xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 9ac1e2d88d076aa1ae9e33d44a9bbc8ae3bfa791)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
102 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
103 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
104 
105 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
106 		typecheck(unsigned long long, b) &&			\
107 		((long long)((a) - (b)) > 0))
108 
109 typedef u32 block_t;	/*
110 			 * should not change u32, since it is the on-disk block
111 			 * address format, __le32.
112 			 */
113 typedef u32 nid_t;
114 
115 struct f2fs_mount_info {
116 	unsigned int	opt;
117 };
118 
119 #define F2FS_FEATURE_ENCRYPT		0x0001
120 #define F2FS_FEATURE_BLKZONED		0x0002
121 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
122 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
123 #define F2FS_FEATURE_PRJQUOTA		0x0010
124 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
126 #define F2FS_FEATURE_QUOTA_INO		0x0080
127 
128 #define F2FS_HAS_FEATURE(sb, mask)					\
129 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
130 #define F2FS_SET_FEATURE(sb, mask)					\
131 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
132 #define F2FS_CLEAR_FEATURE(sb, mask)					\
133 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
134 
135 /*
136  * Default values for user and/or group using reserved blocks
137  */
138 #define	F2FS_DEF_RESUID		0
139 #define	F2FS_DEF_RESGID		0
140 
141 /*
142  * For checkpoint manager
143  */
144 enum {
145 	NAT_BITMAP,
146 	SIT_BITMAP
147 };
148 
149 #define	CP_UMOUNT	0x00000001
150 #define	CP_FASTBOOT	0x00000002
151 #define	CP_SYNC		0x00000004
152 #define	CP_RECOVERY	0x00000008
153 #define	CP_DISCARD	0x00000010
154 #define CP_TRIMMED	0x00000020
155 
156 #define DEF_BATCHED_TRIM_SECTIONS	2048
157 #define BATCHED_TRIM_SEGMENTS(sbi)	\
158 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
159 #define BATCHED_TRIM_BLOCKS(sbi)	\
160 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
161 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
162 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
163 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
164 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
165 #define DEF_CP_INTERVAL			60	/* 60 secs */
166 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
167 
168 struct cp_control {
169 	int reason;
170 	__u64 trim_start;
171 	__u64 trim_end;
172 	__u64 trim_minlen;
173 };
174 
175 /*
176  * For CP/NAT/SIT/SSA readahead
177  */
178 enum {
179 	META_CP,
180 	META_NAT,
181 	META_SIT,
182 	META_SSA,
183 	META_POR,
184 };
185 
186 /* for the list of ino */
187 enum {
188 	ORPHAN_INO,		/* for orphan ino list */
189 	APPEND_INO,		/* for append ino list */
190 	UPDATE_INO,		/* for update ino list */
191 	TRANS_DIR_INO,		/* for trasactions dir ino list */
192 	FLUSH_INO,		/* for multiple device flushing */
193 	MAX_INO_ENTRY,		/* max. list */
194 };
195 
196 struct ino_entry {
197 	struct list_head list;		/* list head */
198 	nid_t ino;			/* inode number */
199 	unsigned int dirty_device;	/* dirty device bitmap */
200 };
201 
202 /* for the list of inodes to be GCed */
203 struct inode_entry {
204 	struct list_head list;	/* list head */
205 	struct inode *inode;	/* vfs inode pointer */
206 };
207 
208 /* for the bitmap indicate blocks to be discarded */
209 struct discard_entry {
210 	struct list_head list;	/* list head */
211 	block_t start_blkaddr;	/* start blockaddr of current segment */
212 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
213 };
214 
215 /* default discard granularity of inner discard thread, unit: block count */
216 #define DEFAULT_DISCARD_GRANULARITY		16
217 
218 /* max discard pend list number */
219 #define MAX_PLIST_NUM		512
220 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
221 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
222 
223 enum {
224 	D_PREP,
225 	D_SUBMIT,
226 	D_DONE,
227 };
228 
229 struct discard_info {
230 	block_t lstart;			/* logical start address */
231 	block_t len;			/* length */
232 	block_t start;			/* actual start address in dev */
233 };
234 
235 struct discard_cmd {
236 	struct rb_node rb_node;		/* rb node located in rb-tree */
237 	union {
238 		struct {
239 			block_t lstart;	/* logical start address */
240 			block_t len;	/* length */
241 			block_t start;	/* actual start address in dev */
242 		};
243 		struct discard_info di;	/* discard info */
244 
245 	};
246 	struct list_head list;		/* command list */
247 	struct completion wait;		/* compleation */
248 	struct block_device *bdev;	/* bdev */
249 	unsigned short ref;		/* reference count */
250 	unsigned char state;		/* state */
251 	int error;			/* bio error */
252 };
253 
254 enum {
255 	DPOLICY_BG,
256 	DPOLICY_FORCE,
257 	DPOLICY_FSTRIM,
258 	DPOLICY_UMOUNT,
259 	MAX_DPOLICY,
260 };
261 
262 struct discard_policy {
263 	int type;			/* type of discard */
264 	unsigned int min_interval;	/* used for candidates exist */
265 	unsigned int max_interval;	/* used for candidates not exist */
266 	unsigned int max_requests;	/* # of discards issued per round */
267 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
268 	bool io_aware;			/* issue discard in idle time */
269 	bool sync;			/* submit discard with REQ_SYNC flag */
270 	unsigned int granularity;	/* discard granularity */
271 };
272 
273 struct discard_cmd_control {
274 	struct task_struct *f2fs_issue_discard;	/* discard thread */
275 	struct list_head entry_list;		/* 4KB discard entry list */
276 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
277 	struct list_head wait_list;		/* store on-flushing entries */
278 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
279 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
280 	unsigned int discard_wake;		/* to wake up discard thread */
281 	struct mutex cmd_lock;
282 	unsigned int nr_discards;		/* # of discards in the list */
283 	unsigned int max_discards;		/* max. discards to be issued */
284 	unsigned int discard_granularity;	/* discard granularity */
285 	unsigned int undiscard_blks;		/* # of undiscard blocks */
286 	atomic_t issued_discard;		/* # of issued discard */
287 	atomic_t issing_discard;		/* # of issing discard */
288 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
289 	struct rb_root root;			/* root of discard rb-tree */
290 };
291 
292 /* for the list of fsync inodes, used only during recovery */
293 struct fsync_inode_entry {
294 	struct list_head list;	/* list head */
295 	struct inode *inode;	/* vfs inode pointer */
296 	block_t blkaddr;	/* block address locating the last fsync */
297 	block_t last_dentry;	/* block address locating the last dentry */
298 };
299 
300 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
301 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
302 
303 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
304 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
305 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
306 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
307 
308 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
309 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
310 
311 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
312 {
313 	int before = nats_in_cursum(journal);
314 
315 	journal->n_nats = cpu_to_le16(before + i);
316 	return before;
317 }
318 
319 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
320 {
321 	int before = sits_in_cursum(journal);
322 
323 	journal->n_sits = cpu_to_le16(before + i);
324 	return before;
325 }
326 
327 static inline bool __has_cursum_space(struct f2fs_journal *journal,
328 							int size, int type)
329 {
330 	if (type == NAT_JOURNAL)
331 		return size <= MAX_NAT_JENTRIES(journal);
332 	return size <= MAX_SIT_JENTRIES(journal);
333 }
334 
335 /*
336  * ioctl commands
337  */
338 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
339 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
340 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
341 
342 #define F2FS_IOCTL_MAGIC		0xf5
343 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
344 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
345 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
346 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
347 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
348 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
349 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
350 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
351 						struct f2fs_defragment)
352 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
353 						struct f2fs_move_range)
354 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
355 						struct f2fs_flush_device)
356 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
357 						struct f2fs_gc_range)
358 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
359 
360 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
361 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
362 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
363 
364 /*
365  * should be same as XFS_IOC_GOINGDOWN.
366  * Flags for going down operation used by FS_IOC_GOINGDOWN
367  */
368 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
369 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
370 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
371 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
372 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
373 
374 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
375 /*
376  * ioctl commands in 32 bit emulation
377  */
378 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
379 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
380 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
381 #endif
382 
383 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
384 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
385 
386 struct f2fs_gc_range {
387 	u32 sync;
388 	u64 start;
389 	u64 len;
390 };
391 
392 struct f2fs_defragment {
393 	u64 start;
394 	u64 len;
395 };
396 
397 struct f2fs_move_range {
398 	u32 dst_fd;		/* destination fd */
399 	u64 pos_in;		/* start position in src_fd */
400 	u64 pos_out;		/* start position in dst_fd */
401 	u64 len;		/* size to move */
402 };
403 
404 struct f2fs_flush_device {
405 	u32 dev_num;		/* device number to flush */
406 	u32 segments;		/* # of segments to flush */
407 };
408 
409 /* for inline stuff */
410 #define DEF_INLINE_RESERVED_SIZE	1
411 #define DEF_MIN_INLINE_SIZE		1
412 static inline int get_extra_isize(struct inode *inode);
413 static inline int get_inline_xattr_addrs(struct inode *inode);
414 #define F2FS_INLINE_XATTR_ADDRS(inode)	get_inline_xattr_addrs(inode)
415 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
416 				(CUR_ADDRS_PER_INODE(inode) -		\
417 				F2FS_INLINE_XATTR_ADDRS(inode) -	\
418 				DEF_INLINE_RESERVED_SIZE))
419 
420 /* for inline dir */
421 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
422 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
423 				BITS_PER_BYTE + 1))
424 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
425 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
426 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
427 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
428 				NR_INLINE_DENTRY(inode) + \
429 				INLINE_DENTRY_BITMAP_SIZE(inode)))
430 
431 /*
432  * For INODE and NODE manager
433  */
434 /* for directory operations */
435 struct f2fs_dentry_ptr {
436 	struct inode *inode;
437 	void *bitmap;
438 	struct f2fs_dir_entry *dentry;
439 	__u8 (*filename)[F2FS_SLOT_LEN];
440 	int max;
441 	int nr_bitmap;
442 };
443 
444 static inline void make_dentry_ptr_block(struct inode *inode,
445 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
446 {
447 	d->inode = inode;
448 	d->max = NR_DENTRY_IN_BLOCK;
449 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
450 	d->bitmap = &t->dentry_bitmap;
451 	d->dentry = t->dentry;
452 	d->filename = t->filename;
453 }
454 
455 static inline void make_dentry_ptr_inline(struct inode *inode,
456 					struct f2fs_dentry_ptr *d, void *t)
457 {
458 	int entry_cnt = NR_INLINE_DENTRY(inode);
459 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
460 	int reserved_size = INLINE_RESERVED_SIZE(inode);
461 
462 	d->inode = inode;
463 	d->max = entry_cnt;
464 	d->nr_bitmap = bitmap_size;
465 	d->bitmap = t;
466 	d->dentry = t + bitmap_size + reserved_size;
467 	d->filename = t + bitmap_size + reserved_size +
468 					SIZE_OF_DIR_ENTRY * entry_cnt;
469 }
470 
471 /*
472  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
473  * as its node offset to distinguish from index node blocks.
474  * But some bits are used to mark the node block.
475  */
476 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
477 				>> OFFSET_BIT_SHIFT)
478 enum {
479 	ALLOC_NODE,			/* allocate a new node page if needed */
480 	LOOKUP_NODE,			/* look up a node without readahead */
481 	LOOKUP_NODE_RA,			/*
482 					 * look up a node with readahead called
483 					 * by get_data_block.
484 					 */
485 };
486 
487 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
488 
489 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
490 
491 /* vector size for gang look-up from extent cache that consists of radix tree */
492 #define EXT_TREE_VEC_SIZE	64
493 
494 /* for in-memory extent cache entry */
495 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
496 
497 /* number of extent info in extent cache we try to shrink */
498 #define EXTENT_CACHE_SHRINK_NUMBER	128
499 
500 struct rb_entry {
501 	struct rb_node rb_node;		/* rb node located in rb-tree */
502 	unsigned int ofs;		/* start offset of the entry */
503 	unsigned int len;		/* length of the entry */
504 };
505 
506 struct extent_info {
507 	unsigned int fofs;		/* start offset in a file */
508 	unsigned int len;		/* length of the extent */
509 	u32 blk;			/* start block address of the extent */
510 };
511 
512 struct extent_node {
513 	struct rb_node rb_node;
514 	union {
515 		struct {
516 			unsigned int fofs;
517 			unsigned int len;
518 			u32 blk;
519 		};
520 		struct extent_info ei;	/* extent info */
521 
522 	};
523 	struct list_head list;		/* node in global extent list of sbi */
524 	struct extent_tree *et;		/* extent tree pointer */
525 };
526 
527 struct extent_tree {
528 	nid_t ino;			/* inode number */
529 	struct rb_root root;		/* root of extent info rb-tree */
530 	struct extent_node *cached_en;	/* recently accessed extent node */
531 	struct extent_info largest;	/* largested extent info */
532 	struct list_head list;		/* to be used by sbi->zombie_list */
533 	rwlock_t lock;			/* protect extent info rb-tree */
534 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
535 };
536 
537 /*
538  * This structure is taken from ext4_map_blocks.
539  *
540  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
541  */
542 #define F2FS_MAP_NEW		(1 << BH_New)
543 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
544 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
545 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
546 				F2FS_MAP_UNWRITTEN)
547 
548 struct f2fs_map_blocks {
549 	block_t m_pblk;
550 	block_t m_lblk;
551 	unsigned int m_len;
552 	unsigned int m_flags;
553 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
554 	int m_seg_type;
555 };
556 
557 /* for flag in get_data_block */
558 enum {
559 	F2FS_GET_BLOCK_DEFAULT,
560 	F2FS_GET_BLOCK_FIEMAP,
561 	F2FS_GET_BLOCK_BMAP,
562 	F2FS_GET_BLOCK_PRE_DIO,
563 	F2FS_GET_BLOCK_PRE_AIO,
564 };
565 
566 /*
567  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
568  */
569 #define FADVISE_COLD_BIT	0x01
570 #define FADVISE_LOST_PINO_BIT	0x02
571 #define FADVISE_ENCRYPT_BIT	0x04
572 #define FADVISE_ENC_NAME_BIT	0x08
573 #define FADVISE_KEEP_SIZE_BIT	0x10
574 
575 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
576 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
577 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
578 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
579 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
580 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
581 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
582 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
583 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
584 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
585 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
586 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
587 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
588 
589 #define DEF_DIR_LEVEL		0
590 
591 struct f2fs_inode_info {
592 	struct inode vfs_inode;		/* serve a vfs inode */
593 	unsigned long i_flags;		/* keep an inode flags for ioctl */
594 	unsigned char i_advise;		/* use to give file attribute hints */
595 	unsigned char i_dir_level;	/* use for dentry level for large dir */
596 	unsigned int i_current_depth;	/* use only in directory structure */
597 	unsigned int i_pino;		/* parent inode number */
598 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
599 
600 	/* Use below internally in f2fs*/
601 	unsigned long flags;		/* use to pass per-file flags */
602 	struct rw_semaphore i_sem;	/* protect fi info */
603 	atomic_t dirty_pages;		/* # of dirty pages */
604 	f2fs_hash_t chash;		/* hash value of given file name */
605 	unsigned int clevel;		/* maximum level of given file name */
606 	struct task_struct *task;	/* lookup and create consistency */
607 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
608 	nid_t i_xattr_nid;		/* node id that contains xattrs */
609 	loff_t	last_disk_size;		/* lastly written file size */
610 
611 #ifdef CONFIG_QUOTA
612 	struct dquot *i_dquot[MAXQUOTAS];
613 
614 	/* quota space reservation, managed internally by quota code */
615 	qsize_t i_reserved_quota;
616 #endif
617 	struct list_head dirty_list;	/* dirty list for dirs and files */
618 	struct list_head gdirty_list;	/* linked in global dirty list */
619 	struct list_head inmem_ilist;	/* list for inmem inodes */
620 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
621 	struct task_struct *inmem_task;	/* store inmemory task */
622 	struct mutex inmem_lock;	/* lock for inmemory pages */
623 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
624 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
625 	struct rw_semaphore i_mmap_sem;
626 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
627 
628 	int i_extra_isize;		/* size of extra space located in i_addr */
629 	kprojid_t i_projid;		/* id for project quota */
630 	int i_inline_xattr_size;	/* inline xattr size */
631 };
632 
633 static inline void get_extent_info(struct extent_info *ext,
634 					struct f2fs_extent *i_ext)
635 {
636 	ext->fofs = le32_to_cpu(i_ext->fofs);
637 	ext->blk = le32_to_cpu(i_ext->blk);
638 	ext->len = le32_to_cpu(i_ext->len);
639 }
640 
641 static inline void set_raw_extent(struct extent_info *ext,
642 					struct f2fs_extent *i_ext)
643 {
644 	i_ext->fofs = cpu_to_le32(ext->fofs);
645 	i_ext->blk = cpu_to_le32(ext->blk);
646 	i_ext->len = cpu_to_le32(ext->len);
647 }
648 
649 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
650 						u32 blk, unsigned int len)
651 {
652 	ei->fofs = fofs;
653 	ei->blk = blk;
654 	ei->len = len;
655 }
656 
657 static inline bool __is_discard_mergeable(struct discard_info *back,
658 						struct discard_info *front)
659 {
660 	return back->lstart + back->len == front->lstart;
661 }
662 
663 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
664 						struct discard_info *back)
665 {
666 	return __is_discard_mergeable(back, cur);
667 }
668 
669 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
670 						struct discard_info *front)
671 {
672 	return __is_discard_mergeable(cur, front);
673 }
674 
675 static inline bool __is_extent_mergeable(struct extent_info *back,
676 						struct extent_info *front)
677 {
678 	return (back->fofs + back->len == front->fofs &&
679 			back->blk + back->len == front->blk);
680 }
681 
682 static inline bool __is_back_mergeable(struct extent_info *cur,
683 						struct extent_info *back)
684 {
685 	return __is_extent_mergeable(back, cur);
686 }
687 
688 static inline bool __is_front_mergeable(struct extent_info *cur,
689 						struct extent_info *front)
690 {
691 	return __is_extent_mergeable(cur, front);
692 }
693 
694 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
695 static inline void __try_update_largest_extent(struct inode *inode,
696 			struct extent_tree *et, struct extent_node *en)
697 {
698 	if (en->ei.len > et->largest.len) {
699 		et->largest = en->ei;
700 		f2fs_mark_inode_dirty_sync(inode, true);
701 	}
702 }
703 
704 /*
705  * For free nid management
706  */
707 enum nid_state {
708 	FREE_NID,		/* newly added to free nid list */
709 	PREALLOC_NID,		/* it is preallocated */
710 	MAX_NID_STATE,
711 };
712 
713 struct f2fs_nm_info {
714 	block_t nat_blkaddr;		/* base disk address of NAT */
715 	nid_t max_nid;			/* maximum possible node ids */
716 	nid_t available_nids;		/* # of available node ids */
717 	nid_t next_scan_nid;		/* the next nid to be scanned */
718 	unsigned int ram_thresh;	/* control the memory footprint */
719 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
720 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
721 
722 	/* NAT cache management */
723 	struct radix_tree_root nat_root;/* root of the nat entry cache */
724 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
725 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
726 	struct list_head nat_entries;	/* cached nat entry list (clean) */
727 	unsigned int nat_cnt;		/* the # of cached nat entries */
728 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
729 	unsigned int nat_blocks;	/* # of nat blocks */
730 
731 	/* free node ids management */
732 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
733 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
734 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
735 	spinlock_t nid_list_lock;	/* protect nid lists ops */
736 	struct mutex build_lock;	/* lock for build free nids */
737 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
738 	unsigned char *nat_block_bitmap;
739 	unsigned short *free_nid_count;	/* free nid count of NAT block */
740 
741 	/* for checkpoint */
742 	char *nat_bitmap;		/* NAT bitmap pointer */
743 
744 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
745 	unsigned char *nat_bits;	/* NAT bits blocks */
746 	unsigned char *full_nat_bits;	/* full NAT pages */
747 	unsigned char *empty_nat_bits;	/* empty NAT pages */
748 #ifdef CONFIG_F2FS_CHECK_FS
749 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
750 #endif
751 	int bitmap_size;		/* bitmap size */
752 };
753 
754 /*
755  * this structure is used as one of function parameters.
756  * all the information are dedicated to a given direct node block determined
757  * by the data offset in a file.
758  */
759 struct dnode_of_data {
760 	struct inode *inode;		/* vfs inode pointer */
761 	struct page *inode_page;	/* its inode page, NULL is possible */
762 	struct page *node_page;		/* cached direct node page */
763 	nid_t nid;			/* node id of the direct node block */
764 	unsigned int ofs_in_node;	/* data offset in the node page */
765 	bool inode_page_locked;		/* inode page is locked or not */
766 	bool node_changed;		/* is node block changed */
767 	char cur_level;			/* level of hole node page */
768 	char max_level;			/* level of current page located */
769 	block_t	data_blkaddr;		/* block address of the node block */
770 };
771 
772 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
773 		struct page *ipage, struct page *npage, nid_t nid)
774 {
775 	memset(dn, 0, sizeof(*dn));
776 	dn->inode = inode;
777 	dn->inode_page = ipage;
778 	dn->node_page = npage;
779 	dn->nid = nid;
780 }
781 
782 /*
783  * For SIT manager
784  *
785  * By default, there are 6 active log areas across the whole main area.
786  * When considering hot and cold data separation to reduce cleaning overhead,
787  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
788  * respectively.
789  * In the current design, you should not change the numbers intentionally.
790  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
791  * logs individually according to the underlying devices. (default: 6)
792  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
793  * data and 8 for node logs.
794  */
795 #define	NR_CURSEG_DATA_TYPE	(3)
796 #define NR_CURSEG_NODE_TYPE	(3)
797 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
798 
799 enum {
800 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
801 	CURSEG_WARM_DATA,	/* data blocks */
802 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
803 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
804 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
805 	CURSEG_COLD_NODE,	/* indirect node blocks */
806 	NO_CHECK_TYPE,
807 };
808 
809 struct flush_cmd {
810 	struct completion wait;
811 	struct llist_node llnode;
812 	nid_t ino;
813 	int ret;
814 };
815 
816 struct flush_cmd_control {
817 	struct task_struct *f2fs_issue_flush;	/* flush thread */
818 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
819 	atomic_t issued_flush;			/* # of issued flushes */
820 	atomic_t issing_flush;			/* # of issing flushes */
821 	struct llist_head issue_list;		/* list for command issue */
822 	struct llist_node *dispatch_list;	/* list for command dispatch */
823 };
824 
825 struct f2fs_sm_info {
826 	struct sit_info *sit_info;		/* whole segment information */
827 	struct free_segmap_info *free_info;	/* free segment information */
828 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
829 	struct curseg_info *curseg_array;	/* active segment information */
830 
831 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
832 
833 	block_t seg0_blkaddr;		/* block address of 0'th segment */
834 	block_t main_blkaddr;		/* start block address of main area */
835 	block_t ssa_blkaddr;		/* start block address of SSA area */
836 
837 	unsigned int segment_count;	/* total # of segments */
838 	unsigned int main_segments;	/* # of segments in main area */
839 	unsigned int reserved_segments;	/* # of reserved segments */
840 	unsigned int ovp_segments;	/* # of overprovision segments */
841 
842 	/* a threshold to reclaim prefree segments */
843 	unsigned int rec_prefree_segments;
844 
845 	/* for batched trimming */
846 	unsigned int trim_sections;		/* # of sections to trim */
847 
848 	struct list_head sit_entry_set;	/* sit entry set list */
849 
850 	unsigned int ipu_policy;	/* in-place-update policy */
851 	unsigned int min_ipu_util;	/* in-place-update threshold */
852 	unsigned int min_fsync_blocks;	/* threshold for fsync */
853 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
854 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
855 
856 	/* for flush command control */
857 	struct flush_cmd_control *fcc_info;
858 
859 	/* for discard command control */
860 	struct discard_cmd_control *dcc_info;
861 };
862 
863 /*
864  * For superblock
865  */
866 /*
867  * COUNT_TYPE for monitoring
868  *
869  * f2fs monitors the number of several block types such as on-writeback,
870  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
871  */
872 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
873 enum count_type {
874 	F2FS_DIRTY_DENTS,
875 	F2FS_DIRTY_DATA,
876 	F2FS_DIRTY_QDATA,
877 	F2FS_DIRTY_NODES,
878 	F2FS_DIRTY_META,
879 	F2FS_INMEM_PAGES,
880 	F2FS_DIRTY_IMETA,
881 	F2FS_WB_CP_DATA,
882 	F2FS_WB_DATA,
883 	NR_COUNT_TYPE,
884 };
885 
886 /*
887  * The below are the page types of bios used in submit_bio().
888  * The available types are:
889  * DATA			User data pages. It operates as async mode.
890  * NODE			Node pages. It operates as async mode.
891  * META			FS metadata pages such as SIT, NAT, CP.
892  * NR_PAGE_TYPE		The number of page types.
893  * META_FLUSH		Make sure the previous pages are written
894  *			with waiting the bio's completion
895  * ...			Only can be used with META.
896  */
897 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
898 enum page_type {
899 	DATA,
900 	NODE,
901 	META,
902 	NR_PAGE_TYPE,
903 	META_FLUSH,
904 	INMEM,		/* the below types are used by tracepoints only. */
905 	INMEM_DROP,
906 	INMEM_INVALIDATE,
907 	INMEM_REVOKE,
908 	IPU,
909 	OPU,
910 };
911 
912 enum temp_type {
913 	HOT = 0,	/* must be zero for meta bio */
914 	WARM,
915 	COLD,
916 	NR_TEMP_TYPE,
917 };
918 
919 enum need_lock_type {
920 	LOCK_REQ = 0,
921 	LOCK_DONE,
922 	LOCK_RETRY,
923 };
924 
925 enum cp_reason_type {
926 	CP_NO_NEEDED,
927 	CP_NON_REGULAR,
928 	CP_HARDLINK,
929 	CP_SB_NEED_CP,
930 	CP_WRONG_PINO,
931 	CP_NO_SPC_ROLL,
932 	CP_NODE_NEED_CP,
933 	CP_FASTBOOT_MODE,
934 	CP_SPEC_LOG_NUM,
935 	CP_RECOVER_DIR,
936 };
937 
938 enum iostat_type {
939 	APP_DIRECT_IO,			/* app direct IOs */
940 	APP_BUFFERED_IO,		/* app buffered IOs */
941 	APP_WRITE_IO,			/* app write IOs */
942 	APP_MAPPED_IO,			/* app mapped IOs */
943 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
944 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
945 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
946 	FS_GC_DATA_IO,			/* data IOs from forground gc */
947 	FS_GC_NODE_IO,			/* node IOs from forground gc */
948 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
949 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
950 	FS_CP_META_IO,			/* meta IOs from checkpoint */
951 	FS_DISCARD,			/* discard */
952 	NR_IO_TYPE,
953 };
954 
955 struct f2fs_io_info {
956 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
957 	nid_t ino;		/* inode number */
958 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
959 	enum temp_type temp;	/* contains HOT/WARM/COLD */
960 	int op;			/* contains REQ_OP_ */
961 	int op_flags;		/* req_flag_bits */
962 	block_t new_blkaddr;	/* new block address to be written */
963 	block_t old_blkaddr;	/* old block address before Cow */
964 	struct page *page;	/* page to be written */
965 	struct page *encrypted_page;	/* encrypted page */
966 	struct list_head list;		/* serialize IOs */
967 	bool submitted;		/* indicate IO submission */
968 	int need_lock;		/* indicate we need to lock cp_rwsem */
969 	bool in_list;		/* indicate fio is in io_list */
970 	enum iostat_type io_type;	/* io type */
971 	struct writeback_control *io_wbc; /* writeback control */
972 };
973 
974 #define is_read_io(rw) ((rw) == READ)
975 struct f2fs_bio_info {
976 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
977 	struct bio *bio;		/* bios to merge */
978 	sector_t last_block_in_bio;	/* last block number */
979 	struct f2fs_io_info fio;	/* store buffered io info. */
980 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
981 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
982 	struct list_head io_list;	/* track fios */
983 };
984 
985 #define FDEV(i)				(sbi->devs[i])
986 #define RDEV(i)				(raw_super->devs[i])
987 struct f2fs_dev_info {
988 	struct block_device *bdev;
989 	char path[MAX_PATH_LEN];
990 	unsigned int total_segments;
991 	block_t start_blk;
992 	block_t end_blk;
993 #ifdef CONFIG_BLK_DEV_ZONED
994 	unsigned int nr_blkz;			/* Total number of zones */
995 	u8 *blkz_type;				/* Array of zones type */
996 #endif
997 };
998 
999 enum inode_type {
1000 	DIR_INODE,			/* for dirty dir inode */
1001 	FILE_INODE,			/* for dirty regular/symlink inode */
1002 	DIRTY_META,			/* for all dirtied inode metadata */
1003 	ATOMIC_FILE,			/* for all atomic files */
1004 	NR_INODE_TYPE,
1005 };
1006 
1007 /* for inner inode cache management */
1008 struct inode_management {
1009 	struct radix_tree_root ino_root;	/* ino entry array */
1010 	spinlock_t ino_lock;			/* for ino entry lock */
1011 	struct list_head ino_list;		/* inode list head */
1012 	unsigned long ino_num;			/* number of entries */
1013 };
1014 
1015 /* For s_flag in struct f2fs_sb_info */
1016 enum {
1017 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1018 	SBI_IS_CLOSE,				/* specify unmounting */
1019 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1020 	SBI_POR_DOING,				/* recovery is doing or not */
1021 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1022 	SBI_NEED_CP,				/* need to checkpoint */
1023 };
1024 
1025 enum {
1026 	CP_TIME,
1027 	REQ_TIME,
1028 	MAX_TIME,
1029 };
1030 
1031 struct f2fs_sb_info {
1032 	struct super_block *sb;			/* pointer to VFS super block */
1033 	struct proc_dir_entry *s_proc;		/* proc entry */
1034 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1035 	int valid_super_block;			/* valid super block no */
1036 	unsigned long s_flag;				/* flags for sbi */
1037 
1038 #ifdef CONFIG_BLK_DEV_ZONED
1039 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1040 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1041 #endif
1042 
1043 	/* for node-related operations */
1044 	struct f2fs_nm_info *nm_info;		/* node manager */
1045 	struct inode *node_inode;		/* cache node blocks */
1046 
1047 	/* for segment-related operations */
1048 	struct f2fs_sm_info *sm_info;		/* segment manager */
1049 
1050 	/* for bio operations */
1051 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1052 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1053 						/* bio ordering for NODE/DATA */
1054 	int write_io_size_bits;			/* Write IO size bits */
1055 	mempool_t *write_io_dummy;		/* Dummy pages */
1056 
1057 	/* for checkpoint */
1058 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1059 	int cur_cp_pack;			/* remain current cp pack */
1060 	spinlock_t cp_lock;			/* for flag in ckpt */
1061 	struct inode *meta_inode;		/* cache meta blocks */
1062 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1063 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1064 	struct rw_semaphore node_write;		/* locking node writes */
1065 	struct rw_semaphore node_change;	/* locking node change */
1066 	wait_queue_head_t cp_wait;
1067 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1068 	long interval_time[MAX_TIME];		/* to store thresholds */
1069 
1070 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1071 
1072 	/* for orphan inode, use 0'th array */
1073 	unsigned int max_orphans;		/* max orphan inodes */
1074 
1075 	/* for inode management */
1076 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1077 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1078 
1079 	/* for extent tree cache */
1080 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1081 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1082 	struct list_head extent_list;		/* lru list for shrinker */
1083 	spinlock_t extent_lock;			/* locking extent lru list */
1084 	atomic_t total_ext_tree;		/* extent tree count */
1085 	struct list_head zombie_list;		/* extent zombie tree list */
1086 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1087 	atomic_t total_ext_node;		/* extent info count */
1088 
1089 	/* basic filesystem units */
1090 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1091 	unsigned int log_blocksize;		/* log2 block size */
1092 	unsigned int blocksize;			/* block size */
1093 	unsigned int root_ino_num;		/* root inode number*/
1094 	unsigned int node_ino_num;		/* node inode number*/
1095 	unsigned int meta_ino_num;		/* meta inode number*/
1096 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1097 	unsigned int blocks_per_seg;		/* blocks per segment */
1098 	unsigned int segs_per_sec;		/* segments per section */
1099 	unsigned int secs_per_zone;		/* sections per zone */
1100 	unsigned int total_sections;		/* total section count */
1101 	unsigned int total_node_count;		/* total node block count */
1102 	unsigned int total_valid_node_count;	/* valid node block count */
1103 	loff_t max_file_blocks;			/* max block index of file */
1104 	int active_logs;			/* # of active logs */
1105 	int dir_level;				/* directory level */
1106 	int inline_xattr_size;			/* inline xattr size */
1107 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1108 	int readdir_ra;				/* readahead inode in readdir */
1109 
1110 	block_t user_block_count;		/* # of user blocks */
1111 	block_t total_valid_block_count;	/* # of valid blocks */
1112 	block_t discard_blks;			/* discard command candidats */
1113 	block_t last_valid_block_count;		/* for recovery */
1114 	block_t reserved_blocks;		/* configurable reserved blocks */
1115 	block_t current_reserved_blocks;	/* current reserved blocks */
1116 	block_t root_reserved_blocks;		/* root reserved blocks */
1117 	kuid_t s_resuid;			/* reserved blocks for uid */
1118 	kgid_t s_resgid;			/* reserved blocks for gid */
1119 
1120 	unsigned int nquota_files;		/* # of quota sysfile */
1121 
1122 	u32 s_next_generation;			/* for NFS support */
1123 
1124 	/* # of pages, see count_type */
1125 	atomic_t nr_pages[NR_COUNT_TYPE];
1126 	/* # of allocated blocks */
1127 	struct percpu_counter alloc_valid_block_count;
1128 
1129 	/* writeback control */
1130 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1131 
1132 	/* valid inode count */
1133 	struct percpu_counter total_valid_inode_count;
1134 
1135 	struct f2fs_mount_info mount_opt;	/* mount options */
1136 
1137 	/* for cleaning operations */
1138 	struct mutex gc_mutex;			/* mutex for GC */
1139 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1140 	unsigned int cur_victim_sec;		/* current victim section num */
1141 
1142 	/* threshold for converting bg victims for fg */
1143 	u64 fggc_threshold;
1144 
1145 	/* maximum # of trials to find a victim segment for SSR and GC */
1146 	unsigned int max_victim_search;
1147 
1148 	/*
1149 	 * for stat information.
1150 	 * one is for the LFS mode, and the other is for the SSR mode.
1151 	 */
1152 #ifdef CONFIG_F2FS_STAT_FS
1153 	struct f2fs_stat_info *stat_info;	/* FS status information */
1154 	unsigned int segment_count[2];		/* # of allocated segments */
1155 	unsigned int block_count[2];		/* # of allocated blocks */
1156 	atomic_t inplace_count;		/* # of inplace update */
1157 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1158 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1159 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1160 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1161 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1162 	atomic_t inline_inode;			/* # of inline_data inodes */
1163 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1164 	atomic_t aw_cnt;			/* # of atomic writes */
1165 	atomic_t vw_cnt;			/* # of volatile writes */
1166 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1167 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1168 	int bg_gc;				/* background gc calls */
1169 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1170 #endif
1171 	spinlock_t stat_lock;			/* lock for stat operations */
1172 
1173 	/* For app/fs IO statistics */
1174 	spinlock_t iostat_lock;
1175 	unsigned long long write_iostat[NR_IO_TYPE];
1176 	bool iostat_enable;
1177 
1178 	/* For sysfs suppport */
1179 	struct kobject s_kobj;
1180 	struct completion s_kobj_unregister;
1181 
1182 	/* For shrinker support */
1183 	struct list_head s_list;
1184 	int s_ndevs;				/* number of devices */
1185 	struct f2fs_dev_info *devs;		/* for device list */
1186 	unsigned int dirty_device;		/* for checkpoint data flush */
1187 	spinlock_t dev_lock;			/* protect dirty_device */
1188 	struct mutex umount_mutex;
1189 	unsigned int shrinker_run_no;
1190 
1191 	/* For write statistics */
1192 	u64 sectors_written_start;
1193 	u64 kbytes_written;
1194 
1195 	/* Reference to checksum algorithm driver via cryptoapi */
1196 	struct crypto_shash *s_chksum_driver;
1197 
1198 	/* Precomputed FS UUID checksum for seeding other checksums */
1199 	__u32 s_chksum_seed;
1200 
1201 	/* For fault injection */
1202 #ifdef CONFIG_F2FS_FAULT_INJECTION
1203 	struct f2fs_fault_info fault_info;
1204 #endif
1205 
1206 #ifdef CONFIG_QUOTA
1207 	/* Names of quota files with journalled quota */
1208 	char *s_qf_names[MAXQUOTAS];
1209 	int s_jquota_fmt;			/* Format of quota to use */
1210 #endif
1211 };
1212 
1213 #ifdef CONFIG_F2FS_FAULT_INJECTION
1214 #define f2fs_show_injection_info(type)				\
1215 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1216 		KERN_INFO, fault_name[type],			\
1217 		__func__, __builtin_return_address(0))
1218 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1219 {
1220 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1221 
1222 	if (!ffi->inject_rate)
1223 		return false;
1224 
1225 	if (!IS_FAULT_SET(ffi, type))
1226 		return false;
1227 
1228 	atomic_inc(&ffi->inject_ops);
1229 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1230 		atomic_set(&ffi->inject_ops, 0);
1231 		return true;
1232 	}
1233 	return false;
1234 }
1235 #endif
1236 
1237 /* For write statistics. Suppose sector size is 512 bytes,
1238  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1239  */
1240 #define BD_PART_WRITTEN(s)						 \
1241 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1242 		(s)->sectors_written_start) >> 1)
1243 
1244 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1245 {
1246 	sbi->last_time[type] = jiffies;
1247 }
1248 
1249 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1250 {
1251 	unsigned long interval = sbi->interval_time[type] * HZ;
1252 
1253 	return time_after(jiffies, sbi->last_time[type] + interval);
1254 }
1255 
1256 static inline bool is_idle(struct f2fs_sb_info *sbi)
1257 {
1258 	struct block_device *bdev = sbi->sb->s_bdev;
1259 	struct request_queue *q = bdev_get_queue(bdev);
1260 	struct request_list *rl = &q->root_rl;
1261 
1262 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1263 		return 0;
1264 
1265 	return f2fs_time_over(sbi, REQ_TIME);
1266 }
1267 
1268 /*
1269  * Inline functions
1270  */
1271 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1272 			      const void *address, unsigned int length)
1273 {
1274 	struct {
1275 		struct shash_desc shash;
1276 		char ctx[4];
1277 	} desc;
1278 	int err;
1279 
1280 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1281 
1282 	desc.shash.tfm = sbi->s_chksum_driver;
1283 	desc.shash.flags = 0;
1284 	*(u32 *)desc.ctx = crc;
1285 
1286 	err = crypto_shash_update(&desc.shash, address, length);
1287 	BUG_ON(err);
1288 
1289 	return *(u32 *)desc.ctx;
1290 }
1291 
1292 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1293 			   unsigned int length)
1294 {
1295 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1296 }
1297 
1298 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1299 				  void *buf, size_t buf_size)
1300 {
1301 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1302 }
1303 
1304 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1305 			      const void *address, unsigned int length)
1306 {
1307 	return __f2fs_crc32(sbi, crc, address, length);
1308 }
1309 
1310 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1311 {
1312 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1313 }
1314 
1315 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1316 {
1317 	return sb->s_fs_info;
1318 }
1319 
1320 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1321 {
1322 	return F2FS_SB(inode->i_sb);
1323 }
1324 
1325 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1326 {
1327 	return F2FS_I_SB(mapping->host);
1328 }
1329 
1330 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1331 {
1332 	return F2FS_M_SB(page->mapping);
1333 }
1334 
1335 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1336 {
1337 	return (struct f2fs_super_block *)(sbi->raw_super);
1338 }
1339 
1340 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1341 {
1342 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1343 }
1344 
1345 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1346 {
1347 	return (struct f2fs_node *)page_address(page);
1348 }
1349 
1350 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1351 {
1352 	return &((struct f2fs_node *)page_address(page))->i;
1353 }
1354 
1355 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1356 {
1357 	return (struct f2fs_nm_info *)(sbi->nm_info);
1358 }
1359 
1360 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1361 {
1362 	return (struct f2fs_sm_info *)(sbi->sm_info);
1363 }
1364 
1365 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1366 {
1367 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1368 }
1369 
1370 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1371 {
1372 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1373 }
1374 
1375 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1376 {
1377 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1378 }
1379 
1380 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1381 {
1382 	return sbi->meta_inode->i_mapping;
1383 }
1384 
1385 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1386 {
1387 	return sbi->node_inode->i_mapping;
1388 }
1389 
1390 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1391 {
1392 	return test_bit(type, &sbi->s_flag);
1393 }
1394 
1395 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1396 {
1397 	set_bit(type, &sbi->s_flag);
1398 }
1399 
1400 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1401 {
1402 	clear_bit(type, &sbi->s_flag);
1403 }
1404 
1405 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1406 {
1407 	return le64_to_cpu(cp->checkpoint_ver);
1408 }
1409 
1410 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1411 {
1412 	if (type < F2FS_MAX_QUOTAS)
1413 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1414 	return 0;
1415 }
1416 
1417 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1418 {
1419 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1420 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1421 }
1422 
1423 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1424 {
1425 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1426 
1427 	return ckpt_flags & f;
1428 }
1429 
1430 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1431 {
1432 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1433 }
1434 
1435 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1436 {
1437 	unsigned int ckpt_flags;
1438 
1439 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1440 	ckpt_flags |= f;
1441 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1442 }
1443 
1444 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1445 {
1446 	unsigned long flags;
1447 
1448 	spin_lock_irqsave(&sbi->cp_lock, flags);
1449 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1450 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1451 }
1452 
1453 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1454 {
1455 	unsigned int ckpt_flags;
1456 
1457 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1458 	ckpt_flags &= (~f);
1459 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1460 }
1461 
1462 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1463 {
1464 	unsigned long flags;
1465 
1466 	spin_lock_irqsave(&sbi->cp_lock, flags);
1467 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1468 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1469 }
1470 
1471 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1472 {
1473 	unsigned long flags;
1474 
1475 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1476 
1477 	if (lock)
1478 		spin_lock_irqsave(&sbi->cp_lock, flags);
1479 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1480 	kfree(NM_I(sbi)->nat_bits);
1481 	NM_I(sbi)->nat_bits = NULL;
1482 	if (lock)
1483 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1484 }
1485 
1486 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1487 					struct cp_control *cpc)
1488 {
1489 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1490 
1491 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1492 }
1493 
1494 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1495 {
1496 	down_read(&sbi->cp_rwsem);
1497 }
1498 
1499 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1500 {
1501 	return down_read_trylock(&sbi->cp_rwsem);
1502 }
1503 
1504 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1505 {
1506 	up_read(&sbi->cp_rwsem);
1507 }
1508 
1509 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1510 {
1511 	down_write(&sbi->cp_rwsem);
1512 }
1513 
1514 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1515 {
1516 	up_write(&sbi->cp_rwsem);
1517 }
1518 
1519 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1520 {
1521 	int reason = CP_SYNC;
1522 
1523 	if (test_opt(sbi, FASTBOOT))
1524 		reason = CP_FASTBOOT;
1525 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1526 		reason = CP_UMOUNT;
1527 	return reason;
1528 }
1529 
1530 static inline bool __remain_node_summaries(int reason)
1531 {
1532 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1533 }
1534 
1535 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1536 {
1537 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1538 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1539 }
1540 
1541 /*
1542  * Check whether the given nid is within node id range.
1543  */
1544 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1545 {
1546 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1547 		return -EINVAL;
1548 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1549 		return -EINVAL;
1550 	return 0;
1551 }
1552 
1553 /*
1554  * Check whether the inode has blocks or not
1555  */
1556 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1557 {
1558 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1559 
1560 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1561 }
1562 
1563 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1564 {
1565 	return ofs == XATTR_NODE_OFFSET;
1566 }
1567 
1568 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi)
1569 {
1570 	if (!test_opt(sbi, RESERVE_ROOT))
1571 		return false;
1572 	if (capable(CAP_SYS_RESOURCE))
1573 		return true;
1574 	if (uid_eq(sbi->s_resuid, current_fsuid()))
1575 		return true;
1576 	if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) &&
1577 					in_group_p(sbi->s_resgid))
1578 		return true;
1579 	return false;
1580 }
1581 
1582 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1583 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1584 				 struct inode *inode, blkcnt_t *count)
1585 {
1586 	blkcnt_t diff = 0, release = 0;
1587 	block_t avail_user_block_count;
1588 	int ret;
1589 
1590 	ret = dquot_reserve_block(inode, *count);
1591 	if (ret)
1592 		return ret;
1593 
1594 #ifdef CONFIG_F2FS_FAULT_INJECTION
1595 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1596 		f2fs_show_injection_info(FAULT_BLOCK);
1597 		release = *count;
1598 		goto enospc;
1599 	}
1600 #endif
1601 	/*
1602 	 * let's increase this in prior to actual block count change in order
1603 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1604 	 */
1605 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1606 
1607 	spin_lock(&sbi->stat_lock);
1608 	sbi->total_valid_block_count += (block_t)(*count);
1609 	avail_user_block_count = sbi->user_block_count -
1610 					sbi->current_reserved_blocks;
1611 
1612 	if (!__allow_reserved_blocks(sbi))
1613 		avail_user_block_count -= sbi->root_reserved_blocks;
1614 
1615 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1616 		diff = sbi->total_valid_block_count - avail_user_block_count;
1617 		if (diff > *count)
1618 			diff = *count;
1619 		*count -= diff;
1620 		release = diff;
1621 		sbi->total_valid_block_count -= diff;
1622 		if (!*count) {
1623 			spin_unlock(&sbi->stat_lock);
1624 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1625 			goto enospc;
1626 		}
1627 	}
1628 	spin_unlock(&sbi->stat_lock);
1629 
1630 	if (unlikely(release))
1631 		dquot_release_reservation_block(inode, release);
1632 	f2fs_i_blocks_write(inode, *count, true, true);
1633 	return 0;
1634 
1635 enospc:
1636 	dquot_release_reservation_block(inode, release);
1637 	return -ENOSPC;
1638 }
1639 
1640 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1641 						struct inode *inode,
1642 						block_t count)
1643 {
1644 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1645 
1646 	spin_lock(&sbi->stat_lock);
1647 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1648 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1649 	sbi->total_valid_block_count -= (block_t)count;
1650 	if (sbi->reserved_blocks &&
1651 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1652 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1653 					sbi->current_reserved_blocks + count);
1654 	spin_unlock(&sbi->stat_lock);
1655 	f2fs_i_blocks_write(inode, count, false, true);
1656 }
1657 
1658 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1659 {
1660 	atomic_inc(&sbi->nr_pages[count_type]);
1661 
1662 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1663 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1664 		return;
1665 
1666 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1667 }
1668 
1669 static inline void inode_inc_dirty_pages(struct inode *inode)
1670 {
1671 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1672 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1673 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1674 	if (IS_NOQUOTA(inode))
1675 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1676 }
1677 
1678 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1679 {
1680 	atomic_dec(&sbi->nr_pages[count_type]);
1681 }
1682 
1683 static inline void inode_dec_dirty_pages(struct inode *inode)
1684 {
1685 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1686 			!S_ISLNK(inode->i_mode))
1687 		return;
1688 
1689 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1690 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1691 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1692 	if (IS_NOQUOTA(inode))
1693 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1694 }
1695 
1696 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1697 {
1698 	return atomic_read(&sbi->nr_pages[count_type]);
1699 }
1700 
1701 static inline int get_dirty_pages(struct inode *inode)
1702 {
1703 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1704 }
1705 
1706 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1707 {
1708 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1709 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1710 						sbi->log_blocks_per_seg;
1711 
1712 	return segs / sbi->segs_per_sec;
1713 }
1714 
1715 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1716 {
1717 	return sbi->total_valid_block_count;
1718 }
1719 
1720 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1721 {
1722 	return sbi->discard_blks;
1723 }
1724 
1725 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1726 {
1727 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1728 
1729 	/* return NAT or SIT bitmap */
1730 	if (flag == NAT_BITMAP)
1731 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1732 	else if (flag == SIT_BITMAP)
1733 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1734 
1735 	return 0;
1736 }
1737 
1738 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1739 {
1740 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1741 }
1742 
1743 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1744 {
1745 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1746 	int offset;
1747 
1748 	if (__cp_payload(sbi) > 0) {
1749 		if (flag == NAT_BITMAP)
1750 			return &ckpt->sit_nat_version_bitmap;
1751 		else
1752 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1753 	} else {
1754 		offset = (flag == NAT_BITMAP) ?
1755 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1756 		return &ckpt->sit_nat_version_bitmap + offset;
1757 	}
1758 }
1759 
1760 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1761 {
1762 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1763 
1764 	if (sbi->cur_cp_pack == 2)
1765 		start_addr += sbi->blocks_per_seg;
1766 	return start_addr;
1767 }
1768 
1769 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1770 {
1771 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1772 
1773 	if (sbi->cur_cp_pack == 1)
1774 		start_addr += sbi->blocks_per_seg;
1775 	return start_addr;
1776 }
1777 
1778 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1779 {
1780 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1781 }
1782 
1783 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1784 {
1785 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1786 }
1787 
1788 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1789 					struct inode *inode, bool is_inode)
1790 {
1791 	block_t	valid_block_count;
1792 	unsigned int valid_node_count;
1793 	bool quota = inode && !is_inode;
1794 
1795 	if (quota) {
1796 		int ret = dquot_reserve_block(inode, 1);
1797 		if (ret)
1798 			return ret;
1799 	}
1800 
1801 #ifdef CONFIG_F2FS_FAULT_INJECTION
1802 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1803 		f2fs_show_injection_info(FAULT_BLOCK);
1804 		goto enospc;
1805 	}
1806 #endif
1807 
1808 	spin_lock(&sbi->stat_lock);
1809 
1810 	valid_block_count = sbi->total_valid_block_count +
1811 					sbi->current_reserved_blocks + 1;
1812 
1813 	if (!__allow_reserved_blocks(sbi))
1814 		valid_block_count += sbi->root_reserved_blocks;
1815 
1816 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1817 		spin_unlock(&sbi->stat_lock);
1818 		goto enospc;
1819 	}
1820 
1821 	valid_node_count = sbi->total_valid_node_count + 1;
1822 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1823 		spin_unlock(&sbi->stat_lock);
1824 		goto enospc;
1825 	}
1826 
1827 	sbi->total_valid_node_count++;
1828 	sbi->total_valid_block_count++;
1829 	spin_unlock(&sbi->stat_lock);
1830 
1831 	if (inode) {
1832 		if (is_inode)
1833 			f2fs_mark_inode_dirty_sync(inode, true);
1834 		else
1835 			f2fs_i_blocks_write(inode, 1, true, true);
1836 	}
1837 
1838 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1839 	return 0;
1840 
1841 enospc:
1842 	if (quota)
1843 		dquot_release_reservation_block(inode, 1);
1844 	return -ENOSPC;
1845 }
1846 
1847 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1848 					struct inode *inode, bool is_inode)
1849 {
1850 	spin_lock(&sbi->stat_lock);
1851 
1852 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1853 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1854 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1855 
1856 	sbi->total_valid_node_count--;
1857 	sbi->total_valid_block_count--;
1858 	if (sbi->reserved_blocks &&
1859 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1860 		sbi->current_reserved_blocks++;
1861 
1862 	spin_unlock(&sbi->stat_lock);
1863 
1864 	if (!is_inode)
1865 		f2fs_i_blocks_write(inode, 1, false, true);
1866 }
1867 
1868 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1869 {
1870 	return sbi->total_valid_node_count;
1871 }
1872 
1873 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1874 {
1875 	percpu_counter_inc(&sbi->total_valid_inode_count);
1876 }
1877 
1878 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1879 {
1880 	percpu_counter_dec(&sbi->total_valid_inode_count);
1881 }
1882 
1883 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1884 {
1885 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1886 }
1887 
1888 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1889 						pgoff_t index, bool for_write)
1890 {
1891 #ifdef CONFIG_F2FS_FAULT_INJECTION
1892 	struct page *page = find_lock_page(mapping, index);
1893 
1894 	if (page)
1895 		return page;
1896 
1897 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1898 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1899 		return NULL;
1900 	}
1901 #endif
1902 	if (!for_write)
1903 		return grab_cache_page(mapping, index);
1904 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1905 }
1906 
1907 static inline struct page *f2fs_pagecache_get_page(
1908 				struct address_space *mapping, pgoff_t index,
1909 				int fgp_flags, gfp_t gfp_mask)
1910 {
1911 #ifdef CONFIG_F2FS_FAULT_INJECTION
1912 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1913 		f2fs_show_injection_info(FAULT_PAGE_GET);
1914 		return NULL;
1915 	}
1916 #endif
1917 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1918 }
1919 
1920 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1921 {
1922 	char *src_kaddr = kmap(src);
1923 	char *dst_kaddr = kmap(dst);
1924 
1925 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1926 	kunmap(dst);
1927 	kunmap(src);
1928 }
1929 
1930 static inline void f2fs_put_page(struct page *page, int unlock)
1931 {
1932 	if (!page)
1933 		return;
1934 
1935 	if (unlock) {
1936 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1937 		unlock_page(page);
1938 	}
1939 	put_page(page);
1940 }
1941 
1942 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1943 {
1944 	if (dn->node_page)
1945 		f2fs_put_page(dn->node_page, 1);
1946 	if (dn->inode_page && dn->node_page != dn->inode_page)
1947 		f2fs_put_page(dn->inode_page, 0);
1948 	dn->node_page = NULL;
1949 	dn->inode_page = NULL;
1950 }
1951 
1952 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1953 					size_t size)
1954 {
1955 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1956 }
1957 
1958 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1959 						gfp_t flags)
1960 {
1961 	void *entry;
1962 
1963 	entry = kmem_cache_alloc(cachep, flags);
1964 	if (!entry)
1965 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1966 	return entry;
1967 }
1968 
1969 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1970 						int npages, bool no_fail)
1971 {
1972 	struct bio *bio;
1973 
1974 	if (no_fail) {
1975 		/* No failure on bio allocation */
1976 		bio = bio_alloc(GFP_NOIO, npages);
1977 		if (!bio)
1978 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1979 		return bio;
1980 	}
1981 #ifdef CONFIG_F2FS_FAULT_INJECTION
1982 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1983 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
1984 		return NULL;
1985 	}
1986 #endif
1987 	return bio_alloc(GFP_KERNEL, npages);
1988 }
1989 
1990 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1991 				unsigned long index, void *item)
1992 {
1993 	while (radix_tree_insert(root, index, item))
1994 		cond_resched();
1995 }
1996 
1997 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1998 
1999 static inline bool IS_INODE(struct page *page)
2000 {
2001 	struct f2fs_node *p = F2FS_NODE(page);
2002 
2003 	return RAW_IS_INODE(p);
2004 }
2005 
2006 static inline int offset_in_addr(struct f2fs_inode *i)
2007 {
2008 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2009 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2010 }
2011 
2012 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2013 {
2014 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2015 }
2016 
2017 static inline int f2fs_has_extra_attr(struct inode *inode);
2018 static inline block_t datablock_addr(struct inode *inode,
2019 			struct page *node_page, unsigned int offset)
2020 {
2021 	struct f2fs_node *raw_node;
2022 	__le32 *addr_array;
2023 	int base = 0;
2024 	bool is_inode = IS_INODE(node_page);
2025 
2026 	raw_node = F2FS_NODE(node_page);
2027 
2028 	/* from GC path only */
2029 	if (is_inode) {
2030 		if (!inode)
2031 			base = offset_in_addr(&raw_node->i);
2032 		else if (f2fs_has_extra_attr(inode))
2033 			base = get_extra_isize(inode);
2034 	}
2035 
2036 	addr_array = blkaddr_in_node(raw_node);
2037 	return le32_to_cpu(addr_array[base + offset]);
2038 }
2039 
2040 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2041 {
2042 	int mask;
2043 
2044 	addr += (nr >> 3);
2045 	mask = 1 << (7 - (nr & 0x07));
2046 	return mask & *addr;
2047 }
2048 
2049 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2050 {
2051 	int mask;
2052 
2053 	addr += (nr >> 3);
2054 	mask = 1 << (7 - (nr & 0x07));
2055 	*addr |= mask;
2056 }
2057 
2058 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2059 {
2060 	int mask;
2061 
2062 	addr += (nr >> 3);
2063 	mask = 1 << (7 - (nr & 0x07));
2064 	*addr &= ~mask;
2065 }
2066 
2067 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2068 {
2069 	int mask;
2070 	int ret;
2071 
2072 	addr += (nr >> 3);
2073 	mask = 1 << (7 - (nr & 0x07));
2074 	ret = mask & *addr;
2075 	*addr |= mask;
2076 	return ret;
2077 }
2078 
2079 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2080 {
2081 	int mask;
2082 	int ret;
2083 
2084 	addr += (nr >> 3);
2085 	mask = 1 << (7 - (nr & 0x07));
2086 	ret = mask & *addr;
2087 	*addr &= ~mask;
2088 	return ret;
2089 }
2090 
2091 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2092 {
2093 	int mask;
2094 
2095 	addr += (nr >> 3);
2096 	mask = 1 << (7 - (nr & 0x07));
2097 	*addr ^= mask;
2098 }
2099 
2100 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2101 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2102 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2103 
2104 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2105 {
2106 	if (S_ISDIR(mode))
2107 		return flags;
2108 	else if (S_ISREG(mode))
2109 		return flags & F2FS_REG_FLMASK;
2110 	else
2111 		return flags & F2FS_OTHER_FLMASK;
2112 }
2113 
2114 /* used for f2fs_inode_info->flags */
2115 enum {
2116 	FI_NEW_INODE,		/* indicate newly allocated inode */
2117 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2118 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2119 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2120 	FI_INC_LINK,		/* need to increment i_nlink */
2121 	FI_ACL_MODE,		/* indicate acl mode */
2122 	FI_NO_ALLOC,		/* should not allocate any blocks */
2123 	FI_FREE_NID,		/* free allocated nide */
2124 	FI_NO_EXTENT,		/* not to use the extent cache */
2125 	FI_INLINE_XATTR,	/* used for inline xattr */
2126 	FI_INLINE_DATA,		/* used for inline data*/
2127 	FI_INLINE_DENTRY,	/* used for inline dentry */
2128 	FI_APPEND_WRITE,	/* inode has appended data */
2129 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2130 	FI_NEED_IPU,		/* used for ipu per file */
2131 	FI_ATOMIC_FILE,		/* indicate atomic file */
2132 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2133 	FI_VOLATILE_FILE,	/* indicate volatile file */
2134 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2135 	FI_DROP_CACHE,		/* drop dirty page cache */
2136 	FI_DATA_EXIST,		/* indicate data exists */
2137 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2138 	FI_DO_DEFRAG,		/* indicate defragment is running */
2139 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2140 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2141 	FI_HOT_DATA,		/* indicate file is hot */
2142 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2143 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2144 };
2145 
2146 static inline void __mark_inode_dirty_flag(struct inode *inode,
2147 						int flag, bool set)
2148 {
2149 	switch (flag) {
2150 	case FI_INLINE_XATTR:
2151 	case FI_INLINE_DATA:
2152 	case FI_INLINE_DENTRY:
2153 	case FI_NEW_INODE:
2154 		if (set)
2155 			return;
2156 	case FI_DATA_EXIST:
2157 	case FI_INLINE_DOTS:
2158 		f2fs_mark_inode_dirty_sync(inode, true);
2159 	}
2160 }
2161 
2162 static inline void set_inode_flag(struct inode *inode, int flag)
2163 {
2164 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2165 		set_bit(flag, &F2FS_I(inode)->flags);
2166 	__mark_inode_dirty_flag(inode, flag, true);
2167 }
2168 
2169 static inline int is_inode_flag_set(struct inode *inode, int flag)
2170 {
2171 	return test_bit(flag, &F2FS_I(inode)->flags);
2172 }
2173 
2174 static inline void clear_inode_flag(struct inode *inode, int flag)
2175 {
2176 	if (test_bit(flag, &F2FS_I(inode)->flags))
2177 		clear_bit(flag, &F2FS_I(inode)->flags);
2178 	__mark_inode_dirty_flag(inode, flag, false);
2179 }
2180 
2181 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2182 {
2183 	F2FS_I(inode)->i_acl_mode = mode;
2184 	set_inode_flag(inode, FI_ACL_MODE);
2185 	f2fs_mark_inode_dirty_sync(inode, false);
2186 }
2187 
2188 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2189 {
2190 	if (inc)
2191 		inc_nlink(inode);
2192 	else
2193 		drop_nlink(inode);
2194 	f2fs_mark_inode_dirty_sync(inode, true);
2195 }
2196 
2197 static inline void f2fs_i_blocks_write(struct inode *inode,
2198 					block_t diff, bool add, bool claim)
2199 {
2200 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2201 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2202 
2203 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2204 	if (add) {
2205 		if (claim)
2206 			dquot_claim_block(inode, diff);
2207 		else
2208 			dquot_alloc_block_nofail(inode, diff);
2209 	} else {
2210 		dquot_free_block(inode, diff);
2211 	}
2212 
2213 	f2fs_mark_inode_dirty_sync(inode, true);
2214 	if (clean || recover)
2215 		set_inode_flag(inode, FI_AUTO_RECOVER);
2216 }
2217 
2218 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2219 {
2220 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2221 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2222 
2223 	if (i_size_read(inode) == i_size)
2224 		return;
2225 
2226 	i_size_write(inode, i_size);
2227 	f2fs_mark_inode_dirty_sync(inode, true);
2228 	if (clean || recover)
2229 		set_inode_flag(inode, FI_AUTO_RECOVER);
2230 }
2231 
2232 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2233 {
2234 	F2FS_I(inode)->i_current_depth = depth;
2235 	f2fs_mark_inode_dirty_sync(inode, true);
2236 }
2237 
2238 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2239 {
2240 	F2FS_I(inode)->i_xattr_nid = xnid;
2241 	f2fs_mark_inode_dirty_sync(inode, true);
2242 }
2243 
2244 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2245 {
2246 	F2FS_I(inode)->i_pino = pino;
2247 	f2fs_mark_inode_dirty_sync(inode, true);
2248 }
2249 
2250 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2251 {
2252 	struct f2fs_inode_info *fi = F2FS_I(inode);
2253 
2254 	if (ri->i_inline & F2FS_INLINE_XATTR)
2255 		set_bit(FI_INLINE_XATTR, &fi->flags);
2256 	if (ri->i_inline & F2FS_INLINE_DATA)
2257 		set_bit(FI_INLINE_DATA, &fi->flags);
2258 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2259 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2260 	if (ri->i_inline & F2FS_DATA_EXIST)
2261 		set_bit(FI_DATA_EXIST, &fi->flags);
2262 	if (ri->i_inline & F2FS_INLINE_DOTS)
2263 		set_bit(FI_INLINE_DOTS, &fi->flags);
2264 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2265 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2266 }
2267 
2268 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2269 {
2270 	ri->i_inline = 0;
2271 
2272 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2273 		ri->i_inline |= F2FS_INLINE_XATTR;
2274 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2275 		ri->i_inline |= F2FS_INLINE_DATA;
2276 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2277 		ri->i_inline |= F2FS_INLINE_DENTRY;
2278 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2279 		ri->i_inline |= F2FS_DATA_EXIST;
2280 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2281 		ri->i_inline |= F2FS_INLINE_DOTS;
2282 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2283 		ri->i_inline |= F2FS_EXTRA_ATTR;
2284 }
2285 
2286 static inline int f2fs_has_extra_attr(struct inode *inode)
2287 {
2288 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2289 }
2290 
2291 static inline int f2fs_has_inline_xattr(struct inode *inode)
2292 {
2293 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2294 }
2295 
2296 static inline unsigned int addrs_per_inode(struct inode *inode)
2297 {
2298 	return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2299 }
2300 
2301 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2302 {
2303 	struct f2fs_inode *ri = F2FS_INODE(page);
2304 
2305 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2306 					F2FS_INLINE_XATTR_ADDRS(inode)]);
2307 }
2308 
2309 static inline int inline_xattr_size(struct inode *inode)
2310 {
2311 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2312 }
2313 
2314 static inline int f2fs_has_inline_data(struct inode *inode)
2315 {
2316 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2317 }
2318 
2319 static inline int f2fs_exist_data(struct inode *inode)
2320 {
2321 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2322 }
2323 
2324 static inline int f2fs_has_inline_dots(struct inode *inode)
2325 {
2326 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2327 }
2328 
2329 static inline bool f2fs_is_atomic_file(struct inode *inode)
2330 {
2331 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2332 }
2333 
2334 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2335 {
2336 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2337 }
2338 
2339 static inline bool f2fs_is_volatile_file(struct inode *inode)
2340 {
2341 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2342 }
2343 
2344 static inline bool f2fs_is_first_block_written(struct inode *inode)
2345 {
2346 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2347 }
2348 
2349 static inline bool f2fs_is_drop_cache(struct inode *inode)
2350 {
2351 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2352 }
2353 
2354 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2355 {
2356 	struct f2fs_inode *ri = F2FS_INODE(page);
2357 	int extra_size = get_extra_isize(inode);
2358 
2359 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2360 }
2361 
2362 static inline int f2fs_has_inline_dentry(struct inode *inode)
2363 {
2364 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2365 }
2366 
2367 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2368 {
2369 	if (!f2fs_has_inline_dentry(dir))
2370 		kunmap(page);
2371 }
2372 
2373 static inline int is_file(struct inode *inode, int type)
2374 {
2375 	return F2FS_I(inode)->i_advise & type;
2376 }
2377 
2378 static inline void set_file(struct inode *inode, int type)
2379 {
2380 	F2FS_I(inode)->i_advise |= type;
2381 	f2fs_mark_inode_dirty_sync(inode, true);
2382 }
2383 
2384 static inline void clear_file(struct inode *inode, int type)
2385 {
2386 	F2FS_I(inode)->i_advise &= ~type;
2387 	f2fs_mark_inode_dirty_sync(inode, true);
2388 }
2389 
2390 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2391 {
2392 	bool ret;
2393 
2394 	if (dsync) {
2395 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2396 
2397 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2398 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2399 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2400 		return ret;
2401 	}
2402 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2403 			file_keep_isize(inode) ||
2404 			i_size_read(inode) & PAGE_MASK)
2405 		return false;
2406 
2407 	down_read(&F2FS_I(inode)->i_sem);
2408 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2409 	up_read(&F2FS_I(inode)->i_sem);
2410 
2411 	return ret;
2412 }
2413 
2414 static inline int f2fs_readonly(struct super_block *sb)
2415 {
2416 	return sb->s_flags & SB_RDONLY;
2417 }
2418 
2419 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2420 {
2421 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2422 }
2423 
2424 static inline bool is_dot_dotdot(const struct qstr *str)
2425 {
2426 	if (str->len == 1 && str->name[0] == '.')
2427 		return true;
2428 
2429 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2430 		return true;
2431 
2432 	return false;
2433 }
2434 
2435 static inline bool f2fs_may_extent_tree(struct inode *inode)
2436 {
2437 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2438 			is_inode_flag_set(inode, FI_NO_EXTENT))
2439 		return false;
2440 
2441 	return S_ISREG(inode->i_mode);
2442 }
2443 
2444 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2445 					size_t size, gfp_t flags)
2446 {
2447 #ifdef CONFIG_F2FS_FAULT_INJECTION
2448 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2449 		f2fs_show_injection_info(FAULT_KMALLOC);
2450 		return NULL;
2451 	}
2452 #endif
2453 	return kmalloc(size, flags);
2454 }
2455 
2456 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2457 					size_t size, gfp_t flags)
2458 {
2459 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2460 }
2461 
2462 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2463 					size_t size, gfp_t flags)
2464 {
2465 #ifdef CONFIG_F2FS_FAULT_INJECTION
2466 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2467 		f2fs_show_injection_info(FAULT_KVMALLOC);
2468 		return NULL;
2469 	}
2470 #endif
2471 	return kvmalloc(size, flags);
2472 }
2473 
2474 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2475 					size_t size, gfp_t flags)
2476 {
2477 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2478 }
2479 
2480 static inline int get_extra_isize(struct inode *inode)
2481 {
2482 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2483 }
2484 
2485 static inline int get_inline_xattr_addrs(struct inode *inode)
2486 {
2487 	return F2FS_I(inode)->i_inline_xattr_size;
2488 }
2489 
2490 #define get_inode_mode(i) \
2491 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2492 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2493 
2494 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2495 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2496 	offsetof(struct f2fs_inode, i_extra_isize))	\
2497 
2498 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2499 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2500 		((offsetof(typeof(*f2fs_inode), field) +	\
2501 		sizeof((f2fs_inode)->field))			\
2502 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2503 
2504 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2505 {
2506 	int i;
2507 
2508 	spin_lock(&sbi->iostat_lock);
2509 	for (i = 0; i < NR_IO_TYPE; i++)
2510 		sbi->write_iostat[i] = 0;
2511 	spin_unlock(&sbi->iostat_lock);
2512 }
2513 
2514 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2515 			enum iostat_type type, unsigned long long io_bytes)
2516 {
2517 	if (!sbi->iostat_enable)
2518 		return;
2519 	spin_lock(&sbi->iostat_lock);
2520 	sbi->write_iostat[type] += io_bytes;
2521 
2522 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2523 		sbi->write_iostat[APP_BUFFERED_IO] =
2524 			sbi->write_iostat[APP_WRITE_IO] -
2525 			sbi->write_iostat[APP_DIRECT_IO];
2526 	spin_unlock(&sbi->iostat_lock);
2527 }
2528 
2529 /*
2530  * file.c
2531  */
2532 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2533 void truncate_data_blocks(struct dnode_of_data *dn);
2534 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2535 int f2fs_truncate(struct inode *inode);
2536 int f2fs_getattr(const struct path *path, struct kstat *stat,
2537 			u32 request_mask, unsigned int flags);
2538 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2539 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2540 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2541 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2542 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2543 
2544 /*
2545  * inode.c
2546  */
2547 void f2fs_set_inode_flags(struct inode *inode);
2548 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2549 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2550 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2551 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2552 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2553 void update_inode(struct inode *inode, struct page *node_page);
2554 void update_inode_page(struct inode *inode);
2555 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2556 void f2fs_evict_inode(struct inode *inode);
2557 void handle_failed_inode(struct inode *inode);
2558 
2559 /*
2560  * namei.c
2561  */
2562 struct dentry *f2fs_get_parent(struct dentry *child);
2563 
2564 /*
2565  * dir.c
2566  */
2567 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2568 unsigned char get_de_type(struct f2fs_dir_entry *de);
2569 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2570 			f2fs_hash_t namehash, int *max_slots,
2571 			struct f2fs_dentry_ptr *d);
2572 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2573 			unsigned int start_pos, struct fscrypt_str *fstr);
2574 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2575 			struct f2fs_dentry_ptr *d);
2576 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2577 			const struct qstr *new_name,
2578 			const struct qstr *orig_name, struct page *dpage);
2579 void update_parent_metadata(struct inode *dir, struct inode *inode,
2580 			unsigned int current_depth);
2581 int room_for_filename(const void *bitmap, int slots, int max_slots);
2582 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2583 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2584 			struct fscrypt_name *fname, struct page **res_page);
2585 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2586 			const struct qstr *child, struct page **res_page);
2587 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2588 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2589 			struct page **page);
2590 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2591 			struct page *page, struct inode *inode);
2592 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2593 			const struct qstr *name, f2fs_hash_t name_hash,
2594 			unsigned int bit_pos);
2595 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2596 			const struct qstr *orig_name,
2597 			struct inode *inode, nid_t ino, umode_t mode);
2598 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2599 			struct inode *inode, nid_t ino, umode_t mode);
2600 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2601 			struct inode *inode, nid_t ino, umode_t mode);
2602 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2603 			struct inode *dir, struct inode *inode);
2604 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2605 bool f2fs_empty_dir(struct inode *dir);
2606 
2607 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2608 {
2609 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2610 				inode, inode->i_ino, inode->i_mode);
2611 }
2612 
2613 /*
2614  * super.c
2615  */
2616 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2617 void f2fs_inode_synced(struct inode *inode);
2618 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2619 void f2fs_quota_off_umount(struct super_block *sb);
2620 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2621 int f2fs_sync_fs(struct super_block *sb, int sync);
2622 extern __printf(3, 4)
2623 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2624 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2625 
2626 /*
2627  * hash.c
2628  */
2629 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2630 				struct fscrypt_name *fname);
2631 
2632 /*
2633  * node.c
2634  */
2635 struct dnode_of_data;
2636 struct node_info;
2637 
2638 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2639 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2640 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2641 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2642 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2643 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2644 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2645 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2646 int truncate_xattr_node(struct inode *inode);
2647 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2648 int remove_inode_page(struct inode *inode);
2649 struct page *new_inode_page(struct inode *inode);
2650 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2651 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2652 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2653 struct page *get_node_page_ra(struct page *parent, int start);
2654 void move_node_page(struct page *node_page, int gc_type);
2655 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2656 			struct writeback_control *wbc, bool atomic);
2657 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2658 			bool do_balance, enum iostat_type io_type);
2659 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2660 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2661 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2662 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2663 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2664 void recover_inline_xattr(struct inode *inode, struct page *page);
2665 int recover_xattr_data(struct inode *inode, struct page *page);
2666 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2667 void restore_node_summary(struct f2fs_sb_info *sbi,
2668 			unsigned int segno, struct f2fs_summary_block *sum);
2669 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2670 int build_node_manager(struct f2fs_sb_info *sbi);
2671 void destroy_node_manager(struct f2fs_sb_info *sbi);
2672 int __init create_node_manager_caches(void);
2673 void destroy_node_manager_caches(void);
2674 
2675 /*
2676  * segment.c
2677  */
2678 bool need_SSR(struct f2fs_sb_info *sbi);
2679 void register_inmem_page(struct inode *inode, struct page *page);
2680 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2681 void drop_inmem_pages(struct inode *inode);
2682 void drop_inmem_page(struct inode *inode, struct page *page);
2683 int commit_inmem_pages(struct inode *inode);
2684 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2685 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2686 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2687 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2688 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2689 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2690 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2691 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2692 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2693 						unsigned int granularity);
2694 void stop_discard_thread(struct f2fs_sb_info *sbi);
2695 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2696 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2697 void release_discard_addrs(struct f2fs_sb_info *sbi);
2698 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2699 void allocate_new_segments(struct f2fs_sb_info *sbi);
2700 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2701 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2702 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2703 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2704 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2705 						enum iostat_type io_type);
2706 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2707 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2708 int rewrite_data_page(struct f2fs_io_info *fio);
2709 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2710 			block_t old_blkaddr, block_t new_blkaddr,
2711 			bool recover_curseg, bool recover_newaddr);
2712 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2713 			block_t old_addr, block_t new_addr,
2714 			unsigned char version, bool recover_curseg,
2715 			bool recover_newaddr);
2716 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2717 			block_t old_blkaddr, block_t *new_blkaddr,
2718 			struct f2fs_summary *sum, int type,
2719 			struct f2fs_io_info *fio, bool add_list);
2720 void f2fs_wait_on_page_writeback(struct page *page,
2721 			enum page_type type, bool ordered);
2722 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2723 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2724 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2725 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2726 			unsigned int val, int alloc);
2727 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2728 int build_segment_manager(struct f2fs_sb_info *sbi);
2729 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2730 int __init create_segment_manager_caches(void);
2731 void destroy_segment_manager_caches(void);
2732 int rw_hint_to_seg_type(enum rw_hint hint);
2733 
2734 /*
2735  * checkpoint.c
2736  */
2737 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2738 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2739 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2740 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2741 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2742 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2743 			int type, bool sync);
2744 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2745 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2746 			long nr_to_write, enum iostat_type io_type);
2747 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2748 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2749 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2750 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2751 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2752 					unsigned int devidx, int type);
2753 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2754 					unsigned int devidx, int type);
2755 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2756 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2757 void release_orphan_inode(struct f2fs_sb_info *sbi);
2758 void add_orphan_inode(struct inode *inode);
2759 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2760 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2761 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2762 void update_dirty_page(struct inode *inode, struct page *page);
2763 void remove_dirty_inode(struct inode *inode);
2764 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2765 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2766 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2767 int __init create_checkpoint_caches(void);
2768 void destroy_checkpoint_caches(void);
2769 
2770 /*
2771  * data.c
2772  */
2773 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2774 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2775 				struct inode *inode, nid_t ino, pgoff_t idx,
2776 				enum page_type type);
2777 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2778 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2779 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2780 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2781 			block_t blk_addr, struct bio *bio);
2782 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2783 void set_data_blkaddr(struct dnode_of_data *dn);
2784 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2785 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2786 int reserve_new_block(struct dnode_of_data *dn);
2787 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2788 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2789 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2790 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2791 			int op_flags, bool for_write);
2792 struct page *find_data_page(struct inode *inode, pgoff_t index);
2793 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2794 			bool for_write);
2795 struct page *get_new_data_page(struct inode *inode,
2796 			struct page *ipage, pgoff_t index, bool new_i_size);
2797 int do_write_data_page(struct f2fs_io_info *fio);
2798 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2799 			int create, int flag);
2800 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2801 			u64 start, u64 len);
2802 void f2fs_set_page_dirty_nobuffers(struct page *page);
2803 int __f2fs_write_data_pages(struct address_space *mapping,
2804 						struct writeback_control *wbc,
2805 						enum iostat_type io_type);
2806 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2807 			unsigned int length);
2808 int f2fs_release_page(struct page *page, gfp_t wait);
2809 #ifdef CONFIG_MIGRATION
2810 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2811 			struct page *page, enum migrate_mode mode);
2812 #endif
2813 
2814 /*
2815  * gc.c
2816  */
2817 int start_gc_thread(struct f2fs_sb_info *sbi);
2818 void stop_gc_thread(struct f2fs_sb_info *sbi);
2819 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2820 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2821 			unsigned int segno);
2822 void build_gc_manager(struct f2fs_sb_info *sbi);
2823 
2824 /*
2825  * recovery.c
2826  */
2827 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2828 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2829 
2830 /*
2831  * debug.c
2832  */
2833 #ifdef CONFIG_F2FS_STAT_FS
2834 struct f2fs_stat_info {
2835 	struct list_head stat_list;
2836 	struct f2fs_sb_info *sbi;
2837 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2838 	int main_area_segs, main_area_sections, main_area_zones;
2839 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2840 	unsigned long long hit_total, total_ext;
2841 	int ext_tree, zombie_tree, ext_node;
2842 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2843 	int ndirty_data, ndirty_qdata;
2844 	int inmem_pages;
2845 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2846 	int nats, dirty_nats, sits, dirty_sits;
2847 	int free_nids, avail_nids, alloc_nids;
2848 	int total_count, utilization;
2849 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2850 	int nr_flushing, nr_flushed, flush_list_empty;
2851 	int nr_discarding, nr_discarded;
2852 	int nr_discard_cmd;
2853 	unsigned int undiscard_blks;
2854 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2855 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2856 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2857 	unsigned int bimodal, avg_vblocks;
2858 	int util_free, util_valid, util_invalid;
2859 	int rsvd_segs, overp_segs;
2860 	int dirty_count, node_pages, meta_pages;
2861 	int prefree_count, call_count, cp_count, bg_cp_count;
2862 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2863 	int bg_node_segs, bg_data_segs;
2864 	int tot_blks, data_blks, node_blks;
2865 	int bg_data_blks, bg_node_blks;
2866 	int curseg[NR_CURSEG_TYPE];
2867 	int cursec[NR_CURSEG_TYPE];
2868 	int curzone[NR_CURSEG_TYPE];
2869 
2870 	unsigned int segment_count[2];
2871 	unsigned int block_count[2];
2872 	unsigned int inplace_count;
2873 	unsigned long long base_mem, cache_mem, page_mem;
2874 };
2875 
2876 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2877 {
2878 	return (struct f2fs_stat_info *)sbi->stat_info;
2879 }
2880 
2881 #define stat_inc_cp_count(si)		((si)->cp_count++)
2882 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2883 #define stat_inc_call_count(si)		((si)->call_count++)
2884 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2885 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2886 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2887 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2888 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2889 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2890 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2891 #define stat_inc_inline_xattr(inode)					\
2892 	do {								\
2893 		if (f2fs_has_inline_xattr(inode))			\
2894 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2895 	} while (0)
2896 #define stat_dec_inline_xattr(inode)					\
2897 	do {								\
2898 		if (f2fs_has_inline_xattr(inode))			\
2899 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2900 	} while (0)
2901 #define stat_inc_inline_inode(inode)					\
2902 	do {								\
2903 		if (f2fs_has_inline_data(inode))			\
2904 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2905 	} while (0)
2906 #define stat_dec_inline_inode(inode)					\
2907 	do {								\
2908 		if (f2fs_has_inline_data(inode))			\
2909 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2910 	} while (0)
2911 #define stat_inc_inline_dir(inode)					\
2912 	do {								\
2913 		if (f2fs_has_inline_dentry(inode))			\
2914 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2915 	} while (0)
2916 #define stat_dec_inline_dir(inode)					\
2917 	do {								\
2918 		if (f2fs_has_inline_dentry(inode))			\
2919 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2920 	} while (0)
2921 #define stat_inc_seg_type(sbi, curseg)					\
2922 		((sbi)->segment_count[(curseg)->alloc_type]++)
2923 #define stat_inc_block_count(sbi, curseg)				\
2924 		((sbi)->block_count[(curseg)->alloc_type]++)
2925 #define stat_inc_inplace_blocks(sbi)					\
2926 		(atomic_inc(&(sbi)->inplace_count))
2927 #define stat_inc_atomic_write(inode)					\
2928 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2929 #define stat_dec_atomic_write(inode)					\
2930 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2931 #define stat_update_max_atomic_write(inode)				\
2932 	do {								\
2933 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2934 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2935 		if (cur > max)						\
2936 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2937 	} while (0)
2938 #define stat_inc_volatile_write(inode)					\
2939 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2940 #define stat_dec_volatile_write(inode)					\
2941 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2942 #define stat_update_max_volatile_write(inode)				\
2943 	do {								\
2944 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2945 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2946 		if (cur > max)						\
2947 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2948 	} while (0)
2949 #define stat_inc_seg_count(sbi, type, gc_type)				\
2950 	do {								\
2951 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2952 		si->tot_segs++;						\
2953 		if ((type) == SUM_TYPE_DATA) {				\
2954 			si->data_segs++;				\
2955 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2956 		} else {						\
2957 			si->node_segs++;				\
2958 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2959 		}							\
2960 	} while (0)
2961 
2962 #define stat_inc_tot_blk_count(si, blks)				\
2963 	((si)->tot_blks += (blks))
2964 
2965 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2966 	do {								\
2967 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2968 		stat_inc_tot_blk_count(si, blks);			\
2969 		si->data_blks += (blks);				\
2970 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2971 	} while (0)
2972 
2973 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2974 	do {								\
2975 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2976 		stat_inc_tot_blk_count(si, blks);			\
2977 		si->node_blks += (blks);				\
2978 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2979 	} while (0)
2980 
2981 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2982 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2983 int __init f2fs_create_root_stats(void);
2984 void f2fs_destroy_root_stats(void);
2985 #else
2986 #define stat_inc_cp_count(si)				do { } while (0)
2987 #define stat_inc_bg_cp_count(si)			do { } while (0)
2988 #define stat_inc_call_count(si)				do { } while (0)
2989 #define stat_inc_bggc_count(si)				do { } while (0)
2990 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2991 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2992 #define stat_inc_total_hit(sb)				do { } while (0)
2993 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2994 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2995 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2996 #define stat_inc_inline_xattr(inode)			do { } while (0)
2997 #define stat_dec_inline_xattr(inode)			do { } while (0)
2998 #define stat_inc_inline_inode(inode)			do { } while (0)
2999 #define stat_dec_inline_inode(inode)			do { } while (0)
3000 #define stat_inc_inline_dir(inode)			do { } while (0)
3001 #define stat_dec_inline_dir(inode)			do { } while (0)
3002 #define stat_inc_atomic_write(inode)			do { } while (0)
3003 #define stat_dec_atomic_write(inode)			do { } while (0)
3004 #define stat_update_max_atomic_write(inode)		do { } while (0)
3005 #define stat_inc_volatile_write(inode)			do { } while (0)
3006 #define stat_dec_volatile_write(inode)			do { } while (0)
3007 #define stat_update_max_volatile_write(inode)		do { } while (0)
3008 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3009 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3010 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3011 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3012 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3013 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3014 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3015 
3016 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3017 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3018 static inline int __init f2fs_create_root_stats(void) { return 0; }
3019 static inline void f2fs_destroy_root_stats(void) { }
3020 #endif
3021 
3022 extern const struct file_operations f2fs_dir_operations;
3023 extern const struct file_operations f2fs_file_operations;
3024 extern const struct inode_operations f2fs_file_inode_operations;
3025 extern const struct address_space_operations f2fs_dblock_aops;
3026 extern const struct address_space_operations f2fs_node_aops;
3027 extern const struct address_space_operations f2fs_meta_aops;
3028 extern const struct inode_operations f2fs_dir_inode_operations;
3029 extern const struct inode_operations f2fs_symlink_inode_operations;
3030 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3031 extern const struct inode_operations f2fs_special_inode_operations;
3032 extern struct kmem_cache *inode_entry_slab;
3033 
3034 /*
3035  * inline.c
3036  */
3037 bool f2fs_may_inline_data(struct inode *inode);
3038 bool f2fs_may_inline_dentry(struct inode *inode);
3039 void read_inline_data(struct page *page, struct page *ipage);
3040 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3041 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3042 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3043 int f2fs_convert_inline_inode(struct inode *inode);
3044 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3045 bool recover_inline_data(struct inode *inode, struct page *npage);
3046 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3047 			struct fscrypt_name *fname, struct page **res_page);
3048 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3049 			struct page *ipage);
3050 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3051 			const struct qstr *orig_name,
3052 			struct inode *inode, nid_t ino, umode_t mode);
3053 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3054 			struct inode *dir, struct inode *inode);
3055 bool f2fs_empty_inline_dir(struct inode *dir);
3056 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3057 			struct fscrypt_str *fstr);
3058 int f2fs_inline_data_fiemap(struct inode *inode,
3059 			struct fiemap_extent_info *fieinfo,
3060 			__u64 start, __u64 len);
3061 
3062 /*
3063  * shrinker.c
3064  */
3065 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3066 			struct shrink_control *sc);
3067 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3068 			struct shrink_control *sc);
3069 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3070 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3071 
3072 /*
3073  * extent_cache.c
3074  */
3075 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3076 				struct rb_entry *cached_re, unsigned int ofs);
3077 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3078 				struct rb_root *root, struct rb_node **parent,
3079 				unsigned int ofs);
3080 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3081 		struct rb_entry *cached_re, unsigned int ofs,
3082 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3083 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3084 		bool force);
3085 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3086 						struct rb_root *root);
3087 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3088 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3089 void f2fs_drop_extent_tree(struct inode *inode);
3090 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3091 void f2fs_destroy_extent_tree(struct inode *inode);
3092 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3093 			struct extent_info *ei);
3094 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3095 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3096 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3097 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3098 int __init create_extent_cache(void);
3099 void destroy_extent_cache(void);
3100 
3101 /*
3102  * sysfs.c
3103  */
3104 int __init f2fs_init_sysfs(void);
3105 void f2fs_exit_sysfs(void);
3106 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3107 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3108 
3109 /*
3110  * crypto support
3111  */
3112 static inline bool f2fs_encrypted_inode(struct inode *inode)
3113 {
3114 	return file_is_encrypt(inode);
3115 }
3116 
3117 static inline bool f2fs_encrypted_file(struct inode *inode)
3118 {
3119 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3120 }
3121 
3122 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3123 {
3124 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3125 	file_set_encrypt(inode);
3126 	inode->i_flags |= S_ENCRYPTED;
3127 #endif
3128 }
3129 
3130 static inline bool f2fs_bio_encrypted(struct bio *bio)
3131 {
3132 	return bio->bi_private != NULL;
3133 }
3134 
3135 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3136 {
3137 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3138 }
3139 
3140 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3141 {
3142 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3143 }
3144 
3145 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3146 {
3147 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3148 }
3149 
3150 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3151 {
3152 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3153 }
3154 
3155 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3156 {
3157 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3158 }
3159 
3160 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3161 {
3162 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3163 }
3164 
3165 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3166 {
3167 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3168 }
3169 
3170 #ifdef CONFIG_BLK_DEV_ZONED
3171 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3172 			struct block_device *bdev, block_t blkaddr)
3173 {
3174 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3175 	int i;
3176 
3177 	for (i = 0; i < sbi->s_ndevs; i++)
3178 		if (FDEV(i).bdev == bdev)
3179 			return FDEV(i).blkz_type[zno];
3180 	return -EINVAL;
3181 }
3182 #endif
3183 
3184 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3185 {
3186 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3187 
3188 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3189 }
3190 
3191 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3192 {
3193 	clear_opt(sbi, ADAPTIVE);
3194 	clear_opt(sbi, LFS);
3195 
3196 	switch (mt) {
3197 	case F2FS_MOUNT_ADAPTIVE:
3198 		set_opt(sbi, ADAPTIVE);
3199 		break;
3200 	case F2FS_MOUNT_LFS:
3201 		set_opt(sbi, LFS);
3202 		break;
3203 	}
3204 }
3205 
3206 static inline bool f2fs_may_encrypt(struct inode *inode)
3207 {
3208 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3209 	umode_t mode = inode->i_mode;
3210 
3211 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3212 #else
3213 	return 0;
3214 #endif
3215 }
3216 
3217 #endif
3218