1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 102 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 103 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 104 105 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 106 typecheck(unsigned long long, b) && \ 107 ((long long)((a) - (b)) > 0)) 108 109 typedef u32 block_t; /* 110 * should not change u32, since it is the on-disk block 111 * address format, __le32. 112 */ 113 typedef u32 nid_t; 114 115 struct f2fs_mount_info { 116 unsigned int opt; 117 }; 118 119 #define F2FS_FEATURE_ENCRYPT 0x0001 120 #define F2FS_FEATURE_BLKZONED 0x0002 121 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 122 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 123 #define F2FS_FEATURE_PRJQUOTA 0x0010 124 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 126 #define F2FS_FEATURE_QUOTA_INO 0x0080 127 128 #define F2FS_HAS_FEATURE(sb, mask) \ 129 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 130 #define F2FS_SET_FEATURE(sb, mask) \ 131 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 132 #define F2FS_CLEAR_FEATURE(sb, mask) \ 133 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 134 135 /* 136 * Default values for user and/or group using reserved blocks 137 */ 138 #define F2FS_DEF_RESUID 0 139 #define F2FS_DEF_RESGID 0 140 141 /* 142 * For checkpoint manager 143 */ 144 enum { 145 NAT_BITMAP, 146 SIT_BITMAP 147 }; 148 149 #define CP_UMOUNT 0x00000001 150 #define CP_FASTBOOT 0x00000002 151 #define CP_SYNC 0x00000004 152 #define CP_RECOVERY 0x00000008 153 #define CP_DISCARD 0x00000010 154 #define CP_TRIMMED 0x00000020 155 156 #define DEF_BATCHED_TRIM_SECTIONS 2048 157 #define BATCHED_TRIM_SEGMENTS(sbi) \ 158 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 159 #define BATCHED_TRIM_BLOCKS(sbi) \ 160 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 161 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 162 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 163 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 164 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 165 #define DEF_CP_INTERVAL 60 /* 60 secs */ 166 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 167 168 struct cp_control { 169 int reason; 170 __u64 trim_start; 171 __u64 trim_end; 172 __u64 trim_minlen; 173 }; 174 175 /* 176 * For CP/NAT/SIT/SSA readahead 177 */ 178 enum { 179 META_CP, 180 META_NAT, 181 META_SIT, 182 META_SSA, 183 META_POR, 184 }; 185 186 /* for the list of ino */ 187 enum { 188 ORPHAN_INO, /* for orphan ino list */ 189 APPEND_INO, /* for append ino list */ 190 UPDATE_INO, /* for update ino list */ 191 TRANS_DIR_INO, /* for trasactions dir ino list */ 192 FLUSH_INO, /* for multiple device flushing */ 193 MAX_INO_ENTRY, /* max. list */ 194 }; 195 196 struct ino_entry { 197 struct list_head list; /* list head */ 198 nid_t ino; /* inode number */ 199 unsigned int dirty_device; /* dirty device bitmap */ 200 }; 201 202 /* for the list of inodes to be GCed */ 203 struct inode_entry { 204 struct list_head list; /* list head */ 205 struct inode *inode; /* vfs inode pointer */ 206 }; 207 208 /* for the bitmap indicate blocks to be discarded */ 209 struct discard_entry { 210 struct list_head list; /* list head */ 211 block_t start_blkaddr; /* start blockaddr of current segment */ 212 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 213 }; 214 215 /* default discard granularity of inner discard thread, unit: block count */ 216 #define DEFAULT_DISCARD_GRANULARITY 16 217 218 /* max discard pend list number */ 219 #define MAX_PLIST_NUM 512 220 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 221 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 222 223 enum { 224 D_PREP, 225 D_SUBMIT, 226 D_DONE, 227 }; 228 229 struct discard_info { 230 block_t lstart; /* logical start address */ 231 block_t len; /* length */ 232 block_t start; /* actual start address in dev */ 233 }; 234 235 struct discard_cmd { 236 struct rb_node rb_node; /* rb node located in rb-tree */ 237 union { 238 struct { 239 block_t lstart; /* logical start address */ 240 block_t len; /* length */ 241 block_t start; /* actual start address in dev */ 242 }; 243 struct discard_info di; /* discard info */ 244 245 }; 246 struct list_head list; /* command list */ 247 struct completion wait; /* compleation */ 248 struct block_device *bdev; /* bdev */ 249 unsigned short ref; /* reference count */ 250 unsigned char state; /* state */ 251 int error; /* bio error */ 252 }; 253 254 enum { 255 DPOLICY_BG, 256 DPOLICY_FORCE, 257 DPOLICY_FSTRIM, 258 DPOLICY_UMOUNT, 259 MAX_DPOLICY, 260 }; 261 262 struct discard_policy { 263 int type; /* type of discard */ 264 unsigned int min_interval; /* used for candidates exist */ 265 unsigned int max_interval; /* used for candidates not exist */ 266 unsigned int max_requests; /* # of discards issued per round */ 267 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 268 bool io_aware; /* issue discard in idle time */ 269 bool sync; /* submit discard with REQ_SYNC flag */ 270 unsigned int granularity; /* discard granularity */ 271 }; 272 273 struct discard_cmd_control { 274 struct task_struct *f2fs_issue_discard; /* discard thread */ 275 struct list_head entry_list; /* 4KB discard entry list */ 276 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 277 struct list_head wait_list; /* store on-flushing entries */ 278 struct list_head fstrim_list; /* in-flight discard from fstrim */ 279 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 280 unsigned int discard_wake; /* to wake up discard thread */ 281 struct mutex cmd_lock; 282 unsigned int nr_discards; /* # of discards in the list */ 283 unsigned int max_discards; /* max. discards to be issued */ 284 unsigned int discard_granularity; /* discard granularity */ 285 unsigned int undiscard_blks; /* # of undiscard blocks */ 286 atomic_t issued_discard; /* # of issued discard */ 287 atomic_t issing_discard; /* # of issing discard */ 288 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 289 struct rb_root root; /* root of discard rb-tree */ 290 }; 291 292 /* for the list of fsync inodes, used only during recovery */ 293 struct fsync_inode_entry { 294 struct list_head list; /* list head */ 295 struct inode *inode; /* vfs inode pointer */ 296 block_t blkaddr; /* block address locating the last fsync */ 297 block_t last_dentry; /* block address locating the last dentry */ 298 }; 299 300 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 301 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 302 303 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 304 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 305 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 306 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 307 308 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 309 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 310 311 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 312 { 313 int before = nats_in_cursum(journal); 314 315 journal->n_nats = cpu_to_le16(before + i); 316 return before; 317 } 318 319 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 320 { 321 int before = sits_in_cursum(journal); 322 323 journal->n_sits = cpu_to_le16(before + i); 324 return before; 325 } 326 327 static inline bool __has_cursum_space(struct f2fs_journal *journal, 328 int size, int type) 329 { 330 if (type == NAT_JOURNAL) 331 return size <= MAX_NAT_JENTRIES(journal); 332 return size <= MAX_SIT_JENTRIES(journal); 333 } 334 335 /* 336 * ioctl commands 337 */ 338 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 339 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 340 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 341 342 #define F2FS_IOCTL_MAGIC 0xf5 343 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 344 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 345 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 346 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 347 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 348 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 349 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 350 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 351 struct f2fs_defragment) 352 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 353 struct f2fs_move_range) 354 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 355 struct f2fs_flush_device) 356 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 357 struct f2fs_gc_range) 358 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 359 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 360 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 361 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 362 363 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 364 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 365 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 366 367 /* 368 * should be same as XFS_IOC_GOINGDOWN. 369 * Flags for going down operation used by FS_IOC_GOINGDOWN 370 */ 371 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 372 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 373 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 374 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 375 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 376 377 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 378 /* 379 * ioctl commands in 32 bit emulation 380 */ 381 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 382 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 383 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 384 #endif 385 386 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 387 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 388 389 struct f2fs_gc_range { 390 u32 sync; 391 u64 start; 392 u64 len; 393 }; 394 395 struct f2fs_defragment { 396 u64 start; 397 u64 len; 398 }; 399 400 struct f2fs_move_range { 401 u32 dst_fd; /* destination fd */ 402 u64 pos_in; /* start position in src_fd */ 403 u64 pos_out; /* start position in dst_fd */ 404 u64 len; /* size to move */ 405 }; 406 407 struct f2fs_flush_device { 408 u32 dev_num; /* device number to flush */ 409 u32 segments; /* # of segments to flush */ 410 }; 411 412 /* for inline stuff */ 413 #define DEF_INLINE_RESERVED_SIZE 1 414 #define DEF_MIN_INLINE_SIZE 1 415 static inline int get_extra_isize(struct inode *inode); 416 static inline int get_inline_xattr_addrs(struct inode *inode); 417 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 418 (CUR_ADDRS_PER_INODE(inode) - \ 419 get_inline_xattr_addrs(inode) - \ 420 DEF_INLINE_RESERVED_SIZE)) 421 422 /* for inline dir */ 423 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 424 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 425 BITS_PER_BYTE + 1)) 426 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 427 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 428 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 429 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 430 NR_INLINE_DENTRY(inode) + \ 431 INLINE_DENTRY_BITMAP_SIZE(inode))) 432 433 /* 434 * For INODE and NODE manager 435 */ 436 /* for directory operations */ 437 struct f2fs_dentry_ptr { 438 struct inode *inode; 439 void *bitmap; 440 struct f2fs_dir_entry *dentry; 441 __u8 (*filename)[F2FS_SLOT_LEN]; 442 int max; 443 int nr_bitmap; 444 }; 445 446 static inline void make_dentry_ptr_block(struct inode *inode, 447 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 448 { 449 d->inode = inode; 450 d->max = NR_DENTRY_IN_BLOCK; 451 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 452 d->bitmap = &t->dentry_bitmap; 453 d->dentry = t->dentry; 454 d->filename = t->filename; 455 } 456 457 static inline void make_dentry_ptr_inline(struct inode *inode, 458 struct f2fs_dentry_ptr *d, void *t) 459 { 460 int entry_cnt = NR_INLINE_DENTRY(inode); 461 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 462 int reserved_size = INLINE_RESERVED_SIZE(inode); 463 464 d->inode = inode; 465 d->max = entry_cnt; 466 d->nr_bitmap = bitmap_size; 467 d->bitmap = t; 468 d->dentry = t + bitmap_size + reserved_size; 469 d->filename = t + bitmap_size + reserved_size + 470 SIZE_OF_DIR_ENTRY * entry_cnt; 471 } 472 473 /* 474 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 475 * as its node offset to distinguish from index node blocks. 476 * But some bits are used to mark the node block. 477 */ 478 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 479 >> OFFSET_BIT_SHIFT) 480 enum { 481 ALLOC_NODE, /* allocate a new node page if needed */ 482 LOOKUP_NODE, /* look up a node without readahead */ 483 LOOKUP_NODE_RA, /* 484 * look up a node with readahead called 485 * by get_data_block. 486 */ 487 }; 488 489 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 490 491 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 492 493 /* vector size for gang look-up from extent cache that consists of radix tree */ 494 #define EXT_TREE_VEC_SIZE 64 495 496 /* for in-memory extent cache entry */ 497 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 498 499 /* number of extent info in extent cache we try to shrink */ 500 #define EXTENT_CACHE_SHRINK_NUMBER 128 501 502 struct rb_entry { 503 struct rb_node rb_node; /* rb node located in rb-tree */ 504 unsigned int ofs; /* start offset of the entry */ 505 unsigned int len; /* length of the entry */ 506 }; 507 508 struct extent_info { 509 unsigned int fofs; /* start offset in a file */ 510 unsigned int len; /* length of the extent */ 511 u32 blk; /* start block address of the extent */ 512 }; 513 514 struct extent_node { 515 struct rb_node rb_node; 516 union { 517 struct { 518 unsigned int fofs; 519 unsigned int len; 520 u32 blk; 521 }; 522 struct extent_info ei; /* extent info */ 523 524 }; 525 struct list_head list; /* node in global extent list of sbi */ 526 struct extent_tree *et; /* extent tree pointer */ 527 }; 528 529 struct extent_tree { 530 nid_t ino; /* inode number */ 531 struct rb_root root; /* root of extent info rb-tree */ 532 struct extent_node *cached_en; /* recently accessed extent node */ 533 struct extent_info largest; /* largested extent info */ 534 struct list_head list; /* to be used by sbi->zombie_list */ 535 rwlock_t lock; /* protect extent info rb-tree */ 536 atomic_t node_cnt; /* # of extent node in rb-tree*/ 537 }; 538 539 /* 540 * This structure is taken from ext4_map_blocks. 541 * 542 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 543 */ 544 #define F2FS_MAP_NEW (1 << BH_New) 545 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 546 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 547 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 548 F2FS_MAP_UNWRITTEN) 549 550 struct f2fs_map_blocks { 551 block_t m_pblk; 552 block_t m_lblk; 553 unsigned int m_len; 554 unsigned int m_flags; 555 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 556 pgoff_t *m_next_extent; /* point to next possible extent */ 557 int m_seg_type; 558 }; 559 560 /* for flag in get_data_block */ 561 enum { 562 F2FS_GET_BLOCK_DEFAULT, 563 F2FS_GET_BLOCK_FIEMAP, 564 F2FS_GET_BLOCK_BMAP, 565 F2FS_GET_BLOCK_PRE_DIO, 566 F2FS_GET_BLOCK_PRE_AIO, 567 F2FS_GET_BLOCK_PRECACHE, 568 }; 569 570 /* 571 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 572 */ 573 #define FADVISE_COLD_BIT 0x01 574 #define FADVISE_LOST_PINO_BIT 0x02 575 #define FADVISE_ENCRYPT_BIT 0x04 576 #define FADVISE_ENC_NAME_BIT 0x08 577 #define FADVISE_KEEP_SIZE_BIT 0x10 578 579 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 580 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 581 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 582 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 583 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 584 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 585 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 586 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 587 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 588 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 589 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 590 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 591 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 592 593 #define DEF_DIR_LEVEL 0 594 595 struct f2fs_inode_info { 596 struct inode vfs_inode; /* serve a vfs inode */ 597 unsigned long i_flags; /* keep an inode flags for ioctl */ 598 unsigned char i_advise; /* use to give file attribute hints */ 599 unsigned char i_dir_level; /* use for dentry level for large dir */ 600 union { 601 unsigned int i_current_depth; /* only for directory depth */ 602 unsigned short i_gc_failures; /* only for regular file */ 603 }; 604 unsigned int i_pino; /* parent inode number */ 605 umode_t i_acl_mode; /* keep file acl mode temporarily */ 606 607 /* Use below internally in f2fs*/ 608 unsigned long flags; /* use to pass per-file flags */ 609 struct rw_semaphore i_sem; /* protect fi info */ 610 atomic_t dirty_pages; /* # of dirty pages */ 611 f2fs_hash_t chash; /* hash value of given file name */ 612 unsigned int clevel; /* maximum level of given file name */ 613 struct task_struct *task; /* lookup and create consistency */ 614 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 615 nid_t i_xattr_nid; /* node id that contains xattrs */ 616 loff_t last_disk_size; /* lastly written file size */ 617 618 #ifdef CONFIG_QUOTA 619 struct dquot *i_dquot[MAXQUOTAS]; 620 621 /* quota space reservation, managed internally by quota code */ 622 qsize_t i_reserved_quota; 623 #endif 624 struct list_head dirty_list; /* dirty list for dirs and files */ 625 struct list_head gdirty_list; /* linked in global dirty list */ 626 struct list_head inmem_ilist; /* list for inmem inodes */ 627 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 628 struct task_struct *inmem_task; /* store inmemory task */ 629 struct mutex inmem_lock; /* lock for inmemory pages */ 630 struct extent_tree *extent_tree; /* cached extent_tree entry */ 631 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 632 struct rw_semaphore i_mmap_sem; 633 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 634 635 int i_extra_isize; /* size of extra space located in i_addr */ 636 kprojid_t i_projid; /* id for project quota */ 637 int i_inline_xattr_size; /* inline xattr size */ 638 }; 639 640 static inline void get_extent_info(struct extent_info *ext, 641 struct f2fs_extent *i_ext) 642 { 643 ext->fofs = le32_to_cpu(i_ext->fofs); 644 ext->blk = le32_to_cpu(i_ext->blk); 645 ext->len = le32_to_cpu(i_ext->len); 646 } 647 648 static inline void set_raw_extent(struct extent_info *ext, 649 struct f2fs_extent *i_ext) 650 { 651 i_ext->fofs = cpu_to_le32(ext->fofs); 652 i_ext->blk = cpu_to_le32(ext->blk); 653 i_ext->len = cpu_to_le32(ext->len); 654 } 655 656 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 657 u32 blk, unsigned int len) 658 { 659 ei->fofs = fofs; 660 ei->blk = blk; 661 ei->len = len; 662 } 663 664 static inline bool __is_discard_mergeable(struct discard_info *back, 665 struct discard_info *front) 666 { 667 return back->lstart + back->len == front->lstart; 668 } 669 670 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 671 struct discard_info *back) 672 { 673 return __is_discard_mergeable(back, cur); 674 } 675 676 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 677 struct discard_info *front) 678 { 679 return __is_discard_mergeable(cur, front); 680 } 681 682 static inline bool __is_extent_mergeable(struct extent_info *back, 683 struct extent_info *front) 684 { 685 return (back->fofs + back->len == front->fofs && 686 back->blk + back->len == front->blk); 687 } 688 689 static inline bool __is_back_mergeable(struct extent_info *cur, 690 struct extent_info *back) 691 { 692 return __is_extent_mergeable(back, cur); 693 } 694 695 static inline bool __is_front_mergeable(struct extent_info *cur, 696 struct extent_info *front) 697 { 698 return __is_extent_mergeable(cur, front); 699 } 700 701 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 702 static inline void __try_update_largest_extent(struct inode *inode, 703 struct extent_tree *et, struct extent_node *en) 704 { 705 if (en->ei.len > et->largest.len) { 706 et->largest = en->ei; 707 f2fs_mark_inode_dirty_sync(inode, true); 708 } 709 } 710 711 /* 712 * For free nid management 713 */ 714 enum nid_state { 715 FREE_NID, /* newly added to free nid list */ 716 PREALLOC_NID, /* it is preallocated */ 717 MAX_NID_STATE, 718 }; 719 720 struct f2fs_nm_info { 721 block_t nat_blkaddr; /* base disk address of NAT */ 722 nid_t max_nid; /* maximum possible node ids */ 723 nid_t available_nids; /* # of available node ids */ 724 nid_t next_scan_nid; /* the next nid to be scanned */ 725 unsigned int ram_thresh; /* control the memory footprint */ 726 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 727 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 728 729 /* NAT cache management */ 730 struct radix_tree_root nat_root;/* root of the nat entry cache */ 731 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 732 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 733 struct list_head nat_entries; /* cached nat entry list (clean) */ 734 unsigned int nat_cnt; /* the # of cached nat entries */ 735 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 736 unsigned int nat_blocks; /* # of nat blocks */ 737 738 /* free node ids management */ 739 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 740 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 741 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 742 spinlock_t nid_list_lock; /* protect nid lists ops */ 743 struct mutex build_lock; /* lock for build free nids */ 744 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 745 unsigned char *nat_block_bitmap; 746 unsigned short *free_nid_count; /* free nid count of NAT block */ 747 748 /* for checkpoint */ 749 char *nat_bitmap; /* NAT bitmap pointer */ 750 751 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 752 unsigned char *nat_bits; /* NAT bits blocks */ 753 unsigned char *full_nat_bits; /* full NAT pages */ 754 unsigned char *empty_nat_bits; /* empty NAT pages */ 755 #ifdef CONFIG_F2FS_CHECK_FS 756 char *nat_bitmap_mir; /* NAT bitmap mirror */ 757 #endif 758 int bitmap_size; /* bitmap size */ 759 }; 760 761 /* 762 * this structure is used as one of function parameters. 763 * all the information are dedicated to a given direct node block determined 764 * by the data offset in a file. 765 */ 766 struct dnode_of_data { 767 struct inode *inode; /* vfs inode pointer */ 768 struct page *inode_page; /* its inode page, NULL is possible */ 769 struct page *node_page; /* cached direct node page */ 770 nid_t nid; /* node id of the direct node block */ 771 unsigned int ofs_in_node; /* data offset in the node page */ 772 bool inode_page_locked; /* inode page is locked or not */ 773 bool node_changed; /* is node block changed */ 774 char cur_level; /* level of hole node page */ 775 char max_level; /* level of current page located */ 776 block_t data_blkaddr; /* block address of the node block */ 777 }; 778 779 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 780 struct page *ipage, struct page *npage, nid_t nid) 781 { 782 memset(dn, 0, sizeof(*dn)); 783 dn->inode = inode; 784 dn->inode_page = ipage; 785 dn->node_page = npage; 786 dn->nid = nid; 787 } 788 789 /* 790 * For SIT manager 791 * 792 * By default, there are 6 active log areas across the whole main area. 793 * When considering hot and cold data separation to reduce cleaning overhead, 794 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 795 * respectively. 796 * In the current design, you should not change the numbers intentionally. 797 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 798 * logs individually according to the underlying devices. (default: 6) 799 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 800 * data and 8 for node logs. 801 */ 802 #define NR_CURSEG_DATA_TYPE (3) 803 #define NR_CURSEG_NODE_TYPE (3) 804 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 805 806 enum { 807 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 808 CURSEG_WARM_DATA, /* data blocks */ 809 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 810 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 811 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 812 CURSEG_COLD_NODE, /* indirect node blocks */ 813 NO_CHECK_TYPE, 814 }; 815 816 struct flush_cmd { 817 struct completion wait; 818 struct llist_node llnode; 819 nid_t ino; 820 int ret; 821 }; 822 823 struct flush_cmd_control { 824 struct task_struct *f2fs_issue_flush; /* flush thread */ 825 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 826 atomic_t issued_flush; /* # of issued flushes */ 827 atomic_t issing_flush; /* # of issing flushes */ 828 struct llist_head issue_list; /* list for command issue */ 829 struct llist_node *dispatch_list; /* list for command dispatch */ 830 }; 831 832 struct f2fs_sm_info { 833 struct sit_info *sit_info; /* whole segment information */ 834 struct free_segmap_info *free_info; /* free segment information */ 835 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 836 struct curseg_info *curseg_array; /* active segment information */ 837 838 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 839 840 block_t seg0_blkaddr; /* block address of 0'th segment */ 841 block_t main_blkaddr; /* start block address of main area */ 842 block_t ssa_blkaddr; /* start block address of SSA area */ 843 844 unsigned int segment_count; /* total # of segments */ 845 unsigned int main_segments; /* # of segments in main area */ 846 unsigned int reserved_segments; /* # of reserved segments */ 847 unsigned int ovp_segments; /* # of overprovision segments */ 848 849 /* a threshold to reclaim prefree segments */ 850 unsigned int rec_prefree_segments; 851 852 /* for batched trimming */ 853 unsigned int trim_sections; /* # of sections to trim */ 854 855 struct list_head sit_entry_set; /* sit entry set list */ 856 857 unsigned int ipu_policy; /* in-place-update policy */ 858 unsigned int min_ipu_util; /* in-place-update threshold */ 859 unsigned int min_fsync_blocks; /* threshold for fsync */ 860 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 861 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 862 863 /* for flush command control */ 864 struct flush_cmd_control *fcc_info; 865 866 /* for discard command control */ 867 struct discard_cmd_control *dcc_info; 868 }; 869 870 /* 871 * For superblock 872 */ 873 /* 874 * COUNT_TYPE for monitoring 875 * 876 * f2fs monitors the number of several block types such as on-writeback, 877 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 878 */ 879 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 880 enum count_type { 881 F2FS_DIRTY_DENTS, 882 F2FS_DIRTY_DATA, 883 F2FS_DIRTY_QDATA, 884 F2FS_DIRTY_NODES, 885 F2FS_DIRTY_META, 886 F2FS_INMEM_PAGES, 887 F2FS_DIRTY_IMETA, 888 F2FS_WB_CP_DATA, 889 F2FS_WB_DATA, 890 NR_COUNT_TYPE, 891 }; 892 893 /* 894 * The below are the page types of bios used in submit_bio(). 895 * The available types are: 896 * DATA User data pages. It operates as async mode. 897 * NODE Node pages. It operates as async mode. 898 * META FS metadata pages such as SIT, NAT, CP. 899 * NR_PAGE_TYPE The number of page types. 900 * META_FLUSH Make sure the previous pages are written 901 * with waiting the bio's completion 902 * ... Only can be used with META. 903 */ 904 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 905 enum page_type { 906 DATA, 907 NODE, 908 META, 909 NR_PAGE_TYPE, 910 META_FLUSH, 911 INMEM, /* the below types are used by tracepoints only. */ 912 INMEM_DROP, 913 INMEM_INVALIDATE, 914 INMEM_REVOKE, 915 IPU, 916 OPU, 917 }; 918 919 enum temp_type { 920 HOT = 0, /* must be zero for meta bio */ 921 WARM, 922 COLD, 923 NR_TEMP_TYPE, 924 }; 925 926 enum need_lock_type { 927 LOCK_REQ = 0, 928 LOCK_DONE, 929 LOCK_RETRY, 930 }; 931 932 enum cp_reason_type { 933 CP_NO_NEEDED, 934 CP_NON_REGULAR, 935 CP_HARDLINK, 936 CP_SB_NEED_CP, 937 CP_WRONG_PINO, 938 CP_NO_SPC_ROLL, 939 CP_NODE_NEED_CP, 940 CP_FASTBOOT_MODE, 941 CP_SPEC_LOG_NUM, 942 CP_RECOVER_DIR, 943 }; 944 945 enum iostat_type { 946 APP_DIRECT_IO, /* app direct IOs */ 947 APP_BUFFERED_IO, /* app buffered IOs */ 948 APP_WRITE_IO, /* app write IOs */ 949 APP_MAPPED_IO, /* app mapped IOs */ 950 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 951 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 952 FS_META_IO, /* meta IOs from kworker/reclaimer */ 953 FS_GC_DATA_IO, /* data IOs from forground gc */ 954 FS_GC_NODE_IO, /* node IOs from forground gc */ 955 FS_CP_DATA_IO, /* data IOs from checkpoint */ 956 FS_CP_NODE_IO, /* node IOs from checkpoint */ 957 FS_CP_META_IO, /* meta IOs from checkpoint */ 958 FS_DISCARD, /* discard */ 959 NR_IO_TYPE, 960 }; 961 962 struct f2fs_io_info { 963 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 964 nid_t ino; /* inode number */ 965 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 966 enum temp_type temp; /* contains HOT/WARM/COLD */ 967 int op; /* contains REQ_OP_ */ 968 int op_flags; /* req_flag_bits */ 969 block_t new_blkaddr; /* new block address to be written */ 970 block_t old_blkaddr; /* old block address before Cow */ 971 struct page *page; /* page to be written */ 972 struct page *encrypted_page; /* encrypted page */ 973 struct list_head list; /* serialize IOs */ 974 bool submitted; /* indicate IO submission */ 975 int need_lock; /* indicate we need to lock cp_rwsem */ 976 bool in_list; /* indicate fio is in io_list */ 977 enum iostat_type io_type; /* io type */ 978 struct writeback_control *io_wbc; /* writeback control */ 979 }; 980 981 #define is_read_io(rw) ((rw) == READ) 982 struct f2fs_bio_info { 983 struct f2fs_sb_info *sbi; /* f2fs superblock */ 984 struct bio *bio; /* bios to merge */ 985 sector_t last_block_in_bio; /* last block number */ 986 struct f2fs_io_info fio; /* store buffered io info. */ 987 struct rw_semaphore io_rwsem; /* blocking op for bio */ 988 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 989 struct list_head io_list; /* track fios */ 990 }; 991 992 #define FDEV(i) (sbi->devs[i]) 993 #define RDEV(i) (raw_super->devs[i]) 994 struct f2fs_dev_info { 995 struct block_device *bdev; 996 char path[MAX_PATH_LEN]; 997 unsigned int total_segments; 998 block_t start_blk; 999 block_t end_blk; 1000 #ifdef CONFIG_BLK_DEV_ZONED 1001 unsigned int nr_blkz; /* Total number of zones */ 1002 u8 *blkz_type; /* Array of zones type */ 1003 #endif 1004 }; 1005 1006 enum inode_type { 1007 DIR_INODE, /* for dirty dir inode */ 1008 FILE_INODE, /* for dirty regular/symlink inode */ 1009 DIRTY_META, /* for all dirtied inode metadata */ 1010 ATOMIC_FILE, /* for all atomic files */ 1011 NR_INODE_TYPE, 1012 }; 1013 1014 /* for inner inode cache management */ 1015 struct inode_management { 1016 struct radix_tree_root ino_root; /* ino entry array */ 1017 spinlock_t ino_lock; /* for ino entry lock */ 1018 struct list_head ino_list; /* inode list head */ 1019 unsigned long ino_num; /* number of entries */ 1020 }; 1021 1022 /* For s_flag in struct f2fs_sb_info */ 1023 enum { 1024 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1025 SBI_IS_CLOSE, /* specify unmounting */ 1026 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1027 SBI_POR_DOING, /* recovery is doing or not */ 1028 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1029 SBI_NEED_CP, /* need to checkpoint */ 1030 }; 1031 1032 enum { 1033 CP_TIME, 1034 REQ_TIME, 1035 MAX_TIME, 1036 }; 1037 1038 struct f2fs_sb_info { 1039 struct super_block *sb; /* pointer to VFS super block */ 1040 struct proc_dir_entry *s_proc; /* proc entry */ 1041 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1042 int valid_super_block; /* valid super block no */ 1043 unsigned long s_flag; /* flags for sbi */ 1044 1045 #ifdef CONFIG_BLK_DEV_ZONED 1046 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1047 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1048 #endif 1049 1050 /* for node-related operations */ 1051 struct f2fs_nm_info *nm_info; /* node manager */ 1052 struct inode *node_inode; /* cache node blocks */ 1053 1054 /* for segment-related operations */ 1055 struct f2fs_sm_info *sm_info; /* segment manager */ 1056 1057 /* for bio operations */ 1058 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1059 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1060 /* bio ordering for NODE/DATA */ 1061 int write_io_size_bits; /* Write IO size bits */ 1062 mempool_t *write_io_dummy; /* Dummy pages */ 1063 1064 /* for checkpoint */ 1065 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1066 int cur_cp_pack; /* remain current cp pack */ 1067 spinlock_t cp_lock; /* for flag in ckpt */ 1068 struct inode *meta_inode; /* cache meta blocks */ 1069 struct mutex cp_mutex; /* checkpoint procedure lock */ 1070 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1071 struct rw_semaphore node_write; /* locking node writes */ 1072 struct rw_semaphore node_change; /* locking node change */ 1073 wait_queue_head_t cp_wait; 1074 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1075 long interval_time[MAX_TIME]; /* to store thresholds */ 1076 1077 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1078 1079 /* for orphan inode, use 0'th array */ 1080 unsigned int max_orphans; /* max orphan inodes */ 1081 1082 /* for inode management */ 1083 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1084 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1085 1086 /* for extent tree cache */ 1087 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1088 struct mutex extent_tree_lock; /* locking extent radix tree */ 1089 struct list_head extent_list; /* lru list for shrinker */ 1090 spinlock_t extent_lock; /* locking extent lru list */ 1091 atomic_t total_ext_tree; /* extent tree count */ 1092 struct list_head zombie_list; /* extent zombie tree list */ 1093 atomic_t total_zombie_tree; /* extent zombie tree count */ 1094 atomic_t total_ext_node; /* extent info count */ 1095 1096 /* basic filesystem units */ 1097 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1098 unsigned int log_blocksize; /* log2 block size */ 1099 unsigned int blocksize; /* block size */ 1100 unsigned int root_ino_num; /* root inode number*/ 1101 unsigned int node_ino_num; /* node inode number*/ 1102 unsigned int meta_ino_num; /* meta inode number*/ 1103 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1104 unsigned int blocks_per_seg; /* blocks per segment */ 1105 unsigned int segs_per_sec; /* segments per section */ 1106 unsigned int secs_per_zone; /* sections per zone */ 1107 unsigned int total_sections; /* total section count */ 1108 unsigned int total_node_count; /* total node block count */ 1109 unsigned int total_valid_node_count; /* valid node block count */ 1110 loff_t max_file_blocks; /* max block index of file */ 1111 int active_logs; /* # of active logs */ 1112 int dir_level; /* directory level */ 1113 int inline_xattr_size; /* inline xattr size */ 1114 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1115 int readdir_ra; /* readahead inode in readdir */ 1116 1117 block_t user_block_count; /* # of user blocks */ 1118 block_t total_valid_block_count; /* # of valid blocks */ 1119 block_t discard_blks; /* discard command candidats */ 1120 block_t last_valid_block_count; /* for recovery */ 1121 block_t reserved_blocks; /* configurable reserved blocks */ 1122 block_t current_reserved_blocks; /* current reserved blocks */ 1123 block_t root_reserved_blocks; /* root reserved blocks */ 1124 kuid_t s_resuid; /* reserved blocks for uid */ 1125 kgid_t s_resgid; /* reserved blocks for gid */ 1126 1127 unsigned int nquota_files; /* # of quota sysfile */ 1128 1129 u32 s_next_generation; /* for NFS support */ 1130 1131 /* # of pages, see count_type */ 1132 atomic_t nr_pages[NR_COUNT_TYPE]; 1133 /* # of allocated blocks */ 1134 struct percpu_counter alloc_valid_block_count; 1135 1136 /* writeback control */ 1137 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1138 1139 /* valid inode count */ 1140 struct percpu_counter total_valid_inode_count; 1141 1142 struct f2fs_mount_info mount_opt; /* mount options */ 1143 1144 /* for cleaning operations */ 1145 struct mutex gc_mutex; /* mutex for GC */ 1146 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1147 unsigned int cur_victim_sec; /* current victim section num */ 1148 1149 /* threshold for converting bg victims for fg */ 1150 u64 fggc_threshold; 1151 1152 /* threshold for gc trials on pinned files */ 1153 u64 gc_pin_file_threshold; 1154 1155 /* maximum # of trials to find a victim segment for SSR and GC */ 1156 unsigned int max_victim_search; 1157 1158 /* 1159 * for stat information. 1160 * one is for the LFS mode, and the other is for the SSR mode. 1161 */ 1162 #ifdef CONFIG_F2FS_STAT_FS 1163 struct f2fs_stat_info *stat_info; /* FS status information */ 1164 unsigned int segment_count[2]; /* # of allocated segments */ 1165 unsigned int block_count[2]; /* # of allocated blocks */ 1166 atomic_t inplace_count; /* # of inplace update */ 1167 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1168 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1169 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1170 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1171 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1172 atomic_t inline_inode; /* # of inline_data inodes */ 1173 atomic_t inline_dir; /* # of inline_dentry inodes */ 1174 atomic_t aw_cnt; /* # of atomic writes */ 1175 atomic_t vw_cnt; /* # of volatile writes */ 1176 atomic_t max_aw_cnt; /* max # of atomic writes */ 1177 atomic_t max_vw_cnt; /* max # of volatile writes */ 1178 int bg_gc; /* background gc calls */ 1179 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1180 #endif 1181 spinlock_t stat_lock; /* lock for stat operations */ 1182 1183 /* For app/fs IO statistics */ 1184 spinlock_t iostat_lock; 1185 unsigned long long write_iostat[NR_IO_TYPE]; 1186 bool iostat_enable; 1187 1188 /* For sysfs suppport */ 1189 struct kobject s_kobj; 1190 struct completion s_kobj_unregister; 1191 1192 /* For shrinker support */ 1193 struct list_head s_list; 1194 int s_ndevs; /* number of devices */ 1195 struct f2fs_dev_info *devs; /* for device list */ 1196 unsigned int dirty_device; /* for checkpoint data flush */ 1197 spinlock_t dev_lock; /* protect dirty_device */ 1198 struct mutex umount_mutex; 1199 unsigned int shrinker_run_no; 1200 1201 /* For write statistics */ 1202 u64 sectors_written_start; 1203 u64 kbytes_written; 1204 1205 /* Reference to checksum algorithm driver via cryptoapi */ 1206 struct crypto_shash *s_chksum_driver; 1207 1208 /* Precomputed FS UUID checksum for seeding other checksums */ 1209 __u32 s_chksum_seed; 1210 1211 /* For fault injection */ 1212 #ifdef CONFIG_F2FS_FAULT_INJECTION 1213 struct f2fs_fault_info fault_info; 1214 #endif 1215 1216 #ifdef CONFIG_QUOTA 1217 /* Names of quota files with journalled quota */ 1218 char *s_qf_names[MAXQUOTAS]; 1219 int s_jquota_fmt; /* Format of quota to use */ 1220 #endif 1221 }; 1222 1223 #ifdef CONFIG_F2FS_FAULT_INJECTION 1224 #define f2fs_show_injection_info(type) \ 1225 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1226 KERN_INFO, fault_name[type], \ 1227 __func__, __builtin_return_address(0)) 1228 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1229 { 1230 struct f2fs_fault_info *ffi = &sbi->fault_info; 1231 1232 if (!ffi->inject_rate) 1233 return false; 1234 1235 if (!IS_FAULT_SET(ffi, type)) 1236 return false; 1237 1238 atomic_inc(&ffi->inject_ops); 1239 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1240 atomic_set(&ffi->inject_ops, 0); 1241 return true; 1242 } 1243 return false; 1244 } 1245 #endif 1246 1247 /* For write statistics. Suppose sector size is 512 bytes, 1248 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1249 */ 1250 #define BD_PART_WRITTEN(s) \ 1251 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1252 (s)->sectors_written_start) >> 1) 1253 1254 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1255 { 1256 sbi->last_time[type] = jiffies; 1257 } 1258 1259 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1260 { 1261 unsigned long interval = sbi->interval_time[type] * HZ; 1262 1263 return time_after(jiffies, sbi->last_time[type] + interval); 1264 } 1265 1266 static inline bool is_idle(struct f2fs_sb_info *sbi) 1267 { 1268 struct block_device *bdev = sbi->sb->s_bdev; 1269 struct request_queue *q = bdev_get_queue(bdev); 1270 struct request_list *rl = &q->root_rl; 1271 1272 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1273 return 0; 1274 1275 return f2fs_time_over(sbi, REQ_TIME); 1276 } 1277 1278 /* 1279 * Inline functions 1280 */ 1281 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1282 const void *address, unsigned int length) 1283 { 1284 struct { 1285 struct shash_desc shash; 1286 char ctx[4]; 1287 } desc; 1288 int err; 1289 1290 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1291 1292 desc.shash.tfm = sbi->s_chksum_driver; 1293 desc.shash.flags = 0; 1294 *(u32 *)desc.ctx = crc; 1295 1296 err = crypto_shash_update(&desc.shash, address, length); 1297 BUG_ON(err); 1298 1299 return *(u32 *)desc.ctx; 1300 } 1301 1302 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1303 unsigned int length) 1304 { 1305 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1306 } 1307 1308 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1309 void *buf, size_t buf_size) 1310 { 1311 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1312 } 1313 1314 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1315 const void *address, unsigned int length) 1316 { 1317 return __f2fs_crc32(sbi, crc, address, length); 1318 } 1319 1320 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1321 { 1322 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1323 } 1324 1325 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1326 { 1327 return sb->s_fs_info; 1328 } 1329 1330 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1331 { 1332 return F2FS_SB(inode->i_sb); 1333 } 1334 1335 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1336 { 1337 return F2FS_I_SB(mapping->host); 1338 } 1339 1340 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1341 { 1342 return F2FS_M_SB(page->mapping); 1343 } 1344 1345 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1346 { 1347 return (struct f2fs_super_block *)(sbi->raw_super); 1348 } 1349 1350 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1351 { 1352 return (struct f2fs_checkpoint *)(sbi->ckpt); 1353 } 1354 1355 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1356 { 1357 return (struct f2fs_node *)page_address(page); 1358 } 1359 1360 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1361 { 1362 return &((struct f2fs_node *)page_address(page))->i; 1363 } 1364 1365 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1366 { 1367 return (struct f2fs_nm_info *)(sbi->nm_info); 1368 } 1369 1370 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1371 { 1372 return (struct f2fs_sm_info *)(sbi->sm_info); 1373 } 1374 1375 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1376 { 1377 return (struct sit_info *)(SM_I(sbi)->sit_info); 1378 } 1379 1380 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1381 { 1382 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1383 } 1384 1385 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1386 { 1387 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1388 } 1389 1390 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1391 { 1392 return sbi->meta_inode->i_mapping; 1393 } 1394 1395 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1396 { 1397 return sbi->node_inode->i_mapping; 1398 } 1399 1400 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1401 { 1402 return test_bit(type, &sbi->s_flag); 1403 } 1404 1405 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1406 { 1407 set_bit(type, &sbi->s_flag); 1408 } 1409 1410 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1411 { 1412 clear_bit(type, &sbi->s_flag); 1413 } 1414 1415 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1416 { 1417 return le64_to_cpu(cp->checkpoint_ver); 1418 } 1419 1420 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1421 { 1422 if (type < F2FS_MAX_QUOTAS) 1423 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1424 return 0; 1425 } 1426 1427 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1428 { 1429 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1430 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1431 } 1432 1433 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1434 { 1435 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1436 1437 return ckpt_flags & f; 1438 } 1439 1440 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1441 { 1442 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1443 } 1444 1445 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1446 { 1447 unsigned int ckpt_flags; 1448 1449 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1450 ckpt_flags |= f; 1451 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1452 } 1453 1454 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1455 { 1456 unsigned long flags; 1457 1458 spin_lock_irqsave(&sbi->cp_lock, flags); 1459 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1460 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1461 } 1462 1463 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1464 { 1465 unsigned int ckpt_flags; 1466 1467 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1468 ckpt_flags &= (~f); 1469 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1470 } 1471 1472 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1473 { 1474 unsigned long flags; 1475 1476 spin_lock_irqsave(&sbi->cp_lock, flags); 1477 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1478 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1479 } 1480 1481 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1482 { 1483 unsigned long flags; 1484 1485 set_sbi_flag(sbi, SBI_NEED_FSCK); 1486 1487 if (lock) 1488 spin_lock_irqsave(&sbi->cp_lock, flags); 1489 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1490 kfree(NM_I(sbi)->nat_bits); 1491 NM_I(sbi)->nat_bits = NULL; 1492 if (lock) 1493 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1494 } 1495 1496 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1497 struct cp_control *cpc) 1498 { 1499 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1500 1501 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1502 } 1503 1504 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1505 { 1506 down_read(&sbi->cp_rwsem); 1507 } 1508 1509 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1510 { 1511 return down_read_trylock(&sbi->cp_rwsem); 1512 } 1513 1514 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1515 { 1516 up_read(&sbi->cp_rwsem); 1517 } 1518 1519 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1520 { 1521 down_write(&sbi->cp_rwsem); 1522 } 1523 1524 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1525 { 1526 up_write(&sbi->cp_rwsem); 1527 } 1528 1529 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1530 { 1531 int reason = CP_SYNC; 1532 1533 if (test_opt(sbi, FASTBOOT)) 1534 reason = CP_FASTBOOT; 1535 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1536 reason = CP_UMOUNT; 1537 return reason; 1538 } 1539 1540 static inline bool __remain_node_summaries(int reason) 1541 { 1542 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1543 } 1544 1545 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1546 { 1547 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1548 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1549 } 1550 1551 /* 1552 * Check whether the given nid is within node id range. 1553 */ 1554 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1555 { 1556 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1557 return -EINVAL; 1558 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1559 return -EINVAL; 1560 return 0; 1561 } 1562 1563 /* 1564 * Check whether the inode has blocks or not 1565 */ 1566 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1567 { 1568 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1569 1570 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1571 } 1572 1573 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1574 { 1575 return ofs == XATTR_NODE_OFFSET; 1576 } 1577 1578 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1579 struct inode *inode) 1580 { 1581 if (!inode) 1582 return true; 1583 if (!test_opt(sbi, RESERVE_ROOT)) 1584 return false; 1585 if (IS_NOQUOTA(inode)) 1586 return true; 1587 if (capable(CAP_SYS_RESOURCE)) 1588 return true; 1589 if (uid_eq(sbi->s_resuid, current_fsuid())) 1590 return true; 1591 if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) && 1592 in_group_p(sbi->s_resgid)) 1593 return true; 1594 return false; 1595 } 1596 1597 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1598 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1599 struct inode *inode, blkcnt_t *count) 1600 { 1601 blkcnt_t diff = 0, release = 0; 1602 block_t avail_user_block_count; 1603 int ret; 1604 1605 ret = dquot_reserve_block(inode, *count); 1606 if (ret) 1607 return ret; 1608 1609 #ifdef CONFIG_F2FS_FAULT_INJECTION 1610 if (time_to_inject(sbi, FAULT_BLOCK)) { 1611 f2fs_show_injection_info(FAULT_BLOCK); 1612 release = *count; 1613 goto enospc; 1614 } 1615 #endif 1616 /* 1617 * let's increase this in prior to actual block count change in order 1618 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1619 */ 1620 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1621 1622 spin_lock(&sbi->stat_lock); 1623 sbi->total_valid_block_count += (block_t)(*count); 1624 avail_user_block_count = sbi->user_block_count - 1625 sbi->current_reserved_blocks; 1626 1627 if (!__allow_reserved_blocks(sbi, inode)) 1628 avail_user_block_count -= sbi->root_reserved_blocks; 1629 1630 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1631 diff = sbi->total_valid_block_count - avail_user_block_count; 1632 if (diff > *count) 1633 diff = *count; 1634 *count -= diff; 1635 release = diff; 1636 sbi->total_valid_block_count -= diff; 1637 if (!*count) { 1638 spin_unlock(&sbi->stat_lock); 1639 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1640 goto enospc; 1641 } 1642 } 1643 spin_unlock(&sbi->stat_lock); 1644 1645 if (unlikely(release)) 1646 dquot_release_reservation_block(inode, release); 1647 f2fs_i_blocks_write(inode, *count, true, true); 1648 return 0; 1649 1650 enospc: 1651 dquot_release_reservation_block(inode, release); 1652 return -ENOSPC; 1653 } 1654 1655 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1656 struct inode *inode, 1657 block_t count) 1658 { 1659 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1660 1661 spin_lock(&sbi->stat_lock); 1662 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1663 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1664 sbi->total_valid_block_count -= (block_t)count; 1665 if (sbi->reserved_blocks && 1666 sbi->current_reserved_blocks < sbi->reserved_blocks) 1667 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1668 sbi->current_reserved_blocks + count); 1669 spin_unlock(&sbi->stat_lock); 1670 f2fs_i_blocks_write(inode, count, false, true); 1671 } 1672 1673 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1674 { 1675 atomic_inc(&sbi->nr_pages[count_type]); 1676 1677 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1678 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1679 return; 1680 1681 set_sbi_flag(sbi, SBI_IS_DIRTY); 1682 } 1683 1684 static inline void inode_inc_dirty_pages(struct inode *inode) 1685 { 1686 atomic_inc(&F2FS_I(inode)->dirty_pages); 1687 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1688 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1689 if (IS_NOQUOTA(inode)) 1690 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1691 } 1692 1693 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1694 { 1695 atomic_dec(&sbi->nr_pages[count_type]); 1696 } 1697 1698 static inline void inode_dec_dirty_pages(struct inode *inode) 1699 { 1700 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1701 !S_ISLNK(inode->i_mode)) 1702 return; 1703 1704 atomic_dec(&F2FS_I(inode)->dirty_pages); 1705 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1706 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1707 if (IS_NOQUOTA(inode)) 1708 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1709 } 1710 1711 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1712 { 1713 return atomic_read(&sbi->nr_pages[count_type]); 1714 } 1715 1716 static inline int get_dirty_pages(struct inode *inode) 1717 { 1718 return atomic_read(&F2FS_I(inode)->dirty_pages); 1719 } 1720 1721 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1722 { 1723 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1724 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1725 sbi->log_blocks_per_seg; 1726 1727 return segs / sbi->segs_per_sec; 1728 } 1729 1730 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1731 { 1732 return sbi->total_valid_block_count; 1733 } 1734 1735 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1736 { 1737 return sbi->discard_blks; 1738 } 1739 1740 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1741 { 1742 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1743 1744 /* return NAT or SIT bitmap */ 1745 if (flag == NAT_BITMAP) 1746 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1747 else if (flag == SIT_BITMAP) 1748 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1749 1750 return 0; 1751 } 1752 1753 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1754 { 1755 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1756 } 1757 1758 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1759 { 1760 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1761 int offset; 1762 1763 if (__cp_payload(sbi) > 0) { 1764 if (flag == NAT_BITMAP) 1765 return &ckpt->sit_nat_version_bitmap; 1766 else 1767 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1768 } else { 1769 offset = (flag == NAT_BITMAP) ? 1770 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1771 return &ckpt->sit_nat_version_bitmap + offset; 1772 } 1773 } 1774 1775 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1776 { 1777 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1778 1779 if (sbi->cur_cp_pack == 2) 1780 start_addr += sbi->blocks_per_seg; 1781 return start_addr; 1782 } 1783 1784 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1785 { 1786 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1787 1788 if (sbi->cur_cp_pack == 1) 1789 start_addr += sbi->blocks_per_seg; 1790 return start_addr; 1791 } 1792 1793 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1794 { 1795 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1796 } 1797 1798 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1799 { 1800 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1801 } 1802 1803 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1804 struct inode *inode, bool is_inode) 1805 { 1806 block_t valid_block_count; 1807 unsigned int valid_node_count; 1808 bool quota = inode && !is_inode; 1809 1810 if (quota) { 1811 int ret = dquot_reserve_block(inode, 1); 1812 if (ret) 1813 return ret; 1814 } 1815 1816 #ifdef CONFIG_F2FS_FAULT_INJECTION 1817 if (time_to_inject(sbi, FAULT_BLOCK)) { 1818 f2fs_show_injection_info(FAULT_BLOCK); 1819 goto enospc; 1820 } 1821 #endif 1822 1823 spin_lock(&sbi->stat_lock); 1824 1825 valid_block_count = sbi->total_valid_block_count + 1826 sbi->current_reserved_blocks + 1; 1827 1828 if (!__allow_reserved_blocks(sbi, inode)) 1829 valid_block_count += sbi->root_reserved_blocks; 1830 1831 if (unlikely(valid_block_count > sbi->user_block_count)) { 1832 spin_unlock(&sbi->stat_lock); 1833 goto enospc; 1834 } 1835 1836 valid_node_count = sbi->total_valid_node_count + 1; 1837 if (unlikely(valid_node_count > sbi->total_node_count)) { 1838 spin_unlock(&sbi->stat_lock); 1839 goto enospc; 1840 } 1841 1842 sbi->total_valid_node_count++; 1843 sbi->total_valid_block_count++; 1844 spin_unlock(&sbi->stat_lock); 1845 1846 if (inode) { 1847 if (is_inode) 1848 f2fs_mark_inode_dirty_sync(inode, true); 1849 else 1850 f2fs_i_blocks_write(inode, 1, true, true); 1851 } 1852 1853 percpu_counter_inc(&sbi->alloc_valid_block_count); 1854 return 0; 1855 1856 enospc: 1857 if (quota) 1858 dquot_release_reservation_block(inode, 1); 1859 return -ENOSPC; 1860 } 1861 1862 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1863 struct inode *inode, bool is_inode) 1864 { 1865 spin_lock(&sbi->stat_lock); 1866 1867 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1868 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1869 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1870 1871 sbi->total_valid_node_count--; 1872 sbi->total_valid_block_count--; 1873 if (sbi->reserved_blocks && 1874 sbi->current_reserved_blocks < sbi->reserved_blocks) 1875 sbi->current_reserved_blocks++; 1876 1877 spin_unlock(&sbi->stat_lock); 1878 1879 if (!is_inode) 1880 f2fs_i_blocks_write(inode, 1, false, true); 1881 } 1882 1883 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1884 { 1885 return sbi->total_valid_node_count; 1886 } 1887 1888 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1889 { 1890 percpu_counter_inc(&sbi->total_valid_inode_count); 1891 } 1892 1893 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1894 { 1895 percpu_counter_dec(&sbi->total_valid_inode_count); 1896 } 1897 1898 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1899 { 1900 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1901 } 1902 1903 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1904 pgoff_t index, bool for_write) 1905 { 1906 #ifdef CONFIG_F2FS_FAULT_INJECTION 1907 struct page *page = find_lock_page(mapping, index); 1908 1909 if (page) 1910 return page; 1911 1912 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1913 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1914 return NULL; 1915 } 1916 #endif 1917 if (!for_write) 1918 return grab_cache_page(mapping, index); 1919 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1920 } 1921 1922 static inline struct page *f2fs_pagecache_get_page( 1923 struct address_space *mapping, pgoff_t index, 1924 int fgp_flags, gfp_t gfp_mask) 1925 { 1926 #ifdef CONFIG_F2FS_FAULT_INJECTION 1927 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1928 f2fs_show_injection_info(FAULT_PAGE_GET); 1929 return NULL; 1930 } 1931 #endif 1932 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1933 } 1934 1935 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1936 { 1937 char *src_kaddr = kmap(src); 1938 char *dst_kaddr = kmap(dst); 1939 1940 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1941 kunmap(dst); 1942 kunmap(src); 1943 } 1944 1945 static inline void f2fs_put_page(struct page *page, int unlock) 1946 { 1947 if (!page) 1948 return; 1949 1950 if (unlock) { 1951 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1952 unlock_page(page); 1953 } 1954 put_page(page); 1955 } 1956 1957 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1958 { 1959 if (dn->node_page) 1960 f2fs_put_page(dn->node_page, 1); 1961 if (dn->inode_page && dn->node_page != dn->inode_page) 1962 f2fs_put_page(dn->inode_page, 0); 1963 dn->node_page = NULL; 1964 dn->inode_page = NULL; 1965 } 1966 1967 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1968 size_t size) 1969 { 1970 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1971 } 1972 1973 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1974 gfp_t flags) 1975 { 1976 void *entry; 1977 1978 entry = kmem_cache_alloc(cachep, flags); 1979 if (!entry) 1980 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1981 return entry; 1982 } 1983 1984 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1985 int npages, bool no_fail) 1986 { 1987 struct bio *bio; 1988 1989 if (no_fail) { 1990 /* No failure on bio allocation */ 1991 bio = bio_alloc(GFP_NOIO, npages); 1992 if (!bio) 1993 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1994 return bio; 1995 } 1996 #ifdef CONFIG_F2FS_FAULT_INJECTION 1997 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 1998 f2fs_show_injection_info(FAULT_ALLOC_BIO); 1999 return NULL; 2000 } 2001 #endif 2002 return bio_alloc(GFP_KERNEL, npages); 2003 } 2004 2005 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2006 unsigned long index, void *item) 2007 { 2008 while (radix_tree_insert(root, index, item)) 2009 cond_resched(); 2010 } 2011 2012 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2013 2014 static inline bool IS_INODE(struct page *page) 2015 { 2016 struct f2fs_node *p = F2FS_NODE(page); 2017 2018 return RAW_IS_INODE(p); 2019 } 2020 2021 static inline int offset_in_addr(struct f2fs_inode *i) 2022 { 2023 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2024 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2025 } 2026 2027 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2028 { 2029 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2030 } 2031 2032 static inline int f2fs_has_extra_attr(struct inode *inode); 2033 static inline block_t datablock_addr(struct inode *inode, 2034 struct page *node_page, unsigned int offset) 2035 { 2036 struct f2fs_node *raw_node; 2037 __le32 *addr_array; 2038 int base = 0; 2039 bool is_inode = IS_INODE(node_page); 2040 2041 raw_node = F2FS_NODE(node_page); 2042 2043 /* from GC path only */ 2044 if (is_inode) { 2045 if (!inode) 2046 base = offset_in_addr(&raw_node->i); 2047 else if (f2fs_has_extra_attr(inode)) 2048 base = get_extra_isize(inode); 2049 } 2050 2051 addr_array = blkaddr_in_node(raw_node); 2052 return le32_to_cpu(addr_array[base + offset]); 2053 } 2054 2055 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2056 { 2057 int mask; 2058 2059 addr += (nr >> 3); 2060 mask = 1 << (7 - (nr & 0x07)); 2061 return mask & *addr; 2062 } 2063 2064 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2065 { 2066 int mask; 2067 2068 addr += (nr >> 3); 2069 mask = 1 << (7 - (nr & 0x07)); 2070 *addr |= mask; 2071 } 2072 2073 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2074 { 2075 int mask; 2076 2077 addr += (nr >> 3); 2078 mask = 1 << (7 - (nr & 0x07)); 2079 *addr &= ~mask; 2080 } 2081 2082 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2083 { 2084 int mask; 2085 int ret; 2086 2087 addr += (nr >> 3); 2088 mask = 1 << (7 - (nr & 0x07)); 2089 ret = mask & *addr; 2090 *addr |= mask; 2091 return ret; 2092 } 2093 2094 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2095 { 2096 int mask; 2097 int ret; 2098 2099 addr += (nr >> 3); 2100 mask = 1 << (7 - (nr & 0x07)); 2101 ret = mask & *addr; 2102 *addr &= ~mask; 2103 return ret; 2104 } 2105 2106 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2107 { 2108 int mask; 2109 2110 addr += (nr >> 3); 2111 mask = 1 << (7 - (nr & 0x07)); 2112 *addr ^= mask; 2113 } 2114 2115 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2116 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2117 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2118 2119 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2120 { 2121 if (S_ISDIR(mode)) 2122 return flags; 2123 else if (S_ISREG(mode)) 2124 return flags & F2FS_REG_FLMASK; 2125 else 2126 return flags & F2FS_OTHER_FLMASK; 2127 } 2128 2129 /* used for f2fs_inode_info->flags */ 2130 enum { 2131 FI_NEW_INODE, /* indicate newly allocated inode */ 2132 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2133 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2134 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2135 FI_INC_LINK, /* need to increment i_nlink */ 2136 FI_ACL_MODE, /* indicate acl mode */ 2137 FI_NO_ALLOC, /* should not allocate any blocks */ 2138 FI_FREE_NID, /* free allocated nide */ 2139 FI_NO_EXTENT, /* not to use the extent cache */ 2140 FI_INLINE_XATTR, /* used for inline xattr */ 2141 FI_INLINE_DATA, /* used for inline data*/ 2142 FI_INLINE_DENTRY, /* used for inline dentry */ 2143 FI_APPEND_WRITE, /* inode has appended data */ 2144 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2145 FI_NEED_IPU, /* used for ipu per file */ 2146 FI_ATOMIC_FILE, /* indicate atomic file */ 2147 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2148 FI_VOLATILE_FILE, /* indicate volatile file */ 2149 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2150 FI_DROP_CACHE, /* drop dirty page cache */ 2151 FI_DATA_EXIST, /* indicate data exists */ 2152 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2153 FI_DO_DEFRAG, /* indicate defragment is running */ 2154 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2155 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2156 FI_HOT_DATA, /* indicate file is hot */ 2157 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2158 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2159 FI_PIN_FILE, /* indicate file should not be gced */ 2160 }; 2161 2162 static inline void __mark_inode_dirty_flag(struct inode *inode, 2163 int flag, bool set) 2164 { 2165 switch (flag) { 2166 case FI_INLINE_XATTR: 2167 case FI_INLINE_DATA: 2168 case FI_INLINE_DENTRY: 2169 case FI_NEW_INODE: 2170 if (set) 2171 return; 2172 case FI_DATA_EXIST: 2173 case FI_INLINE_DOTS: 2174 case FI_PIN_FILE: 2175 f2fs_mark_inode_dirty_sync(inode, true); 2176 } 2177 } 2178 2179 static inline void set_inode_flag(struct inode *inode, int flag) 2180 { 2181 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2182 set_bit(flag, &F2FS_I(inode)->flags); 2183 __mark_inode_dirty_flag(inode, flag, true); 2184 } 2185 2186 static inline int is_inode_flag_set(struct inode *inode, int flag) 2187 { 2188 return test_bit(flag, &F2FS_I(inode)->flags); 2189 } 2190 2191 static inline void clear_inode_flag(struct inode *inode, int flag) 2192 { 2193 if (test_bit(flag, &F2FS_I(inode)->flags)) 2194 clear_bit(flag, &F2FS_I(inode)->flags); 2195 __mark_inode_dirty_flag(inode, flag, false); 2196 } 2197 2198 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2199 { 2200 F2FS_I(inode)->i_acl_mode = mode; 2201 set_inode_flag(inode, FI_ACL_MODE); 2202 f2fs_mark_inode_dirty_sync(inode, false); 2203 } 2204 2205 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2206 { 2207 if (inc) 2208 inc_nlink(inode); 2209 else 2210 drop_nlink(inode); 2211 f2fs_mark_inode_dirty_sync(inode, true); 2212 } 2213 2214 static inline void f2fs_i_blocks_write(struct inode *inode, 2215 block_t diff, bool add, bool claim) 2216 { 2217 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2218 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2219 2220 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2221 if (add) { 2222 if (claim) 2223 dquot_claim_block(inode, diff); 2224 else 2225 dquot_alloc_block_nofail(inode, diff); 2226 } else { 2227 dquot_free_block(inode, diff); 2228 } 2229 2230 f2fs_mark_inode_dirty_sync(inode, true); 2231 if (clean || recover) 2232 set_inode_flag(inode, FI_AUTO_RECOVER); 2233 } 2234 2235 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2236 { 2237 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2238 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2239 2240 if (i_size_read(inode) == i_size) 2241 return; 2242 2243 i_size_write(inode, i_size); 2244 f2fs_mark_inode_dirty_sync(inode, true); 2245 if (clean || recover) 2246 set_inode_flag(inode, FI_AUTO_RECOVER); 2247 } 2248 2249 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2250 { 2251 F2FS_I(inode)->i_current_depth = depth; 2252 f2fs_mark_inode_dirty_sync(inode, true); 2253 } 2254 2255 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2256 unsigned int count) 2257 { 2258 F2FS_I(inode)->i_gc_failures = count; 2259 f2fs_mark_inode_dirty_sync(inode, true); 2260 } 2261 2262 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2263 { 2264 F2FS_I(inode)->i_xattr_nid = xnid; 2265 f2fs_mark_inode_dirty_sync(inode, true); 2266 } 2267 2268 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2269 { 2270 F2FS_I(inode)->i_pino = pino; 2271 f2fs_mark_inode_dirty_sync(inode, true); 2272 } 2273 2274 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2275 { 2276 struct f2fs_inode_info *fi = F2FS_I(inode); 2277 2278 if (ri->i_inline & F2FS_INLINE_XATTR) 2279 set_bit(FI_INLINE_XATTR, &fi->flags); 2280 if (ri->i_inline & F2FS_INLINE_DATA) 2281 set_bit(FI_INLINE_DATA, &fi->flags); 2282 if (ri->i_inline & F2FS_INLINE_DENTRY) 2283 set_bit(FI_INLINE_DENTRY, &fi->flags); 2284 if (ri->i_inline & F2FS_DATA_EXIST) 2285 set_bit(FI_DATA_EXIST, &fi->flags); 2286 if (ri->i_inline & F2FS_INLINE_DOTS) 2287 set_bit(FI_INLINE_DOTS, &fi->flags); 2288 if (ri->i_inline & F2FS_EXTRA_ATTR) 2289 set_bit(FI_EXTRA_ATTR, &fi->flags); 2290 if (ri->i_inline & F2FS_PIN_FILE) 2291 set_bit(FI_PIN_FILE, &fi->flags); 2292 } 2293 2294 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2295 { 2296 ri->i_inline = 0; 2297 2298 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2299 ri->i_inline |= F2FS_INLINE_XATTR; 2300 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2301 ri->i_inline |= F2FS_INLINE_DATA; 2302 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2303 ri->i_inline |= F2FS_INLINE_DENTRY; 2304 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2305 ri->i_inline |= F2FS_DATA_EXIST; 2306 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2307 ri->i_inline |= F2FS_INLINE_DOTS; 2308 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2309 ri->i_inline |= F2FS_EXTRA_ATTR; 2310 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2311 ri->i_inline |= F2FS_PIN_FILE; 2312 } 2313 2314 static inline int f2fs_has_extra_attr(struct inode *inode) 2315 { 2316 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2317 } 2318 2319 static inline int f2fs_has_inline_xattr(struct inode *inode) 2320 { 2321 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2322 } 2323 2324 static inline unsigned int addrs_per_inode(struct inode *inode) 2325 { 2326 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2327 } 2328 2329 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2330 { 2331 struct f2fs_inode *ri = F2FS_INODE(page); 2332 2333 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2334 get_inline_xattr_addrs(inode)]); 2335 } 2336 2337 static inline int inline_xattr_size(struct inode *inode) 2338 { 2339 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2340 } 2341 2342 static inline int f2fs_has_inline_data(struct inode *inode) 2343 { 2344 return is_inode_flag_set(inode, FI_INLINE_DATA); 2345 } 2346 2347 static inline int f2fs_exist_data(struct inode *inode) 2348 { 2349 return is_inode_flag_set(inode, FI_DATA_EXIST); 2350 } 2351 2352 static inline int f2fs_has_inline_dots(struct inode *inode) 2353 { 2354 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2355 } 2356 2357 static inline bool f2fs_is_pinned_file(struct inode *inode) 2358 { 2359 return is_inode_flag_set(inode, FI_PIN_FILE); 2360 } 2361 2362 static inline bool f2fs_is_atomic_file(struct inode *inode) 2363 { 2364 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2365 } 2366 2367 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2368 { 2369 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2370 } 2371 2372 static inline bool f2fs_is_volatile_file(struct inode *inode) 2373 { 2374 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2375 } 2376 2377 static inline bool f2fs_is_first_block_written(struct inode *inode) 2378 { 2379 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2380 } 2381 2382 static inline bool f2fs_is_drop_cache(struct inode *inode) 2383 { 2384 return is_inode_flag_set(inode, FI_DROP_CACHE); 2385 } 2386 2387 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2388 { 2389 struct f2fs_inode *ri = F2FS_INODE(page); 2390 int extra_size = get_extra_isize(inode); 2391 2392 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2393 } 2394 2395 static inline int f2fs_has_inline_dentry(struct inode *inode) 2396 { 2397 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2398 } 2399 2400 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2401 { 2402 if (!f2fs_has_inline_dentry(dir)) 2403 kunmap(page); 2404 } 2405 2406 static inline int is_file(struct inode *inode, int type) 2407 { 2408 return F2FS_I(inode)->i_advise & type; 2409 } 2410 2411 static inline void set_file(struct inode *inode, int type) 2412 { 2413 F2FS_I(inode)->i_advise |= type; 2414 f2fs_mark_inode_dirty_sync(inode, true); 2415 } 2416 2417 static inline void clear_file(struct inode *inode, int type) 2418 { 2419 F2FS_I(inode)->i_advise &= ~type; 2420 f2fs_mark_inode_dirty_sync(inode, true); 2421 } 2422 2423 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2424 { 2425 bool ret; 2426 2427 if (dsync) { 2428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2429 2430 spin_lock(&sbi->inode_lock[DIRTY_META]); 2431 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2432 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2433 return ret; 2434 } 2435 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2436 file_keep_isize(inode) || 2437 i_size_read(inode) & PAGE_MASK) 2438 return false; 2439 2440 down_read(&F2FS_I(inode)->i_sem); 2441 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2442 up_read(&F2FS_I(inode)->i_sem); 2443 2444 return ret; 2445 } 2446 2447 static inline int f2fs_readonly(struct super_block *sb) 2448 { 2449 return sb->s_flags & SB_RDONLY; 2450 } 2451 2452 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2453 { 2454 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2455 } 2456 2457 static inline bool is_dot_dotdot(const struct qstr *str) 2458 { 2459 if (str->len == 1 && str->name[0] == '.') 2460 return true; 2461 2462 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2463 return true; 2464 2465 return false; 2466 } 2467 2468 static inline bool f2fs_may_extent_tree(struct inode *inode) 2469 { 2470 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2471 is_inode_flag_set(inode, FI_NO_EXTENT)) 2472 return false; 2473 2474 return S_ISREG(inode->i_mode); 2475 } 2476 2477 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2478 size_t size, gfp_t flags) 2479 { 2480 #ifdef CONFIG_F2FS_FAULT_INJECTION 2481 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2482 f2fs_show_injection_info(FAULT_KMALLOC); 2483 return NULL; 2484 } 2485 #endif 2486 return kmalloc(size, flags); 2487 } 2488 2489 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2490 size_t size, gfp_t flags) 2491 { 2492 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2493 } 2494 2495 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2496 size_t size, gfp_t flags) 2497 { 2498 #ifdef CONFIG_F2FS_FAULT_INJECTION 2499 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2500 f2fs_show_injection_info(FAULT_KVMALLOC); 2501 return NULL; 2502 } 2503 #endif 2504 return kvmalloc(size, flags); 2505 } 2506 2507 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2508 size_t size, gfp_t flags) 2509 { 2510 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2511 } 2512 2513 static inline int get_extra_isize(struct inode *inode) 2514 { 2515 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2516 } 2517 2518 static inline int get_inline_xattr_addrs(struct inode *inode) 2519 { 2520 return F2FS_I(inode)->i_inline_xattr_size; 2521 } 2522 2523 #define get_inode_mode(i) \ 2524 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2525 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2526 2527 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2528 (offsetof(struct f2fs_inode, i_extra_end) - \ 2529 offsetof(struct f2fs_inode, i_extra_isize)) \ 2530 2531 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2532 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2533 ((offsetof(typeof(*f2fs_inode), field) + \ 2534 sizeof((f2fs_inode)->field)) \ 2535 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2536 2537 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2538 { 2539 int i; 2540 2541 spin_lock(&sbi->iostat_lock); 2542 for (i = 0; i < NR_IO_TYPE; i++) 2543 sbi->write_iostat[i] = 0; 2544 spin_unlock(&sbi->iostat_lock); 2545 } 2546 2547 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2548 enum iostat_type type, unsigned long long io_bytes) 2549 { 2550 if (!sbi->iostat_enable) 2551 return; 2552 spin_lock(&sbi->iostat_lock); 2553 sbi->write_iostat[type] += io_bytes; 2554 2555 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2556 sbi->write_iostat[APP_BUFFERED_IO] = 2557 sbi->write_iostat[APP_WRITE_IO] - 2558 sbi->write_iostat[APP_DIRECT_IO]; 2559 spin_unlock(&sbi->iostat_lock); 2560 } 2561 2562 /* 2563 * file.c 2564 */ 2565 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2566 void truncate_data_blocks(struct dnode_of_data *dn); 2567 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2568 int f2fs_truncate(struct inode *inode); 2569 int f2fs_getattr(const struct path *path, struct kstat *stat, 2570 u32 request_mask, unsigned int flags); 2571 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2572 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2573 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2574 int f2fs_precache_extents(struct inode *inode); 2575 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2576 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2577 int f2fs_pin_file_control(struct inode *inode, bool inc); 2578 2579 /* 2580 * inode.c 2581 */ 2582 void f2fs_set_inode_flags(struct inode *inode); 2583 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2584 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2585 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2586 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2587 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2588 void update_inode(struct inode *inode, struct page *node_page); 2589 void update_inode_page(struct inode *inode); 2590 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2591 void f2fs_evict_inode(struct inode *inode); 2592 void handle_failed_inode(struct inode *inode); 2593 2594 /* 2595 * namei.c 2596 */ 2597 struct dentry *f2fs_get_parent(struct dentry *child); 2598 2599 /* 2600 * dir.c 2601 */ 2602 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2603 unsigned char get_de_type(struct f2fs_dir_entry *de); 2604 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2605 f2fs_hash_t namehash, int *max_slots, 2606 struct f2fs_dentry_ptr *d); 2607 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2608 unsigned int start_pos, struct fscrypt_str *fstr); 2609 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2610 struct f2fs_dentry_ptr *d); 2611 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2612 const struct qstr *new_name, 2613 const struct qstr *orig_name, struct page *dpage); 2614 void update_parent_metadata(struct inode *dir, struct inode *inode, 2615 unsigned int current_depth); 2616 int room_for_filename(const void *bitmap, int slots, int max_slots); 2617 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2618 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2619 struct fscrypt_name *fname, struct page **res_page); 2620 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2621 const struct qstr *child, struct page **res_page); 2622 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2623 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2624 struct page **page); 2625 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2626 struct page *page, struct inode *inode); 2627 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2628 const struct qstr *name, f2fs_hash_t name_hash, 2629 unsigned int bit_pos); 2630 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2631 const struct qstr *orig_name, 2632 struct inode *inode, nid_t ino, umode_t mode); 2633 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2634 struct inode *inode, nid_t ino, umode_t mode); 2635 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2636 struct inode *inode, nid_t ino, umode_t mode); 2637 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2638 struct inode *dir, struct inode *inode); 2639 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2640 bool f2fs_empty_dir(struct inode *dir); 2641 2642 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2643 { 2644 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2645 inode, inode->i_ino, inode->i_mode); 2646 } 2647 2648 /* 2649 * super.c 2650 */ 2651 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2652 void f2fs_inode_synced(struct inode *inode); 2653 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2654 void f2fs_quota_off_umount(struct super_block *sb); 2655 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2656 int f2fs_sync_fs(struct super_block *sb, int sync); 2657 extern __printf(3, 4) 2658 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2659 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2660 2661 /* 2662 * hash.c 2663 */ 2664 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2665 struct fscrypt_name *fname); 2666 2667 /* 2668 * node.c 2669 */ 2670 struct dnode_of_data; 2671 struct node_info; 2672 2673 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2674 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2675 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2676 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2677 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2678 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2679 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2680 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2681 int truncate_xattr_node(struct inode *inode); 2682 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2683 int remove_inode_page(struct inode *inode); 2684 struct page *new_inode_page(struct inode *inode); 2685 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2686 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2687 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2688 struct page *get_node_page_ra(struct page *parent, int start); 2689 void move_node_page(struct page *node_page, int gc_type); 2690 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2691 struct writeback_control *wbc, bool atomic); 2692 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2693 bool do_balance, enum iostat_type io_type); 2694 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2695 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2696 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2697 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2698 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2699 void recover_inline_xattr(struct inode *inode, struct page *page); 2700 int recover_xattr_data(struct inode *inode, struct page *page); 2701 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2702 void restore_node_summary(struct f2fs_sb_info *sbi, 2703 unsigned int segno, struct f2fs_summary_block *sum); 2704 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2705 int build_node_manager(struct f2fs_sb_info *sbi); 2706 void destroy_node_manager(struct f2fs_sb_info *sbi); 2707 int __init create_node_manager_caches(void); 2708 void destroy_node_manager_caches(void); 2709 2710 /* 2711 * segment.c 2712 */ 2713 bool need_SSR(struct f2fs_sb_info *sbi); 2714 void register_inmem_page(struct inode *inode, struct page *page); 2715 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2716 void drop_inmem_pages(struct inode *inode); 2717 void drop_inmem_page(struct inode *inode, struct page *page); 2718 int commit_inmem_pages(struct inode *inode); 2719 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2720 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2721 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2722 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2723 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2724 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2725 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2726 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2727 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2728 unsigned int granularity); 2729 void stop_discard_thread(struct f2fs_sb_info *sbi); 2730 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2731 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2732 void release_discard_addrs(struct f2fs_sb_info *sbi); 2733 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2734 void allocate_new_segments(struct f2fs_sb_info *sbi); 2735 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2736 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2737 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2738 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2739 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2740 enum iostat_type io_type); 2741 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2742 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2743 int rewrite_data_page(struct f2fs_io_info *fio); 2744 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2745 block_t old_blkaddr, block_t new_blkaddr, 2746 bool recover_curseg, bool recover_newaddr); 2747 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2748 block_t old_addr, block_t new_addr, 2749 unsigned char version, bool recover_curseg, 2750 bool recover_newaddr); 2751 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2752 block_t old_blkaddr, block_t *new_blkaddr, 2753 struct f2fs_summary *sum, int type, 2754 struct f2fs_io_info *fio, bool add_list); 2755 void f2fs_wait_on_page_writeback(struct page *page, 2756 enum page_type type, bool ordered); 2757 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2758 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2759 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2760 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2761 unsigned int val, int alloc); 2762 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2763 int build_segment_manager(struct f2fs_sb_info *sbi); 2764 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2765 int __init create_segment_manager_caches(void); 2766 void destroy_segment_manager_caches(void); 2767 int rw_hint_to_seg_type(enum rw_hint hint); 2768 2769 /* 2770 * checkpoint.c 2771 */ 2772 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2773 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2774 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2775 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2776 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2777 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2778 int type, bool sync); 2779 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2780 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2781 long nr_to_write, enum iostat_type io_type); 2782 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2783 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2784 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2785 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2786 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2787 unsigned int devidx, int type); 2788 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2789 unsigned int devidx, int type); 2790 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2791 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2792 void release_orphan_inode(struct f2fs_sb_info *sbi); 2793 void add_orphan_inode(struct inode *inode); 2794 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2795 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2796 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2797 void update_dirty_page(struct inode *inode, struct page *page); 2798 void remove_dirty_inode(struct inode *inode); 2799 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2800 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2801 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2802 int __init create_checkpoint_caches(void); 2803 void destroy_checkpoint_caches(void); 2804 2805 /* 2806 * data.c 2807 */ 2808 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2809 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2810 struct inode *inode, nid_t ino, pgoff_t idx, 2811 enum page_type type); 2812 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2813 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2814 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2815 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2816 block_t blk_addr, struct bio *bio); 2817 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2818 void set_data_blkaddr(struct dnode_of_data *dn); 2819 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2820 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2821 int reserve_new_block(struct dnode_of_data *dn); 2822 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2823 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2824 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2825 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2826 int op_flags, bool for_write); 2827 struct page *find_data_page(struct inode *inode, pgoff_t index); 2828 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2829 bool for_write); 2830 struct page *get_new_data_page(struct inode *inode, 2831 struct page *ipage, pgoff_t index, bool new_i_size); 2832 int do_write_data_page(struct f2fs_io_info *fio); 2833 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2834 int create, int flag); 2835 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2836 u64 start, u64 len); 2837 void f2fs_set_page_dirty_nobuffers(struct page *page); 2838 int __f2fs_write_data_pages(struct address_space *mapping, 2839 struct writeback_control *wbc, 2840 enum iostat_type io_type); 2841 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2842 unsigned int length); 2843 int f2fs_release_page(struct page *page, gfp_t wait); 2844 #ifdef CONFIG_MIGRATION 2845 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2846 struct page *page, enum migrate_mode mode); 2847 #endif 2848 2849 /* 2850 * gc.c 2851 */ 2852 int start_gc_thread(struct f2fs_sb_info *sbi); 2853 void stop_gc_thread(struct f2fs_sb_info *sbi); 2854 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2855 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2856 unsigned int segno); 2857 void build_gc_manager(struct f2fs_sb_info *sbi); 2858 2859 /* 2860 * recovery.c 2861 */ 2862 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2863 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2864 2865 /* 2866 * debug.c 2867 */ 2868 #ifdef CONFIG_F2FS_STAT_FS 2869 struct f2fs_stat_info { 2870 struct list_head stat_list; 2871 struct f2fs_sb_info *sbi; 2872 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2873 int main_area_segs, main_area_sections, main_area_zones; 2874 unsigned long long hit_largest, hit_cached, hit_rbtree; 2875 unsigned long long hit_total, total_ext; 2876 int ext_tree, zombie_tree, ext_node; 2877 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2878 int ndirty_data, ndirty_qdata; 2879 int inmem_pages; 2880 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2881 int nats, dirty_nats, sits, dirty_sits; 2882 int free_nids, avail_nids, alloc_nids; 2883 int total_count, utilization; 2884 int bg_gc, nr_wb_cp_data, nr_wb_data; 2885 int nr_flushing, nr_flushed, flush_list_empty; 2886 int nr_discarding, nr_discarded; 2887 int nr_discard_cmd; 2888 unsigned int undiscard_blks; 2889 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2890 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2891 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2892 unsigned int bimodal, avg_vblocks; 2893 int util_free, util_valid, util_invalid; 2894 int rsvd_segs, overp_segs; 2895 int dirty_count, node_pages, meta_pages; 2896 int prefree_count, call_count, cp_count, bg_cp_count; 2897 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2898 int bg_node_segs, bg_data_segs; 2899 int tot_blks, data_blks, node_blks; 2900 int bg_data_blks, bg_node_blks; 2901 int curseg[NR_CURSEG_TYPE]; 2902 int cursec[NR_CURSEG_TYPE]; 2903 int curzone[NR_CURSEG_TYPE]; 2904 2905 unsigned int segment_count[2]; 2906 unsigned int block_count[2]; 2907 unsigned int inplace_count; 2908 unsigned long long base_mem, cache_mem, page_mem; 2909 }; 2910 2911 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2912 { 2913 return (struct f2fs_stat_info *)sbi->stat_info; 2914 } 2915 2916 #define stat_inc_cp_count(si) ((si)->cp_count++) 2917 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2918 #define stat_inc_call_count(si) ((si)->call_count++) 2919 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2920 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2921 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2922 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2923 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2924 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2925 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2926 #define stat_inc_inline_xattr(inode) \ 2927 do { \ 2928 if (f2fs_has_inline_xattr(inode)) \ 2929 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2930 } while (0) 2931 #define stat_dec_inline_xattr(inode) \ 2932 do { \ 2933 if (f2fs_has_inline_xattr(inode)) \ 2934 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2935 } while (0) 2936 #define stat_inc_inline_inode(inode) \ 2937 do { \ 2938 if (f2fs_has_inline_data(inode)) \ 2939 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2940 } while (0) 2941 #define stat_dec_inline_inode(inode) \ 2942 do { \ 2943 if (f2fs_has_inline_data(inode)) \ 2944 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2945 } while (0) 2946 #define stat_inc_inline_dir(inode) \ 2947 do { \ 2948 if (f2fs_has_inline_dentry(inode)) \ 2949 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2950 } while (0) 2951 #define stat_dec_inline_dir(inode) \ 2952 do { \ 2953 if (f2fs_has_inline_dentry(inode)) \ 2954 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2955 } while (0) 2956 #define stat_inc_seg_type(sbi, curseg) \ 2957 ((sbi)->segment_count[(curseg)->alloc_type]++) 2958 #define stat_inc_block_count(sbi, curseg) \ 2959 ((sbi)->block_count[(curseg)->alloc_type]++) 2960 #define stat_inc_inplace_blocks(sbi) \ 2961 (atomic_inc(&(sbi)->inplace_count)) 2962 #define stat_inc_atomic_write(inode) \ 2963 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2964 #define stat_dec_atomic_write(inode) \ 2965 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2966 #define stat_update_max_atomic_write(inode) \ 2967 do { \ 2968 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2969 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2970 if (cur > max) \ 2971 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2972 } while (0) 2973 #define stat_inc_volatile_write(inode) \ 2974 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2975 #define stat_dec_volatile_write(inode) \ 2976 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2977 #define stat_update_max_volatile_write(inode) \ 2978 do { \ 2979 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2980 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2981 if (cur > max) \ 2982 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2983 } while (0) 2984 #define stat_inc_seg_count(sbi, type, gc_type) \ 2985 do { \ 2986 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2987 si->tot_segs++; \ 2988 if ((type) == SUM_TYPE_DATA) { \ 2989 si->data_segs++; \ 2990 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2991 } else { \ 2992 si->node_segs++; \ 2993 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2994 } \ 2995 } while (0) 2996 2997 #define stat_inc_tot_blk_count(si, blks) \ 2998 ((si)->tot_blks += (blks)) 2999 3000 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3001 do { \ 3002 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3003 stat_inc_tot_blk_count(si, blks); \ 3004 si->data_blks += (blks); \ 3005 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3006 } while (0) 3007 3008 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3009 do { \ 3010 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3011 stat_inc_tot_blk_count(si, blks); \ 3012 si->node_blks += (blks); \ 3013 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3014 } while (0) 3015 3016 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3017 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3018 int __init f2fs_create_root_stats(void); 3019 void f2fs_destroy_root_stats(void); 3020 #else 3021 #define stat_inc_cp_count(si) do { } while (0) 3022 #define stat_inc_bg_cp_count(si) do { } while (0) 3023 #define stat_inc_call_count(si) do { } while (0) 3024 #define stat_inc_bggc_count(si) do { } while (0) 3025 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3026 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3027 #define stat_inc_total_hit(sb) do { } while (0) 3028 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3029 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3030 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3031 #define stat_inc_inline_xattr(inode) do { } while (0) 3032 #define stat_dec_inline_xattr(inode) do { } while (0) 3033 #define stat_inc_inline_inode(inode) do { } while (0) 3034 #define stat_dec_inline_inode(inode) do { } while (0) 3035 #define stat_inc_inline_dir(inode) do { } while (0) 3036 #define stat_dec_inline_dir(inode) do { } while (0) 3037 #define stat_inc_atomic_write(inode) do { } while (0) 3038 #define stat_dec_atomic_write(inode) do { } while (0) 3039 #define stat_update_max_atomic_write(inode) do { } while (0) 3040 #define stat_inc_volatile_write(inode) do { } while (0) 3041 #define stat_dec_volatile_write(inode) do { } while (0) 3042 #define stat_update_max_volatile_write(inode) do { } while (0) 3043 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3044 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3045 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3046 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3047 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3048 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3049 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3050 3051 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3052 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3053 static inline int __init f2fs_create_root_stats(void) { return 0; } 3054 static inline void f2fs_destroy_root_stats(void) { } 3055 #endif 3056 3057 extern const struct file_operations f2fs_dir_operations; 3058 extern const struct file_operations f2fs_file_operations; 3059 extern const struct inode_operations f2fs_file_inode_operations; 3060 extern const struct address_space_operations f2fs_dblock_aops; 3061 extern const struct address_space_operations f2fs_node_aops; 3062 extern const struct address_space_operations f2fs_meta_aops; 3063 extern const struct inode_operations f2fs_dir_inode_operations; 3064 extern const struct inode_operations f2fs_symlink_inode_operations; 3065 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3066 extern const struct inode_operations f2fs_special_inode_operations; 3067 extern struct kmem_cache *inode_entry_slab; 3068 3069 /* 3070 * inline.c 3071 */ 3072 bool f2fs_may_inline_data(struct inode *inode); 3073 bool f2fs_may_inline_dentry(struct inode *inode); 3074 void read_inline_data(struct page *page, struct page *ipage); 3075 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3076 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3077 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3078 int f2fs_convert_inline_inode(struct inode *inode); 3079 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3080 bool recover_inline_data(struct inode *inode, struct page *npage); 3081 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3082 struct fscrypt_name *fname, struct page **res_page); 3083 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3084 struct page *ipage); 3085 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3086 const struct qstr *orig_name, 3087 struct inode *inode, nid_t ino, umode_t mode); 3088 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3089 struct inode *dir, struct inode *inode); 3090 bool f2fs_empty_inline_dir(struct inode *dir); 3091 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3092 struct fscrypt_str *fstr); 3093 int f2fs_inline_data_fiemap(struct inode *inode, 3094 struct fiemap_extent_info *fieinfo, 3095 __u64 start, __u64 len); 3096 3097 /* 3098 * shrinker.c 3099 */ 3100 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3101 struct shrink_control *sc); 3102 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3103 struct shrink_control *sc); 3104 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3105 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3106 3107 /* 3108 * extent_cache.c 3109 */ 3110 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3111 struct rb_entry *cached_re, unsigned int ofs); 3112 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3113 struct rb_root *root, struct rb_node **parent, 3114 unsigned int ofs); 3115 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3116 struct rb_entry *cached_re, unsigned int ofs, 3117 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3118 struct rb_node ***insert_p, struct rb_node **insert_parent, 3119 bool force); 3120 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3121 struct rb_root *root); 3122 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3123 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3124 void f2fs_drop_extent_tree(struct inode *inode); 3125 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3126 void f2fs_destroy_extent_tree(struct inode *inode); 3127 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3128 struct extent_info *ei); 3129 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3130 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3131 pgoff_t fofs, block_t blkaddr, unsigned int len); 3132 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3133 int __init create_extent_cache(void); 3134 void destroy_extent_cache(void); 3135 3136 /* 3137 * sysfs.c 3138 */ 3139 int __init f2fs_init_sysfs(void); 3140 void f2fs_exit_sysfs(void); 3141 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3142 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3143 3144 /* 3145 * crypto support 3146 */ 3147 static inline bool f2fs_encrypted_inode(struct inode *inode) 3148 { 3149 return file_is_encrypt(inode); 3150 } 3151 3152 static inline bool f2fs_encrypted_file(struct inode *inode) 3153 { 3154 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3155 } 3156 3157 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3158 { 3159 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3160 file_set_encrypt(inode); 3161 inode->i_flags |= S_ENCRYPTED; 3162 #endif 3163 } 3164 3165 static inline bool f2fs_bio_encrypted(struct bio *bio) 3166 { 3167 return bio->bi_private != NULL; 3168 } 3169 3170 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3171 { 3172 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3173 } 3174 3175 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3176 { 3177 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3178 } 3179 3180 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3181 { 3182 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3183 } 3184 3185 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3186 { 3187 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3188 } 3189 3190 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3191 { 3192 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3193 } 3194 3195 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3196 { 3197 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3198 } 3199 3200 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3201 { 3202 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3203 } 3204 3205 #ifdef CONFIG_BLK_DEV_ZONED 3206 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3207 struct block_device *bdev, block_t blkaddr) 3208 { 3209 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3210 int i; 3211 3212 for (i = 0; i < sbi->s_ndevs; i++) 3213 if (FDEV(i).bdev == bdev) 3214 return FDEV(i).blkz_type[zno]; 3215 return -EINVAL; 3216 } 3217 #endif 3218 3219 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3220 { 3221 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3222 3223 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3224 } 3225 3226 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3227 { 3228 clear_opt(sbi, ADAPTIVE); 3229 clear_opt(sbi, LFS); 3230 3231 switch (mt) { 3232 case F2FS_MOUNT_ADAPTIVE: 3233 set_opt(sbi, ADAPTIVE); 3234 break; 3235 case F2FS_MOUNT_LFS: 3236 set_opt(sbi, LFS); 3237 break; 3238 } 3239 } 3240 3241 static inline bool f2fs_may_encrypt(struct inode *inode) 3242 { 3243 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3244 umode_t mode = inode->i_mode; 3245 3246 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3247 #else 3248 return 0; 3249 #endif 3250 } 3251 3252 #endif 3253