xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b91050a80cec3daf5a21f78274330df64a4936a3)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 struct f2fs_mount_info {
117 	unsigned int opt;
118 	int write_io_size_bits;		/* Write IO size bits */
119 	block_t root_reserved_blocks;	/* root reserved blocks */
120 	kuid_t s_resuid;		/* reserved blocks for uid */
121 	kgid_t s_resgid;		/* reserved blocks for gid */
122 	int active_logs;		/* # of active logs */
123 	int inline_xattr_size;		/* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 	struct f2fs_fault_info fault_info;	/* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 	/* Names of quota files with journalled quota */
129 	char *s_qf_names[MAXQUOTAS];
130 	int s_jquota_fmt;			/* Format of quota to use */
131 #endif
132 	/* For which write hints are passed down to block layer */
133 	int whint_mode;
134 	int alloc_mode;			/* segment allocation policy */
135 	int fsync_mode;			/* fsync policy */
136 };
137 
138 #define F2FS_FEATURE_ENCRYPT		0x0001
139 #define F2FS_FEATURE_BLKZONED		0x0002
140 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
141 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
142 #define F2FS_FEATURE_PRJQUOTA		0x0010
143 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
144 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
145 #define F2FS_FEATURE_QUOTA_INO		0x0080
146 #define F2FS_FEATURE_INODE_CRTIME	0x0100
147 
148 #define F2FS_HAS_FEATURE(sb, mask)					\
149 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
150 #define F2FS_SET_FEATURE(sb, mask)					\
151 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
152 #define F2FS_CLEAR_FEATURE(sb, mask)					\
153 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
154 
155 /*
156  * Default values for user and/or group using reserved blocks
157  */
158 #define	F2FS_DEF_RESUID		0
159 #define	F2FS_DEF_RESGID		0
160 
161 /*
162  * For checkpoint manager
163  */
164 enum {
165 	NAT_BITMAP,
166 	SIT_BITMAP
167 };
168 
169 #define	CP_UMOUNT	0x00000001
170 #define	CP_FASTBOOT	0x00000002
171 #define	CP_SYNC		0x00000004
172 #define	CP_RECOVERY	0x00000008
173 #define	CP_DISCARD	0x00000010
174 #define CP_TRIMMED	0x00000020
175 
176 #define DEF_BATCHED_TRIM_SECTIONS	2048
177 #define BATCHED_TRIM_SEGMENTS(sbi)	\
178 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
179 #define BATCHED_TRIM_BLOCKS(sbi)	\
180 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
181 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
182 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
183 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
184 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
185 #define DEF_CP_INTERVAL			60	/* 60 secs */
186 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
187 
188 struct cp_control {
189 	int reason;
190 	__u64 trim_start;
191 	__u64 trim_end;
192 	__u64 trim_minlen;
193 };
194 
195 /*
196  * For CP/NAT/SIT/SSA readahead
197  */
198 enum {
199 	META_CP,
200 	META_NAT,
201 	META_SIT,
202 	META_SSA,
203 	META_POR,
204 };
205 
206 /* for the list of ino */
207 enum {
208 	ORPHAN_INO,		/* for orphan ino list */
209 	APPEND_INO,		/* for append ino list */
210 	UPDATE_INO,		/* for update ino list */
211 	TRANS_DIR_INO,		/* for trasactions dir ino list */
212 	FLUSH_INO,		/* for multiple device flushing */
213 	MAX_INO_ENTRY,		/* max. list */
214 };
215 
216 struct ino_entry {
217 	struct list_head list;		/* list head */
218 	nid_t ino;			/* inode number */
219 	unsigned int dirty_device;	/* dirty device bitmap */
220 };
221 
222 /* for the list of inodes to be GCed */
223 struct inode_entry {
224 	struct list_head list;	/* list head */
225 	struct inode *inode;	/* vfs inode pointer */
226 };
227 
228 /* for the bitmap indicate blocks to be discarded */
229 struct discard_entry {
230 	struct list_head list;	/* list head */
231 	block_t start_blkaddr;	/* start blockaddr of current segment */
232 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
233 };
234 
235 /* default discard granularity of inner discard thread, unit: block count */
236 #define DEFAULT_DISCARD_GRANULARITY		16
237 
238 /* max discard pend list number */
239 #define MAX_PLIST_NUM		512
240 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
241 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
242 
243 enum {
244 	D_PREP,
245 	D_SUBMIT,
246 	D_DONE,
247 };
248 
249 struct discard_info {
250 	block_t lstart;			/* logical start address */
251 	block_t len;			/* length */
252 	block_t start;			/* actual start address in dev */
253 };
254 
255 struct discard_cmd {
256 	struct rb_node rb_node;		/* rb node located in rb-tree */
257 	union {
258 		struct {
259 			block_t lstart;	/* logical start address */
260 			block_t len;	/* length */
261 			block_t start;	/* actual start address in dev */
262 		};
263 		struct discard_info di;	/* discard info */
264 
265 	};
266 	struct list_head list;		/* command list */
267 	struct completion wait;		/* compleation */
268 	struct block_device *bdev;	/* bdev */
269 	unsigned short ref;		/* reference count */
270 	unsigned char state;		/* state */
271 	int error;			/* bio error */
272 };
273 
274 enum {
275 	DPOLICY_BG,
276 	DPOLICY_FORCE,
277 	DPOLICY_FSTRIM,
278 	DPOLICY_UMOUNT,
279 	MAX_DPOLICY,
280 };
281 
282 struct discard_policy {
283 	int type;			/* type of discard */
284 	unsigned int min_interval;	/* used for candidates exist */
285 	unsigned int max_interval;	/* used for candidates not exist */
286 	unsigned int max_requests;	/* # of discards issued per round */
287 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
288 	bool io_aware;			/* issue discard in idle time */
289 	bool sync;			/* submit discard with REQ_SYNC flag */
290 	unsigned int granularity;	/* discard granularity */
291 };
292 
293 struct discard_cmd_control {
294 	struct task_struct *f2fs_issue_discard;	/* discard thread */
295 	struct list_head entry_list;		/* 4KB discard entry list */
296 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
297 	struct list_head wait_list;		/* store on-flushing entries */
298 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
299 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
300 	unsigned int discard_wake;		/* to wake up discard thread */
301 	struct mutex cmd_lock;
302 	unsigned int nr_discards;		/* # of discards in the list */
303 	unsigned int max_discards;		/* max. discards to be issued */
304 	unsigned int discard_granularity;	/* discard granularity */
305 	unsigned int undiscard_blks;		/* # of undiscard blocks */
306 	atomic_t issued_discard;		/* # of issued discard */
307 	atomic_t issing_discard;		/* # of issing discard */
308 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
309 	struct rb_root root;			/* root of discard rb-tree */
310 };
311 
312 /* for the list of fsync inodes, used only during recovery */
313 struct fsync_inode_entry {
314 	struct list_head list;	/* list head */
315 	struct inode *inode;	/* vfs inode pointer */
316 	block_t blkaddr;	/* block address locating the last fsync */
317 	block_t last_dentry;	/* block address locating the last dentry */
318 };
319 
320 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
321 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
322 
323 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
324 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
325 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
326 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
327 
328 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
329 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
330 
331 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
332 {
333 	int before = nats_in_cursum(journal);
334 
335 	journal->n_nats = cpu_to_le16(before + i);
336 	return before;
337 }
338 
339 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
340 {
341 	int before = sits_in_cursum(journal);
342 
343 	journal->n_sits = cpu_to_le16(before + i);
344 	return before;
345 }
346 
347 static inline bool __has_cursum_space(struct f2fs_journal *journal,
348 							int size, int type)
349 {
350 	if (type == NAT_JOURNAL)
351 		return size <= MAX_NAT_JENTRIES(journal);
352 	return size <= MAX_SIT_JENTRIES(journal);
353 }
354 
355 /*
356  * ioctl commands
357  */
358 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
359 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
360 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
361 
362 #define F2FS_IOCTL_MAGIC		0xf5
363 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
364 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
365 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
366 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
367 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
368 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
369 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
370 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
371 						struct f2fs_defragment)
372 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
373 						struct f2fs_move_range)
374 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
375 						struct f2fs_flush_device)
376 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
377 						struct f2fs_gc_range)
378 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
379 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
380 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
381 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
382 
383 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
384 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
385 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
386 
387 /*
388  * should be same as XFS_IOC_GOINGDOWN.
389  * Flags for going down operation used by FS_IOC_GOINGDOWN
390  */
391 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
392 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
393 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
394 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
395 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
396 
397 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
398 /*
399  * ioctl commands in 32 bit emulation
400  */
401 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
402 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
403 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
404 #endif
405 
406 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
407 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
408 
409 struct f2fs_gc_range {
410 	u32 sync;
411 	u64 start;
412 	u64 len;
413 };
414 
415 struct f2fs_defragment {
416 	u64 start;
417 	u64 len;
418 };
419 
420 struct f2fs_move_range {
421 	u32 dst_fd;		/* destination fd */
422 	u64 pos_in;		/* start position in src_fd */
423 	u64 pos_out;		/* start position in dst_fd */
424 	u64 len;		/* size to move */
425 };
426 
427 struct f2fs_flush_device {
428 	u32 dev_num;		/* device number to flush */
429 	u32 segments;		/* # of segments to flush */
430 };
431 
432 /* for inline stuff */
433 #define DEF_INLINE_RESERVED_SIZE	1
434 #define DEF_MIN_INLINE_SIZE		1
435 static inline int get_extra_isize(struct inode *inode);
436 static inline int get_inline_xattr_addrs(struct inode *inode);
437 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
438 				(CUR_ADDRS_PER_INODE(inode) -		\
439 				get_inline_xattr_addrs(inode) -	\
440 				DEF_INLINE_RESERVED_SIZE))
441 
442 /* for inline dir */
443 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
444 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
445 				BITS_PER_BYTE + 1))
446 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
447 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
448 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
449 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 				NR_INLINE_DENTRY(inode) + \
451 				INLINE_DENTRY_BITMAP_SIZE(inode)))
452 
453 /*
454  * For INODE and NODE manager
455  */
456 /* for directory operations */
457 struct f2fs_dentry_ptr {
458 	struct inode *inode;
459 	void *bitmap;
460 	struct f2fs_dir_entry *dentry;
461 	__u8 (*filename)[F2FS_SLOT_LEN];
462 	int max;
463 	int nr_bitmap;
464 };
465 
466 static inline void make_dentry_ptr_block(struct inode *inode,
467 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
468 {
469 	d->inode = inode;
470 	d->max = NR_DENTRY_IN_BLOCK;
471 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
472 	d->bitmap = &t->dentry_bitmap;
473 	d->dentry = t->dentry;
474 	d->filename = t->filename;
475 }
476 
477 static inline void make_dentry_ptr_inline(struct inode *inode,
478 					struct f2fs_dentry_ptr *d, void *t)
479 {
480 	int entry_cnt = NR_INLINE_DENTRY(inode);
481 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
482 	int reserved_size = INLINE_RESERVED_SIZE(inode);
483 
484 	d->inode = inode;
485 	d->max = entry_cnt;
486 	d->nr_bitmap = bitmap_size;
487 	d->bitmap = t;
488 	d->dentry = t + bitmap_size + reserved_size;
489 	d->filename = t + bitmap_size + reserved_size +
490 					SIZE_OF_DIR_ENTRY * entry_cnt;
491 }
492 
493 /*
494  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
495  * as its node offset to distinguish from index node blocks.
496  * But some bits are used to mark the node block.
497  */
498 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
499 				>> OFFSET_BIT_SHIFT)
500 enum {
501 	ALLOC_NODE,			/* allocate a new node page if needed */
502 	LOOKUP_NODE,			/* look up a node without readahead */
503 	LOOKUP_NODE_RA,			/*
504 					 * look up a node with readahead called
505 					 * by get_data_block.
506 					 */
507 };
508 
509 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
510 
511 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
512 
513 /* vector size for gang look-up from extent cache that consists of radix tree */
514 #define EXT_TREE_VEC_SIZE	64
515 
516 /* for in-memory extent cache entry */
517 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
518 
519 /* number of extent info in extent cache we try to shrink */
520 #define EXTENT_CACHE_SHRINK_NUMBER	128
521 
522 struct rb_entry {
523 	struct rb_node rb_node;		/* rb node located in rb-tree */
524 	unsigned int ofs;		/* start offset of the entry */
525 	unsigned int len;		/* length of the entry */
526 };
527 
528 struct extent_info {
529 	unsigned int fofs;		/* start offset in a file */
530 	unsigned int len;		/* length of the extent */
531 	u32 blk;			/* start block address of the extent */
532 };
533 
534 struct extent_node {
535 	struct rb_node rb_node;
536 	union {
537 		struct {
538 			unsigned int fofs;
539 			unsigned int len;
540 			u32 blk;
541 		};
542 		struct extent_info ei;	/* extent info */
543 
544 	};
545 	struct list_head list;		/* node in global extent list of sbi */
546 	struct extent_tree *et;		/* extent tree pointer */
547 };
548 
549 struct extent_tree {
550 	nid_t ino;			/* inode number */
551 	struct rb_root root;		/* root of extent info rb-tree */
552 	struct extent_node *cached_en;	/* recently accessed extent node */
553 	struct extent_info largest;	/* largested extent info */
554 	struct list_head list;		/* to be used by sbi->zombie_list */
555 	rwlock_t lock;			/* protect extent info rb-tree */
556 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
557 };
558 
559 /*
560  * This structure is taken from ext4_map_blocks.
561  *
562  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
563  */
564 #define F2FS_MAP_NEW		(1 << BH_New)
565 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
566 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
567 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
568 				F2FS_MAP_UNWRITTEN)
569 
570 struct f2fs_map_blocks {
571 	block_t m_pblk;
572 	block_t m_lblk;
573 	unsigned int m_len;
574 	unsigned int m_flags;
575 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
576 	pgoff_t *m_next_extent;		/* point to next possible extent */
577 	int m_seg_type;
578 };
579 
580 /* for flag in get_data_block */
581 enum {
582 	F2FS_GET_BLOCK_DEFAULT,
583 	F2FS_GET_BLOCK_FIEMAP,
584 	F2FS_GET_BLOCK_BMAP,
585 	F2FS_GET_BLOCK_PRE_DIO,
586 	F2FS_GET_BLOCK_PRE_AIO,
587 	F2FS_GET_BLOCK_PRECACHE,
588 };
589 
590 /*
591  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
592  */
593 #define FADVISE_COLD_BIT	0x01
594 #define FADVISE_LOST_PINO_BIT	0x02
595 #define FADVISE_ENCRYPT_BIT	0x04
596 #define FADVISE_ENC_NAME_BIT	0x08
597 #define FADVISE_KEEP_SIZE_BIT	0x10
598 #define FADVISE_HOT_BIT		0x20
599 
600 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
601 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
602 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
603 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
604 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
605 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
606 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
607 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
608 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
609 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
610 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
611 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
612 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
613 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
614 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
615 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
616 
617 #define DEF_DIR_LEVEL		0
618 
619 struct f2fs_inode_info {
620 	struct inode vfs_inode;		/* serve a vfs inode */
621 	unsigned long i_flags;		/* keep an inode flags for ioctl */
622 	unsigned char i_advise;		/* use to give file attribute hints */
623 	unsigned char i_dir_level;	/* use for dentry level for large dir */
624 	union {
625 		unsigned int i_current_depth;	/* only for directory depth */
626 		unsigned short i_gc_failures;	/* only for regular file */
627 	};
628 	unsigned int i_pino;		/* parent inode number */
629 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
630 
631 	/* Use below internally in f2fs*/
632 	unsigned long flags;		/* use to pass per-file flags */
633 	struct rw_semaphore i_sem;	/* protect fi info */
634 	atomic_t dirty_pages;		/* # of dirty pages */
635 	f2fs_hash_t chash;		/* hash value of given file name */
636 	unsigned int clevel;		/* maximum level of given file name */
637 	struct task_struct *task;	/* lookup and create consistency */
638 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
639 	nid_t i_xattr_nid;		/* node id that contains xattrs */
640 	loff_t	last_disk_size;		/* lastly written file size */
641 
642 #ifdef CONFIG_QUOTA
643 	struct dquot *i_dquot[MAXQUOTAS];
644 
645 	/* quota space reservation, managed internally by quota code */
646 	qsize_t i_reserved_quota;
647 #endif
648 	struct list_head dirty_list;	/* dirty list for dirs and files */
649 	struct list_head gdirty_list;	/* linked in global dirty list */
650 	struct list_head inmem_ilist;	/* list for inmem inodes */
651 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
652 	struct task_struct *inmem_task;	/* store inmemory task */
653 	struct mutex inmem_lock;	/* lock for inmemory pages */
654 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
655 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
656 	struct rw_semaphore i_mmap_sem;
657 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
658 
659 	int i_extra_isize;		/* size of extra space located in i_addr */
660 	kprojid_t i_projid;		/* id for project quota */
661 	int i_inline_xattr_size;	/* inline xattr size */
662 	struct timespec i_crtime;	/* inode creation time */
663 };
664 
665 static inline void get_extent_info(struct extent_info *ext,
666 					struct f2fs_extent *i_ext)
667 {
668 	ext->fofs = le32_to_cpu(i_ext->fofs);
669 	ext->blk = le32_to_cpu(i_ext->blk);
670 	ext->len = le32_to_cpu(i_ext->len);
671 }
672 
673 static inline void set_raw_extent(struct extent_info *ext,
674 					struct f2fs_extent *i_ext)
675 {
676 	i_ext->fofs = cpu_to_le32(ext->fofs);
677 	i_ext->blk = cpu_to_le32(ext->blk);
678 	i_ext->len = cpu_to_le32(ext->len);
679 }
680 
681 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
682 						u32 blk, unsigned int len)
683 {
684 	ei->fofs = fofs;
685 	ei->blk = blk;
686 	ei->len = len;
687 }
688 
689 static inline bool __is_discard_mergeable(struct discard_info *back,
690 						struct discard_info *front)
691 {
692 	return back->lstart + back->len == front->lstart;
693 }
694 
695 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
696 						struct discard_info *back)
697 {
698 	return __is_discard_mergeable(back, cur);
699 }
700 
701 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
702 						struct discard_info *front)
703 {
704 	return __is_discard_mergeable(cur, front);
705 }
706 
707 static inline bool __is_extent_mergeable(struct extent_info *back,
708 						struct extent_info *front)
709 {
710 	return (back->fofs + back->len == front->fofs &&
711 			back->blk + back->len == front->blk);
712 }
713 
714 static inline bool __is_back_mergeable(struct extent_info *cur,
715 						struct extent_info *back)
716 {
717 	return __is_extent_mergeable(back, cur);
718 }
719 
720 static inline bool __is_front_mergeable(struct extent_info *cur,
721 						struct extent_info *front)
722 {
723 	return __is_extent_mergeable(cur, front);
724 }
725 
726 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
727 static inline void __try_update_largest_extent(struct inode *inode,
728 			struct extent_tree *et, struct extent_node *en)
729 {
730 	if (en->ei.len > et->largest.len) {
731 		et->largest = en->ei;
732 		f2fs_mark_inode_dirty_sync(inode, true);
733 	}
734 }
735 
736 /*
737  * For free nid management
738  */
739 enum nid_state {
740 	FREE_NID,		/* newly added to free nid list */
741 	PREALLOC_NID,		/* it is preallocated */
742 	MAX_NID_STATE,
743 };
744 
745 struct f2fs_nm_info {
746 	block_t nat_blkaddr;		/* base disk address of NAT */
747 	nid_t max_nid;			/* maximum possible node ids */
748 	nid_t available_nids;		/* # of available node ids */
749 	nid_t next_scan_nid;		/* the next nid to be scanned */
750 	unsigned int ram_thresh;	/* control the memory footprint */
751 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
752 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
753 
754 	/* NAT cache management */
755 	struct radix_tree_root nat_root;/* root of the nat entry cache */
756 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
757 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
758 	struct list_head nat_entries;	/* cached nat entry list (clean) */
759 	unsigned int nat_cnt;		/* the # of cached nat entries */
760 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
761 	unsigned int nat_blocks;	/* # of nat blocks */
762 
763 	/* free node ids management */
764 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
765 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
766 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
767 	spinlock_t nid_list_lock;	/* protect nid lists ops */
768 	struct mutex build_lock;	/* lock for build free nids */
769 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
770 	unsigned char *nat_block_bitmap;
771 	unsigned short *free_nid_count;	/* free nid count of NAT block */
772 
773 	/* for checkpoint */
774 	char *nat_bitmap;		/* NAT bitmap pointer */
775 
776 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
777 	unsigned char *nat_bits;	/* NAT bits blocks */
778 	unsigned char *full_nat_bits;	/* full NAT pages */
779 	unsigned char *empty_nat_bits;	/* empty NAT pages */
780 #ifdef CONFIG_F2FS_CHECK_FS
781 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
782 #endif
783 	int bitmap_size;		/* bitmap size */
784 };
785 
786 /*
787  * this structure is used as one of function parameters.
788  * all the information are dedicated to a given direct node block determined
789  * by the data offset in a file.
790  */
791 struct dnode_of_data {
792 	struct inode *inode;		/* vfs inode pointer */
793 	struct page *inode_page;	/* its inode page, NULL is possible */
794 	struct page *node_page;		/* cached direct node page */
795 	nid_t nid;			/* node id of the direct node block */
796 	unsigned int ofs_in_node;	/* data offset in the node page */
797 	bool inode_page_locked;		/* inode page is locked or not */
798 	bool node_changed;		/* is node block changed */
799 	char cur_level;			/* level of hole node page */
800 	char max_level;			/* level of current page located */
801 	block_t	data_blkaddr;		/* block address of the node block */
802 };
803 
804 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
805 		struct page *ipage, struct page *npage, nid_t nid)
806 {
807 	memset(dn, 0, sizeof(*dn));
808 	dn->inode = inode;
809 	dn->inode_page = ipage;
810 	dn->node_page = npage;
811 	dn->nid = nid;
812 }
813 
814 /*
815  * For SIT manager
816  *
817  * By default, there are 6 active log areas across the whole main area.
818  * When considering hot and cold data separation to reduce cleaning overhead,
819  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
820  * respectively.
821  * In the current design, you should not change the numbers intentionally.
822  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
823  * logs individually according to the underlying devices. (default: 6)
824  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
825  * data and 8 for node logs.
826  */
827 #define	NR_CURSEG_DATA_TYPE	(3)
828 #define NR_CURSEG_NODE_TYPE	(3)
829 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
830 
831 enum {
832 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
833 	CURSEG_WARM_DATA,	/* data blocks */
834 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
835 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
836 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
837 	CURSEG_COLD_NODE,	/* indirect node blocks */
838 	NO_CHECK_TYPE,
839 };
840 
841 struct flush_cmd {
842 	struct completion wait;
843 	struct llist_node llnode;
844 	nid_t ino;
845 	int ret;
846 };
847 
848 struct flush_cmd_control {
849 	struct task_struct *f2fs_issue_flush;	/* flush thread */
850 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
851 	atomic_t issued_flush;			/* # of issued flushes */
852 	atomic_t issing_flush;			/* # of issing flushes */
853 	struct llist_head issue_list;		/* list for command issue */
854 	struct llist_node *dispatch_list;	/* list for command dispatch */
855 };
856 
857 struct f2fs_sm_info {
858 	struct sit_info *sit_info;		/* whole segment information */
859 	struct free_segmap_info *free_info;	/* free segment information */
860 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
861 	struct curseg_info *curseg_array;	/* active segment information */
862 
863 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
864 
865 	block_t seg0_blkaddr;		/* block address of 0'th segment */
866 	block_t main_blkaddr;		/* start block address of main area */
867 	block_t ssa_blkaddr;		/* start block address of SSA area */
868 
869 	unsigned int segment_count;	/* total # of segments */
870 	unsigned int main_segments;	/* # of segments in main area */
871 	unsigned int reserved_segments;	/* # of reserved segments */
872 	unsigned int ovp_segments;	/* # of overprovision segments */
873 
874 	/* a threshold to reclaim prefree segments */
875 	unsigned int rec_prefree_segments;
876 
877 	/* for batched trimming */
878 	unsigned int trim_sections;		/* # of sections to trim */
879 
880 	struct list_head sit_entry_set;	/* sit entry set list */
881 
882 	unsigned int ipu_policy;	/* in-place-update policy */
883 	unsigned int min_ipu_util;	/* in-place-update threshold */
884 	unsigned int min_fsync_blocks;	/* threshold for fsync */
885 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
886 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
887 
888 	/* for flush command control */
889 	struct flush_cmd_control *fcc_info;
890 
891 	/* for discard command control */
892 	struct discard_cmd_control *dcc_info;
893 };
894 
895 /*
896  * For superblock
897  */
898 /*
899  * COUNT_TYPE for monitoring
900  *
901  * f2fs monitors the number of several block types such as on-writeback,
902  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
903  */
904 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
905 enum count_type {
906 	F2FS_DIRTY_DENTS,
907 	F2FS_DIRTY_DATA,
908 	F2FS_DIRTY_QDATA,
909 	F2FS_DIRTY_NODES,
910 	F2FS_DIRTY_META,
911 	F2FS_INMEM_PAGES,
912 	F2FS_DIRTY_IMETA,
913 	F2FS_WB_CP_DATA,
914 	F2FS_WB_DATA,
915 	NR_COUNT_TYPE,
916 };
917 
918 /*
919  * The below are the page types of bios used in submit_bio().
920  * The available types are:
921  * DATA			User data pages. It operates as async mode.
922  * NODE			Node pages. It operates as async mode.
923  * META			FS metadata pages such as SIT, NAT, CP.
924  * NR_PAGE_TYPE		The number of page types.
925  * META_FLUSH		Make sure the previous pages are written
926  *			with waiting the bio's completion
927  * ...			Only can be used with META.
928  */
929 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
930 enum page_type {
931 	DATA,
932 	NODE,
933 	META,
934 	NR_PAGE_TYPE,
935 	META_FLUSH,
936 	INMEM,		/* the below types are used by tracepoints only. */
937 	INMEM_DROP,
938 	INMEM_INVALIDATE,
939 	INMEM_REVOKE,
940 	IPU,
941 	OPU,
942 };
943 
944 enum temp_type {
945 	HOT = 0,	/* must be zero for meta bio */
946 	WARM,
947 	COLD,
948 	NR_TEMP_TYPE,
949 };
950 
951 enum need_lock_type {
952 	LOCK_REQ = 0,
953 	LOCK_DONE,
954 	LOCK_RETRY,
955 };
956 
957 enum cp_reason_type {
958 	CP_NO_NEEDED,
959 	CP_NON_REGULAR,
960 	CP_HARDLINK,
961 	CP_SB_NEED_CP,
962 	CP_WRONG_PINO,
963 	CP_NO_SPC_ROLL,
964 	CP_NODE_NEED_CP,
965 	CP_FASTBOOT_MODE,
966 	CP_SPEC_LOG_NUM,
967 	CP_RECOVER_DIR,
968 };
969 
970 enum iostat_type {
971 	APP_DIRECT_IO,			/* app direct IOs */
972 	APP_BUFFERED_IO,		/* app buffered IOs */
973 	APP_WRITE_IO,			/* app write IOs */
974 	APP_MAPPED_IO,			/* app mapped IOs */
975 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
976 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
977 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
978 	FS_GC_DATA_IO,			/* data IOs from forground gc */
979 	FS_GC_NODE_IO,			/* node IOs from forground gc */
980 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
981 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
982 	FS_CP_META_IO,			/* meta IOs from checkpoint */
983 	FS_DISCARD,			/* discard */
984 	NR_IO_TYPE,
985 };
986 
987 struct f2fs_io_info {
988 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
989 	nid_t ino;		/* inode number */
990 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
991 	enum temp_type temp;	/* contains HOT/WARM/COLD */
992 	int op;			/* contains REQ_OP_ */
993 	int op_flags;		/* req_flag_bits */
994 	block_t new_blkaddr;	/* new block address to be written */
995 	block_t old_blkaddr;	/* old block address before Cow */
996 	struct page *page;	/* page to be written */
997 	struct page *encrypted_page;	/* encrypted page */
998 	struct list_head list;		/* serialize IOs */
999 	bool submitted;		/* indicate IO submission */
1000 	int need_lock;		/* indicate we need to lock cp_rwsem */
1001 	bool in_list;		/* indicate fio is in io_list */
1002 	enum iostat_type io_type;	/* io type */
1003 	struct writeback_control *io_wbc; /* writeback control */
1004 };
1005 
1006 #define is_read_io(rw) ((rw) == READ)
1007 struct f2fs_bio_info {
1008 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1009 	struct bio *bio;		/* bios to merge */
1010 	sector_t last_block_in_bio;	/* last block number */
1011 	struct f2fs_io_info fio;	/* store buffered io info. */
1012 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1013 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1014 	struct list_head io_list;	/* track fios */
1015 };
1016 
1017 #define FDEV(i)				(sbi->devs[i])
1018 #define RDEV(i)				(raw_super->devs[i])
1019 struct f2fs_dev_info {
1020 	struct block_device *bdev;
1021 	char path[MAX_PATH_LEN];
1022 	unsigned int total_segments;
1023 	block_t start_blk;
1024 	block_t end_blk;
1025 #ifdef CONFIG_BLK_DEV_ZONED
1026 	unsigned int nr_blkz;			/* Total number of zones */
1027 	u8 *blkz_type;				/* Array of zones type */
1028 #endif
1029 };
1030 
1031 enum inode_type {
1032 	DIR_INODE,			/* for dirty dir inode */
1033 	FILE_INODE,			/* for dirty regular/symlink inode */
1034 	DIRTY_META,			/* for all dirtied inode metadata */
1035 	ATOMIC_FILE,			/* for all atomic files */
1036 	NR_INODE_TYPE,
1037 };
1038 
1039 /* for inner inode cache management */
1040 struct inode_management {
1041 	struct radix_tree_root ino_root;	/* ino entry array */
1042 	spinlock_t ino_lock;			/* for ino entry lock */
1043 	struct list_head ino_list;		/* inode list head */
1044 	unsigned long ino_num;			/* number of entries */
1045 };
1046 
1047 /* For s_flag in struct f2fs_sb_info */
1048 enum {
1049 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1050 	SBI_IS_CLOSE,				/* specify unmounting */
1051 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1052 	SBI_POR_DOING,				/* recovery is doing or not */
1053 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1054 	SBI_NEED_CP,				/* need to checkpoint */
1055 };
1056 
1057 enum {
1058 	CP_TIME,
1059 	REQ_TIME,
1060 	MAX_TIME,
1061 };
1062 
1063 enum {
1064 	WHINT_MODE_OFF,		/* not pass down write hints */
1065 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1066 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1067 };
1068 
1069 enum {
1070 	ALLOC_MODE_DEFAULT,	/* stay default */
1071 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1072 };
1073 
1074 enum fsync_mode {
1075 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1076 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1077 };
1078 
1079 struct f2fs_sb_info {
1080 	struct super_block *sb;			/* pointer to VFS super block */
1081 	struct proc_dir_entry *s_proc;		/* proc entry */
1082 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1083 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1084 	int valid_super_block;			/* valid super block no */
1085 	unsigned long s_flag;				/* flags for sbi */
1086 
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1089 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1090 #endif
1091 
1092 	/* for node-related operations */
1093 	struct f2fs_nm_info *nm_info;		/* node manager */
1094 	struct inode *node_inode;		/* cache node blocks */
1095 
1096 	/* for segment-related operations */
1097 	struct f2fs_sm_info *sm_info;		/* segment manager */
1098 
1099 	/* for bio operations */
1100 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1101 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1102 						/* bio ordering for NODE/DATA */
1103 	mempool_t *write_io_dummy;		/* Dummy pages */
1104 
1105 	/* for checkpoint */
1106 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1107 	int cur_cp_pack;			/* remain current cp pack */
1108 	spinlock_t cp_lock;			/* for flag in ckpt */
1109 	struct inode *meta_inode;		/* cache meta blocks */
1110 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1111 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1112 	struct rw_semaphore node_write;		/* locking node writes */
1113 	struct rw_semaphore node_change;	/* locking node change */
1114 	wait_queue_head_t cp_wait;
1115 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1116 	long interval_time[MAX_TIME];		/* to store thresholds */
1117 
1118 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1119 
1120 	/* for orphan inode, use 0'th array */
1121 	unsigned int max_orphans;		/* max orphan inodes */
1122 
1123 	/* for inode management */
1124 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1125 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1126 
1127 	/* for extent tree cache */
1128 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1129 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1130 	struct list_head extent_list;		/* lru list for shrinker */
1131 	spinlock_t extent_lock;			/* locking extent lru list */
1132 	atomic_t total_ext_tree;		/* extent tree count */
1133 	struct list_head zombie_list;		/* extent zombie tree list */
1134 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1135 	atomic_t total_ext_node;		/* extent info count */
1136 
1137 	/* basic filesystem units */
1138 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1139 	unsigned int log_blocksize;		/* log2 block size */
1140 	unsigned int blocksize;			/* block size */
1141 	unsigned int root_ino_num;		/* root inode number*/
1142 	unsigned int node_ino_num;		/* node inode number*/
1143 	unsigned int meta_ino_num;		/* meta inode number*/
1144 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1145 	unsigned int blocks_per_seg;		/* blocks per segment */
1146 	unsigned int segs_per_sec;		/* segments per section */
1147 	unsigned int secs_per_zone;		/* sections per zone */
1148 	unsigned int total_sections;		/* total section count */
1149 	unsigned int total_node_count;		/* total node block count */
1150 	unsigned int total_valid_node_count;	/* valid node block count */
1151 	loff_t max_file_blocks;			/* max block index of file */
1152 	int dir_level;				/* directory level */
1153 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1154 	int readdir_ra;				/* readahead inode in readdir */
1155 
1156 	block_t user_block_count;		/* # of user blocks */
1157 	block_t total_valid_block_count;	/* # of valid blocks */
1158 	block_t discard_blks;			/* discard command candidats */
1159 	block_t last_valid_block_count;		/* for recovery */
1160 	block_t reserved_blocks;		/* configurable reserved blocks */
1161 	block_t current_reserved_blocks;	/* current reserved blocks */
1162 
1163 	unsigned int nquota_files;		/* # of quota sysfile */
1164 
1165 	u32 s_next_generation;			/* for NFS support */
1166 
1167 	/* # of pages, see count_type */
1168 	atomic_t nr_pages[NR_COUNT_TYPE];
1169 	/* # of allocated blocks */
1170 	struct percpu_counter alloc_valid_block_count;
1171 
1172 	/* writeback control */
1173 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1174 
1175 	/* valid inode count */
1176 	struct percpu_counter total_valid_inode_count;
1177 
1178 	struct f2fs_mount_info mount_opt;	/* mount options */
1179 
1180 	/* for cleaning operations */
1181 	struct mutex gc_mutex;			/* mutex for GC */
1182 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1183 	unsigned int cur_victim_sec;		/* current victim section num */
1184 
1185 	/* threshold for converting bg victims for fg */
1186 	u64 fggc_threshold;
1187 
1188 	/* threshold for gc trials on pinned files */
1189 	u64 gc_pin_file_threshold;
1190 
1191 	/* maximum # of trials to find a victim segment for SSR and GC */
1192 	unsigned int max_victim_search;
1193 
1194 	/*
1195 	 * for stat information.
1196 	 * one is for the LFS mode, and the other is for the SSR mode.
1197 	 */
1198 #ifdef CONFIG_F2FS_STAT_FS
1199 	struct f2fs_stat_info *stat_info;	/* FS status information */
1200 	unsigned int segment_count[2];		/* # of allocated segments */
1201 	unsigned int block_count[2];		/* # of allocated blocks */
1202 	atomic_t inplace_count;		/* # of inplace update */
1203 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1204 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1205 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1206 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1207 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1208 	atomic_t inline_inode;			/* # of inline_data inodes */
1209 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1210 	atomic_t aw_cnt;			/* # of atomic writes */
1211 	atomic_t vw_cnt;			/* # of volatile writes */
1212 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1213 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1214 	int bg_gc;				/* background gc calls */
1215 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1216 #endif
1217 	spinlock_t stat_lock;			/* lock for stat operations */
1218 
1219 	/* For app/fs IO statistics */
1220 	spinlock_t iostat_lock;
1221 	unsigned long long write_iostat[NR_IO_TYPE];
1222 	bool iostat_enable;
1223 
1224 	/* For sysfs suppport */
1225 	struct kobject s_kobj;
1226 	struct completion s_kobj_unregister;
1227 
1228 	/* For shrinker support */
1229 	struct list_head s_list;
1230 	int s_ndevs;				/* number of devices */
1231 	struct f2fs_dev_info *devs;		/* for device list */
1232 	unsigned int dirty_device;		/* for checkpoint data flush */
1233 	spinlock_t dev_lock;			/* protect dirty_device */
1234 	struct mutex umount_mutex;
1235 	unsigned int shrinker_run_no;
1236 
1237 	/* For write statistics */
1238 	u64 sectors_written_start;
1239 	u64 kbytes_written;
1240 
1241 	/* Reference to checksum algorithm driver via cryptoapi */
1242 	struct crypto_shash *s_chksum_driver;
1243 
1244 	/* Precomputed FS UUID checksum for seeding other checksums */
1245 	__u32 s_chksum_seed;
1246 };
1247 
1248 #ifdef CONFIG_F2FS_FAULT_INJECTION
1249 #define f2fs_show_injection_info(type)				\
1250 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1251 		KERN_INFO, fault_name[type],			\
1252 		__func__, __builtin_return_address(0))
1253 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1254 {
1255 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1256 
1257 	if (!ffi->inject_rate)
1258 		return false;
1259 
1260 	if (!IS_FAULT_SET(ffi, type))
1261 		return false;
1262 
1263 	atomic_inc(&ffi->inject_ops);
1264 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1265 		atomic_set(&ffi->inject_ops, 0);
1266 		return true;
1267 	}
1268 	return false;
1269 }
1270 #endif
1271 
1272 /* For write statistics. Suppose sector size is 512 bytes,
1273  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1274  */
1275 #define BD_PART_WRITTEN(s)						 \
1276 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1277 		(s)->sectors_written_start) >> 1)
1278 
1279 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1280 {
1281 	sbi->last_time[type] = jiffies;
1282 }
1283 
1284 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1285 {
1286 	unsigned long interval = sbi->interval_time[type] * HZ;
1287 
1288 	return time_after(jiffies, sbi->last_time[type] + interval);
1289 }
1290 
1291 static inline bool is_idle(struct f2fs_sb_info *sbi)
1292 {
1293 	struct block_device *bdev = sbi->sb->s_bdev;
1294 	struct request_queue *q = bdev_get_queue(bdev);
1295 	struct request_list *rl = &q->root_rl;
1296 
1297 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1298 		return 0;
1299 
1300 	return f2fs_time_over(sbi, REQ_TIME);
1301 }
1302 
1303 /*
1304  * Inline functions
1305  */
1306 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1307 			      const void *address, unsigned int length)
1308 {
1309 	struct {
1310 		struct shash_desc shash;
1311 		char ctx[4];
1312 	} desc;
1313 	int err;
1314 
1315 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1316 
1317 	desc.shash.tfm = sbi->s_chksum_driver;
1318 	desc.shash.flags = 0;
1319 	*(u32 *)desc.ctx = crc;
1320 
1321 	err = crypto_shash_update(&desc.shash, address, length);
1322 	BUG_ON(err);
1323 
1324 	return *(u32 *)desc.ctx;
1325 }
1326 
1327 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1328 			   unsigned int length)
1329 {
1330 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1331 }
1332 
1333 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1334 				  void *buf, size_t buf_size)
1335 {
1336 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1337 }
1338 
1339 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1340 			      const void *address, unsigned int length)
1341 {
1342 	return __f2fs_crc32(sbi, crc, address, length);
1343 }
1344 
1345 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1346 {
1347 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1348 }
1349 
1350 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1351 {
1352 	return sb->s_fs_info;
1353 }
1354 
1355 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1356 {
1357 	return F2FS_SB(inode->i_sb);
1358 }
1359 
1360 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1361 {
1362 	return F2FS_I_SB(mapping->host);
1363 }
1364 
1365 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1366 {
1367 	return F2FS_M_SB(page->mapping);
1368 }
1369 
1370 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1371 {
1372 	return (struct f2fs_super_block *)(sbi->raw_super);
1373 }
1374 
1375 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1376 {
1377 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1378 }
1379 
1380 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1381 {
1382 	return (struct f2fs_node *)page_address(page);
1383 }
1384 
1385 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1386 {
1387 	return &((struct f2fs_node *)page_address(page))->i;
1388 }
1389 
1390 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1391 {
1392 	return (struct f2fs_nm_info *)(sbi->nm_info);
1393 }
1394 
1395 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1396 {
1397 	return (struct f2fs_sm_info *)(sbi->sm_info);
1398 }
1399 
1400 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1401 {
1402 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1403 }
1404 
1405 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1406 {
1407 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1408 }
1409 
1410 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1411 {
1412 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1413 }
1414 
1415 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1416 {
1417 	return sbi->meta_inode->i_mapping;
1418 }
1419 
1420 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1421 {
1422 	return sbi->node_inode->i_mapping;
1423 }
1424 
1425 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1426 {
1427 	return test_bit(type, &sbi->s_flag);
1428 }
1429 
1430 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1431 {
1432 	set_bit(type, &sbi->s_flag);
1433 }
1434 
1435 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1436 {
1437 	clear_bit(type, &sbi->s_flag);
1438 }
1439 
1440 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1441 {
1442 	return le64_to_cpu(cp->checkpoint_ver);
1443 }
1444 
1445 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1446 {
1447 	if (type < F2FS_MAX_QUOTAS)
1448 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1449 	return 0;
1450 }
1451 
1452 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1453 {
1454 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1455 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1456 }
1457 
1458 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1459 {
1460 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1461 
1462 	return ckpt_flags & f;
1463 }
1464 
1465 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1466 {
1467 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1468 }
1469 
1470 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1471 {
1472 	unsigned int ckpt_flags;
1473 
1474 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1475 	ckpt_flags |= f;
1476 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1477 }
1478 
1479 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1480 {
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&sbi->cp_lock, flags);
1484 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1485 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1486 }
1487 
1488 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1489 {
1490 	unsigned int ckpt_flags;
1491 
1492 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1493 	ckpt_flags &= (~f);
1494 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1495 }
1496 
1497 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1498 {
1499 	unsigned long flags;
1500 
1501 	spin_lock_irqsave(&sbi->cp_lock, flags);
1502 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1503 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1504 }
1505 
1506 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1507 {
1508 	unsigned long flags;
1509 
1510 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1511 
1512 	if (lock)
1513 		spin_lock_irqsave(&sbi->cp_lock, flags);
1514 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1515 	kfree(NM_I(sbi)->nat_bits);
1516 	NM_I(sbi)->nat_bits = NULL;
1517 	if (lock)
1518 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1519 }
1520 
1521 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1522 					struct cp_control *cpc)
1523 {
1524 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1525 
1526 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1527 }
1528 
1529 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1530 {
1531 	down_read(&sbi->cp_rwsem);
1532 }
1533 
1534 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1535 {
1536 	return down_read_trylock(&sbi->cp_rwsem);
1537 }
1538 
1539 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1540 {
1541 	up_read(&sbi->cp_rwsem);
1542 }
1543 
1544 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1545 {
1546 	down_write(&sbi->cp_rwsem);
1547 }
1548 
1549 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1550 {
1551 	up_write(&sbi->cp_rwsem);
1552 }
1553 
1554 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1555 {
1556 	int reason = CP_SYNC;
1557 
1558 	if (test_opt(sbi, FASTBOOT))
1559 		reason = CP_FASTBOOT;
1560 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1561 		reason = CP_UMOUNT;
1562 	return reason;
1563 }
1564 
1565 static inline bool __remain_node_summaries(int reason)
1566 {
1567 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1568 }
1569 
1570 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1571 {
1572 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1573 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1574 }
1575 
1576 /*
1577  * Check whether the given nid is within node id range.
1578  */
1579 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1580 {
1581 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1582 		return -EINVAL;
1583 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1584 		return -EINVAL;
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Check whether the inode has blocks or not
1590  */
1591 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1592 {
1593 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1594 
1595 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1596 }
1597 
1598 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1599 {
1600 	return ofs == XATTR_NODE_OFFSET;
1601 }
1602 
1603 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1604 					struct inode *inode)
1605 {
1606 	if (!inode)
1607 		return true;
1608 	if (!test_opt(sbi, RESERVE_ROOT))
1609 		return false;
1610 	if (IS_NOQUOTA(inode))
1611 		return true;
1612 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1613 		return true;
1614 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1615 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1616 		return true;
1617 	if (capable(CAP_SYS_RESOURCE))
1618 		return true;
1619 	return false;
1620 }
1621 
1622 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1623 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1624 				 struct inode *inode, blkcnt_t *count)
1625 {
1626 	blkcnt_t diff = 0, release = 0;
1627 	block_t avail_user_block_count;
1628 	int ret;
1629 
1630 	ret = dquot_reserve_block(inode, *count);
1631 	if (ret)
1632 		return ret;
1633 
1634 #ifdef CONFIG_F2FS_FAULT_INJECTION
1635 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1636 		f2fs_show_injection_info(FAULT_BLOCK);
1637 		release = *count;
1638 		goto enospc;
1639 	}
1640 #endif
1641 	/*
1642 	 * let's increase this in prior to actual block count change in order
1643 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1644 	 */
1645 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1646 
1647 	spin_lock(&sbi->stat_lock);
1648 	sbi->total_valid_block_count += (block_t)(*count);
1649 	avail_user_block_count = sbi->user_block_count -
1650 					sbi->current_reserved_blocks;
1651 
1652 	if (!__allow_reserved_blocks(sbi, inode))
1653 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1654 
1655 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1656 		diff = sbi->total_valid_block_count - avail_user_block_count;
1657 		if (diff > *count)
1658 			diff = *count;
1659 		*count -= diff;
1660 		release = diff;
1661 		sbi->total_valid_block_count -= diff;
1662 		if (!*count) {
1663 			spin_unlock(&sbi->stat_lock);
1664 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1665 			goto enospc;
1666 		}
1667 	}
1668 	spin_unlock(&sbi->stat_lock);
1669 
1670 	if (unlikely(release))
1671 		dquot_release_reservation_block(inode, release);
1672 	f2fs_i_blocks_write(inode, *count, true, true);
1673 	return 0;
1674 
1675 enospc:
1676 	dquot_release_reservation_block(inode, release);
1677 	return -ENOSPC;
1678 }
1679 
1680 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1681 						struct inode *inode,
1682 						block_t count)
1683 {
1684 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1685 
1686 	spin_lock(&sbi->stat_lock);
1687 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1688 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1689 	sbi->total_valid_block_count -= (block_t)count;
1690 	if (sbi->reserved_blocks &&
1691 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1692 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1693 					sbi->current_reserved_blocks + count);
1694 	spin_unlock(&sbi->stat_lock);
1695 	f2fs_i_blocks_write(inode, count, false, true);
1696 }
1697 
1698 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1699 {
1700 	atomic_inc(&sbi->nr_pages[count_type]);
1701 
1702 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1703 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1704 		return;
1705 
1706 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1707 }
1708 
1709 static inline void inode_inc_dirty_pages(struct inode *inode)
1710 {
1711 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1712 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1713 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1714 	if (IS_NOQUOTA(inode))
1715 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1716 }
1717 
1718 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1719 {
1720 	atomic_dec(&sbi->nr_pages[count_type]);
1721 }
1722 
1723 static inline void inode_dec_dirty_pages(struct inode *inode)
1724 {
1725 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1726 			!S_ISLNK(inode->i_mode))
1727 		return;
1728 
1729 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1730 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1731 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1732 	if (IS_NOQUOTA(inode))
1733 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1734 }
1735 
1736 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1737 {
1738 	return atomic_read(&sbi->nr_pages[count_type]);
1739 }
1740 
1741 static inline int get_dirty_pages(struct inode *inode)
1742 {
1743 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1744 }
1745 
1746 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1747 {
1748 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1749 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1750 						sbi->log_blocks_per_seg;
1751 
1752 	return segs / sbi->segs_per_sec;
1753 }
1754 
1755 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1756 {
1757 	return sbi->total_valid_block_count;
1758 }
1759 
1760 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1761 {
1762 	return sbi->discard_blks;
1763 }
1764 
1765 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1766 {
1767 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1768 
1769 	/* return NAT or SIT bitmap */
1770 	if (flag == NAT_BITMAP)
1771 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1772 	else if (flag == SIT_BITMAP)
1773 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1774 
1775 	return 0;
1776 }
1777 
1778 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1779 {
1780 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1781 }
1782 
1783 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1784 {
1785 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1786 	int offset;
1787 
1788 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1789 		offset = (flag == SIT_BITMAP) ?
1790 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1791 		return &ckpt->sit_nat_version_bitmap + offset;
1792 	}
1793 
1794 	if (__cp_payload(sbi) > 0) {
1795 		if (flag == NAT_BITMAP)
1796 			return &ckpt->sit_nat_version_bitmap;
1797 		else
1798 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1799 	} else {
1800 		offset = (flag == NAT_BITMAP) ?
1801 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1802 		return &ckpt->sit_nat_version_bitmap + offset;
1803 	}
1804 }
1805 
1806 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1807 {
1808 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1809 
1810 	if (sbi->cur_cp_pack == 2)
1811 		start_addr += sbi->blocks_per_seg;
1812 	return start_addr;
1813 }
1814 
1815 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1816 {
1817 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1818 
1819 	if (sbi->cur_cp_pack == 1)
1820 		start_addr += sbi->blocks_per_seg;
1821 	return start_addr;
1822 }
1823 
1824 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1825 {
1826 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1827 }
1828 
1829 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1830 {
1831 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1832 }
1833 
1834 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1835 					struct inode *inode, bool is_inode)
1836 {
1837 	block_t	valid_block_count;
1838 	unsigned int valid_node_count;
1839 	bool quota = inode && !is_inode;
1840 
1841 	if (quota) {
1842 		int ret = dquot_reserve_block(inode, 1);
1843 		if (ret)
1844 			return ret;
1845 	}
1846 
1847 #ifdef CONFIG_F2FS_FAULT_INJECTION
1848 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1849 		f2fs_show_injection_info(FAULT_BLOCK);
1850 		goto enospc;
1851 	}
1852 #endif
1853 
1854 	spin_lock(&sbi->stat_lock);
1855 
1856 	valid_block_count = sbi->total_valid_block_count +
1857 					sbi->current_reserved_blocks + 1;
1858 
1859 	if (!__allow_reserved_blocks(sbi, inode))
1860 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1861 
1862 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1863 		spin_unlock(&sbi->stat_lock);
1864 		goto enospc;
1865 	}
1866 
1867 	valid_node_count = sbi->total_valid_node_count + 1;
1868 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1869 		spin_unlock(&sbi->stat_lock);
1870 		goto enospc;
1871 	}
1872 
1873 	sbi->total_valid_node_count++;
1874 	sbi->total_valid_block_count++;
1875 	spin_unlock(&sbi->stat_lock);
1876 
1877 	if (inode) {
1878 		if (is_inode)
1879 			f2fs_mark_inode_dirty_sync(inode, true);
1880 		else
1881 			f2fs_i_blocks_write(inode, 1, true, true);
1882 	}
1883 
1884 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1885 	return 0;
1886 
1887 enospc:
1888 	if (quota)
1889 		dquot_release_reservation_block(inode, 1);
1890 	return -ENOSPC;
1891 }
1892 
1893 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1894 					struct inode *inode, bool is_inode)
1895 {
1896 	spin_lock(&sbi->stat_lock);
1897 
1898 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1899 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1900 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1901 
1902 	sbi->total_valid_node_count--;
1903 	sbi->total_valid_block_count--;
1904 	if (sbi->reserved_blocks &&
1905 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1906 		sbi->current_reserved_blocks++;
1907 
1908 	spin_unlock(&sbi->stat_lock);
1909 
1910 	if (!is_inode)
1911 		f2fs_i_blocks_write(inode, 1, false, true);
1912 }
1913 
1914 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1915 {
1916 	return sbi->total_valid_node_count;
1917 }
1918 
1919 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1920 {
1921 	percpu_counter_inc(&sbi->total_valid_inode_count);
1922 }
1923 
1924 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1925 {
1926 	percpu_counter_dec(&sbi->total_valid_inode_count);
1927 }
1928 
1929 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1930 {
1931 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1932 }
1933 
1934 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1935 						pgoff_t index, bool for_write)
1936 {
1937 #ifdef CONFIG_F2FS_FAULT_INJECTION
1938 	struct page *page = find_lock_page(mapping, index);
1939 
1940 	if (page)
1941 		return page;
1942 
1943 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1944 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1945 		return NULL;
1946 	}
1947 #endif
1948 	if (!for_write)
1949 		return grab_cache_page(mapping, index);
1950 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1951 }
1952 
1953 static inline struct page *f2fs_pagecache_get_page(
1954 				struct address_space *mapping, pgoff_t index,
1955 				int fgp_flags, gfp_t gfp_mask)
1956 {
1957 #ifdef CONFIG_F2FS_FAULT_INJECTION
1958 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1959 		f2fs_show_injection_info(FAULT_PAGE_GET);
1960 		return NULL;
1961 	}
1962 #endif
1963 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1964 }
1965 
1966 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1967 {
1968 	char *src_kaddr = kmap(src);
1969 	char *dst_kaddr = kmap(dst);
1970 
1971 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1972 	kunmap(dst);
1973 	kunmap(src);
1974 }
1975 
1976 static inline void f2fs_put_page(struct page *page, int unlock)
1977 {
1978 	if (!page)
1979 		return;
1980 
1981 	if (unlock) {
1982 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1983 		unlock_page(page);
1984 	}
1985 	put_page(page);
1986 }
1987 
1988 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1989 {
1990 	if (dn->node_page)
1991 		f2fs_put_page(dn->node_page, 1);
1992 	if (dn->inode_page && dn->node_page != dn->inode_page)
1993 		f2fs_put_page(dn->inode_page, 0);
1994 	dn->node_page = NULL;
1995 	dn->inode_page = NULL;
1996 }
1997 
1998 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1999 					size_t size)
2000 {
2001 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2002 }
2003 
2004 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2005 						gfp_t flags)
2006 {
2007 	void *entry;
2008 
2009 	entry = kmem_cache_alloc(cachep, flags);
2010 	if (!entry)
2011 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2012 	return entry;
2013 }
2014 
2015 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2016 						int npages, bool no_fail)
2017 {
2018 	struct bio *bio;
2019 
2020 	if (no_fail) {
2021 		/* No failure on bio allocation */
2022 		bio = bio_alloc(GFP_NOIO, npages);
2023 		if (!bio)
2024 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2025 		return bio;
2026 	}
2027 #ifdef CONFIG_F2FS_FAULT_INJECTION
2028 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2029 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2030 		return NULL;
2031 	}
2032 #endif
2033 	return bio_alloc(GFP_KERNEL, npages);
2034 }
2035 
2036 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2037 				unsigned long index, void *item)
2038 {
2039 	while (radix_tree_insert(root, index, item))
2040 		cond_resched();
2041 }
2042 
2043 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2044 
2045 static inline bool IS_INODE(struct page *page)
2046 {
2047 	struct f2fs_node *p = F2FS_NODE(page);
2048 
2049 	return RAW_IS_INODE(p);
2050 }
2051 
2052 static inline int offset_in_addr(struct f2fs_inode *i)
2053 {
2054 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2055 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2056 }
2057 
2058 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2059 {
2060 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2061 }
2062 
2063 static inline int f2fs_has_extra_attr(struct inode *inode);
2064 static inline block_t datablock_addr(struct inode *inode,
2065 			struct page *node_page, unsigned int offset)
2066 {
2067 	struct f2fs_node *raw_node;
2068 	__le32 *addr_array;
2069 	int base = 0;
2070 	bool is_inode = IS_INODE(node_page);
2071 
2072 	raw_node = F2FS_NODE(node_page);
2073 
2074 	/* from GC path only */
2075 	if (is_inode) {
2076 		if (!inode)
2077 			base = offset_in_addr(&raw_node->i);
2078 		else if (f2fs_has_extra_attr(inode))
2079 			base = get_extra_isize(inode);
2080 	}
2081 
2082 	addr_array = blkaddr_in_node(raw_node);
2083 	return le32_to_cpu(addr_array[base + offset]);
2084 }
2085 
2086 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2087 {
2088 	int mask;
2089 
2090 	addr += (nr >> 3);
2091 	mask = 1 << (7 - (nr & 0x07));
2092 	return mask & *addr;
2093 }
2094 
2095 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2096 {
2097 	int mask;
2098 
2099 	addr += (nr >> 3);
2100 	mask = 1 << (7 - (nr & 0x07));
2101 	*addr |= mask;
2102 }
2103 
2104 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2105 {
2106 	int mask;
2107 
2108 	addr += (nr >> 3);
2109 	mask = 1 << (7 - (nr & 0x07));
2110 	*addr &= ~mask;
2111 }
2112 
2113 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2114 {
2115 	int mask;
2116 	int ret;
2117 
2118 	addr += (nr >> 3);
2119 	mask = 1 << (7 - (nr & 0x07));
2120 	ret = mask & *addr;
2121 	*addr |= mask;
2122 	return ret;
2123 }
2124 
2125 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2126 {
2127 	int mask;
2128 	int ret;
2129 
2130 	addr += (nr >> 3);
2131 	mask = 1 << (7 - (nr & 0x07));
2132 	ret = mask & *addr;
2133 	*addr &= ~mask;
2134 	return ret;
2135 }
2136 
2137 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2138 {
2139 	int mask;
2140 
2141 	addr += (nr >> 3);
2142 	mask = 1 << (7 - (nr & 0x07));
2143 	*addr ^= mask;
2144 }
2145 
2146 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2147 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2148 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2149 
2150 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2151 {
2152 	if (S_ISDIR(mode))
2153 		return flags;
2154 	else if (S_ISREG(mode))
2155 		return flags & F2FS_REG_FLMASK;
2156 	else
2157 		return flags & F2FS_OTHER_FLMASK;
2158 }
2159 
2160 /* used for f2fs_inode_info->flags */
2161 enum {
2162 	FI_NEW_INODE,		/* indicate newly allocated inode */
2163 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2164 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2165 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2166 	FI_INC_LINK,		/* need to increment i_nlink */
2167 	FI_ACL_MODE,		/* indicate acl mode */
2168 	FI_NO_ALLOC,		/* should not allocate any blocks */
2169 	FI_FREE_NID,		/* free allocated nide */
2170 	FI_NO_EXTENT,		/* not to use the extent cache */
2171 	FI_INLINE_XATTR,	/* used for inline xattr */
2172 	FI_INLINE_DATA,		/* used for inline data*/
2173 	FI_INLINE_DENTRY,	/* used for inline dentry */
2174 	FI_APPEND_WRITE,	/* inode has appended data */
2175 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2176 	FI_NEED_IPU,		/* used for ipu per file */
2177 	FI_ATOMIC_FILE,		/* indicate atomic file */
2178 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2179 	FI_VOLATILE_FILE,	/* indicate volatile file */
2180 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2181 	FI_DROP_CACHE,		/* drop dirty page cache */
2182 	FI_DATA_EXIST,		/* indicate data exists */
2183 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2184 	FI_DO_DEFRAG,		/* indicate defragment is running */
2185 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2186 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2187 	FI_HOT_DATA,		/* indicate file is hot */
2188 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2189 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2190 	FI_PIN_FILE,		/* indicate file should not be gced */
2191 };
2192 
2193 static inline void __mark_inode_dirty_flag(struct inode *inode,
2194 						int flag, bool set)
2195 {
2196 	switch (flag) {
2197 	case FI_INLINE_XATTR:
2198 	case FI_INLINE_DATA:
2199 	case FI_INLINE_DENTRY:
2200 	case FI_NEW_INODE:
2201 		if (set)
2202 			return;
2203 	case FI_DATA_EXIST:
2204 	case FI_INLINE_DOTS:
2205 	case FI_PIN_FILE:
2206 		f2fs_mark_inode_dirty_sync(inode, true);
2207 	}
2208 }
2209 
2210 static inline void set_inode_flag(struct inode *inode, int flag)
2211 {
2212 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2213 		set_bit(flag, &F2FS_I(inode)->flags);
2214 	__mark_inode_dirty_flag(inode, flag, true);
2215 }
2216 
2217 static inline int is_inode_flag_set(struct inode *inode, int flag)
2218 {
2219 	return test_bit(flag, &F2FS_I(inode)->flags);
2220 }
2221 
2222 static inline void clear_inode_flag(struct inode *inode, int flag)
2223 {
2224 	if (test_bit(flag, &F2FS_I(inode)->flags))
2225 		clear_bit(flag, &F2FS_I(inode)->flags);
2226 	__mark_inode_dirty_flag(inode, flag, false);
2227 }
2228 
2229 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2230 {
2231 	F2FS_I(inode)->i_acl_mode = mode;
2232 	set_inode_flag(inode, FI_ACL_MODE);
2233 	f2fs_mark_inode_dirty_sync(inode, false);
2234 }
2235 
2236 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2237 {
2238 	if (inc)
2239 		inc_nlink(inode);
2240 	else
2241 		drop_nlink(inode);
2242 	f2fs_mark_inode_dirty_sync(inode, true);
2243 }
2244 
2245 static inline void f2fs_i_blocks_write(struct inode *inode,
2246 					block_t diff, bool add, bool claim)
2247 {
2248 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2249 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2250 
2251 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2252 	if (add) {
2253 		if (claim)
2254 			dquot_claim_block(inode, diff);
2255 		else
2256 			dquot_alloc_block_nofail(inode, diff);
2257 	} else {
2258 		dquot_free_block(inode, diff);
2259 	}
2260 
2261 	f2fs_mark_inode_dirty_sync(inode, true);
2262 	if (clean || recover)
2263 		set_inode_flag(inode, FI_AUTO_RECOVER);
2264 }
2265 
2266 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2267 {
2268 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2269 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2270 
2271 	if (i_size_read(inode) == i_size)
2272 		return;
2273 
2274 	i_size_write(inode, i_size);
2275 	f2fs_mark_inode_dirty_sync(inode, true);
2276 	if (clean || recover)
2277 		set_inode_flag(inode, FI_AUTO_RECOVER);
2278 }
2279 
2280 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2281 {
2282 	F2FS_I(inode)->i_current_depth = depth;
2283 	f2fs_mark_inode_dirty_sync(inode, true);
2284 }
2285 
2286 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2287 					unsigned int count)
2288 {
2289 	F2FS_I(inode)->i_gc_failures = count;
2290 	f2fs_mark_inode_dirty_sync(inode, true);
2291 }
2292 
2293 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2294 {
2295 	F2FS_I(inode)->i_xattr_nid = xnid;
2296 	f2fs_mark_inode_dirty_sync(inode, true);
2297 }
2298 
2299 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2300 {
2301 	F2FS_I(inode)->i_pino = pino;
2302 	f2fs_mark_inode_dirty_sync(inode, true);
2303 }
2304 
2305 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2306 {
2307 	struct f2fs_inode_info *fi = F2FS_I(inode);
2308 
2309 	if (ri->i_inline & F2FS_INLINE_XATTR)
2310 		set_bit(FI_INLINE_XATTR, &fi->flags);
2311 	if (ri->i_inline & F2FS_INLINE_DATA)
2312 		set_bit(FI_INLINE_DATA, &fi->flags);
2313 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2314 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2315 	if (ri->i_inline & F2FS_DATA_EXIST)
2316 		set_bit(FI_DATA_EXIST, &fi->flags);
2317 	if (ri->i_inline & F2FS_INLINE_DOTS)
2318 		set_bit(FI_INLINE_DOTS, &fi->flags);
2319 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2320 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2321 	if (ri->i_inline & F2FS_PIN_FILE)
2322 		set_bit(FI_PIN_FILE, &fi->flags);
2323 }
2324 
2325 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2326 {
2327 	ri->i_inline = 0;
2328 
2329 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2330 		ri->i_inline |= F2FS_INLINE_XATTR;
2331 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2332 		ri->i_inline |= F2FS_INLINE_DATA;
2333 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2334 		ri->i_inline |= F2FS_INLINE_DENTRY;
2335 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2336 		ri->i_inline |= F2FS_DATA_EXIST;
2337 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2338 		ri->i_inline |= F2FS_INLINE_DOTS;
2339 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2340 		ri->i_inline |= F2FS_EXTRA_ATTR;
2341 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2342 		ri->i_inline |= F2FS_PIN_FILE;
2343 }
2344 
2345 static inline int f2fs_has_extra_attr(struct inode *inode)
2346 {
2347 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2348 }
2349 
2350 static inline int f2fs_has_inline_xattr(struct inode *inode)
2351 {
2352 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2353 }
2354 
2355 static inline unsigned int addrs_per_inode(struct inode *inode)
2356 {
2357 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2358 }
2359 
2360 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2361 {
2362 	struct f2fs_inode *ri = F2FS_INODE(page);
2363 
2364 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2365 					get_inline_xattr_addrs(inode)]);
2366 }
2367 
2368 static inline int inline_xattr_size(struct inode *inode)
2369 {
2370 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2371 }
2372 
2373 static inline int f2fs_has_inline_data(struct inode *inode)
2374 {
2375 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2376 }
2377 
2378 static inline int f2fs_exist_data(struct inode *inode)
2379 {
2380 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2381 }
2382 
2383 static inline int f2fs_has_inline_dots(struct inode *inode)
2384 {
2385 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2386 }
2387 
2388 static inline bool f2fs_is_pinned_file(struct inode *inode)
2389 {
2390 	return is_inode_flag_set(inode, FI_PIN_FILE);
2391 }
2392 
2393 static inline bool f2fs_is_atomic_file(struct inode *inode)
2394 {
2395 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2396 }
2397 
2398 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2399 {
2400 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2401 }
2402 
2403 static inline bool f2fs_is_volatile_file(struct inode *inode)
2404 {
2405 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2406 }
2407 
2408 static inline bool f2fs_is_first_block_written(struct inode *inode)
2409 {
2410 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2411 }
2412 
2413 static inline bool f2fs_is_drop_cache(struct inode *inode)
2414 {
2415 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2416 }
2417 
2418 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2419 {
2420 	struct f2fs_inode *ri = F2FS_INODE(page);
2421 	int extra_size = get_extra_isize(inode);
2422 
2423 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2424 }
2425 
2426 static inline int f2fs_has_inline_dentry(struct inode *inode)
2427 {
2428 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2429 }
2430 
2431 static inline int is_file(struct inode *inode, int type)
2432 {
2433 	return F2FS_I(inode)->i_advise & type;
2434 }
2435 
2436 static inline void set_file(struct inode *inode, int type)
2437 {
2438 	F2FS_I(inode)->i_advise |= type;
2439 	f2fs_mark_inode_dirty_sync(inode, true);
2440 }
2441 
2442 static inline void clear_file(struct inode *inode, int type)
2443 {
2444 	F2FS_I(inode)->i_advise &= ~type;
2445 	f2fs_mark_inode_dirty_sync(inode, true);
2446 }
2447 
2448 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2449 {
2450 	bool ret;
2451 
2452 	if (dsync) {
2453 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2454 
2455 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2456 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2457 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2458 		return ret;
2459 	}
2460 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2461 			file_keep_isize(inode) ||
2462 			i_size_read(inode) & PAGE_MASK)
2463 		return false;
2464 
2465 	down_read(&F2FS_I(inode)->i_sem);
2466 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2467 	up_read(&F2FS_I(inode)->i_sem);
2468 
2469 	return ret;
2470 }
2471 
2472 static inline bool f2fs_readonly(struct super_block *sb)
2473 {
2474 	return sb_rdonly(sb);
2475 }
2476 
2477 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2478 {
2479 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2480 }
2481 
2482 static inline bool is_dot_dotdot(const struct qstr *str)
2483 {
2484 	if (str->len == 1 && str->name[0] == '.')
2485 		return true;
2486 
2487 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2488 		return true;
2489 
2490 	return false;
2491 }
2492 
2493 static inline bool f2fs_may_extent_tree(struct inode *inode)
2494 {
2495 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2496 			is_inode_flag_set(inode, FI_NO_EXTENT))
2497 		return false;
2498 
2499 	return S_ISREG(inode->i_mode);
2500 }
2501 
2502 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2503 					size_t size, gfp_t flags)
2504 {
2505 #ifdef CONFIG_F2FS_FAULT_INJECTION
2506 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2507 		f2fs_show_injection_info(FAULT_KMALLOC);
2508 		return NULL;
2509 	}
2510 #endif
2511 	return kmalloc(size, flags);
2512 }
2513 
2514 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2515 					size_t size, gfp_t flags)
2516 {
2517 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2518 }
2519 
2520 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2521 					size_t size, gfp_t flags)
2522 {
2523 #ifdef CONFIG_F2FS_FAULT_INJECTION
2524 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2525 		f2fs_show_injection_info(FAULT_KVMALLOC);
2526 		return NULL;
2527 	}
2528 #endif
2529 	return kvmalloc(size, flags);
2530 }
2531 
2532 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2533 					size_t size, gfp_t flags)
2534 {
2535 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2536 }
2537 
2538 static inline int get_extra_isize(struct inode *inode)
2539 {
2540 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2541 }
2542 
2543 static inline int get_inline_xattr_addrs(struct inode *inode)
2544 {
2545 	return F2FS_I(inode)->i_inline_xattr_size;
2546 }
2547 
2548 #define get_inode_mode(i) \
2549 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2550 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2551 
2552 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2553 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2554 	offsetof(struct f2fs_inode, i_extra_isize))	\
2555 
2556 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2557 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2558 		((offsetof(typeof(*f2fs_inode), field) +	\
2559 		sizeof((f2fs_inode)->field))			\
2560 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2561 
2562 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2563 {
2564 	int i;
2565 
2566 	spin_lock(&sbi->iostat_lock);
2567 	for (i = 0; i < NR_IO_TYPE; i++)
2568 		sbi->write_iostat[i] = 0;
2569 	spin_unlock(&sbi->iostat_lock);
2570 }
2571 
2572 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2573 			enum iostat_type type, unsigned long long io_bytes)
2574 {
2575 	if (!sbi->iostat_enable)
2576 		return;
2577 	spin_lock(&sbi->iostat_lock);
2578 	sbi->write_iostat[type] += io_bytes;
2579 
2580 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2581 		sbi->write_iostat[APP_BUFFERED_IO] =
2582 			sbi->write_iostat[APP_WRITE_IO] -
2583 			sbi->write_iostat[APP_DIRECT_IO];
2584 	spin_unlock(&sbi->iostat_lock);
2585 }
2586 
2587 /*
2588  * file.c
2589  */
2590 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2591 void truncate_data_blocks(struct dnode_of_data *dn);
2592 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2593 int f2fs_truncate(struct inode *inode);
2594 int f2fs_getattr(const struct path *path, struct kstat *stat,
2595 			u32 request_mask, unsigned int flags);
2596 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2597 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2598 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2599 int f2fs_precache_extents(struct inode *inode);
2600 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2601 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2602 int f2fs_pin_file_control(struct inode *inode, bool inc);
2603 
2604 /*
2605  * inode.c
2606  */
2607 void f2fs_set_inode_flags(struct inode *inode);
2608 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2609 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2610 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2611 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2612 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2613 void update_inode(struct inode *inode, struct page *node_page);
2614 void update_inode_page(struct inode *inode);
2615 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2616 void f2fs_evict_inode(struct inode *inode);
2617 void handle_failed_inode(struct inode *inode);
2618 
2619 /*
2620  * namei.c
2621  */
2622 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2623 							bool hot, bool set);
2624 struct dentry *f2fs_get_parent(struct dentry *child);
2625 
2626 /*
2627  * dir.c
2628  */
2629 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2630 unsigned char get_de_type(struct f2fs_dir_entry *de);
2631 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2632 			f2fs_hash_t namehash, int *max_slots,
2633 			struct f2fs_dentry_ptr *d);
2634 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2635 			unsigned int start_pos, struct fscrypt_str *fstr);
2636 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2637 			struct f2fs_dentry_ptr *d);
2638 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2639 			const struct qstr *new_name,
2640 			const struct qstr *orig_name, struct page *dpage);
2641 void update_parent_metadata(struct inode *dir, struct inode *inode,
2642 			unsigned int current_depth);
2643 int room_for_filename(const void *bitmap, int slots, int max_slots);
2644 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2645 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2646 			struct fscrypt_name *fname, struct page **res_page);
2647 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2648 			const struct qstr *child, struct page **res_page);
2649 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2650 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2651 			struct page **page);
2652 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2653 			struct page *page, struct inode *inode);
2654 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2655 			const struct qstr *name, f2fs_hash_t name_hash,
2656 			unsigned int bit_pos);
2657 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2658 			const struct qstr *orig_name,
2659 			struct inode *inode, nid_t ino, umode_t mode);
2660 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2661 			struct inode *inode, nid_t ino, umode_t mode);
2662 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2663 			struct inode *inode, nid_t ino, umode_t mode);
2664 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2665 			struct inode *dir, struct inode *inode);
2666 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2667 bool f2fs_empty_dir(struct inode *dir);
2668 
2669 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2670 {
2671 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2672 				inode, inode->i_ino, inode->i_mode);
2673 }
2674 
2675 /*
2676  * super.c
2677  */
2678 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2679 void f2fs_inode_synced(struct inode *inode);
2680 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2681 void f2fs_quota_off_umount(struct super_block *sb);
2682 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2683 int f2fs_sync_fs(struct super_block *sb, int sync);
2684 extern __printf(3, 4)
2685 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2686 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2687 
2688 /*
2689  * hash.c
2690  */
2691 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2692 				struct fscrypt_name *fname);
2693 
2694 /*
2695  * node.c
2696  */
2697 struct dnode_of_data;
2698 struct node_info;
2699 
2700 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2701 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2702 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2703 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2704 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2705 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2706 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2707 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2708 int truncate_xattr_node(struct inode *inode);
2709 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2710 int remove_inode_page(struct inode *inode);
2711 struct page *new_inode_page(struct inode *inode);
2712 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2713 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2714 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2715 struct page *get_node_page_ra(struct page *parent, int start);
2716 void move_node_page(struct page *node_page, int gc_type);
2717 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2718 			struct writeback_control *wbc, bool atomic);
2719 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2720 			bool do_balance, enum iostat_type io_type);
2721 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2722 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2723 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2724 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2725 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2726 void recover_inline_xattr(struct inode *inode, struct page *page);
2727 int recover_xattr_data(struct inode *inode, struct page *page);
2728 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2729 void restore_node_summary(struct f2fs_sb_info *sbi,
2730 			unsigned int segno, struct f2fs_summary_block *sum);
2731 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2732 int build_node_manager(struct f2fs_sb_info *sbi);
2733 void destroy_node_manager(struct f2fs_sb_info *sbi);
2734 int __init create_node_manager_caches(void);
2735 void destroy_node_manager_caches(void);
2736 
2737 /*
2738  * segment.c
2739  */
2740 bool need_SSR(struct f2fs_sb_info *sbi);
2741 void register_inmem_page(struct inode *inode, struct page *page);
2742 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2743 void drop_inmem_pages(struct inode *inode);
2744 void drop_inmem_page(struct inode *inode, struct page *page);
2745 int commit_inmem_pages(struct inode *inode);
2746 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2747 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2748 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2749 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2750 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2751 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2752 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2753 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2754 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2755 						unsigned int granularity);
2756 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2757 void stop_discard_thread(struct f2fs_sb_info *sbi);
2758 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2759 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2760 void release_discard_addrs(struct f2fs_sb_info *sbi);
2761 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2762 void allocate_new_segments(struct f2fs_sb_info *sbi);
2763 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2764 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2765 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2766 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2767 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2768 						enum iostat_type io_type);
2769 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2770 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2771 int rewrite_data_page(struct f2fs_io_info *fio);
2772 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2773 			block_t old_blkaddr, block_t new_blkaddr,
2774 			bool recover_curseg, bool recover_newaddr);
2775 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2776 			block_t old_addr, block_t new_addr,
2777 			unsigned char version, bool recover_curseg,
2778 			bool recover_newaddr);
2779 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2780 			block_t old_blkaddr, block_t *new_blkaddr,
2781 			struct f2fs_summary *sum, int type,
2782 			struct f2fs_io_info *fio, bool add_list);
2783 void f2fs_wait_on_page_writeback(struct page *page,
2784 			enum page_type type, bool ordered);
2785 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2786 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2787 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2788 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2789 			unsigned int val, int alloc);
2790 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2791 int build_segment_manager(struct f2fs_sb_info *sbi);
2792 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2793 int __init create_segment_manager_caches(void);
2794 void destroy_segment_manager_caches(void);
2795 int rw_hint_to_seg_type(enum rw_hint hint);
2796 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2797 				enum temp_type temp);
2798 
2799 /*
2800  * checkpoint.c
2801  */
2802 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2803 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2804 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2805 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2806 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2807 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2808 			int type, bool sync);
2809 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2810 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2811 			long nr_to_write, enum iostat_type io_type);
2812 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2813 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2814 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2815 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2816 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2817 					unsigned int devidx, int type);
2818 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2819 					unsigned int devidx, int type);
2820 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2821 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2822 void release_orphan_inode(struct f2fs_sb_info *sbi);
2823 void add_orphan_inode(struct inode *inode);
2824 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2825 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2826 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2827 void update_dirty_page(struct inode *inode, struct page *page);
2828 void remove_dirty_inode(struct inode *inode);
2829 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2830 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2831 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2832 int __init create_checkpoint_caches(void);
2833 void destroy_checkpoint_caches(void);
2834 
2835 /*
2836  * data.c
2837  */
2838 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2839 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2840 				struct inode *inode, nid_t ino, pgoff_t idx,
2841 				enum page_type type);
2842 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2843 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2844 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2845 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2846 			block_t blk_addr, struct bio *bio);
2847 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2848 void set_data_blkaddr(struct dnode_of_data *dn);
2849 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2850 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2851 int reserve_new_block(struct dnode_of_data *dn);
2852 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2853 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2854 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2855 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2856 			int op_flags, bool for_write);
2857 struct page *find_data_page(struct inode *inode, pgoff_t index);
2858 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2859 			bool for_write);
2860 struct page *get_new_data_page(struct inode *inode,
2861 			struct page *ipage, pgoff_t index, bool new_i_size);
2862 int do_write_data_page(struct f2fs_io_info *fio);
2863 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2864 			int create, int flag);
2865 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2866 			u64 start, u64 len);
2867 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2868 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2869 void f2fs_set_page_dirty_nobuffers(struct page *page);
2870 int __f2fs_write_data_pages(struct address_space *mapping,
2871 						struct writeback_control *wbc,
2872 						enum iostat_type io_type);
2873 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2874 			unsigned int length);
2875 int f2fs_release_page(struct page *page, gfp_t wait);
2876 #ifdef CONFIG_MIGRATION
2877 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2878 			struct page *page, enum migrate_mode mode);
2879 #endif
2880 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2881 
2882 /*
2883  * gc.c
2884  */
2885 int start_gc_thread(struct f2fs_sb_info *sbi);
2886 void stop_gc_thread(struct f2fs_sb_info *sbi);
2887 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2888 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2889 			unsigned int segno);
2890 void build_gc_manager(struct f2fs_sb_info *sbi);
2891 
2892 /*
2893  * recovery.c
2894  */
2895 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2896 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2897 
2898 /*
2899  * debug.c
2900  */
2901 #ifdef CONFIG_F2FS_STAT_FS
2902 struct f2fs_stat_info {
2903 	struct list_head stat_list;
2904 	struct f2fs_sb_info *sbi;
2905 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2906 	int main_area_segs, main_area_sections, main_area_zones;
2907 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2908 	unsigned long long hit_total, total_ext;
2909 	int ext_tree, zombie_tree, ext_node;
2910 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2911 	int ndirty_data, ndirty_qdata;
2912 	int inmem_pages;
2913 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2914 	int nats, dirty_nats, sits, dirty_sits;
2915 	int free_nids, avail_nids, alloc_nids;
2916 	int total_count, utilization;
2917 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2918 	int nr_flushing, nr_flushed, flush_list_empty;
2919 	int nr_discarding, nr_discarded;
2920 	int nr_discard_cmd;
2921 	unsigned int undiscard_blks;
2922 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2923 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2924 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2925 	unsigned int bimodal, avg_vblocks;
2926 	int util_free, util_valid, util_invalid;
2927 	int rsvd_segs, overp_segs;
2928 	int dirty_count, node_pages, meta_pages;
2929 	int prefree_count, call_count, cp_count, bg_cp_count;
2930 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2931 	int bg_node_segs, bg_data_segs;
2932 	int tot_blks, data_blks, node_blks;
2933 	int bg_data_blks, bg_node_blks;
2934 	int curseg[NR_CURSEG_TYPE];
2935 	int cursec[NR_CURSEG_TYPE];
2936 	int curzone[NR_CURSEG_TYPE];
2937 
2938 	unsigned int segment_count[2];
2939 	unsigned int block_count[2];
2940 	unsigned int inplace_count;
2941 	unsigned long long base_mem, cache_mem, page_mem;
2942 };
2943 
2944 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2945 {
2946 	return (struct f2fs_stat_info *)sbi->stat_info;
2947 }
2948 
2949 #define stat_inc_cp_count(si)		((si)->cp_count++)
2950 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2951 #define stat_inc_call_count(si)		((si)->call_count++)
2952 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2953 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2954 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2955 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2956 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2957 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2958 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2959 #define stat_inc_inline_xattr(inode)					\
2960 	do {								\
2961 		if (f2fs_has_inline_xattr(inode))			\
2962 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2963 	} while (0)
2964 #define stat_dec_inline_xattr(inode)					\
2965 	do {								\
2966 		if (f2fs_has_inline_xattr(inode))			\
2967 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2968 	} while (0)
2969 #define stat_inc_inline_inode(inode)					\
2970 	do {								\
2971 		if (f2fs_has_inline_data(inode))			\
2972 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2973 	} while (0)
2974 #define stat_dec_inline_inode(inode)					\
2975 	do {								\
2976 		if (f2fs_has_inline_data(inode))			\
2977 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2978 	} while (0)
2979 #define stat_inc_inline_dir(inode)					\
2980 	do {								\
2981 		if (f2fs_has_inline_dentry(inode))			\
2982 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2983 	} while (0)
2984 #define stat_dec_inline_dir(inode)					\
2985 	do {								\
2986 		if (f2fs_has_inline_dentry(inode))			\
2987 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2988 	} while (0)
2989 #define stat_inc_seg_type(sbi, curseg)					\
2990 		((sbi)->segment_count[(curseg)->alloc_type]++)
2991 #define stat_inc_block_count(sbi, curseg)				\
2992 		((sbi)->block_count[(curseg)->alloc_type]++)
2993 #define stat_inc_inplace_blocks(sbi)					\
2994 		(atomic_inc(&(sbi)->inplace_count))
2995 #define stat_inc_atomic_write(inode)					\
2996 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2997 #define stat_dec_atomic_write(inode)					\
2998 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2999 #define stat_update_max_atomic_write(inode)				\
3000 	do {								\
3001 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3002 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3003 		if (cur > max)						\
3004 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3005 	} while (0)
3006 #define stat_inc_volatile_write(inode)					\
3007 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3008 #define stat_dec_volatile_write(inode)					\
3009 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3010 #define stat_update_max_volatile_write(inode)				\
3011 	do {								\
3012 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3013 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3014 		if (cur > max)						\
3015 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3016 	} while (0)
3017 #define stat_inc_seg_count(sbi, type, gc_type)				\
3018 	do {								\
3019 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3020 		si->tot_segs++;						\
3021 		if ((type) == SUM_TYPE_DATA) {				\
3022 			si->data_segs++;				\
3023 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3024 		} else {						\
3025 			si->node_segs++;				\
3026 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3027 		}							\
3028 	} while (0)
3029 
3030 #define stat_inc_tot_blk_count(si, blks)				\
3031 	((si)->tot_blks += (blks))
3032 
3033 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3034 	do {								\
3035 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3036 		stat_inc_tot_blk_count(si, blks);			\
3037 		si->data_blks += (blks);				\
3038 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3039 	} while (0)
3040 
3041 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3042 	do {								\
3043 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3044 		stat_inc_tot_blk_count(si, blks);			\
3045 		si->node_blks += (blks);				\
3046 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3047 	} while (0)
3048 
3049 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3050 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3051 int __init f2fs_create_root_stats(void);
3052 void f2fs_destroy_root_stats(void);
3053 #else
3054 #define stat_inc_cp_count(si)				do { } while (0)
3055 #define stat_inc_bg_cp_count(si)			do { } while (0)
3056 #define stat_inc_call_count(si)				do { } while (0)
3057 #define stat_inc_bggc_count(si)				do { } while (0)
3058 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3059 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3060 #define stat_inc_total_hit(sb)				do { } while (0)
3061 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3062 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3063 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3064 #define stat_inc_inline_xattr(inode)			do { } while (0)
3065 #define stat_dec_inline_xattr(inode)			do { } while (0)
3066 #define stat_inc_inline_inode(inode)			do { } while (0)
3067 #define stat_dec_inline_inode(inode)			do { } while (0)
3068 #define stat_inc_inline_dir(inode)			do { } while (0)
3069 #define stat_dec_inline_dir(inode)			do { } while (0)
3070 #define stat_inc_atomic_write(inode)			do { } while (0)
3071 #define stat_dec_atomic_write(inode)			do { } while (0)
3072 #define stat_update_max_atomic_write(inode)		do { } while (0)
3073 #define stat_inc_volatile_write(inode)			do { } while (0)
3074 #define stat_dec_volatile_write(inode)			do { } while (0)
3075 #define stat_update_max_volatile_write(inode)		do { } while (0)
3076 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3077 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3078 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3079 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3080 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3081 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3082 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3083 
3084 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3085 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3086 static inline int __init f2fs_create_root_stats(void) { return 0; }
3087 static inline void f2fs_destroy_root_stats(void) { }
3088 #endif
3089 
3090 extern const struct file_operations f2fs_dir_operations;
3091 extern const struct file_operations f2fs_file_operations;
3092 extern const struct inode_operations f2fs_file_inode_operations;
3093 extern const struct address_space_operations f2fs_dblock_aops;
3094 extern const struct address_space_operations f2fs_node_aops;
3095 extern const struct address_space_operations f2fs_meta_aops;
3096 extern const struct inode_operations f2fs_dir_inode_operations;
3097 extern const struct inode_operations f2fs_symlink_inode_operations;
3098 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3099 extern const struct inode_operations f2fs_special_inode_operations;
3100 extern struct kmem_cache *inode_entry_slab;
3101 
3102 /*
3103  * inline.c
3104  */
3105 bool f2fs_may_inline_data(struct inode *inode);
3106 bool f2fs_may_inline_dentry(struct inode *inode);
3107 void read_inline_data(struct page *page, struct page *ipage);
3108 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3109 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3110 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3111 int f2fs_convert_inline_inode(struct inode *inode);
3112 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3113 bool recover_inline_data(struct inode *inode, struct page *npage);
3114 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3115 			struct fscrypt_name *fname, struct page **res_page);
3116 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3117 			struct page *ipage);
3118 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3119 			const struct qstr *orig_name,
3120 			struct inode *inode, nid_t ino, umode_t mode);
3121 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3122 			struct inode *dir, struct inode *inode);
3123 bool f2fs_empty_inline_dir(struct inode *dir);
3124 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3125 			struct fscrypt_str *fstr);
3126 int f2fs_inline_data_fiemap(struct inode *inode,
3127 			struct fiemap_extent_info *fieinfo,
3128 			__u64 start, __u64 len);
3129 
3130 /*
3131  * shrinker.c
3132  */
3133 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3134 			struct shrink_control *sc);
3135 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3136 			struct shrink_control *sc);
3137 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3138 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3139 
3140 /*
3141  * extent_cache.c
3142  */
3143 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3144 				struct rb_entry *cached_re, unsigned int ofs);
3145 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3146 				struct rb_root *root, struct rb_node **parent,
3147 				unsigned int ofs);
3148 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3149 		struct rb_entry *cached_re, unsigned int ofs,
3150 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3151 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3152 		bool force);
3153 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3154 						struct rb_root *root);
3155 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3156 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3157 void f2fs_drop_extent_tree(struct inode *inode);
3158 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3159 void f2fs_destroy_extent_tree(struct inode *inode);
3160 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3161 			struct extent_info *ei);
3162 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3163 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3164 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3165 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3166 int __init create_extent_cache(void);
3167 void destroy_extent_cache(void);
3168 
3169 /*
3170  * sysfs.c
3171  */
3172 int __init f2fs_init_sysfs(void);
3173 void f2fs_exit_sysfs(void);
3174 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3175 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3176 
3177 /*
3178  * crypto support
3179  */
3180 static inline bool f2fs_encrypted_inode(struct inode *inode)
3181 {
3182 	return file_is_encrypt(inode);
3183 }
3184 
3185 static inline bool f2fs_encrypted_file(struct inode *inode)
3186 {
3187 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3188 }
3189 
3190 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3191 {
3192 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3193 	file_set_encrypt(inode);
3194 	inode->i_flags |= S_ENCRYPTED;
3195 #endif
3196 }
3197 
3198 static inline bool f2fs_bio_encrypted(struct bio *bio)
3199 {
3200 	return bio->bi_private != NULL;
3201 }
3202 
3203 #define F2FS_FEATURE_FUNCS(name, flagname) \
3204 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3205 { \
3206 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3207 }
3208 
3209 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3210 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3211 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3212 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3213 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3214 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3215 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3216 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3217 
3218 #ifdef CONFIG_BLK_DEV_ZONED
3219 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3220 			struct block_device *bdev, block_t blkaddr)
3221 {
3222 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3223 	int i;
3224 
3225 	for (i = 0; i < sbi->s_ndevs; i++)
3226 		if (FDEV(i).bdev == bdev)
3227 			return FDEV(i).blkz_type[zno];
3228 	return -EINVAL;
3229 }
3230 #endif
3231 
3232 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3233 {
3234 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3235 
3236 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3237 }
3238 
3239 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3240 {
3241 	clear_opt(sbi, ADAPTIVE);
3242 	clear_opt(sbi, LFS);
3243 
3244 	switch (mt) {
3245 	case F2FS_MOUNT_ADAPTIVE:
3246 		set_opt(sbi, ADAPTIVE);
3247 		break;
3248 	case F2FS_MOUNT_LFS:
3249 		set_opt(sbi, LFS);
3250 		break;
3251 	}
3252 }
3253 
3254 static inline bool f2fs_may_encrypt(struct inode *inode)
3255 {
3256 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3257 	umode_t mode = inode->i_mode;
3258 
3259 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3260 #else
3261 	return 0;
3262 #endif
3263 }
3264 
3265 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3266 {
3267 	return (f2fs_encrypted_file(inode) ||
3268 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3269 			F2FS_I_SB(inode)->s_ndevs);
3270 }
3271 
3272 #endif
3273