xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b323fd28bbf95c3181e02e7a642b7d24f3e32714)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
102 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
103 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
104 
105 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
106 		typecheck(unsigned long long, b) &&			\
107 		((long long)((a) - (b)) > 0))
108 
109 typedef u32 block_t;	/*
110 			 * should not change u32, since it is the on-disk block
111 			 * address format, __le32.
112 			 */
113 typedef u32 nid_t;
114 
115 struct f2fs_mount_info {
116 	unsigned int	opt;
117 };
118 
119 #define F2FS_FEATURE_ENCRYPT		0x0001
120 #define F2FS_FEATURE_BLKZONED		0x0002
121 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
122 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
123 #define F2FS_FEATURE_PRJQUOTA		0x0010
124 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
126 #define F2FS_FEATURE_QUOTA_INO		0x0080
127 
128 #define F2FS_HAS_FEATURE(sb, mask)					\
129 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
130 #define F2FS_SET_FEATURE(sb, mask)					\
131 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
132 #define F2FS_CLEAR_FEATURE(sb, mask)					\
133 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
134 
135 /*
136  * Default values for user and/or group using reserved blocks
137  */
138 #define	F2FS_DEF_RESUID		0
139 #define	F2FS_DEF_RESGID		0
140 
141 /*
142  * For checkpoint manager
143  */
144 enum {
145 	NAT_BITMAP,
146 	SIT_BITMAP
147 };
148 
149 #define	CP_UMOUNT	0x00000001
150 #define	CP_FASTBOOT	0x00000002
151 #define	CP_SYNC		0x00000004
152 #define	CP_RECOVERY	0x00000008
153 #define	CP_DISCARD	0x00000010
154 #define CP_TRIMMED	0x00000020
155 
156 #define DEF_BATCHED_TRIM_SECTIONS	2048
157 #define BATCHED_TRIM_SEGMENTS(sbi)	\
158 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
159 #define BATCHED_TRIM_BLOCKS(sbi)	\
160 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
161 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
162 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
163 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
164 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
165 #define DEF_CP_INTERVAL			60	/* 60 secs */
166 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
167 
168 struct cp_control {
169 	int reason;
170 	__u64 trim_start;
171 	__u64 trim_end;
172 	__u64 trim_minlen;
173 };
174 
175 /*
176  * For CP/NAT/SIT/SSA readahead
177  */
178 enum {
179 	META_CP,
180 	META_NAT,
181 	META_SIT,
182 	META_SSA,
183 	META_POR,
184 };
185 
186 /* for the list of ino */
187 enum {
188 	ORPHAN_INO,		/* for orphan ino list */
189 	APPEND_INO,		/* for append ino list */
190 	UPDATE_INO,		/* for update ino list */
191 	TRANS_DIR_INO,		/* for trasactions dir ino list */
192 	FLUSH_INO,		/* for multiple device flushing */
193 	MAX_INO_ENTRY,		/* max. list */
194 };
195 
196 struct ino_entry {
197 	struct list_head list;		/* list head */
198 	nid_t ino;			/* inode number */
199 	unsigned int dirty_device;	/* dirty device bitmap */
200 };
201 
202 /* for the list of inodes to be GCed */
203 struct inode_entry {
204 	struct list_head list;	/* list head */
205 	struct inode *inode;	/* vfs inode pointer */
206 };
207 
208 /* for the bitmap indicate blocks to be discarded */
209 struct discard_entry {
210 	struct list_head list;	/* list head */
211 	block_t start_blkaddr;	/* start blockaddr of current segment */
212 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
213 };
214 
215 /* default discard granularity of inner discard thread, unit: block count */
216 #define DEFAULT_DISCARD_GRANULARITY		16
217 
218 /* max discard pend list number */
219 #define MAX_PLIST_NUM		512
220 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
221 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
222 
223 enum {
224 	D_PREP,
225 	D_SUBMIT,
226 	D_DONE,
227 };
228 
229 struct discard_info {
230 	block_t lstart;			/* logical start address */
231 	block_t len;			/* length */
232 	block_t start;			/* actual start address in dev */
233 };
234 
235 struct discard_cmd {
236 	struct rb_node rb_node;		/* rb node located in rb-tree */
237 	union {
238 		struct {
239 			block_t lstart;	/* logical start address */
240 			block_t len;	/* length */
241 			block_t start;	/* actual start address in dev */
242 		};
243 		struct discard_info di;	/* discard info */
244 
245 	};
246 	struct list_head list;		/* command list */
247 	struct completion wait;		/* compleation */
248 	struct block_device *bdev;	/* bdev */
249 	unsigned short ref;		/* reference count */
250 	unsigned char state;		/* state */
251 	int error;			/* bio error */
252 };
253 
254 enum {
255 	DPOLICY_BG,
256 	DPOLICY_FORCE,
257 	DPOLICY_FSTRIM,
258 	DPOLICY_UMOUNT,
259 	MAX_DPOLICY,
260 };
261 
262 struct discard_policy {
263 	int type;			/* type of discard */
264 	unsigned int min_interval;	/* used for candidates exist */
265 	unsigned int max_interval;	/* used for candidates not exist */
266 	unsigned int max_requests;	/* # of discards issued per round */
267 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
268 	bool io_aware;			/* issue discard in idle time */
269 	bool sync;			/* submit discard with REQ_SYNC flag */
270 	unsigned int granularity;	/* discard granularity */
271 };
272 
273 struct discard_cmd_control {
274 	struct task_struct *f2fs_issue_discard;	/* discard thread */
275 	struct list_head entry_list;		/* 4KB discard entry list */
276 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
277 	struct list_head wait_list;		/* store on-flushing entries */
278 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
279 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
280 	unsigned int discard_wake;		/* to wake up discard thread */
281 	struct mutex cmd_lock;
282 	unsigned int nr_discards;		/* # of discards in the list */
283 	unsigned int max_discards;		/* max. discards to be issued */
284 	unsigned int discard_granularity;	/* discard granularity */
285 	unsigned int undiscard_blks;		/* # of undiscard blocks */
286 	atomic_t issued_discard;		/* # of issued discard */
287 	atomic_t issing_discard;		/* # of issing discard */
288 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
289 	struct rb_root root;			/* root of discard rb-tree */
290 };
291 
292 /* for the list of fsync inodes, used only during recovery */
293 struct fsync_inode_entry {
294 	struct list_head list;	/* list head */
295 	struct inode *inode;	/* vfs inode pointer */
296 	block_t blkaddr;	/* block address locating the last fsync */
297 	block_t last_dentry;	/* block address locating the last dentry */
298 };
299 
300 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
301 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
302 
303 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
304 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
305 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
306 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
307 
308 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
309 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
310 
311 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
312 {
313 	int before = nats_in_cursum(journal);
314 
315 	journal->n_nats = cpu_to_le16(before + i);
316 	return before;
317 }
318 
319 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
320 {
321 	int before = sits_in_cursum(journal);
322 
323 	journal->n_sits = cpu_to_le16(before + i);
324 	return before;
325 }
326 
327 static inline bool __has_cursum_space(struct f2fs_journal *journal,
328 							int size, int type)
329 {
330 	if (type == NAT_JOURNAL)
331 		return size <= MAX_NAT_JENTRIES(journal);
332 	return size <= MAX_SIT_JENTRIES(journal);
333 }
334 
335 /*
336  * ioctl commands
337  */
338 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
339 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
340 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
341 
342 #define F2FS_IOCTL_MAGIC		0xf5
343 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
344 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
345 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
346 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
347 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
348 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
349 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
350 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
351 						struct f2fs_defragment)
352 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
353 						struct f2fs_move_range)
354 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
355 						struct f2fs_flush_device)
356 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
357 						struct f2fs_gc_range)
358 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
359 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
360 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
361 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
362 
363 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
364 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
365 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
366 
367 /*
368  * should be same as XFS_IOC_GOINGDOWN.
369  * Flags for going down operation used by FS_IOC_GOINGDOWN
370  */
371 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
372 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
373 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
374 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
375 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
376 
377 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
378 /*
379  * ioctl commands in 32 bit emulation
380  */
381 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
382 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
383 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
384 #endif
385 
386 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
387 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
388 
389 struct f2fs_gc_range {
390 	u32 sync;
391 	u64 start;
392 	u64 len;
393 };
394 
395 struct f2fs_defragment {
396 	u64 start;
397 	u64 len;
398 };
399 
400 struct f2fs_move_range {
401 	u32 dst_fd;		/* destination fd */
402 	u64 pos_in;		/* start position in src_fd */
403 	u64 pos_out;		/* start position in dst_fd */
404 	u64 len;		/* size to move */
405 };
406 
407 struct f2fs_flush_device {
408 	u32 dev_num;		/* device number to flush */
409 	u32 segments;		/* # of segments to flush */
410 };
411 
412 /* for inline stuff */
413 #define DEF_INLINE_RESERVED_SIZE	1
414 #define DEF_MIN_INLINE_SIZE		1
415 static inline int get_extra_isize(struct inode *inode);
416 static inline int get_inline_xattr_addrs(struct inode *inode);
417 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
418 				(CUR_ADDRS_PER_INODE(inode) -		\
419 				get_inline_xattr_addrs(inode) -	\
420 				DEF_INLINE_RESERVED_SIZE))
421 
422 /* for inline dir */
423 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
424 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
425 				BITS_PER_BYTE + 1))
426 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
427 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
428 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
429 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
430 				NR_INLINE_DENTRY(inode) + \
431 				INLINE_DENTRY_BITMAP_SIZE(inode)))
432 
433 /*
434  * For INODE and NODE manager
435  */
436 /* for directory operations */
437 struct f2fs_dentry_ptr {
438 	struct inode *inode;
439 	void *bitmap;
440 	struct f2fs_dir_entry *dentry;
441 	__u8 (*filename)[F2FS_SLOT_LEN];
442 	int max;
443 	int nr_bitmap;
444 };
445 
446 static inline void make_dentry_ptr_block(struct inode *inode,
447 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
448 {
449 	d->inode = inode;
450 	d->max = NR_DENTRY_IN_BLOCK;
451 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
452 	d->bitmap = &t->dentry_bitmap;
453 	d->dentry = t->dentry;
454 	d->filename = t->filename;
455 }
456 
457 static inline void make_dentry_ptr_inline(struct inode *inode,
458 					struct f2fs_dentry_ptr *d, void *t)
459 {
460 	int entry_cnt = NR_INLINE_DENTRY(inode);
461 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
462 	int reserved_size = INLINE_RESERVED_SIZE(inode);
463 
464 	d->inode = inode;
465 	d->max = entry_cnt;
466 	d->nr_bitmap = bitmap_size;
467 	d->bitmap = t;
468 	d->dentry = t + bitmap_size + reserved_size;
469 	d->filename = t + bitmap_size + reserved_size +
470 					SIZE_OF_DIR_ENTRY * entry_cnt;
471 }
472 
473 /*
474  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
475  * as its node offset to distinguish from index node blocks.
476  * But some bits are used to mark the node block.
477  */
478 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
479 				>> OFFSET_BIT_SHIFT)
480 enum {
481 	ALLOC_NODE,			/* allocate a new node page if needed */
482 	LOOKUP_NODE,			/* look up a node without readahead */
483 	LOOKUP_NODE_RA,			/*
484 					 * look up a node with readahead called
485 					 * by get_data_block.
486 					 */
487 };
488 
489 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
490 
491 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
492 
493 /* vector size for gang look-up from extent cache that consists of radix tree */
494 #define EXT_TREE_VEC_SIZE	64
495 
496 /* for in-memory extent cache entry */
497 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
498 
499 /* number of extent info in extent cache we try to shrink */
500 #define EXTENT_CACHE_SHRINK_NUMBER	128
501 
502 struct rb_entry {
503 	struct rb_node rb_node;		/* rb node located in rb-tree */
504 	unsigned int ofs;		/* start offset of the entry */
505 	unsigned int len;		/* length of the entry */
506 };
507 
508 struct extent_info {
509 	unsigned int fofs;		/* start offset in a file */
510 	unsigned int len;		/* length of the extent */
511 	u32 blk;			/* start block address of the extent */
512 };
513 
514 struct extent_node {
515 	struct rb_node rb_node;
516 	union {
517 		struct {
518 			unsigned int fofs;
519 			unsigned int len;
520 			u32 blk;
521 		};
522 		struct extent_info ei;	/* extent info */
523 
524 	};
525 	struct list_head list;		/* node in global extent list of sbi */
526 	struct extent_tree *et;		/* extent tree pointer */
527 };
528 
529 struct extent_tree {
530 	nid_t ino;			/* inode number */
531 	struct rb_root root;		/* root of extent info rb-tree */
532 	struct extent_node *cached_en;	/* recently accessed extent node */
533 	struct extent_info largest;	/* largested extent info */
534 	struct list_head list;		/* to be used by sbi->zombie_list */
535 	rwlock_t lock;			/* protect extent info rb-tree */
536 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
537 };
538 
539 /*
540  * This structure is taken from ext4_map_blocks.
541  *
542  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
543  */
544 #define F2FS_MAP_NEW		(1 << BH_New)
545 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
546 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
547 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
548 				F2FS_MAP_UNWRITTEN)
549 
550 struct f2fs_map_blocks {
551 	block_t m_pblk;
552 	block_t m_lblk;
553 	unsigned int m_len;
554 	unsigned int m_flags;
555 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
556 	pgoff_t *m_next_extent;		/* point to next possible extent */
557 	int m_seg_type;
558 };
559 
560 /* for flag in get_data_block */
561 enum {
562 	F2FS_GET_BLOCK_DEFAULT,
563 	F2FS_GET_BLOCK_FIEMAP,
564 	F2FS_GET_BLOCK_BMAP,
565 	F2FS_GET_BLOCK_PRE_DIO,
566 	F2FS_GET_BLOCK_PRE_AIO,
567 	F2FS_GET_BLOCK_PRECACHE,
568 };
569 
570 /*
571  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
572  */
573 #define FADVISE_COLD_BIT	0x01
574 #define FADVISE_LOST_PINO_BIT	0x02
575 #define FADVISE_ENCRYPT_BIT	0x04
576 #define FADVISE_ENC_NAME_BIT	0x08
577 #define FADVISE_KEEP_SIZE_BIT	0x10
578 
579 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
580 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
581 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
582 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
583 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
584 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
585 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
586 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
587 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
588 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
589 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
590 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
591 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
592 
593 #define DEF_DIR_LEVEL		0
594 
595 struct f2fs_inode_info {
596 	struct inode vfs_inode;		/* serve a vfs inode */
597 	unsigned long i_flags;		/* keep an inode flags for ioctl */
598 	unsigned char i_advise;		/* use to give file attribute hints */
599 	unsigned char i_dir_level;	/* use for dentry level for large dir */
600 	union {
601 		unsigned int i_current_depth;	/* only for directory depth */
602 		unsigned short i_gc_failures;	/* only for regular file */
603 	};
604 	unsigned int i_pino;		/* parent inode number */
605 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
606 
607 	/* Use below internally in f2fs*/
608 	unsigned long flags;		/* use to pass per-file flags */
609 	struct rw_semaphore i_sem;	/* protect fi info */
610 	atomic_t dirty_pages;		/* # of dirty pages */
611 	f2fs_hash_t chash;		/* hash value of given file name */
612 	unsigned int clevel;		/* maximum level of given file name */
613 	struct task_struct *task;	/* lookup and create consistency */
614 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
615 	nid_t i_xattr_nid;		/* node id that contains xattrs */
616 	loff_t	last_disk_size;		/* lastly written file size */
617 
618 #ifdef CONFIG_QUOTA
619 	struct dquot *i_dquot[MAXQUOTAS];
620 
621 	/* quota space reservation, managed internally by quota code */
622 	qsize_t i_reserved_quota;
623 #endif
624 	struct list_head dirty_list;	/* dirty list for dirs and files */
625 	struct list_head gdirty_list;	/* linked in global dirty list */
626 	struct list_head inmem_ilist;	/* list for inmem inodes */
627 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
628 	struct task_struct *inmem_task;	/* store inmemory task */
629 	struct mutex inmem_lock;	/* lock for inmemory pages */
630 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
631 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
632 	struct rw_semaphore i_mmap_sem;
633 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
634 
635 	int i_extra_isize;		/* size of extra space located in i_addr */
636 	kprojid_t i_projid;		/* id for project quota */
637 	int i_inline_xattr_size;	/* inline xattr size */
638 };
639 
640 static inline void get_extent_info(struct extent_info *ext,
641 					struct f2fs_extent *i_ext)
642 {
643 	ext->fofs = le32_to_cpu(i_ext->fofs);
644 	ext->blk = le32_to_cpu(i_ext->blk);
645 	ext->len = le32_to_cpu(i_ext->len);
646 }
647 
648 static inline void set_raw_extent(struct extent_info *ext,
649 					struct f2fs_extent *i_ext)
650 {
651 	i_ext->fofs = cpu_to_le32(ext->fofs);
652 	i_ext->blk = cpu_to_le32(ext->blk);
653 	i_ext->len = cpu_to_le32(ext->len);
654 }
655 
656 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
657 						u32 blk, unsigned int len)
658 {
659 	ei->fofs = fofs;
660 	ei->blk = blk;
661 	ei->len = len;
662 }
663 
664 static inline bool __is_discard_mergeable(struct discard_info *back,
665 						struct discard_info *front)
666 {
667 	return back->lstart + back->len == front->lstart;
668 }
669 
670 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
671 						struct discard_info *back)
672 {
673 	return __is_discard_mergeable(back, cur);
674 }
675 
676 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
677 						struct discard_info *front)
678 {
679 	return __is_discard_mergeable(cur, front);
680 }
681 
682 static inline bool __is_extent_mergeable(struct extent_info *back,
683 						struct extent_info *front)
684 {
685 	return (back->fofs + back->len == front->fofs &&
686 			back->blk + back->len == front->blk);
687 }
688 
689 static inline bool __is_back_mergeable(struct extent_info *cur,
690 						struct extent_info *back)
691 {
692 	return __is_extent_mergeable(back, cur);
693 }
694 
695 static inline bool __is_front_mergeable(struct extent_info *cur,
696 						struct extent_info *front)
697 {
698 	return __is_extent_mergeable(cur, front);
699 }
700 
701 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
702 static inline void __try_update_largest_extent(struct inode *inode,
703 			struct extent_tree *et, struct extent_node *en)
704 {
705 	if (en->ei.len > et->largest.len) {
706 		et->largest = en->ei;
707 		f2fs_mark_inode_dirty_sync(inode, true);
708 	}
709 }
710 
711 /*
712  * For free nid management
713  */
714 enum nid_state {
715 	FREE_NID,		/* newly added to free nid list */
716 	PREALLOC_NID,		/* it is preallocated */
717 	MAX_NID_STATE,
718 };
719 
720 struct f2fs_nm_info {
721 	block_t nat_blkaddr;		/* base disk address of NAT */
722 	nid_t max_nid;			/* maximum possible node ids */
723 	nid_t available_nids;		/* # of available node ids */
724 	nid_t next_scan_nid;		/* the next nid to be scanned */
725 	unsigned int ram_thresh;	/* control the memory footprint */
726 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
727 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
728 
729 	/* NAT cache management */
730 	struct radix_tree_root nat_root;/* root of the nat entry cache */
731 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
732 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
733 	struct list_head nat_entries;	/* cached nat entry list (clean) */
734 	unsigned int nat_cnt;		/* the # of cached nat entries */
735 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
736 	unsigned int nat_blocks;	/* # of nat blocks */
737 
738 	/* free node ids management */
739 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
740 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
741 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
742 	spinlock_t nid_list_lock;	/* protect nid lists ops */
743 	struct mutex build_lock;	/* lock for build free nids */
744 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
745 	unsigned char *nat_block_bitmap;
746 	unsigned short *free_nid_count;	/* free nid count of NAT block */
747 
748 	/* for checkpoint */
749 	char *nat_bitmap;		/* NAT bitmap pointer */
750 
751 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
752 	unsigned char *nat_bits;	/* NAT bits blocks */
753 	unsigned char *full_nat_bits;	/* full NAT pages */
754 	unsigned char *empty_nat_bits;	/* empty NAT pages */
755 #ifdef CONFIG_F2FS_CHECK_FS
756 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
757 #endif
758 	int bitmap_size;		/* bitmap size */
759 };
760 
761 /*
762  * this structure is used as one of function parameters.
763  * all the information are dedicated to a given direct node block determined
764  * by the data offset in a file.
765  */
766 struct dnode_of_data {
767 	struct inode *inode;		/* vfs inode pointer */
768 	struct page *inode_page;	/* its inode page, NULL is possible */
769 	struct page *node_page;		/* cached direct node page */
770 	nid_t nid;			/* node id of the direct node block */
771 	unsigned int ofs_in_node;	/* data offset in the node page */
772 	bool inode_page_locked;		/* inode page is locked or not */
773 	bool node_changed;		/* is node block changed */
774 	char cur_level;			/* level of hole node page */
775 	char max_level;			/* level of current page located */
776 	block_t	data_blkaddr;		/* block address of the node block */
777 };
778 
779 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
780 		struct page *ipage, struct page *npage, nid_t nid)
781 {
782 	memset(dn, 0, sizeof(*dn));
783 	dn->inode = inode;
784 	dn->inode_page = ipage;
785 	dn->node_page = npage;
786 	dn->nid = nid;
787 }
788 
789 /*
790  * For SIT manager
791  *
792  * By default, there are 6 active log areas across the whole main area.
793  * When considering hot and cold data separation to reduce cleaning overhead,
794  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
795  * respectively.
796  * In the current design, you should not change the numbers intentionally.
797  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
798  * logs individually according to the underlying devices. (default: 6)
799  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
800  * data and 8 for node logs.
801  */
802 #define	NR_CURSEG_DATA_TYPE	(3)
803 #define NR_CURSEG_NODE_TYPE	(3)
804 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
805 
806 enum {
807 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
808 	CURSEG_WARM_DATA,	/* data blocks */
809 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
810 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
811 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
812 	CURSEG_COLD_NODE,	/* indirect node blocks */
813 	NO_CHECK_TYPE,
814 };
815 
816 struct flush_cmd {
817 	struct completion wait;
818 	struct llist_node llnode;
819 	nid_t ino;
820 	int ret;
821 };
822 
823 struct flush_cmd_control {
824 	struct task_struct *f2fs_issue_flush;	/* flush thread */
825 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
826 	atomic_t issued_flush;			/* # of issued flushes */
827 	atomic_t issing_flush;			/* # of issing flushes */
828 	struct llist_head issue_list;		/* list for command issue */
829 	struct llist_node *dispatch_list;	/* list for command dispatch */
830 };
831 
832 struct f2fs_sm_info {
833 	struct sit_info *sit_info;		/* whole segment information */
834 	struct free_segmap_info *free_info;	/* free segment information */
835 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
836 	struct curseg_info *curseg_array;	/* active segment information */
837 
838 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
839 
840 	block_t seg0_blkaddr;		/* block address of 0'th segment */
841 	block_t main_blkaddr;		/* start block address of main area */
842 	block_t ssa_blkaddr;		/* start block address of SSA area */
843 
844 	unsigned int segment_count;	/* total # of segments */
845 	unsigned int main_segments;	/* # of segments in main area */
846 	unsigned int reserved_segments;	/* # of reserved segments */
847 	unsigned int ovp_segments;	/* # of overprovision segments */
848 
849 	/* a threshold to reclaim prefree segments */
850 	unsigned int rec_prefree_segments;
851 
852 	/* for batched trimming */
853 	unsigned int trim_sections;		/* # of sections to trim */
854 
855 	struct list_head sit_entry_set;	/* sit entry set list */
856 
857 	unsigned int ipu_policy;	/* in-place-update policy */
858 	unsigned int min_ipu_util;	/* in-place-update threshold */
859 	unsigned int min_fsync_blocks;	/* threshold for fsync */
860 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
861 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
862 
863 	/* for flush command control */
864 	struct flush_cmd_control *fcc_info;
865 
866 	/* for discard command control */
867 	struct discard_cmd_control *dcc_info;
868 };
869 
870 /*
871  * For superblock
872  */
873 /*
874  * COUNT_TYPE for monitoring
875  *
876  * f2fs monitors the number of several block types such as on-writeback,
877  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
878  */
879 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
880 enum count_type {
881 	F2FS_DIRTY_DENTS,
882 	F2FS_DIRTY_DATA,
883 	F2FS_DIRTY_QDATA,
884 	F2FS_DIRTY_NODES,
885 	F2FS_DIRTY_META,
886 	F2FS_INMEM_PAGES,
887 	F2FS_DIRTY_IMETA,
888 	F2FS_WB_CP_DATA,
889 	F2FS_WB_DATA,
890 	NR_COUNT_TYPE,
891 };
892 
893 /*
894  * The below are the page types of bios used in submit_bio().
895  * The available types are:
896  * DATA			User data pages. It operates as async mode.
897  * NODE			Node pages. It operates as async mode.
898  * META			FS metadata pages such as SIT, NAT, CP.
899  * NR_PAGE_TYPE		The number of page types.
900  * META_FLUSH		Make sure the previous pages are written
901  *			with waiting the bio's completion
902  * ...			Only can be used with META.
903  */
904 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
905 enum page_type {
906 	DATA,
907 	NODE,
908 	META,
909 	NR_PAGE_TYPE,
910 	META_FLUSH,
911 	INMEM,		/* the below types are used by tracepoints only. */
912 	INMEM_DROP,
913 	INMEM_INVALIDATE,
914 	INMEM_REVOKE,
915 	IPU,
916 	OPU,
917 };
918 
919 enum temp_type {
920 	HOT = 0,	/* must be zero for meta bio */
921 	WARM,
922 	COLD,
923 	NR_TEMP_TYPE,
924 };
925 
926 enum need_lock_type {
927 	LOCK_REQ = 0,
928 	LOCK_DONE,
929 	LOCK_RETRY,
930 };
931 
932 enum cp_reason_type {
933 	CP_NO_NEEDED,
934 	CP_NON_REGULAR,
935 	CP_HARDLINK,
936 	CP_SB_NEED_CP,
937 	CP_WRONG_PINO,
938 	CP_NO_SPC_ROLL,
939 	CP_NODE_NEED_CP,
940 	CP_FASTBOOT_MODE,
941 	CP_SPEC_LOG_NUM,
942 	CP_RECOVER_DIR,
943 };
944 
945 enum iostat_type {
946 	APP_DIRECT_IO,			/* app direct IOs */
947 	APP_BUFFERED_IO,		/* app buffered IOs */
948 	APP_WRITE_IO,			/* app write IOs */
949 	APP_MAPPED_IO,			/* app mapped IOs */
950 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
951 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
952 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
953 	FS_GC_DATA_IO,			/* data IOs from forground gc */
954 	FS_GC_NODE_IO,			/* node IOs from forground gc */
955 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
956 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
957 	FS_CP_META_IO,			/* meta IOs from checkpoint */
958 	FS_DISCARD,			/* discard */
959 	NR_IO_TYPE,
960 };
961 
962 struct f2fs_io_info {
963 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
964 	nid_t ino;		/* inode number */
965 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
966 	enum temp_type temp;	/* contains HOT/WARM/COLD */
967 	int op;			/* contains REQ_OP_ */
968 	int op_flags;		/* req_flag_bits */
969 	block_t new_blkaddr;	/* new block address to be written */
970 	block_t old_blkaddr;	/* old block address before Cow */
971 	struct page *page;	/* page to be written */
972 	struct page *encrypted_page;	/* encrypted page */
973 	struct list_head list;		/* serialize IOs */
974 	bool submitted;		/* indicate IO submission */
975 	int need_lock;		/* indicate we need to lock cp_rwsem */
976 	bool in_list;		/* indicate fio is in io_list */
977 	enum iostat_type io_type;	/* io type */
978 	struct writeback_control *io_wbc; /* writeback control */
979 };
980 
981 #define is_read_io(rw) ((rw) == READ)
982 struct f2fs_bio_info {
983 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
984 	struct bio *bio;		/* bios to merge */
985 	sector_t last_block_in_bio;	/* last block number */
986 	struct f2fs_io_info fio;	/* store buffered io info. */
987 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
988 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
989 	struct list_head io_list;	/* track fios */
990 };
991 
992 #define FDEV(i)				(sbi->devs[i])
993 #define RDEV(i)				(raw_super->devs[i])
994 struct f2fs_dev_info {
995 	struct block_device *bdev;
996 	char path[MAX_PATH_LEN];
997 	unsigned int total_segments;
998 	block_t start_blk;
999 	block_t end_blk;
1000 #ifdef CONFIG_BLK_DEV_ZONED
1001 	unsigned int nr_blkz;			/* Total number of zones */
1002 	u8 *blkz_type;				/* Array of zones type */
1003 #endif
1004 };
1005 
1006 enum inode_type {
1007 	DIR_INODE,			/* for dirty dir inode */
1008 	FILE_INODE,			/* for dirty regular/symlink inode */
1009 	DIRTY_META,			/* for all dirtied inode metadata */
1010 	ATOMIC_FILE,			/* for all atomic files */
1011 	NR_INODE_TYPE,
1012 };
1013 
1014 /* for inner inode cache management */
1015 struct inode_management {
1016 	struct radix_tree_root ino_root;	/* ino entry array */
1017 	spinlock_t ino_lock;			/* for ino entry lock */
1018 	struct list_head ino_list;		/* inode list head */
1019 	unsigned long ino_num;			/* number of entries */
1020 };
1021 
1022 /* For s_flag in struct f2fs_sb_info */
1023 enum {
1024 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1025 	SBI_IS_CLOSE,				/* specify unmounting */
1026 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1027 	SBI_POR_DOING,				/* recovery is doing or not */
1028 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1029 	SBI_NEED_CP,				/* need to checkpoint */
1030 };
1031 
1032 enum {
1033 	CP_TIME,
1034 	REQ_TIME,
1035 	MAX_TIME,
1036 };
1037 
1038 struct f2fs_sb_info {
1039 	struct super_block *sb;			/* pointer to VFS super block */
1040 	struct proc_dir_entry *s_proc;		/* proc entry */
1041 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1042 	int valid_super_block;			/* valid super block no */
1043 	unsigned long s_flag;				/* flags for sbi */
1044 
1045 #ifdef CONFIG_BLK_DEV_ZONED
1046 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1047 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1048 #endif
1049 
1050 	/* for node-related operations */
1051 	struct f2fs_nm_info *nm_info;		/* node manager */
1052 	struct inode *node_inode;		/* cache node blocks */
1053 
1054 	/* for segment-related operations */
1055 	struct f2fs_sm_info *sm_info;		/* segment manager */
1056 
1057 	/* for bio operations */
1058 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1059 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1060 						/* bio ordering for NODE/DATA */
1061 	int write_io_size_bits;			/* Write IO size bits */
1062 	mempool_t *write_io_dummy;		/* Dummy pages */
1063 
1064 	/* for checkpoint */
1065 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1066 	int cur_cp_pack;			/* remain current cp pack */
1067 	spinlock_t cp_lock;			/* for flag in ckpt */
1068 	struct inode *meta_inode;		/* cache meta blocks */
1069 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1070 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1071 	struct rw_semaphore node_write;		/* locking node writes */
1072 	struct rw_semaphore node_change;	/* locking node change */
1073 	wait_queue_head_t cp_wait;
1074 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1075 	long interval_time[MAX_TIME];		/* to store thresholds */
1076 
1077 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1078 
1079 	/* for orphan inode, use 0'th array */
1080 	unsigned int max_orphans;		/* max orphan inodes */
1081 
1082 	/* for inode management */
1083 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1084 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1085 
1086 	/* for extent tree cache */
1087 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1088 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1089 	struct list_head extent_list;		/* lru list for shrinker */
1090 	spinlock_t extent_lock;			/* locking extent lru list */
1091 	atomic_t total_ext_tree;		/* extent tree count */
1092 	struct list_head zombie_list;		/* extent zombie tree list */
1093 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1094 	atomic_t total_ext_node;		/* extent info count */
1095 
1096 	/* basic filesystem units */
1097 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1098 	unsigned int log_blocksize;		/* log2 block size */
1099 	unsigned int blocksize;			/* block size */
1100 	unsigned int root_ino_num;		/* root inode number*/
1101 	unsigned int node_ino_num;		/* node inode number*/
1102 	unsigned int meta_ino_num;		/* meta inode number*/
1103 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1104 	unsigned int blocks_per_seg;		/* blocks per segment */
1105 	unsigned int segs_per_sec;		/* segments per section */
1106 	unsigned int secs_per_zone;		/* sections per zone */
1107 	unsigned int total_sections;		/* total section count */
1108 	unsigned int total_node_count;		/* total node block count */
1109 	unsigned int total_valid_node_count;	/* valid node block count */
1110 	loff_t max_file_blocks;			/* max block index of file */
1111 	int active_logs;			/* # of active logs */
1112 	int dir_level;				/* directory level */
1113 	int inline_xattr_size;			/* inline xattr size */
1114 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1115 	int readdir_ra;				/* readahead inode in readdir */
1116 
1117 	block_t user_block_count;		/* # of user blocks */
1118 	block_t total_valid_block_count;	/* # of valid blocks */
1119 	block_t discard_blks;			/* discard command candidats */
1120 	block_t last_valid_block_count;		/* for recovery */
1121 	block_t reserved_blocks;		/* configurable reserved blocks */
1122 	block_t current_reserved_blocks;	/* current reserved blocks */
1123 	block_t root_reserved_blocks;		/* root reserved blocks */
1124 	kuid_t s_resuid;			/* reserved blocks for uid */
1125 	kgid_t s_resgid;			/* reserved blocks for gid */
1126 
1127 	unsigned int nquota_files;		/* # of quota sysfile */
1128 
1129 	u32 s_next_generation;			/* for NFS support */
1130 
1131 	/* # of pages, see count_type */
1132 	atomic_t nr_pages[NR_COUNT_TYPE];
1133 	/* # of allocated blocks */
1134 	struct percpu_counter alloc_valid_block_count;
1135 
1136 	/* writeback control */
1137 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1138 
1139 	/* valid inode count */
1140 	struct percpu_counter total_valid_inode_count;
1141 
1142 	struct f2fs_mount_info mount_opt;	/* mount options */
1143 
1144 	/* for cleaning operations */
1145 	struct mutex gc_mutex;			/* mutex for GC */
1146 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1147 	unsigned int cur_victim_sec;		/* current victim section num */
1148 
1149 	/* threshold for converting bg victims for fg */
1150 	u64 fggc_threshold;
1151 
1152 	/* threshold for gc trials on pinned files */
1153 	u64 gc_pin_file_threshold;
1154 
1155 	/* maximum # of trials to find a victim segment for SSR and GC */
1156 	unsigned int max_victim_search;
1157 
1158 	/*
1159 	 * for stat information.
1160 	 * one is for the LFS mode, and the other is for the SSR mode.
1161 	 */
1162 #ifdef CONFIG_F2FS_STAT_FS
1163 	struct f2fs_stat_info *stat_info;	/* FS status information */
1164 	unsigned int segment_count[2];		/* # of allocated segments */
1165 	unsigned int block_count[2];		/* # of allocated blocks */
1166 	atomic_t inplace_count;		/* # of inplace update */
1167 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1168 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1169 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1170 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1171 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1172 	atomic_t inline_inode;			/* # of inline_data inodes */
1173 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1174 	atomic_t aw_cnt;			/* # of atomic writes */
1175 	atomic_t vw_cnt;			/* # of volatile writes */
1176 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1177 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1178 	int bg_gc;				/* background gc calls */
1179 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1180 #endif
1181 	spinlock_t stat_lock;			/* lock for stat operations */
1182 
1183 	/* For app/fs IO statistics */
1184 	spinlock_t iostat_lock;
1185 	unsigned long long write_iostat[NR_IO_TYPE];
1186 	bool iostat_enable;
1187 
1188 	/* For sysfs suppport */
1189 	struct kobject s_kobj;
1190 	struct completion s_kobj_unregister;
1191 
1192 	/* For shrinker support */
1193 	struct list_head s_list;
1194 	int s_ndevs;				/* number of devices */
1195 	struct f2fs_dev_info *devs;		/* for device list */
1196 	unsigned int dirty_device;		/* for checkpoint data flush */
1197 	spinlock_t dev_lock;			/* protect dirty_device */
1198 	struct mutex umount_mutex;
1199 	unsigned int shrinker_run_no;
1200 
1201 	/* For write statistics */
1202 	u64 sectors_written_start;
1203 	u64 kbytes_written;
1204 
1205 	/* Reference to checksum algorithm driver via cryptoapi */
1206 	struct crypto_shash *s_chksum_driver;
1207 
1208 	/* Precomputed FS UUID checksum for seeding other checksums */
1209 	__u32 s_chksum_seed;
1210 
1211 	/* For fault injection */
1212 #ifdef CONFIG_F2FS_FAULT_INJECTION
1213 	struct f2fs_fault_info fault_info;
1214 #endif
1215 
1216 #ifdef CONFIG_QUOTA
1217 	/* Names of quota files with journalled quota */
1218 	char *s_qf_names[MAXQUOTAS];
1219 	int s_jquota_fmt;			/* Format of quota to use */
1220 #endif
1221 };
1222 
1223 #ifdef CONFIG_F2FS_FAULT_INJECTION
1224 #define f2fs_show_injection_info(type)				\
1225 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1226 		KERN_INFO, fault_name[type],			\
1227 		__func__, __builtin_return_address(0))
1228 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1229 {
1230 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1231 
1232 	if (!ffi->inject_rate)
1233 		return false;
1234 
1235 	if (!IS_FAULT_SET(ffi, type))
1236 		return false;
1237 
1238 	atomic_inc(&ffi->inject_ops);
1239 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1240 		atomic_set(&ffi->inject_ops, 0);
1241 		return true;
1242 	}
1243 	return false;
1244 }
1245 #endif
1246 
1247 /* For write statistics. Suppose sector size is 512 bytes,
1248  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1249  */
1250 #define BD_PART_WRITTEN(s)						 \
1251 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1252 		(s)->sectors_written_start) >> 1)
1253 
1254 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1255 {
1256 	sbi->last_time[type] = jiffies;
1257 }
1258 
1259 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1260 {
1261 	unsigned long interval = sbi->interval_time[type] * HZ;
1262 
1263 	return time_after(jiffies, sbi->last_time[type] + interval);
1264 }
1265 
1266 static inline bool is_idle(struct f2fs_sb_info *sbi)
1267 {
1268 	struct block_device *bdev = sbi->sb->s_bdev;
1269 	struct request_queue *q = bdev_get_queue(bdev);
1270 	struct request_list *rl = &q->root_rl;
1271 
1272 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1273 		return 0;
1274 
1275 	return f2fs_time_over(sbi, REQ_TIME);
1276 }
1277 
1278 /*
1279  * Inline functions
1280  */
1281 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1282 			      const void *address, unsigned int length)
1283 {
1284 	struct {
1285 		struct shash_desc shash;
1286 		char ctx[4];
1287 	} desc;
1288 	int err;
1289 
1290 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1291 
1292 	desc.shash.tfm = sbi->s_chksum_driver;
1293 	desc.shash.flags = 0;
1294 	*(u32 *)desc.ctx = crc;
1295 
1296 	err = crypto_shash_update(&desc.shash, address, length);
1297 	BUG_ON(err);
1298 
1299 	return *(u32 *)desc.ctx;
1300 }
1301 
1302 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1303 			   unsigned int length)
1304 {
1305 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1306 }
1307 
1308 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1309 				  void *buf, size_t buf_size)
1310 {
1311 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1312 }
1313 
1314 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1315 			      const void *address, unsigned int length)
1316 {
1317 	return __f2fs_crc32(sbi, crc, address, length);
1318 }
1319 
1320 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1321 {
1322 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1323 }
1324 
1325 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1326 {
1327 	return sb->s_fs_info;
1328 }
1329 
1330 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1331 {
1332 	return F2FS_SB(inode->i_sb);
1333 }
1334 
1335 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1336 {
1337 	return F2FS_I_SB(mapping->host);
1338 }
1339 
1340 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1341 {
1342 	return F2FS_M_SB(page->mapping);
1343 }
1344 
1345 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1346 {
1347 	return (struct f2fs_super_block *)(sbi->raw_super);
1348 }
1349 
1350 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1351 {
1352 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1353 }
1354 
1355 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1356 {
1357 	return (struct f2fs_node *)page_address(page);
1358 }
1359 
1360 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1361 {
1362 	return &((struct f2fs_node *)page_address(page))->i;
1363 }
1364 
1365 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1366 {
1367 	return (struct f2fs_nm_info *)(sbi->nm_info);
1368 }
1369 
1370 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1371 {
1372 	return (struct f2fs_sm_info *)(sbi->sm_info);
1373 }
1374 
1375 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1376 {
1377 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1378 }
1379 
1380 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1381 {
1382 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1383 }
1384 
1385 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1386 {
1387 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1388 }
1389 
1390 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1391 {
1392 	return sbi->meta_inode->i_mapping;
1393 }
1394 
1395 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1396 {
1397 	return sbi->node_inode->i_mapping;
1398 }
1399 
1400 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1401 {
1402 	return test_bit(type, &sbi->s_flag);
1403 }
1404 
1405 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1406 {
1407 	set_bit(type, &sbi->s_flag);
1408 }
1409 
1410 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1411 {
1412 	clear_bit(type, &sbi->s_flag);
1413 }
1414 
1415 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1416 {
1417 	return le64_to_cpu(cp->checkpoint_ver);
1418 }
1419 
1420 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1421 {
1422 	if (type < F2FS_MAX_QUOTAS)
1423 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1424 	return 0;
1425 }
1426 
1427 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1428 {
1429 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1430 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1431 }
1432 
1433 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1434 {
1435 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1436 
1437 	return ckpt_flags & f;
1438 }
1439 
1440 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1441 {
1442 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1443 }
1444 
1445 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1446 {
1447 	unsigned int ckpt_flags;
1448 
1449 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1450 	ckpt_flags |= f;
1451 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1452 }
1453 
1454 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1455 {
1456 	unsigned long flags;
1457 
1458 	spin_lock_irqsave(&sbi->cp_lock, flags);
1459 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1460 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1461 }
1462 
1463 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1464 {
1465 	unsigned int ckpt_flags;
1466 
1467 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1468 	ckpt_flags &= (~f);
1469 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1470 }
1471 
1472 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1473 {
1474 	unsigned long flags;
1475 
1476 	spin_lock_irqsave(&sbi->cp_lock, flags);
1477 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1478 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1479 }
1480 
1481 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1482 {
1483 	unsigned long flags;
1484 
1485 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1486 
1487 	if (lock)
1488 		spin_lock_irqsave(&sbi->cp_lock, flags);
1489 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1490 	kfree(NM_I(sbi)->nat_bits);
1491 	NM_I(sbi)->nat_bits = NULL;
1492 	if (lock)
1493 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1494 }
1495 
1496 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1497 					struct cp_control *cpc)
1498 {
1499 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1500 
1501 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1502 }
1503 
1504 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1505 {
1506 	down_read(&sbi->cp_rwsem);
1507 }
1508 
1509 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1510 {
1511 	return down_read_trylock(&sbi->cp_rwsem);
1512 }
1513 
1514 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1515 {
1516 	up_read(&sbi->cp_rwsem);
1517 }
1518 
1519 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1520 {
1521 	down_write(&sbi->cp_rwsem);
1522 }
1523 
1524 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1525 {
1526 	up_write(&sbi->cp_rwsem);
1527 }
1528 
1529 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1530 {
1531 	int reason = CP_SYNC;
1532 
1533 	if (test_opt(sbi, FASTBOOT))
1534 		reason = CP_FASTBOOT;
1535 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1536 		reason = CP_UMOUNT;
1537 	return reason;
1538 }
1539 
1540 static inline bool __remain_node_summaries(int reason)
1541 {
1542 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1543 }
1544 
1545 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1546 {
1547 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1548 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1549 }
1550 
1551 /*
1552  * Check whether the given nid is within node id range.
1553  */
1554 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1555 {
1556 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1557 		return -EINVAL;
1558 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1559 		return -EINVAL;
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Check whether the inode has blocks or not
1565  */
1566 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1567 {
1568 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1569 
1570 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1571 }
1572 
1573 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1574 {
1575 	return ofs == XATTR_NODE_OFFSET;
1576 }
1577 
1578 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1579 					struct inode *inode)
1580 {
1581 	if (!inode)
1582 		return true;
1583 	if (!test_opt(sbi, RESERVE_ROOT))
1584 		return false;
1585 	if (IS_NOQUOTA(inode))
1586 		return true;
1587 	if (capable(CAP_SYS_RESOURCE))
1588 		return true;
1589 	if (uid_eq(sbi->s_resuid, current_fsuid()))
1590 		return true;
1591 	if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) &&
1592 					in_group_p(sbi->s_resgid))
1593 		return true;
1594 	return false;
1595 }
1596 
1597 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1598 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1599 				 struct inode *inode, blkcnt_t *count)
1600 {
1601 	blkcnt_t diff = 0, release = 0;
1602 	block_t avail_user_block_count;
1603 	int ret;
1604 
1605 	ret = dquot_reserve_block(inode, *count);
1606 	if (ret)
1607 		return ret;
1608 
1609 #ifdef CONFIG_F2FS_FAULT_INJECTION
1610 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1611 		f2fs_show_injection_info(FAULT_BLOCK);
1612 		release = *count;
1613 		goto enospc;
1614 	}
1615 #endif
1616 	/*
1617 	 * let's increase this in prior to actual block count change in order
1618 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1619 	 */
1620 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1621 
1622 	spin_lock(&sbi->stat_lock);
1623 	sbi->total_valid_block_count += (block_t)(*count);
1624 	avail_user_block_count = sbi->user_block_count -
1625 					sbi->current_reserved_blocks;
1626 
1627 	if (!__allow_reserved_blocks(sbi, inode))
1628 		avail_user_block_count -= sbi->root_reserved_blocks;
1629 
1630 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1631 		diff = sbi->total_valid_block_count - avail_user_block_count;
1632 		if (diff > *count)
1633 			diff = *count;
1634 		*count -= diff;
1635 		release = diff;
1636 		sbi->total_valid_block_count -= diff;
1637 		if (!*count) {
1638 			spin_unlock(&sbi->stat_lock);
1639 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1640 			goto enospc;
1641 		}
1642 	}
1643 	spin_unlock(&sbi->stat_lock);
1644 
1645 	if (unlikely(release))
1646 		dquot_release_reservation_block(inode, release);
1647 	f2fs_i_blocks_write(inode, *count, true, true);
1648 	return 0;
1649 
1650 enospc:
1651 	dquot_release_reservation_block(inode, release);
1652 	return -ENOSPC;
1653 }
1654 
1655 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1656 						struct inode *inode,
1657 						block_t count)
1658 {
1659 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1660 
1661 	spin_lock(&sbi->stat_lock);
1662 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1663 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1664 	sbi->total_valid_block_count -= (block_t)count;
1665 	if (sbi->reserved_blocks &&
1666 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1667 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1668 					sbi->current_reserved_blocks + count);
1669 	spin_unlock(&sbi->stat_lock);
1670 	f2fs_i_blocks_write(inode, count, false, true);
1671 }
1672 
1673 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1674 {
1675 	atomic_inc(&sbi->nr_pages[count_type]);
1676 
1677 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1678 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1679 		return;
1680 
1681 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1682 }
1683 
1684 static inline void inode_inc_dirty_pages(struct inode *inode)
1685 {
1686 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1687 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1688 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1689 	if (IS_NOQUOTA(inode))
1690 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1691 }
1692 
1693 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1694 {
1695 	atomic_dec(&sbi->nr_pages[count_type]);
1696 }
1697 
1698 static inline void inode_dec_dirty_pages(struct inode *inode)
1699 {
1700 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1701 			!S_ISLNK(inode->i_mode))
1702 		return;
1703 
1704 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1705 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1706 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1707 	if (IS_NOQUOTA(inode))
1708 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1709 }
1710 
1711 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1712 {
1713 	return atomic_read(&sbi->nr_pages[count_type]);
1714 }
1715 
1716 static inline int get_dirty_pages(struct inode *inode)
1717 {
1718 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1719 }
1720 
1721 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1722 {
1723 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1724 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1725 						sbi->log_blocks_per_seg;
1726 
1727 	return segs / sbi->segs_per_sec;
1728 }
1729 
1730 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1731 {
1732 	return sbi->total_valid_block_count;
1733 }
1734 
1735 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1736 {
1737 	return sbi->discard_blks;
1738 }
1739 
1740 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1741 {
1742 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1743 
1744 	/* return NAT or SIT bitmap */
1745 	if (flag == NAT_BITMAP)
1746 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1747 	else if (flag == SIT_BITMAP)
1748 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1749 
1750 	return 0;
1751 }
1752 
1753 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1754 {
1755 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1756 }
1757 
1758 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1759 {
1760 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1761 	int offset;
1762 
1763 	if (__cp_payload(sbi) > 0) {
1764 		if (flag == NAT_BITMAP)
1765 			return &ckpt->sit_nat_version_bitmap;
1766 		else
1767 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1768 	} else {
1769 		offset = (flag == NAT_BITMAP) ?
1770 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1771 		return &ckpt->sit_nat_version_bitmap + offset;
1772 	}
1773 }
1774 
1775 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1776 {
1777 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1778 
1779 	if (sbi->cur_cp_pack == 2)
1780 		start_addr += sbi->blocks_per_seg;
1781 	return start_addr;
1782 }
1783 
1784 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1785 {
1786 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1787 
1788 	if (sbi->cur_cp_pack == 1)
1789 		start_addr += sbi->blocks_per_seg;
1790 	return start_addr;
1791 }
1792 
1793 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1794 {
1795 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1796 }
1797 
1798 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1799 {
1800 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1801 }
1802 
1803 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1804 					struct inode *inode, bool is_inode)
1805 {
1806 	block_t	valid_block_count;
1807 	unsigned int valid_node_count;
1808 	bool quota = inode && !is_inode;
1809 
1810 	if (quota) {
1811 		int ret = dquot_reserve_block(inode, 1);
1812 		if (ret)
1813 			return ret;
1814 	}
1815 
1816 #ifdef CONFIG_F2FS_FAULT_INJECTION
1817 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1818 		f2fs_show_injection_info(FAULT_BLOCK);
1819 		goto enospc;
1820 	}
1821 #endif
1822 
1823 	spin_lock(&sbi->stat_lock);
1824 
1825 	valid_block_count = sbi->total_valid_block_count +
1826 					sbi->current_reserved_blocks + 1;
1827 
1828 	if (!__allow_reserved_blocks(sbi, inode))
1829 		valid_block_count += sbi->root_reserved_blocks;
1830 
1831 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1832 		spin_unlock(&sbi->stat_lock);
1833 		goto enospc;
1834 	}
1835 
1836 	valid_node_count = sbi->total_valid_node_count + 1;
1837 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1838 		spin_unlock(&sbi->stat_lock);
1839 		goto enospc;
1840 	}
1841 
1842 	sbi->total_valid_node_count++;
1843 	sbi->total_valid_block_count++;
1844 	spin_unlock(&sbi->stat_lock);
1845 
1846 	if (inode) {
1847 		if (is_inode)
1848 			f2fs_mark_inode_dirty_sync(inode, true);
1849 		else
1850 			f2fs_i_blocks_write(inode, 1, true, true);
1851 	}
1852 
1853 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1854 	return 0;
1855 
1856 enospc:
1857 	if (quota)
1858 		dquot_release_reservation_block(inode, 1);
1859 	return -ENOSPC;
1860 }
1861 
1862 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1863 					struct inode *inode, bool is_inode)
1864 {
1865 	spin_lock(&sbi->stat_lock);
1866 
1867 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1868 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1869 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1870 
1871 	sbi->total_valid_node_count--;
1872 	sbi->total_valid_block_count--;
1873 	if (sbi->reserved_blocks &&
1874 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1875 		sbi->current_reserved_blocks++;
1876 
1877 	spin_unlock(&sbi->stat_lock);
1878 
1879 	if (!is_inode)
1880 		f2fs_i_blocks_write(inode, 1, false, true);
1881 }
1882 
1883 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1884 {
1885 	return sbi->total_valid_node_count;
1886 }
1887 
1888 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1889 {
1890 	percpu_counter_inc(&sbi->total_valid_inode_count);
1891 }
1892 
1893 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1894 {
1895 	percpu_counter_dec(&sbi->total_valid_inode_count);
1896 }
1897 
1898 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1899 {
1900 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1901 }
1902 
1903 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1904 						pgoff_t index, bool for_write)
1905 {
1906 #ifdef CONFIG_F2FS_FAULT_INJECTION
1907 	struct page *page = find_lock_page(mapping, index);
1908 
1909 	if (page)
1910 		return page;
1911 
1912 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1913 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1914 		return NULL;
1915 	}
1916 #endif
1917 	if (!for_write)
1918 		return grab_cache_page(mapping, index);
1919 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1920 }
1921 
1922 static inline struct page *f2fs_pagecache_get_page(
1923 				struct address_space *mapping, pgoff_t index,
1924 				int fgp_flags, gfp_t gfp_mask)
1925 {
1926 #ifdef CONFIG_F2FS_FAULT_INJECTION
1927 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1928 		f2fs_show_injection_info(FAULT_PAGE_GET);
1929 		return NULL;
1930 	}
1931 #endif
1932 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1933 }
1934 
1935 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1936 {
1937 	char *src_kaddr = kmap(src);
1938 	char *dst_kaddr = kmap(dst);
1939 
1940 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1941 	kunmap(dst);
1942 	kunmap(src);
1943 }
1944 
1945 static inline void f2fs_put_page(struct page *page, int unlock)
1946 {
1947 	if (!page)
1948 		return;
1949 
1950 	if (unlock) {
1951 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1952 		unlock_page(page);
1953 	}
1954 	put_page(page);
1955 }
1956 
1957 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1958 {
1959 	if (dn->node_page)
1960 		f2fs_put_page(dn->node_page, 1);
1961 	if (dn->inode_page && dn->node_page != dn->inode_page)
1962 		f2fs_put_page(dn->inode_page, 0);
1963 	dn->node_page = NULL;
1964 	dn->inode_page = NULL;
1965 }
1966 
1967 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1968 					size_t size)
1969 {
1970 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1971 }
1972 
1973 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1974 						gfp_t flags)
1975 {
1976 	void *entry;
1977 
1978 	entry = kmem_cache_alloc(cachep, flags);
1979 	if (!entry)
1980 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1981 	return entry;
1982 }
1983 
1984 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1985 						int npages, bool no_fail)
1986 {
1987 	struct bio *bio;
1988 
1989 	if (no_fail) {
1990 		/* No failure on bio allocation */
1991 		bio = bio_alloc(GFP_NOIO, npages);
1992 		if (!bio)
1993 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1994 		return bio;
1995 	}
1996 #ifdef CONFIG_F2FS_FAULT_INJECTION
1997 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1998 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
1999 		return NULL;
2000 	}
2001 #endif
2002 	return bio_alloc(GFP_KERNEL, npages);
2003 }
2004 
2005 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2006 				unsigned long index, void *item)
2007 {
2008 	while (radix_tree_insert(root, index, item))
2009 		cond_resched();
2010 }
2011 
2012 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2013 
2014 static inline bool IS_INODE(struct page *page)
2015 {
2016 	struct f2fs_node *p = F2FS_NODE(page);
2017 
2018 	return RAW_IS_INODE(p);
2019 }
2020 
2021 static inline int offset_in_addr(struct f2fs_inode *i)
2022 {
2023 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2024 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2025 }
2026 
2027 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2028 {
2029 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2030 }
2031 
2032 static inline int f2fs_has_extra_attr(struct inode *inode);
2033 static inline block_t datablock_addr(struct inode *inode,
2034 			struct page *node_page, unsigned int offset)
2035 {
2036 	struct f2fs_node *raw_node;
2037 	__le32 *addr_array;
2038 	int base = 0;
2039 	bool is_inode = IS_INODE(node_page);
2040 
2041 	raw_node = F2FS_NODE(node_page);
2042 
2043 	/* from GC path only */
2044 	if (is_inode) {
2045 		if (!inode)
2046 			base = offset_in_addr(&raw_node->i);
2047 		else if (f2fs_has_extra_attr(inode))
2048 			base = get_extra_isize(inode);
2049 	}
2050 
2051 	addr_array = blkaddr_in_node(raw_node);
2052 	return le32_to_cpu(addr_array[base + offset]);
2053 }
2054 
2055 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2056 {
2057 	int mask;
2058 
2059 	addr += (nr >> 3);
2060 	mask = 1 << (7 - (nr & 0x07));
2061 	return mask & *addr;
2062 }
2063 
2064 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2065 {
2066 	int mask;
2067 
2068 	addr += (nr >> 3);
2069 	mask = 1 << (7 - (nr & 0x07));
2070 	*addr |= mask;
2071 }
2072 
2073 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2074 {
2075 	int mask;
2076 
2077 	addr += (nr >> 3);
2078 	mask = 1 << (7 - (nr & 0x07));
2079 	*addr &= ~mask;
2080 }
2081 
2082 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2083 {
2084 	int mask;
2085 	int ret;
2086 
2087 	addr += (nr >> 3);
2088 	mask = 1 << (7 - (nr & 0x07));
2089 	ret = mask & *addr;
2090 	*addr |= mask;
2091 	return ret;
2092 }
2093 
2094 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2095 {
2096 	int mask;
2097 	int ret;
2098 
2099 	addr += (nr >> 3);
2100 	mask = 1 << (7 - (nr & 0x07));
2101 	ret = mask & *addr;
2102 	*addr &= ~mask;
2103 	return ret;
2104 }
2105 
2106 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2107 {
2108 	int mask;
2109 
2110 	addr += (nr >> 3);
2111 	mask = 1 << (7 - (nr & 0x07));
2112 	*addr ^= mask;
2113 }
2114 
2115 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2116 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2117 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2118 
2119 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2120 {
2121 	if (S_ISDIR(mode))
2122 		return flags;
2123 	else if (S_ISREG(mode))
2124 		return flags & F2FS_REG_FLMASK;
2125 	else
2126 		return flags & F2FS_OTHER_FLMASK;
2127 }
2128 
2129 /* used for f2fs_inode_info->flags */
2130 enum {
2131 	FI_NEW_INODE,		/* indicate newly allocated inode */
2132 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2133 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2134 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2135 	FI_INC_LINK,		/* need to increment i_nlink */
2136 	FI_ACL_MODE,		/* indicate acl mode */
2137 	FI_NO_ALLOC,		/* should not allocate any blocks */
2138 	FI_FREE_NID,		/* free allocated nide */
2139 	FI_NO_EXTENT,		/* not to use the extent cache */
2140 	FI_INLINE_XATTR,	/* used for inline xattr */
2141 	FI_INLINE_DATA,		/* used for inline data*/
2142 	FI_INLINE_DENTRY,	/* used for inline dentry */
2143 	FI_APPEND_WRITE,	/* inode has appended data */
2144 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2145 	FI_NEED_IPU,		/* used for ipu per file */
2146 	FI_ATOMIC_FILE,		/* indicate atomic file */
2147 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2148 	FI_VOLATILE_FILE,	/* indicate volatile file */
2149 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2150 	FI_DROP_CACHE,		/* drop dirty page cache */
2151 	FI_DATA_EXIST,		/* indicate data exists */
2152 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2153 	FI_DO_DEFRAG,		/* indicate defragment is running */
2154 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2155 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2156 	FI_HOT_DATA,		/* indicate file is hot */
2157 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2158 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2159 	FI_PIN_FILE,		/* indicate file should not be gced */
2160 };
2161 
2162 static inline void __mark_inode_dirty_flag(struct inode *inode,
2163 						int flag, bool set)
2164 {
2165 	switch (flag) {
2166 	case FI_INLINE_XATTR:
2167 	case FI_INLINE_DATA:
2168 	case FI_INLINE_DENTRY:
2169 	case FI_NEW_INODE:
2170 		if (set)
2171 			return;
2172 	case FI_DATA_EXIST:
2173 	case FI_INLINE_DOTS:
2174 	case FI_PIN_FILE:
2175 		f2fs_mark_inode_dirty_sync(inode, true);
2176 	}
2177 }
2178 
2179 static inline void set_inode_flag(struct inode *inode, int flag)
2180 {
2181 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2182 		set_bit(flag, &F2FS_I(inode)->flags);
2183 	__mark_inode_dirty_flag(inode, flag, true);
2184 }
2185 
2186 static inline int is_inode_flag_set(struct inode *inode, int flag)
2187 {
2188 	return test_bit(flag, &F2FS_I(inode)->flags);
2189 }
2190 
2191 static inline void clear_inode_flag(struct inode *inode, int flag)
2192 {
2193 	if (test_bit(flag, &F2FS_I(inode)->flags))
2194 		clear_bit(flag, &F2FS_I(inode)->flags);
2195 	__mark_inode_dirty_flag(inode, flag, false);
2196 }
2197 
2198 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2199 {
2200 	F2FS_I(inode)->i_acl_mode = mode;
2201 	set_inode_flag(inode, FI_ACL_MODE);
2202 	f2fs_mark_inode_dirty_sync(inode, false);
2203 }
2204 
2205 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2206 {
2207 	if (inc)
2208 		inc_nlink(inode);
2209 	else
2210 		drop_nlink(inode);
2211 	f2fs_mark_inode_dirty_sync(inode, true);
2212 }
2213 
2214 static inline void f2fs_i_blocks_write(struct inode *inode,
2215 					block_t diff, bool add, bool claim)
2216 {
2217 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2218 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2219 
2220 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2221 	if (add) {
2222 		if (claim)
2223 			dquot_claim_block(inode, diff);
2224 		else
2225 			dquot_alloc_block_nofail(inode, diff);
2226 	} else {
2227 		dquot_free_block(inode, diff);
2228 	}
2229 
2230 	f2fs_mark_inode_dirty_sync(inode, true);
2231 	if (clean || recover)
2232 		set_inode_flag(inode, FI_AUTO_RECOVER);
2233 }
2234 
2235 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2236 {
2237 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2238 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2239 
2240 	if (i_size_read(inode) == i_size)
2241 		return;
2242 
2243 	i_size_write(inode, i_size);
2244 	f2fs_mark_inode_dirty_sync(inode, true);
2245 	if (clean || recover)
2246 		set_inode_flag(inode, FI_AUTO_RECOVER);
2247 }
2248 
2249 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2250 {
2251 	F2FS_I(inode)->i_current_depth = depth;
2252 	f2fs_mark_inode_dirty_sync(inode, true);
2253 }
2254 
2255 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2256 					unsigned int count)
2257 {
2258 	F2FS_I(inode)->i_gc_failures = count;
2259 	f2fs_mark_inode_dirty_sync(inode, true);
2260 }
2261 
2262 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2263 {
2264 	F2FS_I(inode)->i_xattr_nid = xnid;
2265 	f2fs_mark_inode_dirty_sync(inode, true);
2266 }
2267 
2268 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2269 {
2270 	F2FS_I(inode)->i_pino = pino;
2271 	f2fs_mark_inode_dirty_sync(inode, true);
2272 }
2273 
2274 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2275 {
2276 	struct f2fs_inode_info *fi = F2FS_I(inode);
2277 
2278 	if (ri->i_inline & F2FS_INLINE_XATTR)
2279 		set_bit(FI_INLINE_XATTR, &fi->flags);
2280 	if (ri->i_inline & F2FS_INLINE_DATA)
2281 		set_bit(FI_INLINE_DATA, &fi->flags);
2282 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2283 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2284 	if (ri->i_inline & F2FS_DATA_EXIST)
2285 		set_bit(FI_DATA_EXIST, &fi->flags);
2286 	if (ri->i_inline & F2FS_INLINE_DOTS)
2287 		set_bit(FI_INLINE_DOTS, &fi->flags);
2288 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2289 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2290 	if (ri->i_inline & F2FS_PIN_FILE)
2291 		set_bit(FI_PIN_FILE, &fi->flags);
2292 }
2293 
2294 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2295 {
2296 	ri->i_inline = 0;
2297 
2298 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2299 		ri->i_inline |= F2FS_INLINE_XATTR;
2300 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2301 		ri->i_inline |= F2FS_INLINE_DATA;
2302 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2303 		ri->i_inline |= F2FS_INLINE_DENTRY;
2304 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2305 		ri->i_inline |= F2FS_DATA_EXIST;
2306 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2307 		ri->i_inline |= F2FS_INLINE_DOTS;
2308 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2309 		ri->i_inline |= F2FS_EXTRA_ATTR;
2310 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2311 		ri->i_inline |= F2FS_PIN_FILE;
2312 }
2313 
2314 static inline int f2fs_has_extra_attr(struct inode *inode)
2315 {
2316 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2317 }
2318 
2319 static inline int f2fs_has_inline_xattr(struct inode *inode)
2320 {
2321 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2322 }
2323 
2324 static inline unsigned int addrs_per_inode(struct inode *inode)
2325 {
2326 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2327 }
2328 
2329 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2330 {
2331 	struct f2fs_inode *ri = F2FS_INODE(page);
2332 
2333 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2334 					get_inline_xattr_addrs(inode)]);
2335 }
2336 
2337 static inline int inline_xattr_size(struct inode *inode)
2338 {
2339 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2340 }
2341 
2342 static inline int f2fs_has_inline_data(struct inode *inode)
2343 {
2344 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2345 }
2346 
2347 static inline int f2fs_exist_data(struct inode *inode)
2348 {
2349 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2350 }
2351 
2352 static inline int f2fs_has_inline_dots(struct inode *inode)
2353 {
2354 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2355 }
2356 
2357 static inline bool f2fs_is_pinned_file(struct inode *inode)
2358 {
2359 	return is_inode_flag_set(inode, FI_PIN_FILE);
2360 }
2361 
2362 static inline bool f2fs_is_atomic_file(struct inode *inode)
2363 {
2364 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2365 }
2366 
2367 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2368 {
2369 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2370 }
2371 
2372 static inline bool f2fs_is_volatile_file(struct inode *inode)
2373 {
2374 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2375 }
2376 
2377 static inline bool f2fs_is_first_block_written(struct inode *inode)
2378 {
2379 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2380 }
2381 
2382 static inline bool f2fs_is_drop_cache(struct inode *inode)
2383 {
2384 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2385 }
2386 
2387 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2388 {
2389 	struct f2fs_inode *ri = F2FS_INODE(page);
2390 	int extra_size = get_extra_isize(inode);
2391 
2392 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2393 }
2394 
2395 static inline int f2fs_has_inline_dentry(struct inode *inode)
2396 {
2397 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2398 }
2399 
2400 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2401 {
2402 	if (!f2fs_has_inline_dentry(dir))
2403 		kunmap(page);
2404 }
2405 
2406 static inline int is_file(struct inode *inode, int type)
2407 {
2408 	return F2FS_I(inode)->i_advise & type;
2409 }
2410 
2411 static inline void set_file(struct inode *inode, int type)
2412 {
2413 	F2FS_I(inode)->i_advise |= type;
2414 	f2fs_mark_inode_dirty_sync(inode, true);
2415 }
2416 
2417 static inline void clear_file(struct inode *inode, int type)
2418 {
2419 	F2FS_I(inode)->i_advise &= ~type;
2420 	f2fs_mark_inode_dirty_sync(inode, true);
2421 }
2422 
2423 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2424 {
2425 	bool ret;
2426 
2427 	if (dsync) {
2428 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2429 
2430 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2431 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2432 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2433 		return ret;
2434 	}
2435 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2436 			file_keep_isize(inode) ||
2437 			i_size_read(inode) & PAGE_MASK)
2438 		return false;
2439 
2440 	down_read(&F2FS_I(inode)->i_sem);
2441 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2442 	up_read(&F2FS_I(inode)->i_sem);
2443 
2444 	return ret;
2445 }
2446 
2447 static inline int f2fs_readonly(struct super_block *sb)
2448 {
2449 	return sb->s_flags & SB_RDONLY;
2450 }
2451 
2452 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2453 {
2454 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2455 }
2456 
2457 static inline bool is_dot_dotdot(const struct qstr *str)
2458 {
2459 	if (str->len == 1 && str->name[0] == '.')
2460 		return true;
2461 
2462 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2463 		return true;
2464 
2465 	return false;
2466 }
2467 
2468 static inline bool f2fs_may_extent_tree(struct inode *inode)
2469 {
2470 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2471 			is_inode_flag_set(inode, FI_NO_EXTENT))
2472 		return false;
2473 
2474 	return S_ISREG(inode->i_mode);
2475 }
2476 
2477 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2478 					size_t size, gfp_t flags)
2479 {
2480 #ifdef CONFIG_F2FS_FAULT_INJECTION
2481 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2482 		f2fs_show_injection_info(FAULT_KMALLOC);
2483 		return NULL;
2484 	}
2485 #endif
2486 	return kmalloc(size, flags);
2487 }
2488 
2489 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2490 					size_t size, gfp_t flags)
2491 {
2492 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2493 }
2494 
2495 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2496 					size_t size, gfp_t flags)
2497 {
2498 #ifdef CONFIG_F2FS_FAULT_INJECTION
2499 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2500 		f2fs_show_injection_info(FAULT_KVMALLOC);
2501 		return NULL;
2502 	}
2503 #endif
2504 	return kvmalloc(size, flags);
2505 }
2506 
2507 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2508 					size_t size, gfp_t flags)
2509 {
2510 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2511 }
2512 
2513 static inline int get_extra_isize(struct inode *inode)
2514 {
2515 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2516 }
2517 
2518 static inline int get_inline_xattr_addrs(struct inode *inode)
2519 {
2520 	return F2FS_I(inode)->i_inline_xattr_size;
2521 }
2522 
2523 #define get_inode_mode(i) \
2524 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2525 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2526 
2527 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2528 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2529 	offsetof(struct f2fs_inode, i_extra_isize))	\
2530 
2531 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2532 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2533 		((offsetof(typeof(*f2fs_inode), field) +	\
2534 		sizeof((f2fs_inode)->field))			\
2535 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2536 
2537 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2538 {
2539 	int i;
2540 
2541 	spin_lock(&sbi->iostat_lock);
2542 	for (i = 0; i < NR_IO_TYPE; i++)
2543 		sbi->write_iostat[i] = 0;
2544 	spin_unlock(&sbi->iostat_lock);
2545 }
2546 
2547 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2548 			enum iostat_type type, unsigned long long io_bytes)
2549 {
2550 	if (!sbi->iostat_enable)
2551 		return;
2552 	spin_lock(&sbi->iostat_lock);
2553 	sbi->write_iostat[type] += io_bytes;
2554 
2555 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2556 		sbi->write_iostat[APP_BUFFERED_IO] =
2557 			sbi->write_iostat[APP_WRITE_IO] -
2558 			sbi->write_iostat[APP_DIRECT_IO];
2559 	spin_unlock(&sbi->iostat_lock);
2560 }
2561 
2562 /*
2563  * file.c
2564  */
2565 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2566 void truncate_data_blocks(struct dnode_of_data *dn);
2567 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2568 int f2fs_truncate(struct inode *inode);
2569 int f2fs_getattr(const struct path *path, struct kstat *stat,
2570 			u32 request_mask, unsigned int flags);
2571 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2572 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2573 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2574 int f2fs_precache_extents(struct inode *inode);
2575 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2576 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2577 int f2fs_pin_file_control(struct inode *inode, bool inc);
2578 
2579 /*
2580  * inode.c
2581  */
2582 void f2fs_set_inode_flags(struct inode *inode);
2583 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2584 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2585 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2586 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2587 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2588 void update_inode(struct inode *inode, struct page *node_page);
2589 void update_inode_page(struct inode *inode);
2590 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2591 void f2fs_evict_inode(struct inode *inode);
2592 void handle_failed_inode(struct inode *inode);
2593 
2594 /*
2595  * namei.c
2596  */
2597 struct dentry *f2fs_get_parent(struct dentry *child);
2598 
2599 /*
2600  * dir.c
2601  */
2602 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2603 unsigned char get_de_type(struct f2fs_dir_entry *de);
2604 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2605 			f2fs_hash_t namehash, int *max_slots,
2606 			struct f2fs_dentry_ptr *d);
2607 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2608 			unsigned int start_pos, struct fscrypt_str *fstr);
2609 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2610 			struct f2fs_dentry_ptr *d);
2611 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2612 			const struct qstr *new_name,
2613 			const struct qstr *orig_name, struct page *dpage);
2614 void update_parent_metadata(struct inode *dir, struct inode *inode,
2615 			unsigned int current_depth);
2616 int room_for_filename(const void *bitmap, int slots, int max_slots);
2617 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2618 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2619 			struct fscrypt_name *fname, struct page **res_page);
2620 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2621 			const struct qstr *child, struct page **res_page);
2622 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2623 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2624 			struct page **page);
2625 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2626 			struct page *page, struct inode *inode);
2627 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2628 			const struct qstr *name, f2fs_hash_t name_hash,
2629 			unsigned int bit_pos);
2630 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2631 			const struct qstr *orig_name,
2632 			struct inode *inode, nid_t ino, umode_t mode);
2633 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2634 			struct inode *inode, nid_t ino, umode_t mode);
2635 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2636 			struct inode *inode, nid_t ino, umode_t mode);
2637 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2638 			struct inode *dir, struct inode *inode);
2639 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2640 bool f2fs_empty_dir(struct inode *dir);
2641 
2642 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2643 {
2644 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2645 				inode, inode->i_ino, inode->i_mode);
2646 }
2647 
2648 /*
2649  * super.c
2650  */
2651 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2652 void f2fs_inode_synced(struct inode *inode);
2653 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2654 void f2fs_quota_off_umount(struct super_block *sb);
2655 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2656 int f2fs_sync_fs(struct super_block *sb, int sync);
2657 extern __printf(3, 4)
2658 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2659 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2660 
2661 /*
2662  * hash.c
2663  */
2664 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2665 				struct fscrypt_name *fname);
2666 
2667 /*
2668  * node.c
2669  */
2670 struct dnode_of_data;
2671 struct node_info;
2672 
2673 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2674 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2675 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2676 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2677 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2678 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2679 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2680 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2681 int truncate_xattr_node(struct inode *inode);
2682 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2683 int remove_inode_page(struct inode *inode);
2684 struct page *new_inode_page(struct inode *inode);
2685 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2686 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2687 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2688 struct page *get_node_page_ra(struct page *parent, int start);
2689 void move_node_page(struct page *node_page, int gc_type);
2690 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2691 			struct writeback_control *wbc, bool atomic);
2692 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2693 			bool do_balance, enum iostat_type io_type);
2694 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2695 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2696 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2697 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2698 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2699 void recover_inline_xattr(struct inode *inode, struct page *page);
2700 int recover_xattr_data(struct inode *inode, struct page *page);
2701 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2702 void restore_node_summary(struct f2fs_sb_info *sbi,
2703 			unsigned int segno, struct f2fs_summary_block *sum);
2704 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2705 int build_node_manager(struct f2fs_sb_info *sbi);
2706 void destroy_node_manager(struct f2fs_sb_info *sbi);
2707 int __init create_node_manager_caches(void);
2708 void destroy_node_manager_caches(void);
2709 
2710 /*
2711  * segment.c
2712  */
2713 bool need_SSR(struct f2fs_sb_info *sbi);
2714 void register_inmem_page(struct inode *inode, struct page *page);
2715 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2716 void drop_inmem_pages(struct inode *inode);
2717 void drop_inmem_page(struct inode *inode, struct page *page);
2718 int commit_inmem_pages(struct inode *inode);
2719 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2720 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2721 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2722 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2723 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2724 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2725 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2726 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2727 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2728 						unsigned int granularity);
2729 void stop_discard_thread(struct f2fs_sb_info *sbi);
2730 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2731 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2732 void release_discard_addrs(struct f2fs_sb_info *sbi);
2733 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2734 void allocate_new_segments(struct f2fs_sb_info *sbi);
2735 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2736 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2737 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2738 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2739 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2740 						enum iostat_type io_type);
2741 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2742 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2743 int rewrite_data_page(struct f2fs_io_info *fio);
2744 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2745 			block_t old_blkaddr, block_t new_blkaddr,
2746 			bool recover_curseg, bool recover_newaddr);
2747 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2748 			block_t old_addr, block_t new_addr,
2749 			unsigned char version, bool recover_curseg,
2750 			bool recover_newaddr);
2751 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2752 			block_t old_blkaddr, block_t *new_blkaddr,
2753 			struct f2fs_summary *sum, int type,
2754 			struct f2fs_io_info *fio, bool add_list);
2755 void f2fs_wait_on_page_writeback(struct page *page,
2756 			enum page_type type, bool ordered);
2757 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2758 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2759 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2760 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2761 			unsigned int val, int alloc);
2762 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2763 int build_segment_manager(struct f2fs_sb_info *sbi);
2764 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2765 int __init create_segment_manager_caches(void);
2766 void destroy_segment_manager_caches(void);
2767 int rw_hint_to_seg_type(enum rw_hint hint);
2768 
2769 /*
2770  * checkpoint.c
2771  */
2772 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2773 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2774 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2775 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2776 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2777 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2778 			int type, bool sync);
2779 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2780 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2781 			long nr_to_write, enum iostat_type io_type);
2782 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2783 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2784 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2785 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2786 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2787 					unsigned int devidx, int type);
2788 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2789 					unsigned int devidx, int type);
2790 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2791 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2792 void release_orphan_inode(struct f2fs_sb_info *sbi);
2793 void add_orphan_inode(struct inode *inode);
2794 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2795 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2796 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2797 void update_dirty_page(struct inode *inode, struct page *page);
2798 void remove_dirty_inode(struct inode *inode);
2799 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2800 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2801 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2802 int __init create_checkpoint_caches(void);
2803 void destroy_checkpoint_caches(void);
2804 
2805 /*
2806  * data.c
2807  */
2808 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2809 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2810 				struct inode *inode, nid_t ino, pgoff_t idx,
2811 				enum page_type type);
2812 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2813 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2814 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2815 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2816 			block_t blk_addr, struct bio *bio);
2817 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2818 void set_data_blkaddr(struct dnode_of_data *dn);
2819 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2820 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2821 int reserve_new_block(struct dnode_of_data *dn);
2822 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2823 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2824 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2825 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2826 			int op_flags, bool for_write);
2827 struct page *find_data_page(struct inode *inode, pgoff_t index);
2828 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2829 			bool for_write);
2830 struct page *get_new_data_page(struct inode *inode,
2831 			struct page *ipage, pgoff_t index, bool new_i_size);
2832 int do_write_data_page(struct f2fs_io_info *fio);
2833 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2834 			int create, int flag);
2835 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2836 			u64 start, u64 len);
2837 void f2fs_set_page_dirty_nobuffers(struct page *page);
2838 int __f2fs_write_data_pages(struct address_space *mapping,
2839 						struct writeback_control *wbc,
2840 						enum iostat_type io_type);
2841 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2842 			unsigned int length);
2843 int f2fs_release_page(struct page *page, gfp_t wait);
2844 #ifdef CONFIG_MIGRATION
2845 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2846 			struct page *page, enum migrate_mode mode);
2847 #endif
2848 
2849 /*
2850  * gc.c
2851  */
2852 int start_gc_thread(struct f2fs_sb_info *sbi);
2853 void stop_gc_thread(struct f2fs_sb_info *sbi);
2854 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2855 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2856 			unsigned int segno);
2857 void build_gc_manager(struct f2fs_sb_info *sbi);
2858 
2859 /*
2860  * recovery.c
2861  */
2862 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2863 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2864 
2865 /*
2866  * debug.c
2867  */
2868 #ifdef CONFIG_F2FS_STAT_FS
2869 struct f2fs_stat_info {
2870 	struct list_head stat_list;
2871 	struct f2fs_sb_info *sbi;
2872 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2873 	int main_area_segs, main_area_sections, main_area_zones;
2874 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2875 	unsigned long long hit_total, total_ext;
2876 	int ext_tree, zombie_tree, ext_node;
2877 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2878 	int ndirty_data, ndirty_qdata;
2879 	int inmem_pages;
2880 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2881 	int nats, dirty_nats, sits, dirty_sits;
2882 	int free_nids, avail_nids, alloc_nids;
2883 	int total_count, utilization;
2884 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2885 	int nr_flushing, nr_flushed, flush_list_empty;
2886 	int nr_discarding, nr_discarded;
2887 	int nr_discard_cmd;
2888 	unsigned int undiscard_blks;
2889 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2890 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2891 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2892 	unsigned int bimodal, avg_vblocks;
2893 	int util_free, util_valid, util_invalid;
2894 	int rsvd_segs, overp_segs;
2895 	int dirty_count, node_pages, meta_pages;
2896 	int prefree_count, call_count, cp_count, bg_cp_count;
2897 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2898 	int bg_node_segs, bg_data_segs;
2899 	int tot_blks, data_blks, node_blks;
2900 	int bg_data_blks, bg_node_blks;
2901 	int curseg[NR_CURSEG_TYPE];
2902 	int cursec[NR_CURSEG_TYPE];
2903 	int curzone[NR_CURSEG_TYPE];
2904 
2905 	unsigned int segment_count[2];
2906 	unsigned int block_count[2];
2907 	unsigned int inplace_count;
2908 	unsigned long long base_mem, cache_mem, page_mem;
2909 };
2910 
2911 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2912 {
2913 	return (struct f2fs_stat_info *)sbi->stat_info;
2914 }
2915 
2916 #define stat_inc_cp_count(si)		((si)->cp_count++)
2917 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2918 #define stat_inc_call_count(si)		((si)->call_count++)
2919 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2920 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2921 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2922 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2923 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2924 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2925 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2926 #define stat_inc_inline_xattr(inode)					\
2927 	do {								\
2928 		if (f2fs_has_inline_xattr(inode))			\
2929 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2930 	} while (0)
2931 #define stat_dec_inline_xattr(inode)					\
2932 	do {								\
2933 		if (f2fs_has_inline_xattr(inode))			\
2934 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2935 	} while (0)
2936 #define stat_inc_inline_inode(inode)					\
2937 	do {								\
2938 		if (f2fs_has_inline_data(inode))			\
2939 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2940 	} while (0)
2941 #define stat_dec_inline_inode(inode)					\
2942 	do {								\
2943 		if (f2fs_has_inline_data(inode))			\
2944 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2945 	} while (0)
2946 #define stat_inc_inline_dir(inode)					\
2947 	do {								\
2948 		if (f2fs_has_inline_dentry(inode))			\
2949 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2950 	} while (0)
2951 #define stat_dec_inline_dir(inode)					\
2952 	do {								\
2953 		if (f2fs_has_inline_dentry(inode))			\
2954 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2955 	} while (0)
2956 #define stat_inc_seg_type(sbi, curseg)					\
2957 		((sbi)->segment_count[(curseg)->alloc_type]++)
2958 #define stat_inc_block_count(sbi, curseg)				\
2959 		((sbi)->block_count[(curseg)->alloc_type]++)
2960 #define stat_inc_inplace_blocks(sbi)					\
2961 		(atomic_inc(&(sbi)->inplace_count))
2962 #define stat_inc_atomic_write(inode)					\
2963 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2964 #define stat_dec_atomic_write(inode)					\
2965 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2966 #define stat_update_max_atomic_write(inode)				\
2967 	do {								\
2968 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2969 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2970 		if (cur > max)						\
2971 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2972 	} while (0)
2973 #define stat_inc_volatile_write(inode)					\
2974 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2975 #define stat_dec_volatile_write(inode)					\
2976 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2977 #define stat_update_max_volatile_write(inode)				\
2978 	do {								\
2979 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2980 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2981 		if (cur > max)						\
2982 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2983 	} while (0)
2984 #define stat_inc_seg_count(sbi, type, gc_type)				\
2985 	do {								\
2986 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2987 		si->tot_segs++;						\
2988 		if ((type) == SUM_TYPE_DATA) {				\
2989 			si->data_segs++;				\
2990 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2991 		} else {						\
2992 			si->node_segs++;				\
2993 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2994 		}							\
2995 	} while (0)
2996 
2997 #define stat_inc_tot_blk_count(si, blks)				\
2998 	((si)->tot_blks += (blks))
2999 
3000 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3001 	do {								\
3002 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3003 		stat_inc_tot_blk_count(si, blks);			\
3004 		si->data_blks += (blks);				\
3005 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3006 	} while (0)
3007 
3008 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3009 	do {								\
3010 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3011 		stat_inc_tot_blk_count(si, blks);			\
3012 		si->node_blks += (blks);				\
3013 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3014 	} while (0)
3015 
3016 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3017 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3018 int __init f2fs_create_root_stats(void);
3019 void f2fs_destroy_root_stats(void);
3020 #else
3021 #define stat_inc_cp_count(si)				do { } while (0)
3022 #define stat_inc_bg_cp_count(si)			do { } while (0)
3023 #define stat_inc_call_count(si)				do { } while (0)
3024 #define stat_inc_bggc_count(si)				do { } while (0)
3025 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3026 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3027 #define stat_inc_total_hit(sb)				do { } while (0)
3028 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3029 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3030 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3031 #define stat_inc_inline_xattr(inode)			do { } while (0)
3032 #define stat_dec_inline_xattr(inode)			do { } while (0)
3033 #define stat_inc_inline_inode(inode)			do { } while (0)
3034 #define stat_dec_inline_inode(inode)			do { } while (0)
3035 #define stat_inc_inline_dir(inode)			do { } while (0)
3036 #define stat_dec_inline_dir(inode)			do { } while (0)
3037 #define stat_inc_atomic_write(inode)			do { } while (0)
3038 #define stat_dec_atomic_write(inode)			do { } while (0)
3039 #define stat_update_max_atomic_write(inode)		do { } while (0)
3040 #define stat_inc_volatile_write(inode)			do { } while (0)
3041 #define stat_dec_volatile_write(inode)			do { } while (0)
3042 #define stat_update_max_volatile_write(inode)		do { } while (0)
3043 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3044 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3045 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3046 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3047 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3048 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3049 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3050 
3051 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3052 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3053 static inline int __init f2fs_create_root_stats(void) { return 0; }
3054 static inline void f2fs_destroy_root_stats(void) { }
3055 #endif
3056 
3057 extern const struct file_operations f2fs_dir_operations;
3058 extern const struct file_operations f2fs_file_operations;
3059 extern const struct inode_operations f2fs_file_inode_operations;
3060 extern const struct address_space_operations f2fs_dblock_aops;
3061 extern const struct address_space_operations f2fs_node_aops;
3062 extern const struct address_space_operations f2fs_meta_aops;
3063 extern const struct inode_operations f2fs_dir_inode_operations;
3064 extern const struct inode_operations f2fs_symlink_inode_operations;
3065 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3066 extern const struct inode_operations f2fs_special_inode_operations;
3067 extern struct kmem_cache *inode_entry_slab;
3068 
3069 /*
3070  * inline.c
3071  */
3072 bool f2fs_may_inline_data(struct inode *inode);
3073 bool f2fs_may_inline_dentry(struct inode *inode);
3074 void read_inline_data(struct page *page, struct page *ipage);
3075 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3076 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3077 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3078 int f2fs_convert_inline_inode(struct inode *inode);
3079 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3080 bool recover_inline_data(struct inode *inode, struct page *npage);
3081 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3082 			struct fscrypt_name *fname, struct page **res_page);
3083 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3084 			struct page *ipage);
3085 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3086 			const struct qstr *orig_name,
3087 			struct inode *inode, nid_t ino, umode_t mode);
3088 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3089 			struct inode *dir, struct inode *inode);
3090 bool f2fs_empty_inline_dir(struct inode *dir);
3091 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3092 			struct fscrypt_str *fstr);
3093 int f2fs_inline_data_fiemap(struct inode *inode,
3094 			struct fiemap_extent_info *fieinfo,
3095 			__u64 start, __u64 len);
3096 
3097 /*
3098  * shrinker.c
3099  */
3100 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3101 			struct shrink_control *sc);
3102 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3103 			struct shrink_control *sc);
3104 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3105 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3106 
3107 /*
3108  * extent_cache.c
3109  */
3110 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3111 				struct rb_entry *cached_re, unsigned int ofs);
3112 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3113 				struct rb_root *root, struct rb_node **parent,
3114 				unsigned int ofs);
3115 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3116 		struct rb_entry *cached_re, unsigned int ofs,
3117 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3118 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3119 		bool force);
3120 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3121 						struct rb_root *root);
3122 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3123 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3124 void f2fs_drop_extent_tree(struct inode *inode);
3125 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3126 void f2fs_destroy_extent_tree(struct inode *inode);
3127 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3128 			struct extent_info *ei);
3129 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3130 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3131 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3132 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3133 int __init create_extent_cache(void);
3134 void destroy_extent_cache(void);
3135 
3136 /*
3137  * sysfs.c
3138  */
3139 int __init f2fs_init_sysfs(void);
3140 void f2fs_exit_sysfs(void);
3141 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3142 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3143 
3144 /*
3145  * crypto support
3146  */
3147 static inline bool f2fs_encrypted_inode(struct inode *inode)
3148 {
3149 	return file_is_encrypt(inode);
3150 }
3151 
3152 static inline bool f2fs_encrypted_file(struct inode *inode)
3153 {
3154 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3155 }
3156 
3157 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3158 {
3159 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3160 	file_set_encrypt(inode);
3161 	inode->i_flags |= S_ENCRYPTED;
3162 #endif
3163 }
3164 
3165 static inline bool f2fs_bio_encrypted(struct bio *bio)
3166 {
3167 	return bio->bi_private != NULL;
3168 }
3169 
3170 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3171 {
3172 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3173 }
3174 
3175 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3176 {
3177 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3178 }
3179 
3180 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3181 {
3182 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3183 }
3184 
3185 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3186 {
3187 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3188 }
3189 
3190 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3191 {
3192 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3193 }
3194 
3195 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3196 {
3197 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3198 }
3199 
3200 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3201 {
3202 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3203 }
3204 
3205 #ifdef CONFIG_BLK_DEV_ZONED
3206 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3207 			struct block_device *bdev, block_t blkaddr)
3208 {
3209 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3210 	int i;
3211 
3212 	for (i = 0; i < sbi->s_ndevs; i++)
3213 		if (FDEV(i).bdev == bdev)
3214 			return FDEV(i).blkz_type[zno];
3215 	return -EINVAL;
3216 }
3217 #endif
3218 
3219 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3220 {
3221 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3222 
3223 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3224 }
3225 
3226 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3227 {
3228 	clear_opt(sbi, ADAPTIVE);
3229 	clear_opt(sbi, LFS);
3230 
3231 	switch (mt) {
3232 	case F2FS_MOUNT_ADAPTIVE:
3233 		set_opt(sbi, ADAPTIVE);
3234 		break;
3235 	case F2FS_MOUNT_LFS:
3236 		set_opt(sbi, LFS);
3237 		break;
3238 	}
3239 }
3240 
3241 static inline bool f2fs_may_encrypt(struct inode *inode)
3242 {
3243 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3244 	umode_t mode = inode->i_mode;
3245 
3246 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3247 #else
3248 	return 0;
3249 #endif
3250 }
3251 
3252 #endif
3253