1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 105 106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 107 typecheck(unsigned long long, b) && \ 108 ((long long)((a) - (b)) > 0)) 109 110 typedef u32 block_t; /* 111 * should not change u32, since it is the on-disk block 112 * address format, __le32. 113 */ 114 typedef u32 nid_t; 115 116 struct f2fs_mount_info { 117 unsigned int opt; 118 int write_io_size_bits; /* Write IO size bits */ 119 block_t root_reserved_blocks; /* root reserved blocks */ 120 kuid_t s_resuid; /* reserved blocks for uid */ 121 kgid_t s_resgid; /* reserved blocks for gid */ 122 int active_logs; /* # of active logs */ 123 int inline_xattr_size; /* inline xattr size */ 124 #ifdef CONFIG_F2FS_FAULT_INJECTION 125 struct f2fs_fault_info fault_info; /* For fault injection */ 126 #endif 127 #ifdef CONFIG_QUOTA 128 /* Names of quota files with journalled quota */ 129 char *s_qf_names[MAXQUOTAS]; 130 int s_jquota_fmt; /* Format of quota to use */ 131 #endif 132 /* For which write hints are passed down to block layer */ 133 int whint_mode; 134 int alloc_mode; /* segment allocation policy */ 135 int fsync_mode; /* fsync policy */ 136 }; 137 138 #define F2FS_FEATURE_ENCRYPT 0x0001 139 #define F2FS_FEATURE_BLKZONED 0x0002 140 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 141 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 142 #define F2FS_FEATURE_PRJQUOTA 0x0010 143 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 144 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 145 #define F2FS_FEATURE_QUOTA_INO 0x0080 146 #define F2FS_FEATURE_INODE_CRTIME 0x0100 147 148 #define F2FS_HAS_FEATURE(sb, mask) \ 149 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 150 #define F2FS_SET_FEATURE(sb, mask) \ 151 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 152 #define F2FS_CLEAR_FEATURE(sb, mask) \ 153 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 154 155 /* 156 * Default values for user and/or group using reserved blocks 157 */ 158 #define F2FS_DEF_RESUID 0 159 #define F2FS_DEF_RESGID 0 160 161 /* 162 * For checkpoint manager 163 */ 164 enum { 165 NAT_BITMAP, 166 SIT_BITMAP 167 }; 168 169 #define CP_UMOUNT 0x00000001 170 #define CP_FASTBOOT 0x00000002 171 #define CP_SYNC 0x00000004 172 #define CP_RECOVERY 0x00000008 173 #define CP_DISCARD 0x00000010 174 #define CP_TRIMMED 0x00000020 175 176 #define DEF_BATCHED_TRIM_SECTIONS 2048 177 #define BATCHED_TRIM_SEGMENTS(sbi) \ 178 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 179 #define BATCHED_TRIM_BLOCKS(sbi) \ 180 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 181 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 182 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 183 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 184 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 185 #define DEF_CP_INTERVAL 60 /* 60 secs */ 186 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 187 188 struct cp_control { 189 int reason; 190 __u64 trim_start; 191 __u64 trim_end; 192 __u64 trim_minlen; 193 }; 194 195 /* 196 * For CP/NAT/SIT/SSA readahead 197 */ 198 enum { 199 META_CP, 200 META_NAT, 201 META_SIT, 202 META_SSA, 203 META_POR, 204 }; 205 206 /* for the list of ino */ 207 enum { 208 ORPHAN_INO, /* for orphan ino list */ 209 APPEND_INO, /* for append ino list */ 210 UPDATE_INO, /* for update ino list */ 211 TRANS_DIR_INO, /* for trasactions dir ino list */ 212 FLUSH_INO, /* for multiple device flushing */ 213 MAX_INO_ENTRY, /* max. list */ 214 }; 215 216 struct ino_entry { 217 struct list_head list; /* list head */ 218 nid_t ino; /* inode number */ 219 unsigned int dirty_device; /* dirty device bitmap */ 220 }; 221 222 /* for the list of inodes to be GCed */ 223 struct inode_entry { 224 struct list_head list; /* list head */ 225 struct inode *inode; /* vfs inode pointer */ 226 }; 227 228 /* for the bitmap indicate blocks to be discarded */ 229 struct discard_entry { 230 struct list_head list; /* list head */ 231 block_t start_blkaddr; /* start blockaddr of current segment */ 232 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 233 }; 234 235 /* default discard granularity of inner discard thread, unit: block count */ 236 #define DEFAULT_DISCARD_GRANULARITY 16 237 238 /* max discard pend list number */ 239 #define MAX_PLIST_NUM 512 240 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 241 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 242 243 enum { 244 D_PREP, 245 D_SUBMIT, 246 D_DONE, 247 }; 248 249 struct discard_info { 250 block_t lstart; /* logical start address */ 251 block_t len; /* length */ 252 block_t start; /* actual start address in dev */ 253 }; 254 255 struct discard_cmd { 256 struct rb_node rb_node; /* rb node located in rb-tree */ 257 union { 258 struct { 259 block_t lstart; /* logical start address */ 260 block_t len; /* length */ 261 block_t start; /* actual start address in dev */ 262 }; 263 struct discard_info di; /* discard info */ 264 265 }; 266 struct list_head list; /* command list */ 267 struct completion wait; /* compleation */ 268 struct block_device *bdev; /* bdev */ 269 unsigned short ref; /* reference count */ 270 unsigned char state; /* state */ 271 int error; /* bio error */ 272 }; 273 274 enum { 275 DPOLICY_BG, 276 DPOLICY_FORCE, 277 DPOLICY_FSTRIM, 278 DPOLICY_UMOUNT, 279 MAX_DPOLICY, 280 }; 281 282 struct discard_policy { 283 int type; /* type of discard */ 284 unsigned int min_interval; /* used for candidates exist */ 285 unsigned int max_interval; /* used for candidates not exist */ 286 unsigned int max_requests; /* # of discards issued per round */ 287 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 288 bool io_aware; /* issue discard in idle time */ 289 bool sync; /* submit discard with REQ_SYNC flag */ 290 unsigned int granularity; /* discard granularity */ 291 }; 292 293 struct discard_cmd_control { 294 struct task_struct *f2fs_issue_discard; /* discard thread */ 295 struct list_head entry_list; /* 4KB discard entry list */ 296 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 297 struct list_head wait_list; /* store on-flushing entries */ 298 struct list_head fstrim_list; /* in-flight discard from fstrim */ 299 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 300 unsigned int discard_wake; /* to wake up discard thread */ 301 struct mutex cmd_lock; 302 unsigned int nr_discards; /* # of discards in the list */ 303 unsigned int max_discards; /* max. discards to be issued */ 304 unsigned int discard_granularity; /* discard granularity */ 305 unsigned int undiscard_blks; /* # of undiscard blocks */ 306 atomic_t issued_discard; /* # of issued discard */ 307 atomic_t issing_discard; /* # of issing discard */ 308 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 309 struct rb_root root; /* root of discard rb-tree */ 310 }; 311 312 /* for the list of fsync inodes, used only during recovery */ 313 struct fsync_inode_entry { 314 struct list_head list; /* list head */ 315 struct inode *inode; /* vfs inode pointer */ 316 block_t blkaddr; /* block address locating the last fsync */ 317 block_t last_dentry; /* block address locating the last dentry */ 318 }; 319 320 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 321 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 322 323 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 324 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 325 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 326 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 327 328 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 329 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 330 331 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 332 { 333 int before = nats_in_cursum(journal); 334 335 journal->n_nats = cpu_to_le16(before + i); 336 return before; 337 } 338 339 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 340 { 341 int before = sits_in_cursum(journal); 342 343 journal->n_sits = cpu_to_le16(before + i); 344 return before; 345 } 346 347 static inline bool __has_cursum_space(struct f2fs_journal *journal, 348 int size, int type) 349 { 350 if (type == NAT_JOURNAL) 351 return size <= MAX_NAT_JENTRIES(journal); 352 return size <= MAX_SIT_JENTRIES(journal); 353 } 354 355 /* 356 * ioctl commands 357 */ 358 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 359 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 360 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 361 362 #define F2FS_IOCTL_MAGIC 0xf5 363 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 364 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 365 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 366 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 367 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 368 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 369 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 370 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 371 struct f2fs_defragment) 372 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 373 struct f2fs_move_range) 374 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 375 struct f2fs_flush_device) 376 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 377 struct f2fs_gc_range) 378 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 379 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 380 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 381 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 382 383 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 384 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 385 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 386 387 /* 388 * should be same as XFS_IOC_GOINGDOWN. 389 * Flags for going down operation used by FS_IOC_GOINGDOWN 390 */ 391 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 392 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 393 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 394 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 395 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 396 397 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 398 /* 399 * ioctl commands in 32 bit emulation 400 */ 401 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 402 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 403 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 404 #endif 405 406 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 407 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 408 409 struct f2fs_gc_range { 410 u32 sync; 411 u64 start; 412 u64 len; 413 }; 414 415 struct f2fs_defragment { 416 u64 start; 417 u64 len; 418 }; 419 420 struct f2fs_move_range { 421 u32 dst_fd; /* destination fd */ 422 u64 pos_in; /* start position in src_fd */ 423 u64 pos_out; /* start position in dst_fd */ 424 u64 len; /* size to move */ 425 }; 426 427 struct f2fs_flush_device { 428 u32 dev_num; /* device number to flush */ 429 u32 segments; /* # of segments to flush */ 430 }; 431 432 /* for inline stuff */ 433 #define DEF_INLINE_RESERVED_SIZE 1 434 #define DEF_MIN_INLINE_SIZE 1 435 static inline int get_extra_isize(struct inode *inode); 436 static inline int get_inline_xattr_addrs(struct inode *inode); 437 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 438 (CUR_ADDRS_PER_INODE(inode) - \ 439 get_inline_xattr_addrs(inode) - \ 440 DEF_INLINE_RESERVED_SIZE)) 441 442 /* for inline dir */ 443 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 444 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 445 BITS_PER_BYTE + 1)) 446 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 447 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 448 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 450 NR_INLINE_DENTRY(inode) + \ 451 INLINE_DENTRY_BITMAP_SIZE(inode))) 452 453 /* 454 * For INODE and NODE manager 455 */ 456 /* for directory operations */ 457 struct f2fs_dentry_ptr { 458 struct inode *inode; 459 void *bitmap; 460 struct f2fs_dir_entry *dentry; 461 __u8 (*filename)[F2FS_SLOT_LEN]; 462 int max; 463 int nr_bitmap; 464 }; 465 466 static inline void make_dentry_ptr_block(struct inode *inode, 467 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 468 { 469 d->inode = inode; 470 d->max = NR_DENTRY_IN_BLOCK; 471 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 472 d->bitmap = &t->dentry_bitmap; 473 d->dentry = t->dentry; 474 d->filename = t->filename; 475 } 476 477 static inline void make_dentry_ptr_inline(struct inode *inode, 478 struct f2fs_dentry_ptr *d, void *t) 479 { 480 int entry_cnt = NR_INLINE_DENTRY(inode); 481 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 482 int reserved_size = INLINE_RESERVED_SIZE(inode); 483 484 d->inode = inode; 485 d->max = entry_cnt; 486 d->nr_bitmap = bitmap_size; 487 d->bitmap = t; 488 d->dentry = t + bitmap_size + reserved_size; 489 d->filename = t + bitmap_size + reserved_size + 490 SIZE_OF_DIR_ENTRY * entry_cnt; 491 } 492 493 /* 494 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 495 * as its node offset to distinguish from index node blocks. 496 * But some bits are used to mark the node block. 497 */ 498 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 499 >> OFFSET_BIT_SHIFT) 500 enum { 501 ALLOC_NODE, /* allocate a new node page if needed */ 502 LOOKUP_NODE, /* look up a node without readahead */ 503 LOOKUP_NODE_RA, /* 504 * look up a node with readahead called 505 * by get_data_block. 506 */ 507 }; 508 509 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 510 511 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 512 513 /* vector size for gang look-up from extent cache that consists of radix tree */ 514 #define EXT_TREE_VEC_SIZE 64 515 516 /* for in-memory extent cache entry */ 517 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 518 519 /* number of extent info in extent cache we try to shrink */ 520 #define EXTENT_CACHE_SHRINK_NUMBER 128 521 522 struct rb_entry { 523 struct rb_node rb_node; /* rb node located in rb-tree */ 524 unsigned int ofs; /* start offset of the entry */ 525 unsigned int len; /* length of the entry */ 526 }; 527 528 struct extent_info { 529 unsigned int fofs; /* start offset in a file */ 530 unsigned int len; /* length of the extent */ 531 u32 blk; /* start block address of the extent */ 532 }; 533 534 struct extent_node { 535 struct rb_node rb_node; 536 union { 537 struct { 538 unsigned int fofs; 539 unsigned int len; 540 u32 blk; 541 }; 542 struct extent_info ei; /* extent info */ 543 544 }; 545 struct list_head list; /* node in global extent list of sbi */ 546 struct extent_tree *et; /* extent tree pointer */ 547 }; 548 549 struct extent_tree { 550 nid_t ino; /* inode number */ 551 struct rb_root root; /* root of extent info rb-tree */ 552 struct extent_node *cached_en; /* recently accessed extent node */ 553 struct extent_info largest; /* largested extent info */ 554 struct list_head list; /* to be used by sbi->zombie_list */ 555 rwlock_t lock; /* protect extent info rb-tree */ 556 atomic_t node_cnt; /* # of extent node in rb-tree*/ 557 }; 558 559 /* 560 * This structure is taken from ext4_map_blocks. 561 * 562 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 563 */ 564 #define F2FS_MAP_NEW (1 << BH_New) 565 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 566 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 567 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 568 F2FS_MAP_UNWRITTEN) 569 570 struct f2fs_map_blocks { 571 block_t m_pblk; 572 block_t m_lblk; 573 unsigned int m_len; 574 unsigned int m_flags; 575 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 576 pgoff_t *m_next_extent; /* point to next possible extent */ 577 int m_seg_type; 578 }; 579 580 /* for flag in get_data_block */ 581 enum { 582 F2FS_GET_BLOCK_DEFAULT, 583 F2FS_GET_BLOCK_FIEMAP, 584 F2FS_GET_BLOCK_BMAP, 585 F2FS_GET_BLOCK_PRE_DIO, 586 F2FS_GET_BLOCK_PRE_AIO, 587 F2FS_GET_BLOCK_PRECACHE, 588 }; 589 590 /* 591 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 592 */ 593 #define FADVISE_COLD_BIT 0x01 594 #define FADVISE_LOST_PINO_BIT 0x02 595 #define FADVISE_ENCRYPT_BIT 0x04 596 #define FADVISE_ENC_NAME_BIT 0x08 597 #define FADVISE_KEEP_SIZE_BIT 0x10 598 #define FADVISE_HOT_BIT 0x20 599 600 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 601 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 602 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 603 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 604 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 605 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 606 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 607 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 608 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 609 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 610 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 611 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 612 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 613 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 614 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 615 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 616 617 #define DEF_DIR_LEVEL 0 618 619 struct f2fs_inode_info { 620 struct inode vfs_inode; /* serve a vfs inode */ 621 unsigned long i_flags; /* keep an inode flags for ioctl */ 622 unsigned char i_advise; /* use to give file attribute hints */ 623 unsigned char i_dir_level; /* use for dentry level for large dir */ 624 union { 625 unsigned int i_current_depth; /* only for directory depth */ 626 unsigned short i_gc_failures; /* only for regular file */ 627 }; 628 unsigned int i_pino; /* parent inode number */ 629 umode_t i_acl_mode; /* keep file acl mode temporarily */ 630 631 /* Use below internally in f2fs*/ 632 unsigned long flags; /* use to pass per-file flags */ 633 struct rw_semaphore i_sem; /* protect fi info */ 634 atomic_t dirty_pages; /* # of dirty pages */ 635 f2fs_hash_t chash; /* hash value of given file name */ 636 unsigned int clevel; /* maximum level of given file name */ 637 struct task_struct *task; /* lookup and create consistency */ 638 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 639 nid_t i_xattr_nid; /* node id that contains xattrs */ 640 loff_t last_disk_size; /* lastly written file size */ 641 642 #ifdef CONFIG_QUOTA 643 struct dquot *i_dquot[MAXQUOTAS]; 644 645 /* quota space reservation, managed internally by quota code */ 646 qsize_t i_reserved_quota; 647 #endif 648 struct list_head dirty_list; /* dirty list for dirs and files */ 649 struct list_head gdirty_list; /* linked in global dirty list */ 650 struct list_head inmem_ilist; /* list for inmem inodes */ 651 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 652 struct task_struct *inmem_task; /* store inmemory task */ 653 struct mutex inmem_lock; /* lock for inmemory pages */ 654 struct extent_tree *extent_tree; /* cached extent_tree entry */ 655 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 656 struct rw_semaphore i_mmap_sem; 657 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 658 659 int i_extra_isize; /* size of extra space located in i_addr */ 660 kprojid_t i_projid; /* id for project quota */ 661 int i_inline_xattr_size; /* inline xattr size */ 662 struct timespec i_crtime; /* inode creation time */ 663 }; 664 665 static inline void get_extent_info(struct extent_info *ext, 666 struct f2fs_extent *i_ext) 667 { 668 ext->fofs = le32_to_cpu(i_ext->fofs); 669 ext->blk = le32_to_cpu(i_ext->blk); 670 ext->len = le32_to_cpu(i_ext->len); 671 } 672 673 static inline void set_raw_extent(struct extent_info *ext, 674 struct f2fs_extent *i_ext) 675 { 676 i_ext->fofs = cpu_to_le32(ext->fofs); 677 i_ext->blk = cpu_to_le32(ext->blk); 678 i_ext->len = cpu_to_le32(ext->len); 679 } 680 681 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 682 u32 blk, unsigned int len) 683 { 684 ei->fofs = fofs; 685 ei->blk = blk; 686 ei->len = len; 687 } 688 689 static inline bool __is_discard_mergeable(struct discard_info *back, 690 struct discard_info *front) 691 { 692 return back->lstart + back->len == front->lstart; 693 } 694 695 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 696 struct discard_info *back) 697 { 698 return __is_discard_mergeable(back, cur); 699 } 700 701 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 702 struct discard_info *front) 703 { 704 return __is_discard_mergeable(cur, front); 705 } 706 707 static inline bool __is_extent_mergeable(struct extent_info *back, 708 struct extent_info *front) 709 { 710 return (back->fofs + back->len == front->fofs && 711 back->blk + back->len == front->blk); 712 } 713 714 static inline bool __is_back_mergeable(struct extent_info *cur, 715 struct extent_info *back) 716 { 717 return __is_extent_mergeable(back, cur); 718 } 719 720 static inline bool __is_front_mergeable(struct extent_info *cur, 721 struct extent_info *front) 722 { 723 return __is_extent_mergeable(cur, front); 724 } 725 726 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 727 static inline void __try_update_largest_extent(struct inode *inode, 728 struct extent_tree *et, struct extent_node *en) 729 { 730 if (en->ei.len > et->largest.len) { 731 et->largest = en->ei; 732 f2fs_mark_inode_dirty_sync(inode, true); 733 } 734 } 735 736 /* 737 * For free nid management 738 */ 739 enum nid_state { 740 FREE_NID, /* newly added to free nid list */ 741 PREALLOC_NID, /* it is preallocated */ 742 MAX_NID_STATE, 743 }; 744 745 struct f2fs_nm_info { 746 block_t nat_blkaddr; /* base disk address of NAT */ 747 nid_t max_nid; /* maximum possible node ids */ 748 nid_t available_nids; /* # of available node ids */ 749 nid_t next_scan_nid; /* the next nid to be scanned */ 750 unsigned int ram_thresh; /* control the memory footprint */ 751 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 752 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 753 754 /* NAT cache management */ 755 struct radix_tree_root nat_root;/* root of the nat entry cache */ 756 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 757 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 758 struct list_head nat_entries; /* cached nat entry list (clean) */ 759 unsigned int nat_cnt; /* the # of cached nat entries */ 760 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 761 unsigned int nat_blocks; /* # of nat blocks */ 762 763 /* free node ids management */ 764 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 765 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 766 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 767 spinlock_t nid_list_lock; /* protect nid lists ops */ 768 struct mutex build_lock; /* lock for build free nids */ 769 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 770 unsigned char *nat_block_bitmap; 771 unsigned short *free_nid_count; /* free nid count of NAT block */ 772 773 /* for checkpoint */ 774 char *nat_bitmap; /* NAT bitmap pointer */ 775 776 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 777 unsigned char *nat_bits; /* NAT bits blocks */ 778 unsigned char *full_nat_bits; /* full NAT pages */ 779 unsigned char *empty_nat_bits; /* empty NAT pages */ 780 #ifdef CONFIG_F2FS_CHECK_FS 781 char *nat_bitmap_mir; /* NAT bitmap mirror */ 782 #endif 783 int bitmap_size; /* bitmap size */ 784 }; 785 786 /* 787 * this structure is used as one of function parameters. 788 * all the information are dedicated to a given direct node block determined 789 * by the data offset in a file. 790 */ 791 struct dnode_of_data { 792 struct inode *inode; /* vfs inode pointer */ 793 struct page *inode_page; /* its inode page, NULL is possible */ 794 struct page *node_page; /* cached direct node page */ 795 nid_t nid; /* node id of the direct node block */ 796 unsigned int ofs_in_node; /* data offset in the node page */ 797 bool inode_page_locked; /* inode page is locked or not */ 798 bool node_changed; /* is node block changed */ 799 char cur_level; /* level of hole node page */ 800 char max_level; /* level of current page located */ 801 block_t data_blkaddr; /* block address of the node block */ 802 }; 803 804 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 805 struct page *ipage, struct page *npage, nid_t nid) 806 { 807 memset(dn, 0, sizeof(*dn)); 808 dn->inode = inode; 809 dn->inode_page = ipage; 810 dn->node_page = npage; 811 dn->nid = nid; 812 } 813 814 /* 815 * For SIT manager 816 * 817 * By default, there are 6 active log areas across the whole main area. 818 * When considering hot and cold data separation to reduce cleaning overhead, 819 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 820 * respectively. 821 * In the current design, you should not change the numbers intentionally. 822 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 823 * logs individually according to the underlying devices. (default: 6) 824 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 825 * data and 8 for node logs. 826 */ 827 #define NR_CURSEG_DATA_TYPE (3) 828 #define NR_CURSEG_NODE_TYPE (3) 829 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 830 831 enum { 832 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 833 CURSEG_WARM_DATA, /* data blocks */ 834 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 835 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 836 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 837 CURSEG_COLD_NODE, /* indirect node blocks */ 838 NO_CHECK_TYPE, 839 }; 840 841 struct flush_cmd { 842 struct completion wait; 843 struct llist_node llnode; 844 nid_t ino; 845 int ret; 846 }; 847 848 struct flush_cmd_control { 849 struct task_struct *f2fs_issue_flush; /* flush thread */ 850 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 851 atomic_t issued_flush; /* # of issued flushes */ 852 atomic_t issing_flush; /* # of issing flushes */ 853 struct llist_head issue_list; /* list for command issue */ 854 struct llist_node *dispatch_list; /* list for command dispatch */ 855 }; 856 857 struct f2fs_sm_info { 858 struct sit_info *sit_info; /* whole segment information */ 859 struct free_segmap_info *free_info; /* free segment information */ 860 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 861 struct curseg_info *curseg_array; /* active segment information */ 862 863 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 864 865 block_t seg0_blkaddr; /* block address of 0'th segment */ 866 block_t main_blkaddr; /* start block address of main area */ 867 block_t ssa_blkaddr; /* start block address of SSA area */ 868 869 unsigned int segment_count; /* total # of segments */ 870 unsigned int main_segments; /* # of segments in main area */ 871 unsigned int reserved_segments; /* # of reserved segments */ 872 unsigned int ovp_segments; /* # of overprovision segments */ 873 874 /* a threshold to reclaim prefree segments */ 875 unsigned int rec_prefree_segments; 876 877 /* for batched trimming */ 878 unsigned int trim_sections; /* # of sections to trim */ 879 880 struct list_head sit_entry_set; /* sit entry set list */ 881 882 unsigned int ipu_policy; /* in-place-update policy */ 883 unsigned int min_ipu_util; /* in-place-update threshold */ 884 unsigned int min_fsync_blocks; /* threshold for fsync */ 885 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 886 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 887 888 /* for flush command control */ 889 struct flush_cmd_control *fcc_info; 890 891 /* for discard command control */ 892 struct discard_cmd_control *dcc_info; 893 }; 894 895 /* 896 * For superblock 897 */ 898 /* 899 * COUNT_TYPE for monitoring 900 * 901 * f2fs monitors the number of several block types such as on-writeback, 902 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 903 */ 904 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 905 enum count_type { 906 F2FS_DIRTY_DENTS, 907 F2FS_DIRTY_DATA, 908 F2FS_DIRTY_QDATA, 909 F2FS_DIRTY_NODES, 910 F2FS_DIRTY_META, 911 F2FS_INMEM_PAGES, 912 F2FS_DIRTY_IMETA, 913 F2FS_WB_CP_DATA, 914 F2FS_WB_DATA, 915 NR_COUNT_TYPE, 916 }; 917 918 /* 919 * The below are the page types of bios used in submit_bio(). 920 * The available types are: 921 * DATA User data pages. It operates as async mode. 922 * NODE Node pages. It operates as async mode. 923 * META FS metadata pages such as SIT, NAT, CP. 924 * NR_PAGE_TYPE The number of page types. 925 * META_FLUSH Make sure the previous pages are written 926 * with waiting the bio's completion 927 * ... Only can be used with META. 928 */ 929 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 930 enum page_type { 931 DATA, 932 NODE, 933 META, 934 NR_PAGE_TYPE, 935 META_FLUSH, 936 INMEM, /* the below types are used by tracepoints only. */ 937 INMEM_DROP, 938 INMEM_INVALIDATE, 939 INMEM_REVOKE, 940 IPU, 941 OPU, 942 }; 943 944 enum temp_type { 945 HOT = 0, /* must be zero for meta bio */ 946 WARM, 947 COLD, 948 NR_TEMP_TYPE, 949 }; 950 951 enum need_lock_type { 952 LOCK_REQ = 0, 953 LOCK_DONE, 954 LOCK_RETRY, 955 }; 956 957 enum cp_reason_type { 958 CP_NO_NEEDED, 959 CP_NON_REGULAR, 960 CP_HARDLINK, 961 CP_SB_NEED_CP, 962 CP_WRONG_PINO, 963 CP_NO_SPC_ROLL, 964 CP_NODE_NEED_CP, 965 CP_FASTBOOT_MODE, 966 CP_SPEC_LOG_NUM, 967 CP_RECOVER_DIR, 968 }; 969 970 enum iostat_type { 971 APP_DIRECT_IO, /* app direct IOs */ 972 APP_BUFFERED_IO, /* app buffered IOs */ 973 APP_WRITE_IO, /* app write IOs */ 974 APP_MAPPED_IO, /* app mapped IOs */ 975 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 976 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 977 FS_META_IO, /* meta IOs from kworker/reclaimer */ 978 FS_GC_DATA_IO, /* data IOs from forground gc */ 979 FS_GC_NODE_IO, /* node IOs from forground gc */ 980 FS_CP_DATA_IO, /* data IOs from checkpoint */ 981 FS_CP_NODE_IO, /* node IOs from checkpoint */ 982 FS_CP_META_IO, /* meta IOs from checkpoint */ 983 FS_DISCARD, /* discard */ 984 NR_IO_TYPE, 985 }; 986 987 struct f2fs_io_info { 988 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 989 nid_t ino; /* inode number */ 990 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 991 enum temp_type temp; /* contains HOT/WARM/COLD */ 992 int op; /* contains REQ_OP_ */ 993 int op_flags; /* req_flag_bits */ 994 block_t new_blkaddr; /* new block address to be written */ 995 block_t old_blkaddr; /* old block address before Cow */ 996 struct page *page; /* page to be written */ 997 struct page *encrypted_page; /* encrypted page */ 998 struct list_head list; /* serialize IOs */ 999 bool submitted; /* indicate IO submission */ 1000 int need_lock; /* indicate we need to lock cp_rwsem */ 1001 bool in_list; /* indicate fio is in io_list */ 1002 enum iostat_type io_type; /* io type */ 1003 struct writeback_control *io_wbc; /* writeback control */ 1004 }; 1005 1006 #define is_read_io(rw) ((rw) == READ) 1007 struct f2fs_bio_info { 1008 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1009 struct bio *bio; /* bios to merge */ 1010 sector_t last_block_in_bio; /* last block number */ 1011 struct f2fs_io_info fio; /* store buffered io info. */ 1012 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1013 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1014 struct list_head io_list; /* track fios */ 1015 }; 1016 1017 #define FDEV(i) (sbi->devs[i]) 1018 #define RDEV(i) (raw_super->devs[i]) 1019 struct f2fs_dev_info { 1020 struct block_device *bdev; 1021 char path[MAX_PATH_LEN]; 1022 unsigned int total_segments; 1023 block_t start_blk; 1024 block_t end_blk; 1025 #ifdef CONFIG_BLK_DEV_ZONED 1026 unsigned int nr_blkz; /* Total number of zones */ 1027 u8 *blkz_type; /* Array of zones type */ 1028 #endif 1029 }; 1030 1031 enum inode_type { 1032 DIR_INODE, /* for dirty dir inode */ 1033 FILE_INODE, /* for dirty regular/symlink inode */ 1034 DIRTY_META, /* for all dirtied inode metadata */ 1035 ATOMIC_FILE, /* for all atomic files */ 1036 NR_INODE_TYPE, 1037 }; 1038 1039 /* for inner inode cache management */ 1040 struct inode_management { 1041 struct radix_tree_root ino_root; /* ino entry array */ 1042 spinlock_t ino_lock; /* for ino entry lock */ 1043 struct list_head ino_list; /* inode list head */ 1044 unsigned long ino_num; /* number of entries */ 1045 }; 1046 1047 /* For s_flag in struct f2fs_sb_info */ 1048 enum { 1049 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1050 SBI_IS_CLOSE, /* specify unmounting */ 1051 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1052 SBI_POR_DOING, /* recovery is doing or not */ 1053 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1054 SBI_NEED_CP, /* need to checkpoint */ 1055 }; 1056 1057 enum { 1058 CP_TIME, 1059 REQ_TIME, 1060 MAX_TIME, 1061 }; 1062 1063 enum { 1064 WHINT_MODE_OFF, /* not pass down write hints */ 1065 WHINT_MODE_USER, /* try to pass down hints given by users */ 1066 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1067 }; 1068 1069 enum { 1070 ALLOC_MODE_DEFAULT, /* stay default */ 1071 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1072 }; 1073 1074 enum fsync_mode { 1075 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1076 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1077 }; 1078 1079 struct f2fs_sb_info { 1080 struct super_block *sb; /* pointer to VFS super block */ 1081 struct proc_dir_entry *s_proc; /* proc entry */ 1082 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1083 struct rw_semaphore sb_lock; /* lock for raw super block */ 1084 int valid_super_block; /* valid super block no */ 1085 unsigned long s_flag; /* flags for sbi */ 1086 1087 #ifdef CONFIG_BLK_DEV_ZONED 1088 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1089 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1090 #endif 1091 1092 /* for node-related operations */ 1093 struct f2fs_nm_info *nm_info; /* node manager */ 1094 struct inode *node_inode; /* cache node blocks */ 1095 1096 /* for segment-related operations */ 1097 struct f2fs_sm_info *sm_info; /* segment manager */ 1098 1099 /* for bio operations */ 1100 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1101 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1102 /* bio ordering for NODE/DATA */ 1103 mempool_t *write_io_dummy; /* Dummy pages */ 1104 1105 /* for checkpoint */ 1106 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1107 int cur_cp_pack; /* remain current cp pack */ 1108 spinlock_t cp_lock; /* for flag in ckpt */ 1109 struct inode *meta_inode; /* cache meta blocks */ 1110 struct mutex cp_mutex; /* checkpoint procedure lock */ 1111 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1112 struct rw_semaphore node_write; /* locking node writes */ 1113 struct rw_semaphore node_change; /* locking node change */ 1114 wait_queue_head_t cp_wait; 1115 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1116 long interval_time[MAX_TIME]; /* to store thresholds */ 1117 1118 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1119 1120 /* for orphan inode, use 0'th array */ 1121 unsigned int max_orphans; /* max orphan inodes */ 1122 1123 /* for inode management */ 1124 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1125 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1126 1127 /* for extent tree cache */ 1128 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1129 struct mutex extent_tree_lock; /* locking extent radix tree */ 1130 struct list_head extent_list; /* lru list for shrinker */ 1131 spinlock_t extent_lock; /* locking extent lru list */ 1132 atomic_t total_ext_tree; /* extent tree count */ 1133 struct list_head zombie_list; /* extent zombie tree list */ 1134 atomic_t total_zombie_tree; /* extent zombie tree count */ 1135 atomic_t total_ext_node; /* extent info count */ 1136 1137 /* basic filesystem units */ 1138 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1139 unsigned int log_blocksize; /* log2 block size */ 1140 unsigned int blocksize; /* block size */ 1141 unsigned int root_ino_num; /* root inode number*/ 1142 unsigned int node_ino_num; /* node inode number*/ 1143 unsigned int meta_ino_num; /* meta inode number*/ 1144 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1145 unsigned int blocks_per_seg; /* blocks per segment */ 1146 unsigned int segs_per_sec; /* segments per section */ 1147 unsigned int secs_per_zone; /* sections per zone */ 1148 unsigned int total_sections; /* total section count */ 1149 unsigned int total_node_count; /* total node block count */ 1150 unsigned int total_valid_node_count; /* valid node block count */ 1151 loff_t max_file_blocks; /* max block index of file */ 1152 int dir_level; /* directory level */ 1153 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1154 int readdir_ra; /* readahead inode in readdir */ 1155 1156 block_t user_block_count; /* # of user blocks */ 1157 block_t total_valid_block_count; /* # of valid blocks */ 1158 block_t discard_blks; /* discard command candidats */ 1159 block_t last_valid_block_count; /* for recovery */ 1160 block_t reserved_blocks; /* configurable reserved blocks */ 1161 block_t current_reserved_blocks; /* current reserved blocks */ 1162 1163 unsigned int nquota_files; /* # of quota sysfile */ 1164 1165 u32 s_next_generation; /* for NFS support */ 1166 1167 /* # of pages, see count_type */ 1168 atomic_t nr_pages[NR_COUNT_TYPE]; 1169 /* # of allocated blocks */ 1170 struct percpu_counter alloc_valid_block_count; 1171 1172 /* writeback control */ 1173 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1174 1175 /* valid inode count */ 1176 struct percpu_counter total_valid_inode_count; 1177 1178 struct f2fs_mount_info mount_opt; /* mount options */ 1179 1180 /* for cleaning operations */ 1181 struct mutex gc_mutex; /* mutex for GC */ 1182 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1183 unsigned int cur_victim_sec; /* current victim section num */ 1184 1185 /* threshold for converting bg victims for fg */ 1186 u64 fggc_threshold; 1187 1188 /* threshold for gc trials on pinned files */ 1189 u64 gc_pin_file_threshold; 1190 1191 /* maximum # of trials to find a victim segment for SSR and GC */ 1192 unsigned int max_victim_search; 1193 1194 /* 1195 * for stat information. 1196 * one is for the LFS mode, and the other is for the SSR mode. 1197 */ 1198 #ifdef CONFIG_F2FS_STAT_FS 1199 struct f2fs_stat_info *stat_info; /* FS status information */ 1200 unsigned int segment_count[2]; /* # of allocated segments */ 1201 unsigned int block_count[2]; /* # of allocated blocks */ 1202 atomic_t inplace_count; /* # of inplace update */ 1203 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1204 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1205 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1206 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1207 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1208 atomic_t inline_inode; /* # of inline_data inodes */ 1209 atomic_t inline_dir; /* # of inline_dentry inodes */ 1210 atomic_t aw_cnt; /* # of atomic writes */ 1211 atomic_t vw_cnt; /* # of volatile writes */ 1212 atomic_t max_aw_cnt; /* max # of atomic writes */ 1213 atomic_t max_vw_cnt; /* max # of volatile writes */ 1214 int bg_gc; /* background gc calls */ 1215 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1216 #endif 1217 spinlock_t stat_lock; /* lock for stat operations */ 1218 1219 /* For app/fs IO statistics */ 1220 spinlock_t iostat_lock; 1221 unsigned long long write_iostat[NR_IO_TYPE]; 1222 bool iostat_enable; 1223 1224 /* For sysfs suppport */ 1225 struct kobject s_kobj; 1226 struct completion s_kobj_unregister; 1227 1228 /* For shrinker support */ 1229 struct list_head s_list; 1230 int s_ndevs; /* number of devices */ 1231 struct f2fs_dev_info *devs; /* for device list */ 1232 unsigned int dirty_device; /* for checkpoint data flush */ 1233 spinlock_t dev_lock; /* protect dirty_device */ 1234 struct mutex umount_mutex; 1235 unsigned int shrinker_run_no; 1236 1237 /* For write statistics */ 1238 u64 sectors_written_start; 1239 u64 kbytes_written; 1240 1241 /* Reference to checksum algorithm driver via cryptoapi */ 1242 struct crypto_shash *s_chksum_driver; 1243 1244 /* Precomputed FS UUID checksum for seeding other checksums */ 1245 __u32 s_chksum_seed; 1246 }; 1247 1248 #ifdef CONFIG_F2FS_FAULT_INJECTION 1249 #define f2fs_show_injection_info(type) \ 1250 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1251 KERN_INFO, fault_name[type], \ 1252 __func__, __builtin_return_address(0)) 1253 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1254 { 1255 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1256 1257 if (!ffi->inject_rate) 1258 return false; 1259 1260 if (!IS_FAULT_SET(ffi, type)) 1261 return false; 1262 1263 atomic_inc(&ffi->inject_ops); 1264 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1265 atomic_set(&ffi->inject_ops, 0); 1266 return true; 1267 } 1268 return false; 1269 } 1270 #endif 1271 1272 /* For write statistics. Suppose sector size is 512 bytes, 1273 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1274 */ 1275 #define BD_PART_WRITTEN(s) \ 1276 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1277 (s)->sectors_written_start) >> 1) 1278 1279 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1280 { 1281 sbi->last_time[type] = jiffies; 1282 } 1283 1284 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1285 { 1286 unsigned long interval = sbi->interval_time[type] * HZ; 1287 1288 return time_after(jiffies, sbi->last_time[type] + interval); 1289 } 1290 1291 static inline bool is_idle(struct f2fs_sb_info *sbi) 1292 { 1293 struct block_device *bdev = sbi->sb->s_bdev; 1294 struct request_queue *q = bdev_get_queue(bdev); 1295 struct request_list *rl = &q->root_rl; 1296 1297 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1298 return 0; 1299 1300 return f2fs_time_over(sbi, REQ_TIME); 1301 } 1302 1303 /* 1304 * Inline functions 1305 */ 1306 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1307 const void *address, unsigned int length) 1308 { 1309 struct { 1310 struct shash_desc shash; 1311 char ctx[4]; 1312 } desc; 1313 int err; 1314 1315 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1316 1317 desc.shash.tfm = sbi->s_chksum_driver; 1318 desc.shash.flags = 0; 1319 *(u32 *)desc.ctx = crc; 1320 1321 err = crypto_shash_update(&desc.shash, address, length); 1322 BUG_ON(err); 1323 1324 return *(u32 *)desc.ctx; 1325 } 1326 1327 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1328 unsigned int length) 1329 { 1330 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1331 } 1332 1333 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1334 void *buf, size_t buf_size) 1335 { 1336 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1337 } 1338 1339 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1340 const void *address, unsigned int length) 1341 { 1342 return __f2fs_crc32(sbi, crc, address, length); 1343 } 1344 1345 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1346 { 1347 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1348 } 1349 1350 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1351 { 1352 return sb->s_fs_info; 1353 } 1354 1355 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1356 { 1357 return F2FS_SB(inode->i_sb); 1358 } 1359 1360 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1361 { 1362 return F2FS_I_SB(mapping->host); 1363 } 1364 1365 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1366 { 1367 return F2FS_M_SB(page->mapping); 1368 } 1369 1370 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1371 { 1372 return (struct f2fs_super_block *)(sbi->raw_super); 1373 } 1374 1375 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1376 { 1377 return (struct f2fs_checkpoint *)(sbi->ckpt); 1378 } 1379 1380 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1381 { 1382 return (struct f2fs_node *)page_address(page); 1383 } 1384 1385 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1386 { 1387 return &((struct f2fs_node *)page_address(page))->i; 1388 } 1389 1390 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1391 { 1392 return (struct f2fs_nm_info *)(sbi->nm_info); 1393 } 1394 1395 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1396 { 1397 return (struct f2fs_sm_info *)(sbi->sm_info); 1398 } 1399 1400 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1401 { 1402 return (struct sit_info *)(SM_I(sbi)->sit_info); 1403 } 1404 1405 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1406 { 1407 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1408 } 1409 1410 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1411 { 1412 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1413 } 1414 1415 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1416 { 1417 return sbi->meta_inode->i_mapping; 1418 } 1419 1420 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1421 { 1422 return sbi->node_inode->i_mapping; 1423 } 1424 1425 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1426 { 1427 return test_bit(type, &sbi->s_flag); 1428 } 1429 1430 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1431 { 1432 set_bit(type, &sbi->s_flag); 1433 } 1434 1435 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1436 { 1437 clear_bit(type, &sbi->s_flag); 1438 } 1439 1440 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1441 { 1442 return le64_to_cpu(cp->checkpoint_ver); 1443 } 1444 1445 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1446 { 1447 if (type < F2FS_MAX_QUOTAS) 1448 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1449 return 0; 1450 } 1451 1452 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1453 { 1454 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1455 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1456 } 1457 1458 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1459 { 1460 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1461 1462 return ckpt_flags & f; 1463 } 1464 1465 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1466 { 1467 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1468 } 1469 1470 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1471 { 1472 unsigned int ckpt_flags; 1473 1474 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1475 ckpt_flags |= f; 1476 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1477 } 1478 1479 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1480 { 1481 unsigned long flags; 1482 1483 spin_lock_irqsave(&sbi->cp_lock, flags); 1484 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1485 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1486 } 1487 1488 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1489 { 1490 unsigned int ckpt_flags; 1491 1492 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1493 ckpt_flags &= (~f); 1494 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1495 } 1496 1497 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1498 { 1499 unsigned long flags; 1500 1501 spin_lock_irqsave(&sbi->cp_lock, flags); 1502 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1503 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1504 } 1505 1506 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1507 { 1508 unsigned long flags; 1509 1510 set_sbi_flag(sbi, SBI_NEED_FSCK); 1511 1512 if (lock) 1513 spin_lock_irqsave(&sbi->cp_lock, flags); 1514 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1515 kfree(NM_I(sbi)->nat_bits); 1516 NM_I(sbi)->nat_bits = NULL; 1517 if (lock) 1518 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1519 } 1520 1521 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1522 struct cp_control *cpc) 1523 { 1524 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1525 1526 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1527 } 1528 1529 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1530 { 1531 down_read(&sbi->cp_rwsem); 1532 } 1533 1534 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1535 { 1536 return down_read_trylock(&sbi->cp_rwsem); 1537 } 1538 1539 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1540 { 1541 up_read(&sbi->cp_rwsem); 1542 } 1543 1544 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1545 { 1546 down_write(&sbi->cp_rwsem); 1547 } 1548 1549 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1550 { 1551 up_write(&sbi->cp_rwsem); 1552 } 1553 1554 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1555 { 1556 int reason = CP_SYNC; 1557 1558 if (test_opt(sbi, FASTBOOT)) 1559 reason = CP_FASTBOOT; 1560 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1561 reason = CP_UMOUNT; 1562 return reason; 1563 } 1564 1565 static inline bool __remain_node_summaries(int reason) 1566 { 1567 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1568 } 1569 1570 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1571 { 1572 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1573 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1574 } 1575 1576 /* 1577 * Check whether the given nid is within node id range. 1578 */ 1579 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1580 { 1581 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1582 return -EINVAL; 1583 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1584 return -EINVAL; 1585 return 0; 1586 } 1587 1588 /* 1589 * Check whether the inode has blocks or not 1590 */ 1591 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1592 { 1593 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1594 1595 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1596 } 1597 1598 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1599 { 1600 return ofs == XATTR_NODE_OFFSET; 1601 } 1602 1603 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1604 struct inode *inode) 1605 { 1606 if (!inode) 1607 return true; 1608 if (!test_opt(sbi, RESERVE_ROOT)) 1609 return false; 1610 if (IS_NOQUOTA(inode)) 1611 return true; 1612 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1613 return true; 1614 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1615 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1616 return true; 1617 if (capable(CAP_SYS_RESOURCE)) 1618 return true; 1619 return false; 1620 } 1621 1622 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1623 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1624 struct inode *inode, blkcnt_t *count) 1625 { 1626 blkcnt_t diff = 0, release = 0; 1627 block_t avail_user_block_count; 1628 int ret; 1629 1630 ret = dquot_reserve_block(inode, *count); 1631 if (ret) 1632 return ret; 1633 1634 #ifdef CONFIG_F2FS_FAULT_INJECTION 1635 if (time_to_inject(sbi, FAULT_BLOCK)) { 1636 f2fs_show_injection_info(FAULT_BLOCK); 1637 release = *count; 1638 goto enospc; 1639 } 1640 #endif 1641 /* 1642 * let's increase this in prior to actual block count change in order 1643 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1644 */ 1645 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1646 1647 spin_lock(&sbi->stat_lock); 1648 sbi->total_valid_block_count += (block_t)(*count); 1649 avail_user_block_count = sbi->user_block_count - 1650 sbi->current_reserved_blocks; 1651 1652 if (!__allow_reserved_blocks(sbi, inode)) 1653 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1654 1655 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1656 diff = sbi->total_valid_block_count - avail_user_block_count; 1657 if (diff > *count) 1658 diff = *count; 1659 *count -= diff; 1660 release = diff; 1661 sbi->total_valid_block_count -= diff; 1662 if (!*count) { 1663 spin_unlock(&sbi->stat_lock); 1664 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1665 goto enospc; 1666 } 1667 } 1668 spin_unlock(&sbi->stat_lock); 1669 1670 if (unlikely(release)) 1671 dquot_release_reservation_block(inode, release); 1672 f2fs_i_blocks_write(inode, *count, true, true); 1673 return 0; 1674 1675 enospc: 1676 dquot_release_reservation_block(inode, release); 1677 return -ENOSPC; 1678 } 1679 1680 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1681 struct inode *inode, 1682 block_t count) 1683 { 1684 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1685 1686 spin_lock(&sbi->stat_lock); 1687 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1688 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1689 sbi->total_valid_block_count -= (block_t)count; 1690 if (sbi->reserved_blocks && 1691 sbi->current_reserved_blocks < sbi->reserved_blocks) 1692 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1693 sbi->current_reserved_blocks + count); 1694 spin_unlock(&sbi->stat_lock); 1695 f2fs_i_blocks_write(inode, count, false, true); 1696 } 1697 1698 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1699 { 1700 atomic_inc(&sbi->nr_pages[count_type]); 1701 1702 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1703 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1704 return; 1705 1706 set_sbi_flag(sbi, SBI_IS_DIRTY); 1707 } 1708 1709 static inline void inode_inc_dirty_pages(struct inode *inode) 1710 { 1711 atomic_inc(&F2FS_I(inode)->dirty_pages); 1712 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1713 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1714 if (IS_NOQUOTA(inode)) 1715 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1716 } 1717 1718 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1719 { 1720 atomic_dec(&sbi->nr_pages[count_type]); 1721 } 1722 1723 static inline void inode_dec_dirty_pages(struct inode *inode) 1724 { 1725 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1726 !S_ISLNK(inode->i_mode)) 1727 return; 1728 1729 atomic_dec(&F2FS_I(inode)->dirty_pages); 1730 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1731 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1732 if (IS_NOQUOTA(inode)) 1733 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1734 } 1735 1736 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1737 { 1738 return atomic_read(&sbi->nr_pages[count_type]); 1739 } 1740 1741 static inline int get_dirty_pages(struct inode *inode) 1742 { 1743 return atomic_read(&F2FS_I(inode)->dirty_pages); 1744 } 1745 1746 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1747 { 1748 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1749 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1750 sbi->log_blocks_per_seg; 1751 1752 return segs / sbi->segs_per_sec; 1753 } 1754 1755 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1756 { 1757 return sbi->total_valid_block_count; 1758 } 1759 1760 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1761 { 1762 return sbi->discard_blks; 1763 } 1764 1765 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1766 { 1767 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1768 1769 /* return NAT or SIT bitmap */ 1770 if (flag == NAT_BITMAP) 1771 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1772 else if (flag == SIT_BITMAP) 1773 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1774 1775 return 0; 1776 } 1777 1778 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1779 { 1780 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1781 } 1782 1783 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1784 { 1785 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1786 int offset; 1787 1788 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1789 offset = (flag == SIT_BITMAP) ? 1790 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1791 return &ckpt->sit_nat_version_bitmap + offset; 1792 } 1793 1794 if (__cp_payload(sbi) > 0) { 1795 if (flag == NAT_BITMAP) 1796 return &ckpt->sit_nat_version_bitmap; 1797 else 1798 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1799 } else { 1800 offset = (flag == NAT_BITMAP) ? 1801 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1802 return &ckpt->sit_nat_version_bitmap + offset; 1803 } 1804 } 1805 1806 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1807 { 1808 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1809 1810 if (sbi->cur_cp_pack == 2) 1811 start_addr += sbi->blocks_per_seg; 1812 return start_addr; 1813 } 1814 1815 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1816 { 1817 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1818 1819 if (sbi->cur_cp_pack == 1) 1820 start_addr += sbi->blocks_per_seg; 1821 return start_addr; 1822 } 1823 1824 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1825 { 1826 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1827 } 1828 1829 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1830 { 1831 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1832 } 1833 1834 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1835 struct inode *inode, bool is_inode) 1836 { 1837 block_t valid_block_count; 1838 unsigned int valid_node_count; 1839 bool quota = inode && !is_inode; 1840 1841 if (quota) { 1842 int ret = dquot_reserve_block(inode, 1); 1843 if (ret) 1844 return ret; 1845 } 1846 1847 #ifdef CONFIG_F2FS_FAULT_INJECTION 1848 if (time_to_inject(sbi, FAULT_BLOCK)) { 1849 f2fs_show_injection_info(FAULT_BLOCK); 1850 goto enospc; 1851 } 1852 #endif 1853 1854 spin_lock(&sbi->stat_lock); 1855 1856 valid_block_count = sbi->total_valid_block_count + 1857 sbi->current_reserved_blocks + 1; 1858 1859 if (!__allow_reserved_blocks(sbi, inode)) 1860 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1861 1862 if (unlikely(valid_block_count > sbi->user_block_count)) { 1863 spin_unlock(&sbi->stat_lock); 1864 goto enospc; 1865 } 1866 1867 valid_node_count = sbi->total_valid_node_count + 1; 1868 if (unlikely(valid_node_count > sbi->total_node_count)) { 1869 spin_unlock(&sbi->stat_lock); 1870 goto enospc; 1871 } 1872 1873 sbi->total_valid_node_count++; 1874 sbi->total_valid_block_count++; 1875 spin_unlock(&sbi->stat_lock); 1876 1877 if (inode) { 1878 if (is_inode) 1879 f2fs_mark_inode_dirty_sync(inode, true); 1880 else 1881 f2fs_i_blocks_write(inode, 1, true, true); 1882 } 1883 1884 percpu_counter_inc(&sbi->alloc_valid_block_count); 1885 return 0; 1886 1887 enospc: 1888 if (quota) 1889 dquot_release_reservation_block(inode, 1); 1890 return -ENOSPC; 1891 } 1892 1893 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1894 struct inode *inode, bool is_inode) 1895 { 1896 spin_lock(&sbi->stat_lock); 1897 1898 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1899 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1900 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1901 1902 sbi->total_valid_node_count--; 1903 sbi->total_valid_block_count--; 1904 if (sbi->reserved_blocks && 1905 sbi->current_reserved_blocks < sbi->reserved_blocks) 1906 sbi->current_reserved_blocks++; 1907 1908 spin_unlock(&sbi->stat_lock); 1909 1910 if (!is_inode) 1911 f2fs_i_blocks_write(inode, 1, false, true); 1912 } 1913 1914 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1915 { 1916 return sbi->total_valid_node_count; 1917 } 1918 1919 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1920 { 1921 percpu_counter_inc(&sbi->total_valid_inode_count); 1922 } 1923 1924 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1925 { 1926 percpu_counter_dec(&sbi->total_valid_inode_count); 1927 } 1928 1929 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1930 { 1931 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1932 } 1933 1934 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1935 pgoff_t index, bool for_write) 1936 { 1937 #ifdef CONFIG_F2FS_FAULT_INJECTION 1938 struct page *page = find_lock_page(mapping, index); 1939 1940 if (page) 1941 return page; 1942 1943 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1944 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1945 return NULL; 1946 } 1947 #endif 1948 if (!for_write) 1949 return grab_cache_page(mapping, index); 1950 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1951 } 1952 1953 static inline struct page *f2fs_pagecache_get_page( 1954 struct address_space *mapping, pgoff_t index, 1955 int fgp_flags, gfp_t gfp_mask) 1956 { 1957 #ifdef CONFIG_F2FS_FAULT_INJECTION 1958 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1959 f2fs_show_injection_info(FAULT_PAGE_GET); 1960 return NULL; 1961 } 1962 #endif 1963 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1964 } 1965 1966 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1967 { 1968 char *src_kaddr = kmap(src); 1969 char *dst_kaddr = kmap(dst); 1970 1971 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1972 kunmap(dst); 1973 kunmap(src); 1974 } 1975 1976 static inline void f2fs_put_page(struct page *page, int unlock) 1977 { 1978 if (!page) 1979 return; 1980 1981 if (unlock) { 1982 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1983 unlock_page(page); 1984 } 1985 put_page(page); 1986 } 1987 1988 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1989 { 1990 if (dn->node_page) 1991 f2fs_put_page(dn->node_page, 1); 1992 if (dn->inode_page && dn->node_page != dn->inode_page) 1993 f2fs_put_page(dn->inode_page, 0); 1994 dn->node_page = NULL; 1995 dn->inode_page = NULL; 1996 } 1997 1998 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1999 size_t size) 2000 { 2001 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2002 } 2003 2004 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2005 gfp_t flags) 2006 { 2007 void *entry; 2008 2009 entry = kmem_cache_alloc(cachep, flags); 2010 if (!entry) 2011 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2012 return entry; 2013 } 2014 2015 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2016 int npages, bool no_fail) 2017 { 2018 struct bio *bio; 2019 2020 if (no_fail) { 2021 /* No failure on bio allocation */ 2022 bio = bio_alloc(GFP_NOIO, npages); 2023 if (!bio) 2024 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2025 return bio; 2026 } 2027 #ifdef CONFIG_F2FS_FAULT_INJECTION 2028 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2029 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2030 return NULL; 2031 } 2032 #endif 2033 return bio_alloc(GFP_KERNEL, npages); 2034 } 2035 2036 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2037 unsigned long index, void *item) 2038 { 2039 while (radix_tree_insert(root, index, item)) 2040 cond_resched(); 2041 } 2042 2043 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2044 2045 static inline bool IS_INODE(struct page *page) 2046 { 2047 struct f2fs_node *p = F2FS_NODE(page); 2048 2049 return RAW_IS_INODE(p); 2050 } 2051 2052 static inline int offset_in_addr(struct f2fs_inode *i) 2053 { 2054 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2055 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2056 } 2057 2058 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2059 { 2060 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2061 } 2062 2063 static inline int f2fs_has_extra_attr(struct inode *inode); 2064 static inline block_t datablock_addr(struct inode *inode, 2065 struct page *node_page, unsigned int offset) 2066 { 2067 struct f2fs_node *raw_node; 2068 __le32 *addr_array; 2069 int base = 0; 2070 bool is_inode = IS_INODE(node_page); 2071 2072 raw_node = F2FS_NODE(node_page); 2073 2074 /* from GC path only */ 2075 if (is_inode) { 2076 if (!inode) 2077 base = offset_in_addr(&raw_node->i); 2078 else if (f2fs_has_extra_attr(inode)) 2079 base = get_extra_isize(inode); 2080 } 2081 2082 addr_array = blkaddr_in_node(raw_node); 2083 return le32_to_cpu(addr_array[base + offset]); 2084 } 2085 2086 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2087 { 2088 int mask; 2089 2090 addr += (nr >> 3); 2091 mask = 1 << (7 - (nr & 0x07)); 2092 return mask & *addr; 2093 } 2094 2095 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2096 { 2097 int mask; 2098 2099 addr += (nr >> 3); 2100 mask = 1 << (7 - (nr & 0x07)); 2101 *addr |= mask; 2102 } 2103 2104 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2105 { 2106 int mask; 2107 2108 addr += (nr >> 3); 2109 mask = 1 << (7 - (nr & 0x07)); 2110 *addr &= ~mask; 2111 } 2112 2113 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2114 { 2115 int mask; 2116 int ret; 2117 2118 addr += (nr >> 3); 2119 mask = 1 << (7 - (nr & 0x07)); 2120 ret = mask & *addr; 2121 *addr |= mask; 2122 return ret; 2123 } 2124 2125 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2126 { 2127 int mask; 2128 int ret; 2129 2130 addr += (nr >> 3); 2131 mask = 1 << (7 - (nr & 0x07)); 2132 ret = mask & *addr; 2133 *addr &= ~mask; 2134 return ret; 2135 } 2136 2137 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2138 { 2139 int mask; 2140 2141 addr += (nr >> 3); 2142 mask = 1 << (7 - (nr & 0x07)); 2143 *addr ^= mask; 2144 } 2145 2146 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2147 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2148 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2149 2150 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2151 { 2152 if (S_ISDIR(mode)) 2153 return flags; 2154 else if (S_ISREG(mode)) 2155 return flags & F2FS_REG_FLMASK; 2156 else 2157 return flags & F2FS_OTHER_FLMASK; 2158 } 2159 2160 /* used for f2fs_inode_info->flags */ 2161 enum { 2162 FI_NEW_INODE, /* indicate newly allocated inode */ 2163 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2164 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2165 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2166 FI_INC_LINK, /* need to increment i_nlink */ 2167 FI_ACL_MODE, /* indicate acl mode */ 2168 FI_NO_ALLOC, /* should not allocate any blocks */ 2169 FI_FREE_NID, /* free allocated nide */ 2170 FI_NO_EXTENT, /* not to use the extent cache */ 2171 FI_INLINE_XATTR, /* used for inline xattr */ 2172 FI_INLINE_DATA, /* used for inline data*/ 2173 FI_INLINE_DENTRY, /* used for inline dentry */ 2174 FI_APPEND_WRITE, /* inode has appended data */ 2175 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2176 FI_NEED_IPU, /* used for ipu per file */ 2177 FI_ATOMIC_FILE, /* indicate atomic file */ 2178 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2179 FI_VOLATILE_FILE, /* indicate volatile file */ 2180 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2181 FI_DROP_CACHE, /* drop dirty page cache */ 2182 FI_DATA_EXIST, /* indicate data exists */ 2183 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2184 FI_DO_DEFRAG, /* indicate defragment is running */ 2185 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2186 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2187 FI_HOT_DATA, /* indicate file is hot */ 2188 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2189 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2190 FI_PIN_FILE, /* indicate file should not be gced */ 2191 }; 2192 2193 static inline void __mark_inode_dirty_flag(struct inode *inode, 2194 int flag, bool set) 2195 { 2196 switch (flag) { 2197 case FI_INLINE_XATTR: 2198 case FI_INLINE_DATA: 2199 case FI_INLINE_DENTRY: 2200 case FI_NEW_INODE: 2201 if (set) 2202 return; 2203 case FI_DATA_EXIST: 2204 case FI_INLINE_DOTS: 2205 case FI_PIN_FILE: 2206 f2fs_mark_inode_dirty_sync(inode, true); 2207 } 2208 } 2209 2210 static inline void set_inode_flag(struct inode *inode, int flag) 2211 { 2212 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2213 set_bit(flag, &F2FS_I(inode)->flags); 2214 __mark_inode_dirty_flag(inode, flag, true); 2215 } 2216 2217 static inline int is_inode_flag_set(struct inode *inode, int flag) 2218 { 2219 return test_bit(flag, &F2FS_I(inode)->flags); 2220 } 2221 2222 static inline void clear_inode_flag(struct inode *inode, int flag) 2223 { 2224 if (test_bit(flag, &F2FS_I(inode)->flags)) 2225 clear_bit(flag, &F2FS_I(inode)->flags); 2226 __mark_inode_dirty_flag(inode, flag, false); 2227 } 2228 2229 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2230 { 2231 F2FS_I(inode)->i_acl_mode = mode; 2232 set_inode_flag(inode, FI_ACL_MODE); 2233 f2fs_mark_inode_dirty_sync(inode, false); 2234 } 2235 2236 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2237 { 2238 if (inc) 2239 inc_nlink(inode); 2240 else 2241 drop_nlink(inode); 2242 f2fs_mark_inode_dirty_sync(inode, true); 2243 } 2244 2245 static inline void f2fs_i_blocks_write(struct inode *inode, 2246 block_t diff, bool add, bool claim) 2247 { 2248 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2249 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2250 2251 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2252 if (add) { 2253 if (claim) 2254 dquot_claim_block(inode, diff); 2255 else 2256 dquot_alloc_block_nofail(inode, diff); 2257 } else { 2258 dquot_free_block(inode, diff); 2259 } 2260 2261 f2fs_mark_inode_dirty_sync(inode, true); 2262 if (clean || recover) 2263 set_inode_flag(inode, FI_AUTO_RECOVER); 2264 } 2265 2266 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2267 { 2268 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2269 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2270 2271 if (i_size_read(inode) == i_size) 2272 return; 2273 2274 i_size_write(inode, i_size); 2275 f2fs_mark_inode_dirty_sync(inode, true); 2276 if (clean || recover) 2277 set_inode_flag(inode, FI_AUTO_RECOVER); 2278 } 2279 2280 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2281 { 2282 F2FS_I(inode)->i_current_depth = depth; 2283 f2fs_mark_inode_dirty_sync(inode, true); 2284 } 2285 2286 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2287 unsigned int count) 2288 { 2289 F2FS_I(inode)->i_gc_failures = count; 2290 f2fs_mark_inode_dirty_sync(inode, true); 2291 } 2292 2293 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2294 { 2295 F2FS_I(inode)->i_xattr_nid = xnid; 2296 f2fs_mark_inode_dirty_sync(inode, true); 2297 } 2298 2299 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2300 { 2301 F2FS_I(inode)->i_pino = pino; 2302 f2fs_mark_inode_dirty_sync(inode, true); 2303 } 2304 2305 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2306 { 2307 struct f2fs_inode_info *fi = F2FS_I(inode); 2308 2309 if (ri->i_inline & F2FS_INLINE_XATTR) 2310 set_bit(FI_INLINE_XATTR, &fi->flags); 2311 if (ri->i_inline & F2FS_INLINE_DATA) 2312 set_bit(FI_INLINE_DATA, &fi->flags); 2313 if (ri->i_inline & F2FS_INLINE_DENTRY) 2314 set_bit(FI_INLINE_DENTRY, &fi->flags); 2315 if (ri->i_inline & F2FS_DATA_EXIST) 2316 set_bit(FI_DATA_EXIST, &fi->flags); 2317 if (ri->i_inline & F2FS_INLINE_DOTS) 2318 set_bit(FI_INLINE_DOTS, &fi->flags); 2319 if (ri->i_inline & F2FS_EXTRA_ATTR) 2320 set_bit(FI_EXTRA_ATTR, &fi->flags); 2321 if (ri->i_inline & F2FS_PIN_FILE) 2322 set_bit(FI_PIN_FILE, &fi->flags); 2323 } 2324 2325 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2326 { 2327 ri->i_inline = 0; 2328 2329 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2330 ri->i_inline |= F2FS_INLINE_XATTR; 2331 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2332 ri->i_inline |= F2FS_INLINE_DATA; 2333 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2334 ri->i_inline |= F2FS_INLINE_DENTRY; 2335 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2336 ri->i_inline |= F2FS_DATA_EXIST; 2337 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2338 ri->i_inline |= F2FS_INLINE_DOTS; 2339 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2340 ri->i_inline |= F2FS_EXTRA_ATTR; 2341 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2342 ri->i_inline |= F2FS_PIN_FILE; 2343 } 2344 2345 static inline int f2fs_has_extra_attr(struct inode *inode) 2346 { 2347 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2348 } 2349 2350 static inline int f2fs_has_inline_xattr(struct inode *inode) 2351 { 2352 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2353 } 2354 2355 static inline unsigned int addrs_per_inode(struct inode *inode) 2356 { 2357 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2358 } 2359 2360 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2361 { 2362 struct f2fs_inode *ri = F2FS_INODE(page); 2363 2364 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2365 get_inline_xattr_addrs(inode)]); 2366 } 2367 2368 static inline int inline_xattr_size(struct inode *inode) 2369 { 2370 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2371 } 2372 2373 static inline int f2fs_has_inline_data(struct inode *inode) 2374 { 2375 return is_inode_flag_set(inode, FI_INLINE_DATA); 2376 } 2377 2378 static inline int f2fs_exist_data(struct inode *inode) 2379 { 2380 return is_inode_flag_set(inode, FI_DATA_EXIST); 2381 } 2382 2383 static inline int f2fs_has_inline_dots(struct inode *inode) 2384 { 2385 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2386 } 2387 2388 static inline bool f2fs_is_pinned_file(struct inode *inode) 2389 { 2390 return is_inode_flag_set(inode, FI_PIN_FILE); 2391 } 2392 2393 static inline bool f2fs_is_atomic_file(struct inode *inode) 2394 { 2395 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2396 } 2397 2398 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2399 { 2400 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2401 } 2402 2403 static inline bool f2fs_is_volatile_file(struct inode *inode) 2404 { 2405 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2406 } 2407 2408 static inline bool f2fs_is_first_block_written(struct inode *inode) 2409 { 2410 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2411 } 2412 2413 static inline bool f2fs_is_drop_cache(struct inode *inode) 2414 { 2415 return is_inode_flag_set(inode, FI_DROP_CACHE); 2416 } 2417 2418 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2419 { 2420 struct f2fs_inode *ri = F2FS_INODE(page); 2421 int extra_size = get_extra_isize(inode); 2422 2423 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2424 } 2425 2426 static inline int f2fs_has_inline_dentry(struct inode *inode) 2427 { 2428 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2429 } 2430 2431 static inline int is_file(struct inode *inode, int type) 2432 { 2433 return F2FS_I(inode)->i_advise & type; 2434 } 2435 2436 static inline void set_file(struct inode *inode, int type) 2437 { 2438 F2FS_I(inode)->i_advise |= type; 2439 f2fs_mark_inode_dirty_sync(inode, true); 2440 } 2441 2442 static inline void clear_file(struct inode *inode, int type) 2443 { 2444 F2FS_I(inode)->i_advise &= ~type; 2445 f2fs_mark_inode_dirty_sync(inode, true); 2446 } 2447 2448 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2449 { 2450 bool ret; 2451 2452 if (dsync) { 2453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2454 2455 spin_lock(&sbi->inode_lock[DIRTY_META]); 2456 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2457 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2458 return ret; 2459 } 2460 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2461 file_keep_isize(inode) || 2462 i_size_read(inode) & PAGE_MASK) 2463 return false; 2464 2465 down_read(&F2FS_I(inode)->i_sem); 2466 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2467 up_read(&F2FS_I(inode)->i_sem); 2468 2469 return ret; 2470 } 2471 2472 static inline bool f2fs_readonly(struct super_block *sb) 2473 { 2474 return sb_rdonly(sb); 2475 } 2476 2477 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2478 { 2479 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2480 } 2481 2482 static inline bool is_dot_dotdot(const struct qstr *str) 2483 { 2484 if (str->len == 1 && str->name[0] == '.') 2485 return true; 2486 2487 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2488 return true; 2489 2490 return false; 2491 } 2492 2493 static inline bool f2fs_may_extent_tree(struct inode *inode) 2494 { 2495 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2496 is_inode_flag_set(inode, FI_NO_EXTENT)) 2497 return false; 2498 2499 return S_ISREG(inode->i_mode); 2500 } 2501 2502 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2503 size_t size, gfp_t flags) 2504 { 2505 #ifdef CONFIG_F2FS_FAULT_INJECTION 2506 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2507 f2fs_show_injection_info(FAULT_KMALLOC); 2508 return NULL; 2509 } 2510 #endif 2511 return kmalloc(size, flags); 2512 } 2513 2514 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2515 size_t size, gfp_t flags) 2516 { 2517 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2518 } 2519 2520 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2521 size_t size, gfp_t flags) 2522 { 2523 #ifdef CONFIG_F2FS_FAULT_INJECTION 2524 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2525 f2fs_show_injection_info(FAULT_KVMALLOC); 2526 return NULL; 2527 } 2528 #endif 2529 return kvmalloc(size, flags); 2530 } 2531 2532 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2533 size_t size, gfp_t flags) 2534 { 2535 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2536 } 2537 2538 static inline int get_extra_isize(struct inode *inode) 2539 { 2540 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2541 } 2542 2543 static inline int get_inline_xattr_addrs(struct inode *inode) 2544 { 2545 return F2FS_I(inode)->i_inline_xattr_size; 2546 } 2547 2548 #define get_inode_mode(i) \ 2549 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2550 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2551 2552 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2553 (offsetof(struct f2fs_inode, i_extra_end) - \ 2554 offsetof(struct f2fs_inode, i_extra_isize)) \ 2555 2556 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2557 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2558 ((offsetof(typeof(*f2fs_inode), field) + \ 2559 sizeof((f2fs_inode)->field)) \ 2560 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2561 2562 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2563 { 2564 int i; 2565 2566 spin_lock(&sbi->iostat_lock); 2567 for (i = 0; i < NR_IO_TYPE; i++) 2568 sbi->write_iostat[i] = 0; 2569 spin_unlock(&sbi->iostat_lock); 2570 } 2571 2572 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2573 enum iostat_type type, unsigned long long io_bytes) 2574 { 2575 if (!sbi->iostat_enable) 2576 return; 2577 spin_lock(&sbi->iostat_lock); 2578 sbi->write_iostat[type] += io_bytes; 2579 2580 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2581 sbi->write_iostat[APP_BUFFERED_IO] = 2582 sbi->write_iostat[APP_WRITE_IO] - 2583 sbi->write_iostat[APP_DIRECT_IO]; 2584 spin_unlock(&sbi->iostat_lock); 2585 } 2586 2587 /* 2588 * file.c 2589 */ 2590 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2591 void truncate_data_blocks(struct dnode_of_data *dn); 2592 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2593 int f2fs_truncate(struct inode *inode); 2594 int f2fs_getattr(const struct path *path, struct kstat *stat, 2595 u32 request_mask, unsigned int flags); 2596 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2597 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2598 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2599 int f2fs_precache_extents(struct inode *inode); 2600 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2601 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2602 int f2fs_pin_file_control(struct inode *inode, bool inc); 2603 2604 /* 2605 * inode.c 2606 */ 2607 void f2fs_set_inode_flags(struct inode *inode); 2608 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2609 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2610 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2611 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2612 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2613 void update_inode(struct inode *inode, struct page *node_page); 2614 void update_inode_page(struct inode *inode); 2615 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2616 void f2fs_evict_inode(struct inode *inode); 2617 void handle_failed_inode(struct inode *inode); 2618 2619 /* 2620 * namei.c 2621 */ 2622 int update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2623 bool hot, bool set); 2624 struct dentry *f2fs_get_parent(struct dentry *child); 2625 2626 /* 2627 * dir.c 2628 */ 2629 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2630 unsigned char get_de_type(struct f2fs_dir_entry *de); 2631 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2632 f2fs_hash_t namehash, int *max_slots, 2633 struct f2fs_dentry_ptr *d); 2634 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2635 unsigned int start_pos, struct fscrypt_str *fstr); 2636 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2637 struct f2fs_dentry_ptr *d); 2638 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2639 const struct qstr *new_name, 2640 const struct qstr *orig_name, struct page *dpage); 2641 void update_parent_metadata(struct inode *dir, struct inode *inode, 2642 unsigned int current_depth); 2643 int room_for_filename(const void *bitmap, int slots, int max_slots); 2644 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2645 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2646 struct fscrypt_name *fname, struct page **res_page); 2647 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2648 const struct qstr *child, struct page **res_page); 2649 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2650 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2651 struct page **page); 2652 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2653 struct page *page, struct inode *inode); 2654 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2655 const struct qstr *name, f2fs_hash_t name_hash, 2656 unsigned int bit_pos); 2657 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2658 const struct qstr *orig_name, 2659 struct inode *inode, nid_t ino, umode_t mode); 2660 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2661 struct inode *inode, nid_t ino, umode_t mode); 2662 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2663 struct inode *inode, nid_t ino, umode_t mode); 2664 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2665 struct inode *dir, struct inode *inode); 2666 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2667 bool f2fs_empty_dir(struct inode *dir); 2668 2669 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2670 { 2671 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2672 inode, inode->i_ino, inode->i_mode); 2673 } 2674 2675 /* 2676 * super.c 2677 */ 2678 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2679 void f2fs_inode_synced(struct inode *inode); 2680 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2681 void f2fs_quota_off_umount(struct super_block *sb); 2682 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2683 int f2fs_sync_fs(struct super_block *sb, int sync); 2684 extern __printf(3, 4) 2685 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2686 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2687 2688 /* 2689 * hash.c 2690 */ 2691 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2692 struct fscrypt_name *fname); 2693 2694 /* 2695 * node.c 2696 */ 2697 struct dnode_of_data; 2698 struct node_info; 2699 2700 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2701 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2702 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2703 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2704 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2705 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2706 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2707 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2708 int truncate_xattr_node(struct inode *inode); 2709 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2710 int remove_inode_page(struct inode *inode); 2711 struct page *new_inode_page(struct inode *inode); 2712 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2713 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2714 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2715 struct page *get_node_page_ra(struct page *parent, int start); 2716 void move_node_page(struct page *node_page, int gc_type); 2717 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2718 struct writeback_control *wbc, bool atomic); 2719 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2720 bool do_balance, enum iostat_type io_type); 2721 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2722 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2723 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2724 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2725 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2726 void recover_inline_xattr(struct inode *inode, struct page *page); 2727 int recover_xattr_data(struct inode *inode, struct page *page); 2728 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2729 void restore_node_summary(struct f2fs_sb_info *sbi, 2730 unsigned int segno, struct f2fs_summary_block *sum); 2731 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2732 int build_node_manager(struct f2fs_sb_info *sbi); 2733 void destroy_node_manager(struct f2fs_sb_info *sbi); 2734 int __init create_node_manager_caches(void); 2735 void destroy_node_manager_caches(void); 2736 2737 /* 2738 * segment.c 2739 */ 2740 bool need_SSR(struct f2fs_sb_info *sbi); 2741 void register_inmem_page(struct inode *inode, struct page *page); 2742 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2743 void drop_inmem_pages(struct inode *inode); 2744 void drop_inmem_page(struct inode *inode, struct page *page); 2745 int commit_inmem_pages(struct inode *inode); 2746 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2747 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2748 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2749 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2750 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2751 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2752 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2753 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2754 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2755 unsigned int granularity); 2756 void drop_discard_cmd(struct f2fs_sb_info *sbi); 2757 void stop_discard_thread(struct f2fs_sb_info *sbi); 2758 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2759 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2760 void release_discard_addrs(struct f2fs_sb_info *sbi); 2761 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2762 void allocate_new_segments(struct f2fs_sb_info *sbi); 2763 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2764 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2765 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2766 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2767 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2768 enum iostat_type io_type); 2769 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2770 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2771 int rewrite_data_page(struct f2fs_io_info *fio); 2772 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2773 block_t old_blkaddr, block_t new_blkaddr, 2774 bool recover_curseg, bool recover_newaddr); 2775 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2776 block_t old_addr, block_t new_addr, 2777 unsigned char version, bool recover_curseg, 2778 bool recover_newaddr); 2779 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2780 block_t old_blkaddr, block_t *new_blkaddr, 2781 struct f2fs_summary *sum, int type, 2782 struct f2fs_io_info *fio, bool add_list); 2783 void f2fs_wait_on_page_writeback(struct page *page, 2784 enum page_type type, bool ordered); 2785 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2786 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2787 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2788 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2789 unsigned int val, int alloc); 2790 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2791 int build_segment_manager(struct f2fs_sb_info *sbi); 2792 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2793 int __init create_segment_manager_caches(void); 2794 void destroy_segment_manager_caches(void); 2795 int rw_hint_to_seg_type(enum rw_hint hint); 2796 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type, 2797 enum temp_type temp); 2798 2799 /* 2800 * checkpoint.c 2801 */ 2802 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2803 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2804 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2805 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2806 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2807 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2808 int type, bool sync); 2809 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2810 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2811 long nr_to_write, enum iostat_type io_type); 2812 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2813 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2814 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2815 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2816 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2817 unsigned int devidx, int type); 2818 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2819 unsigned int devidx, int type); 2820 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2821 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2822 void release_orphan_inode(struct f2fs_sb_info *sbi); 2823 void add_orphan_inode(struct inode *inode); 2824 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2825 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2826 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2827 void update_dirty_page(struct inode *inode, struct page *page); 2828 void remove_dirty_inode(struct inode *inode); 2829 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2830 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2831 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2832 int __init create_checkpoint_caches(void); 2833 void destroy_checkpoint_caches(void); 2834 2835 /* 2836 * data.c 2837 */ 2838 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2839 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2840 struct inode *inode, nid_t ino, pgoff_t idx, 2841 enum page_type type); 2842 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2843 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2844 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2845 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2846 block_t blk_addr, struct bio *bio); 2847 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2848 void set_data_blkaddr(struct dnode_of_data *dn); 2849 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2850 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2851 int reserve_new_block(struct dnode_of_data *dn); 2852 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2853 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2854 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2855 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2856 int op_flags, bool for_write); 2857 struct page *find_data_page(struct inode *inode, pgoff_t index); 2858 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2859 bool for_write); 2860 struct page *get_new_data_page(struct inode *inode, 2861 struct page *ipage, pgoff_t index, bool new_i_size); 2862 int do_write_data_page(struct f2fs_io_info *fio); 2863 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2864 int create, int flag); 2865 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2866 u64 start, u64 len); 2867 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2868 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2869 void f2fs_set_page_dirty_nobuffers(struct page *page); 2870 int __f2fs_write_data_pages(struct address_space *mapping, 2871 struct writeback_control *wbc, 2872 enum iostat_type io_type); 2873 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2874 unsigned int length); 2875 int f2fs_release_page(struct page *page, gfp_t wait); 2876 #ifdef CONFIG_MIGRATION 2877 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2878 struct page *page, enum migrate_mode mode); 2879 #endif 2880 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 2881 2882 /* 2883 * gc.c 2884 */ 2885 int start_gc_thread(struct f2fs_sb_info *sbi); 2886 void stop_gc_thread(struct f2fs_sb_info *sbi); 2887 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2888 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2889 unsigned int segno); 2890 void build_gc_manager(struct f2fs_sb_info *sbi); 2891 2892 /* 2893 * recovery.c 2894 */ 2895 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2896 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2897 2898 /* 2899 * debug.c 2900 */ 2901 #ifdef CONFIG_F2FS_STAT_FS 2902 struct f2fs_stat_info { 2903 struct list_head stat_list; 2904 struct f2fs_sb_info *sbi; 2905 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2906 int main_area_segs, main_area_sections, main_area_zones; 2907 unsigned long long hit_largest, hit_cached, hit_rbtree; 2908 unsigned long long hit_total, total_ext; 2909 int ext_tree, zombie_tree, ext_node; 2910 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2911 int ndirty_data, ndirty_qdata; 2912 int inmem_pages; 2913 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2914 int nats, dirty_nats, sits, dirty_sits; 2915 int free_nids, avail_nids, alloc_nids; 2916 int total_count, utilization; 2917 int bg_gc, nr_wb_cp_data, nr_wb_data; 2918 int nr_flushing, nr_flushed, flush_list_empty; 2919 int nr_discarding, nr_discarded; 2920 int nr_discard_cmd; 2921 unsigned int undiscard_blks; 2922 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2923 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2924 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2925 unsigned int bimodal, avg_vblocks; 2926 int util_free, util_valid, util_invalid; 2927 int rsvd_segs, overp_segs; 2928 int dirty_count, node_pages, meta_pages; 2929 int prefree_count, call_count, cp_count, bg_cp_count; 2930 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2931 int bg_node_segs, bg_data_segs; 2932 int tot_blks, data_blks, node_blks; 2933 int bg_data_blks, bg_node_blks; 2934 int curseg[NR_CURSEG_TYPE]; 2935 int cursec[NR_CURSEG_TYPE]; 2936 int curzone[NR_CURSEG_TYPE]; 2937 2938 unsigned int segment_count[2]; 2939 unsigned int block_count[2]; 2940 unsigned int inplace_count; 2941 unsigned long long base_mem, cache_mem, page_mem; 2942 }; 2943 2944 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2945 { 2946 return (struct f2fs_stat_info *)sbi->stat_info; 2947 } 2948 2949 #define stat_inc_cp_count(si) ((si)->cp_count++) 2950 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2951 #define stat_inc_call_count(si) ((si)->call_count++) 2952 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2953 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2954 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2955 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2956 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2957 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2958 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2959 #define stat_inc_inline_xattr(inode) \ 2960 do { \ 2961 if (f2fs_has_inline_xattr(inode)) \ 2962 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2963 } while (0) 2964 #define stat_dec_inline_xattr(inode) \ 2965 do { \ 2966 if (f2fs_has_inline_xattr(inode)) \ 2967 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2968 } while (0) 2969 #define stat_inc_inline_inode(inode) \ 2970 do { \ 2971 if (f2fs_has_inline_data(inode)) \ 2972 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2973 } while (0) 2974 #define stat_dec_inline_inode(inode) \ 2975 do { \ 2976 if (f2fs_has_inline_data(inode)) \ 2977 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2978 } while (0) 2979 #define stat_inc_inline_dir(inode) \ 2980 do { \ 2981 if (f2fs_has_inline_dentry(inode)) \ 2982 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2983 } while (0) 2984 #define stat_dec_inline_dir(inode) \ 2985 do { \ 2986 if (f2fs_has_inline_dentry(inode)) \ 2987 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2988 } while (0) 2989 #define stat_inc_seg_type(sbi, curseg) \ 2990 ((sbi)->segment_count[(curseg)->alloc_type]++) 2991 #define stat_inc_block_count(sbi, curseg) \ 2992 ((sbi)->block_count[(curseg)->alloc_type]++) 2993 #define stat_inc_inplace_blocks(sbi) \ 2994 (atomic_inc(&(sbi)->inplace_count)) 2995 #define stat_inc_atomic_write(inode) \ 2996 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2997 #define stat_dec_atomic_write(inode) \ 2998 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2999 #define stat_update_max_atomic_write(inode) \ 3000 do { \ 3001 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3002 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3003 if (cur > max) \ 3004 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3005 } while (0) 3006 #define stat_inc_volatile_write(inode) \ 3007 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3008 #define stat_dec_volatile_write(inode) \ 3009 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3010 #define stat_update_max_volatile_write(inode) \ 3011 do { \ 3012 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3013 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3014 if (cur > max) \ 3015 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3016 } while (0) 3017 #define stat_inc_seg_count(sbi, type, gc_type) \ 3018 do { \ 3019 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3020 si->tot_segs++; \ 3021 if ((type) == SUM_TYPE_DATA) { \ 3022 si->data_segs++; \ 3023 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3024 } else { \ 3025 si->node_segs++; \ 3026 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3027 } \ 3028 } while (0) 3029 3030 #define stat_inc_tot_blk_count(si, blks) \ 3031 ((si)->tot_blks += (blks)) 3032 3033 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3034 do { \ 3035 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3036 stat_inc_tot_blk_count(si, blks); \ 3037 si->data_blks += (blks); \ 3038 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3039 } while (0) 3040 3041 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3042 do { \ 3043 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3044 stat_inc_tot_blk_count(si, blks); \ 3045 si->node_blks += (blks); \ 3046 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3047 } while (0) 3048 3049 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3050 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3051 int __init f2fs_create_root_stats(void); 3052 void f2fs_destroy_root_stats(void); 3053 #else 3054 #define stat_inc_cp_count(si) do { } while (0) 3055 #define stat_inc_bg_cp_count(si) do { } while (0) 3056 #define stat_inc_call_count(si) do { } while (0) 3057 #define stat_inc_bggc_count(si) do { } while (0) 3058 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3059 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3060 #define stat_inc_total_hit(sb) do { } while (0) 3061 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3062 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3063 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3064 #define stat_inc_inline_xattr(inode) do { } while (0) 3065 #define stat_dec_inline_xattr(inode) do { } while (0) 3066 #define stat_inc_inline_inode(inode) do { } while (0) 3067 #define stat_dec_inline_inode(inode) do { } while (0) 3068 #define stat_inc_inline_dir(inode) do { } while (0) 3069 #define stat_dec_inline_dir(inode) do { } while (0) 3070 #define stat_inc_atomic_write(inode) do { } while (0) 3071 #define stat_dec_atomic_write(inode) do { } while (0) 3072 #define stat_update_max_atomic_write(inode) do { } while (0) 3073 #define stat_inc_volatile_write(inode) do { } while (0) 3074 #define stat_dec_volatile_write(inode) do { } while (0) 3075 #define stat_update_max_volatile_write(inode) do { } while (0) 3076 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3077 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3078 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3079 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3080 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3081 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3082 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3083 3084 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3085 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3086 static inline int __init f2fs_create_root_stats(void) { return 0; } 3087 static inline void f2fs_destroy_root_stats(void) { } 3088 #endif 3089 3090 extern const struct file_operations f2fs_dir_operations; 3091 extern const struct file_operations f2fs_file_operations; 3092 extern const struct inode_operations f2fs_file_inode_operations; 3093 extern const struct address_space_operations f2fs_dblock_aops; 3094 extern const struct address_space_operations f2fs_node_aops; 3095 extern const struct address_space_operations f2fs_meta_aops; 3096 extern const struct inode_operations f2fs_dir_inode_operations; 3097 extern const struct inode_operations f2fs_symlink_inode_operations; 3098 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3099 extern const struct inode_operations f2fs_special_inode_operations; 3100 extern struct kmem_cache *inode_entry_slab; 3101 3102 /* 3103 * inline.c 3104 */ 3105 bool f2fs_may_inline_data(struct inode *inode); 3106 bool f2fs_may_inline_dentry(struct inode *inode); 3107 void read_inline_data(struct page *page, struct page *ipage); 3108 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3109 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3110 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3111 int f2fs_convert_inline_inode(struct inode *inode); 3112 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3113 bool recover_inline_data(struct inode *inode, struct page *npage); 3114 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3115 struct fscrypt_name *fname, struct page **res_page); 3116 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3117 struct page *ipage); 3118 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3119 const struct qstr *orig_name, 3120 struct inode *inode, nid_t ino, umode_t mode); 3121 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3122 struct inode *dir, struct inode *inode); 3123 bool f2fs_empty_inline_dir(struct inode *dir); 3124 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3125 struct fscrypt_str *fstr); 3126 int f2fs_inline_data_fiemap(struct inode *inode, 3127 struct fiemap_extent_info *fieinfo, 3128 __u64 start, __u64 len); 3129 3130 /* 3131 * shrinker.c 3132 */ 3133 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3134 struct shrink_control *sc); 3135 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3136 struct shrink_control *sc); 3137 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3138 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3139 3140 /* 3141 * extent_cache.c 3142 */ 3143 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3144 struct rb_entry *cached_re, unsigned int ofs); 3145 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3146 struct rb_root *root, struct rb_node **parent, 3147 unsigned int ofs); 3148 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3149 struct rb_entry *cached_re, unsigned int ofs, 3150 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3151 struct rb_node ***insert_p, struct rb_node **insert_parent, 3152 bool force); 3153 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3154 struct rb_root *root); 3155 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3156 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3157 void f2fs_drop_extent_tree(struct inode *inode); 3158 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3159 void f2fs_destroy_extent_tree(struct inode *inode); 3160 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3161 struct extent_info *ei); 3162 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3163 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3164 pgoff_t fofs, block_t blkaddr, unsigned int len); 3165 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3166 int __init create_extent_cache(void); 3167 void destroy_extent_cache(void); 3168 3169 /* 3170 * sysfs.c 3171 */ 3172 int __init f2fs_init_sysfs(void); 3173 void f2fs_exit_sysfs(void); 3174 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3175 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3176 3177 /* 3178 * crypto support 3179 */ 3180 static inline bool f2fs_encrypted_inode(struct inode *inode) 3181 { 3182 return file_is_encrypt(inode); 3183 } 3184 3185 static inline bool f2fs_encrypted_file(struct inode *inode) 3186 { 3187 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3188 } 3189 3190 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3191 { 3192 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3193 file_set_encrypt(inode); 3194 inode->i_flags |= S_ENCRYPTED; 3195 #endif 3196 } 3197 3198 static inline bool f2fs_bio_encrypted(struct bio *bio) 3199 { 3200 return bio->bi_private != NULL; 3201 } 3202 3203 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3204 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3205 { \ 3206 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3207 } 3208 3209 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3210 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3211 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3212 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3213 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3214 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3215 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3216 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3217 3218 #ifdef CONFIG_BLK_DEV_ZONED 3219 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3220 struct block_device *bdev, block_t blkaddr) 3221 { 3222 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3223 int i; 3224 3225 for (i = 0; i < sbi->s_ndevs; i++) 3226 if (FDEV(i).bdev == bdev) 3227 return FDEV(i).blkz_type[zno]; 3228 return -EINVAL; 3229 } 3230 #endif 3231 3232 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3233 { 3234 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3235 3236 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3237 } 3238 3239 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3240 { 3241 clear_opt(sbi, ADAPTIVE); 3242 clear_opt(sbi, LFS); 3243 3244 switch (mt) { 3245 case F2FS_MOUNT_ADAPTIVE: 3246 set_opt(sbi, ADAPTIVE); 3247 break; 3248 case F2FS_MOUNT_LFS: 3249 set_opt(sbi, LFS); 3250 break; 3251 } 3252 } 3253 3254 static inline bool f2fs_may_encrypt(struct inode *inode) 3255 { 3256 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3257 umode_t mode = inode->i_mode; 3258 3259 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3260 #else 3261 return 0; 3262 #endif 3263 } 3264 3265 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3266 { 3267 return (f2fs_encrypted_file(inode) || 3268 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3269 F2FS_I_SB(inode)->s_ndevs); 3270 } 3271 3272 #endif 3273