xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b82d43000b8f361104c7b5ca81fb05bfa1b74a2c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 
79 /* maximum retry count for injected failure */
80 #define DEFAULT_FAILURE_RETRY_COUNT		8
81 #else
82 #define DEFAULT_FAILURE_RETRY_COUNT		1
83 #endif
84 
85 /*
86  * For mount options
87  */
88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
89 #define F2FS_MOUNT_DISCARD		0x00000002
90 #define F2FS_MOUNT_NOHEAP		0x00000004
91 #define F2FS_MOUNT_XATTR_USER		0x00000008
92 #define F2FS_MOUNT_POSIX_ACL		0x00000010
93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
94 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
95 #define F2FS_MOUNT_INLINE_DATA		0x00000080
96 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
97 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
98 #define F2FS_MOUNT_NOBARRIER		0x00000400
99 #define F2FS_MOUNT_FASTBOOT		0x00000800
100 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
101 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
102 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
103 #define F2FS_MOUNT_USRQUOTA		0x00008000
104 #define F2FS_MOUNT_GRPQUOTA		0x00010000
105 #define F2FS_MOUNT_PRJQUOTA		0x00020000
106 #define F2FS_MOUNT_QUOTA		0x00040000
107 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
108 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
109 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
110 #define F2FS_MOUNT_NORECOVERY		0x00400000
111 #define F2FS_MOUNT_ATGC			0x00800000
112 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
113 #define	F2FS_MOUNT_GC_MERGE		0x02000000
114 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
115 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
116 
117 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
118 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121 
122 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
123 		typecheck(unsigned long long, b) &&			\
124 		((long long)((a) - (b)) > 0))
125 
126 typedef u32 block_t;	/*
127 			 * should not change u32, since it is the on-disk block
128 			 * address format, __le32.
129 			 */
130 typedef u32 nid_t;
131 
132 #define COMPRESS_EXT_NUM		16
133 
134 /*
135  * An implementation of an rwsem that is explicitly unfair to readers. This
136  * prevents priority inversion when a low-priority reader acquires the read lock
137  * while sleeping on the write lock but the write lock is needed by
138  * higher-priority clients.
139  */
140 
141 struct f2fs_rwsem {
142         struct rw_semaphore internal_rwsem;
143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144         wait_queue_head_t read_waiters;
145 #endif
146 };
147 
148 struct f2fs_mount_info {
149 	unsigned int opt;
150 	block_t root_reserved_blocks;	/* root reserved blocks */
151 	kuid_t s_resuid;		/* reserved blocks for uid */
152 	kgid_t s_resgid;		/* reserved blocks for gid */
153 	int active_logs;		/* # of active logs */
154 	int inline_xattr_size;		/* inline xattr size */
155 #ifdef CONFIG_F2FS_FAULT_INJECTION
156 	struct f2fs_fault_info fault_info;	/* For fault injection */
157 #endif
158 #ifdef CONFIG_QUOTA
159 	/* Names of quota files with journalled quota */
160 	char *s_qf_names[MAXQUOTAS];
161 	int s_jquota_fmt;			/* Format of quota to use */
162 #endif
163 	/* For which write hints are passed down to block layer */
164 	int alloc_mode;			/* segment allocation policy */
165 	int fsync_mode;			/* fsync policy */
166 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
167 	int bggc_mode;			/* bggc mode: off, on or sync */
168 	int memory_mode;		/* memory mode */
169 	int errors;			/* errors parameter */
170 	int discard_unit;		/*
171 					 * discard command's offset/size should
172 					 * be aligned to this unit: block,
173 					 * segment or section
174 					 */
175 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176 	block_t unusable_cap_perc;	/* percentage for cap */
177 	block_t unusable_cap;		/* Amount of space allowed to be
178 					 * unusable when disabling checkpoint
179 					 */
180 
181 	/* For compression */
182 	unsigned char compress_algorithm;	/* algorithm type */
183 	unsigned char compress_log_size;	/* cluster log size */
184 	unsigned char compress_level;		/* compress level */
185 	bool compress_chksum;			/* compressed data chksum */
186 	unsigned char compress_ext_cnt;		/* extension count */
187 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
188 	int compress_mode;			/* compression mode */
189 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
190 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191 };
192 
193 #define F2FS_FEATURE_ENCRYPT			0x00000001
194 #define F2FS_FEATURE_BLKZONED			0x00000002
195 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
196 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
197 #define F2FS_FEATURE_PRJQUOTA			0x00000010
198 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
200 #define F2FS_FEATURE_QUOTA_INO			0x00000080
201 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
202 #define F2FS_FEATURE_LOST_FOUND			0x00000200
203 #define F2FS_FEATURE_VERITY			0x00000400
204 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
205 #define F2FS_FEATURE_CASEFOLD			0x00001000
206 #define F2FS_FEATURE_COMPRESSION		0x00002000
207 #define F2FS_FEATURE_RO				0x00004000
208 
209 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
210 	((raw_super->feature & cpu_to_le32(mask)) != 0)
211 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
212 
213 /*
214  * Default values for user and/or group using reserved blocks
215  */
216 #define	F2FS_DEF_RESUID		0
217 #define	F2FS_DEF_RESGID		0
218 
219 /*
220  * For checkpoint manager
221  */
222 enum {
223 	NAT_BITMAP,
224 	SIT_BITMAP
225 };
226 
227 #define	CP_UMOUNT	0x00000001
228 #define	CP_FASTBOOT	0x00000002
229 #define	CP_SYNC		0x00000004
230 #define	CP_RECOVERY	0x00000008
231 #define	CP_DISCARD	0x00000010
232 #define CP_TRIMMED	0x00000020
233 #define CP_PAUSE	0x00000040
234 #define CP_RESIZE 	0x00000080
235 
236 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
237 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
238 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
239 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
240 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
241 #define DEF_CP_INTERVAL			60	/* 60 secs */
242 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
243 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
244 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
245 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
246 
247 struct cp_control {
248 	int reason;
249 	__u64 trim_start;
250 	__u64 trim_end;
251 	__u64 trim_minlen;
252 };
253 
254 /*
255  * indicate meta/data type
256  */
257 enum {
258 	META_CP,
259 	META_NAT,
260 	META_SIT,
261 	META_SSA,
262 	META_MAX,
263 	META_POR,
264 	DATA_GENERIC,		/* check range only */
265 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
266 	DATA_GENERIC_ENHANCE_READ,	/*
267 					 * strong check on range and segment
268 					 * bitmap but no warning due to race
269 					 * condition of read on truncated area
270 					 * by extent_cache
271 					 */
272 	DATA_GENERIC_ENHANCE_UPDATE,	/*
273 					 * strong check on range and segment
274 					 * bitmap for update case
275 					 */
276 	META_GENERIC,
277 };
278 
279 /* for the list of ino */
280 enum {
281 	ORPHAN_INO,		/* for orphan ino list */
282 	APPEND_INO,		/* for append ino list */
283 	UPDATE_INO,		/* for update ino list */
284 	TRANS_DIR_INO,		/* for transactions dir ino list */
285 	FLUSH_INO,		/* for multiple device flushing */
286 	MAX_INO_ENTRY,		/* max. list */
287 };
288 
289 struct ino_entry {
290 	struct list_head list;		/* list head */
291 	nid_t ino;			/* inode number */
292 	unsigned int dirty_device;	/* dirty device bitmap */
293 };
294 
295 /* for the list of inodes to be GCed */
296 struct inode_entry {
297 	struct list_head list;	/* list head */
298 	struct inode *inode;	/* vfs inode pointer */
299 };
300 
301 struct fsync_node_entry {
302 	struct list_head list;	/* list head */
303 	struct page *page;	/* warm node page pointer */
304 	unsigned int seq_id;	/* sequence id */
305 };
306 
307 struct ckpt_req {
308 	struct completion wait;		/* completion for checkpoint done */
309 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
310 	int ret;			/* return code of checkpoint */
311 	ktime_t queue_time;		/* request queued time */
312 };
313 
314 struct ckpt_req_control {
315 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
316 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
317 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
318 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
319 	atomic_t total_ckpt;		/* # of total ckpts */
320 	atomic_t queued_ckpt;		/* # of queued ckpts */
321 	struct llist_head issue_list;	/* list for command issue */
322 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
323 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
324 	unsigned int peak_time;		/* peak wait time in msec until now */
325 };
326 
327 /* for the bitmap indicate blocks to be discarded */
328 struct discard_entry {
329 	struct list_head list;	/* list head */
330 	block_t start_blkaddr;	/* start blockaddr of current segment */
331 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
332 };
333 
334 /* minimum discard granularity, unit: block count */
335 #define MIN_DISCARD_GRANULARITY		1
336 /* default discard granularity of inner discard thread, unit: block count */
337 #define DEFAULT_DISCARD_GRANULARITY		16
338 /* default maximum discard granularity of ordered discard, unit: block count */
339 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
340 
341 /* max discard pend list number */
342 #define MAX_PLIST_NUM		512
343 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
344 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
345 
346 enum {
347 	D_PREP,			/* initial */
348 	D_PARTIAL,		/* partially submitted */
349 	D_SUBMIT,		/* all submitted */
350 	D_DONE,			/* finished */
351 };
352 
353 struct discard_info {
354 	block_t lstart;			/* logical start address */
355 	block_t len;			/* length */
356 	block_t start;			/* actual start address in dev */
357 };
358 
359 struct discard_cmd {
360 	struct rb_node rb_node;		/* rb node located in rb-tree */
361 	struct discard_info di;		/* discard info */
362 	struct list_head list;		/* command list */
363 	struct completion wait;		/* compleation */
364 	struct block_device *bdev;	/* bdev */
365 	unsigned short ref;		/* reference count */
366 	unsigned char state;		/* state */
367 	unsigned char queued;		/* queued discard */
368 	int error;			/* bio error */
369 	spinlock_t lock;		/* for state/bio_ref updating */
370 	unsigned short bio_ref;		/* bio reference count */
371 };
372 
373 enum {
374 	DPOLICY_BG,
375 	DPOLICY_FORCE,
376 	DPOLICY_FSTRIM,
377 	DPOLICY_UMOUNT,
378 	MAX_DPOLICY,
379 };
380 
381 struct discard_policy {
382 	int type;			/* type of discard */
383 	unsigned int min_interval;	/* used for candidates exist */
384 	unsigned int mid_interval;	/* used for device busy */
385 	unsigned int max_interval;	/* used for candidates not exist */
386 	unsigned int max_requests;	/* # of discards issued per round */
387 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
388 	bool io_aware;			/* issue discard in idle time */
389 	bool sync;			/* submit discard with REQ_SYNC flag */
390 	bool ordered;			/* issue discard by lba order */
391 	bool timeout;			/* discard timeout for put_super */
392 	unsigned int granularity;	/* discard granularity */
393 };
394 
395 struct discard_cmd_control {
396 	struct task_struct *f2fs_issue_discard;	/* discard thread */
397 	struct list_head entry_list;		/* 4KB discard entry list */
398 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 	struct list_head wait_list;		/* store on-flushing entries */
400 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
401 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
402 	struct mutex cmd_lock;
403 	unsigned int nr_discards;		/* # of discards in the list */
404 	unsigned int max_discards;		/* max. discards to be issued */
405 	unsigned int max_discard_request;	/* max. discard request per round */
406 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
407 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
408 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
409 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
410 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
411 	unsigned int discard_granularity;	/* discard granularity */
412 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
413 	unsigned int undiscard_blks;		/* # of undiscard blocks */
414 	unsigned int next_pos;			/* next discard position */
415 	atomic_t issued_discard;		/* # of issued discard */
416 	atomic_t queued_discard;		/* # of queued discard */
417 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
418 	struct rb_root_cached root;		/* root of discard rb-tree */
419 	bool rbtree_check;			/* config for consistence check */
420 	bool discard_wake;			/* to wake up discard thread */
421 };
422 
423 /* for the list of fsync inodes, used only during recovery */
424 struct fsync_inode_entry {
425 	struct list_head list;	/* list head */
426 	struct inode *inode;	/* vfs inode pointer */
427 	block_t blkaddr;	/* block address locating the last fsync */
428 	block_t last_dentry;	/* block address locating the last dentry */
429 };
430 
431 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
432 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
433 
434 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
435 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
436 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
437 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
438 
439 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
440 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
441 
442 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
443 {
444 	int before = nats_in_cursum(journal);
445 
446 	journal->n_nats = cpu_to_le16(before + i);
447 	return before;
448 }
449 
450 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
451 {
452 	int before = sits_in_cursum(journal);
453 
454 	journal->n_sits = cpu_to_le16(before + i);
455 	return before;
456 }
457 
458 static inline bool __has_cursum_space(struct f2fs_journal *journal,
459 							int size, int type)
460 {
461 	if (type == NAT_JOURNAL)
462 		return size <= MAX_NAT_JENTRIES(journal);
463 	return size <= MAX_SIT_JENTRIES(journal);
464 }
465 
466 /* for inline stuff */
467 #define DEF_INLINE_RESERVED_SIZE	1
468 static inline int get_extra_isize(struct inode *inode);
469 static inline int get_inline_xattr_addrs(struct inode *inode);
470 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
471 				(CUR_ADDRS_PER_INODE(inode) -		\
472 				get_inline_xattr_addrs(inode) -	\
473 				DEF_INLINE_RESERVED_SIZE))
474 
475 /* for inline dir */
476 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				BITS_PER_BYTE + 1))
479 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
480 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
481 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
482 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
483 				NR_INLINE_DENTRY(inode) + \
484 				INLINE_DENTRY_BITMAP_SIZE(inode)))
485 
486 /*
487  * For INODE and NODE manager
488  */
489 /* for directory operations */
490 
491 struct f2fs_filename {
492 	/*
493 	 * The filename the user specified.  This is NULL for some
494 	 * filesystem-internal operations, e.g. converting an inline directory
495 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
496 	 */
497 	const struct qstr *usr_fname;
498 
499 	/*
500 	 * The on-disk filename.  For encrypted directories, this is encrypted.
501 	 * This may be NULL for lookups in an encrypted dir without the key.
502 	 */
503 	struct fscrypt_str disk_name;
504 
505 	/* The dirhash of this filename */
506 	f2fs_hash_t hash;
507 
508 #ifdef CONFIG_FS_ENCRYPTION
509 	/*
510 	 * For lookups in encrypted directories: either the buffer backing
511 	 * disk_name, or a buffer that holds the decoded no-key name.
512 	 */
513 	struct fscrypt_str crypto_buf;
514 #endif
515 #if IS_ENABLED(CONFIG_UNICODE)
516 	/*
517 	 * For casefolded directories: the casefolded name, but it's left NULL
518 	 * if the original name is not valid Unicode, if the original name is
519 	 * "." or "..", if the directory is both casefolded and encrypted and
520 	 * its encryption key is unavailable, or if the filesystem is doing an
521 	 * internal operation where usr_fname is also NULL.  In all these cases
522 	 * we fall back to treating the name as an opaque byte sequence.
523 	 */
524 	struct fscrypt_str cf_name;
525 #endif
526 };
527 
528 struct f2fs_dentry_ptr {
529 	struct inode *inode;
530 	void *bitmap;
531 	struct f2fs_dir_entry *dentry;
532 	__u8 (*filename)[F2FS_SLOT_LEN];
533 	int max;
534 	int nr_bitmap;
535 };
536 
537 static inline void make_dentry_ptr_block(struct inode *inode,
538 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
539 {
540 	d->inode = inode;
541 	d->max = NR_DENTRY_IN_BLOCK;
542 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
543 	d->bitmap = t->dentry_bitmap;
544 	d->dentry = t->dentry;
545 	d->filename = t->filename;
546 }
547 
548 static inline void make_dentry_ptr_inline(struct inode *inode,
549 					struct f2fs_dentry_ptr *d, void *t)
550 {
551 	int entry_cnt = NR_INLINE_DENTRY(inode);
552 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
553 	int reserved_size = INLINE_RESERVED_SIZE(inode);
554 
555 	d->inode = inode;
556 	d->max = entry_cnt;
557 	d->nr_bitmap = bitmap_size;
558 	d->bitmap = t;
559 	d->dentry = t + bitmap_size + reserved_size;
560 	d->filename = t + bitmap_size + reserved_size +
561 					SIZE_OF_DIR_ENTRY * entry_cnt;
562 }
563 
564 /*
565  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
566  * as its node offset to distinguish from index node blocks.
567  * But some bits are used to mark the node block.
568  */
569 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
570 				>> OFFSET_BIT_SHIFT)
571 enum {
572 	ALLOC_NODE,			/* allocate a new node page if needed */
573 	LOOKUP_NODE,			/* look up a node without readahead */
574 	LOOKUP_NODE_RA,			/*
575 					 * look up a node with readahead called
576 					 * by get_data_block.
577 					 */
578 };
579 
580 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
581 
582 /* congestion wait timeout value, default: 20ms */
583 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
584 
585 /* maximum retry quota flush count */
586 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
587 
588 /* maximum retry of EIO'ed page */
589 #define MAX_RETRY_PAGE_EIO			100
590 
591 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
592 
593 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
594 
595 /* dirty segments threshold for triggering CP */
596 #define DEFAULT_DIRTY_THRESHOLD		4
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
602 
603 /* for in-memory extent cache entry */
604 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
605 
606 /* number of extent info in extent cache we try to shrink */
607 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
608 
609 /* number of age extent info in extent cache we try to shrink */
610 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
611 #define LAST_AGE_WEIGHT			30
612 #define SAME_AGE_REGION			1024
613 
614 /*
615  * Define data block with age less than 1GB as hot data
616  * define data block with age less than 10GB but more than 1GB as warm data
617  */
618 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
619 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
620 
621 /* extent cache type */
622 enum extent_type {
623 	EX_READ,
624 	EX_BLOCK_AGE,
625 	NR_EXTENT_CACHES,
626 };
627 
628 struct extent_info {
629 	unsigned int fofs;		/* start offset in a file */
630 	unsigned int len;		/* length of the extent */
631 	union {
632 		/* read extent_cache */
633 		struct {
634 			/* start block address of the extent */
635 			block_t blk;
636 #ifdef CONFIG_F2FS_FS_COMPRESSION
637 			/* physical extent length of compressed blocks */
638 			unsigned int c_len;
639 #endif
640 		};
641 		/* block age extent_cache */
642 		struct {
643 			/* block age of the extent */
644 			unsigned long long age;
645 			/* last total blocks allocated */
646 			unsigned long long last_blocks;
647 		};
648 	};
649 };
650 
651 struct extent_node {
652 	struct rb_node rb_node;		/* rb node located in rb-tree */
653 	struct extent_info ei;		/* extent info */
654 	struct list_head list;		/* node in global extent list of sbi */
655 	struct extent_tree *et;		/* extent tree pointer */
656 };
657 
658 struct extent_tree {
659 	nid_t ino;			/* inode number */
660 	enum extent_type type;		/* keep the extent tree type */
661 	struct rb_root_cached root;	/* root of extent info rb-tree */
662 	struct extent_node *cached_en;	/* recently accessed extent node */
663 	struct list_head list;		/* to be used by sbi->zombie_list */
664 	rwlock_t lock;			/* protect extent info rb-tree */
665 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
666 	bool largest_updated;		/* largest extent updated */
667 	struct extent_info largest;	/* largest cached extent for EX_READ */
668 };
669 
670 struct extent_tree_info {
671 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
672 	struct mutex extent_tree_lock;	/* locking extent radix tree */
673 	struct list_head extent_list;		/* lru list for shrinker */
674 	spinlock_t extent_lock;			/* locking extent lru list */
675 	atomic_t total_ext_tree;		/* extent tree count */
676 	struct list_head zombie_list;		/* extent zombie tree list */
677 	atomic_t total_zombie_tree;		/* extent zombie tree count */
678 	atomic_t total_ext_node;		/* extent info count */
679 };
680 
681 /*
682  * State of block returned by f2fs_map_blocks.
683  */
684 #define F2FS_MAP_NEW		(1U << 0)
685 #define F2FS_MAP_MAPPED		(1U << 1)
686 #define F2FS_MAP_DELALLOC	(1U << 2)
687 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
688 				F2FS_MAP_DELALLOC)
689 
690 struct f2fs_map_blocks {
691 	struct block_device *m_bdev;	/* for multi-device dio */
692 	block_t m_pblk;
693 	block_t m_lblk;
694 	unsigned int m_len;
695 	unsigned int m_flags;
696 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
697 	pgoff_t *m_next_extent;		/* point to next possible extent */
698 	int m_seg_type;
699 	bool m_may_create;		/* indicate it is from write path */
700 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
701 };
702 
703 /* for flag in get_data_block */
704 enum {
705 	F2FS_GET_BLOCK_DEFAULT,
706 	F2FS_GET_BLOCK_FIEMAP,
707 	F2FS_GET_BLOCK_BMAP,
708 	F2FS_GET_BLOCK_DIO,
709 	F2FS_GET_BLOCK_PRE_DIO,
710 	F2FS_GET_BLOCK_PRE_AIO,
711 	F2FS_GET_BLOCK_PRECACHE,
712 };
713 
714 /*
715  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
716  */
717 #define FADVISE_COLD_BIT	0x01
718 #define FADVISE_LOST_PINO_BIT	0x02
719 #define FADVISE_ENCRYPT_BIT	0x04
720 #define FADVISE_ENC_NAME_BIT	0x08
721 #define FADVISE_KEEP_SIZE_BIT	0x10
722 #define FADVISE_HOT_BIT		0x20
723 #define FADVISE_VERITY_BIT	0x40
724 #define FADVISE_TRUNC_BIT	0x80
725 
726 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
727 
728 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
729 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
730 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
731 
732 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
733 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
734 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
735 
736 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
737 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
738 
739 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
740 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
741 
742 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
743 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
744 
745 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
746 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
747 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
748 
749 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
750 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
751 
752 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
753 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
754 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
755 
756 #define DEF_DIR_LEVEL		0
757 
758 enum {
759 	GC_FAILURE_PIN,
760 	MAX_GC_FAILURE
761 };
762 
763 /* used for f2fs_inode_info->flags */
764 enum {
765 	FI_NEW_INODE,		/* indicate newly allocated inode */
766 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
767 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
768 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
769 	FI_INC_LINK,		/* need to increment i_nlink */
770 	FI_ACL_MODE,		/* indicate acl mode */
771 	FI_NO_ALLOC,		/* should not allocate any blocks */
772 	FI_FREE_NID,		/* free allocated nide */
773 	FI_NO_EXTENT,		/* not to use the extent cache */
774 	FI_INLINE_XATTR,	/* used for inline xattr */
775 	FI_INLINE_DATA,		/* used for inline data*/
776 	FI_INLINE_DENTRY,	/* used for inline dentry */
777 	FI_APPEND_WRITE,	/* inode has appended data */
778 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
779 	FI_NEED_IPU,		/* used for ipu per file */
780 	FI_ATOMIC_FILE,		/* indicate atomic file */
781 	FI_DATA_EXIST,		/* indicate data exists */
782 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
783 	FI_SKIP_WRITES,		/* should skip data page writeback */
784 	FI_OPU_WRITE,		/* used for opu per file */
785 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
786 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
787 	FI_HOT_DATA,		/* indicate file is hot */
788 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
789 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
790 	FI_PIN_FILE,		/* indicate file should not be gced */
791 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
792 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
793 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
794 	FI_MMAP_FILE,		/* indicate file was mmapped */
795 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
796 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
797 	FI_ALIGNED_WRITE,	/* enable aligned write */
798 	FI_COW_FILE,		/* indicate COW file */
799 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
800 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
801 	FI_MAX,			/* max flag, never be used */
802 };
803 
804 struct f2fs_inode_info {
805 	struct inode vfs_inode;		/* serve a vfs inode */
806 	unsigned long i_flags;		/* keep an inode flags for ioctl */
807 	unsigned char i_advise;		/* use to give file attribute hints */
808 	unsigned char i_dir_level;	/* use for dentry level for large dir */
809 	unsigned int i_current_depth;	/* only for directory depth */
810 	/* for gc failure statistic */
811 	unsigned int i_gc_failures[MAX_GC_FAILURE];
812 	unsigned int i_pino;		/* parent inode number */
813 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
814 
815 	/* Use below internally in f2fs*/
816 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
817 	struct f2fs_rwsem i_sem;	/* protect fi info */
818 	atomic_t dirty_pages;		/* # of dirty pages */
819 	f2fs_hash_t chash;		/* hash value of given file name */
820 	unsigned int clevel;		/* maximum level of given file name */
821 	struct task_struct *task;	/* lookup and create consistency */
822 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
823 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
824 	nid_t i_xattr_nid;		/* node id that contains xattrs */
825 	loff_t	last_disk_size;		/* lastly written file size */
826 	spinlock_t i_size_lock;		/* protect last_disk_size */
827 
828 #ifdef CONFIG_QUOTA
829 	struct dquot __rcu *i_dquot[MAXQUOTAS];
830 
831 	/* quota space reservation, managed internally by quota code */
832 	qsize_t i_reserved_quota;
833 #endif
834 	struct list_head dirty_list;	/* dirty list for dirs and files */
835 	struct list_head gdirty_list;	/* linked in global dirty list */
836 	struct task_struct *atomic_write_task;	/* store atomic write task */
837 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
838 					/* cached extent_tree entry */
839 	union {
840 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
841 		struct inode *atomic_inode;
842 					/* point to atomic_inode, available only for cow_inode */
843 	};
844 
845 	/* avoid racing between foreground op and gc */
846 	struct f2fs_rwsem i_gc_rwsem[2];
847 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
848 
849 	int i_extra_isize;		/* size of extra space located in i_addr */
850 	kprojid_t i_projid;		/* id for project quota */
851 	int i_inline_xattr_size;	/* inline xattr size */
852 	struct timespec64 i_crtime;	/* inode creation time */
853 	struct timespec64 i_disk_time[3];/* inode disk times */
854 
855 	/* for file compress */
856 	atomic_t i_compr_blocks;		/* # of compressed blocks */
857 	unsigned char i_compress_algorithm;	/* algorithm type */
858 	unsigned char i_log_cluster_size;	/* log of cluster size */
859 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
860 	unsigned char i_compress_flag;		/* compress flag */
861 	unsigned int i_cluster_size;		/* cluster size */
862 
863 	unsigned int atomic_write_cnt;
864 	loff_t original_i_size;		/* original i_size before atomic write */
865 };
866 
867 static inline void get_read_extent_info(struct extent_info *ext,
868 					struct f2fs_extent *i_ext)
869 {
870 	ext->fofs = le32_to_cpu(i_ext->fofs);
871 	ext->blk = le32_to_cpu(i_ext->blk);
872 	ext->len = le32_to_cpu(i_ext->len);
873 }
874 
875 static inline void set_raw_read_extent(struct extent_info *ext,
876 					struct f2fs_extent *i_ext)
877 {
878 	i_ext->fofs = cpu_to_le32(ext->fofs);
879 	i_ext->blk = cpu_to_le32(ext->blk);
880 	i_ext->len = cpu_to_le32(ext->len);
881 }
882 
883 static inline bool __is_discard_mergeable(struct discard_info *back,
884 			struct discard_info *front, unsigned int max_len)
885 {
886 	return (back->lstart + back->len == front->lstart) &&
887 		(back->len + front->len <= max_len);
888 }
889 
890 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
891 			struct discard_info *back, unsigned int max_len)
892 {
893 	return __is_discard_mergeable(back, cur, max_len);
894 }
895 
896 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
897 			struct discard_info *front, unsigned int max_len)
898 {
899 	return __is_discard_mergeable(cur, front, max_len);
900 }
901 
902 /*
903  * For free nid management
904  */
905 enum nid_state {
906 	FREE_NID,		/* newly added to free nid list */
907 	PREALLOC_NID,		/* it is preallocated */
908 	MAX_NID_STATE,
909 };
910 
911 enum nat_state {
912 	TOTAL_NAT,
913 	DIRTY_NAT,
914 	RECLAIMABLE_NAT,
915 	MAX_NAT_STATE,
916 };
917 
918 struct f2fs_nm_info {
919 	block_t nat_blkaddr;		/* base disk address of NAT */
920 	nid_t max_nid;			/* maximum possible node ids */
921 	nid_t available_nids;		/* # of available node ids */
922 	nid_t next_scan_nid;		/* the next nid to be scanned */
923 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
924 	unsigned int ram_thresh;	/* control the memory footprint */
925 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
926 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
927 
928 	/* NAT cache management */
929 	struct radix_tree_root nat_root;/* root of the nat entry cache */
930 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
931 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
932 	struct list_head nat_entries;	/* cached nat entry list (clean) */
933 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
934 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
935 	unsigned int nat_blocks;	/* # of nat blocks */
936 
937 	/* free node ids management */
938 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
939 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
940 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
941 	spinlock_t nid_list_lock;	/* protect nid lists ops */
942 	struct mutex build_lock;	/* lock for build free nids */
943 	unsigned char **free_nid_bitmap;
944 	unsigned char *nat_block_bitmap;
945 	unsigned short *free_nid_count;	/* free nid count of NAT block */
946 
947 	/* for checkpoint */
948 	char *nat_bitmap;		/* NAT bitmap pointer */
949 
950 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
951 	unsigned char *nat_bits;	/* NAT bits blocks */
952 	unsigned char *full_nat_bits;	/* full NAT pages */
953 	unsigned char *empty_nat_bits;	/* empty NAT pages */
954 #ifdef CONFIG_F2FS_CHECK_FS
955 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
956 #endif
957 	int bitmap_size;		/* bitmap size */
958 };
959 
960 /*
961  * this structure is used as one of function parameters.
962  * all the information are dedicated to a given direct node block determined
963  * by the data offset in a file.
964  */
965 struct dnode_of_data {
966 	struct inode *inode;		/* vfs inode pointer */
967 	struct page *inode_page;	/* its inode page, NULL is possible */
968 	struct page *node_page;		/* cached direct node page */
969 	nid_t nid;			/* node id of the direct node block */
970 	unsigned int ofs_in_node;	/* data offset in the node page */
971 	bool inode_page_locked;		/* inode page is locked or not */
972 	bool node_changed;		/* is node block changed */
973 	char cur_level;			/* level of hole node page */
974 	char max_level;			/* level of current page located */
975 	block_t	data_blkaddr;		/* block address of the node block */
976 };
977 
978 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
979 		struct page *ipage, struct page *npage, nid_t nid)
980 {
981 	memset(dn, 0, sizeof(*dn));
982 	dn->inode = inode;
983 	dn->inode_page = ipage;
984 	dn->node_page = npage;
985 	dn->nid = nid;
986 }
987 
988 /*
989  * For SIT manager
990  *
991  * By default, there are 6 active log areas across the whole main area.
992  * When considering hot and cold data separation to reduce cleaning overhead,
993  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
994  * respectively.
995  * In the current design, you should not change the numbers intentionally.
996  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
997  * logs individually according to the underlying devices. (default: 6)
998  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
999  * data and 8 for node logs.
1000  */
1001 #define	NR_CURSEG_DATA_TYPE	(3)
1002 #define NR_CURSEG_NODE_TYPE	(3)
1003 #define NR_CURSEG_INMEM_TYPE	(2)
1004 #define NR_CURSEG_RO_TYPE	(2)
1005 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1006 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1007 
1008 enum {
1009 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1010 	CURSEG_WARM_DATA,	/* data blocks */
1011 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1012 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1013 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1014 	CURSEG_COLD_NODE,	/* indirect node blocks */
1015 	NR_PERSISTENT_LOG,	/* number of persistent log */
1016 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1017 				/* pinned file that needs consecutive block address */
1018 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1019 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1020 };
1021 
1022 struct flush_cmd {
1023 	struct completion wait;
1024 	struct llist_node llnode;
1025 	nid_t ino;
1026 	int ret;
1027 };
1028 
1029 struct flush_cmd_control {
1030 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1031 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1032 	atomic_t issued_flush;			/* # of issued flushes */
1033 	atomic_t queued_flush;			/* # of queued flushes */
1034 	struct llist_head issue_list;		/* list for command issue */
1035 	struct llist_node *dispatch_list;	/* list for command dispatch */
1036 };
1037 
1038 struct f2fs_sm_info {
1039 	struct sit_info *sit_info;		/* whole segment information */
1040 	struct free_segmap_info *free_info;	/* free segment information */
1041 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1042 	struct curseg_info *curseg_array;	/* active segment information */
1043 
1044 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1045 
1046 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1047 	block_t main_blkaddr;		/* start block address of main area */
1048 	block_t ssa_blkaddr;		/* start block address of SSA area */
1049 
1050 	unsigned int segment_count;	/* total # of segments */
1051 	unsigned int main_segments;	/* # of segments in main area */
1052 	unsigned int reserved_segments;	/* # of reserved segments */
1053 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1054 	unsigned int ovp_segments;	/* # of overprovision segments */
1055 
1056 	/* a threshold to reclaim prefree segments */
1057 	unsigned int rec_prefree_segments;
1058 
1059 	struct list_head sit_entry_set;	/* sit entry set list */
1060 
1061 	unsigned int ipu_policy;	/* in-place-update policy */
1062 	unsigned int min_ipu_util;	/* in-place-update threshold */
1063 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1064 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1065 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1066 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1067 
1068 	/* for flush command control */
1069 	struct flush_cmd_control *fcc_info;
1070 
1071 	/* for discard command control */
1072 	struct discard_cmd_control *dcc_info;
1073 };
1074 
1075 /*
1076  * For superblock
1077  */
1078 /*
1079  * COUNT_TYPE for monitoring
1080  *
1081  * f2fs monitors the number of several block types such as on-writeback,
1082  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1083  */
1084 #define WB_DATA_TYPE(p, f)			\
1085 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1086 enum count_type {
1087 	F2FS_DIRTY_DENTS,
1088 	F2FS_DIRTY_DATA,
1089 	F2FS_DIRTY_QDATA,
1090 	F2FS_DIRTY_NODES,
1091 	F2FS_DIRTY_META,
1092 	F2FS_DIRTY_IMETA,
1093 	F2FS_WB_CP_DATA,
1094 	F2FS_WB_DATA,
1095 	F2FS_RD_DATA,
1096 	F2FS_RD_NODE,
1097 	F2FS_RD_META,
1098 	F2FS_DIO_WRITE,
1099 	F2FS_DIO_READ,
1100 	NR_COUNT_TYPE,
1101 };
1102 
1103 /*
1104  * The below are the page types of bios used in submit_bio().
1105  * The available types are:
1106  * DATA			User data pages. It operates as async mode.
1107  * NODE			Node pages. It operates as async mode.
1108  * META			FS metadata pages such as SIT, NAT, CP.
1109  * NR_PAGE_TYPE		The number of page types.
1110  * META_FLUSH		Make sure the previous pages are written
1111  *			with waiting the bio's completion
1112  * ...			Only can be used with META.
1113  */
1114 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1115 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1116 enum page_type {
1117 	DATA = 0,
1118 	NODE = 1,	/* should not change this */
1119 	META,
1120 	NR_PAGE_TYPE,
1121 	META_FLUSH,
1122 	IPU,		/* the below types are used by tracepoints only. */
1123 	OPU,
1124 };
1125 
1126 enum temp_type {
1127 	HOT = 0,	/* must be zero for meta bio */
1128 	WARM,
1129 	COLD,
1130 	NR_TEMP_TYPE,
1131 };
1132 
1133 enum need_lock_type {
1134 	LOCK_REQ = 0,
1135 	LOCK_DONE,
1136 	LOCK_RETRY,
1137 };
1138 
1139 enum cp_reason_type {
1140 	CP_NO_NEEDED,
1141 	CP_NON_REGULAR,
1142 	CP_COMPRESSED,
1143 	CP_HARDLINK,
1144 	CP_SB_NEED_CP,
1145 	CP_WRONG_PINO,
1146 	CP_NO_SPC_ROLL,
1147 	CP_NODE_NEED_CP,
1148 	CP_FASTBOOT_MODE,
1149 	CP_SPEC_LOG_NUM,
1150 	CP_RECOVER_DIR,
1151 };
1152 
1153 enum iostat_type {
1154 	/* WRITE IO */
1155 	APP_DIRECT_IO,			/* app direct write IOs */
1156 	APP_BUFFERED_IO,		/* app buffered write IOs */
1157 	APP_WRITE_IO,			/* app write IOs */
1158 	APP_MAPPED_IO,			/* app mapped IOs */
1159 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1160 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1161 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1162 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1163 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1164 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1165 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1166 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1167 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1168 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1169 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1170 
1171 	/* READ IO */
1172 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1173 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1174 	APP_READ_IO,			/* app read IOs */
1175 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1176 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1177 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1178 	FS_DATA_READ_IO,		/* data read IOs */
1179 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1180 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1181 	FS_NODE_READ_IO,		/* node read IOs */
1182 	FS_META_READ_IO,		/* meta read IOs */
1183 
1184 	/* other */
1185 	FS_DISCARD_IO,			/* discard */
1186 	FS_FLUSH_IO,			/* flush */
1187 	FS_ZONE_RESET_IO,		/* zone reset */
1188 	NR_IO_TYPE,
1189 };
1190 
1191 struct f2fs_io_info {
1192 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1193 	nid_t ino;		/* inode number */
1194 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1195 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1196 	enum req_op op;		/* contains REQ_OP_ */
1197 	blk_opf_t op_flags;	/* req_flag_bits */
1198 	block_t new_blkaddr;	/* new block address to be written */
1199 	block_t old_blkaddr;	/* old block address before Cow */
1200 	struct page *page;	/* page to be written */
1201 	struct page *encrypted_page;	/* encrypted page */
1202 	struct page *compressed_page;	/* compressed page */
1203 	struct list_head list;		/* serialize IOs */
1204 	unsigned int compr_blocks;	/* # of compressed block addresses */
1205 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1206 	unsigned int version:8;		/* version of the node */
1207 	unsigned int submitted:1;	/* indicate IO submission */
1208 	unsigned int in_list:1;		/* indicate fio is in io_list */
1209 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1210 	unsigned int encrypted:1;	/* indicate file is encrypted */
1211 	unsigned int meta_gc:1;		/* require meta inode GC */
1212 	enum iostat_type io_type;	/* io type */
1213 	struct writeback_control *io_wbc; /* writeback control */
1214 	struct bio **bio;		/* bio for ipu */
1215 	sector_t *last_block;		/* last block number in bio */
1216 };
1217 
1218 struct bio_entry {
1219 	struct bio *bio;
1220 	struct list_head list;
1221 };
1222 
1223 #define is_read_io(rw) ((rw) == READ)
1224 struct f2fs_bio_info {
1225 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1226 	struct bio *bio;		/* bios to merge */
1227 	sector_t last_block_in_bio;	/* last block number */
1228 	struct f2fs_io_info fio;	/* store buffered io info. */
1229 #ifdef CONFIG_BLK_DEV_ZONED
1230 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1231 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1232 	void *bi_private;		/* previous bi_private for pending bio */
1233 #endif
1234 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1235 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1236 	struct list_head io_list;	/* track fios */
1237 	struct list_head bio_list;	/* bio entry list head */
1238 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1239 };
1240 
1241 #define FDEV(i)				(sbi->devs[i])
1242 #define RDEV(i)				(raw_super->devs[i])
1243 struct f2fs_dev_info {
1244 	struct block_device *bdev;
1245 	char path[MAX_PATH_LEN];
1246 	unsigned int total_segments;
1247 	block_t start_blk;
1248 	block_t end_blk;
1249 #ifdef CONFIG_BLK_DEV_ZONED
1250 	unsigned int nr_blkz;		/* Total number of zones */
1251 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1252 #endif
1253 };
1254 
1255 enum inode_type {
1256 	DIR_INODE,			/* for dirty dir inode */
1257 	FILE_INODE,			/* for dirty regular/symlink inode */
1258 	DIRTY_META,			/* for all dirtied inode metadata */
1259 	NR_INODE_TYPE,
1260 };
1261 
1262 /* for inner inode cache management */
1263 struct inode_management {
1264 	struct radix_tree_root ino_root;	/* ino entry array */
1265 	spinlock_t ino_lock;			/* for ino entry lock */
1266 	struct list_head ino_list;		/* inode list head */
1267 	unsigned long ino_num;			/* number of entries */
1268 };
1269 
1270 /* for GC_AT */
1271 struct atgc_management {
1272 	bool atgc_enabled;			/* ATGC is enabled or not */
1273 	struct rb_root_cached root;		/* root of victim rb-tree */
1274 	struct list_head victim_list;		/* linked with all victim entries */
1275 	unsigned int victim_count;		/* victim count in rb-tree */
1276 	unsigned int candidate_ratio;		/* candidate ratio */
1277 	unsigned int max_candidate_count;	/* max candidate count */
1278 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1279 	unsigned long long age_threshold;	/* age threshold */
1280 };
1281 
1282 struct f2fs_gc_control {
1283 	unsigned int victim_segno;	/* target victim segment number */
1284 	int init_gc_type;		/* FG_GC or BG_GC */
1285 	bool no_bg_gc;			/* check the space and stop bg_gc */
1286 	bool should_migrate_blocks;	/* should migrate blocks */
1287 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1288 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1289 };
1290 
1291 /*
1292  * For s_flag in struct f2fs_sb_info
1293  * Modification on enum should be synchronized with s_flag array
1294  */
1295 enum {
1296 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1297 	SBI_IS_CLOSE,				/* specify unmounting */
1298 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1299 	SBI_POR_DOING,				/* recovery is doing or not */
1300 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1301 	SBI_NEED_CP,				/* need to checkpoint */
1302 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1303 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1304 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1305 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1306 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1307 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1308 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1309 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1310 	SBI_IS_FREEZING,			/* freezefs is in process */
1311 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1312 	MAX_SBI_FLAG,
1313 };
1314 
1315 enum {
1316 	CP_TIME,
1317 	REQ_TIME,
1318 	DISCARD_TIME,
1319 	GC_TIME,
1320 	DISABLE_TIME,
1321 	UMOUNT_DISCARD_TIMEOUT,
1322 	MAX_TIME,
1323 };
1324 
1325 /* Note that you need to keep synchronization with this gc_mode_names array */
1326 enum {
1327 	GC_NORMAL,
1328 	GC_IDLE_CB,
1329 	GC_IDLE_GREEDY,
1330 	GC_IDLE_AT,
1331 	GC_URGENT_HIGH,
1332 	GC_URGENT_LOW,
1333 	GC_URGENT_MID,
1334 	MAX_GC_MODE,
1335 };
1336 
1337 enum {
1338 	BGGC_MODE_ON,		/* background gc is on */
1339 	BGGC_MODE_OFF,		/* background gc is off */
1340 	BGGC_MODE_SYNC,		/*
1341 				 * background gc is on, migrating blocks
1342 				 * like foreground gc
1343 				 */
1344 };
1345 
1346 enum {
1347 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1348 	FS_MODE_LFS,			/* use lfs allocation only */
1349 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1350 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1351 };
1352 
1353 enum {
1354 	ALLOC_MODE_DEFAULT,	/* stay default */
1355 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1356 };
1357 
1358 enum fsync_mode {
1359 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1360 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1361 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1362 };
1363 
1364 enum {
1365 	COMPR_MODE_FS,		/*
1366 				 * automatically compress compression
1367 				 * enabled files
1368 				 */
1369 	COMPR_MODE_USER,	/*
1370 				 * automatical compression is disabled.
1371 				 * user can control the file compression
1372 				 * using ioctls
1373 				 */
1374 };
1375 
1376 enum {
1377 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1378 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1379 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1380 };
1381 
1382 enum {
1383 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1384 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1385 };
1386 
1387 enum errors_option {
1388 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1389 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1390 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1391 };
1392 
1393 enum {
1394 	BACKGROUND,
1395 	FOREGROUND,
1396 	MAX_CALL_TYPE,
1397 	TOTAL_CALL = FOREGROUND,
1398 };
1399 
1400 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1401 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1402 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1403 
1404 /*
1405  * Layout of f2fs page.private:
1406  *
1407  * Layout A: lowest bit should be 1
1408  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1409  * bit 0	PAGE_PRIVATE_NOT_POINTER
1410  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1411  * bit 2	PAGE_PRIVATE_INLINE_INODE
1412  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1413  * bit 4-	f2fs private data
1414  *
1415  * Layout B: lowest bit should be 0
1416  * page.private is a wrapped pointer.
1417  */
1418 enum {
1419 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1420 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1421 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1422 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1423 	PAGE_PRIVATE_MAX
1424 };
1425 
1426 /* For compression */
1427 enum compress_algorithm_type {
1428 	COMPRESS_LZO,
1429 	COMPRESS_LZ4,
1430 	COMPRESS_ZSTD,
1431 	COMPRESS_LZORLE,
1432 	COMPRESS_MAX,
1433 };
1434 
1435 enum compress_flag {
1436 	COMPRESS_CHKSUM,
1437 	COMPRESS_MAX_FLAG,
1438 };
1439 
1440 #define	COMPRESS_WATERMARK			20
1441 #define	COMPRESS_PERCENT			20
1442 
1443 #define COMPRESS_DATA_RESERVED_SIZE		4
1444 struct compress_data {
1445 	__le32 clen;			/* compressed data size */
1446 	__le32 chksum;			/* compressed data chksum */
1447 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1448 	u8 cdata[];			/* compressed data */
1449 };
1450 
1451 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1452 
1453 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1454 
1455 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1456 
1457 #define	COMPRESS_LEVEL_OFFSET	8
1458 
1459 /* compress context */
1460 struct compress_ctx {
1461 	struct inode *inode;		/* inode the context belong to */
1462 	pgoff_t cluster_idx;		/* cluster index number */
1463 	unsigned int cluster_size;	/* page count in cluster */
1464 	unsigned int log_cluster_size;	/* log of cluster size */
1465 	struct page **rpages;		/* pages store raw data in cluster */
1466 	unsigned int nr_rpages;		/* total page number in rpages */
1467 	struct page **cpages;		/* pages store compressed data in cluster */
1468 	unsigned int nr_cpages;		/* total page number in cpages */
1469 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1470 	void *rbuf;			/* virtual mapped address on rpages */
1471 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1472 	size_t rlen;			/* valid data length in rbuf */
1473 	size_t clen;			/* valid data length in cbuf */
1474 	void *private;			/* payload buffer for specified compression algorithm */
1475 	void *private2;			/* extra payload buffer */
1476 };
1477 
1478 /* compress context for write IO path */
1479 struct compress_io_ctx {
1480 	u32 magic;			/* magic number to indicate page is compressed */
1481 	struct inode *inode;		/* inode the context belong to */
1482 	struct page **rpages;		/* pages store raw data in cluster */
1483 	unsigned int nr_rpages;		/* total page number in rpages */
1484 	atomic_t pending_pages;		/* in-flight compressed page count */
1485 };
1486 
1487 /* Context for decompressing one cluster on the read IO path */
1488 struct decompress_io_ctx {
1489 	u32 magic;			/* magic number to indicate page is compressed */
1490 	struct inode *inode;		/* inode the context belong to */
1491 	pgoff_t cluster_idx;		/* cluster index number */
1492 	unsigned int cluster_size;	/* page count in cluster */
1493 	unsigned int log_cluster_size;	/* log of cluster size */
1494 	struct page **rpages;		/* pages store raw data in cluster */
1495 	unsigned int nr_rpages;		/* total page number in rpages */
1496 	struct page **cpages;		/* pages store compressed data in cluster */
1497 	unsigned int nr_cpages;		/* total page number in cpages */
1498 	struct page **tpages;		/* temp pages to pad holes in cluster */
1499 	void *rbuf;			/* virtual mapped address on rpages */
1500 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1501 	size_t rlen;			/* valid data length in rbuf */
1502 	size_t clen;			/* valid data length in cbuf */
1503 
1504 	/*
1505 	 * The number of compressed pages remaining to be read in this cluster.
1506 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1507 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1508 	 * is decompressed (or an error is reported).
1509 	 *
1510 	 * If an error occurs before all the pages have been submitted for I/O,
1511 	 * then this will never reach 0.  In this case the I/O submitter is
1512 	 * responsible for calling f2fs_decompress_end_io() instead.
1513 	 */
1514 	atomic_t remaining_pages;
1515 
1516 	/*
1517 	 * Number of references to this decompress_io_ctx.
1518 	 *
1519 	 * One reference is held for I/O completion.  This reference is dropped
1520 	 * after the pagecache pages are updated and unlocked -- either after
1521 	 * decompression (and verity if enabled), or after an error.
1522 	 *
1523 	 * In addition, each compressed page holds a reference while it is in a
1524 	 * bio.  These references are necessary prevent compressed pages from
1525 	 * being freed while they are still in a bio.
1526 	 */
1527 	refcount_t refcnt;
1528 
1529 	bool failed;			/* IO error occurred before decompression? */
1530 	bool need_verity;		/* need fs-verity verification after decompression? */
1531 	void *private;			/* payload buffer for specified decompression algorithm */
1532 	void *private2;			/* extra payload buffer */
1533 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1534 	struct work_struct free_work;	/* work for late free this structure itself */
1535 };
1536 
1537 #define NULL_CLUSTER			((unsigned int)(~0))
1538 #define MIN_COMPRESS_LOG_SIZE		2
1539 #define MAX_COMPRESS_LOG_SIZE		8
1540 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1541 
1542 struct f2fs_sb_info {
1543 	struct super_block *sb;			/* pointer to VFS super block */
1544 	struct proc_dir_entry *s_proc;		/* proc entry */
1545 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1546 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1547 	int valid_super_block;			/* valid super block no */
1548 	unsigned long s_flag;				/* flags for sbi */
1549 	struct mutex writepages;		/* mutex for writepages() */
1550 
1551 #ifdef CONFIG_BLK_DEV_ZONED
1552 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1553 #endif
1554 
1555 	/* for node-related operations */
1556 	struct f2fs_nm_info *nm_info;		/* node manager */
1557 	struct inode *node_inode;		/* cache node blocks */
1558 
1559 	/* for segment-related operations */
1560 	struct f2fs_sm_info *sm_info;		/* segment manager */
1561 
1562 	/* for bio operations */
1563 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1564 	/* keep migration IO order for LFS mode */
1565 	struct f2fs_rwsem io_order_lock;
1566 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1567 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1568 
1569 	/* for checkpoint */
1570 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1571 	int cur_cp_pack;			/* remain current cp pack */
1572 	spinlock_t cp_lock;			/* for flag in ckpt */
1573 	struct inode *meta_inode;		/* cache meta blocks */
1574 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1575 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1576 	struct f2fs_rwsem node_write;		/* locking node writes */
1577 	struct f2fs_rwsem node_change;	/* locking node change */
1578 	wait_queue_head_t cp_wait;
1579 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1580 	long interval_time[MAX_TIME];		/* to store thresholds */
1581 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1582 
1583 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1584 
1585 	spinlock_t fsync_node_lock;		/* for node entry lock */
1586 	struct list_head fsync_node_list;	/* node list head */
1587 	unsigned int fsync_seg_id;		/* sequence id */
1588 	unsigned int fsync_node_num;		/* number of node entries */
1589 
1590 	/* for orphan inode, use 0'th array */
1591 	unsigned int max_orphans;		/* max orphan inodes */
1592 
1593 	/* for inode management */
1594 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1595 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1596 	struct mutex flush_lock;		/* for flush exclusion */
1597 
1598 	/* for extent tree cache */
1599 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1600 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1601 
1602 	/* The threshold used for hot and warm data seperation*/
1603 	unsigned int hot_data_age_threshold;
1604 	unsigned int warm_data_age_threshold;
1605 	unsigned int last_age_weight;
1606 
1607 	/* basic filesystem units */
1608 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1609 	unsigned int log_blocksize;		/* log2 block size */
1610 	unsigned int blocksize;			/* block size */
1611 	unsigned int root_ino_num;		/* root inode number*/
1612 	unsigned int node_ino_num;		/* node inode number*/
1613 	unsigned int meta_ino_num;		/* meta inode number*/
1614 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1615 	unsigned int blocks_per_seg;		/* blocks per segment */
1616 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1617 	unsigned int segs_per_sec;		/* segments per section */
1618 	unsigned int secs_per_zone;		/* sections per zone */
1619 	unsigned int total_sections;		/* total section count */
1620 	unsigned int total_node_count;		/* total node block count */
1621 	unsigned int total_valid_node_count;	/* valid node block count */
1622 	int dir_level;				/* directory level */
1623 	bool readdir_ra;			/* readahead inode in readdir */
1624 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1625 
1626 	block_t user_block_count;		/* # of user blocks */
1627 	block_t total_valid_block_count;	/* # of valid blocks */
1628 	block_t discard_blks;			/* discard command candidats */
1629 	block_t last_valid_block_count;		/* for recovery */
1630 	block_t reserved_blocks;		/* configurable reserved blocks */
1631 	block_t current_reserved_blocks;	/* current reserved blocks */
1632 
1633 	/* Additional tracking for no checkpoint mode */
1634 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1635 
1636 	unsigned int nquota_files;		/* # of quota sysfile */
1637 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1638 
1639 	/* # of pages, see count_type */
1640 	atomic_t nr_pages[NR_COUNT_TYPE];
1641 	/* # of allocated blocks */
1642 	struct percpu_counter alloc_valid_block_count;
1643 	/* # of node block writes as roll forward recovery */
1644 	struct percpu_counter rf_node_block_count;
1645 
1646 	/* writeback control */
1647 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1648 
1649 	/* valid inode count */
1650 	struct percpu_counter total_valid_inode_count;
1651 
1652 	struct f2fs_mount_info mount_opt;	/* mount options */
1653 
1654 	/* for cleaning operations */
1655 	struct f2fs_rwsem gc_lock;		/*
1656 						 * semaphore for GC, avoid
1657 						 * race between GC and GC or CP
1658 						 */
1659 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1660 	struct atgc_management am;		/* atgc management */
1661 	unsigned int cur_victim_sec;		/* current victim section num */
1662 	unsigned int gc_mode;			/* current GC state */
1663 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1664 	spinlock_t gc_remaining_trials_lock;
1665 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1666 	unsigned int gc_remaining_trials;
1667 
1668 	/* for skip statistic */
1669 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1670 
1671 	/* threshold for gc trials on pinned files */
1672 	u64 gc_pin_file_threshold;
1673 	struct f2fs_rwsem pin_sem;
1674 
1675 	/* maximum # of trials to find a victim segment for SSR and GC */
1676 	unsigned int max_victim_search;
1677 	/* migration granularity of garbage collection, unit: segment */
1678 	unsigned int migration_granularity;
1679 
1680 	/*
1681 	 * for stat information.
1682 	 * one is for the LFS mode, and the other is for the SSR mode.
1683 	 */
1684 #ifdef CONFIG_F2FS_STAT_FS
1685 	struct f2fs_stat_info *stat_info;	/* FS status information */
1686 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1687 	unsigned int segment_count[2];		/* # of allocated segments */
1688 	unsigned int block_count[2];		/* # of allocated blocks */
1689 	atomic_t inplace_count;		/* # of inplace update */
1690 	/* # of lookup extent cache */
1691 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1692 	/* # of hit rbtree extent node */
1693 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1694 	/* # of hit cached extent node */
1695 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1696 	/* # of hit largest extent node in read extent cache */
1697 	atomic64_t read_hit_largest;
1698 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1699 	atomic_t inline_inode;			/* # of inline_data inodes */
1700 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1701 	atomic_t compr_inode;			/* # of compressed inodes */
1702 	atomic64_t compr_blocks;		/* # of compressed blocks */
1703 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1704 	atomic_t atomic_files;			/* # of opened atomic file */
1705 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1706 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1707 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1708 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1709 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1710 #endif
1711 	spinlock_t stat_lock;			/* lock for stat operations */
1712 
1713 	/* to attach REQ_META|REQ_FUA flags */
1714 	unsigned int data_io_flag;
1715 	unsigned int node_io_flag;
1716 
1717 	/* For sysfs support */
1718 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1719 	struct completion s_kobj_unregister;
1720 
1721 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1722 	struct completion s_stat_kobj_unregister;
1723 
1724 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1725 	struct completion s_feature_list_kobj_unregister;
1726 
1727 	/* For shrinker support */
1728 	struct list_head s_list;
1729 	struct mutex umount_mutex;
1730 	unsigned int shrinker_run_no;
1731 
1732 	/* For multi devices */
1733 	int s_ndevs;				/* number of devices */
1734 	struct f2fs_dev_info *devs;		/* for device list */
1735 	unsigned int dirty_device;		/* for checkpoint data flush */
1736 	spinlock_t dev_lock;			/* protect dirty_device */
1737 	bool aligned_blksize;			/* all devices has the same logical blksize */
1738 
1739 	/* For write statistics */
1740 	u64 sectors_written_start;
1741 	u64 kbytes_written;
1742 
1743 	/* Reference to checksum algorithm driver via cryptoapi */
1744 	struct crypto_shash *s_chksum_driver;
1745 
1746 	/* Precomputed FS UUID checksum for seeding other checksums */
1747 	__u32 s_chksum_seed;
1748 
1749 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1750 
1751 	/*
1752 	 * If we are in irq context, let's update error information into
1753 	 * on-disk superblock in the work.
1754 	 */
1755 	struct work_struct s_error_work;
1756 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1757 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1758 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1759 	bool error_dirty;			/* errors of sb is dirty */
1760 
1761 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1762 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1763 
1764 	/* For reclaimed segs statistics per each GC mode */
1765 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1766 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1767 
1768 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1769 
1770 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1771 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1772 
1773 	/* For atomic write statistics */
1774 	atomic64_t current_atomic_write;
1775 	s64 peak_atomic_write;
1776 	u64 committed_atomic_block;
1777 	u64 revoked_atomic_block;
1778 
1779 #ifdef CONFIG_F2FS_FS_COMPRESSION
1780 	struct kmem_cache *page_array_slab;	/* page array entry */
1781 	unsigned int page_array_slab_size;	/* default page array slab size */
1782 
1783 	/* For runtime compression statistics */
1784 	u64 compr_written_block;
1785 	u64 compr_saved_block;
1786 	u32 compr_new_inode;
1787 
1788 	/* For compressed block cache */
1789 	struct inode *compress_inode;		/* cache compressed blocks */
1790 	unsigned int compress_percent;		/* cache page percentage */
1791 	unsigned int compress_watermark;	/* cache page watermark */
1792 	atomic_t compress_page_hit;		/* cache hit count */
1793 #endif
1794 
1795 #ifdef CONFIG_F2FS_IOSTAT
1796 	/* For app/fs IO statistics */
1797 	spinlock_t iostat_lock;
1798 	unsigned long long iostat_count[NR_IO_TYPE];
1799 	unsigned long long iostat_bytes[NR_IO_TYPE];
1800 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1801 	bool iostat_enable;
1802 	unsigned long iostat_next_period;
1803 	unsigned int iostat_period_ms;
1804 
1805 	/* For io latency related statistics info in one iostat period */
1806 	spinlock_t iostat_lat_lock;
1807 	struct iostat_lat_info *iostat_io_lat;
1808 #endif
1809 };
1810 
1811 /* Definitions to access f2fs_sb_info */
1812 #define BLKS_PER_SEG(sbi)					\
1813 	((sbi)->blocks_per_seg)
1814 #define BLKS_PER_SEC(sbi)					\
1815 	((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1816 #define SEGS_PER_SEC(sbi)					\
1817 	((sbi)->segs_per_sec)
1818 
1819 __printf(3, 4)
1820 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1821 
1822 #define f2fs_err(sbi, fmt, ...)						\
1823 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1824 #define f2fs_warn(sbi, fmt, ...)					\
1825 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1826 #define f2fs_notice(sbi, fmt, ...)					\
1827 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1828 #define f2fs_info(sbi, fmt, ...)					\
1829 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1830 #define f2fs_debug(sbi, fmt, ...)					\
1831 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1832 
1833 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1834 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1835 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1836 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1837 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1838 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1839 
1840 #ifdef CONFIG_F2FS_FAULT_INJECTION
1841 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1842 									__builtin_return_address(0))
1843 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1844 				const char *func, const char *parent_func)
1845 {
1846 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1847 
1848 	if (!ffi->inject_rate)
1849 		return false;
1850 
1851 	if (!IS_FAULT_SET(ffi, type))
1852 		return false;
1853 
1854 	atomic_inc(&ffi->inject_ops);
1855 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1856 		atomic_set(&ffi->inject_ops, 0);
1857 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1858 				f2fs_fault_name[type], func, parent_func);
1859 		return true;
1860 	}
1861 	return false;
1862 }
1863 #else
1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 	return false;
1867 }
1868 #endif
1869 
1870 /*
1871  * Test if the mounted volume is a multi-device volume.
1872  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1873  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1874  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1875  */
1876 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1877 {
1878 	return sbi->s_ndevs > 1;
1879 }
1880 
1881 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1882 {
1883 	unsigned long now = jiffies;
1884 
1885 	sbi->last_time[type] = now;
1886 
1887 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1888 	if (type == REQ_TIME) {
1889 		sbi->last_time[DISCARD_TIME] = now;
1890 		sbi->last_time[GC_TIME] = now;
1891 	}
1892 }
1893 
1894 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1895 {
1896 	unsigned long interval = sbi->interval_time[type] * HZ;
1897 
1898 	return time_after(jiffies, sbi->last_time[type] + interval);
1899 }
1900 
1901 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1902 						int type)
1903 {
1904 	unsigned long interval = sbi->interval_time[type] * HZ;
1905 	unsigned int wait_ms = 0;
1906 	long delta;
1907 
1908 	delta = (sbi->last_time[type] + interval) - jiffies;
1909 	if (delta > 0)
1910 		wait_ms = jiffies_to_msecs(delta);
1911 
1912 	return wait_ms;
1913 }
1914 
1915 /*
1916  * Inline functions
1917  */
1918 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1919 			      const void *address, unsigned int length)
1920 {
1921 	struct {
1922 		struct shash_desc shash;
1923 		char ctx[4];
1924 	} desc;
1925 	int err;
1926 
1927 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1928 
1929 	desc.shash.tfm = sbi->s_chksum_driver;
1930 	*(u32 *)desc.ctx = crc;
1931 
1932 	err = crypto_shash_update(&desc.shash, address, length);
1933 	BUG_ON(err);
1934 
1935 	return *(u32 *)desc.ctx;
1936 }
1937 
1938 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1939 			   unsigned int length)
1940 {
1941 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1942 }
1943 
1944 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1945 				  void *buf, size_t buf_size)
1946 {
1947 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1948 }
1949 
1950 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1951 			      const void *address, unsigned int length)
1952 {
1953 	return __f2fs_crc32(sbi, crc, address, length);
1954 }
1955 
1956 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1957 {
1958 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1959 }
1960 
1961 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1962 {
1963 	return sb->s_fs_info;
1964 }
1965 
1966 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1967 {
1968 	return F2FS_SB(inode->i_sb);
1969 }
1970 
1971 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1972 {
1973 	return F2FS_I_SB(mapping->host);
1974 }
1975 
1976 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1977 {
1978 	return F2FS_M_SB(page_file_mapping(page));
1979 }
1980 
1981 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1982 {
1983 	return (struct f2fs_super_block *)(sbi->raw_super);
1984 }
1985 
1986 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1987 {
1988 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1989 }
1990 
1991 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1992 {
1993 	return (struct f2fs_node *)page_address(page);
1994 }
1995 
1996 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1997 {
1998 	return &((struct f2fs_node *)page_address(page))->i;
1999 }
2000 
2001 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2002 {
2003 	return (struct f2fs_nm_info *)(sbi->nm_info);
2004 }
2005 
2006 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2007 {
2008 	return (struct f2fs_sm_info *)(sbi->sm_info);
2009 }
2010 
2011 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2012 {
2013 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2014 }
2015 
2016 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2017 {
2018 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2019 }
2020 
2021 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2024 }
2025 
2026 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2027 {
2028 	return sbi->meta_inode->i_mapping;
2029 }
2030 
2031 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2032 {
2033 	return sbi->node_inode->i_mapping;
2034 }
2035 
2036 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2037 {
2038 	return test_bit(type, &sbi->s_flag);
2039 }
2040 
2041 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2042 {
2043 	set_bit(type, &sbi->s_flag);
2044 }
2045 
2046 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 	clear_bit(type, &sbi->s_flag);
2049 }
2050 
2051 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2052 {
2053 	return le64_to_cpu(cp->checkpoint_ver);
2054 }
2055 
2056 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2057 {
2058 	if (type < F2FS_MAX_QUOTAS)
2059 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2060 	return 0;
2061 }
2062 
2063 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2064 {
2065 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2066 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2067 }
2068 
2069 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2070 {
2071 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2072 
2073 	return ckpt_flags & f;
2074 }
2075 
2076 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2077 {
2078 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2079 }
2080 
2081 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2082 {
2083 	unsigned int ckpt_flags;
2084 
2085 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2086 	ckpt_flags |= f;
2087 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2088 }
2089 
2090 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2091 {
2092 	unsigned long flags;
2093 
2094 	spin_lock_irqsave(&sbi->cp_lock, flags);
2095 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2096 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2097 }
2098 
2099 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2100 {
2101 	unsigned int ckpt_flags;
2102 
2103 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2104 	ckpt_flags &= (~f);
2105 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2106 }
2107 
2108 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2109 {
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(&sbi->cp_lock, flags);
2113 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2114 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2115 }
2116 
2117 #define init_f2fs_rwsem(sem)					\
2118 do {								\
2119 	static struct lock_class_key __key;			\
2120 								\
2121 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2122 } while (0)
2123 
2124 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2125 		const char *sem_name, struct lock_class_key *key)
2126 {
2127 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2128 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2129 	init_waitqueue_head(&sem->read_waiters);
2130 #endif
2131 }
2132 
2133 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2134 {
2135 	return rwsem_is_locked(&sem->internal_rwsem);
2136 }
2137 
2138 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2139 {
2140 	return rwsem_is_contended(&sem->internal_rwsem);
2141 }
2142 
2143 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2144 {
2145 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2146 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2147 #else
2148 	down_read(&sem->internal_rwsem);
2149 #endif
2150 }
2151 
2152 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2153 {
2154 	return down_read_trylock(&sem->internal_rwsem);
2155 }
2156 
2157 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2158 {
2159 	up_read(&sem->internal_rwsem);
2160 }
2161 
2162 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2163 {
2164 	down_write(&sem->internal_rwsem);
2165 }
2166 
2167 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2168 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2169 {
2170 	down_read_nested(&sem->internal_rwsem, subclass);
2171 }
2172 
2173 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2174 {
2175 	down_write_nested(&sem->internal_rwsem, subclass);
2176 }
2177 #else
2178 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2179 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2180 #endif
2181 
2182 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2183 {
2184 	return down_write_trylock(&sem->internal_rwsem);
2185 }
2186 
2187 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2188 {
2189 	up_write(&sem->internal_rwsem);
2190 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2191 	wake_up_all(&sem->read_waiters);
2192 #endif
2193 }
2194 
2195 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2196 {
2197 	f2fs_down_read(&sbi->cp_rwsem);
2198 }
2199 
2200 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2201 {
2202 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2203 		return 0;
2204 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2205 }
2206 
2207 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2208 {
2209 	f2fs_up_read(&sbi->cp_rwsem);
2210 }
2211 
2212 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2213 {
2214 	f2fs_down_write(&sbi->cp_rwsem);
2215 }
2216 
2217 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2218 {
2219 	f2fs_up_write(&sbi->cp_rwsem);
2220 }
2221 
2222 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2223 {
2224 	int reason = CP_SYNC;
2225 
2226 	if (test_opt(sbi, FASTBOOT))
2227 		reason = CP_FASTBOOT;
2228 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2229 		reason = CP_UMOUNT;
2230 	return reason;
2231 }
2232 
2233 static inline bool __remain_node_summaries(int reason)
2234 {
2235 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2236 }
2237 
2238 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2239 {
2240 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2241 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2242 }
2243 
2244 /*
2245  * Check whether the inode has blocks or not
2246  */
2247 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2248 {
2249 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2250 
2251 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2252 }
2253 
2254 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2255 {
2256 	return ofs == XATTR_NODE_OFFSET;
2257 }
2258 
2259 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2260 					struct inode *inode, bool cap)
2261 {
2262 	if (!inode)
2263 		return true;
2264 	if (!test_opt(sbi, RESERVE_ROOT))
2265 		return false;
2266 	if (IS_NOQUOTA(inode))
2267 		return true;
2268 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2269 		return true;
2270 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2271 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2272 		return true;
2273 	if (cap && capable(CAP_SYS_RESOURCE))
2274 		return true;
2275 	return false;
2276 }
2277 
2278 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2279 						struct inode *inode, bool cap)
2280 {
2281 	block_t avail_user_block_count;
2282 
2283 	avail_user_block_count = sbi->user_block_count -
2284 					sbi->current_reserved_blocks;
2285 
2286 	if (!__allow_reserved_blocks(sbi, inode, cap))
2287 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2288 
2289 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2290 		if (avail_user_block_count > sbi->unusable_block_count)
2291 			avail_user_block_count -= sbi->unusable_block_count;
2292 		else
2293 			avail_user_block_count = 0;
2294 	}
2295 
2296 	return avail_user_block_count;
2297 }
2298 
2299 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2300 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2301 				 struct inode *inode, blkcnt_t *count, bool partial)
2302 {
2303 	long long diff = 0, release = 0;
2304 	block_t avail_user_block_count;
2305 	int ret;
2306 
2307 	ret = dquot_reserve_block(inode, *count);
2308 	if (ret)
2309 		return ret;
2310 
2311 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2312 		release = *count;
2313 		goto release_quota;
2314 	}
2315 
2316 	/*
2317 	 * let's increase this in prior to actual block count change in order
2318 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2319 	 */
2320 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2321 
2322 	spin_lock(&sbi->stat_lock);
2323 
2324 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2325 	diff = (long long)sbi->total_valid_block_count + *count -
2326 						avail_user_block_count;
2327 	if (unlikely(diff > 0)) {
2328 		if (!partial) {
2329 			spin_unlock(&sbi->stat_lock);
2330 			release = *count;
2331 			goto enospc;
2332 		}
2333 		if (diff > *count)
2334 			diff = *count;
2335 		*count -= diff;
2336 		release = diff;
2337 		if (!*count) {
2338 			spin_unlock(&sbi->stat_lock);
2339 			goto enospc;
2340 		}
2341 	}
2342 	sbi->total_valid_block_count += (block_t)(*count);
2343 
2344 	spin_unlock(&sbi->stat_lock);
2345 
2346 	if (unlikely(release)) {
2347 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2348 		dquot_release_reservation_block(inode, release);
2349 	}
2350 	f2fs_i_blocks_write(inode, *count, true, true);
2351 	return 0;
2352 
2353 enospc:
2354 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2355 release_quota:
2356 	dquot_release_reservation_block(inode, release);
2357 	return -ENOSPC;
2358 }
2359 
2360 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2361 static inline bool page_private_##name(struct page *page) \
2362 { \
2363 	return PagePrivate(page) && \
2364 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2365 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2366 }
2367 
2368 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2369 static inline void set_page_private_##name(struct page *page) \
2370 { \
2371 	if (!PagePrivate(page)) \
2372 		attach_page_private(page, (void *)0); \
2373 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2374 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2375 }
2376 
2377 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2378 static inline void clear_page_private_##name(struct page *page) \
2379 { \
2380 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2381 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2382 		detach_page_private(page); \
2383 }
2384 
2385 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2386 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2387 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2388 
2389 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2390 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2391 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2392 
2393 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2394 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2395 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2396 
2397 static inline unsigned long get_page_private_data(struct page *page)
2398 {
2399 	unsigned long data = page_private(page);
2400 
2401 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2402 		return 0;
2403 	return data >> PAGE_PRIVATE_MAX;
2404 }
2405 
2406 static inline void set_page_private_data(struct page *page, unsigned long data)
2407 {
2408 	if (!PagePrivate(page))
2409 		attach_page_private(page, (void *)0);
2410 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2411 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2412 }
2413 
2414 static inline void clear_page_private_data(struct page *page)
2415 {
2416 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2417 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2418 		detach_page_private(page);
2419 }
2420 
2421 static inline void clear_page_private_all(struct page *page)
2422 {
2423 	clear_page_private_data(page);
2424 	clear_page_private_reference(page);
2425 	clear_page_private_gcing(page);
2426 	clear_page_private_inline(page);
2427 
2428 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2429 }
2430 
2431 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2432 						struct inode *inode,
2433 						block_t count)
2434 {
2435 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2436 
2437 	spin_lock(&sbi->stat_lock);
2438 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2439 	sbi->total_valid_block_count -= (block_t)count;
2440 	if (sbi->reserved_blocks &&
2441 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2442 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2443 					sbi->current_reserved_blocks + count);
2444 	spin_unlock(&sbi->stat_lock);
2445 	if (unlikely(inode->i_blocks < sectors)) {
2446 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2447 			  inode->i_ino,
2448 			  (unsigned long long)inode->i_blocks,
2449 			  (unsigned long long)sectors);
2450 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2451 		return;
2452 	}
2453 	f2fs_i_blocks_write(inode, count, false, true);
2454 }
2455 
2456 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2457 {
2458 	atomic_inc(&sbi->nr_pages[count_type]);
2459 
2460 	if (count_type == F2FS_DIRTY_DENTS ||
2461 			count_type == F2FS_DIRTY_NODES ||
2462 			count_type == F2FS_DIRTY_META ||
2463 			count_type == F2FS_DIRTY_QDATA ||
2464 			count_type == F2FS_DIRTY_IMETA)
2465 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2466 }
2467 
2468 static inline void inode_inc_dirty_pages(struct inode *inode)
2469 {
2470 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2471 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2472 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2473 	if (IS_NOQUOTA(inode))
2474 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2475 }
2476 
2477 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2478 {
2479 	atomic_dec(&sbi->nr_pages[count_type]);
2480 }
2481 
2482 static inline void inode_dec_dirty_pages(struct inode *inode)
2483 {
2484 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2485 			!S_ISLNK(inode->i_mode))
2486 		return;
2487 
2488 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2489 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2490 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2491 	if (IS_NOQUOTA(inode))
2492 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2493 }
2494 
2495 static inline void inc_atomic_write_cnt(struct inode *inode)
2496 {
2497 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2498 	struct f2fs_inode_info *fi = F2FS_I(inode);
2499 	u64 current_write;
2500 
2501 	fi->atomic_write_cnt++;
2502 	atomic64_inc(&sbi->current_atomic_write);
2503 	current_write = atomic64_read(&sbi->current_atomic_write);
2504 	if (current_write > sbi->peak_atomic_write)
2505 		sbi->peak_atomic_write = current_write;
2506 }
2507 
2508 static inline void release_atomic_write_cnt(struct inode *inode)
2509 {
2510 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2511 	struct f2fs_inode_info *fi = F2FS_I(inode);
2512 
2513 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2514 	fi->atomic_write_cnt = 0;
2515 }
2516 
2517 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2518 {
2519 	return atomic_read(&sbi->nr_pages[count_type]);
2520 }
2521 
2522 static inline int get_dirty_pages(struct inode *inode)
2523 {
2524 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2525 }
2526 
2527 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2528 {
2529 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2530 							BLKS_PER_SEC(sbi));
2531 }
2532 
2533 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2534 {
2535 	return sbi->total_valid_block_count;
2536 }
2537 
2538 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2539 {
2540 	return sbi->discard_blks;
2541 }
2542 
2543 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2544 {
2545 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2546 
2547 	/* return NAT or SIT bitmap */
2548 	if (flag == NAT_BITMAP)
2549 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2550 	else if (flag == SIT_BITMAP)
2551 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2552 
2553 	return 0;
2554 }
2555 
2556 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2557 {
2558 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2559 }
2560 
2561 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2562 {
2563 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2564 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2565 	int offset;
2566 
2567 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2568 		offset = (flag == SIT_BITMAP) ?
2569 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2570 		/*
2571 		 * if large_nat_bitmap feature is enabled, leave checksum
2572 		 * protection for all nat/sit bitmaps.
2573 		 */
2574 		return tmp_ptr + offset + sizeof(__le32);
2575 	}
2576 
2577 	if (__cp_payload(sbi) > 0) {
2578 		if (flag == NAT_BITMAP)
2579 			return tmp_ptr;
2580 		else
2581 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2582 	} else {
2583 		offset = (flag == NAT_BITMAP) ?
2584 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2585 		return tmp_ptr + offset;
2586 	}
2587 }
2588 
2589 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2590 {
2591 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2592 
2593 	if (sbi->cur_cp_pack == 2)
2594 		start_addr += BLKS_PER_SEG(sbi);
2595 	return start_addr;
2596 }
2597 
2598 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2599 {
2600 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2601 
2602 	if (sbi->cur_cp_pack == 1)
2603 		start_addr += BLKS_PER_SEG(sbi);
2604 	return start_addr;
2605 }
2606 
2607 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2608 {
2609 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2610 }
2611 
2612 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2613 {
2614 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2615 }
2616 
2617 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2618 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2619 					struct inode *inode, bool is_inode)
2620 {
2621 	block_t	valid_block_count;
2622 	unsigned int valid_node_count;
2623 	unsigned int avail_user_block_count;
2624 	int err;
2625 
2626 	if (is_inode) {
2627 		if (inode) {
2628 			err = dquot_alloc_inode(inode);
2629 			if (err)
2630 				return err;
2631 		}
2632 	} else {
2633 		err = dquot_reserve_block(inode, 1);
2634 		if (err)
2635 			return err;
2636 	}
2637 
2638 	if (time_to_inject(sbi, FAULT_BLOCK))
2639 		goto enospc;
2640 
2641 	spin_lock(&sbi->stat_lock);
2642 
2643 	valid_block_count = sbi->total_valid_block_count + 1;
2644 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2645 
2646 	if (unlikely(valid_block_count > avail_user_block_count)) {
2647 		spin_unlock(&sbi->stat_lock);
2648 		goto enospc;
2649 	}
2650 
2651 	valid_node_count = sbi->total_valid_node_count + 1;
2652 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2653 		spin_unlock(&sbi->stat_lock);
2654 		goto enospc;
2655 	}
2656 
2657 	sbi->total_valid_node_count++;
2658 	sbi->total_valid_block_count++;
2659 	spin_unlock(&sbi->stat_lock);
2660 
2661 	if (inode) {
2662 		if (is_inode)
2663 			f2fs_mark_inode_dirty_sync(inode, true);
2664 		else
2665 			f2fs_i_blocks_write(inode, 1, true, true);
2666 	}
2667 
2668 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2669 	return 0;
2670 
2671 enospc:
2672 	if (is_inode) {
2673 		if (inode)
2674 			dquot_free_inode(inode);
2675 	} else {
2676 		dquot_release_reservation_block(inode, 1);
2677 	}
2678 	return -ENOSPC;
2679 }
2680 
2681 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2682 					struct inode *inode, bool is_inode)
2683 {
2684 	spin_lock(&sbi->stat_lock);
2685 
2686 	if (unlikely(!sbi->total_valid_block_count ||
2687 			!sbi->total_valid_node_count)) {
2688 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2689 			  sbi->total_valid_block_count,
2690 			  sbi->total_valid_node_count);
2691 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2692 	} else {
2693 		sbi->total_valid_block_count--;
2694 		sbi->total_valid_node_count--;
2695 	}
2696 
2697 	if (sbi->reserved_blocks &&
2698 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2699 		sbi->current_reserved_blocks++;
2700 
2701 	spin_unlock(&sbi->stat_lock);
2702 
2703 	if (is_inode) {
2704 		dquot_free_inode(inode);
2705 	} else {
2706 		if (unlikely(inode->i_blocks == 0)) {
2707 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2708 				  inode->i_ino,
2709 				  (unsigned long long)inode->i_blocks);
2710 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2711 			return;
2712 		}
2713 		f2fs_i_blocks_write(inode, 1, false, true);
2714 	}
2715 }
2716 
2717 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2718 {
2719 	return sbi->total_valid_node_count;
2720 }
2721 
2722 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2723 {
2724 	percpu_counter_inc(&sbi->total_valid_inode_count);
2725 }
2726 
2727 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2728 {
2729 	percpu_counter_dec(&sbi->total_valid_inode_count);
2730 }
2731 
2732 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2733 {
2734 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2735 }
2736 
2737 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2738 						pgoff_t index, bool for_write)
2739 {
2740 	struct page *page;
2741 	unsigned int flags;
2742 
2743 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2744 		if (!for_write)
2745 			page = find_get_page_flags(mapping, index,
2746 							FGP_LOCK | FGP_ACCESSED);
2747 		else
2748 			page = find_lock_page(mapping, index);
2749 		if (page)
2750 			return page;
2751 
2752 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2753 			return NULL;
2754 	}
2755 
2756 	if (!for_write)
2757 		return grab_cache_page(mapping, index);
2758 
2759 	flags = memalloc_nofs_save();
2760 	page = grab_cache_page_write_begin(mapping, index);
2761 	memalloc_nofs_restore(flags);
2762 
2763 	return page;
2764 }
2765 
2766 static inline struct page *f2fs_pagecache_get_page(
2767 				struct address_space *mapping, pgoff_t index,
2768 				fgf_t fgp_flags, gfp_t gfp_mask)
2769 {
2770 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2771 		return NULL;
2772 
2773 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2774 }
2775 
2776 static inline void f2fs_put_page(struct page *page, int unlock)
2777 {
2778 	if (!page)
2779 		return;
2780 
2781 	if (unlock) {
2782 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2783 		unlock_page(page);
2784 	}
2785 	put_page(page);
2786 }
2787 
2788 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2789 {
2790 	if (dn->node_page)
2791 		f2fs_put_page(dn->node_page, 1);
2792 	if (dn->inode_page && dn->node_page != dn->inode_page)
2793 		f2fs_put_page(dn->inode_page, 0);
2794 	dn->node_page = NULL;
2795 	dn->inode_page = NULL;
2796 }
2797 
2798 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2799 					size_t size)
2800 {
2801 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2802 }
2803 
2804 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2805 						gfp_t flags)
2806 {
2807 	void *entry;
2808 
2809 	entry = kmem_cache_alloc(cachep, flags);
2810 	if (!entry)
2811 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2812 	return entry;
2813 }
2814 
2815 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2816 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2817 {
2818 	if (nofail)
2819 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2820 
2821 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2822 		return NULL;
2823 
2824 	return kmem_cache_alloc(cachep, flags);
2825 }
2826 
2827 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2828 {
2829 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2830 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2831 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2832 		get_pages(sbi, F2FS_DIO_READ) ||
2833 		get_pages(sbi, F2FS_DIO_WRITE))
2834 		return true;
2835 
2836 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2837 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2838 		return true;
2839 
2840 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2841 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2842 		return true;
2843 	return false;
2844 }
2845 
2846 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2847 {
2848 	if (sbi->gc_mode == GC_URGENT_HIGH)
2849 		return true;
2850 
2851 	if (is_inflight_io(sbi, type))
2852 		return false;
2853 
2854 	if (sbi->gc_mode == GC_URGENT_MID)
2855 		return true;
2856 
2857 	if (sbi->gc_mode == GC_URGENT_LOW &&
2858 			(type == DISCARD_TIME || type == GC_TIME))
2859 		return true;
2860 
2861 	return f2fs_time_over(sbi, type);
2862 }
2863 
2864 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2865 				unsigned long index, void *item)
2866 {
2867 	while (radix_tree_insert(root, index, item))
2868 		cond_resched();
2869 }
2870 
2871 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2872 
2873 static inline bool IS_INODE(struct page *page)
2874 {
2875 	struct f2fs_node *p = F2FS_NODE(page);
2876 
2877 	return RAW_IS_INODE(p);
2878 }
2879 
2880 static inline int offset_in_addr(struct f2fs_inode *i)
2881 {
2882 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2883 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2884 }
2885 
2886 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2887 {
2888 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2889 }
2890 
2891 static inline int f2fs_has_extra_attr(struct inode *inode);
2892 static inline block_t data_blkaddr(struct inode *inode,
2893 			struct page *node_page, unsigned int offset)
2894 {
2895 	struct f2fs_node *raw_node;
2896 	__le32 *addr_array;
2897 	int base = 0;
2898 	bool is_inode = IS_INODE(node_page);
2899 
2900 	raw_node = F2FS_NODE(node_page);
2901 
2902 	if (is_inode) {
2903 		if (!inode)
2904 			/* from GC path only */
2905 			base = offset_in_addr(&raw_node->i);
2906 		else if (f2fs_has_extra_attr(inode))
2907 			base = get_extra_isize(inode);
2908 	}
2909 
2910 	addr_array = blkaddr_in_node(raw_node);
2911 	return le32_to_cpu(addr_array[base + offset]);
2912 }
2913 
2914 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2915 {
2916 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2917 }
2918 
2919 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2920 {
2921 	int mask;
2922 
2923 	addr += (nr >> 3);
2924 	mask = BIT(7 - (nr & 0x07));
2925 	return mask & *addr;
2926 }
2927 
2928 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2929 {
2930 	int mask;
2931 
2932 	addr += (nr >> 3);
2933 	mask = BIT(7 - (nr & 0x07));
2934 	*addr |= mask;
2935 }
2936 
2937 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2938 {
2939 	int mask;
2940 
2941 	addr += (nr >> 3);
2942 	mask = BIT(7 - (nr & 0x07));
2943 	*addr &= ~mask;
2944 }
2945 
2946 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2947 {
2948 	int mask;
2949 	int ret;
2950 
2951 	addr += (nr >> 3);
2952 	mask = BIT(7 - (nr & 0x07));
2953 	ret = mask & *addr;
2954 	*addr |= mask;
2955 	return ret;
2956 }
2957 
2958 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2959 {
2960 	int mask;
2961 	int ret;
2962 
2963 	addr += (nr >> 3);
2964 	mask = BIT(7 - (nr & 0x07));
2965 	ret = mask & *addr;
2966 	*addr &= ~mask;
2967 	return ret;
2968 }
2969 
2970 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2971 {
2972 	int mask;
2973 
2974 	addr += (nr >> 3);
2975 	mask = BIT(7 - (nr & 0x07));
2976 	*addr ^= mask;
2977 }
2978 
2979 /*
2980  * On-disk inode flags (f2fs_inode::i_flags)
2981  */
2982 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2983 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2984 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2985 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2986 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2987 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2988 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2989 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2990 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2991 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2992 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2993 
2994 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2995 
2996 /* Flags that should be inherited by new inodes from their parent. */
2997 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2998 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2999 			   F2FS_CASEFOLD_FL)
3000 
3001 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3002 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3003 				F2FS_CASEFOLD_FL))
3004 
3005 /* Flags that are appropriate for non-directories/regular files. */
3006 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3007 
3008 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3009 {
3010 	if (S_ISDIR(mode))
3011 		return flags;
3012 	else if (S_ISREG(mode))
3013 		return flags & F2FS_REG_FLMASK;
3014 	else
3015 		return flags & F2FS_OTHER_FLMASK;
3016 }
3017 
3018 static inline void __mark_inode_dirty_flag(struct inode *inode,
3019 						int flag, bool set)
3020 {
3021 	switch (flag) {
3022 	case FI_INLINE_XATTR:
3023 	case FI_INLINE_DATA:
3024 	case FI_INLINE_DENTRY:
3025 	case FI_NEW_INODE:
3026 		if (set)
3027 			return;
3028 		fallthrough;
3029 	case FI_DATA_EXIST:
3030 	case FI_INLINE_DOTS:
3031 	case FI_PIN_FILE:
3032 	case FI_COMPRESS_RELEASED:
3033 	case FI_ATOMIC_COMMITTED:
3034 		f2fs_mark_inode_dirty_sync(inode, true);
3035 	}
3036 }
3037 
3038 static inline void set_inode_flag(struct inode *inode, int flag)
3039 {
3040 	set_bit(flag, F2FS_I(inode)->flags);
3041 	__mark_inode_dirty_flag(inode, flag, true);
3042 }
3043 
3044 static inline int is_inode_flag_set(struct inode *inode, int flag)
3045 {
3046 	return test_bit(flag, F2FS_I(inode)->flags);
3047 }
3048 
3049 static inline void clear_inode_flag(struct inode *inode, int flag)
3050 {
3051 	clear_bit(flag, F2FS_I(inode)->flags);
3052 	__mark_inode_dirty_flag(inode, flag, false);
3053 }
3054 
3055 static inline bool f2fs_verity_in_progress(struct inode *inode)
3056 {
3057 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3058 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3059 }
3060 
3061 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3062 {
3063 	F2FS_I(inode)->i_acl_mode = mode;
3064 	set_inode_flag(inode, FI_ACL_MODE);
3065 	f2fs_mark_inode_dirty_sync(inode, false);
3066 }
3067 
3068 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3069 {
3070 	if (inc)
3071 		inc_nlink(inode);
3072 	else
3073 		drop_nlink(inode);
3074 	f2fs_mark_inode_dirty_sync(inode, true);
3075 }
3076 
3077 static inline void f2fs_i_blocks_write(struct inode *inode,
3078 					block_t diff, bool add, bool claim)
3079 {
3080 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3081 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3082 
3083 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3084 	if (add) {
3085 		if (claim)
3086 			dquot_claim_block(inode, diff);
3087 		else
3088 			dquot_alloc_block_nofail(inode, diff);
3089 	} else {
3090 		dquot_free_block(inode, diff);
3091 	}
3092 
3093 	f2fs_mark_inode_dirty_sync(inode, true);
3094 	if (clean || recover)
3095 		set_inode_flag(inode, FI_AUTO_RECOVER);
3096 }
3097 
3098 static inline bool f2fs_is_atomic_file(struct inode *inode);
3099 
3100 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3101 {
3102 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3103 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3104 
3105 	if (i_size_read(inode) == i_size)
3106 		return;
3107 
3108 	i_size_write(inode, i_size);
3109 
3110 	if (f2fs_is_atomic_file(inode))
3111 		return;
3112 
3113 	f2fs_mark_inode_dirty_sync(inode, true);
3114 	if (clean || recover)
3115 		set_inode_flag(inode, FI_AUTO_RECOVER);
3116 }
3117 
3118 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3119 {
3120 	F2FS_I(inode)->i_current_depth = depth;
3121 	f2fs_mark_inode_dirty_sync(inode, true);
3122 }
3123 
3124 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3125 					unsigned int count)
3126 {
3127 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3128 	f2fs_mark_inode_dirty_sync(inode, true);
3129 }
3130 
3131 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3132 {
3133 	F2FS_I(inode)->i_xattr_nid = xnid;
3134 	f2fs_mark_inode_dirty_sync(inode, true);
3135 }
3136 
3137 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3138 {
3139 	F2FS_I(inode)->i_pino = pino;
3140 	f2fs_mark_inode_dirty_sync(inode, true);
3141 }
3142 
3143 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3144 {
3145 	struct f2fs_inode_info *fi = F2FS_I(inode);
3146 
3147 	if (ri->i_inline & F2FS_INLINE_XATTR)
3148 		set_bit(FI_INLINE_XATTR, fi->flags);
3149 	if (ri->i_inline & F2FS_INLINE_DATA)
3150 		set_bit(FI_INLINE_DATA, fi->flags);
3151 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3152 		set_bit(FI_INLINE_DENTRY, fi->flags);
3153 	if (ri->i_inline & F2FS_DATA_EXIST)
3154 		set_bit(FI_DATA_EXIST, fi->flags);
3155 	if (ri->i_inline & F2FS_INLINE_DOTS)
3156 		set_bit(FI_INLINE_DOTS, fi->flags);
3157 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3158 		set_bit(FI_EXTRA_ATTR, fi->flags);
3159 	if (ri->i_inline & F2FS_PIN_FILE)
3160 		set_bit(FI_PIN_FILE, fi->flags);
3161 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3162 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3163 }
3164 
3165 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3166 {
3167 	ri->i_inline = 0;
3168 
3169 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3170 		ri->i_inline |= F2FS_INLINE_XATTR;
3171 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3172 		ri->i_inline |= F2FS_INLINE_DATA;
3173 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3174 		ri->i_inline |= F2FS_INLINE_DENTRY;
3175 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3176 		ri->i_inline |= F2FS_DATA_EXIST;
3177 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3178 		ri->i_inline |= F2FS_INLINE_DOTS;
3179 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3180 		ri->i_inline |= F2FS_EXTRA_ATTR;
3181 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3182 		ri->i_inline |= F2FS_PIN_FILE;
3183 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3184 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3185 }
3186 
3187 static inline int f2fs_has_extra_attr(struct inode *inode)
3188 {
3189 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3190 }
3191 
3192 static inline int f2fs_has_inline_xattr(struct inode *inode)
3193 {
3194 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3195 }
3196 
3197 static inline int f2fs_compressed_file(struct inode *inode)
3198 {
3199 	return S_ISREG(inode->i_mode) &&
3200 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3201 }
3202 
3203 static inline bool f2fs_need_compress_data(struct inode *inode)
3204 {
3205 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3206 
3207 	if (!f2fs_compressed_file(inode))
3208 		return false;
3209 
3210 	if (compress_mode == COMPR_MODE_FS)
3211 		return true;
3212 	else if (compress_mode == COMPR_MODE_USER &&
3213 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3214 		return true;
3215 
3216 	return false;
3217 }
3218 
3219 static inline unsigned int addrs_per_inode(struct inode *inode)
3220 {
3221 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3222 				get_inline_xattr_addrs(inode);
3223 
3224 	if (!f2fs_compressed_file(inode))
3225 		return addrs;
3226 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3227 }
3228 
3229 static inline unsigned int addrs_per_block(struct inode *inode)
3230 {
3231 	if (!f2fs_compressed_file(inode))
3232 		return DEF_ADDRS_PER_BLOCK;
3233 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3234 }
3235 
3236 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3237 {
3238 	struct f2fs_inode *ri = F2FS_INODE(page);
3239 
3240 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3241 					get_inline_xattr_addrs(inode)]);
3242 }
3243 
3244 static inline int inline_xattr_size(struct inode *inode)
3245 {
3246 	if (f2fs_has_inline_xattr(inode))
3247 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3248 	return 0;
3249 }
3250 
3251 /*
3252  * Notice: check inline_data flag without inode page lock is unsafe.
3253  * It could change at any time by f2fs_convert_inline_page().
3254  */
3255 static inline int f2fs_has_inline_data(struct inode *inode)
3256 {
3257 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3258 }
3259 
3260 static inline int f2fs_exist_data(struct inode *inode)
3261 {
3262 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3263 }
3264 
3265 static inline int f2fs_has_inline_dots(struct inode *inode)
3266 {
3267 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3268 }
3269 
3270 static inline int f2fs_is_mmap_file(struct inode *inode)
3271 {
3272 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3273 }
3274 
3275 static inline bool f2fs_is_pinned_file(struct inode *inode)
3276 {
3277 	return is_inode_flag_set(inode, FI_PIN_FILE);
3278 }
3279 
3280 static inline bool f2fs_is_atomic_file(struct inode *inode)
3281 {
3282 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3283 }
3284 
3285 static inline bool f2fs_is_cow_file(struct inode *inode)
3286 {
3287 	return is_inode_flag_set(inode, FI_COW_FILE);
3288 }
3289 
3290 static inline __le32 *get_dnode_addr(struct inode *inode,
3291 					struct page *node_page);
3292 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3293 {
3294 	__le32 *addr = get_dnode_addr(inode, page);
3295 
3296 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3297 }
3298 
3299 static inline int f2fs_has_inline_dentry(struct inode *inode)
3300 {
3301 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3302 }
3303 
3304 static inline int is_file(struct inode *inode, int type)
3305 {
3306 	return F2FS_I(inode)->i_advise & type;
3307 }
3308 
3309 static inline void set_file(struct inode *inode, int type)
3310 {
3311 	if (is_file(inode, type))
3312 		return;
3313 	F2FS_I(inode)->i_advise |= type;
3314 	f2fs_mark_inode_dirty_sync(inode, true);
3315 }
3316 
3317 static inline void clear_file(struct inode *inode, int type)
3318 {
3319 	if (!is_file(inode, type))
3320 		return;
3321 	F2FS_I(inode)->i_advise &= ~type;
3322 	f2fs_mark_inode_dirty_sync(inode, true);
3323 }
3324 
3325 static inline bool f2fs_is_time_consistent(struct inode *inode)
3326 {
3327 	struct timespec64 ctime = inode_get_ctime(inode);
3328 
3329 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3330 		return false;
3331 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3332 		return false;
3333 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3334 		return false;
3335 	return true;
3336 }
3337 
3338 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3339 {
3340 	bool ret;
3341 
3342 	if (dsync) {
3343 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3344 
3345 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3346 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3347 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3348 		return ret;
3349 	}
3350 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3351 			file_keep_isize(inode) ||
3352 			i_size_read(inode) & ~PAGE_MASK)
3353 		return false;
3354 
3355 	if (!f2fs_is_time_consistent(inode))
3356 		return false;
3357 
3358 	spin_lock(&F2FS_I(inode)->i_size_lock);
3359 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3360 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3361 
3362 	return ret;
3363 }
3364 
3365 static inline bool f2fs_readonly(struct super_block *sb)
3366 {
3367 	return sb_rdonly(sb);
3368 }
3369 
3370 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3371 {
3372 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3373 }
3374 
3375 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3376 {
3377 	if (len == 1 && name[0] == '.')
3378 		return true;
3379 
3380 	if (len == 2 && name[0] == '.' && name[1] == '.')
3381 		return true;
3382 
3383 	return false;
3384 }
3385 
3386 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3387 					size_t size, gfp_t flags)
3388 {
3389 	if (time_to_inject(sbi, FAULT_KMALLOC))
3390 		return NULL;
3391 
3392 	return kmalloc(size, flags);
3393 }
3394 
3395 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3396 {
3397 	if (time_to_inject(sbi, FAULT_KMALLOC))
3398 		return NULL;
3399 
3400 	return __getname();
3401 }
3402 
3403 static inline void f2fs_putname(char *buf)
3404 {
3405 	__putname(buf);
3406 }
3407 
3408 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3409 					size_t size, gfp_t flags)
3410 {
3411 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3412 }
3413 
3414 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3415 					size_t size, gfp_t flags)
3416 {
3417 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3418 		return NULL;
3419 
3420 	return kvmalloc(size, flags);
3421 }
3422 
3423 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3424 					size_t size, gfp_t flags)
3425 {
3426 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3427 }
3428 
3429 static inline int get_extra_isize(struct inode *inode)
3430 {
3431 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3432 }
3433 
3434 static inline int get_inline_xattr_addrs(struct inode *inode)
3435 {
3436 	return F2FS_I(inode)->i_inline_xattr_size;
3437 }
3438 
3439 static inline __le32 *get_dnode_addr(struct inode *inode,
3440 					struct page *node_page)
3441 {
3442 	int base = 0;
3443 
3444 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3445 		base = get_extra_isize(inode);
3446 
3447 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3448 }
3449 
3450 #define f2fs_get_inode_mode(i) \
3451 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3452 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3453 
3454 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3455 
3456 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3457 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3458 	offsetof(struct f2fs_inode, i_extra_isize))	\
3459 
3460 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3461 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3462 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3463 		sizeof((f2fs_inode)->field))			\
3464 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3465 
3466 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3467 
3468 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3469 
3470 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3471 					block_t blkaddr, int type);
3472 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3473 					block_t blkaddr, int type)
3474 {
3475 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3476 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3477 			 blkaddr, type);
3478 }
3479 
3480 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3481 {
3482 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3483 			blkaddr == COMPRESS_ADDR)
3484 		return false;
3485 	return true;
3486 }
3487 
3488 /*
3489  * file.c
3490  */
3491 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3492 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3493 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3494 int f2fs_truncate(struct inode *inode);
3495 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3496 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3497 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3498 		 struct iattr *attr);
3499 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3500 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3501 int f2fs_precache_extents(struct inode *inode);
3502 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3503 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3504 		      struct dentry *dentry, struct fileattr *fa);
3505 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3506 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3507 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3508 int f2fs_pin_file_control(struct inode *inode, bool inc);
3509 
3510 /*
3511  * inode.c
3512  */
3513 void f2fs_set_inode_flags(struct inode *inode);
3514 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3515 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3516 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3517 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3518 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3519 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3520 void f2fs_update_inode_page(struct inode *inode);
3521 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3522 void f2fs_evict_inode(struct inode *inode);
3523 void f2fs_handle_failed_inode(struct inode *inode);
3524 
3525 /*
3526  * namei.c
3527  */
3528 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3529 							bool hot, bool set);
3530 struct dentry *f2fs_get_parent(struct dentry *child);
3531 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3532 		     struct inode **new_inode);
3533 
3534 /*
3535  * dir.c
3536  */
3537 int f2fs_init_casefolded_name(const struct inode *dir,
3538 			      struct f2fs_filename *fname);
3539 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3540 			int lookup, struct f2fs_filename *fname);
3541 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3542 			struct f2fs_filename *fname);
3543 void f2fs_free_filename(struct f2fs_filename *fname);
3544 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3545 			const struct f2fs_filename *fname, int *max_slots);
3546 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3547 			unsigned int start_pos, struct fscrypt_str *fstr);
3548 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3549 			struct f2fs_dentry_ptr *d);
3550 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3551 			const struct f2fs_filename *fname, struct page *dpage);
3552 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3553 			unsigned int current_depth);
3554 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3555 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3556 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3557 					 const struct f2fs_filename *fname,
3558 					 struct page **res_page);
3559 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3560 			const struct qstr *child, struct page **res_page);
3561 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3562 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3563 			struct page **page);
3564 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3565 			struct page *page, struct inode *inode);
3566 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3567 			  const struct f2fs_filename *fname);
3568 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3569 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3570 			unsigned int bit_pos);
3571 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3572 			struct inode *inode, nid_t ino, umode_t mode);
3573 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3574 			struct inode *inode, nid_t ino, umode_t mode);
3575 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3576 			struct inode *inode, nid_t ino, umode_t mode);
3577 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3578 			struct inode *dir, struct inode *inode);
3579 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3580 					struct f2fs_filename *fname);
3581 bool f2fs_empty_dir(struct inode *dir);
3582 
3583 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3584 {
3585 	if (fscrypt_is_nokey_name(dentry))
3586 		return -ENOKEY;
3587 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3588 				inode, inode->i_ino, inode->i_mode);
3589 }
3590 
3591 /*
3592  * super.c
3593  */
3594 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3595 void f2fs_inode_synced(struct inode *inode);
3596 int f2fs_dquot_initialize(struct inode *inode);
3597 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3598 int f2fs_quota_sync(struct super_block *sb, int type);
3599 loff_t max_file_blocks(struct inode *inode);
3600 void f2fs_quota_off_umount(struct super_block *sb);
3601 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3602 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3603 							bool irq_context);
3604 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3605 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3606 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3607 int f2fs_sync_fs(struct super_block *sb, int sync);
3608 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3609 
3610 /*
3611  * hash.c
3612  */
3613 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3614 
3615 /*
3616  * node.c
3617  */
3618 struct node_info;
3619 
3620 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3621 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3622 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3623 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3624 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3625 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3626 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3627 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3628 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3629 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3630 				struct node_info *ni, bool checkpoint_context);
3631 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3632 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3633 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3634 int f2fs_truncate_xattr_node(struct inode *inode);
3635 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3636 					unsigned int seq_id);
3637 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3638 int f2fs_remove_inode_page(struct inode *inode);
3639 struct page *f2fs_new_inode_page(struct inode *inode);
3640 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3641 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3642 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3643 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3644 int f2fs_move_node_page(struct page *node_page, int gc_type);
3645 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3646 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3647 			struct writeback_control *wbc, bool atomic,
3648 			unsigned int *seq_id);
3649 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3650 			struct writeback_control *wbc,
3651 			bool do_balance, enum iostat_type io_type);
3652 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3653 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3654 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3655 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3656 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3657 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3658 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3659 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3660 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3661 			unsigned int segno, struct f2fs_summary_block *sum);
3662 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3663 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3664 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3665 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3666 int __init f2fs_create_node_manager_caches(void);
3667 void f2fs_destroy_node_manager_caches(void);
3668 
3669 /*
3670  * segment.c
3671  */
3672 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3673 int f2fs_commit_atomic_write(struct inode *inode);
3674 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3675 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3676 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3677 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3678 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3679 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3680 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3681 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3682 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3683 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3684 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3685 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3686 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3687 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3688 					struct cp_control *cpc);
3689 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3690 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3691 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3692 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3693 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3694 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3695 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3696 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3697 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3698 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3699 			unsigned int *newseg, bool new_sec, int dir);
3700 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3701 					unsigned int start, unsigned int end);
3702 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3703 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3704 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3705 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3706 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3707 					struct cp_control *cpc);
3708 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3709 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3710 					block_t blk_addr);
3711 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3712 						enum iostat_type io_type);
3713 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3714 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3715 			struct f2fs_io_info *fio);
3716 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3717 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3718 			block_t old_blkaddr, block_t new_blkaddr,
3719 			bool recover_curseg, bool recover_newaddr,
3720 			bool from_gc);
3721 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3722 			block_t old_addr, block_t new_addr,
3723 			unsigned char version, bool recover_curseg,
3724 			bool recover_newaddr);
3725 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3726 			block_t old_blkaddr, block_t *new_blkaddr,
3727 			struct f2fs_summary *sum, int type,
3728 			struct f2fs_io_info *fio);
3729 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3730 					block_t blkaddr, unsigned int blkcnt);
3731 void f2fs_wait_on_page_writeback(struct page *page,
3732 			enum page_type type, bool ordered, bool locked);
3733 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3734 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3735 								block_t len);
3736 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3737 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3738 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3739 			unsigned int val, int alloc);
3740 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3741 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3742 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3743 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3744 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3745 int __init f2fs_create_segment_manager_caches(void);
3746 void f2fs_destroy_segment_manager_caches(void);
3747 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3748 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3749 			unsigned int segno);
3750 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3751 			unsigned int segno);
3752 
3753 #define DEF_FRAGMENT_SIZE	4
3754 #define MIN_FRAGMENT_SIZE	1
3755 #define MAX_FRAGMENT_SIZE	512
3756 
3757 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3758 {
3759 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3760 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3761 }
3762 
3763 /*
3764  * checkpoint.c
3765  */
3766 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3767 							unsigned char reason);
3768 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3769 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3770 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3771 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3772 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3773 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3774 					block_t blkaddr, int type);
3775 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3776 			int type, bool sync);
3777 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3778 							unsigned int ra_blocks);
3779 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3780 			long nr_to_write, enum iostat_type io_type);
3781 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3782 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3783 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3784 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3785 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3786 					unsigned int devidx, int type);
3787 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3788 					unsigned int devidx, int type);
3789 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3790 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3791 void f2fs_add_orphan_inode(struct inode *inode);
3792 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3793 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3794 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3795 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3796 void f2fs_remove_dirty_inode(struct inode *inode);
3797 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3798 								bool from_cp);
3799 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3800 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3801 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3802 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3803 int __init f2fs_create_checkpoint_caches(void);
3804 void f2fs_destroy_checkpoint_caches(void);
3805 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3806 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3807 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3808 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3809 
3810 /*
3811  * data.c
3812  */
3813 int __init f2fs_init_bioset(void);
3814 void f2fs_destroy_bioset(void);
3815 bool f2fs_is_cp_guaranteed(struct page *page);
3816 int f2fs_init_bio_entry_cache(void);
3817 void f2fs_destroy_bio_entry_cache(void);
3818 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3819 			  enum page_type type);
3820 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3821 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3822 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3823 				struct inode *inode, struct page *page,
3824 				nid_t ino, enum page_type type);
3825 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3826 					struct bio **bio, struct page *page);
3827 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3828 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3829 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3830 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3831 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3832 		block_t blk_addr, sector_t *sector);
3833 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3834 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3835 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3836 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3837 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3838 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3839 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3840 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3841 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3842 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3843 							pgoff_t *next_pgofs);
3844 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3845 			bool for_write);
3846 struct page *f2fs_get_new_data_page(struct inode *inode,
3847 			struct page *ipage, pgoff_t index, bool new_i_size);
3848 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3849 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3850 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3851 			u64 start, u64 len);
3852 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3853 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3854 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3855 int f2fs_write_single_data_page(struct page *page, int *submitted,
3856 				struct bio **bio, sector_t *last_block,
3857 				struct writeback_control *wbc,
3858 				enum iostat_type io_type,
3859 				int compr_blocks, bool allow_balance);
3860 void f2fs_write_failed(struct inode *inode, loff_t to);
3861 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3862 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3863 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3864 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3865 int f2fs_init_post_read_processing(void);
3866 void f2fs_destroy_post_read_processing(void);
3867 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3868 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3869 extern const struct iomap_ops f2fs_iomap_ops;
3870 
3871 /*
3872  * gc.c
3873  */
3874 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3875 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3876 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3877 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3878 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3879 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3880 		unsigned int start_seg, unsigned int end_seg,
3881 		bool dry_run, unsigned int dry_run_sections);
3882 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3883 int __init f2fs_create_garbage_collection_cache(void);
3884 void f2fs_destroy_garbage_collection_cache(void);
3885 /* victim selection function for cleaning and SSR */
3886 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3887 			int gc_type, int type, char alloc_mode,
3888 			unsigned long long age);
3889 
3890 /*
3891  * recovery.c
3892  */
3893 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3894 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3895 int __init f2fs_create_recovery_cache(void);
3896 void f2fs_destroy_recovery_cache(void);
3897 
3898 /*
3899  * debug.c
3900  */
3901 #ifdef CONFIG_F2FS_STAT_FS
3902 struct f2fs_stat_info {
3903 	struct list_head stat_list;
3904 	struct f2fs_sb_info *sbi;
3905 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3906 	int main_area_segs, main_area_sections, main_area_zones;
3907 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3908 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3909 	unsigned long long total_ext[NR_EXTENT_CACHES];
3910 	unsigned long long hit_total[NR_EXTENT_CACHES];
3911 	int ext_tree[NR_EXTENT_CACHES];
3912 	int zombie_tree[NR_EXTENT_CACHES];
3913 	int ext_node[NR_EXTENT_CACHES];
3914 	/* to count memory footprint */
3915 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3916 	/* for read extent cache */
3917 	unsigned long long hit_largest;
3918 	/* for block age extent cache */
3919 	unsigned long long allocated_data_blocks;
3920 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3921 	int ndirty_data, ndirty_qdata;
3922 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3923 	int nats, dirty_nats, sits, dirty_sits;
3924 	int free_nids, avail_nids, alloc_nids;
3925 	int total_count, utilization;
3926 	int nr_wb_cp_data, nr_wb_data;
3927 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3928 	int nr_dio_read, nr_dio_write;
3929 	unsigned int io_skip_bggc, other_skip_bggc;
3930 	int nr_flushing, nr_flushed, flush_list_empty;
3931 	int nr_discarding, nr_discarded;
3932 	int nr_discard_cmd;
3933 	unsigned int undiscard_blks;
3934 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3935 	unsigned int cur_ckpt_time, peak_ckpt_time;
3936 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3937 	int compr_inode, swapfile_inode;
3938 	unsigned long long compr_blocks;
3939 	int aw_cnt, max_aw_cnt;
3940 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3941 	unsigned int bimodal, avg_vblocks;
3942 	int util_free, util_valid, util_invalid;
3943 	int rsvd_segs, overp_segs;
3944 	int dirty_count, node_pages, meta_pages, compress_pages;
3945 	int compress_page_hit;
3946 	int prefree_count, free_segs, free_secs;
3947 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3948 	int gc_call_count[MAX_CALL_TYPE];
3949 	int gc_segs[2][2];
3950 	int gc_secs[2][2];
3951 	int tot_blks, data_blks, node_blks;
3952 	int bg_data_blks, bg_node_blks;
3953 	int curseg[NR_CURSEG_TYPE];
3954 	int cursec[NR_CURSEG_TYPE];
3955 	int curzone[NR_CURSEG_TYPE];
3956 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3957 	unsigned int full_seg[NR_CURSEG_TYPE];
3958 	unsigned int valid_blks[NR_CURSEG_TYPE];
3959 
3960 	unsigned int meta_count[META_MAX];
3961 	unsigned int segment_count[2];
3962 	unsigned int block_count[2];
3963 	unsigned int inplace_count;
3964 	unsigned long long base_mem, cache_mem, page_mem;
3965 };
3966 
3967 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3968 {
3969 	return (struct f2fs_stat_info *)sbi->stat_info;
3970 }
3971 
3972 #define stat_inc_cp_call_count(sbi, foreground)				\
3973 		atomic_inc(&sbi->cp_call_count[(foreground)])
3974 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3975 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3976 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3977 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3978 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3979 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3980 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3981 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3982 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3983 #define stat_inc_inline_xattr(inode)					\
3984 	do {								\
3985 		if (f2fs_has_inline_xattr(inode))			\
3986 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3987 	} while (0)
3988 #define stat_dec_inline_xattr(inode)					\
3989 	do {								\
3990 		if (f2fs_has_inline_xattr(inode))			\
3991 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3992 	} while (0)
3993 #define stat_inc_inline_inode(inode)					\
3994 	do {								\
3995 		if (f2fs_has_inline_data(inode))			\
3996 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3997 	} while (0)
3998 #define stat_dec_inline_inode(inode)					\
3999 	do {								\
4000 		if (f2fs_has_inline_data(inode))			\
4001 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4002 	} while (0)
4003 #define stat_inc_inline_dir(inode)					\
4004 	do {								\
4005 		if (f2fs_has_inline_dentry(inode))			\
4006 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4007 	} while (0)
4008 #define stat_dec_inline_dir(inode)					\
4009 	do {								\
4010 		if (f2fs_has_inline_dentry(inode))			\
4011 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4012 	} while (0)
4013 #define stat_inc_compr_inode(inode)					\
4014 	do {								\
4015 		if (f2fs_compressed_file(inode))			\
4016 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4017 	} while (0)
4018 #define stat_dec_compr_inode(inode)					\
4019 	do {								\
4020 		if (f2fs_compressed_file(inode))			\
4021 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4022 	} while (0)
4023 #define stat_add_compr_blocks(inode, blocks)				\
4024 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4025 #define stat_sub_compr_blocks(inode, blocks)				\
4026 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4027 #define stat_inc_swapfile_inode(inode)					\
4028 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4029 #define stat_dec_swapfile_inode(inode)					\
4030 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4031 #define stat_inc_atomic_inode(inode)					\
4032 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4033 #define stat_dec_atomic_inode(inode)					\
4034 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4035 #define stat_inc_meta_count(sbi, blkaddr)				\
4036 	do {								\
4037 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4038 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4039 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4040 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4041 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4042 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4043 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4044 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4045 	} while (0)
4046 #define stat_inc_seg_type(sbi, curseg)					\
4047 		((sbi)->segment_count[(curseg)->alloc_type]++)
4048 #define stat_inc_block_count(sbi, curseg)				\
4049 		((sbi)->block_count[(curseg)->alloc_type]++)
4050 #define stat_inc_inplace_blocks(sbi)					\
4051 		(atomic_inc(&(sbi)->inplace_count))
4052 #define stat_update_max_atomic_write(inode)				\
4053 	do {								\
4054 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4055 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4056 		if (cur > max)						\
4057 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4058 	} while (0)
4059 #define stat_inc_gc_call_count(sbi, foreground)				\
4060 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4061 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4062 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4063 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4064 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4065 
4066 #define stat_inc_tot_blk_count(si, blks)				\
4067 	((si)->tot_blks += (blks))
4068 
4069 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4070 	do {								\
4071 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4072 		stat_inc_tot_blk_count(si, blks);			\
4073 		si->data_blks += (blks);				\
4074 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4075 	} while (0)
4076 
4077 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4078 	do {								\
4079 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4080 		stat_inc_tot_blk_count(si, blks);			\
4081 		si->node_blks += (blks);				\
4082 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4083 	} while (0)
4084 
4085 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4086 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4087 void __init f2fs_create_root_stats(void);
4088 void f2fs_destroy_root_stats(void);
4089 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4090 #else
4091 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4092 #define stat_inc_cp_count(sbi)				do { } while (0)
4093 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4094 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4095 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4096 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4097 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4098 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4099 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4100 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4101 #define stat_inc_inline_xattr(inode)			do { } while (0)
4102 #define stat_dec_inline_xattr(inode)			do { } while (0)
4103 #define stat_inc_inline_inode(inode)			do { } while (0)
4104 #define stat_dec_inline_inode(inode)			do { } while (0)
4105 #define stat_inc_inline_dir(inode)			do { } while (0)
4106 #define stat_dec_inline_dir(inode)			do { } while (0)
4107 #define stat_inc_compr_inode(inode)			do { } while (0)
4108 #define stat_dec_compr_inode(inode)			do { } while (0)
4109 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4110 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4111 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4112 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4113 #define stat_inc_atomic_inode(inode)			do { } while (0)
4114 #define stat_dec_atomic_inode(inode)			do { } while (0)
4115 #define stat_update_max_atomic_write(inode)		do { } while (0)
4116 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4117 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4118 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4119 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4120 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4121 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4122 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4123 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4124 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4125 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4126 
4127 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4128 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4129 static inline void __init f2fs_create_root_stats(void) { }
4130 static inline void f2fs_destroy_root_stats(void) { }
4131 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4132 #endif
4133 
4134 extern const struct file_operations f2fs_dir_operations;
4135 extern const struct file_operations f2fs_file_operations;
4136 extern const struct inode_operations f2fs_file_inode_operations;
4137 extern const struct address_space_operations f2fs_dblock_aops;
4138 extern const struct address_space_operations f2fs_node_aops;
4139 extern const struct address_space_operations f2fs_meta_aops;
4140 extern const struct inode_operations f2fs_dir_inode_operations;
4141 extern const struct inode_operations f2fs_symlink_inode_operations;
4142 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4143 extern const struct inode_operations f2fs_special_inode_operations;
4144 extern struct kmem_cache *f2fs_inode_entry_slab;
4145 
4146 /*
4147  * inline.c
4148  */
4149 bool f2fs_may_inline_data(struct inode *inode);
4150 bool f2fs_sanity_check_inline_data(struct inode *inode);
4151 bool f2fs_may_inline_dentry(struct inode *inode);
4152 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4153 void f2fs_truncate_inline_inode(struct inode *inode,
4154 						struct page *ipage, u64 from);
4155 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4156 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4157 int f2fs_convert_inline_inode(struct inode *inode);
4158 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4159 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4160 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4161 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4162 					const struct f2fs_filename *fname,
4163 					struct page **res_page);
4164 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4165 			struct page *ipage);
4166 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4167 			struct inode *inode, nid_t ino, umode_t mode);
4168 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4169 				struct page *page, struct inode *dir,
4170 				struct inode *inode);
4171 bool f2fs_empty_inline_dir(struct inode *dir);
4172 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4173 			struct fscrypt_str *fstr);
4174 int f2fs_inline_data_fiemap(struct inode *inode,
4175 			struct fiemap_extent_info *fieinfo,
4176 			__u64 start, __u64 len);
4177 
4178 /*
4179  * shrinker.c
4180  */
4181 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4182 			struct shrink_control *sc);
4183 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4184 			struct shrink_control *sc);
4185 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4186 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4187 
4188 /*
4189  * extent_cache.c
4190  */
4191 bool sanity_check_extent_cache(struct inode *inode);
4192 void f2fs_init_extent_tree(struct inode *inode);
4193 void f2fs_drop_extent_tree(struct inode *inode);
4194 void f2fs_destroy_extent_node(struct inode *inode);
4195 void f2fs_destroy_extent_tree(struct inode *inode);
4196 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4197 int __init f2fs_create_extent_cache(void);
4198 void f2fs_destroy_extent_cache(void);
4199 
4200 /* read extent cache ops */
4201 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4202 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4203 			struct extent_info *ei);
4204 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4205 			block_t *blkaddr);
4206 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4207 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4208 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4209 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4210 			int nr_shrink);
4211 
4212 /* block age extent cache ops */
4213 void f2fs_init_age_extent_tree(struct inode *inode);
4214 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4215 			struct extent_info *ei);
4216 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4217 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4218 			pgoff_t fofs, unsigned int len);
4219 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4220 			int nr_shrink);
4221 
4222 /*
4223  * sysfs.c
4224  */
4225 #define MIN_RA_MUL	2
4226 #define MAX_RA_MUL	256
4227 
4228 int __init f2fs_init_sysfs(void);
4229 void f2fs_exit_sysfs(void);
4230 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4231 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4232 
4233 /* verity.c */
4234 extern const struct fsverity_operations f2fs_verityops;
4235 
4236 /*
4237  * crypto support
4238  */
4239 static inline bool f2fs_encrypted_file(struct inode *inode)
4240 {
4241 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4242 }
4243 
4244 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4245 {
4246 #ifdef CONFIG_FS_ENCRYPTION
4247 	file_set_encrypt(inode);
4248 	f2fs_set_inode_flags(inode);
4249 #endif
4250 }
4251 
4252 /*
4253  * Returns true if the reads of the inode's data need to undergo some
4254  * postprocessing step, like decryption or authenticity verification.
4255  */
4256 static inline bool f2fs_post_read_required(struct inode *inode)
4257 {
4258 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4259 		f2fs_compressed_file(inode);
4260 }
4261 
4262 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4263 {
4264 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4265 }
4266 
4267 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4268 {
4269 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4270 }
4271 
4272 /*
4273  * compress.c
4274  */
4275 #ifdef CONFIG_F2FS_FS_COMPRESSION
4276 bool f2fs_is_compressed_page(struct page *page);
4277 struct page *f2fs_compress_control_page(struct page *page);
4278 int f2fs_prepare_compress_overwrite(struct inode *inode,
4279 			struct page **pagep, pgoff_t index, void **fsdata);
4280 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4281 					pgoff_t index, unsigned copied);
4282 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4283 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4284 bool f2fs_is_compress_backend_ready(struct inode *inode);
4285 bool f2fs_is_compress_level_valid(int alg, int lvl);
4286 int __init f2fs_init_compress_mempool(void);
4287 void f2fs_destroy_compress_mempool(void);
4288 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4289 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4290 				block_t blkaddr, bool in_task);
4291 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4292 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4293 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4294 				int index, int nr_pages, bool uptodate);
4295 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4296 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4297 int f2fs_write_multi_pages(struct compress_ctx *cc,
4298 						int *submitted,
4299 						struct writeback_control *wbc,
4300 						enum iostat_type io_type);
4301 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4302 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4303 				pgoff_t fofs, block_t blkaddr,
4304 				unsigned int llen, unsigned int c_len);
4305 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4306 				unsigned nr_pages, sector_t *last_block_in_bio,
4307 				bool is_readahead, bool for_write);
4308 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4309 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4310 				bool in_task);
4311 void f2fs_put_page_dic(struct page *page, bool in_task);
4312 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4313 						unsigned int ofs_in_node);
4314 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4315 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4316 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4317 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4318 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4319 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4320 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4321 int __init f2fs_init_compress_cache(void);
4322 void f2fs_destroy_compress_cache(void);
4323 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4324 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4325 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4326 						nid_t ino, block_t blkaddr);
4327 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4328 								block_t blkaddr);
4329 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4330 #define inc_compr_inode_stat(inode)					\
4331 	do {								\
4332 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4333 		sbi->compr_new_inode++;					\
4334 	} while (0)
4335 #define add_compr_block_stat(inode, blocks)				\
4336 	do {								\
4337 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4338 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4339 		sbi->compr_written_block += blocks;			\
4340 		sbi->compr_saved_block += diff;				\
4341 	} while (0)
4342 #else
4343 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4344 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4345 {
4346 	if (!f2fs_compressed_file(inode))
4347 		return true;
4348 	/* not support compression */
4349 	return false;
4350 }
4351 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4352 static inline struct page *f2fs_compress_control_page(struct page *page)
4353 {
4354 	WARN_ON_ONCE(1);
4355 	return ERR_PTR(-EINVAL);
4356 }
4357 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4358 static inline void f2fs_destroy_compress_mempool(void) { }
4359 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4360 				bool in_task) { }
4361 static inline void f2fs_end_read_compressed_page(struct page *page,
4362 				bool failed, block_t blkaddr, bool in_task)
4363 {
4364 	WARN_ON_ONCE(1);
4365 }
4366 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4367 {
4368 	WARN_ON_ONCE(1);
4369 }
4370 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4371 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4372 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4373 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4374 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4375 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4376 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4377 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4378 static inline void f2fs_destroy_compress_cache(void) { }
4379 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4380 				block_t blkaddr) { }
4381 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4382 				struct page *page, nid_t ino, block_t blkaddr) { }
4383 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4384 				struct page *page, block_t blkaddr) { return false; }
4385 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4386 							nid_t ino) { }
4387 #define inc_compr_inode_stat(inode)		do { } while (0)
4388 static inline void f2fs_update_read_extent_tree_range_compressed(
4389 				struct inode *inode,
4390 				pgoff_t fofs, block_t blkaddr,
4391 				unsigned int llen, unsigned int c_len) { }
4392 #endif
4393 
4394 static inline int set_compress_context(struct inode *inode)
4395 {
4396 #ifdef CONFIG_F2FS_FS_COMPRESSION
4397 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4398 
4399 	F2FS_I(inode)->i_compress_algorithm =
4400 			F2FS_OPTION(sbi).compress_algorithm;
4401 	F2FS_I(inode)->i_log_cluster_size =
4402 			F2FS_OPTION(sbi).compress_log_size;
4403 	F2FS_I(inode)->i_compress_flag =
4404 			F2FS_OPTION(sbi).compress_chksum ?
4405 				BIT(COMPRESS_CHKSUM) : 0;
4406 	F2FS_I(inode)->i_cluster_size =
4407 			BIT(F2FS_I(inode)->i_log_cluster_size);
4408 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4409 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4410 			F2FS_OPTION(sbi).compress_level)
4411 		F2FS_I(inode)->i_compress_level =
4412 				F2FS_OPTION(sbi).compress_level;
4413 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4414 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4415 	stat_inc_compr_inode(inode);
4416 	inc_compr_inode_stat(inode);
4417 	f2fs_mark_inode_dirty_sync(inode, true);
4418 	return 0;
4419 #else
4420 	return -EOPNOTSUPP;
4421 #endif
4422 }
4423 
4424 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4425 {
4426 	struct f2fs_inode_info *fi = F2FS_I(inode);
4427 
4428 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4429 
4430 	if (!f2fs_compressed_file(inode)) {
4431 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4432 		return true;
4433 	}
4434 	if (f2fs_is_mmap_file(inode) ||
4435 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4436 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4437 		return false;
4438 	}
4439 
4440 	fi->i_flags &= ~F2FS_COMPR_FL;
4441 	stat_dec_compr_inode(inode);
4442 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4443 	f2fs_mark_inode_dirty_sync(inode, true);
4444 
4445 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4446 	return true;
4447 }
4448 
4449 #define F2FS_FEATURE_FUNCS(name, flagname) \
4450 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4451 { \
4452 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4453 }
4454 
4455 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4456 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4457 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4458 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4459 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4460 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4461 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4462 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4463 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4464 F2FS_FEATURE_FUNCS(verity, VERITY);
4465 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4466 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4467 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4468 F2FS_FEATURE_FUNCS(readonly, RO);
4469 
4470 #ifdef CONFIG_BLK_DEV_ZONED
4471 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4472 				    block_t blkaddr)
4473 {
4474 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4475 
4476 	return test_bit(zno, FDEV(devi).blkz_seq);
4477 }
4478 #endif
4479 
4480 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4481 				  struct block_device *bdev)
4482 {
4483 	int i;
4484 
4485 	if (!f2fs_is_multi_device(sbi))
4486 		return 0;
4487 
4488 	for (i = 0; i < sbi->s_ndevs; i++)
4489 		if (FDEV(i).bdev == bdev)
4490 			return i;
4491 
4492 	WARN_ON(1);
4493 	return -1;
4494 }
4495 
4496 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4497 {
4498 	return f2fs_sb_has_blkzoned(sbi);
4499 }
4500 
4501 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4502 {
4503 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4504 }
4505 
4506 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4507 {
4508 	int i;
4509 
4510 	if (!f2fs_is_multi_device(sbi))
4511 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4512 
4513 	for (i = 0; i < sbi->s_ndevs; i++)
4514 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4515 			return true;
4516 	return false;
4517 }
4518 
4519 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4520 {
4521 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4522 					f2fs_hw_should_discard(sbi);
4523 }
4524 
4525 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4526 {
4527 	int i;
4528 
4529 	if (!f2fs_is_multi_device(sbi))
4530 		return bdev_read_only(sbi->sb->s_bdev);
4531 
4532 	for (i = 0; i < sbi->s_ndevs; i++)
4533 		if (bdev_read_only(FDEV(i).bdev))
4534 			return true;
4535 	return false;
4536 }
4537 
4538 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4539 {
4540 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4541 }
4542 
4543 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4544 {
4545 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4546 }
4547 
4548 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4549 					  block_t blkaddr)
4550 {
4551 	if (f2fs_sb_has_blkzoned(sbi)) {
4552 		int devi = f2fs_target_device_index(sbi, blkaddr);
4553 
4554 		return !bdev_is_zoned(FDEV(devi).bdev);
4555 	}
4556 	return true;
4557 }
4558 
4559 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4560 {
4561 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4562 }
4563 
4564 static inline bool f2fs_may_compress(struct inode *inode)
4565 {
4566 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4567 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4568 		f2fs_is_mmap_file(inode))
4569 		return false;
4570 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4571 }
4572 
4573 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4574 						u64 blocks, bool add)
4575 {
4576 	struct f2fs_inode_info *fi = F2FS_I(inode);
4577 	int diff = fi->i_cluster_size - blocks;
4578 
4579 	/* don't update i_compr_blocks if saved blocks were released */
4580 	if (!add && !atomic_read(&fi->i_compr_blocks))
4581 		return;
4582 
4583 	if (add) {
4584 		atomic_add(diff, &fi->i_compr_blocks);
4585 		stat_add_compr_blocks(inode, diff);
4586 	} else {
4587 		atomic_sub(diff, &fi->i_compr_blocks);
4588 		stat_sub_compr_blocks(inode, diff);
4589 	}
4590 	f2fs_mark_inode_dirty_sync(inode, true);
4591 }
4592 
4593 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4594 								int flag)
4595 {
4596 	if (!f2fs_is_multi_device(sbi))
4597 		return false;
4598 	if (flag != F2FS_GET_BLOCK_DIO)
4599 		return false;
4600 	return sbi->aligned_blksize;
4601 }
4602 
4603 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4604 {
4605 	return fsverity_active(inode) &&
4606 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4607 }
4608 
4609 #ifdef CONFIG_F2FS_FAULT_INJECTION
4610 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4611 							unsigned long type);
4612 #else
4613 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4614 					unsigned long rate, unsigned long type)
4615 {
4616 	return 0;
4617 }
4618 #endif
4619 
4620 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4621 {
4622 #ifdef CONFIG_QUOTA
4623 	if (f2fs_sb_has_quota_ino(sbi))
4624 		return true;
4625 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4626 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4627 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4628 		return true;
4629 #endif
4630 	return false;
4631 }
4632 
4633 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4634 {
4635 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4636 }
4637 
4638 static inline void f2fs_io_schedule_timeout(long timeout)
4639 {
4640 	set_current_state(TASK_UNINTERRUPTIBLE);
4641 	io_schedule_timeout(timeout);
4642 }
4643 
4644 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4645 					enum page_type type)
4646 {
4647 	if (unlikely(f2fs_cp_error(sbi)))
4648 		return;
4649 
4650 	if (ofs == sbi->page_eio_ofs[type]) {
4651 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4652 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4653 	} else {
4654 		sbi->page_eio_ofs[type] = ofs;
4655 		sbi->page_eio_cnt[type] = 0;
4656 	}
4657 }
4658 
4659 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4660 {
4661 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4662 }
4663 
4664 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4665 					block_t blkaddr, unsigned int cnt)
4666 {
4667 	bool need_submit = false;
4668 	int i = 0;
4669 
4670 	do {
4671 		struct page *page;
4672 
4673 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4674 		if (page) {
4675 			if (PageWriteback(page))
4676 				need_submit = true;
4677 			f2fs_put_page(page, 0);
4678 		}
4679 	} while (++i < cnt && !need_submit);
4680 
4681 	if (need_submit)
4682 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4683 							NULL, 0, DATA);
4684 
4685 	truncate_inode_pages_range(META_MAPPING(sbi),
4686 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4687 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4688 }
4689 
4690 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4691 								block_t blkaddr)
4692 {
4693 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4694 	f2fs_invalidate_compress_page(sbi, blkaddr);
4695 }
4696 
4697 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4698 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4699 
4700 #endif /* _LINUX_F2FS_H */
4701