_t seg0_blkaddr;		/* block address of 0'th segment */
870 	block_t main_blkaddr;		/* start block address of main area */
871 	block_t ssa_blkaddr;		/* start block address of SSA area */
872 
873 	unsigned int segment_count;	/* total # of segments */
874 	unsigned int main_segments;	/* # of segments in main area */
875 	unsigned int reserved_segments;	/* # of reserved segments */
876 	unsigned int ovp_segments;	/* # of overprovision segments */
877 
878 	/* a threshold to reclaim prefree segments */
879 	unsigned int rec_prefree_segments;
880 
881 	/* for batched trimming */
882 	unsigned int trim_sections;		/* # of sections to trim */
883 
884 	struct list_head sit_entry_set;	/* sit entry set list */
885 
886 	unsigned int ipu_policy;	/* in-place-update policy */
887 	unsigned int min_ipu_util;	/* in-place-update threshold */
888 	unsigned int min_fsync_blocks;	/* threshold for fsync */
889 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
890 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
891 
892 	/* for flush command control */
893 	struct flush_cmd_control *fcc_info;
894 
895 	/* for discard command control */
896 	struct discard_cmd_control *dcc_info;
897 };
898 
899 /*
900  * For superblock
901  */
902 /*
903  * COUNT_TYPE for monitoring
904  *
905  * f2fs monitors the number of several block types such as on-writeback,
906  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
907  */
908 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
909 enum count_type {
910 	F2FS_DIRTY_DENTS,
911 	F2FS_DIRTY_DATA,
912 	F2FS_DIRTY_QDATA,
913 	F2FS_DIRTY_NODES,
914 	F2FS_DIRTY_META,
915 	F2FS_INMEM_PAGES,
916 	F2FS_DIRTY_IMETA,
917 	F2FS_WB_CP_DATA,
918 	F2FS_WB_DATA,
919 	NR_COUNT_TYPE,
920 };
921 
922 /*
923  * The below are the page types of bios used in submit_bio().
924  * The available types are:
925  * DATA			User data pages. It operates as async mode.
926  * NODE			Node pages. It operates as async mode.
927  * META			FS metadata pages such as SIT, NAT, CP.
928  * NR_PAGE_TYPE		The number of page types.
929  * META_FLUSH		Make sure the previous pages are written
930  *			with waiting the bio's completion
931  * ...			Only can be used with META.
932  */
933 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
934 enum page_type {
935 	DATA,
936 	NODE,
937 	META,
938 	NR_PAGE_TYPE,
939 	META_FLUSH,
940 	INMEM,		/* the below types are used by tracepoints only. */
941 	INMEM_DROP,
942 	INMEM_INVALIDATE,
943 	INMEM_REVOKE,
944 	IPU,
945 	OPU,
946 };
947 
948 enum temp_type {
949 	HOT = 0,	/* must be zero for meta bio */
950 	WARM,
951 	COLD,
952 	NR_TEMP_TYPE,
953 };
954 
955 enum need_lock_type {
956 	LOCK_REQ = 0,
957 	LOCK_DONE,
958 	LOCK_RETRY,
959 };
960 
961 enum cp_reason_type {
962 	CP_NO_NEEDED,
963 	CP_NON_REGULAR,
964 	CP_HARDLINK,
965 	CP_SB_NEED_CP,
966 	CP_WRONG_PINO,
967 	CP_NO_SPC_ROLL,
968 	CP_NODE_NEED_CP,
969 	CP_FASTBOOT_MODE,
970 	CP_SPEC_LOG_NUM,
971 	CP_RECOVER_DIR,
972 };
973 
974 enum iostat_type {
975 	APP_DIRECT_IO,			/* app direct IOs */
976 	APP_BUFFERED_IO,		/* app buffered IOs */
977 	APP_WRITE_IO,			/* app write IOs */
978 	APP_MAPPED_IO,			/* app mapped IOs */
979 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
980 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
981 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
982 	FS_GC_DATA_IO,			/* data IOs from forground gc */
983 	FS_GC_NODE_IO,			/* node IOs from forground gc */
984 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
985 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
986 	FS_CP_META_IO,			/* meta IOs from checkpoint */
987 	FS_DISCARD,			/* discard */
988 	NR_IO_TYPE,
989 };
990 
991 struct f2fs_io_info {
992 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
993 	nid_t ino;		/* inode number */
994 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
995 	enum temp_type temp;	/* contains HOT/WARM/COLD */
996 	int op;			/* contains REQ_OP_ */
997 	int op_flags;		/* req_flag_bits */
998 	block_t new_blkaddr;	/* new block address to be written */
999 	block_t old_blkaddr;	/* old block address before Cow */
1000 	struct page *page;	/* page to be written */
1001 	struct page *encrypted_page;	/* encrypted page */
1002 	struct list_head list;		/* serialize IOs */
1003 	bool submitted;		/* indicate IO submission */
1004 	int need_lock;		/* indicate we need to lock cp_rwsem */
1005 	bool in_list;		/* indicate fio is in io_list */
1006 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1007 	enum iostat_type io_type;	/* io type */
1008 	struct writeback_control *io_wbc; /* writeback control */
1009 };
1010 
1011 #define is_read_io(rw) ((rw) == READ)
1012 struct f2fs_bio_info {
1013 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1014 	struct bio *bio;		/* bios to merge */
1015 	sector_t last_block_in_bio;	/* last block number */
1016 	struct f2fs_io_info fio;	/* store buffered io info. */
1017 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1018 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1019 	struct list_head io_list;	/* track fios */
1020 };
1021 
1022 #define FDEV(i)				(sbi->devs[i])
1023 #define RDEV(i)				(raw_super->devs[i])
1024 struct f2fs_dev_info {
1025 	struct block_device *bdev;
1026 	char path[MAX_PATH_LEN];
1027 	unsigned int total_segments;
1028 	block_t start_blk;
1029 	block_t end_blk;
1030 #ifdef CONFIG_BLK_DEV_ZONED
1031 	unsigned int nr_blkz;			/* Total number of zones */
1032 	u8 *blkz_type;				/* Array of zones type */
1033 #endif
1034 };
1035 
1036 enum inode_type {
1037 	DIR_INODE,			/* for dirty dir inode */
1038 	FILE_INODE,			/* for dirty regular/symlink inode */
1039 	DIRTY_META,			/* for all dirtied inode metadata */
1040 	ATOMIC_FILE,			/* for all atomic files */
1041 	NR_INODE_TYPE,
1042 };
1043 
1044 /* for inner inode cache management */
1045 struct inode_management {
1046 	struct radix_tree_root ino_root;	/* ino entry array */
1047 	spinlock_t ino_lock;			/* for ino entry lock */
1048 	struct list_head ino_list;		/* inode list head */
1049 	unsigned long ino_num;			/* number of entries */
1050 };
1051 
1052 /* For s_flag in struct f2fs_sb_info */
1053 enum {
1054 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1055 	SBI_IS_CLOSE,				/* specify unmounting */
1056 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1057 	SBI_POR_DOING,				/* recovery is doing or not */
1058 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1059 	SBI_NEED_CP,				/* need to checkpoint */
1060 };
1061 
1062 enum {
1063 	CP_TIME,
1064 	REQ_TIME,
1065 	MAX_TIME,
1066 };
1067 
1068 enum {
1069 	WHINT_MODE_OFF,		/* not pass down write hints */
1070 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1071 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1072 };
1073 
1074 enum {
1075 	ALLOC_MODE_DEFAULT,	/* stay default */
1076 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1077 };
1078 
1079 enum fsync_mode {
1080 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1081 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1082 };
1083 
1084 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1085 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1086 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1087 #else
1088 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1089 #endif
1090 
1091 struct f2fs_sb_info {
1092 	struct super_block *sb;			/* pointer to VFS super block */
1093 	struct proc_dir_entry *s_proc;		/* proc entry */
1094 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1095 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1096 	int valid_super_block;			/* valid super block no */
1097 	unsigned long s_flag;				/* flags for sbi */
1098 
1099 #ifdef CONFIG_BLK_DEV_ZONED
1100 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1101 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1102 #endif
1103 
1104 	/* for node-related operations */
1105 	struct f2fs_nm_info *nm_info;		/* node manager */
1106 	struct inode *node_inode;		/* cache node blocks */
1107 
1108 	/* for segment-related operations */
1109 	struct f2fs_sm_info *sm_info;		/* segment manager */
1110 
1111 	/* for bio operations */
1112 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1113 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1114 						/* bio ordering for NODE/DATA */
1115 	mempool_t *write_io_dummy;		/* Dummy pages */
1116 
1117 	/* for checkpoint */
1118 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1119 	int cur_cp_pack;			/* remain current cp pack */
1120 	spinlock_t cp_lock;			/* for flag in ckpt */
1121 	struct inode *meta_inode;		/* cache meta blocks */
1122 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1123 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1124 	struct rw_semaphore node_write;		/* locking node writes */
1125 	struct rw_semaphore node_change;	/* locking node change */
1126 	wait_queue_head_t cp_wait;
1127 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1128 	long interval_time[MAX_TIME];		/* to store thresholds */
1129 
1130 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1131 
1132 	/* for orphan inode, use 0'th array */
1133 	unsigned int max_orphans;		/* max orphan inodes */
1134 
1135 	/* for inode management */
1136 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1137 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1138 
1139 	/* for extent tree cache */
1140 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1141 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1142 	struct list_head extent_list;		/* lru list for shrinker */
1143 	spinlock_t extent_lock;			/* locking extent lru list */
1144 	atomic_t total_ext_tree;		/* extent tree count */
1145 	struct list_head zombie_list;		/* extent zombie tree list */
1146 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1147 	atomic_t total_ext_node;		/* extent info count */
1148 
1149 	/* basic filesystem units */
1150 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1151 	unsigned int log_blocksize;		/* log2 block size */
1152 	unsigned int blocksize;			/* block size */
1153 	unsigned int root_ino_num;		/* root inode number*/
1154 	unsigned int node_ino_num;		/* node inode number*/
1155 	unsigned int meta_ino_num;		/* meta inode number*/
1156 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1157 	unsigned int blocks_per_seg;		/* blocks per segment */
1158 	unsigned int segs_per_sec;		/* segments per section */
1159 	unsigned int secs_per_zone;		/* sections per zone */
1160 	unsigned int total_sections;		/* total section count */
1161 	unsigned int total_node_count;		/* total node block count */
1162 	unsigned int total_valid_node_count;	/* valid node block count */
1163 	loff_t max_file_blocks;			/* max block index of file */
1164 	int dir_level;				/* directory level */
1165 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1166 	int readdir_ra;				/* readahead inode in readdir */
1167 
1168 	block_t user_block_count;		/* # of user blocks */
1169 	block_t total_valid_block_count;	/* # of valid blocks */
1170 	block_t discard_blks;			/* discard command candidats */
1171 	block_t last_valid_block_count;		/* for recovery */
1172 	block_t reserved_blocks;		/* configurable reserved blocks */
1173 	block_t current_reserved_blocks;	/* current reserved blocks */
1174 
1175 	unsigned int nquota_files;		/* # of quota sysfile */
1176 
1177 	u32 s_next_generation;			/* for NFS support */
1178 
1179 	/* # of pages, see count_type */
1180 	atomic_t nr_pages[NR_COUNT_TYPE];
1181 	/* # of allocated blocks */
1182 	struct percpu_counter alloc_valid_block_count;
1183 
1184 	/* writeback control */
1185 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1186 
1187 	/* valid inode count */
1188 	struct percpu_counter total_valid_inode_count;
1189 
1190 	struct f2fs_mount_info mount_opt;	/* mount options */
1191 
1192 	/* for cleaning operations */
1193 	struct mutex gc_mutex;			/* mutex for GC */
1194 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1195 	unsigned int cur_victim_sec;		/* current victim section num */
1196 
1197 	/* threshold for converting bg victims for fg */
1198 	u64 fggc_threshold;
1199 
1200 	/* threshold for gc trials on pinned files */
1201 	u64 gc_pin_file_threshold;
1202 
1203 	/* maximum # of trials to find a victim segment for SSR and GC */
1204 	unsigned int max_victim_search;
1205 
1206 	/*
1207 	 * for stat information.
1208 	 * one is for the LFS mode, and the other is for the SSR mode.
1209 	 */
1210 #ifdef CONFIG_F2FS_STAT_FS
1211 	struct f2fs_stat_info *stat_info;	/* FS status information */
1212 	unsigned int segment_count[2];		/* # of allocated segments */
1213 	unsigned int block_count[2];		/* # of allocated blocks */
1214 	atomic_t inplace_count;		/* # of inplace update */
1215 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1216 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1217 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1218 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1219 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1220 	atomic_t inline_inode;			/* # of inline_data inodes */
1221 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1222 	atomic_t aw_cnt;			/* # of atomic writes */
1223 	atomic_t vw_cnt;			/* # of volatile writes */
1224 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1225 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1226 	int bg_gc;				/* background gc calls */
1227 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1228 #endif
1229 	spinlock_t stat_lock;			/* lock for stat operations */
1230 
1231 	/* For app/fs IO statistics */
1232 	spinlock_t iostat_lock;
1233 	unsigned long long write_iostat[NR_IO_TYPE];
1234 	bool iostat_enable;
1235 
1236 	/* For sysfs suppport */
1237 	struct kobject s_kobj;
1238 	struct completion s_kobj_unregister;
1239 
1240 	/* For shrinker support */
1241 	struct list_head s_list;
1242 	int s_ndevs;				/* number of devices */
1243 	struct f2fs_dev_info *devs;		/* for device list */
1244 	unsigned int dirty_device;		/* for checkpoint data flush */
1245 	spinlock_t dev_lock;			/* protect dirty_device */
1246 	struct mutex umount_mutex;
1247 	unsigned int shrinker_run_no;
1248 
1249 	/* For write statistics */
1250 	u64 sectors_written_start;
1251 	u64 kbytes_written;
1252 
1253 	/* Reference to checksum algorithm driver via cryptoapi */
1254 	struct crypto_shash *s_chksum_driver;
1255 
1256 	/* Precomputed FS UUID checksum for seeding other checksums */
1257 	__u32 s_chksum_seed;
1258 };
1259 
1260 #ifdef CONFIG_F2FS_FAULT_INJECTION
1261 #define f2fs_show_injection_info(type)				\
1262 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1263 		KERN_INFO, fault_name[type],			\
1264 		__func__, __builtin_return_address(0))
1265 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1266 {
1267 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1268 
1269 	if (!ffi->inject_rate)
1270 		return false;
1271 
1272 	if (!IS_FAULT_SET(ffi, type))
1273 		return false;
1274 
1275 	atomic_inc(&ffi->inject_ops);
1276 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1277 		atomic_set(&ffi->inject_ops, 0);
1278 		return true;
1279 	}
1280 	return false;
1281 }
1282 #endif
1283 
1284 /* For write statistics. Suppose sector size is 512 bytes,
1285  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1286  */
1287 #define BD_PART_WRITTEN(s)						 \
1288 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1289 		(s)->sectors_written_start) >> 1)
1290 
1291 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1292 {
1293 	sbi->last_time[type] = jiffies;
1294 }
1295 
1296 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1297 {
1298 	unsigned long interval = sbi->interval_time[type] * HZ;
1299 
1300 	return time_after(jiffies, sbi->last_time[type] + interval);
1301 }
1302 
1303 static inline bool is_idle(struct f2fs_sb_info *sbi)
1304 {
1305 	struct block_device *bdev = sbi->sb->s_bdev;
1306 	struct request_queue *q = bdev_get_queue(bdev);
1307 	struct request_list *rl = &q->root_rl;
1308 
1309 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1310 		return 0;
1311 
1312 	return f2fs_time_over(sbi, REQ_TIME);
1313 }
1314 
1315 /*
1316  * Inline functions
1317  */
1318 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1319 			      const void *address, unsigned int length)
1320 {
1321 	struct {
1322 		struct shash_desc shash;
1323 		char ctx[4];
1324 	} desc;
1325 	int err;
1326 
1327 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1328 
1329 	desc.shash.tfm = sbi->s_chksum_driver;
1330 	desc.shash.flags = 0;
1331 	*(u32 *)desc.ctx = crc;
1332 
1333 	err = crypto_shash_update(&desc.shash, address, length);
1334 	BUG_ON(err);
1335 
1336 	return *(u32 *)desc.ctx;
1337 }
1338 
1339 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1340 			   unsigned int length)
1341 {
1342 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1343 }
1344 
1345 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1346 				  void *buf, size_t buf_size)
1347 {
1348 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1349 }
1350 
1351 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1352 			      const void *address, unsigned int length)
1353 {
1354 	return __f2fs_crc32(sbi, crc, address, length);
1355 }
1356 
1357 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1358 {
1359 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1360 }
1361 
1362 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1363 {
1364 	return sb->s_fs_info;
1365 }
1366 
1367 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1368 {
1369 	return F2FS_SB(inode->i_sb);
1370 }
1371 
1372 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1373 {
1374 	return F2FS_I_SB(mapping->host);
1375 }
1376 
1377 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1378 {
1379 	return F2FS_M_SB(page->mapping);
1380 }
1381 
1382 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1383 {
1384 	return (struct f2fs_super_block *)(sbi->raw_super);
1385 }
1386 
1387 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1388 {
1389 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1390 }
1391 
1392 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1393 {
1394 	return (struct f2fs_node *)page_address(page);
1395 }
1396 
1397 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1398 {
1399 	return &((struct f2fs_node *)page_address(page))->i;
1400 }
1401 
1402 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1403 {
1404 	return (struct f2fs_nm_info *)(sbi->nm_info);
1405 }
1406 
1407 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1408 {
1409 	return (struct f2fs_sm_info *)(sbi->sm_info);
1410 }
1411 
1412 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1413 {
1414 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1415 }
1416 
1417 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1418 {
1419 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1420 }
1421 
1422 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1423 {
1424 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1425 }
1426 
1427 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1428 {
1429 	return sbi->meta_inode->i_mapping;
1430 }
1431 
1432 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1433 {
1434 	return sbi->node_inode->i_mapping;
1435 }
1436 
1437 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1438 {
1439 	return test_bit(type, &sbi->s_flag);
1440 }
1441 
1442 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1443 {
1444 	set_bit(type, &sbi->s_flag);
1445 }
1446 
1447 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1448 {
1449 	clear_bit(type, &sbi->s_flag);
1450 }
1451 
1452 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1453 {
1454 	return le64_to_cpu(cp->checkpoint_ver);
1455 }
1456 
1457 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1458 {
1459 	if (type < F2FS_MAX_QUOTAS)
1460 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1461 	return 0;
1462 }
1463 
1464 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1465 {
1466 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1467 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1468 }
1469 
1470 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1471 {
1472 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1473 
1474 	return ckpt_flags & f;
1475 }
1476 
1477 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1478 {
1479 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1480 }
1481 
1482 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1483 {
1484 	unsigned int ckpt_flags;
1485 
1486 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1487 	ckpt_flags |= f;
1488 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1489 }
1490 
1491 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1492 {
1493 	unsigned long flags;
1494 
1495 	spin_lock_irqsave(&sbi->cp_lock, flags);
1496 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1497 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1498 }
1499 
1500 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1501 {
1502 	unsigned int ckpt_flags;
1503 
1504 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1505 	ckpt_flags &= (~f);
1506 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1507 }
1508 
1509 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1510 {
1511 	unsigned long flags;
1512 
1513 	spin_lock_irqsave(&sbi->cp_lock, flags);
1514 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1515 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1516 }
1517 
1518 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1519 {
1520 	unsigned long flags;
1521 
1522 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1523 
1524 	if (lock)
1525 		spin_lock_irqsave(&sbi->cp_lock, flags);
1526 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1527 	kfree(NM_I(sbi)->nat_bits);
1528 	NM_I(sbi)->nat_bits = NULL;
1529 	if (lock)
1530 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1531 }
1532 
1533 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1534 					struct cp_control *cpc)
1535 {
1536 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1537 
1538 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1539 }
1540 
1541 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1542 {
1543 	down_read(&sbi->cp_rwsem);
1544 }
1545 
1546 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1547 {
1548 	return down_read_trylock(&sbi->cp_rwsem);
1549 }
1550 
1551 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1552 {
1553 	up_read(&sbi->cp_rwsem);
1554 }
1555 
1556 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1557 {
1558 	down_write(&sbi->cp_rwsem);
1559 }
1560 
1561 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1562 {
1563 	up_write(&sbi->cp_rwsem);
1564 }
1565 
1566 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1567 {
1568 	int reason = CP_SYNC;
1569 
1570 	if (test_opt(sbi, FASTBOOT))
1571 		reason = CP_FASTBOOT;
1572 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1573 		reason = CP_UMOUNT;
1574 	return reason;
1575 }
1576 
1577 static inline bool __remain_node_summaries(int reason)
1578 {
1579 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1580 }
1581 
1582 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1583 {
1584 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1585 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1586 }
1587 
1588 /*
1589  * Check whether the given nid is within node id range.
1590  */
1591 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1592 {
1593 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1594 		return -EINVAL;
1595 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1596 		return -EINVAL;
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Check whether the inode has blocks or not
1602  */
1603 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1604 {
1605 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1606 
1607 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1608 }
1609 
1610 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1611 {
1612 	return ofs == XATTR_NODE_OFFSET;
1613 }
1614 
1615 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1616 					struct inode *inode)
1617 {
1618 	if (!inode)
1619 		return true;
1620 	if (!test_opt(sbi, RESERVE_ROOT))
1621 		return false;
1622 	if (IS_NOQUOTA(inode))
1623 		return true;
1624 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1625 		return true;
1626 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1627 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1628 		return true;
1629 	if (capable(CAP_SYS_RESOURCE))
1630 		return true;
1631 	return false;
1632 }
1633 
1634 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1635 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1636 				 struct inode *inode, blkcnt_t *count)
1637 {
1638 	blkcnt_t diff = 0, release = 0;
1639 	block_t avail_user_block_count;
1640 	int ret;
1641 
1642 	ret = dquot_reserve_block(inode, *count);
1643 	if (ret)
1644 		return ret;
1645 
1646 #ifdef CONFIG_F2FS_FAULT_INJECTION
1647 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1648 		f2fs_show_injection_info(FAULT_BLOCK);
1649 		release = *count;
1650 		goto enospc;
1651 	}
1652 #endif
1653 	/*
1654 	 * let's increase this in prior to actual block count change in order
1655 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1656 	 */
1657 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1658 
1659 	spin_lock(&sbi->stat_lock);
1660 	sbi->total_valid_block_count += (block_t)(*count);
1661 	avail_user_block_count = sbi->user_block_count -
1662 					sbi->current_reserved_blocks;
1663 
1664 	if (!__allow_reserved_blocks(sbi, inode))
1665 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1666 
1667 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1668 		diff = sbi->total_valid_block_count - avail_user_block_count;
1669 		if (diff > *count)
1670 			diff = *count;
1671 		*count -= diff;
1672 		release = diff;
1673 		sbi->total_valid_block_count -= diff;
1674 		if (!*count) {
1675 			spin_unlock(&sbi->stat_lock);
1676 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1677 			goto enospc;
1678 		}
1679 	}
1680 	spin_unlock(&sbi->stat_lock);
1681 
1682 	if (unlikely(release))
1683 		dquot_release_reservation_block(inode, release);
1684 	f2fs_i_blocks_write(inode, *count, true, true);
1685 	return 0;
1686 
1687 enospc:
1688 	dquot_release_reservation_block(inode, release);
1689 	return -ENOSPC;
1690 }
1691 
1692 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1693 						struct inode *inode,
1694 						block_t count)
1695 {
1696 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1697 
1698 	spin_lock(&sbi->stat_lock);
1699 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1700 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1701 	sbi->total_valid_block_count -= (block_t)count;
1702 	if (sbi->reserved_blocks &&
1703 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1704 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1705 					sbi->current_reserved_blocks + count);
1706 	spin_unlock(&sbi->stat_lock);
1707 	f2fs_i_blocks_write(inode, count, false, true);
1708 }
1709 
1710 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1711 {
1712 	atomic_inc(&sbi->nr_pages[count_type]);
1713 
1714 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1715 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1716 		return;
1717 
1718 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1719 }
1720 
1721 static inline void inode_inc_dirty_pages(struct inode *inode)
1722 {
1723 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1724 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1725 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1726 	if (IS_NOQUOTA(inode))
1727 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1728 }
1729 
1730 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1731 {
1732 	atomic_dec(&sbi->nr_pages[count_type]);
1733 }
1734 
1735 static inline void inode_dec_dirty_pages(struct inode *inode)
1736 {
1737 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1738 			!S_ISLNK(inode->i_mode))
1739 		return;
1740 
1741 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1742 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1743 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1744 	if (IS_NOQUOTA(inode))
1745 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1746 }
1747 
1748 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1749 {
1750 	return atomic_read(&sbi->nr_pages[count_type]);
1751 }
1752 
1753 static inline int get_dirty_pages(struct inode *inode)
1754 {
1755 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1756 }
1757 
1758 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1759 {
1760 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1761 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1762 						sbi->log_blocks_per_seg;
1763 
1764 	return segs / sbi->segs_per_sec;
1765 }
1766 
1767 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1768 {
1769 	return sbi->total_valid_block_count;
1770 }
1771 
1772 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1773 {
1774 	return sbi->discard_blks;
1775 }
1776 
1777 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1778 {
1779 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1780 
1781 	/* return NAT or SIT bitmap */
1782 	if (flag == NAT_BITMAP)
1783 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1784 	else if (flag == SIT_BITMAP)
1785 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1786 
1787 	return 0;
1788 }
1789 
1790 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1791 {
1792 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1793 }
1794 
1795 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1796 {
1797 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1798 	int offset;
1799 
1800 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1801 		offset = (flag == SIT_BITMAP) ?
1802 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1803 		return &ckpt->sit_nat_version_bitmap + offset;
1804 	}
1805 
1806 	if (__cp_payload(sbi) > 0) {
1807 		if (flag == NAT_BITMAP)
1808 			return &ckpt->sit_nat_version_bitmap;
1809 		else
1810 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1811 	} else {
1812 		offset = (flag == NAT_BITMAP) ?
1813 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1814 		return &ckpt->sit_nat_version_bitmap + offset;
1815 	}
1816 }
1817 
1818 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1819 {
1820 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1821 
1822 	if (sbi->cur_cp_pack == 2)
1823 		start_addr += sbi->blocks_per_seg;
1824 	return start_addr;
1825 }
1826 
1827 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1828 {
1829 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1830 
1831 	if (sbi->cur_cp_pack == 1)
1832 		start_addr += sbi->blocks_per_seg;
1833 	return start_addr;
1834 }
1835 
1836 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1837 {
1838 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1839 }
1840 
1841 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1842 {
1843 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1844 }
1845 
1846 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1847 					struct inode *inode, bool is_inode)
1848 {
1849 	block_t	valid_block_count;
1850 	unsigned int valid_node_count;
1851 	bool quota = inode && !is_inode;
1852 
1853 	if (quota) {
1854 		int ret = dquot_reserve_block(inode, 1);
1855 		if (ret)
1856 			return ret;
1857 	}
1858 
1859 #ifdef CONFIG_F2FS_FAULT_INJECTION
1860 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1861 		f2fs_show_injection_info(FAULT_BLOCK);
1862 		goto enospc;
1863 	}
1864 #endif
1865 
1866 	spin_lock(&sbi->stat_lock);
1867 
1868 	valid_block_count = sbi->total_valid_block_count +
1869 					sbi->current_reserved_blocks + 1;
1870 
1871 	if (!__allow_reserved_blocks(sbi, inode))
1872 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1873 
1874 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1875 		spin_unlock(&sbi->stat_lock);
1876 		goto enospc;
1877 	}
1878 
1879 	valid_node_count = sbi->total_valid_node_count + 1;
1880 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1881 		spin_unlock(&sbi->stat_lock);
1882 		goto enospc;
1883 	}
1884 
1885 	sbi->total_valid_node_count++;
1886 	sbi->total_valid_block_count++;
1887 	spin_unlock(&sbi->stat_lock);
1888 
1889 	if (inode) {
1890 		if (is_inode)
1891 			f2fs_mark_inode_dirty_sync(inode, true);
1892 		else
1893 			f2fs_i_blocks_write(inode, 1, true, true);
1894 	}
1895 
1896 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1897 	return 0;
1898 
1899 enospc:
1900 	if (quota)
1901 		dquot_release_reservation_block(inode, 1);
1902 	return -ENOSPC;
1903 }
1904 
1905 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1906 					struct inode *inode, bool is_inode)
1907 {
1908 	spin_lock(&sbi->stat_lock);
1909 
1910 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1911 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1912 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1913 
1914 	sbi->total_valid_node_count--;
1915 	sbi->total_valid_block_count--;
1916 	if (sbi->reserved_blocks &&
1917 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1918 		sbi->current_reserved_blocks++;
1919 
1920 	spin_unlock(&sbi->stat_lock);
1921 
1922 	if (!is_inode)
1923 		f2fs_i_blocks_write(inode, 1, false, true);
1924 }
1925 
1926 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1927 {
1928 	return sbi->total_valid_node_count;
1929 }
1930 
1931 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1932 {
1933 	percpu_counter_inc(&sbi->total_valid_inode_count);
1934 }
1935 
1936 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1937 {
1938 	percpu_counter_dec(&sbi->total_valid_inode_count);
1939 }
1940 
1941 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1942 {
1943 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1944 }
1945 
1946 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1947 						pgoff_t index, bool for_write)
1948 {
1949 #ifdef CONFIG_F2FS_FAULT_INJECTION
1950 	struct page *page = find_lock_page(mapping, index);
1951 
1952 	if (page)
1953 		return page;
1954 
1955 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1956 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1957 		return NULL;
1958 	}
1959 #endif
1960 	if (!for_write)
1961 		return grab_cache_page(mapping, index);
1962 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1963 }
1964 
1965 static inline struct page *f2fs_pagecache_get_page(
1966 				struct address_space *mapping, pgoff_t index,
1967 				int fgp_flags, gfp_t gfp_mask)
1968 {
1969 #ifdef CONFIG_F2FS_FAULT_INJECTION
1970 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1971 		f2fs_show_injection_info(FAULT_PAGE_GET);
1972 		return NULL;
1973 	}
1974 #endif
1975 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1976 }
1977 
1978 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1979 {
1980 	char *src_kaddr = kmap(src);
1981 	char *dst_kaddr = kmap(dst);
1982 
1983 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1984 	kunmap(dst);
1985 	kunmap(src);
1986 }
1987 
1988 static inline void f2fs_put_page(struct page *page, int unlock)
1989 {
1990 	if (!page)
1991 		return;
1992 
1993 	if (unlock) {
1994 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1995 		unlock_page(page);
1996 	}
1997 	put_page(page);
1998 }
1999 
2000 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2001 {
2002 	if (dn->node_page)
2003 		f2fs_put_page(dn->node_page, 1);
2004 	if (dn->inode_page && dn->node_page != dn->inode_page)
2005 		f2fs_put_page(dn->inode_page, 0);
2006 	dn->node_page = NULL;
2007 	dn->inode_page = NULL;
2008 }
2009 
2010 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2011 					size_t size)
2012 {
2013 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2014 }
2015 
2016 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2017 						gfp_t flags)
2018 {
2019 	void *entry;
2020 
2021 	entry = kmem_cache_alloc(cachep, flags);
2022 	if (!entry)
2023 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2024 	return entry;
2025 }
2026 
2027 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2028 						int npages, bool no_fail)
2029 {
2030 	struct bio *bio;
2031 
2032 	if (no_fail) {
2033 		/* No failure on bio allocation */
2034 		bio = bio_alloc(GFP_NOIO, npages);
2035 		if (!bio)
2036 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2037 		return bio;
2038 	}
2039 #ifdef CONFIG_F2FS_FAULT_INJECTION
2040 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2041 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2042 		return NULL;
2043 	}
2044 #endif
2045 	return bio_alloc(GFP_KERNEL, npages);
2046 }
2047 
2048 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2049 				unsigned long index, void *item)
2050 {
2051 	while (radix_tree_insert(root, index, item))
2052 		cond_resched();
2053 }
2054 
2055 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2056 
2057 static inline bool IS_INODE(struct page *page)
2058 {
2059 	struct f2fs_node *p = F2FS_NODE(page);
2060 
2061 	return RAW_IS_INODE(p);
2062 }
2063 
2064 static inline int offset_in_addr(struct f2fs_inode *i)
2065 {
2066 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2067 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2068 }
2069 
2070 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2071 {
2072 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2073 }
2074 
2075 static inline int f2fs_has_extra_attr(struct inode *inode);
2076 static inline block_t datablock_addr(struct inode *inode,
2077 			struct page *node_page, unsigned int offset)
2078 {
2079 	struct f2fs_node *raw_node;
2080 	__le32 *addr_array;
2081 	int base = 0;
2082 	bool is_inode = IS_INODE(node_page);
2083 
2084 	raw_node = F2FS_NODE(node_page);
2085 
2086 	/* from GC path only */
2087 	if (is_inode) {
2088 		if (!inode)
2089 			base = offset_in_addr(&raw_node->i);
2090 		else if (f2fs_has_extra_attr(inode))
2091 			base = get_extra_isize(inode);
2092 	}
2093 
2094 	addr_array = blkaddr_in_node(raw_node);
2095 	return le32_to_cpu(addr_array[base + offset]);
2096 }
2097 
2098 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2099 {
2100 	int mask;
2101 
2102 	addr += (nr >> 3);
2103 	mask = 1 << (7 - (nr & 0x07));
2104 	return mask & *addr;
2105 }
2106 
2107 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2108 {
2109 	int mask;
2110 
2111 	addr += (nr >> 3);
2112 	mask = 1 << (7 - (nr & 0x07));
2113 	*addr |= mask;
2114 }
2115 
2116 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2117 {
2118 	int mask;
2119 
2120 	addr += (nr >> 3);
2121 	mask = 1 << (7 - (nr & 0x07));
2122 	*addr &= ~mask;
2123 }
2124 
2125 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2126 {
2127 	int mask;
2128 	int ret;
2129 
2130 	addr += (nr >> 3);
2131 	mask = 1 << (7 - (nr & 0x07));
2132 	ret = mask & *addr;
2133 	*addr |= mask;
2134 	return ret;
2135 }
2136 
2137 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2138 {
2139 	int mask;
2140 	int ret;
2141 
2142 	addr += (nr >> 3);
2143 	mask = 1 << (7 - (nr & 0x07));
2144 	ret = mask & *addr;
2145 	*addr &= ~mask;
2146 	return ret;
2147 }
2148 
2149 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2150 {
2151 	int mask;
2152 
2153 	addr += (nr >> 3);
2154 	mask = 1 << (7 - (nr & 0x07));
2155 	*addr ^= mask;
2156 }
2157 
2158 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2159 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2160 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2161 
2162 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2163 {
2164 	if (S_ISDIR(mode))
2165 		return flags;
2166 	else if (S_ISREG(mode))
2167 		return flags & F2FS_REG_FLMASK;
2168 	else
2169 		return flags & F2FS_OTHER_FLMASK;
2170 }
2171 
2172 /* used for f2fs_inode_info->flags */
2173 enum {
2174 	FI_NEW_INODE,		/* indicate newly allocated inode */
2175 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2176 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2177 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2178 	FI_INC_LINK,		/* need to increment i_nlink */
2179 	FI_ACL_MODE,		/* indicate acl mode */
2180 	FI_NO_ALLOC,		/* should not allocate any blocks */
2181 	FI_FREE_NID,		/* free allocated nide */
2182 	FI_NO_EXTENT,		/* not to use the extent cache */
2183 	FI_INLINE_XATTR,	/* used for inline xattr */
2184 	FI_INLINE_DATA,		/* used for inline data*/
2185 	FI_INLINE_DENTRY,	/* used for inline dentry */
2186 	FI_APPEND_WRITE,	/* inode has appended data */
2187 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2188 	FI_NEED_IPU,		/* used for ipu per file */
2189 	FI_ATOMIC_FILE,		/* indicate atomic file */
2190 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2191 	FI_VOLATILE_FILE,	/* indicate volatile file */
2192 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2193 	FI_DROP_CACHE,		/* drop dirty page cache */
2194 	FI_DATA_EXIST,		/* indicate data exists */
2195 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2196 	FI_DO_DEFRAG,		/* indicate defragment is running */
2197 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2198 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2199 	FI_HOT_DATA,		/* indicate file is hot */
2200 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2201 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2202 	FI_PIN_FILE,		/* indicate file should not be gced */
2203 };
2204 
2205 static inline void __mark_inode_dirty_flag(struct inode *inode,
2206 						int flag, bool set)
2207 {
2208 	switch (flag) {
2209 	case FI_INLINE_XATTR:
2210 	case FI_INLINE_DATA:
2211 	case FI_INLINE_DENTRY:
2212 	case FI_NEW_INODE:
2213 		if (set)
2214 			return;
2215 	case FI_DATA_EXIST:
2216 	case FI_INLINE_DOTS:
2217 	case FI_PIN_FILE:
2218 		f2fs_mark_inode_dirty_sync(inode, true);
2219 	}
2220 }
2221 
2222 static inline void set_inode_flag(struct inode *inode, int flag)
2223 {
2224 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2225 		set_bit(flag, &F2FS_I(inode)->flags);
2226 	__mark_inode_dirty_flag(inode, flag, true);
2227 }
2228 
2229 static inline int is_inode_flag_set(struct inode *inode, int flag)
2230 {
2231 	return test_bit(flag, &F2FS_I(inode)->flags);
2232 }
2233 
2234 static inline void clear_inode_flag(struct inode *inode, int flag)
2235 {
2236 	if (test_bit(flag, &F2FS_I(inode)->flags))
2237 		clear_bit(flag, &F2FS_I(inode)->flags);
2238 	__mark_inode_dirty_flag(inode, flag, false);
2239 }
2240 
2241 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2242 {
2243 	F2FS_I(inode)->i_acl_mode = mode;
2244 	set_inode_flag(inode, FI_ACL_MODE);
2245 	f2fs_mark_inode_dirty_sync(inode, false);
2246 }
2247 
2248 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2249 {
2250 	if (inc)
2251 		inc_nlink(inode);
2252 	else
2253 		drop_nlink(inode);
2254 	f2fs_mark_inode_dirty_sync(inode, true);
2255 }
2256 
2257 static inline void f2fs_i_blocks_write(struct inode *inode,
2258 					block_t diff, bool add, bool claim)
2259 {
2260 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2261 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2262 
2263 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2264 	if (add) {
2265 		if (claim)
2266 			dquot_claim_block(inode, diff);
2267 		else
2268 			dquot_alloc_block_nofail(inode, diff);
2269 	} else {
2270 		dquot_free_block(inode, diff);
2271 	}
2272 
2273 	f2fs_mark_inode_dirty_sync(inode, true);
2274 	if (clean || recover)
2275 		set_inode_flag(inode, FI_AUTO_RECOVER);
2276 }
2277 
2278 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2279 {
2280 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2281 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2282 
2283 	if (i_size_read(inode) == i_size)
2284 		return;
2285 
2286 	i_size_write(inode, i_size);
2287 	f2fs_mark_inode_dirty_sync(inode, true);
2288 	if (clean || recover)
2289 		set_inode_flag(inode, FI_AUTO_RECOVER);
2290 }
2291 
2292 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2293 {
2294 	F2FS_I(inode)->i_current_depth = depth;
2295 	f2fs_mark_inode_dirty_sync(inode, true);
2296 }
2297 
2298 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2299 					unsigned int count)
2300 {
2301 	F2FS_I(inode)->i_gc_failures = count;
2302 	f2fs_mark_inode_dirty_sync(inode, true);
2303 }
2304 
2305 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2306 {
2307 	F2FS_I(inode)->i_xattr_nid = xnid;
2308 	f2fs_mark_inode_dirty_sync(inode, true);
2309 }
2310 
2311 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2312 {
2313 	F2FS_I(inode)->i_pino = pino;
2314 	f2fs_mark_inode_dirty_sync(inode, true);
2315 }
2316 
2317 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2318 {
2319 	struct f2fs_inode_info *fi = F2FS_I(inode);
2320 
2321 	if (ri->i_inline & F2FS_INLINE_XATTR)
2322 		set_bit(FI_INLINE_XATTR, &fi->flags);
2323 	if (ri->i_inline & F2FS_INLINE_DATA)
2324 		set_bit(FI_INLINE_DATA, &fi->flags);
2325 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2326 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2327 	if (ri->i_inline & F2FS_DATA_EXIST)
2328 		set_bit(FI_DATA_EXIST, &fi->flags);
2329 	if (ri->i_inline & F2FS_INLINE_DOTS)
2330 		set_bit(FI_INLINE_DOTS, &fi->flags);
2331 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2332 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2333 	if (ri->i_inline & F2FS_PIN_FILE)
2334 		set_bit(FI_PIN_FILE, &fi->flags);
2335 }
2336 
2337 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2338 {
2339 	ri->i_inline = 0;
2340 
2341 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2342 		ri->i_inline |= F2FS_INLINE_XATTR;
2343 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2344 		ri->i_inline |= F2FS_INLINE_DATA;
2345 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2346 		ri->i_inline |= F2FS_INLINE_DENTRY;
2347 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2348 		ri->i_inline |= F2FS_DATA_EXIST;
2349 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2350 		ri->i_inline |= F2FS_INLINE_DOTS;
2351 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2352 		ri->i_inline |= F2FS_EXTRA_ATTR;
2353 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2354 		ri->i_inline |= F2FS_PIN_FILE;
2355 }
2356 
2357 static inline int f2fs_has_extra_attr(struct inode *inode)
2358 {
2359 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2360 }
2361 
2362 static inline int f2fs_has_inline_xattr(struct inode *inode)
2363 {
2364 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2365 }
2366 
2367 static inline unsigned int addrs_per_inode(struct inode *inode)
2368 {
2369 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2370 }
2371 
2372 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2373 {
2374 	struct f2fs_inode *ri = F2FS_INODE(page);
2375 
2376 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2377 					get_inline_xattr_addrs(inode)]);
2378 }
2379 
2380 static inline int inline_xattr_size(struct inode *inode)
2381 {
2382 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2383 }
2384 
2385 static inline int f2fs_has_inline_data(struct inode *inode)
2386 {
2387 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2388 }
2389 
2390 static inline int f2fs_exist_data(struct inode *inode)
2391 {
2392 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2393 }
2394 
2395 static inline int f2fs_has_inline_dots(struct inode *inode)
2396 {
2397 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2398 }
2399 
2400 static inline bool f2fs_is_pinned_file(struct inode *inode)
2401 {
2402 	return is_inode_flag_set(inode, FI_PIN_FILE);
2403 }
2404 
2405 static inline bool f2fs_is_atomic_file(struct inode *inode)
2406 {
2407 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2408 }
2409 
2410 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2411 {
2412 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2413 }
2414 
2415 static inline bool f2fs_is_volatile_file(struct inode *inode)
2416 {
2417 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2418 }
2419 
2420 static inline bool f2fs_is_first_block_written(struct inode *inode)
2421 {
2422 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2423 }
2424 
2425 static inline bool f2fs_is_drop_cache(struct inode *inode)
2426 {
2427 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2428 }
2429 
2430 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2431 {
2432 	struct f2fs_inode *ri = F2FS_INODE(page);
2433 	int extra_size = get_extra_isize(inode);
2434 
2435 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2436 }
2437 
2438 static inline int f2fs_has_inline_dentry(struct inode *inode)
2439 {
2440 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2441 }
2442 
2443 static inline int is_file(struct inode *inode, int type)
2444 {
2445 	return F2FS_I(inode)->i_advise & type;
2446 }
2447 
2448 static inline void set_file(struct inode *inode, int type)
2449 {
2450 	F2FS_I(inode)->i_advise |= type;
2451 	f2fs_mark_inode_dirty_sync(inode, true);
2452 }
2453 
2454 static inline void clear_file(struct inode *inode, int type)
2455 {
2456 	F2FS_I(inode)->i_advise &= ~type;
2457 	f2fs_mark_inode_dirty_sync(inode, true);
2458 }
2459 
2460 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2461 {
2462 	bool ret;
2463 
2464 	if (dsync) {
2465 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2466 
2467 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2468 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2469 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2470 		return ret;
2471 	}
2472 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2473 			file_keep_isize(inode) ||
2474 			i_size_read(inode) & ~PAGE_MASK)
2475 		return false;
2476 
2477 	down_read(&F2FS_I(inode)->i_sem);
2478 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2479 	up_read(&F2FS_I(inode)->i_sem);
2480 
2481 	return ret;
2482 }
2483 
2484 static inline bool f2fs_readonly(struct super_block *sb)
2485 {
2486 	return sb_rdonly(sb);
2487 }
2488 
2489 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2490 {
2491 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2492 }
2493 
2494 static inline bool is_dot_dotdot(const struct qstr *str)
2495 {
2496 	if (str->len == 1 && str->name[0] == '.')
2497 		return true;
2498 
2499 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2500 		return true;
2501 
2502 	return false;
2503 }
2504 
2505 static inline bool f2fs_may_extent_tree(struct inode *inode)
2506 {
2507 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2508 			is_inode_flag_set(inode, FI_NO_EXTENT))
2509 		return false;
2510 
2511 	return S_ISREG(inode->i_mode);
2512 }
2513 
2514 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2515 					size_t size, gfp_t flags)
2516 {
2517 #ifdef CONFIG_F2FS_FAULT_INJECTION
2518 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2519 		f2fs_show_injection_info(FAULT_KMALLOC);
2520 		return NULL;
2521 	}
2522 #endif
2523 	return kmalloc(size, flags);
2524 }
2525 
2526 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2527 					size_t size, gfp_t flags)
2528 {
2529 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2530 }
2531 
2532 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2533 					size_t size, gfp_t flags)
2534 {
2535 #ifdef CONFIG_F2FS_FAULT_INJECTION
2536 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2537 		f2fs_show_injection_info(FAULT_KVMALLOC);
2538 		return NULL;
2539 	}
2540 #endif
2541 	return kvmalloc(size, flags);
2542 }
2543 
2544 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2545 					size_t size, gfp_t flags)
2546 {
2547 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2548 }
2549 
2550 static inline int get_extra_isize(struct inode *inode)
2551 {
2552 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2553 }
2554 
2555 static inline int get_inline_xattr_addrs(struct inode *inode)
2556 {
2557 	return F2FS_I(inode)->i_inline_xattr_size;
2558 }
2559 
2560 #define get_inode_mode(i) \
2561 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2562 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2563 
2564 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2565 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2566 	offsetof(struct f2fs_inode, i_extra_isize))	\
2567 
2568 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2569 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2570 		((offsetof(typeof(*f2fs_inode), field) +	\
2571 		sizeof((f2fs_inode)->field))			\
2572 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2573 
2574 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2575 {
2576 	int i;
2577 
2578 	spin_lock(&sbi->iostat_lock);
2579 	for (i = 0; i < NR_IO_TYPE; i++)
2580 		sbi->write_iostat[i] = 0;
2581 	spin_unlock(&sbi->iostat_lock);
2582 }
2583 
2584 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2585 			enum iostat_type type, unsigned long long io_bytes)
2586 {
2587 	if (!sbi->iostat_enable)
2588 		return;
2589 	spin_lock(&sbi->iostat_lock);
2590 	sbi->write_iostat[type] += io_bytes;
2591 
2592 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2593 		sbi->write_iostat[APP_BUFFERED_IO] =
2594 			sbi->write_iostat[APP_WRITE_IO] -
2595 			sbi->write_iostat[APP_DIRECT_IO];
2596 	spin_unlock(&sbi->iostat_lock);
2597 }
2598 
2599 /*
2600  * file.c
2601  */
2602 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2603 void truncate_data_blocks(struct dnode_of_data *dn);
2604 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2605 int f2fs_truncate(struct inode *inode);
2606 int f2fs_getattr(const struct path *path, struct kstat *stat,
2607 			u32 request_mask, unsigned int flags);
2608 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2609 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2610 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2611 int f2fs_precache_extents(struct inode *inode);
2612 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2613 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2614 int f2fs_pin_file_control(struct inode *inode, bool inc);
2615 
2616 /*
2617  * inode.c
2618  */
2619 void f2fs_set_inode_flags(struct inode *inode);
2620 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2621 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2622 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2623 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2624 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2625 void update_inode(struct inode *inode, struct page *node_page);
2626 void update_inode_page(struct inode *inode);
2627 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2628 void f2fs_evict_inode(struct inode *inode);
2629 void handle_failed_inode(struct inode *inode);
2630 
2631 /*
2632  * namei.c
2633  */
2634 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2635 							bool hot, bool set);
2636 struct dentry *f2fs_get_parent(struct dentry *child);
2637 
2638 /*
2639  * dir.c
2640  */
2641 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2642 unsigned char get_de_type(struct f2fs_dir_entry *de);
2643 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2644 			f2fs_hash_t namehash, int *max_slots,
2645 			struct f2fs_dentry_ptr *d);
2646 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2647 			unsigned int start_pos, struct fscrypt_str *fstr);
2648 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2649 			struct f2fs_dentry_ptr *d);
2650 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2651 			const struct qstr *new_name,
2652 			const struct qstr *orig_name, struct page *dpage);
2653 void update_parent_metadata(struct inode *dir, struct inode *inode,
2654 			unsigned int current_depth);
2655 int room_for_filename(const void *bitmap, int slots, int max_slots);
2656 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2657 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2658 			struct fscrypt_name *fname, struct page **res_page);
2659 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2660 			const struct qstr *child, struct page **res_page);
2661 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2662 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2663 			struct page **page);
2664 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2665 			struct page *page, struct inode *inode);
2666 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2667 			const struct qstr *name, f2fs_hash_t name_hash,
2668 			unsigned int bit_pos);
2669 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2670 			const struct qstr *orig_name,
2671 			struct inode *inode, nid_t ino, umode_t mode);
2672 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2673 			struct inode *inode, nid_t ino, umode_t mode);
2674 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2675 			struct inode *inode, nid_t ino, umode_t mode);
2676 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2677 			struct inode *dir, struct inode *inode);
2678 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2679 bool f2fs_empty_dir(struct inode *dir);
2680 
2681 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2682 {
2683 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2684 				inode, inode->i_ino, inode->i_mode);
2685 }
2686 
2687 /*
2688  * super.c
2689  */
2690 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2691 void f2fs_inode_synced(struct inode *inode);
2692 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2693 void f2fs_quota_off_umount(struct super_block *sb);
2694 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2695 int f2fs_sync_fs(struct super_block *sb, int sync);
2696 extern __printf(3, 4)
2697 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2698 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2699 
2700 /*
2701  * hash.c
2702  */
2703 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2704 				struct fscrypt_name *fname);
2705 
2706 /*
2707  * node.c
2708  */
2709 struct dnode_of_data;
2710 struct node_info;
2711 
2712 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2713 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2714 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2715 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2716 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2717 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2718 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2719 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2720 int truncate_xattr_node(struct inode *inode);
2721 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2722 int remove_inode_page(struct inode *inode);
2723 struct page *new_inode_page(struct inode *inode);
2724 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2725 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2726 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2727 struct page *get_node_page_ra(struct page *parent, int start);
2728 void move_node_page(struct page *node_page, int gc_type);
2729 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2730 			struct writeback_control *wbc, bool atomic);
2731 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2732 			bool do_balance, enum iostat_type io_type);
2733 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2734 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2735 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2736 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2737 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2738 void recover_inline_xattr(struct inode *inode, struct page *page);
2739 int recover_xattr_data(struct inode *inode, struct page *page);
2740 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2741 void restore_node_summary(struct f2fs_sb_info *sbi,
2742 			unsigned int segno, struct f2fs_summary_block *sum);
2743 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2744 int build_node_manager(struct f2fs_sb_info *sbi);
2745 void destroy_node_manager(struct f2fs_sb_info *sbi);
2746 int __init create_node_manager_caches(void);
2747 void destroy_node_manager_caches(void);
2748 
2749 /*
2750  * segment.c
2751  */
2752 bool need_SSR(struct f2fs_sb_info *sbi);
2753 void register_inmem_page(struct inode *inode, struct page *page);
2754 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2755 void drop_inmem_pages(struct inode *inode);
2756 void drop_inmem_page(struct inode *inode, struct page *page);
2757 int commit_inmem_pages(struct inode *inode);
2758 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2759 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2760 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2761 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2762 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2763 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2764 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2765 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2766 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2767 						unsigned int granularity);
2768 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2769 void stop_discard_thread(struct f2fs_sb_info *sbi);
2770 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2771 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2772 void release_discard_addrs(struct f2fs_sb_info *sbi);
2773 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2774 void allocate_new_segments(struct f2fs_sb_info *sbi);
2775 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2776 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2777 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2778 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2779 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2780 						enum iostat_type io_type);
2781 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2782 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2783 int rewrite_data_page(struct f2fs_io_info *fio);
2784 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2785 			block_t old_blkaddr, block_t new_blkaddr,
2786 			bool recover_curseg, bool recover_newaddr);
2787 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2788 			block_t old_addr, block_t new_addr,
2789 			unsigned char version, bool recover_curseg,
2790 			bool recover_newaddr);
2791 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2792 			block_t old_blkaddr, block_t *new_blkaddr,
2793 			struct f2fs_summary *sum, int type,
2794 			struct f2fs_io_info *fio, bool add_list);
2795 void f2fs_wait_on_page_writeback(struct page *page,
2796 			enum page_type type, bool ordered);
2797 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2798 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2799 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2800 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2801 			unsigned int val, int alloc);
2802 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2803 int build_segment_manager(struct f2fs_sb_info *sbi);
2804 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2805 int __init create_segment_manager_caches(void);
2806 void destroy_segment_manager_caches(void);
2807 int rw_hint_to_seg_type(enum rw_hint hint);
2808 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2809 				enum temp_type temp);
2810 
2811 /*
2812  * checkpoint.c
2813  */
2814 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2815 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2816 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2817 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2818 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2819 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2820 			int type, bool sync);
2821 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2822 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2823 			long nr_to_write, enum iostat_type io_type);
2824 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2825 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2826 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2827 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2828 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2829 					unsigned int devidx, int type);
2830 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2831 					unsigned int devidx, int type);
2832 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2833 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2834 void release_orphan_inode(struct f2fs_sb_info *sbi);
2835 void add_orphan_inode(struct inode *inode);
2836 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2837 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2838 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2839 void update_dirty_page(struct inode *inode, struct page *page);
2840 void remove_dirty_inode(struct inode *inode);
2841 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2842 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2843 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2844 int __init create_checkpoint_caches(void);
2845 void destroy_checkpoint_caches(void);
2846 
2847 /*
2848  * data.c
2849  */
2850 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2851 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2852 				struct inode *inode, nid_t ino, pgoff_t idx,
2853 				enum page_type type);
2854 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2855 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2856 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2857 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2858 			block_t blk_addr, struct bio *bio);
2859 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2860 void set_data_blkaddr(struct dnode_of_data *dn);
2861 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2862 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2863 int reserve_new_block(struct dnode_of_data *dn);
2864 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2865 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2866 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2867 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2868 			int op_flags, bool for_write);
2869 struct page *find_data_page(struct inode *inode, pgoff_t index);
2870 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2871 			bool for_write);
2872 struct page *get_new_data_page(struct inode *inode,
2873 			struct page *ipage, pgoff_t index, bool new_i_size);
2874 int do_write_data_page(struct f2fs_io_info *fio);
2875 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2876 			int create, int flag);
2877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2878 			u64 start, u64 len);
2879 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2880 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2881 void f2fs_set_page_dirty_nobuffers(struct page *page);
2882 int __f2fs_write_data_pages(struct address_space *mapping,
2883 						struct writeback_control *wbc,
2884 						enum iostat_type io_type);
2885 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2886 			unsigned int length);
2887 int f2fs_release_page(struct page *page, gfp_t wait);
2888 #ifdef CONFIG_MIGRATION
2889 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2890 			struct page *page, enum migrate_mode mode);
2891 #endif
2892 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2893 
2894 /*
2895  * gc.c
2896  */
2897 int start_gc_thread(struct f2fs_sb_info *sbi);
2898 void stop_gc_thread(struct f2fs_sb_info *sbi);
2899 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2900 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2901 			unsigned int segno);
2902 void build_gc_manager(struct f2fs_sb_info *sbi);
2903 
2904 /*
2905  * recovery.c
2906  */
2907 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2908 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2909 
2910 /*
2911  * debug.c
2912  */
2913 #ifdef CONFIG_F2FS_STAT_FS
2914 struct f2fs_stat_info {
2915 	struct list_head stat_list;
2916 	struct f2fs_sb_info *sbi;
2917 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2918 	int main_area_segs, main_area_sections, main_area_zones;
2919 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2920 	unsigned long long hit_total, total_ext;
2921 	int ext_tree, zombie_tree, ext_node;
2922 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2923 	int ndirty_data, ndirty_qdata;
2924 	int inmem_pages;
2925 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2926 	int nats, dirty_nats, sits, dirty_sits;
2927 	int free_nids, avail_nids, alloc_nids;
2928 	int total_count, utilization;
2929 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2930 	int nr_flushing, nr_flushed, flush_list_empty;
2931 	int nr_discarding, nr_discarded;
2932 	int nr_discard_cmd;
2933 	unsigned int undiscard_blks;
2934 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2935 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2936 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2937 	unsigned int bimodal, avg_vblocks;
2938 	int util_free, util_valid, util_invalid;
2939 	int rsvd_segs, overp_segs;
2940 	int dirty_count, node_pages, meta_pages;
2941 	int prefree_count, call_count, cp_count, bg_cp_count;
2942 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2943 	int bg_node_segs, bg_data_segs;
2944 	int tot_blks, data_blks, node_blks;
2945 	int bg_data_blks, bg_node_blks;
2946 	int curseg[NR_CURSEG_TYPE];
2947 	int cursec[NR_CURSEG_TYPE];
2948 	int curzone[NR_CURSEG_TYPE];
2949 
2950 	unsigned int segment_count[2];
2951 	unsigned int block_count[2];
2952 	unsigned int inplace_count;
2953 	unsigned long long base_mem, cache_mem, page_mem;
2954 };
2955 
2956 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2957 {
2958 	return (struct f2fs_stat_info *)sbi->stat_info;
2959 }
2960 
2961 #define stat_inc_cp_count(si)		((si)->cp_count++)
2962 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2963 #define stat_inc_call_count(si)		((si)->call_count++)
2964 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2965 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2966 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2967 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2968 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2969 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2970 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2971 #define stat_inc_inline_xattr(inode)					\
2972 	do {								\
2973 		if (f2fs_has_inline_xattr(inode))			\
2974 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2975 	} while (0)
2976 #define stat_dec_inline_xattr(inode)					\
2977 	do {								\
2978 		if (f2fs_has_inline_xattr(inode))			\
2979 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2980 	} while (0)
2981 #define stat_inc_inline_inode(inode)					\
2982 	do {								\
2983 		if (f2fs_has_inline_data(inode))			\
2984 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2985 	} while (0)
2986 #define stat_dec_inline_inode(inode)					\
2987 	do {								\
2988 		if (f2fs_has_inline_data(inode))			\
2989 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2990 	} while (0)
2991 #define stat_inc_inline_dir(inode)					\
2992 	do {								\
2993 		if (f2fs_has_inline_dentry(inode))			\
2994 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2995 	} while (0)
2996 #define stat_dec_inline_dir(inode)					\
2997 	do {								\
2998 		if (f2fs_has_inline_dentry(inode))			\
2999 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3000 	} while (0)
3001 #define stat_inc_seg_type(sbi, curseg)					\
3002 		((sbi)->segment_count[(curseg)->alloc_type]++)
3003 #define stat_inc_block_count(sbi, curseg)				\
3004 		((sbi)->block_count[(curseg)->alloc_type]++)
3005 #define stat_inc_inplace_blocks(sbi)					\
3006 		(atomic_inc(&(sbi)->inplace_count))
3007 #define stat_inc_atomic_write(inode)					\
3008 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3009 #define stat_dec_atomic_write(inode)					\
3010 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3011 #define stat_update_max_atomic_write(inode)				\
3012 	do {								\
3013 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3014 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3015 		if (cur > max)						\
3016 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3017 	} while (0)
3018 #define stat_inc_volatile_write(inode)					\
3019 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3020 #define stat_dec_volatile_write(inode)					\
3021 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3022 #define stat_update_max_volatile_write(inode)				\
3023 	do {								\
3024 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3025 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3026 		if (cur > max)						\
3027 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3028 	} while (0)
3029 #define stat_inc_seg_count(sbi, type, gc_type)				\
3030 	do {								\
3031 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3032 		si->tot_segs++;						\
3033 		if ((type) == SUM_TYPE_DATA) {				\
3034 			si->data_segs++;				\
3035 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3036 		} else {						\
3037 			si->node_segs++;				\
3038 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3039 		}							\
3040 	} while (0)
3041 
3042 #define stat_inc_tot_blk_count(si, blks)				\
3043 	((si)->tot_blks += (blks))
3044 
3045 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3046 	do {								\
3047 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3048 		stat_inc_tot_blk_count(si, blks);			\
3049 		si->data_blks += (blks);				\
3050 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3051 	} while (0)
3052 
3053 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3054 	do {								\
3055 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3056 		stat_inc_tot_blk_count(si, blks);			\
3057 		si->node_blks += (blks);				\
3058 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3059 	} while (0)
3060 
3061 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3062 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3063 int __init f2fs_create_root_stats(void);
3064 void f2fs_destroy_root_stats(void);
3065 #else
3066 #define stat_inc_cp_count(si)				do { } while (0)
3067 #define stat_inc_bg_cp_count(si)			do { } while (0)
3068 #define stat_inc_call_count(si)				do { } while (0)
3069 #define stat_inc_bggc_count(si)				do { } while (0)
3070 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3071 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3072 #define stat_inc_total_hit(sb)				do { } while (0)
3073 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3074 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3075 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3076 #define stat_inc_inline_xattr(inode)			do { } while (0)
3077 #define stat_dec_inline_xattr(inode)			do { } while (0)
3078 #define stat_inc_inline_inode(inode)			do { } while (0)
3079 #define stat_dec_inline_inode(inode)			do { } while (0)
3080 #define stat_inc_inline_dir(inode)			do { } while (0)
3081 #define stat_dec_inline_dir(inode)			do { } while (0)
3082 #define stat_inc_atomic_write(inode)			do { } while (0)
3083 #define stat_dec_atomic_write(inode)			do { } while (0)
3084 #define stat_update_max_atomic_write(inode)		do { } while (0)
3085 #define stat_inc_volatile_write(inode)			do { } while (0)
3086 #define stat_dec_volatile_write(inode)			do { } while (0)
3087 #define stat_update_max_volatile_write(inode)		do { } while (0)
3088 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3089 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3090 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3091 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3092 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3093 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3094 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3095 
3096 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3097 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3098 static inline int __init f2fs_create_root_stats(void) { return 0; }
3099 static inline void f2fs_destroy_root_stats(void) { }
3100 #endif
3101 
3102 extern const struct file_operations f2fs_dir_operations;
3103 extern const struct file_operations f2fs_file_operations;
3104 extern const struct inode_operations f2fs_file_inode_operations;
3105 extern const struct address_space_operations f2fs_dblock_aops;
3106 extern const struct address_space_operations f2fs_node_aops;
3107 extern const struct address_space_operations f2fs_meta_aops;
3108 extern const struct inode_operations f2fs_dir_inode_operations;
3109 extern const struct inode_operations f2fs_symlink_inode_operations;
3110 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3111 extern const struct inode_operations f2fs_special_inode_operations;
3112 extern struct kmem_cache *inode_entry_slab;
3113 
3114 /*
3115  * inline.c
3116  */
3117 bool f2fs_may_inline_data(struct inode *inode);
3118 bool f2fs_may_inline_dentry(struct inode *inode);
3119 void read_inline_data(struct page *page, struct page *ipage);
3120 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3121 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3122 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3123 int f2fs_convert_inline_inode(struct inode *inode);
3124 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3125 bool recover_inline_data(struct inode *inode, struct page *npage);
3126 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3127 			struct fscrypt_name *fname, struct page **res_page);
3128 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3129 			struct page *ipage);
3130 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3131 			const struct qstr *orig_name,
3132 			struct inode *inode, nid_t ino, umode_t mode);
3133 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3134 			struct inode *dir, struct inode *inode);
3135 bool f2fs_empty_inline_dir(struct inode *dir);
3136 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3137 			struct fscrypt_str *fstr);
3138 int f2fs_inline_data_fiemap(struct inode *inode,
3139 			struct fiemap_extent_info *fieinfo,
3140 			__u64 start, __u64 len);
3141 
3142 /*
3143  * shrinker.c
3144  */
3145 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3146 			struct shrink_control *sc);
3147 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3148 			struct shrink_control *sc);
3149 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3150 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3151 
3152 /*
3153  * extent_cache.c
3154  */
3155 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3156 				struct rb_entry *cached_re, unsigned int ofs);
3157 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3158 				struct rb_root *root, struct rb_node **parent,
3159 				unsigned int ofs);
3160 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3161 		struct rb_entry *cached_re, unsigned int ofs,
3162 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3163 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3164 		bool force);
3165 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3166 						struct rb_root *root);
3167 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3168 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3169 void f2fs_drop_extent_tree(struct inode *inode);
3170 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3171 void f2fs_destroy_extent_tree(struct inode *inode);
3172 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3173 			struct extent_info *ei);
3174 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3175 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3176 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3177 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3178 int __init create_extent_cache(void);
3179 void destroy_extent_cache(void);
3180 
3181 /*
3182  * sysfs.c
3183  */
3184 int __init f2fs_init_sysfs(void);
3185 void f2fs_exit_sysfs(void);
3186 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3187 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3188 
3189 /*
3190  * crypto support
3191  */
3192 static inline bool f2fs_encrypted_inode(struct inode *inode)
3193 {
3194 	return file_is_encrypt(inode);
3195 }
3196 
3197 static inline bool f2fs_encrypted_file(struct inode *inode)
3198 {
3199 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3200 }
3201 
3202 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3203 {
3204 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3205 	file_set_encrypt(inode);
3206 	inode->i_flags |= S_ENCRYPTED;
3207 #endif
3208 }
3209 
3210 static inline bool f2fs_bio_encrypted(struct bio *bio)
3211 {
3212 	return bio->bi_private != NULL;
3213 }
3214 
3215 #define F2FS_FEATURE_FUNCS(name, flagname) \
3216 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3217 { \
3218 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3219 }
3220 
3221 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3222 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3223 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3224 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3225 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3226 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3227 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3228 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3229 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3230 
3231 #ifdef CONFIG_BLK_DEV_ZONED
3232 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3233 			struct block_device *bdev, block_t blkaddr)
3234 {
3235 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3236 	int i;
3237 
3238 	for (i = 0; i < sbi->s_ndevs; i++)
3239 		if (FDEV(i).bdev == bdev)
3240 			return FDEV(i).blkz_type[zno];
3241 	return -EINVAL;
3242 }
3243 #endif
3244 
3245 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3246 {
3247 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3248 
3249 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3250 }
3251 
3252 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3253 {
3254 	clear_opt(sbi, ADAPTIVE);
3255 	clear_opt(sbi, LFS);
3256 
3257 	switch (mt) {
3258 	case F2FS_MOUNT_ADAPTIVE:
3259 		set_opt(sbi, ADAPTIVE);
3260 		break;
3261 	case F2FS_MOUNT_LFS:
3262 		set_opt(sbi, LFS);
3263 		break;
3264 	}
3265 }
3266 
3267 static inline bool f2fs_may_encrypt(struct inode *inode)
3268 {
3269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3270 	umode_t mode = inode->i_mode;
3271 
3272 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3273 #else
3274 	return 0;
3275 #endif
3276 }
3277 
3278 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3279 {
3280 	return (f2fs_encrypted_file(inode) ||
3281 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3282 			F2FS_I_SB(inode)->s_ndevs);
3283 }
3284 
3285 #endif
3286