xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b3107b3854c93ea380ac373c0032fcf15f31178a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int discard_unit;		/*
166 					 * discard command's offset/size should
167 					 * be aligned to this unit: block,
168 					 * segment or section
169 					 */
170 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
171 	block_t unusable_cap_perc;	/* percentage for cap */
172 	block_t unusable_cap;		/* Amount of space allowed to be
173 					 * unusable when disabling checkpoint
174 					 */
175 
176 	/* For compression */
177 	unsigned char compress_algorithm;	/* algorithm type */
178 	unsigned char compress_log_size;	/* cluster log size */
179 	unsigned char compress_level;		/* compress level */
180 	bool compress_chksum;			/* compressed data chksum */
181 	unsigned char compress_ext_cnt;		/* extension count */
182 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
183 	int compress_mode;			/* compression mode */
184 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
185 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 };
187 
188 #define F2FS_FEATURE_ENCRYPT		0x0001
189 #define F2FS_FEATURE_BLKZONED		0x0002
190 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
191 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
192 #define F2FS_FEATURE_PRJQUOTA		0x0010
193 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
195 #define F2FS_FEATURE_QUOTA_INO		0x0080
196 #define F2FS_FEATURE_INODE_CRTIME	0x0100
197 #define F2FS_FEATURE_LOST_FOUND		0x0200
198 #define F2FS_FEATURE_VERITY		0x0400
199 #define F2FS_FEATURE_SB_CHKSUM		0x0800
200 #define F2FS_FEATURE_CASEFOLD		0x1000
201 #define F2FS_FEATURE_COMPRESSION	0x2000
202 #define F2FS_FEATURE_RO			0x4000
203 
204 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
205 	((raw_super->feature & cpu_to_le32(mask)) != 0)
206 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	DATA_GENERIC_ENHANCE_UPDATE,	/*
268 					 * strong check on range and segment
269 					 * bitmap for update case
270 					 */
271 	META_GENERIC,
272 };
273 
274 /* for the list of ino */
275 enum {
276 	ORPHAN_INO,		/* for orphan ino list */
277 	APPEND_INO,		/* for append ino list */
278 	UPDATE_INO,		/* for update ino list */
279 	TRANS_DIR_INO,		/* for transactions dir ino list */
280 	FLUSH_INO,		/* for multiple device flushing */
281 	MAX_INO_ENTRY,		/* max. list */
282 };
283 
284 struct ino_entry {
285 	struct list_head list;		/* list head */
286 	nid_t ino;			/* inode number */
287 	unsigned int dirty_device;	/* dirty device bitmap */
288 };
289 
290 /* for the list of inodes to be GCed */
291 struct inode_entry {
292 	struct list_head list;	/* list head */
293 	struct inode *inode;	/* vfs inode pointer */
294 };
295 
296 struct fsync_node_entry {
297 	struct list_head list;	/* list head */
298 	struct page *page;	/* warm node page pointer */
299 	unsigned int seq_id;	/* sequence id */
300 };
301 
302 struct ckpt_req {
303 	struct completion wait;		/* completion for checkpoint done */
304 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
305 	int ret;			/* return code of checkpoint */
306 	ktime_t queue_time;		/* request queued time */
307 };
308 
309 struct ckpt_req_control {
310 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
311 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
312 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
313 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
314 	atomic_t total_ckpt;		/* # of total ckpts */
315 	atomic_t queued_ckpt;		/* # of queued ckpts */
316 	struct llist_head issue_list;	/* list for command issue */
317 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
318 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
319 	unsigned int peak_time;		/* peak wait time in msec until now */
320 };
321 
322 /* for the bitmap indicate blocks to be discarded */
323 struct discard_entry {
324 	struct list_head list;	/* list head */
325 	block_t start_blkaddr;	/* start blockaddr of current segment */
326 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
327 };
328 
329 /* minimum discard granularity, unit: block count */
330 #define MIN_DISCARD_GRANULARITY		1
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 /* default maximum discard granularity of ordered discard, unit: block count */
334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
335 
336 /* max discard pend list number */
337 #define MAX_PLIST_NUM		512
338 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
339 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
340 
341 enum {
342 	D_PREP,			/* initial */
343 	D_PARTIAL,		/* partially submitted */
344 	D_SUBMIT,		/* all submitted */
345 	D_DONE,			/* finished */
346 };
347 
348 struct discard_info {
349 	block_t lstart;			/* logical start address */
350 	block_t len;			/* length */
351 	block_t start;			/* actual start address in dev */
352 };
353 
354 struct discard_cmd {
355 	struct rb_node rb_node;		/* rb node located in rb-tree */
356 	union {
357 		struct {
358 			block_t lstart;	/* logical start address */
359 			block_t len;	/* length */
360 			block_t start;	/* actual start address in dev */
361 		};
362 		struct discard_info di;	/* discard info */
363 
364 	};
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 struct discard_policy {
385 	int type;			/* type of discard */
386 	unsigned int min_interval;	/* used for candidates exist */
387 	unsigned int mid_interval;	/* used for device busy */
388 	unsigned int max_interval;	/* used for candidates not exist */
389 	unsigned int max_requests;	/* # of discards issued per round */
390 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
391 	bool io_aware;			/* issue discard in idle time */
392 	bool sync;			/* submit discard with REQ_SYNC flag */
393 	bool ordered;			/* issue discard by lba order */
394 	bool timeout;			/* discard timeout for put_super */
395 	unsigned int granularity;	/* discard granularity */
396 };
397 
398 struct discard_cmd_control {
399 	struct task_struct *f2fs_issue_discard;	/* discard thread */
400 	struct list_head entry_list;		/* 4KB discard entry list */
401 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
402 	struct list_head wait_list;		/* store on-flushing entries */
403 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
404 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
405 	unsigned int discard_wake;		/* to wake up discard thread */
406 	struct mutex cmd_lock;
407 	unsigned int nr_discards;		/* # of discards in the list */
408 	unsigned int max_discards;		/* max. discards to be issued */
409 	unsigned int max_discard_request;	/* max. discard request per round */
410 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
411 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
412 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
413 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
414 	unsigned int discard_granularity;	/* discard granularity */
415 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
416 	unsigned int undiscard_blks;		/* # of undiscard blocks */
417 	unsigned int next_pos;			/* next discard position */
418 	atomic_t issued_discard;		/* # of issued discard */
419 	atomic_t queued_discard;		/* # of queued discard */
420 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
421 	struct rb_root_cached root;		/* root of discard rb-tree */
422 	bool rbtree_check;			/* config for consistence check */
423 };
424 
425 /* for the list of fsync inodes, used only during recovery */
426 struct fsync_inode_entry {
427 	struct list_head list;	/* list head */
428 	struct inode *inode;	/* vfs inode pointer */
429 	block_t blkaddr;	/* block address locating the last fsync */
430 	block_t last_dentry;	/* block address locating the last dentry */
431 };
432 
433 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
434 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
435 
436 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
437 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
438 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
439 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
440 
441 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
442 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
443 
444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = nats_in_cursum(journal);
447 
448 	journal->n_nats = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = sits_in_cursum(journal);
455 
456 	journal->n_sits = cpu_to_le16(before + i);
457 	return before;
458 }
459 
460 static inline bool __has_cursum_space(struct f2fs_journal *journal,
461 							int size, int type)
462 {
463 	if (type == NAT_JOURNAL)
464 		return size <= MAX_NAT_JENTRIES(journal);
465 	return size <= MAX_SIT_JENTRIES(journal);
466 }
467 
468 /* for inline stuff */
469 #define DEF_INLINE_RESERVED_SIZE	1
470 static inline int get_extra_isize(struct inode *inode);
471 static inline int get_inline_xattr_addrs(struct inode *inode);
472 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
473 				(CUR_ADDRS_PER_INODE(inode) -		\
474 				get_inline_xattr_addrs(inode) -	\
475 				DEF_INLINE_RESERVED_SIZE))
476 
477 /* for inline dir */
478 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				BITS_PER_BYTE + 1))
481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
482 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
483 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
484 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
485 				NR_INLINE_DENTRY(inode) + \
486 				INLINE_DENTRY_BITMAP_SIZE(inode)))
487 
488 /*
489  * For INODE and NODE manager
490  */
491 /* for directory operations */
492 
493 struct f2fs_filename {
494 	/*
495 	 * The filename the user specified.  This is NULL for some
496 	 * filesystem-internal operations, e.g. converting an inline directory
497 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
498 	 */
499 	const struct qstr *usr_fname;
500 
501 	/*
502 	 * The on-disk filename.  For encrypted directories, this is encrypted.
503 	 * This may be NULL for lookups in an encrypted dir without the key.
504 	 */
505 	struct fscrypt_str disk_name;
506 
507 	/* The dirhash of this filename */
508 	f2fs_hash_t hash;
509 
510 #ifdef CONFIG_FS_ENCRYPTION
511 	/*
512 	 * For lookups in encrypted directories: either the buffer backing
513 	 * disk_name, or a buffer that holds the decoded no-key name.
514 	 */
515 	struct fscrypt_str crypto_buf;
516 #endif
517 #if IS_ENABLED(CONFIG_UNICODE)
518 	/*
519 	 * For casefolded directories: the casefolded name, but it's left NULL
520 	 * if the original name is not valid Unicode, if the original name is
521 	 * "." or "..", if the directory is both casefolded and encrypted and
522 	 * its encryption key is unavailable, or if the filesystem is doing an
523 	 * internal operation where usr_fname is also NULL.  In all these cases
524 	 * we fall back to treating the name as an opaque byte sequence.
525 	 */
526 	struct fscrypt_str cf_name;
527 #endif
528 };
529 
530 struct f2fs_dentry_ptr {
531 	struct inode *inode;
532 	void *bitmap;
533 	struct f2fs_dir_entry *dentry;
534 	__u8 (*filename)[F2FS_SLOT_LEN];
535 	int max;
536 	int nr_bitmap;
537 };
538 
539 static inline void make_dentry_ptr_block(struct inode *inode,
540 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
541 {
542 	d->inode = inode;
543 	d->max = NR_DENTRY_IN_BLOCK;
544 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
545 	d->bitmap = t->dentry_bitmap;
546 	d->dentry = t->dentry;
547 	d->filename = t->filename;
548 }
549 
550 static inline void make_dentry_ptr_inline(struct inode *inode,
551 					struct f2fs_dentry_ptr *d, void *t)
552 {
553 	int entry_cnt = NR_INLINE_DENTRY(inode);
554 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
555 	int reserved_size = INLINE_RESERVED_SIZE(inode);
556 
557 	d->inode = inode;
558 	d->max = entry_cnt;
559 	d->nr_bitmap = bitmap_size;
560 	d->bitmap = t;
561 	d->dentry = t + bitmap_size + reserved_size;
562 	d->filename = t + bitmap_size + reserved_size +
563 					SIZE_OF_DIR_ENTRY * entry_cnt;
564 }
565 
566 /*
567  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
568  * as its node offset to distinguish from index node blocks.
569  * But some bits are used to mark the node block.
570  */
571 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
572 				>> OFFSET_BIT_SHIFT)
573 enum {
574 	ALLOC_NODE,			/* allocate a new node page if needed */
575 	LOOKUP_NODE,			/* look up a node without readahead */
576 	LOOKUP_NODE_RA,			/*
577 					 * look up a node with readahead called
578 					 * by get_data_block.
579 					 */
580 };
581 
582 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
583 
584 /* congestion wait timeout value, default: 20ms */
585 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
586 
587 /* maximum retry quota flush count */
588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
589 
590 /* maximum retry of EIO'ed page */
591 #define MAX_RETRY_PAGE_EIO			100
592 
593 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
594 
595 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
596 
597 /* dirty segments threshold for triggering CP */
598 #define DEFAULT_DIRTY_THRESHOLD		4
599 
600 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
601 #define RECOVERY_MIN_RA_BLOCKS		1
602 
603 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
604 
605 /* for in-memory extent cache entry */
606 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
607 
608 /* number of extent info in extent cache we try to shrink */
609 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
610 
611 /* number of age extent info in extent cache we try to shrink */
612 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
613 #define LAST_AGE_WEIGHT			30
614 #define SAME_AGE_REGION			1024
615 
616 /*
617  * Define data block with age less than 1GB as hot data
618  * define data block with age less than 10GB but more than 1GB as warm data
619  */
620 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
621 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
622 
623 /* extent cache type */
624 enum extent_type {
625 	EX_READ,
626 	EX_BLOCK_AGE,
627 	NR_EXTENT_CACHES,
628 };
629 
630 struct rb_entry {
631 	struct rb_node rb_node;		/* rb node located in rb-tree */
632 	union {
633 		struct {
634 			unsigned int ofs;	/* start offset of the entry */
635 			unsigned int len;	/* length of the entry */
636 		};
637 		unsigned long long key;		/* 64-bits key */
638 	} __packed;
639 };
640 
641 struct extent_info {
642 	unsigned int fofs;		/* start offset in a file */
643 	unsigned int len;		/* length of the extent */
644 	union {
645 		/* read extent_cache */
646 		struct {
647 			/* start block address of the extent */
648 			block_t blk;
649 #ifdef CONFIG_F2FS_FS_COMPRESSION
650 			/* physical extent length of compressed blocks */
651 			unsigned int c_len;
652 #endif
653 		};
654 		/* block age extent_cache */
655 		struct {
656 			/* block age of the extent */
657 			unsigned long long age;
658 			/* last total blocks allocated */
659 			unsigned long long last_blocks;
660 		};
661 	};
662 };
663 
664 struct extent_node {
665 	struct rb_node rb_node;		/* rb node located in rb-tree */
666 	struct extent_info ei;		/* extent info */
667 	struct list_head list;		/* node in global extent list of sbi */
668 	struct extent_tree *et;		/* extent tree pointer */
669 };
670 
671 struct extent_tree {
672 	nid_t ino;			/* inode number */
673 	enum extent_type type;		/* keep the extent tree type */
674 	struct rb_root_cached root;	/* root of extent info rb-tree */
675 	struct extent_node *cached_en;	/* recently accessed extent node */
676 	struct list_head list;		/* to be used by sbi->zombie_list */
677 	rwlock_t lock;			/* protect extent info rb-tree */
678 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
679 	bool largest_updated;		/* largest extent updated */
680 	struct extent_info largest;	/* largest cached extent for EX_READ */
681 };
682 
683 struct extent_tree_info {
684 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
685 	struct mutex extent_tree_lock;	/* locking extent radix tree */
686 	struct list_head extent_list;		/* lru list for shrinker */
687 	spinlock_t extent_lock;			/* locking extent lru list */
688 	atomic_t total_ext_tree;		/* extent tree count */
689 	struct list_head zombie_list;		/* extent zombie tree list */
690 	atomic_t total_zombie_tree;		/* extent zombie tree count */
691 	atomic_t total_ext_node;		/* extent info count */
692 };
693 
694 /*
695  * This structure is taken from ext4_map_blocks.
696  *
697  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
698  */
699 #define F2FS_MAP_NEW		(1 << BH_New)
700 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
701 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
702 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
703 				F2FS_MAP_UNWRITTEN)
704 
705 struct f2fs_map_blocks {
706 	struct block_device *m_bdev;	/* for multi-device dio */
707 	block_t m_pblk;
708 	block_t m_lblk;
709 	unsigned int m_len;
710 	unsigned int m_flags;
711 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
712 	pgoff_t *m_next_extent;		/* point to next possible extent */
713 	int m_seg_type;
714 	bool m_may_create;		/* indicate it is from write path */
715 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
716 };
717 
718 /* for flag in get_data_block */
719 enum {
720 	F2FS_GET_BLOCK_DEFAULT,
721 	F2FS_GET_BLOCK_FIEMAP,
722 	F2FS_GET_BLOCK_BMAP,
723 	F2FS_GET_BLOCK_DIO,
724 	F2FS_GET_BLOCK_PRE_DIO,
725 	F2FS_GET_BLOCK_PRE_AIO,
726 	F2FS_GET_BLOCK_PRECACHE,
727 };
728 
729 /*
730  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
731  */
732 #define FADVISE_COLD_BIT	0x01
733 #define FADVISE_LOST_PINO_BIT	0x02
734 #define FADVISE_ENCRYPT_BIT	0x04
735 #define FADVISE_ENC_NAME_BIT	0x08
736 #define FADVISE_KEEP_SIZE_BIT	0x10
737 #define FADVISE_HOT_BIT		0x20
738 #define FADVISE_VERITY_BIT	0x40
739 #define FADVISE_TRUNC_BIT	0x80
740 
741 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
742 
743 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
744 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
745 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
746 
747 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
748 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
749 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
750 
751 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
752 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
753 
754 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
755 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
756 
757 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
758 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
759 
760 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
761 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
762 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
763 
764 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
765 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
766 
767 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
768 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
769 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
770 
771 #define DEF_DIR_LEVEL		0
772 
773 enum {
774 	GC_FAILURE_PIN,
775 	MAX_GC_FAILURE
776 };
777 
778 /* used for f2fs_inode_info->flags */
779 enum {
780 	FI_NEW_INODE,		/* indicate newly allocated inode */
781 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
782 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
783 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
784 	FI_INC_LINK,		/* need to increment i_nlink */
785 	FI_ACL_MODE,		/* indicate acl mode */
786 	FI_NO_ALLOC,		/* should not allocate any blocks */
787 	FI_FREE_NID,		/* free allocated nide */
788 	FI_NO_EXTENT,		/* not to use the extent cache */
789 	FI_INLINE_XATTR,	/* used for inline xattr */
790 	FI_INLINE_DATA,		/* used for inline data*/
791 	FI_INLINE_DENTRY,	/* used for inline dentry */
792 	FI_APPEND_WRITE,	/* inode has appended data */
793 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
794 	FI_NEED_IPU,		/* used for ipu per file */
795 	FI_ATOMIC_FILE,		/* indicate atomic file */
796 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
797 	FI_DROP_CACHE,		/* drop dirty page cache */
798 	FI_DATA_EXIST,		/* indicate data exists */
799 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
800 	FI_SKIP_WRITES,		/* should skip data page writeback */
801 	FI_OPU_WRITE,		/* used for opu per file */
802 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
803 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
804 	FI_HOT_DATA,		/* indicate file is hot */
805 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
806 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
807 	FI_PIN_FILE,		/* indicate file should not be gced */
808 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
809 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
810 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
811 	FI_MMAP_FILE,		/* indicate file was mmapped */
812 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
813 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
814 	FI_ALIGNED_WRITE,	/* enable aligned write */
815 	FI_COW_FILE,		/* indicate COW file */
816 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
817 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
818 	FI_MAX,			/* max flag, never be used */
819 };
820 
821 struct f2fs_inode_info {
822 	struct inode vfs_inode;		/* serve a vfs inode */
823 	unsigned long i_flags;		/* keep an inode flags for ioctl */
824 	unsigned char i_advise;		/* use to give file attribute hints */
825 	unsigned char i_dir_level;	/* use for dentry level for large dir */
826 	unsigned int i_current_depth;	/* only for directory depth */
827 	/* for gc failure statistic */
828 	unsigned int i_gc_failures[MAX_GC_FAILURE];
829 	unsigned int i_pino;		/* parent inode number */
830 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
831 
832 	/* Use below internally in f2fs*/
833 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
834 	struct f2fs_rwsem i_sem;	/* protect fi info */
835 	atomic_t dirty_pages;		/* # of dirty pages */
836 	f2fs_hash_t chash;		/* hash value of given file name */
837 	unsigned int clevel;		/* maximum level of given file name */
838 	struct task_struct *task;	/* lookup and create consistency */
839 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
840 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
841 	nid_t i_xattr_nid;		/* node id that contains xattrs */
842 	loff_t	last_disk_size;		/* lastly written file size */
843 	spinlock_t i_size_lock;		/* protect last_disk_size */
844 
845 #ifdef CONFIG_QUOTA
846 	struct dquot *i_dquot[MAXQUOTAS];
847 
848 	/* quota space reservation, managed internally by quota code */
849 	qsize_t i_reserved_quota;
850 #endif
851 	struct list_head dirty_list;	/* dirty list for dirs and files */
852 	struct list_head gdirty_list;	/* linked in global dirty list */
853 	struct task_struct *atomic_write_task;	/* store atomic write task */
854 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
855 					/* cached extent_tree entry */
856 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
857 
858 	/* avoid racing between foreground op and gc */
859 	struct f2fs_rwsem i_gc_rwsem[2];
860 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
861 
862 	int i_extra_isize;		/* size of extra space located in i_addr */
863 	kprojid_t i_projid;		/* id for project quota */
864 	int i_inline_xattr_size;	/* inline xattr size */
865 	struct timespec64 i_crtime;	/* inode creation time */
866 	struct timespec64 i_disk_time[4];/* inode disk times */
867 
868 	/* for file compress */
869 	atomic_t i_compr_blocks;		/* # of compressed blocks */
870 	unsigned char i_compress_algorithm;	/* algorithm type */
871 	unsigned char i_log_cluster_size;	/* log of cluster size */
872 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
873 	unsigned short i_compress_flag;		/* compress flag */
874 	unsigned int i_cluster_size;		/* cluster size */
875 
876 	unsigned int atomic_write_cnt;
877 	loff_t original_i_size;		/* original i_size before atomic write */
878 };
879 
880 static inline void get_read_extent_info(struct extent_info *ext,
881 					struct f2fs_extent *i_ext)
882 {
883 	ext->fofs = le32_to_cpu(i_ext->fofs);
884 	ext->blk = le32_to_cpu(i_ext->blk);
885 	ext->len = le32_to_cpu(i_ext->len);
886 }
887 
888 static inline void set_raw_read_extent(struct extent_info *ext,
889 					struct f2fs_extent *i_ext)
890 {
891 	i_ext->fofs = cpu_to_le32(ext->fofs);
892 	i_ext->blk = cpu_to_le32(ext->blk);
893 	i_ext->len = cpu_to_le32(ext->len);
894 }
895 
896 static inline bool __is_discard_mergeable(struct discard_info *back,
897 			struct discard_info *front, unsigned int max_len)
898 {
899 	return (back->lstart + back->len == front->lstart) &&
900 		(back->len + front->len <= max_len);
901 }
902 
903 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
904 			struct discard_info *back, unsigned int max_len)
905 {
906 	return __is_discard_mergeable(back, cur, max_len);
907 }
908 
909 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
910 			struct discard_info *front, unsigned int max_len)
911 {
912 	return __is_discard_mergeable(cur, front, max_len);
913 }
914 
915 /*
916  * For free nid management
917  */
918 enum nid_state {
919 	FREE_NID,		/* newly added to free nid list */
920 	PREALLOC_NID,		/* it is preallocated */
921 	MAX_NID_STATE,
922 };
923 
924 enum nat_state {
925 	TOTAL_NAT,
926 	DIRTY_NAT,
927 	RECLAIMABLE_NAT,
928 	MAX_NAT_STATE,
929 };
930 
931 struct f2fs_nm_info {
932 	block_t nat_blkaddr;		/* base disk address of NAT */
933 	nid_t max_nid;			/* maximum possible node ids */
934 	nid_t available_nids;		/* # of available node ids */
935 	nid_t next_scan_nid;		/* the next nid to be scanned */
936 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
937 	unsigned int ram_thresh;	/* control the memory footprint */
938 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
939 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
940 
941 	/* NAT cache management */
942 	struct radix_tree_root nat_root;/* root of the nat entry cache */
943 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
944 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
945 	struct list_head nat_entries;	/* cached nat entry list (clean) */
946 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
947 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
948 	unsigned int nat_blocks;	/* # of nat blocks */
949 
950 	/* free node ids management */
951 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
952 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
953 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
954 	spinlock_t nid_list_lock;	/* protect nid lists ops */
955 	struct mutex build_lock;	/* lock for build free nids */
956 	unsigned char **free_nid_bitmap;
957 	unsigned char *nat_block_bitmap;
958 	unsigned short *free_nid_count;	/* free nid count of NAT block */
959 
960 	/* for checkpoint */
961 	char *nat_bitmap;		/* NAT bitmap pointer */
962 
963 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
964 	unsigned char *nat_bits;	/* NAT bits blocks */
965 	unsigned char *full_nat_bits;	/* full NAT pages */
966 	unsigned char *empty_nat_bits;	/* empty NAT pages */
967 #ifdef CONFIG_F2FS_CHECK_FS
968 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
969 #endif
970 	int bitmap_size;		/* bitmap size */
971 };
972 
973 /*
974  * this structure is used as one of function parameters.
975  * all the information are dedicated to a given direct node block determined
976  * by the data offset in a file.
977  */
978 struct dnode_of_data {
979 	struct inode *inode;		/* vfs inode pointer */
980 	struct page *inode_page;	/* its inode page, NULL is possible */
981 	struct page *node_page;		/* cached direct node page */
982 	nid_t nid;			/* node id of the direct node block */
983 	unsigned int ofs_in_node;	/* data offset in the node page */
984 	bool inode_page_locked;		/* inode page is locked or not */
985 	bool node_changed;		/* is node block changed */
986 	char cur_level;			/* level of hole node page */
987 	char max_level;			/* level of current page located */
988 	block_t	data_blkaddr;		/* block address of the node block */
989 };
990 
991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
992 		struct page *ipage, struct page *npage, nid_t nid)
993 {
994 	memset(dn, 0, sizeof(*dn));
995 	dn->inode = inode;
996 	dn->inode_page = ipage;
997 	dn->node_page = npage;
998 	dn->nid = nid;
999 }
1000 
1001 /*
1002  * For SIT manager
1003  *
1004  * By default, there are 6 active log areas across the whole main area.
1005  * When considering hot and cold data separation to reduce cleaning overhead,
1006  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1007  * respectively.
1008  * In the current design, you should not change the numbers intentionally.
1009  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1010  * logs individually according to the underlying devices. (default: 6)
1011  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1012  * data and 8 for node logs.
1013  */
1014 #define	NR_CURSEG_DATA_TYPE	(3)
1015 #define NR_CURSEG_NODE_TYPE	(3)
1016 #define NR_CURSEG_INMEM_TYPE	(2)
1017 #define NR_CURSEG_RO_TYPE	(2)
1018 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1019 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1020 
1021 enum {
1022 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1023 	CURSEG_WARM_DATA,	/* data blocks */
1024 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1025 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1026 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1027 	CURSEG_COLD_NODE,	/* indirect node blocks */
1028 	NR_PERSISTENT_LOG,	/* number of persistent log */
1029 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1030 				/* pinned file that needs consecutive block address */
1031 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1032 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1033 };
1034 
1035 struct flush_cmd {
1036 	struct completion wait;
1037 	struct llist_node llnode;
1038 	nid_t ino;
1039 	int ret;
1040 };
1041 
1042 struct flush_cmd_control {
1043 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1044 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1045 	atomic_t issued_flush;			/* # of issued flushes */
1046 	atomic_t queued_flush;			/* # of queued flushes */
1047 	struct llist_head issue_list;		/* list for command issue */
1048 	struct llist_node *dispatch_list;	/* list for command dispatch */
1049 };
1050 
1051 struct f2fs_sm_info {
1052 	struct sit_info *sit_info;		/* whole segment information */
1053 	struct free_segmap_info *free_info;	/* free segment information */
1054 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1055 	struct curseg_info *curseg_array;	/* active segment information */
1056 
1057 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1058 
1059 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1060 	block_t main_blkaddr;		/* start block address of main area */
1061 	block_t ssa_blkaddr;		/* start block address of SSA area */
1062 
1063 	unsigned int segment_count;	/* total # of segments */
1064 	unsigned int main_segments;	/* # of segments in main area */
1065 	unsigned int reserved_segments;	/* # of reserved segments */
1066 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1067 	unsigned int ovp_segments;	/* # of overprovision segments */
1068 
1069 	/* a threshold to reclaim prefree segments */
1070 	unsigned int rec_prefree_segments;
1071 
1072 	struct list_head sit_entry_set;	/* sit entry set list */
1073 
1074 	unsigned int ipu_policy;	/* in-place-update policy */
1075 	unsigned int min_ipu_util;	/* in-place-update threshold */
1076 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1077 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1078 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1079 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1080 
1081 	/* for flush command control */
1082 	struct flush_cmd_control *fcc_info;
1083 
1084 	/* for discard command control */
1085 	struct discard_cmd_control *dcc_info;
1086 };
1087 
1088 /*
1089  * For superblock
1090  */
1091 /*
1092  * COUNT_TYPE for monitoring
1093  *
1094  * f2fs monitors the number of several block types such as on-writeback,
1095  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1096  */
1097 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1098 enum count_type {
1099 	F2FS_DIRTY_DENTS,
1100 	F2FS_DIRTY_DATA,
1101 	F2FS_DIRTY_QDATA,
1102 	F2FS_DIRTY_NODES,
1103 	F2FS_DIRTY_META,
1104 	F2FS_DIRTY_IMETA,
1105 	F2FS_WB_CP_DATA,
1106 	F2FS_WB_DATA,
1107 	F2FS_RD_DATA,
1108 	F2FS_RD_NODE,
1109 	F2FS_RD_META,
1110 	F2FS_DIO_WRITE,
1111 	F2FS_DIO_READ,
1112 	NR_COUNT_TYPE,
1113 };
1114 
1115 /*
1116  * The below are the page types of bios used in submit_bio().
1117  * The available types are:
1118  * DATA			User data pages. It operates as async mode.
1119  * NODE			Node pages. It operates as async mode.
1120  * META			FS metadata pages such as SIT, NAT, CP.
1121  * NR_PAGE_TYPE		The number of page types.
1122  * META_FLUSH		Make sure the previous pages are written
1123  *			with waiting the bio's completion
1124  * ...			Only can be used with META.
1125  */
1126 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1127 enum page_type {
1128 	DATA = 0,
1129 	NODE = 1,	/* should not change this */
1130 	META,
1131 	NR_PAGE_TYPE,
1132 	META_FLUSH,
1133 	IPU,		/* the below types are used by tracepoints only. */
1134 	OPU,
1135 };
1136 
1137 enum temp_type {
1138 	HOT = 0,	/* must be zero for meta bio */
1139 	WARM,
1140 	COLD,
1141 	NR_TEMP_TYPE,
1142 };
1143 
1144 enum need_lock_type {
1145 	LOCK_REQ = 0,
1146 	LOCK_DONE,
1147 	LOCK_RETRY,
1148 };
1149 
1150 enum cp_reason_type {
1151 	CP_NO_NEEDED,
1152 	CP_NON_REGULAR,
1153 	CP_COMPRESSED,
1154 	CP_HARDLINK,
1155 	CP_SB_NEED_CP,
1156 	CP_WRONG_PINO,
1157 	CP_NO_SPC_ROLL,
1158 	CP_NODE_NEED_CP,
1159 	CP_FASTBOOT_MODE,
1160 	CP_SPEC_LOG_NUM,
1161 	CP_RECOVER_DIR,
1162 };
1163 
1164 enum iostat_type {
1165 	/* WRITE IO */
1166 	APP_DIRECT_IO,			/* app direct write IOs */
1167 	APP_BUFFERED_IO,		/* app buffered write IOs */
1168 	APP_WRITE_IO,			/* app write IOs */
1169 	APP_MAPPED_IO,			/* app mapped IOs */
1170 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1171 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1172 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1173 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1174 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1175 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1176 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1177 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1178 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1179 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1180 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1181 
1182 	/* READ IO */
1183 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1184 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1185 	APP_READ_IO,			/* app read IOs */
1186 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1187 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1188 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1189 	FS_DATA_READ_IO,		/* data read IOs */
1190 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1191 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1192 	FS_NODE_READ_IO,		/* node read IOs */
1193 	FS_META_READ_IO,		/* meta read IOs */
1194 
1195 	/* other */
1196 	FS_DISCARD,			/* discard */
1197 	NR_IO_TYPE,
1198 };
1199 
1200 struct f2fs_io_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1202 	nid_t ino;		/* inode number */
1203 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1204 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1205 	enum req_op op;		/* contains REQ_OP_ */
1206 	blk_opf_t op_flags;	/* req_flag_bits */
1207 	block_t new_blkaddr;	/* new block address to be written */
1208 	block_t old_blkaddr;	/* old block address before Cow */
1209 	struct page *page;	/* page to be written */
1210 	struct page *encrypted_page;	/* encrypted page */
1211 	struct page *compressed_page;	/* compressed page */
1212 	struct list_head list;		/* serialize IOs */
1213 	bool submitted;		/* indicate IO submission */
1214 	int need_lock;		/* indicate we need to lock cp_rwsem */
1215 	bool in_list;		/* indicate fio is in io_list */
1216 	bool is_por;		/* indicate IO is from recovery or not */
1217 	bool retry;		/* need to reallocate block address */
1218 	int compr_blocks;	/* # of compressed block addresses */
1219 	bool encrypted;		/* indicate file is encrypted */
1220 	bool post_read;		/* require post read */
1221 	enum iostat_type io_type;	/* io type */
1222 	struct writeback_control *io_wbc; /* writeback control */
1223 	struct bio **bio;		/* bio for ipu */
1224 	sector_t *last_block;		/* last block number in bio */
1225 	unsigned char version;		/* version of the node */
1226 };
1227 
1228 struct bio_entry {
1229 	struct bio *bio;
1230 	struct list_head list;
1231 };
1232 
1233 #define is_read_io(rw) ((rw) == READ)
1234 struct f2fs_bio_info {
1235 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1236 	struct bio *bio;		/* bios to merge */
1237 	sector_t last_block_in_bio;	/* last block number */
1238 	struct f2fs_io_info fio;	/* store buffered io info. */
1239 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1240 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1241 	struct list_head io_list;	/* track fios */
1242 	struct list_head bio_list;	/* bio entry list head */
1243 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1244 };
1245 
1246 #define FDEV(i)				(sbi->devs[i])
1247 #define RDEV(i)				(raw_super->devs[i])
1248 struct f2fs_dev_info {
1249 	struct block_device *bdev;
1250 	char path[MAX_PATH_LEN];
1251 	unsigned int total_segments;
1252 	block_t start_blk;
1253 	block_t end_blk;
1254 #ifdef CONFIG_BLK_DEV_ZONED
1255 	unsigned int nr_blkz;		/* Total number of zones */
1256 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1257 #endif
1258 };
1259 
1260 enum inode_type {
1261 	DIR_INODE,			/* for dirty dir inode */
1262 	FILE_INODE,			/* for dirty regular/symlink inode */
1263 	DIRTY_META,			/* for all dirtied inode metadata */
1264 	NR_INODE_TYPE,
1265 };
1266 
1267 /* for inner inode cache management */
1268 struct inode_management {
1269 	struct radix_tree_root ino_root;	/* ino entry array */
1270 	spinlock_t ino_lock;			/* for ino entry lock */
1271 	struct list_head ino_list;		/* inode list head */
1272 	unsigned long ino_num;			/* number of entries */
1273 };
1274 
1275 /* for GC_AT */
1276 struct atgc_management {
1277 	bool atgc_enabled;			/* ATGC is enabled or not */
1278 	struct rb_root_cached root;		/* root of victim rb-tree */
1279 	struct list_head victim_list;		/* linked with all victim entries */
1280 	unsigned int victim_count;		/* victim count in rb-tree */
1281 	unsigned int candidate_ratio;		/* candidate ratio */
1282 	unsigned int max_candidate_count;	/* max candidate count */
1283 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1284 	unsigned long long age_threshold;	/* age threshold */
1285 };
1286 
1287 struct f2fs_gc_control {
1288 	unsigned int victim_segno;	/* target victim segment number */
1289 	int init_gc_type;		/* FG_GC or BG_GC */
1290 	bool no_bg_gc;			/* check the space and stop bg_gc */
1291 	bool should_migrate_blocks;	/* should migrate blocks */
1292 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1293 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1294 };
1295 
1296 /* For s_flag in struct f2fs_sb_info */
1297 enum {
1298 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1299 	SBI_IS_CLOSE,				/* specify unmounting */
1300 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1301 	SBI_POR_DOING,				/* recovery is doing or not */
1302 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1303 	SBI_NEED_CP,				/* need to checkpoint */
1304 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1305 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1306 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1307 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1308 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1309 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1310 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1311 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1312 	SBI_IS_FREEZING,			/* freezefs is in process */
1313 };
1314 
1315 enum {
1316 	CP_TIME,
1317 	REQ_TIME,
1318 	DISCARD_TIME,
1319 	GC_TIME,
1320 	DISABLE_TIME,
1321 	UMOUNT_DISCARD_TIMEOUT,
1322 	MAX_TIME,
1323 };
1324 
1325 /* Note that you need to keep synchronization with this gc_mode_names array */
1326 enum {
1327 	GC_NORMAL,
1328 	GC_IDLE_CB,
1329 	GC_IDLE_GREEDY,
1330 	GC_IDLE_AT,
1331 	GC_URGENT_HIGH,
1332 	GC_URGENT_LOW,
1333 	GC_URGENT_MID,
1334 	MAX_GC_MODE,
1335 };
1336 
1337 enum {
1338 	BGGC_MODE_ON,		/* background gc is on */
1339 	BGGC_MODE_OFF,		/* background gc is off */
1340 	BGGC_MODE_SYNC,		/*
1341 				 * background gc is on, migrating blocks
1342 				 * like foreground gc
1343 				 */
1344 };
1345 
1346 enum {
1347 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1348 	FS_MODE_LFS,			/* use lfs allocation only */
1349 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1350 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1351 };
1352 
1353 enum {
1354 	ALLOC_MODE_DEFAULT,	/* stay default */
1355 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1356 };
1357 
1358 enum fsync_mode {
1359 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1360 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1361 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1362 };
1363 
1364 enum {
1365 	COMPR_MODE_FS,		/*
1366 				 * automatically compress compression
1367 				 * enabled files
1368 				 */
1369 	COMPR_MODE_USER,	/*
1370 				 * automatical compression is disabled.
1371 				 * user can control the file compression
1372 				 * using ioctls
1373 				 */
1374 };
1375 
1376 enum {
1377 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1378 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1379 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1380 };
1381 
1382 enum {
1383 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1384 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1385 };
1386 
1387 
1388 
1389 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1390 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1391 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1392 
1393 /*
1394  * Layout of f2fs page.private:
1395  *
1396  * Layout A: lowest bit should be 1
1397  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1398  * bit 0	PAGE_PRIVATE_NOT_POINTER
1399  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1400  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1401  * bit 3	PAGE_PRIVATE_INLINE_INODE
1402  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1403  * bit 5-	f2fs private data
1404  *
1405  * Layout B: lowest bit should be 0
1406  * page.private is a wrapped pointer.
1407  */
1408 enum {
1409 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1410 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1411 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1412 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1413 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1414 	PAGE_PRIVATE_MAX
1415 };
1416 
1417 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1418 static inline bool page_private_##name(struct page *page) \
1419 { \
1420 	return PagePrivate(page) && \
1421 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1422 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1423 }
1424 
1425 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1426 static inline void set_page_private_##name(struct page *page) \
1427 { \
1428 	if (!PagePrivate(page)) { \
1429 		get_page(page); \
1430 		SetPagePrivate(page); \
1431 		set_page_private(page, 0); \
1432 	} \
1433 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1434 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1435 }
1436 
1437 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1438 static inline void clear_page_private_##name(struct page *page) \
1439 { \
1440 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1441 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1442 		set_page_private(page, 0); \
1443 		if (PagePrivate(page)) { \
1444 			ClearPagePrivate(page); \
1445 			put_page(page); \
1446 		}\
1447 	} \
1448 }
1449 
1450 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1451 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1452 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1453 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1454 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1455 
1456 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1457 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1458 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1459 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1460 
1461 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1462 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1463 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1464 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1465 
1466 static inline unsigned long get_page_private_data(struct page *page)
1467 {
1468 	unsigned long data = page_private(page);
1469 
1470 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1471 		return 0;
1472 	return data >> PAGE_PRIVATE_MAX;
1473 }
1474 
1475 static inline void set_page_private_data(struct page *page, unsigned long data)
1476 {
1477 	if (!PagePrivate(page)) {
1478 		get_page(page);
1479 		SetPagePrivate(page);
1480 		set_page_private(page, 0);
1481 	}
1482 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1483 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1484 }
1485 
1486 static inline void clear_page_private_data(struct page *page)
1487 {
1488 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1489 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1490 		set_page_private(page, 0);
1491 		if (PagePrivate(page)) {
1492 			ClearPagePrivate(page);
1493 			put_page(page);
1494 		}
1495 	}
1496 }
1497 
1498 /* For compression */
1499 enum compress_algorithm_type {
1500 	COMPRESS_LZO,
1501 	COMPRESS_LZ4,
1502 	COMPRESS_ZSTD,
1503 	COMPRESS_LZORLE,
1504 	COMPRESS_MAX,
1505 };
1506 
1507 enum compress_flag {
1508 	COMPRESS_CHKSUM,
1509 	COMPRESS_MAX_FLAG,
1510 };
1511 
1512 #define	COMPRESS_WATERMARK			20
1513 #define	COMPRESS_PERCENT			20
1514 
1515 #define COMPRESS_DATA_RESERVED_SIZE		4
1516 struct compress_data {
1517 	__le32 clen;			/* compressed data size */
1518 	__le32 chksum;			/* compressed data chksum */
1519 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1520 	u8 cdata[];			/* compressed data */
1521 };
1522 
1523 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1524 
1525 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1526 
1527 #define	COMPRESS_LEVEL_OFFSET	8
1528 
1529 /* compress context */
1530 struct compress_ctx {
1531 	struct inode *inode;		/* inode the context belong to */
1532 	pgoff_t cluster_idx;		/* cluster index number */
1533 	unsigned int cluster_size;	/* page count in cluster */
1534 	unsigned int log_cluster_size;	/* log of cluster size */
1535 	struct page **rpages;		/* pages store raw data in cluster */
1536 	unsigned int nr_rpages;		/* total page number in rpages */
1537 	struct page **cpages;		/* pages store compressed data in cluster */
1538 	unsigned int nr_cpages;		/* total page number in cpages */
1539 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1540 	void *rbuf;			/* virtual mapped address on rpages */
1541 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1542 	size_t rlen;			/* valid data length in rbuf */
1543 	size_t clen;			/* valid data length in cbuf */
1544 	void *private;			/* payload buffer for specified compression algorithm */
1545 	void *private2;			/* extra payload buffer */
1546 };
1547 
1548 /* compress context for write IO path */
1549 struct compress_io_ctx {
1550 	u32 magic;			/* magic number to indicate page is compressed */
1551 	struct inode *inode;		/* inode the context belong to */
1552 	struct page **rpages;		/* pages store raw data in cluster */
1553 	unsigned int nr_rpages;		/* total page number in rpages */
1554 	atomic_t pending_pages;		/* in-flight compressed page count */
1555 };
1556 
1557 /* Context for decompressing one cluster on the read IO path */
1558 struct decompress_io_ctx {
1559 	u32 magic;			/* magic number to indicate page is compressed */
1560 	struct inode *inode;		/* inode the context belong to */
1561 	pgoff_t cluster_idx;		/* cluster index number */
1562 	unsigned int cluster_size;	/* page count in cluster */
1563 	unsigned int log_cluster_size;	/* log of cluster size */
1564 	struct page **rpages;		/* pages store raw data in cluster */
1565 	unsigned int nr_rpages;		/* total page number in rpages */
1566 	struct page **cpages;		/* pages store compressed data in cluster */
1567 	unsigned int nr_cpages;		/* total page number in cpages */
1568 	struct page **tpages;		/* temp pages to pad holes in cluster */
1569 	void *rbuf;			/* virtual mapped address on rpages */
1570 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1571 	size_t rlen;			/* valid data length in rbuf */
1572 	size_t clen;			/* valid data length in cbuf */
1573 
1574 	/*
1575 	 * The number of compressed pages remaining to be read in this cluster.
1576 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1577 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1578 	 * is decompressed (or an error is reported).
1579 	 *
1580 	 * If an error occurs before all the pages have been submitted for I/O,
1581 	 * then this will never reach 0.  In this case the I/O submitter is
1582 	 * responsible for calling f2fs_decompress_end_io() instead.
1583 	 */
1584 	atomic_t remaining_pages;
1585 
1586 	/*
1587 	 * Number of references to this decompress_io_ctx.
1588 	 *
1589 	 * One reference is held for I/O completion.  This reference is dropped
1590 	 * after the pagecache pages are updated and unlocked -- either after
1591 	 * decompression (and verity if enabled), or after an error.
1592 	 *
1593 	 * In addition, each compressed page holds a reference while it is in a
1594 	 * bio.  These references are necessary prevent compressed pages from
1595 	 * being freed while they are still in a bio.
1596 	 */
1597 	refcount_t refcnt;
1598 
1599 	bool failed;			/* IO error occurred before decompression? */
1600 	bool need_verity;		/* need fs-verity verification after decompression? */
1601 	void *private;			/* payload buffer for specified decompression algorithm */
1602 	void *private2;			/* extra payload buffer */
1603 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1604 	struct work_struct free_work;	/* work for late free this structure itself */
1605 };
1606 
1607 #define NULL_CLUSTER			((unsigned int)(~0))
1608 #define MIN_COMPRESS_LOG_SIZE		2
1609 #define MAX_COMPRESS_LOG_SIZE		8
1610 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1611 
1612 struct f2fs_sb_info {
1613 	struct super_block *sb;			/* pointer to VFS super block */
1614 	struct proc_dir_entry *s_proc;		/* proc entry */
1615 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1616 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1617 	int valid_super_block;			/* valid super block no */
1618 	unsigned long s_flag;				/* flags for sbi */
1619 	struct mutex writepages;		/* mutex for writepages() */
1620 
1621 #ifdef CONFIG_BLK_DEV_ZONED
1622 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1623 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1624 #endif
1625 
1626 	/* for node-related operations */
1627 	struct f2fs_nm_info *nm_info;		/* node manager */
1628 	struct inode *node_inode;		/* cache node blocks */
1629 
1630 	/* for segment-related operations */
1631 	struct f2fs_sm_info *sm_info;		/* segment manager */
1632 
1633 	/* for bio operations */
1634 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1635 	/* keep migration IO order for LFS mode */
1636 	struct f2fs_rwsem io_order_lock;
1637 	mempool_t *write_io_dummy;		/* Dummy pages */
1638 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1639 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1640 
1641 	/* for checkpoint */
1642 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1643 	int cur_cp_pack;			/* remain current cp pack */
1644 	spinlock_t cp_lock;			/* for flag in ckpt */
1645 	struct inode *meta_inode;		/* cache meta blocks */
1646 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1647 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1648 	struct f2fs_rwsem node_write;		/* locking node writes */
1649 	struct f2fs_rwsem node_change;	/* locking node change */
1650 	wait_queue_head_t cp_wait;
1651 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1652 	long interval_time[MAX_TIME];		/* to store thresholds */
1653 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1654 
1655 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1656 
1657 	spinlock_t fsync_node_lock;		/* for node entry lock */
1658 	struct list_head fsync_node_list;	/* node list head */
1659 	unsigned int fsync_seg_id;		/* sequence id */
1660 	unsigned int fsync_node_num;		/* number of node entries */
1661 
1662 	/* for orphan inode, use 0'th array */
1663 	unsigned int max_orphans;		/* max orphan inodes */
1664 
1665 	/* for inode management */
1666 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1667 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1668 	struct mutex flush_lock;		/* for flush exclusion */
1669 
1670 	/* for extent tree cache */
1671 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1672 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1673 
1674 	/* The threshold used for hot and warm data seperation*/
1675 	unsigned int hot_data_age_threshold;
1676 	unsigned int warm_data_age_threshold;
1677 
1678 	/* basic filesystem units */
1679 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1680 	unsigned int log_blocksize;		/* log2 block size */
1681 	unsigned int blocksize;			/* block size */
1682 	unsigned int root_ino_num;		/* root inode number*/
1683 	unsigned int node_ino_num;		/* node inode number*/
1684 	unsigned int meta_ino_num;		/* meta inode number*/
1685 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1686 	unsigned int blocks_per_seg;		/* blocks per segment */
1687 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1688 	unsigned int segs_per_sec;		/* segments per section */
1689 	unsigned int secs_per_zone;		/* sections per zone */
1690 	unsigned int total_sections;		/* total section count */
1691 	unsigned int total_node_count;		/* total node block count */
1692 	unsigned int total_valid_node_count;	/* valid node block count */
1693 	int dir_level;				/* directory level */
1694 	bool readdir_ra;			/* readahead inode in readdir */
1695 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1696 
1697 	block_t user_block_count;		/* # of user blocks */
1698 	block_t total_valid_block_count;	/* # of valid blocks */
1699 	block_t discard_blks;			/* discard command candidats */
1700 	block_t last_valid_block_count;		/* for recovery */
1701 	block_t reserved_blocks;		/* configurable reserved blocks */
1702 	block_t current_reserved_blocks;	/* current reserved blocks */
1703 
1704 	/* Additional tracking for no checkpoint mode */
1705 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1706 
1707 	unsigned int nquota_files;		/* # of quota sysfile */
1708 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1709 
1710 	/* # of pages, see count_type */
1711 	atomic_t nr_pages[NR_COUNT_TYPE];
1712 	/* # of allocated blocks */
1713 	struct percpu_counter alloc_valid_block_count;
1714 	/* # of node block writes as roll forward recovery */
1715 	struct percpu_counter rf_node_block_count;
1716 
1717 	/* writeback control */
1718 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1719 
1720 	/* valid inode count */
1721 	struct percpu_counter total_valid_inode_count;
1722 
1723 	struct f2fs_mount_info mount_opt;	/* mount options */
1724 
1725 	/* for cleaning operations */
1726 	struct f2fs_rwsem gc_lock;		/*
1727 						 * semaphore for GC, avoid
1728 						 * race between GC and GC or CP
1729 						 */
1730 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1731 	struct atgc_management am;		/* atgc management */
1732 	unsigned int cur_victim_sec;		/* current victim section num */
1733 	unsigned int gc_mode;			/* current GC state */
1734 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1735 	spinlock_t gc_remaining_trials_lock;
1736 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1737 	unsigned int gc_remaining_trials;
1738 
1739 	/* for skip statistic */
1740 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1741 
1742 	/* threshold for gc trials on pinned files */
1743 	u64 gc_pin_file_threshold;
1744 	struct f2fs_rwsem pin_sem;
1745 
1746 	/* maximum # of trials to find a victim segment for SSR and GC */
1747 	unsigned int max_victim_search;
1748 	/* migration granularity of garbage collection, unit: segment */
1749 	unsigned int migration_granularity;
1750 
1751 	/*
1752 	 * for stat information.
1753 	 * one is for the LFS mode, and the other is for the SSR mode.
1754 	 */
1755 #ifdef CONFIG_F2FS_STAT_FS
1756 	struct f2fs_stat_info *stat_info;	/* FS status information */
1757 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1758 	unsigned int segment_count[2];		/* # of allocated segments */
1759 	unsigned int block_count[2];		/* # of allocated blocks */
1760 	atomic_t inplace_count;		/* # of inplace update */
1761 	/* # of lookup extent cache */
1762 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1763 	/* # of hit rbtree extent node */
1764 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1765 	/* # of hit cached extent node */
1766 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1767 	/* # of hit largest extent node in read extent cache */
1768 	atomic64_t read_hit_largest;
1769 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1770 	atomic_t inline_inode;			/* # of inline_data inodes */
1771 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1772 	atomic_t compr_inode;			/* # of compressed inodes */
1773 	atomic64_t compr_blocks;		/* # of compressed blocks */
1774 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1775 	atomic_t atomic_files;			/* # of opened atomic file */
1776 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1777 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1778 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1779 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1780 #endif
1781 	spinlock_t stat_lock;			/* lock for stat operations */
1782 
1783 	/* to attach REQ_META|REQ_FUA flags */
1784 	unsigned int data_io_flag;
1785 	unsigned int node_io_flag;
1786 
1787 	/* For sysfs support */
1788 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1789 	struct completion s_kobj_unregister;
1790 
1791 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1792 	struct completion s_stat_kobj_unregister;
1793 
1794 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1795 	struct completion s_feature_list_kobj_unregister;
1796 
1797 	/* For shrinker support */
1798 	struct list_head s_list;
1799 	struct mutex umount_mutex;
1800 	unsigned int shrinker_run_no;
1801 
1802 	/* For multi devices */
1803 	int s_ndevs;				/* number of devices */
1804 	struct f2fs_dev_info *devs;		/* for device list */
1805 	unsigned int dirty_device;		/* for checkpoint data flush */
1806 	spinlock_t dev_lock;			/* protect dirty_device */
1807 	bool aligned_blksize;			/* all devices has the same logical blksize */
1808 
1809 	/* For write statistics */
1810 	u64 sectors_written_start;
1811 	u64 kbytes_written;
1812 
1813 	/* Reference to checksum algorithm driver via cryptoapi */
1814 	struct crypto_shash *s_chksum_driver;
1815 
1816 	/* Precomputed FS UUID checksum for seeding other checksums */
1817 	__u32 s_chksum_seed;
1818 
1819 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1820 
1821 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1822 	spinlock_t error_lock;			/* protect errors array */
1823 	bool error_dirty;			/* errors of sb is dirty */
1824 
1825 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1826 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1827 
1828 	/* For reclaimed segs statistics per each GC mode */
1829 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1830 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1831 
1832 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1833 
1834 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1835 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1836 
1837 	/* For atomic write statistics */
1838 	atomic64_t current_atomic_write;
1839 	s64 peak_atomic_write;
1840 	u64 committed_atomic_block;
1841 	u64 revoked_atomic_block;
1842 
1843 #ifdef CONFIG_F2FS_FS_COMPRESSION
1844 	struct kmem_cache *page_array_slab;	/* page array entry */
1845 	unsigned int page_array_slab_size;	/* default page array slab size */
1846 
1847 	/* For runtime compression statistics */
1848 	u64 compr_written_block;
1849 	u64 compr_saved_block;
1850 	u32 compr_new_inode;
1851 
1852 	/* For compressed block cache */
1853 	struct inode *compress_inode;		/* cache compressed blocks */
1854 	unsigned int compress_percent;		/* cache page percentage */
1855 	unsigned int compress_watermark;	/* cache page watermark */
1856 	atomic_t compress_page_hit;		/* cache hit count */
1857 #endif
1858 
1859 #ifdef CONFIG_F2FS_IOSTAT
1860 	/* For app/fs IO statistics */
1861 	spinlock_t iostat_lock;
1862 	unsigned long long rw_iostat[NR_IO_TYPE];
1863 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1864 	bool iostat_enable;
1865 	unsigned long iostat_next_period;
1866 	unsigned int iostat_period_ms;
1867 
1868 	/* For io latency related statistics info in one iostat period */
1869 	spinlock_t iostat_lat_lock;
1870 	struct iostat_lat_info *iostat_io_lat;
1871 #endif
1872 };
1873 
1874 #ifdef CONFIG_F2FS_FAULT_INJECTION
1875 #define f2fs_show_injection_info(sbi, type)					\
1876 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1877 		KERN_INFO, sbi->sb->s_id,				\
1878 		f2fs_fault_name[type],					\
1879 		__func__, __builtin_return_address(0))
1880 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1881 {
1882 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1883 
1884 	if (!ffi->inject_rate)
1885 		return false;
1886 
1887 	if (!IS_FAULT_SET(ffi, type))
1888 		return false;
1889 
1890 	atomic_inc(&ffi->inject_ops);
1891 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1892 		atomic_set(&ffi->inject_ops, 0);
1893 		return true;
1894 	}
1895 	return false;
1896 }
1897 #else
1898 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1899 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1900 {
1901 	return false;
1902 }
1903 #endif
1904 
1905 /*
1906  * Test if the mounted volume is a multi-device volume.
1907  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1908  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1909  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1910  */
1911 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1912 {
1913 	return sbi->s_ndevs > 1;
1914 }
1915 
1916 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1917 {
1918 	unsigned long now = jiffies;
1919 
1920 	sbi->last_time[type] = now;
1921 
1922 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1923 	if (type == REQ_TIME) {
1924 		sbi->last_time[DISCARD_TIME] = now;
1925 		sbi->last_time[GC_TIME] = now;
1926 	}
1927 }
1928 
1929 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1930 {
1931 	unsigned long interval = sbi->interval_time[type] * HZ;
1932 
1933 	return time_after(jiffies, sbi->last_time[type] + interval);
1934 }
1935 
1936 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1937 						int type)
1938 {
1939 	unsigned long interval = sbi->interval_time[type] * HZ;
1940 	unsigned int wait_ms = 0;
1941 	long delta;
1942 
1943 	delta = (sbi->last_time[type] + interval) - jiffies;
1944 	if (delta > 0)
1945 		wait_ms = jiffies_to_msecs(delta);
1946 
1947 	return wait_ms;
1948 }
1949 
1950 /*
1951  * Inline functions
1952  */
1953 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1954 			      const void *address, unsigned int length)
1955 {
1956 	struct {
1957 		struct shash_desc shash;
1958 		char ctx[4];
1959 	} desc;
1960 	int err;
1961 
1962 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1963 
1964 	desc.shash.tfm = sbi->s_chksum_driver;
1965 	*(u32 *)desc.ctx = crc;
1966 
1967 	err = crypto_shash_update(&desc.shash, address, length);
1968 	BUG_ON(err);
1969 
1970 	return *(u32 *)desc.ctx;
1971 }
1972 
1973 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1974 			   unsigned int length)
1975 {
1976 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1977 }
1978 
1979 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1980 				  void *buf, size_t buf_size)
1981 {
1982 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1983 }
1984 
1985 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1986 			      const void *address, unsigned int length)
1987 {
1988 	return __f2fs_crc32(sbi, crc, address, length);
1989 }
1990 
1991 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1992 {
1993 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1994 }
1995 
1996 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1997 {
1998 	return sb->s_fs_info;
1999 }
2000 
2001 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2002 {
2003 	return F2FS_SB(inode->i_sb);
2004 }
2005 
2006 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2007 {
2008 	return F2FS_I_SB(mapping->host);
2009 }
2010 
2011 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2012 {
2013 	return F2FS_M_SB(page_file_mapping(page));
2014 }
2015 
2016 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2017 {
2018 	return (struct f2fs_super_block *)(sbi->raw_super);
2019 }
2020 
2021 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2024 }
2025 
2026 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2027 {
2028 	return (struct f2fs_node *)page_address(page);
2029 }
2030 
2031 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2032 {
2033 	return &((struct f2fs_node *)page_address(page))->i;
2034 }
2035 
2036 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2037 {
2038 	return (struct f2fs_nm_info *)(sbi->nm_info);
2039 }
2040 
2041 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2042 {
2043 	return (struct f2fs_sm_info *)(sbi->sm_info);
2044 }
2045 
2046 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2047 {
2048 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2049 }
2050 
2051 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2052 {
2053 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2054 }
2055 
2056 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2057 {
2058 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2059 }
2060 
2061 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2062 {
2063 	return sbi->meta_inode->i_mapping;
2064 }
2065 
2066 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2067 {
2068 	return sbi->node_inode->i_mapping;
2069 }
2070 
2071 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2072 {
2073 	return test_bit(type, &sbi->s_flag);
2074 }
2075 
2076 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2077 {
2078 	set_bit(type, &sbi->s_flag);
2079 }
2080 
2081 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082 {
2083 	clear_bit(type, &sbi->s_flag);
2084 }
2085 
2086 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2087 {
2088 	return le64_to_cpu(cp->checkpoint_ver);
2089 }
2090 
2091 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2092 {
2093 	if (type < F2FS_MAX_QUOTAS)
2094 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2095 	return 0;
2096 }
2097 
2098 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2099 {
2100 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2101 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2102 }
2103 
2104 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105 {
2106 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2107 
2108 	return ckpt_flags & f;
2109 }
2110 
2111 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2112 {
2113 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2114 }
2115 
2116 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2117 {
2118 	unsigned int ckpt_flags;
2119 
2120 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121 	ckpt_flags |= f;
2122 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2123 }
2124 
2125 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126 {
2127 	unsigned long flags;
2128 
2129 	spin_lock_irqsave(&sbi->cp_lock, flags);
2130 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2131 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2132 }
2133 
2134 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2135 {
2136 	unsigned int ckpt_flags;
2137 
2138 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2139 	ckpt_flags &= (~f);
2140 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2141 }
2142 
2143 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2144 {
2145 	unsigned long flags;
2146 
2147 	spin_lock_irqsave(&sbi->cp_lock, flags);
2148 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2149 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2150 }
2151 
2152 #define init_f2fs_rwsem(sem)					\
2153 do {								\
2154 	static struct lock_class_key __key;			\
2155 								\
2156 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2157 } while (0)
2158 
2159 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2160 		const char *sem_name, struct lock_class_key *key)
2161 {
2162 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2163 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2164 	init_waitqueue_head(&sem->read_waiters);
2165 #endif
2166 }
2167 
2168 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2169 {
2170 	return rwsem_is_locked(&sem->internal_rwsem);
2171 }
2172 
2173 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2174 {
2175 	return rwsem_is_contended(&sem->internal_rwsem);
2176 }
2177 
2178 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2179 {
2180 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2181 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2182 #else
2183 	down_read(&sem->internal_rwsem);
2184 #endif
2185 }
2186 
2187 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2188 {
2189 	return down_read_trylock(&sem->internal_rwsem);
2190 }
2191 
2192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2193 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2194 {
2195 	down_read_nested(&sem->internal_rwsem, subclass);
2196 }
2197 #else
2198 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2199 #endif
2200 
2201 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2202 {
2203 	up_read(&sem->internal_rwsem);
2204 }
2205 
2206 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2207 {
2208 	down_write(&sem->internal_rwsem);
2209 }
2210 
2211 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2212 {
2213 	return down_write_trylock(&sem->internal_rwsem);
2214 }
2215 
2216 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2217 {
2218 	up_write(&sem->internal_rwsem);
2219 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2220 	wake_up_all(&sem->read_waiters);
2221 #endif
2222 }
2223 
2224 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2225 {
2226 	f2fs_down_read(&sbi->cp_rwsem);
2227 }
2228 
2229 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2230 {
2231 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2232 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2233 		return 0;
2234 	}
2235 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2236 }
2237 
2238 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2239 {
2240 	f2fs_up_read(&sbi->cp_rwsem);
2241 }
2242 
2243 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2244 {
2245 	f2fs_down_write(&sbi->cp_rwsem);
2246 }
2247 
2248 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2249 {
2250 	f2fs_up_write(&sbi->cp_rwsem);
2251 }
2252 
2253 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2254 {
2255 	int reason = CP_SYNC;
2256 
2257 	if (test_opt(sbi, FASTBOOT))
2258 		reason = CP_FASTBOOT;
2259 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2260 		reason = CP_UMOUNT;
2261 	return reason;
2262 }
2263 
2264 static inline bool __remain_node_summaries(int reason)
2265 {
2266 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2267 }
2268 
2269 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2270 {
2271 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2272 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2273 }
2274 
2275 /*
2276  * Check whether the inode has blocks or not
2277  */
2278 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2279 {
2280 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2281 
2282 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2283 }
2284 
2285 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2286 {
2287 	return ofs == XATTR_NODE_OFFSET;
2288 }
2289 
2290 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2291 					struct inode *inode, bool cap)
2292 {
2293 	if (!inode)
2294 		return true;
2295 	if (!test_opt(sbi, RESERVE_ROOT))
2296 		return false;
2297 	if (IS_NOQUOTA(inode))
2298 		return true;
2299 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2300 		return true;
2301 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2302 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2303 		return true;
2304 	if (cap && capable(CAP_SYS_RESOURCE))
2305 		return true;
2306 	return false;
2307 }
2308 
2309 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2310 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2311 				 struct inode *inode, blkcnt_t *count)
2312 {
2313 	blkcnt_t diff = 0, release = 0;
2314 	block_t avail_user_block_count;
2315 	int ret;
2316 
2317 	ret = dquot_reserve_block(inode, *count);
2318 	if (ret)
2319 		return ret;
2320 
2321 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2322 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2323 		release = *count;
2324 		goto release_quota;
2325 	}
2326 
2327 	/*
2328 	 * let's increase this in prior to actual block count change in order
2329 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2330 	 */
2331 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2332 
2333 	spin_lock(&sbi->stat_lock);
2334 	sbi->total_valid_block_count += (block_t)(*count);
2335 	avail_user_block_count = sbi->user_block_count -
2336 					sbi->current_reserved_blocks;
2337 
2338 	if (!__allow_reserved_blocks(sbi, inode, true))
2339 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2340 
2341 	if (F2FS_IO_ALIGNED(sbi))
2342 		avail_user_block_count -= sbi->blocks_per_seg *
2343 				SM_I(sbi)->additional_reserved_segments;
2344 
2345 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2346 		if (avail_user_block_count > sbi->unusable_block_count)
2347 			avail_user_block_count -= sbi->unusable_block_count;
2348 		else
2349 			avail_user_block_count = 0;
2350 	}
2351 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2352 		diff = sbi->total_valid_block_count - avail_user_block_count;
2353 		if (diff > *count)
2354 			diff = *count;
2355 		*count -= diff;
2356 		release = diff;
2357 		sbi->total_valid_block_count -= diff;
2358 		if (!*count) {
2359 			spin_unlock(&sbi->stat_lock);
2360 			goto enospc;
2361 		}
2362 	}
2363 	spin_unlock(&sbi->stat_lock);
2364 
2365 	if (unlikely(release)) {
2366 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2367 		dquot_release_reservation_block(inode, release);
2368 	}
2369 	f2fs_i_blocks_write(inode, *count, true, true);
2370 	return 0;
2371 
2372 enospc:
2373 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2374 release_quota:
2375 	dquot_release_reservation_block(inode, release);
2376 	return -ENOSPC;
2377 }
2378 
2379 __printf(2, 3)
2380 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2381 
2382 #define f2fs_err(sbi, fmt, ...)						\
2383 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2384 #define f2fs_warn(sbi, fmt, ...)					\
2385 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2386 #define f2fs_notice(sbi, fmt, ...)					\
2387 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2388 #define f2fs_info(sbi, fmt, ...)					\
2389 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2390 #define f2fs_debug(sbi, fmt, ...)					\
2391 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2392 
2393 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2394 						struct inode *inode,
2395 						block_t count)
2396 {
2397 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2398 
2399 	spin_lock(&sbi->stat_lock);
2400 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2401 	sbi->total_valid_block_count -= (block_t)count;
2402 	if (sbi->reserved_blocks &&
2403 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2404 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2405 					sbi->current_reserved_blocks + count);
2406 	spin_unlock(&sbi->stat_lock);
2407 	if (unlikely(inode->i_blocks < sectors)) {
2408 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2409 			  inode->i_ino,
2410 			  (unsigned long long)inode->i_blocks,
2411 			  (unsigned long long)sectors);
2412 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2413 		return;
2414 	}
2415 	f2fs_i_blocks_write(inode, count, false, true);
2416 }
2417 
2418 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2419 {
2420 	atomic_inc(&sbi->nr_pages[count_type]);
2421 
2422 	if (count_type == F2FS_DIRTY_DENTS ||
2423 			count_type == F2FS_DIRTY_NODES ||
2424 			count_type == F2FS_DIRTY_META ||
2425 			count_type == F2FS_DIRTY_QDATA ||
2426 			count_type == F2FS_DIRTY_IMETA)
2427 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2428 }
2429 
2430 static inline void inode_inc_dirty_pages(struct inode *inode)
2431 {
2432 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2433 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2434 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2435 	if (IS_NOQUOTA(inode))
2436 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2437 }
2438 
2439 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2440 {
2441 	atomic_dec(&sbi->nr_pages[count_type]);
2442 }
2443 
2444 static inline void inode_dec_dirty_pages(struct inode *inode)
2445 {
2446 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2447 			!S_ISLNK(inode->i_mode))
2448 		return;
2449 
2450 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2451 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2452 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2453 	if (IS_NOQUOTA(inode))
2454 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2455 }
2456 
2457 static inline void inc_atomic_write_cnt(struct inode *inode)
2458 {
2459 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2460 	struct f2fs_inode_info *fi = F2FS_I(inode);
2461 	u64 current_write;
2462 
2463 	fi->atomic_write_cnt++;
2464 	atomic64_inc(&sbi->current_atomic_write);
2465 	current_write = atomic64_read(&sbi->current_atomic_write);
2466 	if (current_write > sbi->peak_atomic_write)
2467 		sbi->peak_atomic_write = current_write;
2468 }
2469 
2470 static inline void release_atomic_write_cnt(struct inode *inode)
2471 {
2472 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2473 	struct f2fs_inode_info *fi = F2FS_I(inode);
2474 
2475 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2476 	fi->atomic_write_cnt = 0;
2477 }
2478 
2479 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2480 {
2481 	return atomic_read(&sbi->nr_pages[count_type]);
2482 }
2483 
2484 static inline int get_dirty_pages(struct inode *inode)
2485 {
2486 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2487 }
2488 
2489 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2490 {
2491 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2492 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2493 						sbi->log_blocks_per_seg;
2494 
2495 	return segs / sbi->segs_per_sec;
2496 }
2497 
2498 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2499 {
2500 	return sbi->total_valid_block_count;
2501 }
2502 
2503 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2504 {
2505 	return sbi->discard_blks;
2506 }
2507 
2508 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2509 {
2510 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2511 
2512 	/* return NAT or SIT bitmap */
2513 	if (flag == NAT_BITMAP)
2514 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2515 	else if (flag == SIT_BITMAP)
2516 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2517 
2518 	return 0;
2519 }
2520 
2521 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2522 {
2523 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2524 }
2525 
2526 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2527 {
2528 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2529 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2530 	int offset;
2531 
2532 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2533 		offset = (flag == SIT_BITMAP) ?
2534 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2535 		/*
2536 		 * if large_nat_bitmap feature is enabled, leave checksum
2537 		 * protection for all nat/sit bitmaps.
2538 		 */
2539 		return tmp_ptr + offset + sizeof(__le32);
2540 	}
2541 
2542 	if (__cp_payload(sbi) > 0) {
2543 		if (flag == NAT_BITMAP)
2544 			return tmp_ptr;
2545 		else
2546 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2547 	} else {
2548 		offset = (flag == NAT_BITMAP) ?
2549 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2550 		return tmp_ptr + offset;
2551 	}
2552 }
2553 
2554 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2555 {
2556 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2557 
2558 	if (sbi->cur_cp_pack == 2)
2559 		start_addr += sbi->blocks_per_seg;
2560 	return start_addr;
2561 }
2562 
2563 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2564 {
2565 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2566 
2567 	if (sbi->cur_cp_pack == 1)
2568 		start_addr += sbi->blocks_per_seg;
2569 	return start_addr;
2570 }
2571 
2572 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2573 {
2574 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2575 }
2576 
2577 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2578 {
2579 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2580 }
2581 
2582 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2583 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2584 					struct inode *inode, bool is_inode)
2585 {
2586 	block_t	valid_block_count;
2587 	unsigned int valid_node_count, user_block_count;
2588 	int err;
2589 
2590 	if (is_inode) {
2591 		if (inode) {
2592 			err = dquot_alloc_inode(inode);
2593 			if (err)
2594 				return err;
2595 		}
2596 	} else {
2597 		err = dquot_reserve_block(inode, 1);
2598 		if (err)
2599 			return err;
2600 	}
2601 
2602 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2603 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2604 		goto enospc;
2605 	}
2606 
2607 	spin_lock(&sbi->stat_lock);
2608 
2609 	valid_block_count = sbi->total_valid_block_count +
2610 					sbi->current_reserved_blocks + 1;
2611 
2612 	if (!__allow_reserved_blocks(sbi, inode, false))
2613 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2614 
2615 	if (F2FS_IO_ALIGNED(sbi))
2616 		valid_block_count += sbi->blocks_per_seg *
2617 				SM_I(sbi)->additional_reserved_segments;
2618 
2619 	user_block_count = sbi->user_block_count;
2620 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2621 		user_block_count -= sbi->unusable_block_count;
2622 
2623 	if (unlikely(valid_block_count > user_block_count)) {
2624 		spin_unlock(&sbi->stat_lock);
2625 		goto enospc;
2626 	}
2627 
2628 	valid_node_count = sbi->total_valid_node_count + 1;
2629 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2630 		spin_unlock(&sbi->stat_lock);
2631 		goto enospc;
2632 	}
2633 
2634 	sbi->total_valid_node_count++;
2635 	sbi->total_valid_block_count++;
2636 	spin_unlock(&sbi->stat_lock);
2637 
2638 	if (inode) {
2639 		if (is_inode)
2640 			f2fs_mark_inode_dirty_sync(inode, true);
2641 		else
2642 			f2fs_i_blocks_write(inode, 1, true, true);
2643 	}
2644 
2645 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2646 	return 0;
2647 
2648 enospc:
2649 	if (is_inode) {
2650 		if (inode)
2651 			dquot_free_inode(inode);
2652 	} else {
2653 		dquot_release_reservation_block(inode, 1);
2654 	}
2655 	return -ENOSPC;
2656 }
2657 
2658 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2659 					struct inode *inode, bool is_inode)
2660 {
2661 	spin_lock(&sbi->stat_lock);
2662 
2663 	if (unlikely(!sbi->total_valid_block_count ||
2664 			!sbi->total_valid_node_count)) {
2665 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2666 			  sbi->total_valid_block_count,
2667 			  sbi->total_valid_node_count);
2668 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2669 	} else {
2670 		sbi->total_valid_block_count--;
2671 		sbi->total_valid_node_count--;
2672 	}
2673 
2674 	if (sbi->reserved_blocks &&
2675 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2676 		sbi->current_reserved_blocks++;
2677 
2678 	spin_unlock(&sbi->stat_lock);
2679 
2680 	if (is_inode) {
2681 		dquot_free_inode(inode);
2682 	} else {
2683 		if (unlikely(inode->i_blocks == 0)) {
2684 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2685 				  inode->i_ino,
2686 				  (unsigned long long)inode->i_blocks);
2687 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2688 			return;
2689 		}
2690 		f2fs_i_blocks_write(inode, 1, false, true);
2691 	}
2692 }
2693 
2694 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2695 {
2696 	return sbi->total_valid_node_count;
2697 }
2698 
2699 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2700 {
2701 	percpu_counter_inc(&sbi->total_valid_inode_count);
2702 }
2703 
2704 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2705 {
2706 	percpu_counter_dec(&sbi->total_valid_inode_count);
2707 }
2708 
2709 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2710 {
2711 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2712 }
2713 
2714 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2715 						pgoff_t index, bool for_write)
2716 {
2717 	struct page *page;
2718 	unsigned int flags;
2719 
2720 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2721 		if (!for_write)
2722 			page = find_get_page_flags(mapping, index,
2723 							FGP_LOCK | FGP_ACCESSED);
2724 		else
2725 			page = find_lock_page(mapping, index);
2726 		if (page)
2727 			return page;
2728 
2729 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2730 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2731 							FAULT_PAGE_ALLOC);
2732 			return NULL;
2733 		}
2734 	}
2735 
2736 	if (!for_write)
2737 		return grab_cache_page(mapping, index);
2738 
2739 	flags = memalloc_nofs_save();
2740 	page = grab_cache_page_write_begin(mapping, index);
2741 	memalloc_nofs_restore(flags);
2742 
2743 	return page;
2744 }
2745 
2746 static inline struct page *f2fs_pagecache_get_page(
2747 				struct address_space *mapping, pgoff_t index,
2748 				int fgp_flags, gfp_t gfp_mask)
2749 {
2750 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2751 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2752 		return NULL;
2753 	}
2754 
2755 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2756 }
2757 
2758 static inline void f2fs_put_page(struct page *page, int unlock)
2759 {
2760 	if (!page)
2761 		return;
2762 
2763 	if (unlock) {
2764 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2765 		unlock_page(page);
2766 	}
2767 	put_page(page);
2768 }
2769 
2770 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2771 {
2772 	if (dn->node_page)
2773 		f2fs_put_page(dn->node_page, 1);
2774 	if (dn->inode_page && dn->node_page != dn->inode_page)
2775 		f2fs_put_page(dn->inode_page, 0);
2776 	dn->node_page = NULL;
2777 	dn->inode_page = NULL;
2778 }
2779 
2780 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2781 					size_t size)
2782 {
2783 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2784 }
2785 
2786 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2787 						gfp_t flags)
2788 {
2789 	void *entry;
2790 
2791 	entry = kmem_cache_alloc(cachep, flags);
2792 	if (!entry)
2793 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2794 	return entry;
2795 }
2796 
2797 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2798 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2799 {
2800 	if (nofail)
2801 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2802 
2803 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2804 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2805 		return NULL;
2806 	}
2807 
2808 	return kmem_cache_alloc(cachep, flags);
2809 }
2810 
2811 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2812 {
2813 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2814 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2815 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2816 		get_pages(sbi, F2FS_DIO_READ) ||
2817 		get_pages(sbi, F2FS_DIO_WRITE))
2818 		return true;
2819 
2820 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2821 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2822 		return true;
2823 
2824 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2825 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2826 		return true;
2827 	return false;
2828 }
2829 
2830 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2831 {
2832 	if (sbi->gc_mode == GC_URGENT_HIGH)
2833 		return true;
2834 
2835 	if (is_inflight_io(sbi, type))
2836 		return false;
2837 
2838 	if (sbi->gc_mode == GC_URGENT_MID)
2839 		return true;
2840 
2841 	if (sbi->gc_mode == GC_URGENT_LOW &&
2842 			(type == DISCARD_TIME || type == GC_TIME))
2843 		return true;
2844 
2845 	return f2fs_time_over(sbi, type);
2846 }
2847 
2848 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2849 				unsigned long index, void *item)
2850 {
2851 	while (radix_tree_insert(root, index, item))
2852 		cond_resched();
2853 }
2854 
2855 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2856 
2857 static inline bool IS_INODE(struct page *page)
2858 {
2859 	struct f2fs_node *p = F2FS_NODE(page);
2860 
2861 	return RAW_IS_INODE(p);
2862 }
2863 
2864 static inline int offset_in_addr(struct f2fs_inode *i)
2865 {
2866 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2867 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2868 }
2869 
2870 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2871 {
2872 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2873 }
2874 
2875 static inline int f2fs_has_extra_attr(struct inode *inode);
2876 static inline block_t data_blkaddr(struct inode *inode,
2877 			struct page *node_page, unsigned int offset)
2878 {
2879 	struct f2fs_node *raw_node;
2880 	__le32 *addr_array;
2881 	int base = 0;
2882 	bool is_inode = IS_INODE(node_page);
2883 
2884 	raw_node = F2FS_NODE(node_page);
2885 
2886 	if (is_inode) {
2887 		if (!inode)
2888 			/* from GC path only */
2889 			base = offset_in_addr(&raw_node->i);
2890 		else if (f2fs_has_extra_attr(inode))
2891 			base = get_extra_isize(inode);
2892 	}
2893 
2894 	addr_array = blkaddr_in_node(raw_node);
2895 	return le32_to_cpu(addr_array[base + offset]);
2896 }
2897 
2898 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2899 {
2900 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2901 }
2902 
2903 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2904 {
2905 	int mask;
2906 
2907 	addr += (nr >> 3);
2908 	mask = 1 << (7 - (nr & 0x07));
2909 	return mask & *addr;
2910 }
2911 
2912 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2913 {
2914 	int mask;
2915 
2916 	addr += (nr >> 3);
2917 	mask = 1 << (7 - (nr & 0x07));
2918 	*addr |= mask;
2919 }
2920 
2921 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2922 {
2923 	int mask;
2924 
2925 	addr += (nr >> 3);
2926 	mask = 1 << (7 - (nr & 0x07));
2927 	*addr &= ~mask;
2928 }
2929 
2930 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2931 {
2932 	int mask;
2933 	int ret;
2934 
2935 	addr += (nr >> 3);
2936 	mask = 1 << (7 - (nr & 0x07));
2937 	ret = mask & *addr;
2938 	*addr |= mask;
2939 	return ret;
2940 }
2941 
2942 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2943 {
2944 	int mask;
2945 	int ret;
2946 
2947 	addr += (nr >> 3);
2948 	mask = 1 << (7 - (nr & 0x07));
2949 	ret = mask & *addr;
2950 	*addr &= ~mask;
2951 	return ret;
2952 }
2953 
2954 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2955 {
2956 	int mask;
2957 
2958 	addr += (nr >> 3);
2959 	mask = 1 << (7 - (nr & 0x07));
2960 	*addr ^= mask;
2961 }
2962 
2963 /*
2964  * On-disk inode flags (f2fs_inode::i_flags)
2965  */
2966 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2967 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2968 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2969 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2970 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2971 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2972 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2973 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2974 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2975 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2976 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2977 
2978 /* Flags that should be inherited by new inodes from their parent. */
2979 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2980 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2981 			   F2FS_CASEFOLD_FL)
2982 
2983 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2984 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2985 				F2FS_CASEFOLD_FL))
2986 
2987 /* Flags that are appropriate for non-directories/regular files. */
2988 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2989 
2990 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2991 {
2992 	if (S_ISDIR(mode))
2993 		return flags;
2994 	else if (S_ISREG(mode))
2995 		return flags & F2FS_REG_FLMASK;
2996 	else
2997 		return flags & F2FS_OTHER_FLMASK;
2998 }
2999 
3000 static inline void __mark_inode_dirty_flag(struct inode *inode,
3001 						int flag, bool set)
3002 {
3003 	switch (flag) {
3004 	case FI_INLINE_XATTR:
3005 	case FI_INLINE_DATA:
3006 	case FI_INLINE_DENTRY:
3007 	case FI_NEW_INODE:
3008 		if (set)
3009 			return;
3010 		fallthrough;
3011 	case FI_DATA_EXIST:
3012 	case FI_INLINE_DOTS:
3013 	case FI_PIN_FILE:
3014 	case FI_COMPRESS_RELEASED:
3015 		f2fs_mark_inode_dirty_sync(inode, true);
3016 	}
3017 }
3018 
3019 static inline void set_inode_flag(struct inode *inode, int flag)
3020 {
3021 	set_bit(flag, F2FS_I(inode)->flags);
3022 	__mark_inode_dirty_flag(inode, flag, true);
3023 }
3024 
3025 static inline int is_inode_flag_set(struct inode *inode, int flag)
3026 {
3027 	return test_bit(flag, F2FS_I(inode)->flags);
3028 }
3029 
3030 static inline void clear_inode_flag(struct inode *inode, int flag)
3031 {
3032 	clear_bit(flag, F2FS_I(inode)->flags);
3033 	__mark_inode_dirty_flag(inode, flag, false);
3034 }
3035 
3036 static inline bool f2fs_verity_in_progress(struct inode *inode)
3037 {
3038 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3039 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3040 }
3041 
3042 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3043 {
3044 	F2FS_I(inode)->i_acl_mode = mode;
3045 	set_inode_flag(inode, FI_ACL_MODE);
3046 	f2fs_mark_inode_dirty_sync(inode, false);
3047 }
3048 
3049 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3050 {
3051 	if (inc)
3052 		inc_nlink(inode);
3053 	else
3054 		drop_nlink(inode);
3055 	f2fs_mark_inode_dirty_sync(inode, true);
3056 }
3057 
3058 static inline void f2fs_i_blocks_write(struct inode *inode,
3059 					block_t diff, bool add, bool claim)
3060 {
3061 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3062 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3063 
3064 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3065 	if (add) {
3066 		if (claim)
3067 			dquot_claim_block(inode, diff);
3068 		else
3069 			dquot_alloc_block_nofail(inode, diff);
3070 	} else {
3071 		dquot_free_block(inode, diff);
3072 	}
3073 
3074 	f2fs_mark_inode_dirty_sync(inode, true);
3075 	if (clean || recover)
3076 		set_inode_flag(inode, FI_AUTO_RECOVER);
3077 }
3078 
3079 static inline bool f2fs_is_atomic_file(struct inode *inode);
3080 
3081 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3082 {
3083 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3084 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3085 
3086 	if (i_size_read(inode) == i_size)
3087 		return;
3088 
3089 	i_size_write(inode, i_size);
3090 
3091 	if (f2fs_is_atomic_file(inode))
3092 		return;
3093 
3094 	f2fs_mark_inode_dirty_sync(inode, true);
3095 	if (clean || recover)
3096 		set_inode_flag(inode, FI_AUTO_RECOVER);
3097 }
3098 
3099 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3100 {
3101 	F2FS_I(inode)->i_current_depth = depth;
3102 	f2fs_mark_inode_dirty_sync(inode, true);
3103 }
3104 
3105 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3106 					unsigned int count)
3107 {
3108 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3109 	f2fs_mark_inode_dirty_sync(inode, true);
3110 }
3111 
3112 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3113 {
3114 	F2FS_I(inode)->i_xattr_nid = xnid;
3115 	f2fs_mark_inode_dirty_sync(inode, true);
3116 }
3117 
3118 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3119 {
3120 	F2FS_I(inode)->i_pino = pino;
3121 	f2fs_mark_inode_dirty_sync(inode, true);
3122 }
3123 
3124 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3125 {
3126 	struct f2fs_inode_info *fi = F2FS_I(inode);
3127 
3128 	if (ri->i_inline & F2FS_INLINE_XATTR)
3129 		set_bit(FI_INLINE_XATTR, fi->flags);
3130 	if (ri->i_inline & F2FS_INLINE_DATA)
3131 		set_bit(FI_INLINE_DATA, fi->flags);
3132 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3133 		set_bit(FI_INLINE_DENTRY, fi->flags);
3134 	if (ri->i_inline & F2FS_DATA_EXIST)
3135 		set_bit(FI_DATA_EXIST, fi->flags);
3136 	if (ri->i_inline & F2FS_INLINE_DOTS)
3137 		set_bit(FI_INLINE_DOTS, fi->flags);
3138 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3139 		set_bit(FI_EXTRA_ATTR, fi->flags);
3140 	if (ri->i_inline & F2FS_PIN_FILE)
3141 		set_bit(FI_PIN_FILE, fi->flags);
3142 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3143 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3144 }
3145 
3146 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3147 {
3148 	ri->i_inline = 0;
3149 
3150 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3151 		ri->i_inline |= F2FS_INLINE_XATTR;
3152 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3153 		ri->i_inline |= F2FS_INLINE_DATA;
3154 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3155 		ri->i_inline |= F2FS_INLINE_DENTRY;
3156 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3157 		ri->i_inline |= F2FS_DATA_EXIST;
3158 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3159 		ri->i_inline |= F2FS_INLINE_DOTS;
3160 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3161 		ri->i_inline |= F2FS_EXTRA_ATTR;
3162 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3163 		ri->i_inline |= F2FS_PIN_FILE;
3164 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3165 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3166 }
3167 
3168 static inline int f2fs_has_extra_attr(struct inode *inode)
3169 {
3170 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3171 }
3172 
3173 static inline int f2fs_has_inline_xattr(struct inode *inode)
3174 {
3175 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3176 }
3177 
3178 static inline int f2fs_compressed_file(struct inode *inode)
3179 {
3180 	return S_ISREG(inode->i_mode) &&
3181 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3182 }
3183 
3184 static inline bool f2fs_need_compress_data(struct inode *inode)
3185 {
3186 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3187 
3188 	if (!f2fs_compressed_file(inode))
3189 		return false;
3190 
3191 	if (compress_mode == COMPR_MODE_FS)
3192 		return true;
3193 	else if (compress_mode == COMPR_MODE_USER &&
3194 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3195 		return true;
3196 
3197 	return false;
3198 }
3199 
3200 static inline unsigned int addrs_per_inode(struct inode *inode)
3201 {
3202 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3203 				get_inline_xattr_addrs(inode);
3204 
3205 	if (!f2fs_compressed_file(inode))
3206 		return addrs;
3207 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3208 }
3209 
3210 static inline unsigned int addrs_per_block(struct inode *inode)
3211 {
3212 	if (!f2fs_compressed_file(inode))
3213 		return DEF_ADDRS_PER_BLOCK;
3214 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3215 }
3216 
3217 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3218 {
3219 	struct f2fs_inode *ri = F2FS_INODE(page);
3220 
3221 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3222 					get_inline_xattr_addrs(inode)]);
3223 }
3224 
3225 static inline int inline_xattr_size(struct inode *inode)
3226 {
3227 	if (f2fs_has_inline_xattr(inode))
3228 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3229 	return 0;
3230 }
3231 
3232 /*
3233  * Notice: check inline_data flag without inode page lock is unsafe.
3234  * It could change at any time by f2fs_convert_inline_page().
3235  */
3236 static inline int f2fs_has_inline_data(struct inode *inode)
3237 {
3238 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3239 }
3240 
3241 static inline int f2fs_exist_data(struct inode *inode)
3242 {
3243 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3244 }
3245 
3246 static inline int f2fs_has_inline_dots(struct inode *inode)
3247 {
3248 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3249 }
3250 
3251 static inline int f2fs_is_mmap_file(struct inode *inode)
3252 {
3253 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3254 }
3255 
3256 static inline bool f2fs_is_pinned_file(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_PIN_FILE);
3259 }
3260 
3261 static inline bool f2fs_is_atomic_file(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3264 }
3265 
3266 static inline bool f2fs_is_cow_file(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_COW_FILE);
3269 }
3270 
3271 static inline bool f2fs_is_first_block_written(struct inode *inode)
3272 {
3273 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3274 }
3275 
3276 static inline bool f2fs_is_drop_cache(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3279 }
3280 
3281 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3282 {
3283 	struct f2fs_inode *ri = F2FS_INODE(page);
3284 	int extra_size = get_extra_isize(inode);
3285 
3286 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3287 }
3288 
3289 static inline int f2fs_has_inline_dentry(struct inode *inode)
3290 {
3291 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3292 }
3293 
3294 static inline int is_file(struct inode *inode, int type)
3295 {
3296 	return F2FS_I(inode)->i_advise & type;
3297 }
3298 
3299 static inline void set_file(struct inode *inode, int type)
3300 {
3301 	if (is_file(inode, type))
3302 		return;
3303 	F2FS_I(inode)->i_advise |= type;
3304 	f2fs_mark_inode_dirty_sync(inode, true);
3305 }
3306 
3307 static inline void clear_file(struct inode *inode, int type)
3308 {
3309 	if (!is_file(inode, type))
3310 		return;
3311 	F2FS_I(inode)->i_advise &= ~type;
3312 	f2fs_mark_inode_dirty_sync(inode, true);
3313 }
3314 
3315 static inline bool f2fs_is_time_consistent(struct inode *inode)
3316 {
3317 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3318 		return false;
3319 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3320 		return false;
3321 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3322 		return false;
3323 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3324 						&F2FS_I(inode)->i_crtime))
3325 		return false;
3326 	return true;
3327 }
3328 
3329 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3330 {
3331 	bool ret;
3332 
3333 	if (dsync) {
3334 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3335 
3336 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3337 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3338 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3339 		return ret;
3340 	}
3341 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3342 			file_keep_isize(inode) ||
3343 			i_size_read(inode) & ~PAGE_MASK)
3344 		return false;
3345 
3346 	if (!f2fs_is_time_consistent(inode))
3347 		return false;
3348 
3349 	spin_lock(&F2FS_I(inode)->i_size_lock);
3350 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3351 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3352 
3353 	return ret;
3354 }
3355 
3356 static inline bool f2fs_readonly(struct super_block *sb)
3357 {
3358 	return sb_rdonly(sb);
3359 }
3360 
3361 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3362 {
3363 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3364 }
3365 
3366 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3367 {
3368 	if (len == 1 && name[0] == '.')
3369 		return true;
3370 
3371 	if (len == 2 && name[0] == '.' && name[1] == '.')
3372 		return true;
3373 
3374 	return false;
3375 }
3376 
3377 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3378 					size_t size, gfp_t flags)
3379 {
3380 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3381 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3382 		return NULL;
3383 	}
3384 
3385 	return kmalloc(size, flags);
3386 }
3387 
3388 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3389 					size_t size, gfp_t flags)
3390 {
3391 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3392 }
3393 
3394 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3395 					size_t size, gfp_t flags)
3396 {
3397 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3398 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3399 		return NULL;
3400 	}
3401 
3402 	return kvmalloc(size, flags);
3403 }
3404 
3405 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3406 					size_t size, gfp_t flags)
3407 {
3408 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3409 }
3410 
3411 static inline int get_extra_isize(struct inode *inode)
3412 {
3413 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3414 }
3415 
3416 static inline int get_inline_xattr_addrs(struct inode *inode)
3417 {
3418 	return F2FS_I(inode)->i_inline_xattr_size;
3419 }
3420 
3421 #define f2fs_get_inode_mode(i) \
3422 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3423 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3424 
3425 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3426 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3427 	offsetof(struct f2fs_inode, i_extra_isize))	\
3428 
3429 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3430 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3431 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3432 		sizeof((f2fs_inode)->field))			\
3433 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3434 
3435 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3436 
3437 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3438 
3439 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3440 					block_t blkaddr, int type);
3441 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3442 					block_t blkaddr, int type)
3443 {
3444 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3445 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3446 			 blkaddr, type);
3447 		f2fs_bug_on(sbi, 1);
3448 	}
3449 }
3450 
3451 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3452 {
3453 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3454 			blkaddr == COMPRESS_ADDR)
3455 		return false;
3456 	return true;
3457 }
3458 
3459 /*
3460  * file.c
3461  */
3462 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3463 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3464 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3465 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3466 int f2fs_truncate(struct inode *inode);
3467 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3468 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3469 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3470 		 struct iattr *attr);
3471 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3472 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3473 int f2fs_precache_extents(struct inode *inode);
3474 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3475 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3476 		      struct dentry *dentry, struct fileattr *fa);
3477 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3478 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3479 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3480 int f2fs_pin_file_control(struct inode *inode, bool inc);
3481 
3482 /*
3483  * inode.c
3484  */
3485 void f2fs_set_inode_flags(struct inode *inode);
3486 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3487 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3488 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3489 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3490 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3491 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3492 void f2fs_update_inode_page(struct inode *inode);
3493 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3494 void f2fs_evict_inode(struct inode *inode);
3495 void f2fs_handle_failed_inode(struct inode *inode);
3496 
3497 /*
3498  * namei.c
3499  */
3500 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3501 							bool hot, bool set);
3502 struct dentry *f2fs_get_parent(struct dentry *child);
3503 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3504 		     struct inode **new_inode);
3505 
3506 /*
3507  * dir.c
3508  */
3509 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3510 int f2fs_init_casefolded_name(const struct inode *dir,
3511 			      struct f2fs_filename *fname);
3512 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3513 			int lookup, struct f2fs_filename *fname);
3514 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3515 			struct f2fs_filename *fname);
3516 void f2fs_free_filename(struct f2fs_filename *fname);
3517 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3518 			const struct f2fs_filename *fname, int *max_slots);
3519 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3520 			unsigned int start_pos, struct fscrypt_str *fstr);
3521 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3522 			struct f2fs_dentry_ptr *d);
3523 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3524 			const struct f2fs_filename *fname, struct page *dpage);
3525 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3526 			unsigned int current_depth);
3527 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3528 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3529 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3530 					 const struct f2fs_filename *fname,
3531 					 struct page **res_page);
3532 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3533 			const struct qstr *child, struct page **res_page);
3534 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3535 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3536 			struct page **page);
3537 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3538 			struct page *page, struct inode *inode);
3539 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3540 			  const struct f2fs_filename *fname);
3541 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3542 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3543 			unsigned int bit_pos);
3544 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3545 			struct inode *inode, nid_t ino, umode_t mode);
3546 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3547 			struct inode *inode, nid_t ino, umode_t mode);
3548 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3549 			struct inode *inode, nid_t ino, umode_t mode);
3550 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3551 			struct inode *dir, struct inode *inode);
3552 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3553 bool f2fs_empty_dir(struct inode *dir);
3554 
3555 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3556 {
3557 	if (fscrypt_is_nokey_name(dentry))
3558 		return -ENOKEY;
3559 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3560 				inode, inode->i_ino, inode->i_mode);
3561 }
3562 
3563 /*
3564  * super.c
3565  */
3566 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3567 void f2fs_inode_synced(struct inode *inode);
3568 int f2fs_dquot_initialize(struct inode *inode);
3569 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3570 int f2fs_quota_sync(struct super_block *sb, int type);
3571 loff_t max_file_blocks(struct inode *inode);
3572 void f2fs_quota_off_umount(struct super_block *sb);
3573 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3574 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3575 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3576 int f2fs_sync_fs(struct super_block *sb, int sync);
3577 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3578 
3579 /*
3580  * hash.c
3581  */
3582 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3583 
3584 /*
3585  * node.c
3586  */
3587 struct node_info;
3588 
3589 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3590 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3591 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3592 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3593 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3594 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3595 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3596 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3597 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3598 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3599 				struct node_info *ni, bool checkpoint_context);
3600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3601 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3602 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3603 int f2fs_truncate_xattr_node(struct inode *inode);
3604 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3605 					unsigned int seq_id);
3606 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3607 int f2fs_remove_inode_page(struct inode *inode);
3608 struct page *f2fs_new_inode_page(struct inode *inode);
3609 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3610 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3611 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3612 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3613 int f2fs_move_node_page(struct page *node_page, int gc_type);
3614 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3615 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3616 			struct writeback_control *wbc, bool atomic,
3617 			unsigned int *seq_id);
3618 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3619 			struct writeback_control *wbc,
3620 			bool do_balance, enum iostat_type io_type);
3621 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3622 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3623 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3624 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3625 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3626 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3627 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3628 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3629 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3630 			unsigned int segno, struct f2fs_summary_block *sum);
3631 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3632 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3633 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3634 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3635 int __init f2fs_create_node_manager_caches(void);
3636 void f2fs_destroy_node_manager_caches(void);
3637 
3638 /*
3639  * segment.c
3640  */
3641 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3642 int f2fs_commit_atomic_write(struct inode *inode);
3643 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3644 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3645 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3646 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3647 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3648 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3649 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3650 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3651 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3652 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3653 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3654 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3655 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3656 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3657 					struct cp_control *cpc);
3658 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3659 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3660 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3661 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3662 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3663 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3664 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3665 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3666 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3667 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3668 			unsigned int *newseg, bool new_sec, int dir);
3669 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3670 					unsigned int start, unsigned int end);
3671 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3672 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3673 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3674 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3675 					struct cp_control *cpc);
3676 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3677 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3678 					block_t blk_addr);
3679 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3680 						enum iostat_type io_type);
3681 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3682 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3683 			struct f2fs_io_info *fio);
3684 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3685 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3686 			block_t old_blkaddr, block_t new_blkaddr,
3687 			bool recover_curseg, bool recover_newaddr,
3688 			bool from_gc);
3689 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3690 			block_t old_addr, block_t new_addr,
3691 			unsigned char version, bool recover_curseg,
3692 			bool recover_newaddr);
3693 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3694 			block_t old_blkaddr, block_t *new_blkaddr,
3695 			struct f2fs_summary *sum, int type,
3696 			struct f2fs_io_info *fio);
3697 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3698 					block_t blkaddr, unsigned int blkcnt);
3699 void f2fs_wait_on_page_writeback(struct page *page,
3700 			enum page_type type, bool ordered, bool locked);
3701 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3702 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3703 								block_t len);
3704 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3705 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3706 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3707 			unsigned int val, int alloc);
3708 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3709 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3710 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3711 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3712 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3713 int __init f2fs_create_segment_manager_caches(void);
3714 void f2fs_destroy_segment_manager_caches(void);
3715 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3716 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3717 			unsigned int segno);
3718 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3719 			unsigned int segno);
3720 
3721 #define DEF_FRAGMENT_SIZE	4
3722 #define MIN_FRAGMENT_SIZE	1
3723 #define MAX_FRAGMENT_SIZE	512
3724 
3725 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3726 {
3727 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3728 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3729 }
3730 
3731 /*
3732  * checkpoint.c
3733  */
3734 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3735 							unsigned char reason);
3736 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3737 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3738 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3739 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3740 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3741 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3742 					block_t blkaddr, int type);
3743 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3744 			int type, bool sync);
3745 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3746 							unsigned int ra_blocks);
3747 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3748 			long nr_to_write, enum iostat_type io_type);
3749 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3750 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3751 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3752 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3753 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3754 					unsigned int devidx, int type);
3755 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3756 					unsigned int devidx, int type);
3757 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3758 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3759 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3760 void f2fs_add_orphan_inode(struct inode *inode);
3761 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3762 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3763 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3764 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3765 void f2fs_remove_dirty_inode(struct inode *inode);
3766 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3767 								bool from_cp);
3768 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3769 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3770 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3771 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3772 int __init f2fs_create_checkpoint_caches(void);
3773 void f2fs_destroy_checkpoint_caches(void);
3774 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3775 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3776 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3777 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3778 
3779 /*
3780  * data.c
3781  */
3782 int __init f2fs_init_bioset(void);
3783 void f2fs_destroy_bioset(void);
3784 int f2fs_init_bio_entry_cache(void);
3785 void f2fs_destroy_bio_entry_cache(void);
3786 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3787 				struct bio *bio, enum page_type type);
3788 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3789 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3790 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3791 				struct inode *inode, struct page *page,
3792 				nid_t ino, enum page_type type);
3793 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3794 					struct bio **bio, struct page *page);
3795 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3796 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3797 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3798 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3799 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3800 		block_t blk_addr, sector_t *sector);
3801 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3802 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3803 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3804 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3805 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3806 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3807 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3808 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3809 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3810 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3811 							pgoff_t *next_pgofs);
3812 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3813 			bool for_write);
3814 struct page *f2fs_get_new_data_page(struct inode *inode,
3815 			struct page *ipage, pgoff_t index, bool new_i_size);
3816 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3817 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3818 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3819 			int create, int flag);
3820 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3821 			u64 start, u64 len);
3822 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3823 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3824 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3825 int f2fs_write_single_data_page(struct page *page, int *submitted,
3826 				struct bio **bio, sector_t *last_block,
3827 				struct writeback_control *wbc,
3828 				enum iostat_type io_type,
3829 				int compr_blocks, bool allow_balance);
3830 void f2fs_write_failed(struct inode *inode, loff_t to);
3831 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3832 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3833 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3834 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3835 int f2fs_init_post_read_processing(void);
3836 void f2fs_destroy_post_read_processing(void);
3837 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3838 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3839 extern const struct iomap_ops f2fs_iomap_ops;
3840 
3841 /*
3842  * gc.c
3843  */
3844 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3845 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3846 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3847 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3848 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3849 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3850 int __init f2fs_create_garbage_collection_cache(void);
3851 void f2fs_destroy_garbage_collection_cache(void);
3852 
3853 /*
3854  * recovery.c
3855  */
3856 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3857 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3858 int __init f2fs_create_recovery_cache(void);
3859 void f2fs_destroy_recovery_cache(void);
3860 
3861 /*
3862  * debug.c
3863  */
3864 #ifdef CONFIG_F2FS_STAT_FS
3865 struct f2fs_stat_info {
3866 	struct list_head stat_list;
3867 	struct f2fs_sb_info *sbi;
3868 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3869 	int main_area_segs, main_area_sections, main_area_zones;
3870 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3871 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3872 	unsigned long long total_ext[NR_EXTENT_CACHES];
3873 	unsigned long long hit_total[NR_EXTENT_CACHES];
3874 	int ext_tree[NR_EXTENT_CACHES];
3875 	int zombie_tree[NR_EXTENT_CACHES];
3876 	int ext_node[NR_EXTENT_CACHES];
3877 	/* to count memory footprint */
3878 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3879 	/* for read extent cache */
3880 	unsigned long long hit_largest;
3881 	/* for block age extent cache */
3882 	unsigned long long allocated_data_blocks;
3883 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3884 	int ndirty_data, ndirty_qdata;
3885 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3886 	int nats, dirty_nats, sits, dirty_sits;
3887 	int free_nids, avail_nids, alloc_nids;
3888 	int total_count, utilization;
3889 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3890 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3891 	int nr_dio_read, nr_dio_write;
3892 	unsigned int io_skip_bggc, other_skip_bggc;
3893 	int nr_flushing, nr_flushed, flush_list_empty;
3894 	int nr_discarding, nr_discarded;
3895 	int nr_discard_cmd;
3896 	unsigned int undiscard_blks;
3897 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3898 	unsigned int cur_ckpt_time, peak_ckpt_time;
3899 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3900 	int compr_inode, swapfile_inode;
3901 	unsigned long long compr_blocks;
3902 	int aw_cnt, max_aw_cnt;
3903 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3904 	unsigned int bimodal, avg_vblocks;
3905 	int util_free, util_valid, util_invalid;
3906 	int rsvd_segs, overp_segs;
3907 	int dirty_count, node_pages, meta_pages, compress_pages;
3908 	int compress_page_hit;
3909 	int prefree_count, call_count, cp_count, bg_cp_count;
3910 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3911 	int bg_node_segs, bg_data_segs;
3912 	int tot_blks, data_blks, node_blks;
3913 	int bg_data_blks, bg_node_blks;
3914 	int curseg[NR_CURSEG_TYPE];
3915 	int cursec[NR_CURSEG_TYPE];
3916 	int curzone[NR_CURSEG_TYPE];
3917 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3918 	unsigned int full_seg[NR_CURSEG_TYPE];
3919 	unsigned int valid_blks[NR_CURSEG_TYPE];
3920 
3921 	unsigned int meta_count[META_MAX];
3922 	unsigned int segment_count[2];
3923 	unsigned int block_count[2];
3924 	unsigned int inplace_count;
3925 	unsigned long long base_mem, cache_mem, page_mem;
3926 };
3927 
3928 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3929 {
3930 	return (struct f2fs_stat_info *)sbi->stat_info;
3931 }
3932 
3933 #define stat_inc_cp_count(si)		((si)->cp_count++)
3934 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3935 #define stat_inc_call_count(si)		((si)->call_count++)
3936 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3937 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3938 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3939 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3940 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3941 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3942 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3943 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3944 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3945 #define stat_inc_inline_xattr(inode)					\
3946 	do {								\
3947 		if (f2fs_has_inline_xattr(inode))			\
3948 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3949 	} while (0)
3950 #define stat_dec_inline_xattr(inode)					\
3951 	do {								\
3952 		if (f2fs_has_inline_xattr(inode))			\
3953 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3954 	} while (0)
3955 #define stat_inc_inline_inode(inode)					\
3956 	do {								\
3957 		if (f2fs_has_inline_data(inode))			\
3958 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3959 	} while (0)
3960 #define stat_dec_inline_inode(inode)					\
3961 	do {								\
3962 		if (f2fs_has_inline_data(inode))			\
3963 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3964 	} while (0)
3965 #define stat_inc_inline_dir(inode)					\
3966 	do {								\
3967 		if (f2fs_has_inline_dentry(inode))			\
3968 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3969 	} while (0)
3970 #define stat_dec_inline_dir(inode)					\
3971 	do {								\
3972 		if (f2fs_has_inline_dentry(inode))			\
3973 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3974 	} while (0)
3975 #define stat_inc_compr_inode(inode)					\
3976 	do {								\
3977 		if (f2fs_compressed_file(inode))			\
3978 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3979 	} while (0)
3980 #define stat_dec_compr_inode(inode)					\
3981 	do {								\
3982 		if (f2fs_compressed_file(inode))			\
3983 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3984 	} while (0)
3985 #define stat_add_compr_blocks(inode, blocks)				\
3986 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3987 #define stat_sub_compr_blocks(inode, blocks)				\
3988 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3989 #define stat_inc_swapfile_inode(inode)					\
3990 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3991 #define stat_dec_swapfile_inode(inode)					\
3992 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3993 #define stat_inc_atomic_inode(inode)					\
3994 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3995 #define stat_dec_atomic_inode(inode)					\
3996 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3997 #define stat_inc_meta_count(sbi, blkaddr)				\
3998 	do {								\
3999 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4000 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4001 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4002 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4003 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4004 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4005 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4006 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4007 	} while (0)
4008 #define stat_inc_seg_type(sbi, curseg)					\
4009 		((sbi)->segment_count[(curseg)->alloc_type]++)
4010 #define stat_inc_block_count(sbi, curseg)				\
4011 		((sbi)->block_count[(curseg)->alloc_type]++)
4012 #define stat_inc_inplace_blocks(sbi)					\
4013 		(atomic_inc(&(sbi)->inplace_count))
4014 #define stat_update_max_atomic_write(inode)				\
4015 	do {								\
4016 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4017 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4018 		if (cur > max)						\
4019 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4020 	} while (0)
4021 #define stat_inc_seg_count(sbi, type, gc_type)				\
4022 	do {								\
4023 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4024 		si->tot_segs++;						\
4025 		if ((type) == SUM_TYPE_DATA) {				\
4026 			si->data_segs++;				\
4027 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4028 		} else {						\
4029 			si->node_segs++;				\
4030 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4031 		}							\
4032 	} while (0)
4033 
4034 #define stat_inc_tot_blk_count(si, blks)				\
4035 	((si)->tot_blks += (blks))
4036 
4037 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4038 	do {								\
4039 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4040 		stat_inc_tot_blk_count(si, blks);			\
4041 		si->data_blks += (blks);				\
4042 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4043 	} while (0)
4044 
4045 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4046 	do {								\
4047 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4048 		stat_inc_tot_blk_count(si, blks);			\
4049 		si->node_blks += (blks);				\
4050 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4051 	} while (0)
4052 
4053 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4054 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4055 void __init f2fs_create_root_stats(void);
4056 void f2fs_destroy_root_stats(void);
4057 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4058 #else
4059 #define stat_inc_cp_count(si)				do { } while (0)
4060 #define stat_inc_bg_cp_count(si)			do { } while (0)
4061 #define stat_inc_call_count(si)				do { } while (0)
4062 #define stat_inc_bggc_count(si)				do { } while (0)
4063 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4064 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4065 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4066 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4067 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4068 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4069 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4070 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4071 #define stat_inc_inline_xattr(inode)			do { } while (0)
4072 #define stat_dec_inline_xattr(inode)			do { } while (0)
4073 #define stat_inc_inline_inode(inode)			do { } while (0)
4074 #define stat_dec_inline_inode(inode)			do { } while (0)
4075 #define stat_inc_inline_dir(inode)			do { } while (0)
4076 #define stat_dec_inline_dir(inode)			do { } while (0)
4077 #define stat_inc_compr_inode(inode)			do { } while (0)
4078 #define stat_dec_compr_inode(inode)			do { } while (0)
4079 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4080 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4081 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4082 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4083 #define stat_inc_atomic_inode(inode)			do { } while (0)
4084 #define stat_dec_atomic_inode(inode)			do { } while (0)
4085 #define stat_update_max_atomic_write(inode)		do { } while (0)
4086 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4087 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4088 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4089 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4090 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4091 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4092 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4093 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4094 
4095 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4096 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4097 static inline void __init f2fs_create_root_stats(void) { }
4098 static inline void f2fs_destroy_root_stats(void) { }
4099 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4100 #endif
4101 
4102 extern const struct file_operations f2fs_dir_operations;
4103 extern const struct file_operations f2fs_file_operations;
4104 extern const struct inode_operations f2fs_file_inode_operations;
4105 extern const struct address_space_operations f2fs_dblock_aops;
4106 extern const struct address_space_operations f2fs_node_aops;
4107 extern const struct address_space_operations f2fs_meta_aops;
4108 extern const struct inode_operations f2fs_dir_inode_operations;
4109 extern const struct inode_operations f2fs_symlink_inode_operations;
4110 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4111 extern const struct inode_operations f2fs_special_inode_operations;
4112 extern struct kmem_cache *f2fs_inode_entry_slab;
4113 
4114 /*
4115  * inline.c
4116  */
4117 bool f2fs_may_inline_data(struct inode *inode);
4118 bool f2fs_sanity_check_inline_data(struct inode *inode);
4119 bool f2fs_may_inline_dentry(struct inode *inode);
4120 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4121 void f2fs_truncate_inline_inode(struct inode *inode,
4122 						struct page *ipage, u64 from);
4123 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4124 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4125 int f2fs_convert_inline_inode(struct inode *inode);
4126 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4127 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4128 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4129 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4130 					const struct f2fs_filename *fname,
4131 					struct page **res_page);
4132 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4133 			struct page *ipage);
4134 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4135 			struct inode *inode, nid_t ino, umode_t mode);
4136 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4137 				struct page *page, struct inode *dir,
4138 				struct inode *inode);
4139 bool f2fs_empty_inline_dir(struct inode *dir);
4140 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4141 			struct fscrypt_str *fstr);
4142 int f2fs_inline_data_fiemap(struct inode *inode,
4143 			struct fiemap_extent_info *fieinfo,
4144 			__u64 start, __u64 len);
4145 
4146 /*
4147  * shrinker.c
4148  */
4149 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4150 			struct shrink_control *sc);
4151 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4152 			struct shrink_control *sc);
4153 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4154 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4155 
4156 /*
4157  * extent_cache.c
4158  */
4159 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4160 				struct rb_entry *cached_re, unsigned int ofs);
4161 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4162 				struct rb_root_cached *root,
4163 				struct rb_node **parent,
4164 				unsigned long long key, bool *left_most);
4165 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4166 				struct rb_root_cached *root,
4167 				struct rb_node **parent,
4168 				unsigned int ofs, bool *leftmost);
4169 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4170 		struct rb_entry *cached_re, unsigned int ofs,
4171 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4172 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4173 		bool force, bool *leftmost);
4174 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4175 				struct rb_root_cached *root, bool check_key);
4176 void f2fs_init_extent_tree(struct inode *inode);
4177 void f2fs_drop_extent_tree(struct inode *inode);
4178 void f2fs_destroy_extent_node(struct inode *inode);
4179 void f2fs_destroy_extent_tree(struct inode *inode);
4180 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4181 int __init f2fs_create_extent_cache(void);
4182 void f2fs_destroy_extent_cache(void);
4183 
4184 /* read extent cache ops */
4185 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4186 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4187 			struct extent_info *ei);
4188 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4189 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4190 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4191 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4192 			int nr_shrink);
4193 
4194 /* block age extent cache ops */
4195 void f2fs_init_age_extent_tree(struct inode *inode);
4196 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4197 			struct extent_info *ei);
4198 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4199 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4200 			pgoff_t fofs, unsigned int len);
4201 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4202 			int nr_shrink);
4203 
4204 /*
4205  * sysfs.c
4206  */
4207 #define MIN_RA_MUL	2
4208 #define MAX_RA_MUL	256
4209 
4210 int __init f2fs_init_sysfs(void);
4211 void f2fs_exit_sysfs(void);
4212 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4213 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4214 
4215 /* verity.c */
4216 extern const struct fsverity_operations f2fs_verityops;
4217 
4218 /*
4219  * crypto support
4220  */
4221 static inline bool f2fs_encrypted_file(struct inode *inode)
4222 {
4223 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4224 }
4225 
4226 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4227 {
4228 #ifdef CONFIG_FS_ENCRYPTION
4229 	file_set_encrypt(inode);
4230 	f2fs_set_inode_flags(inode);
4231 #endif
4232 }
4233 
4234 /*
4235  * Returns true if the reads of the inode's data need to undergo some
4236  * postprocessing step, like decryption or authenticity verification.
4237  */
4238 static inline bool f2fs_post_read_required(struct inode *inode)
4239 {
4240 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4241 		f2fs_compressed_file(inode);
4242 }
4243 
4244 /*
4245  * compress.c
4246  */
4247 #ifdef CONFIG_F2FS_FS_COMPRESSION
4248 bool f2fs_is_compressed_page(struct page *page);
4249 struct page *f2fs_compress_control_page(struct page *page);
4250 int f2fs_prepare_compress_overwrite(struct inode *inode,
4251 			struct page **pagep, pgoff_t index, void **fsdata);
4252 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4253 					pgoff_t index, unsigned copied);
4254 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4255 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4256 bool f2fs_is_compress_backend_ready(struct inode *inode);
4257 int f2fs_init_compress_mempool(void);
4258 void f2fs_destroy_compress_mempool(void);
4259 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4260 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4261 				block_t blkaddr, bool in_task);
4262 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4263 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4264 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4265 				int index, int nr_pages, bool uptodate);
4266 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4267 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4268 int f2fs_write_multi_pages(struct compress_ctx *cc,
4269 						int *submitted,
4270 						struct writeback_control *wbc,
4271 						enum iostat_type io_type);
4272 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4273 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4274 				pgoff_t fofs, block_t blkaddr,
4275 				unsigned int llen, unsigned int c_len);
4276 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4277 				unsigned nr_pages, sector_t *last_block_in_bio,
4278 				bool is_readahead, bool for_write);
4279 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4280 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4281 				bool in_task);
4282 void f2fs_put_page_dic(struct page *page, bool in_task);
4283 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4284 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4285 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4286 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4287 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4288 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4289 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4290 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4291 int __init f2fs_init_compress_cache(void);
4292 void f2fs_destroy_compress_cache(void);
4293 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4294 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4295 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4296 						nid_t ino, block_t blkaddr);
4297 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4298 								block_t blkaddr);
4299 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4300 #define inc_compr_inode_stat(inode)					\
4301 	do {								\
4302 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4303 		sbi->compr_new_inode++;					\
4304 	} while (0)
4305 #define add_compr_block_stat(inode, blocks)				\
4306 	do {								\
4307 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4308 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4309 		sbi->compr_written_block += blocks;			\
4310 		sbi->compr_saved_block += diff;				\
4311 	} while (0)
4312 #else
4313 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4314 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4315 {
4316 	if (!f2fs_compressed_file(inode))
4317 		return true;
4318 	/* not support compression */
4319 	return false;
4320 }
4321 static inline struct page *f2fs_compress_control_page(struct page *page)
4322 {
4323 	WARN_ON_ONCE(1);
4324 	return ERR_PTR(-EINVAL);
4325 }
4326 static inline int f2fs_init_compress_mempool(void) { return 0; }
4327 static inline void f2fs_destroy_compress_mempool(void) { }
4328 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4329 				bool in_task) { }
4330 static inline void f2fs_end_read_compressed_page(struct page *page,
4331 				bool failed, block_t blkaddr, bool in_task)
4332 {
4333 	WARN_ON_ONCE(1);
4334 }
4335 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4336 {
4337 	WARN_ON_ONCE(1);
4338 }
4339 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4340 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4341 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4342 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4343 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4344 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4345 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4346 static inline void f2fs_destroy_compress_cache(void) { }
4347 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4348 				block_t blkaddr) { }
4349 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4350 				struct page *page, nid_t ino, block_t blkaddr) { }
4351 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4352 				struct page *page, block_t blkaddr) { return false; }
4353 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4354 							nid_t ino) { }
4355 #define inc_compr_inode_stat(inode)		do { } while (0)
4356 static inline void f2fs_update_read_extent_tree_range_compressed(
4357 				struct inode *inode,
4358 				pgoff_t fofs, block_t blkaddr,
4359 				unsigned int llen, unsigned int c_len) { }
4360 #endif
4361 
4362 static inline int set_compress_context(struct inode *inode)
4363 {
4364 #ifdef CONFIG_F2FS_FS_COMPRESSION
4365 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4366 
4367 	F2FS_I(inode)->i_compress_algorithm =
4368 			F2FS_OPTION(sbi).compress_algorithm;
4369 	F2FS_I(inode)->i_log_cluster_size =
4370 			F2FS_OPTION(sbi).compress_log_size;
4371 	F2FS_I(inode)->i_compress_flag =
4372 			F2FS_OPTION(sbi).compress_chksum ?
4373 				1 << COMPRESS_CHKSUM : 0;
4374 	F2FS_I(inode)->i_cluster_size =
4375 			1 << F2FS_I(inode)->i_log_cluster_size;
4376 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4377 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4378 			F2FS_OPTION(sbi).compress_level)
4379 		F2FS_I(inode)->i_compress_flag |=
4380 				F2FS_OPTION(sbi).compress_level <<
4381 				COMPRESS_LEVEL_OFFSET;
4382 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4383 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4384 	stat_inc_compr_inode(inode);
4385 	inc_compr_inode_stat(inode);
4386 	f2fs_mark_inode_dirty_sync(inode, true);
4387 	return 0;
4388 #else
4389 	return -EOPNOTSUPP;
4390 #endif
4391 }
4392 
4393 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4394 {
4395 	struct f2fs_inode_info *fi = F2FS_I(inode);
4396 
4397 	if (!f2fs_compressed_file(inode))
4398 		return true;
4399 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4400 		return false;
4401 
4402 	fi->i_flags &= ~F2FS_COMPR_FL;
4403 	stat_dec_compr_inode(inode);
4404 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4405 	f2fs_mark_inode_dirty_sync(inode, true);
4406 	return true;
4407 }
4408 
4409 #define F2FS_FEATURE_FUNCS(name, flagname) \
4410 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4411 { \
4412 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4413 }
4414 
4415 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4416 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4417 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4418 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4419 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4420 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4421 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4422 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4423 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4424 F2FS_FEATURE_FUNCS(verity, VERITY);
4425 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4426 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4427 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4428 F2FS_FEATURE_FUNCS(readonly, RO);
4429 
4430 #ifdef CONFIG_BLK_DEV_ZONED
4431 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4432 				    block_t blkaddr)
4433 {
4434 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4435 
4436 	return test_bit(zno, FDEV(devi).blkz_seq);
4437 }
4438 #endif
4439 
4440 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4441 {
4442 	return f2fs_sb_has_blkzoned(sbi);
4443 }
4444 
4445 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4446 {
4447 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4448 }
4449 
4450 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4451 {
4452 	int i;
4453 
4454 	if (!f2fs_is_multi_device(sbi))
4455 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4456 
4457 	for (i = 0; i < sbi->s_ndevs; i++)
4458 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4459 			return true;
4460 	return false;
4461 }
4462 
4463 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4464 {
4465 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4466 					f2fs_hw_should_discard(sbi);
4467 }
4468 
4469 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4470 {
4471 	int i;
4472 
4473 	if (!f2fs_is_multi_device(sbi))
4474 		return bdev_read_only(sbi->sb->s_bdev);
4475 
4476 	for (i = 0; i < sbi->s_ndevs; i++)
4477 		if (bdev_read_only(FDEV(i).bdev))
4478 			return true;
4479 	return false;
4480 }
4481 
4482 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4483 {
4484 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4485 }
4486 
4487 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4488 {
4489 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4490 }
4491 
4492 static inline bool f2fs_may_compress(struct inode *inode)
4493 {
4494 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4495 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4496 		return false;
4497 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4498 }
4499 
4500 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4501 						u64 blocks, bool add)
4502 {
4503 	struct f2fs_inode_info *fi = F2FS_I(inode);
4504 	int diff = fi->i_cluster_size - blocks;
4505 
4506 	/* don't update i_compr_blocks if saved blocks were released */
4507 	if (!add && !atomic_read(&fi->i_compr_blocks))
4508 		return;
4509 
4510 	if (add) {
4511 		atomic_add(diff, &fi->i_compr_blocks);
4512 		stat_add_compr_blocks(inode, diff);
4513 	} else {
4514 		atomic_sub(diff, &fi->i_compr_blocks);
4515 		stat_sub_compr_blocks(inode, diff);
4516 	}
4517 	f2fs_mark_inode_dirty_sync(inode, true);
4518 }
4519 
4520 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4521 								int flag)
4522 {
4523 	if (!f2fs_is_multi_device(sbi))
4524 		return false;
4525 	if (flag != F2FS_GET_BLOCK_DIO)
4526 		return false;
4527 	return sbi->aligned_blksize;
4528 }
4529 
4530 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4531 {
4532 	return fsverity_active(inode) &&
4533 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4534 }
4535 
4536 #ifdef CONFIG_F2FS_FAULT_INJECTION
4537 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4538 							unsigned int type);
4539 #else
4540 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4541 #endif
4542 
4543 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4544 {
4545 #ifdef CONFIG_QUOTA
4546 	if (f2fs_sb_has_quota_ino(sbi))
4547 		return true;
4548 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4549 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4550 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4551 		return true;
4552 #endif
4553 	return false;
4554 }
4555 
4556 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4557 {
4558 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4559 }
4560 
4561 static inline void f2fs_io_schedule_timeout(long timeout)
4562 {
4563 	set_current_state(TASK_UNINTERRUPTIBLE);
4564 	io_schedule_timeout(timeout);
4565 }
4566 
4567 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4568 					enum page_type type)
4569 {
4570 	if (unlikely(f2fs_cp_error(sbi)))
4571 		return;
4572 
4573 	if (ofs == sbi->page_eio_ofs[type]) {
4574 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4575 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4576 	} else {
4577 		sbi->page_eio_ofs[type] = ofs;
4578 		sbi->page_eio_cnt[type] = 0;
4579 	}
4580 }
4581 
4582 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4583 {
4584 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4585 }
4586 
4587 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4588 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4589 
4590 #endif /* _LINUX_F2FS_H */
4591