xref: /openbmc/linux/fs/f2fs/f2fs.h (revision c6ac4c0ec416e77cab09cac6cee2d100fbd7fc82)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			sbi->need_fsck = true;				\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 
53 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
54 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
55 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
56 
57 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
58 		typecheck(unsigned long long, b) &&			\
59 		((long long)((a) - (b)) > 0))
60 
61 typedef u32 block_t;	/*
62 			 * should not change u32, since it is the on-disk block
63 			 * address format, __le32.
64 			 */
65 typedef u32 nid_t;
66 
67 struct f2fs_mount_info {
68 	unsigned int	opt;
69 };
70 
71 #define CRCPOLY_LE 0xedb88320
72 
73 static inline __u32 f2fs_crc32(void *buf, size_t len)
74 {
75 	unsigned char *p = (unsigned char *)buf;
76 	__u32 crc = F2FS_SUPER_MAGIC;
77 	int i;
78 
79 	while (len--) {
80 		crc ^= *p++;
81 		for (i = 0; i < 8; i++)
82 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
83 	}
84 	return crc;
85 }
86 
87 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
88 {
89 	return f2fs_crc32(buf, buf_size) == blk_crc;
90 }
91 
92 /*
93  * For checkpoint manager
94  */
95 enum {
96 	NAT_BITMAP,
97 	SIT_BITMAP
98 };
99 
100 enum {
101 	CP_UMOUNT,
102 	CP_SYNC,
103 	CP_DISCARD,
104 };
105 
106 struct cp_control {
107 	int reason;
108 	__u64 trim_start;
109 	__u64 trim_end;
110 	__u64 trim_minlen;
111 	__u64 trimmed;
112 };
113 
114 /*
115  * For CP/NAT/SIT/SSA readahead
116  */
117 enum {
118 	META_CP,
119 	META_NAT,
120 	META_SIT,
121 	META_SSA,
122 	META_POR,
123 };
124 
125 /* for the list of ino */
126 enum {
127 	ORPHAN_INO,		/* for orphan ino list */
128 	APPEND_INO,		/* for append ino list */
129 	UPDATE_INO,		/* for update ino list */
130 	MAX_INO_ENTRY,		/* max. list */
131 };
132 
133 struct ino_entry {
134 	struct list_head list;	/* list head */
135 	nid_t ino;		/* inode number */
136 };
137 
138 /* for the list of directory inodes */
139 struct dir_inode_entry {
140 	struct list_head list;	/* list head */
141 	struct inode *inode;	/* vfs inode pointer */
142 };
143 
144 /* for the list of blockaddresses to be discarded */
145 struct discard_entry {
146 	struct list_head list;	/* list head */
147 	block_t blkaddr;	/* block address to be discarded */
148 	int len;		/* # of consecutive blocks of the discard */
149 };
150 
151 /* for the list of fsync inodes, used only during recovery */
152 struct fsync_inode_entry {
153 	struct list_head list;	/* list head */
154 	struct inode *inode;	/* vfs inode pointer */
155 	block_t blkaddr;	/* block address locating the last fsync */
156 	block_t last_dentry;	/* block address locating the last dentry */
157 	block_t last_inode;	/* block address locating the last inode */
158 };
159 
160 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
161 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
162 
163 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
164 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
165 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
166 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
167 
168 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
169 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
170 
171 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
172 {
173 	int before = nats_in_cursum(rs);
174 	rs->n_nats = cpu_to_le16(before + i);
175 	return before;
176 }
177 
178 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 	int before = sits_in_cursum(rs);
181 	rs->n_sits = cpu_to_le16(before + i);
182 	return before;
183 }
184 
185 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
186 								int type)
187 {
188 	if (type == NAT_JOURNAL)
189 		return size <= MAX_NAT_JENTRIES(sum);
190 	return size <= MAX_SIT_JENTRIES(sum);
191 }
192 
193 /*
194  * ioctl commands
195  */
196 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
197 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
198 
199 #define F2FS_IOCTL_MAGIC		0xf5
200 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
201 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
202 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
203 
204 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
205 /*
206  * ioctl commands in 32 bit emulation
207  */
208 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
209 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
210 #endif
211 
212 /*
213  * For INODE and NODE manager
214  */
215 /* for directory operations */
216 struct f2fs_dentry_ptr {
217 	const void *bitmap;
218 	struct f2fs_dir_entry *dentry;
219 	__u8 (*filename)[F2FS_SLOT_LEN];
220 	int max;
221 };
222 
223 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
224 					void *src, int type)
225 {
226 	if (type == 1) {
227 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
228 		d->max = NR_DENTRY_IN_BLOCK;
229 		d->bitmap = &t->dentry_bitmap;
230 		d->dentry = t->dentry;
231 		d->filename = t->filename;
232 	} else {
233 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
234 		d->max = NR_INLINE_DENTRY;
235 		d->bitmap = &t->dentry_bitmap;
236 		d->dentry = t->dentry;
237 		d->filename = t->filename;
238 	}
239 }
240 
241 /*
242  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
243  * as its node offset to distinguish from index node blocks.
244  * But some bits are used to mark the node block.
245  */
246 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
247 				>> OFFSET_BIT_SHIFT)
248 enum {
249 	ALLOC_NODE,			/* allocate a new node page if needed */
250 	LOOKUP_NODE,			/* look up a node without readahead */
251 	LOOKUP_NODE_RA,			/*
252 					 * look up a node with readahead called
253 					 * by get_data_block.
254 					 */
255 };
256 
257 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
258 
259 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
260 
261 /* for in-memory extent cache entry */
262 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
263 
264 struct extent_info {
265 	rwlock_t ext_lock;	/* rwlock for consistency */
266 	unsigned int fofs;	/* start offset in a file */
267 	u32 blk_addr;		/* start block address of the extent */
268 	unsigned int len;	/* length of the extent */
269 };
270 
271 /*
272  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
273  */
274 #define FADVISE_COLD_BIT	0x01
275 #define FADVISE_LOST_PINO_BIT	0x02
276 
277 #define DEF_DIR_LEVEL		0
278 
279 struct f2fs_inode_info {
280 	struct inode vfs_inode;		/* serve a vfs inode */
281 	unsigned long i_flags;		/* keep an inode flags for ioctl */
282 	unsigned char i_advise;		/* use to give file attribute hints */
283 	unsigned char i_dir_level;	/* use for dentry level for large dir */
284 	unsigned int i_current_depth;	/* use only in directory structure */
285 	unsigned int i_pino;		/* parent inode number */
286 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
287 
288 	/* Use below internally in f2fs*/
289 	unsigned long flags;		/* use to pass per-file flags */
290 	struct rw_semaphore i_sem;	/* protect fi info */
291 	atomic_t dirty_pages;		/* # of dirty pages */
292 	f2fs_hash_t chash;		/* hash value of given file name */
293 	unsigned int clevel;		/* maximum level of given file name */
294 	nid_t i_xattr_nid;		/* node id that contains xattrs */
295 	unsigned long long xattr_ver;	/* cp version of xattr modification */
296 	struct extent_info ext;		/* in-memory extent cache entry */
297 	struct dir_inode_entry *dirty_dir;	/* the pointer of dirty dir */
298 
299 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
300 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
301 	struct mutex inmem_lock;	/* lock for inmemory pages */
302 };
303 
304 static inline void get_extent_info(struct extent_info *ext,
305 					struct f2fs_extent i_ext)
306 {
307 	write_lock(&ext->ext_lock);
308 	ext->fofs = le32_to_cpu(i_ext.fofs);
309 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
310 	ext->len = le32_to_cpu(i_ext.len);
311 	write_unlock(&ext->ext_lock);
312 }
313 
314 static inline void set_raw_extent(struct extent_info *ext,
315 					struct f2fs_extent *i_ext)
316 {
317 	read_lock(&ext->ext_lock);
318 	i_ext->fofs = cpu_to_le32(ext->fofs);
319 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
320 	i_ext->len = cpu_to_le32(ext->len);
321 	read_unlock(&ext->ext_lock);
322 }
323 
324 struct f2fs_nm_info {
325 	block_t nat_blkaddr;		/* base disk address of NAT */
326 	nid_t max_nid;			/* maximum possible node ids */
327 	nid_t available_nids;		/* maximum available node ids */
328 	nid_t next_scan_nid;		/* the next nid to be scanned */
329 	unsigned int ram_thresh;	/* control the memory footprint */
330 
331 	/* NAT cache management */
332 	struct radix_tree_root nat_root;/* root of the nat entry cache */
333 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
334 	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
335 	struct list_head nat_entries;	/* cached nat entry list (clean) */
336 	unsigned int nat_cnt;		/* the # of cached nat entries */
337 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
338 
339 	/* free node ids management */
340 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
341 	struct list_head free_nid_list;	/* a list for free nids */
342 	spinlock_t free_nid_list_lock;	/* protect free nid list */
343 	unsigned int fcnt;		/* the number of free node id */
344 	struct mutex build_lock;	/* lock for build free nids */
345 
346 	/* for checkpoint */
347 	char *nat_bitmap;		/* NAT bitmap pointer */
348 	int bitmap_size;		/* bitmap size */
349 };
350 
351 /*
352  * this structure is used as one of function parameters.
353  * all the information are dedicated to a given direct node block determined
354  * by the data offset in a file.
355  */
356 struct dnode_of_data {
357 	struct inode *inode;		/* vfs inode pointer */
358 	struct page *inode_page;	/* its inode page, NULL is possible */
359 	struct page *node_page;		/* cached direct node page */
360 	nid_t nid;			/* node id of the direct node block */
361 	unsigned int ofs_in_node;	/* data offset in the node page */
362 	bool inode_page_locked;		/* inode page is locked or not */
363 	block_t	data_blkaddr;		/* block address of the node block */
364 };
365 
366 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
367 		struct page *ipage, struct page *npage, nid_t nid)
368 {
369 	memset(dn, 0, sizeof(*dn));
370 	dn->inode = inode;
371 	dn->inode_page = ipage;
372 	dn->node_page = npage;
373 	dn->nid = nid;
374 }
375 
376 /*
377  * For SIT manager
378  *
379  * By default, there are 6 active log areas across the whole main area.
380  * When considering hot and cold data separation to reduce cleaning overhead,
381  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
382  * respectively.
383  * In the current design, you should not change the numbers intentionally.
384  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
385  * logs individually according to the underlying devices. (default: 6)
386  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
387  * data and 8 for node logs.
388  */
389 #define	NR_CURSEG_DATA_TYPE	(3)
390 #define NR_CURSEG_NODE_TYPE	(3)
391 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
392 
393 enum {
394 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
395 	CURSEG_WARM_DATA,	/* data blocks */
396 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
397 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
398 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
399 	CURSEG_COLD_NODE,	/* indirect node blocks */
400 	NO_CHECK_TYPE
401 };
402 
403 struct flush_cmd {
404 	struct completion wait;
405 	struct llist_node llnode;
406 	int ret;
407 };
408 
409 struct flush_cmd_control {
410 	struct task_struct *f2fs_issue_flush;	/* flush thread */
411 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
412 	struct llist_head issue_list;		/* list for command issue */
413 	struct llist_node *dispatch_list;	/* list for command dispatch */
414 };
415 
416 struct f2fs_sm_info {
417 	struct sit_info *sit_info;		/* whole segment information */
418 	struct free_segmap_info *free_info;	/* free segment information */
419 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
420 	struct curseg_info *curseg_array;	/* active segment information */
421 
422 	block_t seg0_blkaddr;		/* block address of 0'th segment */
423 	block_t main_blkaddr;		/* start block address of main area */
424 	block_t ssa_blkaddr;		/* start block address of SSA area */
425 
426 	unsigned int segment_count;	/* total # of segments */
427 	unsigned int main_segments;	/* # of segments in main area */
428 	unsigned int reserved_segments;	/* # of reserved segments */
429 	unsigned int ovp_segments;	/* # of overprovision segments */
430 
431 	/* a threshold to reclaim prefree segments */
432 	unsigned int rec_prefree_segments;
433 
434 	/* for small discard management */
435 	struct list_head discard_list;		/* 4KB discard list */
436 	int nr_discards;			/* # of discards in the list */
437 	int max_discards;			/* max. discards to be issued */
438 
439 	struct list_head sit_entry_set;	/* sit entry set list */
440 
441 	unsigned int ipu_policy;	/* in-place-update policy */
442 	unsigned int min_ipu_util;	/* in-place-update threshold */
443 	unsigned int min_fsync_blocks;	/* threshold for fsync */
444 
445 	/* for flush command control */
446 	struct flush_cmd_control *cmd_control_info;
447 
448 };
449 
450 /*
451  * For superblock
452  */
453 /*
454  * COUNT_TYPE for monitoring
455  *
456  * f2fs monitors the number of several block types such as on-writeback,
457  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
458  */
459 enum count_type {
460 	F2FS_WRITEBACK,
461 	F2FS_DIRTY_DENTS,
462 	F2FS_DIRTY_NODES,
463 	F2FS_DIRTY_META,
464 	NR_COUNT_TYPE,
465 };
466 
467 /*
468  * The below are the page types of bios used in submit_bio().
469  * The available types are:
470  * DATA			User data pages. It operates as async mode.
471  * NODE			Node pages. It operates as async mode.
472  * META			FS metadata pages such as SIT, NAT, CP.
473  * NR_PAGE_TYPE		The number of page types.
474  * META_FLUSH		Make sure the previous pages are written
475  *			with waiting the bio's completion
476  * ...			Only can be used with META.
477  */
478 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
479 enum page_type {
480 	DATA,
481 	NODE,
482 	META,
483 	NR_PAGE_TYPE,
484 	META_FLUSH,
485 };
486 
487 struct f2fs_io_info {
488 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
489 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
490 };
491 
492 #define is_read_io(rw)	(((rw) & 1) == READ)
493 struct f2fs_bio_info {
494 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
495 	struct bio *bio;		/* bios to merge */
496 	sector_t last_block_in_bio;	/* last block number */
497 	struct f2fs_io_info fio;	/* store buffered io info. */
498 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
499 };
500 
501 struct f2fs_sb_info {
502 	struct super_block *sb;			/* pointer to VFS super block */
503 	struct proc_dir_entry *s_proc;		/* proc entry */
504 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
505 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
506 	int s_dirty;				/* dirty flag for checkpoint */
507 	bool need_fsck;				/* need fsck.f2fs to fix */
508 
509 	/* for node-related operations */
510 	struct f2fs_nm_info *nm_info;		/* node manager */
511 	struct inode *node_inode;		/* cache node blocks */
512 
513 	/* for segment-related operations */
514 	struct f2fs_sm_info *sm_info;		/* segment manager */
515 
516 	/* for bio operations */
517 	struct f2fs_bio_info read_io;			/* for read bios */
518 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
519 	struct completion *wait_io;		/* for completion bios */
520 
521 	/* for checkpoint */
522 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
523 	struct inode *meta_inode;		/* cache meta blocks */
524 	struct mutex cp_mutex;			/* checkpoint procedure lock */
525 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
526 	struct rw_semaphore node_write;		/* locking node writes */
527 	struct mutex writepages;		/* mutex for writepages() */
528 	bool por_doing;				/* recovery is doing or not */
529 	wait_queue_head_t cp_wait;
530 
531 	/* for inode management */
532 	struct radix_tree_root ino_root[MAX_INO_ENTRY];	/* ino entry array */
533 	spinlock_t ino_lock[MAX_INO_ENTRY];		/* for ino entry lock */
534 	struct list_head ino_list[MAX_INO_ENTRY];	/* inode list head */
535 
536 	/* for orphan inode, use 0'th array */
537 	unsigned int n_orphans;			/* # of orphan inodes */
538 	unsigned int max_orphans;		/* max orphan inodes */
539 
540 	/* for directory inode management */
541 	struct list_head dir_inode_list;	/* dir inode list */
542 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
543 
544 	/* basic filesystem units */
545 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
546 	unsigned int log_blocksize;		/* log2 block size */
547 	unsigned int blocksize;			/* block size */
548 	unsigned int root_ino_num;		/* root inode number*/
549 	unsigned int node_ino_num;		/* node inode number*/
550 	unsigned int meta_ino_num;		/* meta inode number*/
551 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
552 	unsigned int blocks_per_seg;		/* blocks per segment */
553 	unsigned int segs_per_sec;		/* segments per section */
554 	unsigned int secs_per_zone;		/* sections per zone */
555 	unsigned int total_sections;		/* total section count */
556 	unsigned int total_node_count;		/* total node block count */
557 	unsigned int total_valid_node_count;	/* valid node block count */
558 	unsigned int total_valid_inode_count;	/* valid inode count */
559 	int active_logs;			/* # of active logs */
560 	int dir_level;				/* directory level */
561 
562 	block_t user_block_count;		/* # of user blocks */
563 	block_t total_valid_block_count;	/* # of valid blocks */
564 	block_t alloc_valid_block_count;	/* # of allocated blocks */
565 	block_t last_valid_block_count;		/* for recovery */
566 	u32 s_next_generation;			/* for NFS support */
567 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
568 
569 	struct f2fs_mount_info mount_opt;	/* mount options */
570 
571 	/* for cleaning operations */
572 	struct mutex gc_mutex;			/* mutex for GC */
573 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
574 	unsigned int cur_victim_sec;		/* current victim section num */
575 
576 	/* maximum # of trials to find a victim segment for SSR and GC */
577 	unsigned int max_victim_search;
578 
579 	/*
580 	 * for stat information.
581 	 * one is for the LFS mode, and the other is for the SSR mode.
582 	 */
583 #ifdef CONFIG_F2FS_STAT_FS
584 	struct f2fs_stat_info *stat_info;	/* FS status information */
585 	unsigned int segment_count[2];		/* # of allocated segments */
586 	unsigned int block_count[2];		/* # of allocated blocks */
587 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
588 	int inline_inode;			/* # of inline_data inodes */
589 	int inline_dir;				/* # of inline_dentry inodes */
590 	int bg_gc;				/* background gc calls */
591 	unsigned int n_dirty_dirs;		/* # of dir inodes */
592 #endif
593 	unsigned int last_victim[2];		/* last victim segment # */
594 	spinlock_t stat_lock;			/* lock for stat operations */
595 
596 	/* For sysfs suppport */
597 	struct kobject s_kobj;
598 	struct completion s_kobj_unregister;
599 };
600 
601 /*
602  * Inline functions
603  */
604 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
605 {
606 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
607 }
608 
609 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
610 {
611 	return sb->s_fs_info;
612 }
613 
614 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
615 {
616 	return F2FS_SB(inode->i_sb);
617 }
618 
619 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
620 {
621 	return F2FS_I_SB(mapping->host);
622 }
623 
624 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
625 {
626 	return F2FS_M_SB(page->mapping);
627 }
628 
629 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
630 {
631 	return (struct f2fs_super_block *)(sbi->raw_super);
632 }
633 
634 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
635 {
636 	return (struct f2fs_checkpoint *)(sbi->ckpt);
637 }
638 
639 static inline struct f2fs_node *F2FS_NODE(struct page *page)
640 {
641 	return (struct f2fs_node *)page_address(page);
642 }
643 
644 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
645 {
646 	return &((struct f2fs_node *)page_address(page))->i;
647 }
648 
649 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
650 {
651 	return (struct f2fs_nm_info *)(sbi->nm_info);
652 }
653 
654 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
655 {
656 	return (struct f2fs_sm_info *)(sbi->sm_info);
657 }
658 
659 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
660 {
661 	return (struct sit_info *)(SM_I(sbi)->sit_info);
662 }
663 
664 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
665 {
666 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
667 }
668 
669 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
670 {
671 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
672 }
673 
674 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
675 {
676 	return sbi->meta_inode->i_mapping;
677 }
678 
679 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
680 {
681 	return sbi->node_inode->i_mapping;
682 }
683 
684 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
685 {
686 	sbi->s_dirty = 1;
687 }
688 
689 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
690 {
691 	sbi->s_dirty = 0;
692 }
693 
694 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
695 {
696 	return le64_to_cpu(cp->checkpoint_ver);
697 }
698 
699 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
700 {
701 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
702 	return ckpt_flags & f;
703 }
704 
705 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
706 {
707 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
708 	ckpt_flags |= f;
709 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
710 }
711 
712 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
713 {
714 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
715 	ckpt_flags &= (~f);
716 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
717 }
718 
719 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
720 {
721 	down_read(&sbi->cp_rwsem);
722 }
723 
724 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
725 {
726 	up_read(&sbi->cp_rwsem);
727 }
728 
729 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
730 {
731 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
732 }
733 
734 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
735 {
736 	up_write(&sbi->cp_rwsem);
737 }
738 
739 /*
740  * Check whether the given nid is within node id range.
741  */
742 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
743 {
744 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
745 		return -EINVAL;
746 	if (unlikely(nid >= NM_I(sbi)->max_nid))
747 		return -EINVAL;
748 	return 0;
749 }
750 
751 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
752 
753 /*
754  * Check whether the inode has blocks or not
755  */
756 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
757 {
758 	if (F2FS_I(inode)->i_xattr_nid)
759 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
760 	else
761 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
762 }
763 
764 static inline bool f2fs_has_xattr_block(unsigned int ofs)
765 {
766 	return ofs == XATTR_NODE_OFFSET;
767 }
768 
769 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
770 				 struct inode *inode, blkcnt_t count)
771 {
772 	block_t	valid_block_count;
773 
774 	spin_lock(&sbi->stat_lock);
775 	valid_block_count =
776 		sbi->total_valid_block_count + (block_t)count;
777 	if (unlikely(valid_block_count > sbi->user_block_count)) {
778 		spin_unlock(&sbi->stat_lock);
779 		return false;
780 	}
781 	inode->i_blocks += count;
782 	sbi->total_valid_block_count = valid_block_count;
783 	sbi->alloc_valid_block_count += (block_t)count;
784 	spin_unlock(&sbi->stat_lock);
785 	return true;
786 }
787 
788 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
789 						struct inode *inode,
790 						blkcnt_t count)
791 {
792 	spin_lock(&sbi->stat_lock);
793 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
794 	f2fs_bug_on(sbi, inode->i_blocks < count);
795 	inode->i_blocks -= count;
796 	sbi->total_valid_block_count -= (block_t)count;
797 	spin_unlock(&sbi->stat_lock);
798 }
799 
800 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
801 {
802 	atomic_inc(&sbi->nr_pages[count_type]);
803 	F2FS_SET_SB_DIRT(sbi);
804 }
805 
806 static inline void inode_inc_dirty_pages(struct inode *inode)
807 {
808 	atomic_inc(&F2FS_I(inode)->dirty_pages);
809 	if (S_ISDIR(inode->i_mode))
810 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
811 }
812 
813 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
814 {
815 	atomic_dec(&sbi->nr_pages[count_type]);
816 }
817 
818 static inline void inode_dec_dirty_pages(struct inode *inode)
819 {
820 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
821 		return;
822 
823 	atomic_dec(&F2FS_I(inode)->dirty_pages);
824 
825 	if (S_ISDIR(inode->i_mode))
826 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
827 }
828 
829 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
830 {
831 	return atomic_read(&sbi->nr_pages[count_type]);
832 }
833 
834 static inline int get_dirty_pages(struct inode *inode)
835 {
836 	return atomic_read(&F2FS_I(inode)->dirty_pages);
837 }
838 
839 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
840 {
841 	unsigned int pages_per_sec = sbi->segs_per_sec *
842 					(1 << sbi->log_blocks_per_seg);
843 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
844 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
845 }
846 
847 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
848 {
849 	return sbi->total_valid_block_count;
850 }
851 
852 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
853 {
854 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
855 
856 	/* return NAT or SIT bitmap */
857 	if (flag == NAT_BITMAP)
858 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
859 	else if (flag == SIT_BITMAP)
860 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
861 
862 	return 0;
863 }
864 
865 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
866 {
867 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
868 	int offset;
869 
870 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
871 		if (flag == NAT_BITMAP)
872 			return &ckpt->sit_nat_version_bitmap;
873 		else
874 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
875 	} else {
876 		offset = (flag == NAT_BITMAP) ?
877 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
878 		return &ckpt->sit_nat_version_bitmap + offset;
879 	}
880 }
881 
882 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
883 {
884 	block_t start_addr;
885 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886 	unsigned long long ckpt_version = cur_cp_version(ckpt);
887 
888 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
889 
890 	/*
891 	 * odd numbered checkpoint should at cp segment 0
892 	 * and even segment must be at cp segment 1
893 	 */
894 	if (!(ckpt_version & 1))
895 		start_addr += sbi->blocks_per_seg;
896 
897 	return start_addr;
898 }
899 
900 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
901 {
902 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
903 }
904 
905 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
906 						struct inode *inode)
907 {
908 	block_t	valid_block_count;
909 	unsigned int valid_node_count;
910 
911 	spin_lock(&sbi->stat_lock);
912 
913 	valid_block_count = sbi->total_valid_block_count + 1;
914 	if (unlikely(valid_block_count > sbi->user_block_count)) {
915 		spin_unlock(&sbi->stat_lock);
916 		return false;
917 	}
918 
919 	valid_node_count = sbi->total_valid_node_count + 1;
920 	if (unlikely(valid_node_count > sbi->total_node_count)) {
921 		spin_unlock(&sbi->stat_lock);
922 		return false;
923 	}
924 
925 	if (inode)
926 		inode->i_blocks++;
927 
928 	sbi->alloc_valid_block_count++;
929 	sbi->total_valid_node_count++;
930 	sbi->total_valid_block_count++;
931 	spin_unlock(&sbi->stat_lock);
932 
933 	return true;
934 }
935 
936 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
937 						struct inode *inode)
938 {
939 	spin_lock(&sbi->stat_lock);
940 
941 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
942 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
943 	f2fs_bug_on(sbi, !inode->i_blocks);
944 
945 	inode->i_blocks--;
946 	sbi->total_valid_node_count--;
947 	sbi->total_valid_block_count--;
948 
949 	spin_unlock(&sbi->stat_lock);
950 }
951 
952 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
953 {
954 	return sbi->total_valid_node_count;
955 }
956 
957 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
958 {
959 	spin_lock(&sbi->stat_lock);
960 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
961 	sbi->total_valid_inode_count++;
962 	spin_unlock(&sbi->stat_lock);
963 }
964 
965 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
966 {
967 	spin_lock(&sbi->stat_lock);
968 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
969 	sbi->total_valid_inode_count--;
970 	spin_unlock(&sbi->stat_lock);
971 }
972 
973 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
974 {
975 	return sbi->total_valid_inode_count;
976 }
977 
978 static inline void f2fs_put_page(struct page *page, int unlock)
979 {
980 	if (!page)
981 		return;
982 
983 	if (unlock) {
984 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
985 		unlock_page(page);
986 	}
987 	page_cache_release(page);
988 }
989 
990 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
991 {
992 	if (dn->node_page)
993 		f2fs_put_page(dn->node_page, 1);
994 	if (dn->inode_page && dn->node_page != dn->inode_page)
995 		f2fs_put_page(dn->inode_page, 0);
996 	dn->node_page = NULL;
997 	dn->inode_page = NULL;
998 }
999 
1000 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1001 					size_t size)
1002 {
1003 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1004 }
1005 
1006 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1007 						gfp_t flags)
1008 {
1009 	void *entry;
1010 retry:
1011 	entry = kmem_cache_alloc(cachep, flags);
1012 	if (!entry) {
1013 		cond_resched();
1014 		goto retry;
1015 	}
1016 
1017 	return entry;
1018 }
1019 
1020 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1021 
1022 static inline bool IS_INODE(struct page *page)
1023 {
1024 	struct f2fs_node *p = F2FS_NODE(page);
1025 	return RAW_IS_INODE(p);
1026 }
1027 
1028 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1029 {
1030 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1031 }
1032 
1033 static inline block_t datablock_addr(struct page *node_page,
1034 		unsigned int offset)
1035 {
1036 	struct f2fs_node *raw_node;
1037 	__le32 *addr_array;
1038 	raw_node = F2FS_NODE(node_page);
1039 	addr_array = blkaddr_in_node(raw_node);
1040 	return le32_to_cpu(addr_array[offset]);
1041 }
1042 
1043 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1044 {
1045 	int mask;
1046 
1047 	addr += (nr >> 3);
1048 	mask = 1 << (7 - (nr & 0x07));
1049 	return mask & *addr;
1050 }
1051 
1052 static inline int f2fs_set_bit(unsigned int nr, char *addr)
1053 {
1054 	int mask;
1055 	int ret;
1056 
1057 	addr += (nr >> 3);
1058 	mask = 1 << (7 - (nr & 0x07));
1059 	ret = mask & *addr;
1060 	*addr |= mask;
1061 	return ret;
1062 }
1063 
1064 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
1065 {
1066 	int mask;
1067 	int ret;
1068 
1069 	addr += (nr >> 3);
1070 	mask = 1 << (7 - (nr & 0x07));
1071 	ret = mask & *addr;
1072 	*addr &= ~mask;
1073 	return ret;
1074 }
1075 
1076 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1077 {
1078 	int mask;
1079 
1080 	addr += (nr >> 3);
1081 	mask = 1 << (7 - (nr & 0x07));
1082 	*addr ^= mask;
1083 }
1084 
1085 /* used for f2fs_inode_info->flags */
1086 enum {
1087 	FI_NEW_INODE,		/* indicate newly allocated inode */
1088 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1089 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1090 	FI_INC_LINK,		/* need to increment i_nlink */
1091 	FI_ACL_MODE,		/* indicate acl mode */
1092 	FI_NO_ALLOC,		/* should not allocate any blocks */
1093 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1094 	FI_DELAY_IPUT,		/* used for the recovery */
1095 	FI_NO_EXTENT,		/* not to use the extent cache */
1096 	FI_INLINE_XATTR,	/* used for inline xattr */
1097 	FI_INLINE_DATA,		/* used for inline data*/
1098 	FI_INLINE_DENTRY,	/* used for inline dentry */
1099 	FI_APPEND_WRITE,	/* inode has appended data */
1100 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1101 	FI_NEED_IPU,		/* used for ipu per file */
1102 	FI_ATOMIC_FILE,		/* indicate atomic file */
1103 	FI_VOLATILE_FILE,	/* indicate volatile file */
1104 };
1105 
1106 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1107 {
1108 	if (!test_bit(flag, &fi->flags))
1109 		set_bit(flag, &fi->flags);
1110 }
1111 
1112 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1113 {
1114 	return test_bit(flag, &fi->flags);
1115 }
1116 
1117 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1118 {
1119 	if (test_bit(flag, &fi->flags))
1120 		clear_bit(flag, &fi->flags);
1121 }
1122 
1123 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1124 {
1125 	fi->i_acl_mode = mode;
1126 	set_inode_flag(fi, FI_ACL_MODE);
1127 }
1128 
1129 static inline void get_inline_info(struct f2fs_inode_info *fi,
1130 					struct f2fs_inode *ri)
1131 {
1132 	if (ri->i_inline & F2FS_INLINE_XATTR)
1133 		set_inode_flag(fi, FI_INLINE_XATTR);
1134 	if (ri->i_inline & F2FS_INLINE_DATA)
1135 		set_inode_flag(fi, FI_INLINE_DATA);
1136 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1137 		set_inode_flag(fi, FI_INLINE_DENTRY);
1138 }
1139 
1140 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1141 					struct f2fs_inode *ri)
1142 {
1143 	ri->i_inline = 0;
1144 
1145 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1146 		ri->i_inline |= F2FS_INLINE_XATTR;
1147 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1148 		ri->i_inline |= F2FS_INLINE_DATA;
1149 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1150 		ri->i_inline |= F2FS_INLINE_DENTRY;
1151 }
1152 
1153 static inline int f2fs_has_inline_xattr(struct inode *inode)
1154 {
1155 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1156 }
1157 
1158 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1159 {
1160 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1161 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1162 	return DEF_ADDRS_PER_INODE;
1163 }
1164 
1165 static inline void *inline_xattr_addr(struct page *page)
1166 {
1167 	struct f2fs_inode *ri = F2FS_INODE(page);
1168 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1169 					F2FS_INLINE_XATTR_ADDRS]);
1170 }
1171 
1172 static inline int inline_xattr_size(struct inode *inode)
1173 {
1174 	if (f2fs_has_inline_xattr(inode))
1175 		return F2FS_INLINE_XATTR_ADDRS << 2;
1176 	else
1177 		return 0;
1178 }
1179 
1180 static inline int f2fs_has_inline_data(struct inode *inode)
1181 {
1182 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1183 }
1184 
1185 static inline bool f2fs_is_atomic_file(struct inode *inode)
1186 {
1187 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1188 }
1189 
1190 static inline bool f2fs_is_volatile_file(struct inode *inode)
1191 {
1192 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1193 }
1194 
1195 static inline void *inline_data_addr(struct page *page)
1196 {
1197 	struct f2fs_inode *ri = F2FS_INODE(page);
1198 	return (void *)&(ri->i_addr[1]);
1199 }
1200 
1201 static inline int f2fs_has_inline_dentry(struct inode *inode)
1202 {
1203 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1204 }
1205 
1206 static inline void *inline_dentry_addr(struct page *page)
1207 {
1208 	struct f2fs_inode *ri = F2FS_INODE(page);
1209 	return (void *)&(ri->i_addr[1]);
1210 }
1211 
1212 static inline int f2fs_readonly(struct super_block *sb)
1213 {
1214 	return sb->s_flags & MS_RDONLY;
1215 }
1216 
1217 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1218 {
1219 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1220 }
1221 
1222 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1223 {
1224 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1225 	sbi->sb->s_flags |= MS_RDONLY;
1226 }
1227 
1228 #define get_inode_mode(i) \
1229 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1230 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1231 
1232 /* get offset of first page in next direct node */
1233 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1234 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1235 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1236 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1237 
1238 /*
1239  * file.c
1240  */
1241 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1242 void truncate_data_blocks(struct dnode_of_data *);
1243 int truncate_blocks(struct inode *, u64, bool);
1244 void f2fs_truncate(struct inode *);
1245 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1246 int f2fs_setattr(struct dentry *, struct iattr *);
1247 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1248 int truncate_data_blocks_range(struct dnode_of_data *, int);
1249 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1250 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1251 
1252 /*
1253  * inode.c
1254  */
1255 void f2fs_set_inode_flags(struct inode *);
1256 struct inode *f2fs_iget(struct super_block *, unsigned long);
1257 int try_to_free_nats(struct f2fs_sb_info *, int);
1258 void update_inode(struct inode *, struct page *);
1259 void update_inode_page(struct inode *);
1260 int f2fs_write_inode(struct inode *, struct writeback_control *);
1261 void f2fs_evict_inode(struct inode *);
1262 void handle_failed_inode(struct inode *);
1263 
1264 /*
1265  * namei.c
1266  */
1267 struct dentry *f2fs_get_parent(struct dentry *child);
1268 
1269 /*
1270  * dir.c
1271  */
1272 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1273 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1274 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1275 			struct f2fs_dentry_ptr *);
1276 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1277 			unsigned int);
1278 void do_make_empty_dir(struct inode *, struct inode *,
1279 			struct f2fs_dentry_ptr *);
1280 struct page *init_inode_metadata(struct inode *, struct inode *,
1281 			const struct qstr *, struct page *);
1282 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1283 int room_for_filename(const void *, int, int);
1284 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1285 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1286 							struct page **);
1287 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1288 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1289 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1290 				struct page *, struct inode *);
1291 int update_dent_inode(struct inode *, const struct qstr *);
1292 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1293 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1294 							struct inode *);
1295 int f2fs_do_tmpfile(struct inode *, struct inode *);
1296 int f2fs_make_empty(struct inode *, struct inode *);
1297 bool f2fs_empty_dir(struct inode *);
1298 
1299 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1300 {
1301 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1302 				inode);
1303 }
1304 
1305 /*
1306  * super.c
1307  */
1308 int f2fs_sync_fs(struct super_block *, int);
1309 extern __printf(3, 4)
1310 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1311 
1312 /*
1313  * hash.c
1314  */
1315 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1316 
1317 /*
1318  * node.c
1319  */
1320 struct dnode_of_data;
1321 struct node_info;
1322 
1323 bool available_free_memory(struct f2fs_sb_info *, int);
1324 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1325 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1326 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1327 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1328 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1329 int truncate_inode_blocks(struct inode *, pgoff_t);
1330 int truncate_xattr_node(struct inode *, struct page *);
1331 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1332 void remove_inode_page(struct inode *);
1333 struct page *new_inode_page(struct inode *);
1334 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1335 void ra_node_page(struct f2fs_sb_info *, nid_t);
1336 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1337 struct page *get_node_page_ra(struct page *, int);
1338 void sync_inode_page(struct dnode_of_data *);
1339 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1340 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1341 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1342 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1343 void recover_inline_xattr(struct inode *, struct page *);
1344 void recover_xattr_data(struct inode *, struct page *, block_t);
1345 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1346 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1347 				struct f2fs_summary_block *);
1348 void flush_nat_entries(struct f2fs_sb_info *);
1349 int build_node_manager(struct f2fs_sb_info *);
1350 void destroy_node_manager(struct f2fs_sb_info *);
1351 int __init create_node_manager_caches(void);
1352 void destroy_node_manager_caches(void);
1353 
1354 /*
1355  * segment.c
1356  */
1357 void register_inmem_page(struct inode *, struct page *);
1358 void invalidate_inmem_page(struct inode *, struct page *);
1359 void commit_inmem_pages(struct inode *, bool);
1360 void f2fs_balance_fs(struct f2fs_sb_info *);
1361 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1362 int f2fs_issue_flush(struct f2fs_sb_info *);
1363 int create_flush_cmd_control(struct f2fs_sb_info *);
1364 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1365 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1366 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1367 void clear_prefree_segments(struct f2fs_sb_info *);
1368 void release_discard_addrs(struct f2fs_sb_info *);
1369 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1370 int npages_for_summary_flush(struct f2fs_sb_info *);
1371 void allocate_new_segments(struct f2fs_sb_info *);
1372 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1373 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1374 void write_meta_page(struct f2fs_sb_info *, struct page *);
1375 void write_node_page(struct f2fs_sb_info *, struct page *,
1376 		struct f2fs_io_info *, unsigned int, block_t, block_t *);
1377 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1378 					struct f2fs_io_info *);
1379 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1380 void recover_data_page(struct f2fs_sb_info *, struct page *,
1381 				struct f2fs_summary *, block_t, block_t);
1382 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1383 		block_t, block_t *, struct f2fs_summary *, int);
1384 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1385 void write_data_summaries(struct f2fs_sb_info *, block_t);
1386 void write_node_summaries(struct f2fs_sb_info *, block_t);
1387 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1388 					int, unsigned int, int);
1389 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1390 int build_segment_manager(struct f2fs_sb_info *);
1391 void destroy_segment_manager(struct f2fs_sb_info *);
1392 int __init create_segment_manager_caches(void);
1393 void destroy_segment_manager_caches(void);
1394 
1395 /*
1396  * checkpoint.c
1397  */
1398 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1399 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1400 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
1401 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1402 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1403 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1404 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1405 void release_dirty_inode(struct f2fs_sb_info *);
1406 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1407 int acquire_orphan_inode(struct f2fs_sb_info *);
1408 void release_orphan_inode(struct f2fs_sb_info *);
1409 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1410 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1411 void recover_orphan_inodes(struct f2fs_sb_info *);
1412 int get_valid_checkpoint(struct f2fs_sb_info *);
1413 void update_dirty_page(struct inode *, struct page *);
1414 void add_dirty_dir_inode(struct inode *);
1415 void remove_dirty_dir_inode(struct inode *);
1416 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1417 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1418 void init_ino_entry_info(struct f2fs_sb_info *);
1419 int __init create_checkpoint_caches(void);
1420 void destroy_checkpoint_caches(void);
1421 
1422 /*
1423  * data.c
1424  */
1425 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1426 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1427 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1428 						struct f2fs_io_info *);
1429 int reserve_new_block(struct dnode_of_data *);
1430 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1431 void update_extent_cache(block_t, struct dnode_of_data *);
1432 struct page *find_data_page(struct inode *, pgoff_t, bool);
1433 struct page *get_lock_data_page(struct inode *, pgoff_t);
1434 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1435 int do_write_data_page(struct page *, struct f2fs_io_info *);
1436 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1437 
1438 /*
1439  * gc.c
1440  */
1441 int start_gc_thread(struct f2fs_sb_info *);
1442 void stop_gc_thread(struct f2fs_sb_info *);
1443 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1444 int f2fs_gc(struct f2fs_sb_info *);
1445 void build_gc_manager(struct f2fs_sb_info *);
1446 int __init create_gc_caches(void);
1447 void destroy_gc_caches(void);
1448 
1449 /*
1450  * recovery.c
1451  */
1452 int recover_fsync_data(struct f2fs_sb_info *);
1453 bool space_for_roll_forward(struct f2fs_sb_info *);
1454 
1455 /*
1456  * debug.c
1457  */
1458 #ifdef CONFIG_F2FS_STAT_FS
1459 struct f2fs_stat_info {
1460 	struct list_head stat_list;
1461 	struct f2fs_sb_info *sbi;
1462 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1463 	int main_area_segs, main_area_sections, main_area_zones;
1464 	int hit_ext, total_ext;
1465 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1466 	int nats, sits, fnids;
1467 	int total_count, utilization;
1468 	int bg_gc, inline_inode, inline_dir;
1469 	unsigned int valid_count, valid_node_count, valid_inode_count;
1470 	unsigned int bimodal, avg_vblocks;
1471 	int util_free, util_valid, util_invalid;
1472 	int rsvd_segs, overp_segs;
1473 	int dirty_count, node_pages, meta_pages;
1474 	int prefree_count, call_count, cp_count;
1475 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1476 	int tot_blks, data_blks, node_blks;
1477 	int curseg[NR_CURSEG_TYPE];
1478 	int cursec[NR_CURSEG_TYPE];
1479 	int curzone[NR_CURSEG_TYPE];
1480 
1481 	unsigned int segment_count[2];
1482 	unsigned int block_count[2];
1483 	unsigned base_mem, cache_mem;
1484 };
1485 
1486 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1487 {
1488 	return (struct f2fs_stat_info *)sbi->stat_info;
1489 }
1490 
1491 #define stat_inc_cp_count(si)		((si)->cp_count++)
1492 #define stat_inc_call_count(si)		((si)->call_count++)
1493 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1494 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1495 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1496 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1497 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1498 #define stat_inc_inline_inode(inode)					\
1499 	do {								\
1500 		if (f2fs_has_inline_data(inode))			\
1501 			((F2FS_I_SB(inode))->inline_inode++);		\
1502 	} while (0)
1503 #define stat_dec_inline_inode(inode)					\
1504 	do {								\
1505 		if (f2fs_has_inline_data(inode))			\
1506 			((F2FS_I_SB(inode))->inline_inode--);		\
1507 	} while (0)
1508 #define stat_inc_inline_dir(inode)					\
1509 	do {								\
1510 		if (f2fs_has_inline_dentry(inode))			\
1511 			((F2FS_I_SB(inode))->inline_dir++);		\
1512 	} while (0)
1513 #define stat_dec_inline_dir(inode)					\
1514 	do {								\
1515 		if (f2fs_has_inline_dentry(inode))			\
1516 			((F2FS_I_SB(inode))->inline_dir--);		\
1517 	} while (0)
1518 #define stat_inc_seg_type(sbi, curseg)					\
1519 		((sbi)->segment_count[(curseg)->alloc_type]++)
1520 #define stat_inc_block_count(sbi, curseg)				\
1521 		((sbi)->block_count[(curseg)->alloc_type]++)
1522 
1523 #define stat_inc_seg_count(sbi, type)					\
1524 	do {								\
1525 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1526 		(si)->tot_segs++;					\
1527 		if (type == SUM_TYPE_DATA)				\
1528 			si->data_segs++;				\
1529 		else							\
1530 			si->node_segs++;				\
1531 	} while (0)
1532 
1533 #define stat_inc_tot_blk_count(si, blks)				\
1534 	(si->tot_blks += (blks))
1535 
1536 #define stat_inc_data_blk_count(sbi, blks)				\
1537 	do {								\
1538 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1539 		stat_inc_tot_blk_count(si, blks);			\
1540 		si->data_blks += (blks);				\
1541 	} while (0)
1542 
1543 #define stat_inc_node_blk_count(sbi, blks)				\
1544 	do {								\
1545 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1546 		stat_inc_tot_blk_count(si, blks);			\
1547 		si->node_blks += (blks);				\
1548 	} while (0)
1549 
1550 int f2fs_build_stats(struct f2fs_sb_info *);
1551 void f2fs_destroy_stats(struct f2fs_sb_info *);
1552 void __init f2fs_create_root_stats(void);
1553 void f2fs_destroy_root_stats(void);
1554 #else
1555 #define stat_inc_cp_count(si)
1556 #define stat_inc_call_count(si)
1557 #define stat_inc_bggc_count(si)
1558 #define stat_inc_dirty_dir(sbi)
1559 #define stat_dec_dirty_dir(sbi)
1560 #define stat_inc_total_hit(sb)
1561 #define stat_inc_read_hit(sb)
1562 #define stat_inc_inline_inode(inode)
1563 #define stat_dec_inline_inode(inode)
1564 #define stat_inc_inline_dir(inode)
1565 #define stat_dec_inline_dir(inode)
1566 #define stat_inc_seg_type(sbi, curseg)
1567 #define stat_inc_block_count(sbi, curseg)
1568 #define stat_inc_seg_count(si, type)
1569 #define stat_inc_tot_blk_count(si, blks)
1570 #define stat_inc_data_blk_count(si, blks)
1571 #define stat_inc_node_blk_count(sbi, blks)
1572 
1573 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1574 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1575 static inline void __init f2fs_create_root_stats(void) { }
1576 static inline void f2fs_destroy_root_stats(void) { }
1577 #endif
1578 
1579 extern const struct file_operations f2fs_dir_operations;
1580 extern const struct file_operations f2fs_file_operations;
1581 extern const struct inode_operations f2fs_file_inode_operations;
1582 extern const struct address_space_operations f2fs_dblock_aops;
1583 extern const struct address_space_operations f2fs_node_aops;
1584 extern const struct address_space_operations f2fs_meta_aops;
1585 extern const struct inode_operations f2fs_dir_inode_operations;
1586 extern const struct inode_operations f2fs_symlink_inode_operations;
1587 extern const struct inode_operations f2fs_special_inode_operations;
1588 
1589 /*
1590  * inline.c
1591  */
1592 bool f2fs_may_inline(struct inode *);
1593 int f2fs_read_inline_data(struct inode *, struct page *);
1594 int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *);
1595 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1596 void truncate_inline_data(struct inode *, u64);
1597 bool recover_inline_data(struct inode *, struct page *);
1598 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1599 							struct page **);
1600 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1601 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1602 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1603 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1604 						struct inode *, struct inode *);
1605 bool f2fs_empty_inline_dir(struct inode *);
1606 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1607 #endif
1608