1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 102 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 103 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 104 105 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 106 typecheck(unsigned long long, b) && \ 107 ((long long)((a) - (b)) > 0)) 108 109 typedef u32 block_t; /* 110 * should not change u32, since it is the on-disk block 111 * address format, __le32. 112 */ 113 typedef u32 nid_t; 114 115 struct f2fs_mount_info { 116 unsigned int opt; 117 }; 118 119 #define F2FS_FEATURE_ENCRYPT 0x0001 120 #define F2FS_FEATURE_BLKZONED 0x0002 121 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 122 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 123 #define F2FS_FEATURE_PRJQUOTA 0x0010 124 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 126 #define F2FS_FEATURE_QUOTA_INO 0x0080 127 128 #define F2FS_HAS_FEATURE(sb, mask) \ 129 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 130 #define F2FS_SET_FEATURE(sb, mask) \ 131 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 132 #define F2FS_CLEAR_FEATURE(sb, mask) \ 133 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 134 135 /* 136 * Default values for user and/or group using reserved blocks 137 */ 138 #define F2FS_DEF_RESUID 0 139 #define F2FS_DEF_RESGID 0 140 141 /* 142 * For checkpoint manager 143 */ 144 enum { 145 NAT_BITMAP, 146 SIT_BITMAP 147 }; 148 149 #define CP_UMOUNT 0x00000001 150 #define CP_FASTBOOT 0x00000002 151 #define CP_SYNC 0x00000004 152 #define CP_RECOVERY 0x00000008 153 #define CP_DISCARD 0x00000010 154 #define CP_TRIMMED 0x00000020 155 156 #define DEF_BATCHED_TRIM_SECTIONS 2048 157 #define BATCHED_TRIM_SEGMENTS(sbi) \ 158 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 159 #define BATCHED_TRIM_BLOCKS(sbi) \ 160 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 161 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 162 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 163 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 164 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 165 #define DEF_CP_INTERVAL 60 /* 60 secs */ 166 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 167 168 struct cp_control { 169 int reason; 170 __u64 trim_start; 171 __u64 trim_end; 172 __u64 trim_minlen; 173 }; 174 175 /* 176 * For CP/NAT/SIT/SSA readahead 177 */ 178 enum { 179 META_CP, 180 META_NAT, 181 META_SIT, 182 META_SSA, 183 META_POR, 184 }; 185 186 /* for the list of ino */ 187 enum { 188 ORPHAN_INO, /* for orphan ino list */ 189 APPEND_INO, /* for append ino list */ 190 UPDATE_INO, /* for update ino list */ 191 TRANS_DIR_INO, /* for trasactions dir ino list */ 192 FLUSH_INO, /* for multiple device flushing */ 193 MAX_INO_ENTRY, /* max. list */ 194 }; 195 196 struct ino_entry { 197 struct list_head list; /* list head */ 198 nid_t ino; /* inode number */ 199 unsigned int dirty_device; /* dirty device bitmap */ 200 }; 201 202 /* for the list of inodes to be GCed */ 203 struct inode_entry { 204 struct list_head list; /* list head */ 205 struct inode *inode; /* vfs inode pointer */ 206 }; 207 208 /* for the bitmap indicate blocks to be discarded */ 209 struct discard_entry { 210 struct list_head list; /* list head */ 211 block_t start_blkaddr; /* start blockaddr of current segment */ 212 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 213 }; 214 215 /* default discard granularity of inner discard thread, unit: block count */ 216 #define DEFAULT_DISCARD_GRANULARITY 16 217 218 /* max discard pend list number */ 219 #define MAX_PLIST_NUM 512 220 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 221 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 222 223 enum { 224 D_PREP, 225 D_SUBMIT, 226 D_DONE, 227 }; 228 229 struct discard_info { 230 block_t lstart; /* logical start address */ 231 block_t len; /* length */ 232 block_t start; /* actual start address in dev */ 233 }; 234 235 struct discard_cmd { 236 struct rb_node rb_node; /* rb node located in rb-tree */ 237 union { 238 struct { 239 block_t lstart; /* logical start address */ 240 block_t len; /* length */ 241 block_t start; /* actual start address in dev */ 242 }; 243 struct discard_info di; /* discard info */ 244 245 }; 246 struct list_head list; /* command list */ 247 struct completion wait; /* compleation */ 248 struct block_device *bdev; /* bdev */ 249 unsigned short ref; /* reference count */ 250 unsigned char state; /* state */ 251 int error; /* bio error */ 252 }; 253 254 enum { 255 DPOLICY_BG, 256 DPOLICY_FORCE, 257 DPOLICY_FSTRIM, 258 DPOLICY_UMOUNT, 259 MAX_DPOLICY, 260 }; 261 262 struct discard_policy { 263 int type; /* type of discard */ 264 unsigned int min_interval; /* used for candidates exist */ 265 unsigned int max_interval; /* used for candidates not exist */ 266 unsigned int max_requests; /* # of discards issued per round */ 267 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 268 bool io_aware; /* issue discard in idle time */ 269 bool sync; /* submit discard with REQ_SYNC flag */ 270 unsigned int granularity; /* discard granularity */ 271 }; 272 273 struct discard_cmd_control { 274 struct task_struct *f2fs_issue_discard; /* discard thread */ 275 struct list_head entry_list; /* 4KB discard entry list */ 276 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 277 struct list_head wait_list; /* store on-flushing entries */ 278 struct list_head fstrim_list; /* in-flight discard from fstrim */ 279 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 280 unsigned int discard_wake; /* to wake up discard thread */ 281 struct mutex cmd_lock; 282 unsigned int nr_discards; /* # of discards in the list */ 283 unsigned int max_discards; /* max. discards to be issued */ 284 unsigned int discard_granularity; /* discard granularity */ 285 unsigned int undiscard_blks; /* # of undiscard blocks */ 286 atomic_t issued_discard; /* # of issued discard */ 287 atomic_t issing_discard; /* # of issing discard */ 288 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 289 struct rb_root root; /* root of discard rb-tree */ 290 }; 291 292 /* for the list of fsync inodes, used only during recovery */ 293 struct fsync_inode_entry { 294 struct list_head list; /* list head */ 295 struct inode *inode; /* vfs inode pointer */ 296 block_t blkaddr; /* block address locating the last fsync */ 297 block_t last_dentry; /* block address locating the last dentry */ 298 }; 299 300 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 301 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 302 303 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 304 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 305 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 306 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 307 308 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 309 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 310 311 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 312 { 313 int before = nats_in_cursum(journal); 314 315 journal->n_nats = cpu_to_le16(before + i); 316 return before; 317 } 318 319 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 320 { 321 int before = sits_in_cursum(journal); 322 323 journal->n_sits = cpu_to_le16(before + i); 324 return before; 325 } 326 327 static inline bool __has_cursum_space(struct f2fs_journal *journal, 328 int size, int type) 329 { 330 if (type == NAT_JOURNAL) 331 return size <= MAX_NAT_JENTRIES(journal); 332 return size <= MAX_SIT_JENTRIES(journal); 333 } 334 335 /* 336 * ioctl commands 337 */ 338 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 339 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 340 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 341 342 #define F2FS_IOCTL_MAGIC 0xf5 343 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 344 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 345 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 346 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 347 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 348 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 349 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 350 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 351 struct f2fs_defragment) 352 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 353 struct f2fs_move_range) 354 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 355 struct f2fs_flush_device) 356 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 357 struct f2fs_gc_range) 358 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 359 360 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 361 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 362 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 363 364 /* 365 * should be same as XFS_IOC_GOINGDOWN. 366 * Flags for going down operation used by FS_IOC_GOINGDOWN 367 */ 368 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 369 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 370 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 371 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 372 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 373 374 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 375 /* 376 * ioctl commands in 32 bit emulation 377 */ 378 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 379 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 380 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 381 #endif 382 383 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 384 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 385 386 struct f2fs_gc_range { 387 u32 sync; 388 u64 start; 389 u64 len; 390 }; 391 392 struct f2fs_defragment { 393 u64 start; 394 u64 len; 395 }; 396 397 struct f2fs_move_range { 398 u32 dst_fd; /* destination fd */ 399 u64 pos_in; /* start position in src_fd */ 400 u64 pos_out; /* start position in dst_fd */ 401 u64 len; /* size to move */ 402 }; 403 404 struct f2fs_flush_device { 405 u32 dev_num; /* device number to flush */ 406 u32 segments; /* # of segments to flush */ 407 }; 408 409 /* for inline stuff */ 410 #define DEF_INLINE_RESERVED_SIZE 1 411 #define DEF_MIN_INLINE_SIZE 1 412 static inline int get_extra_isize(struct inode *inode); 413 static inline int get_inline_xattr_addrs(struct inode *inode); 414 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode) 415 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 416 (CUR_ADDRS_PER_INODE(inode) - \ 417 F2FS_INLINE_XATTR_ADDRS(inode) - \ 418 DEF_INLINE_RESERVED_SIZE)) 419 420 /* for inline dir */ 421 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 422 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 423 BITS_PER_BYTE + 1)) 424 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 425 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 426 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 427 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 428 NR_INLINE_DENTRY(inode) + \ 429 INLINE_DENTRY_BITMAP_SIZE(inode))) 430 431 /* 432 * For INODE and NODE manager 433 */ 434 /* for directory operations */ 435 struct f2fs_dentry_ptr { 436 struct inode *inode; 437 void *bitmap; 438 struct f2fs_dir_entry *dentry; 439 __u8 (*filename)[F2FS_SLOT_LEN]; 440 int max; 441 int nr_bitmap; 442 }; 443 444 static inline void make_dentry_ptr_block(struct inode *inode, 445 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 446 { 447 d->inode = inode; 448 d->max = NR_DENTRY_IN_BLOCK; 449 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 450 d->bitmap = &t->dentry_bitmap; 451 d->dentry = t->dentry; 452 d->filename = t->filename; 453 } 454 455 static inline void make_dentry_ptr_inline(struct inode *inode, 456 struct f2fs_dentry_ptr *d, void *t) 457 { 458 int entry_cnt = NR_INLINE_DENTRY(inode); 459 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 460 int reserved_size = INLINE_RESERVED_SIZE(inode); 461 462 d->inode = inode; 463 d->max = entry_cnt; 464 d->nr_bitmap = bitmap_size; 465 d->bitmap = t; 466 d->dentry = t + bitmap_size + reserved_size; 467 d->filename = t + bitmap_size + reserved_size + 468 SIZE_OF_DIR_ENTRY * entry_cnt; 469 } 470 471 /* 472 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 473 * as its node offset to distinguish from index node blocks. 474 * But some bits are used to mark the node block. 475 */ 476 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 477 >> OFFSET_BIT_SHIFT) 478 enum { 479 ALLOC_NODE, /* allocate a new node page if needed */ 480 LOOKUP_NODE, /* look up a node without readahead */ 481 LOOKUP_NODE_RA, /* 482 * look up a node with readahead called 483 * by get_data_block. 484 */ 485 }; 486 487 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 488 489 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 490 491 /* vector size for gang look-up from extent cache that consists of radix tree */ 492 #define EXT_TREE_VEC_SIZE 64 493 494 /* for in-memory extent cache entry */ 495 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 496 497 /* number of extent info in extent cache we try to shrink */ 498 #define EXTENT_CACHE_SHRINK_NUMBER 128 499 500 struct rb_entry { 501 struct rb_node rb_node; /* rb node located in rb-tree */ 502 unsigned int ofs; /* start offset of the entry */ 503 unsigned int len; /* length of the entry */ 504 }; 505 506 struct extent_info { 507 unsigned int fofs; /* start offset in a file */ 508 unsigned int len; /* length of the extent */ 509 u32 blk; /* start block address of the extent */ 510 }; 511 512 struct extent_node { 513 struct rb_node rb_node; 514 union { 515 struct { 516 unsigned int fofs; 517 unsigned int len; 518 u32 blk; 519 }; 520 struct extent_info ei; /* extent info */ 521 522 }; 523 struct list_head list; /* node in global extent list of sbi */ 524 struct extent_tree *et; /* extent tree pointer */ 525 }; 526 527 struct extent_tree { 528 nid_t ino; /* inode number */ 529 struct rb_root root; /* root of extent info rb-tree */ 530 struct extent_node *cached_en; /* recently accessed extent node */ 531 struct extent_info largest; /* largested extent info */ 532 struct list_head list; /* to be used by sbi->zombie_list */ 533 rwlock_t lock; /* protect extent info rb-tree */ 534 atomic_t node_cnt; /* # of extent node in rb-tree*/ 535 }; 536 537 /* 538 * This structure is taken from ext4_map_blocks. 539 * 540 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 541 */ 542 #define F2FS_MAP_NEW (1 << BH_New) 543 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 544 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 545 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 546 F2FS_MAP_UNWRITTEN) 547 548 struct f2fs_map_blocks { 549 block_t m_pblk; 550 block_t m_lblk; 551 unsigned int m_len; 552 unsigned int m_flags; 553 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 554 int m_seg_type; 555 }; 556 557 /* for flag in get_data_block */ 558 enum { 559 F2FS_GET_BLOCK_DEFAULT, 560 F2FS_GET_BLOCK_FIEMAP, 561 F2FS_GET_BLOCK_BMAP, 562 F2FS_GET_BLOCK_PRE_DIO, 563 F2FS_GET_BLOCK_PRE_AIO, 564 }; 565 566 /* 567 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 568 */ 569 #define FADVISE_COLD_BIT 0x01 570 #define FADVISE_LOST_PINO_BIT 0x02 571 #define FADVISE_ENCRYPT_BIT 0x04 572 #define FADVISE_ENC_NAME_BIT 0x08 573 #define FADVISE_KEEP_SIZE_BIT 0x10 574 575 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 576 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 577 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 578 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 579 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 580 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 581 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 582 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 583 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 584 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 585 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 586 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 587 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 588 589 #define DEF_DIR_LEVEL 0 590 591 struct f2fs_inode_info { 592 struct inode vfs_inode; /* serve a vfs inode */ 593 unsigned long i_flags; /* keep an inode flags for ioctl */ 594 unsigned char i_advise; /* use to give file attribute hints */ 595 unsigned char i_dir_level; /* use for dentry level for large dir */ 596 unsigned int i_current_depth; /* use only in directory structure */ 597 unsigned int i_pino; /* parent inode number */ 598 umode_t i_acl_mode; /* keep file acl mode temporarily */ 599 600 /* Use below internally in f2fs*/ 601 unsigned long flags; /* use to pass per-file flags */ 602 struct rw_semaphore i_sem; /* protect fi info */ 603 atomic_t dirty_pages; /* # of dirty pages */ 604 f2fs_hash_t chash; /* hash value of given file name */ 605 unsigned int clevel; /* maximum level of given file name */ 606 struct task_struct *task; /* lookup and create consistency */ 607 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 608 nid_t i_xattr_nid; /* node id that contains xattrs */ 609 loff_t last_disk_size; /* lastly written file size */ 610 611 #ifdef CONFIG_QUOTA 612 struct dquot *i_dquot[MAXQUOTAS]; 613 614 /* quota space reservation, managed internally by quota code */ 615 qsize_t i_reserved_quota; 616 #endif 617 struct list_head dirty_list; /* dirty list for dirs and files */ 618 struct list_head gdirty_list; /* linked in global dirty list */ 619 struct list_head inmem_ilist; /* list for inmem inodes */ 620 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 621 struct task_struct *inmem_task; /* store inmemory task */ 622 struct mutex inmem_lock; /* lock for inmemory pages */ 623 struct extent_tree *extent_tree; /* cached extent_tree entry */ 624 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 625 struct rw_semaphore i_mmap_sem; 626 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 627 628 int i_extra_isize; /* size of extra space located in i_addr */ 629 kprojid_t i_projid; /* id for project quota */ 630 int i_inline_xattr_size; /* inline xattr size */ 631 }; 632 633 static inline void get_extent_info(struct extent_info *ext, 634 struct f2fs_extent *i_ext) 635 { 636 ext->fofs = le32_to_cpu(i_ext->fofs); 637 ext->blk = le32_to_cpu(i_ext->blk); 638 ext->len = le32_to_cpu(i_ext->len); 639 } 640 641 static inline void set_raw_extent(struct extent_info *ext, 642 struct f2fs_extent *i_ext) 643 { 644 i_ext->fofs = cpu_to_le32(ext->fofs); 645 i_ext->blk = cpu_to_le32(ext->blk); 646 i_ext->len = cpu_to_le32(ext->len); 647 } 648 649 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 650 u32 blk, unsigned int len) 651 { 652 ei->fofs = fofs; 653 ei->blk = blk; 654 ei->len = len; 655 } 656 657 static inline bool __is_discard_mergeable(struct discard_info *back, 658 struct discard_info *front) 659 { 660 return back->lstart + back->len == front->lstart; 661 } 662 663 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 664 struct discard_info *back) 665 { 666 return __is_discard_mergeable(back, cur); 667 } 668 669 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 670 struct discard_info *front) 671 { 672 return __is_discard_mergeable(cur, front); 673 } 674 675 static inline bool __is_extent_mergeable(struct extent_info *back, 676 struct extent_info *front) 677 { 678 return (back->fofs + back->len == front->fofs && 679 back->blk + back->len == front->blk); 680 } 681 682 static inline bool __is_back_mergeable(struct extent_info *cur, 683 struct extent_info *back) 684 { 685 return __is_extent_mergeable(back, cur); 686 } 687 688 static inline bool __is_front_mergeable(struct extent_info *cur, 689 struct extent_info *front) 690 { 691 return __is_extent_mergeable(cur, front); 692 } 693 694 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 695 static inline void __try_update_largest_extent(struct inode *inode, 696 struct extent_tree *et, struct extent_node *en) 697 { 698 if (en->ei.len > et->largest.len) { 699 et->largest = en->ei; 700 f2fs_mark_inode_dirty_sync(inode, true); 701 } 702 } 703 704 /* 705 * For free nid management 706 */ 707 enum nid_state { 708 FREE_NID, /* newly added to free nid list */ 709 PREALLOC_NID, /* it is preallocated */ 710 MAX_NID_STATE, 711 }; 712 713 struct f2fs_nm_info { 714 block_t nat_blkaddr; /* base disk address of NAT */ 715 nid_t max_nid; /* maximum possible node ids */ 716 nid_t available_nids; /* # of available node ids */ 717 nid_t next_scan_nid; /* the next nid to be scanned */ 718 unsigned int ram_thresh; /* control the memory footprint */ 719 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 720 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 721 722 /* NAT cache management */ 723 struct radix_tree_root nat_root;/* root of the nat entry cache */ 724 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 725 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 726 struct list_head nat_entries; /* cached nat entry list (clean) */ 727 unsigned int nat_cnt; /* the # of cached nat entries */ 728 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 729 unsigned int nat_blocks; /* # of nat blocks */ 730 731 /* free node ids management */ 732 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 733 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 734 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 735 spinlock_t nid_list_lock; /* protect nid lists ops */ 736 struct mutex build_lock; /* lock for build free nids */ 737 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 738 unsigned char *nat_block_bitmap; 739 unsigned short *free_nid_count; /* free nid count of NAT block */ 740 741 /* for checkpoint */ 742 char *nat_bitmap; /* NAT bitmap pointer */ 743 744 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 745 unsigned char *nat_bits; /* NAT bits blocks */ 746 unsigned char *full_nat_bits; /* full NAT pages */ 747 unsigned char *empty_nat_bits; /* empty NAT pages */ 748 #ifdef CONFIG_F2FS_CHECK_FS 749 char *nat_bitmap_mir; /* NAT bitmap mirror */ 750 #endif 751 int bitmap_size; /* bitmap size */ 752 }; 753 754 /* 755 * this structure is used as one of function parameters. 756 * all the information are dedicated to a given direct node block determined 757 * by the data offset in a file. 758 */ 759 struct dnode_of_data { 760 struct inode *inode; /* vfs inode pointer */ 761 struct page *inode_page; /* its inode page, NULL is possible */ 762 struct page *node_page; /* cached direct node page */ 763 nid_t nid; /* node id of the direct node block */ 764 unsigned int ofs_in_node; /* data offset in the node page */ 765 bool inode_page_locked; /* inode page is locked or not */ 766 bool node_changed; /* is node block changed */ 767 char cur_level; /* level of hole node page */ 768 char max_level; /* level of current page located */ 769 block_t data_blkaddr; /* block address of the node block */ 770 }; 771 772 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 773 struct page *ipage, struct page *npage, nid_t nid) 774 { 775 memset(dn, 0, sizeof(*dn)); 776 dn->inode = inode; 777 dn->inode_page = ipage; 778 dn->node_page = npage; 779 dn->nid = nid; 780 } 781 782 /* 783 * For SIT manager 784 * 785 * By default, there are 6 active log areas across the whole main area. 786 * When considering hot and cold data separation to reduce cleaning overhead, 787 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 788 * respectively. 789 * In the current design, you should not change the numbers intentionally. 790 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 791 * logs individually according to the underlying devices. (default: 6) 792 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 793 * data and 8 for node logs. 794 */ 795 #define NR_CURSEG_DATA_TYPE (3) 796 #define NR_CURSEG_NODE_TYPE (3) 797 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 798 799 enum { 800 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 801 CURSEG_WARM_DATA, /* data blocks */ 802 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 803 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 804 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 805 CURSEG_COLD_NODE, /* indirect node blocks */ 806 NO_CHECK_TYPE, 807 }; 808 809 struct flush_cmd { 810 struct completion wait; 811 struct llist_node llnode; 812 nid_t ino; 813 int ret; 814 }; 815 816 struct flush_cmd_control { 817 struct task_struct *f2fs_issue_flush; /* flush thread */ 818 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 819 atomic_t issued_flush; /* # of issued flushes */ 820 atomic_t issing_flush; /* # of issing flushes */ 821 struct llist_head issue_list; /* list for command issue */ 822 struct llist_node *dispatch_list; /* list for command dispatch */ 823 }; 824 825 struct f2fs_sm_info { 826 struct sit_info *sit_info; /* whole segment information */ 827 struct free_segmap_info *free_info; /* free segment information */ 828 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 829 struct curseg_info *curseg_array; /* active segment information */ 830 831 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 832 833 block_t seg0_blkaddr; /* block address of 0'th segment */ 834 block_t main_blkaddr; /* start block address of main area */ 835 block_t ssa_blkaddr; /* start block address of SSA area */ 836 837 unsigned int segment_count; /* total # of segments */ 838 unsigned int main_segments; /* # of segments in main area */ 839 unsigned int reserved_segments; /* # of reserved segments */ 840 unsigned int ovp_segments; /* # of overprovision segments */ 841 842 /* a threshold to reclaim prefree segments */ 843 unsigned int rec_prefree_segments; 844 845 /* for batched trimming */ 846 unsigned int trim_sections; /* # of sections to trim */ 847 848 struct list_head sit_entry_set; /* sit entry set list */ 849 850 unsigned int ipu_policy; /* in-place-update policy */ 851 unsigned int min_ipu_util; /* in-place-update threshold */ 852 unsigned int min_fsync_blocks; /* threshold for fsync */ 853 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 854 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 855 856 /* for flush command control */ 857 struct flush_cmd_control *fcc_info; 858 859 /* for discard command control */ 860 struct discard_cmd_control *dcc_info; 861 }; 862 863 /* 864 * For superblock 865 */ 866 /* 867 * COUNT_TYPE for monitoring 868 * 869 * f2fs monitors the number of several block types such as on-writeback, 870 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 871 */ 872 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 873 enum count_type { 874 F2FS_DIRTY_DENTS, 875 F2FS_DIRTY_DATA, 876 F2FS_DIRTY_QDATA, 877 F2FS_DIRTY_NODES, 878 F2FS_DIRTY_META, 879 F2FS_INMEM_PAGES, 880 F2FS_DIRTY_IMETA, 881 F2FS_WB_CP_DATA, 882 F2FS_WB_DATA, 883 NR_COUNT_TYPE, 884 }; 885 886 /* 887 * The below are the page types of bios used in submit_bio(). 888 * The available types are: 889 * DATA User data pages. It operates as async mode. 890 * NODE Node pages. It operates as async mode. 891 * META FS metadata pages such as SIT, NAT, CP. 892 * NR_PAGE_TYPE The number of page types. 893 * META_FLUSH Make sure the previous pages are written 894 * with waiting the bio's completion 895 * ... Only can be used with META. 896 */ 897 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 898 enum page_type { 899 DATA, 900 NODE, 901 META, 902 NR_PAGE_TYPE, 903 META_FLUSH, 904 INMEM, /* the below types are used by tracepoints only. */ 905 INMEM_DROP, 906 INMEM_INVALIDATE, 907 INMEM_REVOKE, 908 IPU, 909 OPU, 910 }; 911 912 enum temp_type { 913 HOT = 0, /* must be zero for meta bio */ 914 WARM, 915 COLD, 916 NR_TEMP_TYPE, 917 }; 918 919 enum need_lock_type { 920 LOCK_REQ = 0, 921 LOCK_DONE, 922 LOCK_RETRY, 923 }; 924 925 enum cp_reason_type { 926 CP_NO_NEEDED, 927 CP_NON_REGULAR, 928 CP_HARDLINK, 929 CP_SB_NEED_CP, 930 CP_WRONG_PINO, 931 CP_NO_SPC_ROLL, 932 CP_NODE_NEED_CP, 933 CP_FASTBOOT_MODE, 934 CP_SPEC_LOG_NUM, 935 CP_RECOVER_DIR, 936 }; 937 938 enum iostat_type { 939 APP_DIRECT_IO, /* app direct IOs */ 940 APP_BUFFERED_IO, /* app buffered IOs */ 941 APP_WRITE_IO, /* app write IOs */ 942 APP_MAPPED_IO, /* app mapped IOs */ 943 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 944 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 945 FS_META_IO, /* meta IOs from kworker/reclaimer */ 946 FS_GC_DATA_IO, /* data IOs from forground gc */ 947 FS_GC_NODE_IO, /* node IOs from forground gc */ 948 FS_CP_DATA_IO, /* data IOs from checkpoint */ 949 FS_CP_NODE_IO, /* node IOs from checkpoint */ 950 FS_CP_META_IO, /* meta IOs from checkpoint */ 951 FS_DISCARD, /* discard */ 952 NR_IO_TYPE, 953 }; 954 955 struct f2fs_io_info { 956 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 957 nid_t ino; /* inode number */ 958 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 959 enum temp_type temp; /* contains HOT/WARM/COLD */ 960 int op; /* contains REQ_OP_ */ 961 int op_flags; /* req_flag_bits */ 962 block_t new_blkaddr; /* new block address to be written */ 963 block_t old_blkaddr; /* old block address before Cow */ 964 struct page *page; /* page to be written */ 965 struct page *encrypted_page; /* encrypted page */ 966 struct list_head list; /* serialize IOs */ 967 bool submitted; /* indicate IO submission */ 968 int need_lock; /* indicate we need to lock cp_rwsem */ 969 bool in_list; /* indicate fio is in io_list */ 970 enum iostat_type io_type; /* io type */ 971 struct writeback_control *io_wbc; /* writeback control */ 972 }; 973 974 #define is_read_io(rw) ((rw) == READ) 975 struct f2fs_bio_info { 976 struct f2fs_sb_info *sbi; /* f2fs superblock */ 977 struct bio *bio; /* bios to merge */ 978 sector_t last_block_in_bio; /* last block number */ 979 struct f2fs_io_info fio; /* store buffered io info. */ 980 struct rw_semaphore io_rwsem; /* blocking op for bio */ 981 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 982 struct list_head io_list; /* track fios */ 983 }; 984 985 #define FDEV(i) (sbi->devs[i]) 986 #define RDEV(i) (raw_super->devs[i]) 987 struct f2fs_dev_info { 988 struct block_device *bdev; 989 char path[MAX_PATH_LEN]; 990 unsigned int total_segments; 991 block_t start_blk; 992 block_t end_blk; 993 #ifdef CONFIG_BLK_DEV_ZONED 994 unsigned int nr_blkz; /* Total number of zones */ 995 u8 *blkz_type; /* Array of zones type */ 996 #endif 997 }; 998 999 enum inode_type { 1000 DIR_INODE, /* for dirty dir inode */ 1001 FILE_INODE, /* for dirty regular/symlink inode */ 1002 DIRTY_META, /* for all dirtied inode metadata */ 1003 ATOMIC_FILE, /* for all atomic files */ 1004 NR_INODE_TYPE, 1005 }; 1006 1007 /* for inner inode cache management */ 1008 struct inode_management { 1009 struct radix_tree_root ino_root; /* ino entry array */ 1010 spinlock_t ino_lock; /* for ino entry lock */ 1011 struct list_head ino_list; /* inode list head */ 1012 unsigned long ino_num; /* number of entries */ 1013 }; 1014 1015 /* For s_flag in struct f2fs_sb_info */ 1016 enum { 1017 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1018 SBI_IS_CLOSE, /* specify unmounting */ 1019 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1020 SBI_POR_DOING, /* recovery is doing or not */ 1021 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1022 SBI_NEED_CP, /* need to checkpoint */ 1023 }; 1024 1025 enum { 1026 CP_TIME, 1027 REQ_TIME, 1028 MAX_TIME, 1029 }; 1030 1031 struct f2fs_sb_info { 1032 struct super_block *sb; /* pointer to VFS super block */ 1033 struct proc_dir_entry *s_proc; /* proc entry */ 1034 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1035 int valid_super_block; /* valid super block no */ 1036 unsigned long s_flag; /* flags for sbi */ 1037 1038 #ifdef CONFIG_BLK_DEV_ZONED 1039 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1040 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1041 #endif 1042 1043 /* for node-related operations */ 1044 struct f2fs_nm_info *nm_info; /* node manager */ 1045 struct inode *node_inode; /* cache node blocks */ 1046 1047 /* for segment-related operations */ 1048 struct f2fs_sm_info *sm_info; /* segment manager */ 1049 1050 /* for bio operations */ 1051 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1052 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1053 /* bio ordering for NODE/DATA */ 1054 int write_io_size_bits; /* Write IO size bits */ 1055 mempool_t *write_io_dummy; /* Dummy pages */ 1056 1057 /* for checkpoint */ 1058 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1059 int cur_cp_pack; /* remain current cp pack */ 1060 spinlock_t cp_lock; /* for flag in ckpt */ 1061 struct inode *meta_inode; /* cache meta blocks */ 1062 struct mutex cp_mutex; /* checkpoint procedure lock */ 1063 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1064 struct rw_semaphore node_write; /* locking node writes */ 1065 struct rw_semaphore node_change; /* locking node change */ 1066 wait_queue_head_t cp_wait; 1067 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1068 long interval_time[MAX_TIME]; /* to store thresholds */ 1069 1070 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1071 1072 /* for orphan inode, use 0'th array */ 1073 unsigned int max_orphans; /* max orphan inodes */ 1074 1075 /* for inode management */ 1076 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1077 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1078 1079 /* for extent tree cache */ 1080 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1081 struct mutex extent_tree_lock; /* locking extent radix tree */ 1082 struct list_head extent_list; /* lru list for shrinker */ 1083 spinlock_t extent_lock; /* locking extent lru list */ 1084 atomic_t total_ext_tree; /* extent tree count */ 1085 struct list_head zombie_list; /* extent zombie tree list */ 1086 atomic_t total_zombie_tree; /* extent zombie tree count */ 1087 atomic_t total_ext_node; /* extent info count */ 1088 1089 /* basic filesystem units */ 1090 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1091 unsigned int log_blocksize; /* log2 block size */ 1092 unsigned int blocksize; /* block size */ 1093 unsigned int root_ino_num; /* root inode number*/ 1094 unsigned int node_ino_num; /* node inode number*/ 1095 unsigned int meta_ino_num; /* meta inode number*/ 1096 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1097 unsigned int blocks_per_seg; /* blocks per segment */ 1098 unsigned int segs_per_sec; /* segments per section */ 1099 unsigned int secs_per_zone; /* sections per zone */ 1100 unsigned int total_sections; /* total section count */ 1101 unsigned int total_node_count; /* total node block count */ 1102 unsigned int total_valid_node_count; /* valid node block count */ 1103 loff_t max_file_blocks; /* max block index of file */ 1104 int active_logs; /* # of active logs */ 1105 int dir_level; /* directory level */ 1106 int inline_xattr_size; /* inline xattr size */ 1107 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1108 int readdir_ra; /* readahead inode in readdir */ 1109 1110 block_t user_block_count; /* # of user blocks */ 1111 block_t total_valid_block_count; /* # of valid blocks */ 1112 block_t discard_blks; /* discard command candidats */ 1113 block_t last_valid_block_count; /* for recovery */ 1114 block_t reserved_blocks; /* configurable reserved blocks */ 1115 block_t current_reserved_blocks; /* current reserved blocks */ 1116 block_t root_reserved_blocks; /* root reserved blocks */ 1117 kuid_t s_resuid; /* reserved blocks for uid */ 1118 kgid_t s_resgid; /* reserved blocks for gid */ 1119 1120 unsigned int nquota_files; /* # of quota sysfile */ 1121 1122 u32 s_next_generation; /* for NFS support */ 1123 1124 /* # of pages, see count_type */ 1125 atomic_t nr_pages[NR_COUNT_TYPE]; 1126 /* # of allocated blocks */ 1127 struct percpu_counter alloc_valid_block_count; 1128 1129 /* writeback control */ 1130 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1131 1132 /* valid inode count */ 1133 struct percpu_counter total_valid_inode_count; 1134 1135 struct f2fs_mount_info mount_opt; /* mount options */ 1136 1137 /* for cleaning operations */ 1138 struct mutex gc_mutex; /* mutex for GC */ 1139 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1140 unsigned int cur_victim_sec; /* current victim section num */ 1141 1142 /* threshold for converting bg victims for fg */ 1143 u64 fggc_threshold; 1144 1145 /* maximum # of trials to find a victim segment for SSR and GC */ 1146 unsigned int max_victim_search; 1147 1148 /* 1149 * for stat information. 1150 * one is for the LFS mode, and the other is for the SSR mode. 1151 */ 1152 #ifdef CONFIG_F2FS_STAT_FS 1153 struct f2fs_stat_info *stat_info; /* FS status information */ 1154 unsigned int segment_count[2]; /* # of allocated segments */ 1155 unsigned int block_count[2]; /* # of allocated blocks */ 1156 atomic_t inplace_count; /* # of inplace update */ 1157 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1158 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1159 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1160 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1161 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1162 atomic_t inline_inode; /* # of inline_data inodes */ 1163 atomic_t inline_dir; /* # of inline_dentry inodes */ 1164 atomic_t aw_cnt; /* # of atomic writes */ 1165 atomic_t vw_cnt; /* # of volatile writes */ 1166 atomic_t max_aw_cnt; /* max # of atomic writes */ 1167 atomic_t max_vw_cnt; /* max # of volatile writes */ 1168 int bg_gc; /* background gc calls */ 1169 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1170 #endif 1171 spinlock_t stat_lock; /* lock for stat operations */ 1172 1173 /* For app/fs IO statistics */ 1174 spinlock_t iostat_lock; 1175 unsigned long long write_iostat[NR_IO_TYPE]; 1176 bool iostat_enable; 1177 1178 /* For sysfs suppport */ 1179 struct kobject s_kobj; 1180 struct completion s_kobj_unregister; 1181 1182 /* For shrinker support */ 1183 struct list_head s_list; 1184 int s_ndevs; /* number of devices */ 1185 struct f2fs_dev_info *devs; /* for device list */ 1186 unsigned int dirty_device; /* for checkpoint data flush */ 1187 spinlock_t dev_lock; /* protect dirty_device */ 1188 struct mutex umount_mutex; 1189 unsigned int shrinker_run_no; 1190 1191 /* For write statistics */ 1192 u64 sectors_written_start; 1193 u64 kbytes_written; 1194 1195 /* Reference to checksum algorithm driver via cryptoapi */ 1196 struct crypto_shash *s_chksum_driver; 1197 1198 /* Precomputed FS UUID checksum for seeding other checksums */ 1199 __u32 s_chksum_seed; 1200 1201 /* For fault injection */ 1202 #ifdef CONFIG_F2FS_FAULT_INJECTION 1203 struct f2fs_fault_info fault_info; 1204 #endif 1205 1206 #ifdef CONFIG_QUOTA 1207 /* Names of quota files with journalled quota */ 1208 char *s_qf_names[MAXQUOTAS]; 1209 int s_jquota_fmt; /* Format of quota to use */ 1210 #endif 1211 }; 1212 1213 #ifdef CONFIG_F2FS_FAULT_INJECTION 1214 #define f2fs_show_injection_info(type) \ 1215 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1216 KERN_INFO, fault_name[type], \ 1217 __func__, __builtin_return_address(0)) 1218 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1219 { 1220 struct f2fs_fault_info *ffi = &sbi->fault_info; 1221 1222 if (!ffi->inject_rate) 1223 return false; 1224 1225 if (!IS_FAULT_SET(ffi, type)) 1226 return false; 1227 1228 atomic_inc(&ffi->inject_ops); 1229 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1230 atomic_set(&ffi->inject_ops, 0); 1231 return true; 1232 } 1233 return false; 1234 } 1235 #endif 1236 1237 /* For write statistics. Suppose sector size is 512 bytes, 1238 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1239 */ 1240 #define BD_PART_WRITTEN(s) \ 1241 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1242 (s)->sectors_written_start) >> 1) 1243 1244 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1245 { 1246 sbi->last_time[type] = jiffies; 1247 } 1248 1249 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1250 { 1251 unsigned long interval = sbi->interval_time[type] * HZ; 1252 1253 return time_after(jiffies, sbi->last_time[type] + interval); 1254 } 1255 1256 static inline bool is_idle(struct f2fs_sb_info *sbi) 1257 { 1258 struct block_device *bdev = sbi->sb->s_bdev; 1259 struct request_queue *q = bdev_get_queue(bdev); 1260 struct request_list *rl = &q->root_rl; 1261 1262 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1263 return 0; 1264 1265 return f2fs_time_over(sbi, REQ_TIME); 1266 } 1267 1268 /* 1269 * Inline functions 1270 */ 1271 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1272 const void *address, unsigned int length) 1273 { 1274 struct { 1275 struct shash_desc shash; 1276 char ctx[4]; 1277 } desc; 1278 int err; 1279 1280 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1281 1282 desc.shash.tfm = sbi->s_chksum_driver; 1283 desc.shash.flags = 0; 1284 *(u32 *)desc.ctx = crc; 1285 1286 err = crypto_shash_update(&desc.shash, address, length); 1287 BUG_ON(err); 1288 1289 return *(u32 *)desc.ctx; 1290 } 1291 1292 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1293 unsigned int length) 1294 { 1295 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1296 } 1297 1298 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1299 void *buf, size_t buf_size) 1300 { 1301 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1302 } 1303 1304 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1305 const void *address, unsigned int length) 1306 { 1307 return __f2fs_crc32(sbi, crc, address, length); 1308 } 1309 1310 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1311 { 1312 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1313 } 1314 1315 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1316 { 1317 return sb->s_fs_info; 1318 } 1319 1320 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1321 { 1322 return F2FS_SB(inode->i_sb); 1323 } 1324 1325 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1326 { 1327 return F2FS_I_SB(mapping->host); 1328 } 1329 1330 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1331 { 1332 return F2FS_M_SB(page->mapping); 1333 } 1334 1335 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1336 { 1337 return (struct f2fs_super_block *)(sbi->raw_super); 1338 } 1339 1340 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1341 { 1342 return (struct f2fs_checkpoint *)(sbi->ckpt); 1343 } 1344 1345 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1346 { 1347 return (struct f2fs_node *)page_address(page); 1348 } 1349 1350 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1351 { 1352 return &((struct f2fs_node *)page_address(page))->i; 1353 } 1354 1355 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1356 { 1357 return (struct f2fs_nm_info *)(sbi->nm_info); 1358 } 1359 1360 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1361 { 1362 return (struct f2fs_sm_info *)(sbi->sm_info); 1363 } 1364 1365 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1366 { 1367 return (struct sit_info *)(SM_I(sbi)->sit_info); 1368 } 1369 1370 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1371 { 1372 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1373 } 1374 1375 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1376 { 1377 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1378 } 1379 1380 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1381 { 1382 return sbi->meta_inode->i_mapping; 1383 } 1384 1385 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1386 { 1387 return sbi->node_inode->i_mapping; 1388 } 1389 1390 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1391 { 1392 return test_bit(type, &sbi->s_flag); 1393 } 1394 1395 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1396 { 1397 set_bit(type, &sbi->s_flag); 1398 } 1399 1400 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1401 { 1402 clear_bit(type, &sbi->s_flag); 1403 } 1404 1405 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1406 { 1407 return le64_to_cpu(cp->checkpoint_ver); 1408 } 1409 1410 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1411 { 1412 if (type < F2FS_MAX_QUOTAS) 1413 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1414 return 0; 1415 } 1416 1417 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1418 { 1419 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1420 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1421 } 1422 1423 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1424 { 1425 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1426 1427 return ckpt_flags & f; 1428 } 1429 1430 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1431 { 1432 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1433 } 1434 1435 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1436 { 1437 unsigned int ckpt_flags; 1438 1439 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1440 ckpt_flags |= f; 1441 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1442 } 1443 1444 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1445 { 1446 unsigned long flags; 1447 1448 spin_lock_irqsave(&sbi->cp_lock, flags); 1449 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1450 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1451 } 1452 1453 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1454 { 1455 unsigned int ckpt_flags; 1456 1457 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1458 ckpt_flags &= (~f); 1459 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1460 } 1461 1462 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1463 { 1464 unsigned long flags; 1465 1466 spin_lock_irqsave(&sbi->cp_lock, flags); 1467 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1468 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1469 } 1470 1471 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1472 { 1473 unsigned long flags; 1474 1475 set_sbi_flag(sbi, SBI_NEED_FSCK); 1476 1477 if (lock) 1478 spin_lock_irqsave(&sbi->cp_lock, flags); 1479 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1480 kfree(NM_I(sbi)->nat_bits); 1481 NM_I(sbi)->nat_bits = NULL; 1482 if (lock) 1483 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1484 } 1485 1486 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1487 struct cp_control *cpc) 1488 { 1489 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1490 1491 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1492 } 1493 1494 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1495 { 1496 down_read(&sbi->cp_rwsem); 1497 } 1498 1499 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1500 { 1501 return down_read_trylock(&sbi->cp_rwsem); 1502 } 1503 1504 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1505 { 1506 up_read(&sbi->cp_rwsem); 1507 } 1508 1509 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1510 { 1511 down_write(&sbi->cp_rwsem); 1512 } 1513 1514 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1515 { 1516 up_write(&sbi->cp_rwsem); 1517 } 1518 1519 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1520 { 1521 int reason = CP_SYNC; 1522 1523 if (test_opt(sbi, FASTBOOT)) 1524 reason = CP_FASTBOOT; 1525 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1526 reason = CP_UMOUNT; 1527 return reason; 1528 } 1529 1530 static inline bool __remain_node_summaries(int reason) 1531 { 1532 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1533 } 1534 1535 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1536 { 1537 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1538 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1539 } 1540 1541 /* 1542 * Check whether the given nid is within node id range. 1543 */ 1544 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1545 { 1546 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1547 return -EINVAL; 1548 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1549 return -EINVAL; 1550 return 0; 1551 } 1552 1553 /* 1554 * Check whether the inode has blocks or not 1555 */ 1556 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1557 { 1558 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1559 1560 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1561 } 1562 1563 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1564 { 1565 return ofs == XATTR_NODE_OFFSET; 1566 } 1567 1568 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi) 1569 { 1570 if (!test_opt(sbi, RESERVE_ROOT)) 1571 return false; 1572 if (capable(CAP_SYS_RESOURCE)) 1573 return true; 1574 if (uid_eq(sbi->s_resuid, current_fsuid())) 1575 return true; 1576 if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) && 1577 in_group_p(sbi->s_resgid)) 1578 return true; 1579 return false; 1580 } 1581 1582 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1583 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1584 struct inode *inode, blkcnt_t *count) 1585 { 1586 blkcnt_t diff = 0, release = 0; 1587 block_t avail_user_block_count; 1588 int ret; 1589 1590 ret = dquot_reserve_block(inode, *count); 1591 if (ret) 1592 return ret; 1593 1594 #ifdef CONFIG_F2FS_FAULT_INJECTION 1595 if (time_to_inject(sbi, FAULT_BLOCK)) { 1596 f2fs_show_injection_info(FAULT_BLOCK); 1597 release = *count; 1598 goto enospc; 1599 } 1600 #endif 1601 /* 1602 * let's increase this in prior to actual block count change in order 1603 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1604 */ 1605 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1606 1607 spin_lock(&sbi->stat_lock); 1608 sbi->total_valid_block_count += (block_t)(*count); 1609 avail_user_block_count = sbi->user_block_count - 1610 sbi->current_reserved_blocks; 1611 1612 if (!__allow_reserved_blocks(sbi)) 1613 avail_user_block_count -= sbi->root_reserved_blocks; 1614 1615 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1616 diff = sbi->total_valid_block_count - avail_user_block_count; 1617 if (diff > *count) 1618 diff = *count; 1619 *count -= diff; 1620 release = diff; 1621 sbi->total_valid_block_count -= diff; 1622 if (!*count) { 1623 spin_unlock(&sbi->stat_lock); 1624 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1625 goto enospc; 1626 } 1627 } 1628 spin_unlock(&sbi->stat_lock); 1629 1630 if (unlikely(release)) 1631 dquot_release_reservation_block(inode, release); 1632 f2fs_i_blocks_write(inode, *count, true, true); 1633 return 0; 1634 1635 enospc: 1636 dquot_release_reservation_block(inode, release); 1637 return -ENOSPC; 1638 } 1639 1640 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1641 struct inode *inode, 1642 block_t count) 1643 { 1644 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1645 1646 spin_lock(&sbi->stat_lock); 1647 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1648 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1649 sbi->total_valid_block_count -= (block_t)count; 1650 if (sbi->reserved_blocks && 1651 sbi->current_reserved_blocks < sbi->reserved_blocks) 1652 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1653 sbi->current_reserved_blocks + count); 1654 spin_unlock(&sbi->stat_lock); 1655 f2fs_i_blocks_write(inode, count, false, true); 1656 } 1657 1658 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1659 { 1660 atomic_inc(&sbi->nr_pages[count_type]); 1661 1662 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1663 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1664 return; 1665 1666 set_sbi_flag(sbi, SBI_IS_DIRTY); 1667 } 1668 1669 static inline void inode_inc_dirty_pages(struct inode *inode) 1670 { 1671 atomic_inc(&F2FS_I(inode)->dirty_pages); 1672 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1673 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1674 if (IS_NOQUOTA(inode)) 1675 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1676 } 1677 1678 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1679 { 1680 atomic_dec(&sbi->nr_pages[count_type]); 1681 } 1682 1683 static inline void inode_dec_dirty_pages(struct inode *inode) 1684 { 1685 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1686 !S_ISLNK(inode->i_mode)) 1687 return; 1688 1689 atomic_dec(&F2FS_I(inode)->dirty_pages); 1690 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1691 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1692 if (IS_NOQUOTA(inode)) 1693 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1694 } 1695 1696 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1697 { 1698 return atomic_read(&sbi->nr_pages[count_type]); 1699 } 1700 1701 static inline int get_dirty_pages(struct inode *inode) 1702 { 1703 return atomic_read(&F2FS_I(inode)->dirty_pages); 1704 } 1705 1706 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1707 { 1708 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1709 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1710 sbi->log_blocks_per_seg; 1711 1712 return segs / sbi->segs_per_sec; 1713 } 1714 1715 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1716 { 1717 return sbi->total_valid_block_count; 1718 } 1719 1720 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1721 { 1722 return sbi->discard_blks; 1723 } 1724 1725 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1726 { 1727 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1728 1729 /* return NAT or SIT bitmap */ 1730 if (flag == NAT_BITMAP) 1731 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1732 else if (flag == SIT_BITMAP) 1733 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1734 1735 return 0; 1736 } 1737 1738 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1739 { 1740 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1741 } 1742 1743 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1744 { 1745 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1746 int offset; 1747 1748 if (__cp_payload(sbi) > 0) { 1749 if (flag == NAT_BITMAP) 1750 return &ckpt->sit_nat_version_bitmap; 1751 else 1752 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1753 } else { 1754 offset = (flag == NAT_BITMAP) ? 1755 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1756 return &ckpt->sit_nat_version_bitmap + offset; 1757 } 1758 } 1759 1760 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1761 { 1762 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1763 1764 if (sbi->cur_cp_pack == 2) 1765 start_addr += sbi->blocks_per_seg; 1766 return start_addr; 1767 } 1768 1769 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1770 { 1771 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1772 1773 if (sbi->cur_cp_pack == 1) 1774 start_addr += sbi->blocks_per_seg; 1775 return start_addr; 1776 } 1777 1778 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1779 { 1780 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1781 } 1782 1783 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1784 { 1785 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1786 } 1787 1788 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1789 struct inode *inode, bool is_inode) 1790 { 1791 block_t valid_block_count; 1792 unsigned int valid_node_count; 1793 bool quota = inode && !is_inode; 1794 1795 if (quota) { 1796 int ret = dquot_reserve_block(inode, 1); 1797 if (ret) 1798 return ret; 1799 } 1800 1801 #ifdef CONFIG_F2FS_FAULT_INJECTION 1802 if (time_to_inject(sbi, FAULT_BLOCK)) { 1803 f2fs_show_injection_info(FAULT_BLOCK); 1804 goto enospc; 1805 } 1806 #endif 1807 1808 spin_lock(&sbi->stat_lock); 1809 1810 valid_block_count = sbi->total_valid_block_count + 1811 sbi->current_reserved_blocks + 1; 1812 1813 if (!__allow_reserved_blocks(sbi)) 1814 valid_block_count += sbi->root_reserved_blocks; 1815 1816 if (unlikely(valid_block_count > sbi->user_block_count)) { 1817 spin_unlock(&sbi->stat_lock); 1818 goto enospc; 1819 } 1820 1821 valid_node_count = sbi->total_valid_node_count + 1; 1822 if (unlikely(valid_node_count > sbi->total_node_count)) { 1823 spin_unlock(&sbi->stat_lock); 1824 goto enospc; 1825 } 1826 1827 sbi->total_valid_node_count++; 1828 sbi->total_valid_block_count++; 1829 spin_unlock(&sbi->stat_lock); 1830 1831 if (inode) { 1832 if (is_inode) 1833 f2fs_mark_inode_dirty_sync(inode, true); 1834 else 1835 f2fs_i_blocks_write(inode, 1, true, true); 1836 } 1837 1838 percpu_counter_inc(&sbi->alloc_valid_block_count); 1839 return 0; 1840 1841 enospc: 1842 if (quota) 1843 dquot_release_reservation_block(inode, 1); 1844 return -ENOSPC; 1845 } 1846 1847 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1848 struct inode *inode, bool is_inode) 1849 { 1850 spin_lock(&sbi->stat_lock); 1851 1852 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1853 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1854 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1855 1856 sbi->total_valid_node_count--; 1857 sbi->total_valid_block_count--; 1858 if (sbi->reserved_blocks && 1859 sbi->current_reserved_blocks < sbi->reserved_blocks) 1860 sbi->current_reserved_blocks++; 1861 1862 spin_unlock(&sbi->stat_lock); 1863 1864 if (!is_inode) 1865 f2fs_i_blocks_write(inode, 1, false, true); 1866 } 1867 1868 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1869 { 1870 return sbi->total_valid_node_count; 1871 } 1872 1873 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1874 { 1875 percpu_counter_inc(&sbi->total_valid_inode_count); 1876 } 1877 1878 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1879 { 1880 percpu_counter_dec(&sbi->total_valid_inode_count); 1881 } 1882 1883 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1884 { 1885 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1886 } 1887 1888 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1889 pgoff_t index, bool for_write) 1890 { 1891 #ifdef CONFIG_F2FS_FAULT_INJECTION 1892 struct page *page = find_lock_page(mapping, index); 1893 1894 if (page) 1895 return page; 1896 1897 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1898 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1899 return NULL; 1900 } 1901 #endif 1902 if (!for_write) 1903 return grab_cache_page(mapping, index); 1904 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1905 } 1906 1907 static inline struct page *f2fs_pagecache_get_page( 1908 struct address_space *mapping, pgoff_t index, 1909 int fgp_flags, gfp_t gfp_mask) 1910 { 1911 #ifdef CONFIG_F2FS_FAULT_INJECTION 1912 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1913 f2fs_show_injection_info(FAULT_PAGE_GET); 1914 return NULL; 1915 } 1916 #endif 1917 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1918 } 1919 1920 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1921 { 1922 char *src_kaddr = kmap(src); 1923 char *dst_kaddr = kmap(dst); 1924 1925 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1926 kunmap(dst); 1927 kunmap(src); 1928 } 1929 1930 static inline void f2fs_put_page(struct page *page, int unlock) 1931 { 1932 if (!page) 1933 return; 1934 1935 if (unlock) { 1936 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1937 unlock_page(page); 1938 } 1939 put_page(page); 1940 } 1941 1942 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1943 { 1944 if (dn->node_page) 1945 f2fs_put_page(dn->node_page, 1); 1946 if (dn->inode_page && dn->node_page != dn->inode_page) 1947 f2fs_put_page(dn->inode_page, 0); 1948 dn->node_page = NULL; 1949 dn->inode_page = NULL; 1950 } 1951 1952 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1953 size_t size) 1954 { 1955 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1956 } 1957 1958 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1959 gfp_t flags) 1960 { 1961 void *entry; 1962 1963 entry = kmem_cache_alloc(cachep, flags); 1964 if (!entry) 1965 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1966 return entry; 1967 } 1968 1969 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1970 int npages, bool no_fail) 1971 { 1972 struct bio *bio; 1973 1974 if (no_fail) { 1975 /* No failure on bio allocation */ 1976 bio = bio_alloc(GFP_NOIO, npages); 1977 if (!bio) 1978 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1979 return bio; 1980 } 1981 #ifdef CONFIG_F2FS_FAULT_INJECTION 1982 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 1983 f2fs_show_injection_info(FAULT_ALLOC_BIO); 1984 return NULL; 1985 } 1986 #endif 1987 return bio_alloc(GFP_KERNEL, npages); 1988 } 1989 1990 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1991 unsigned long index, void *item) 1992 { 1993 while (radix_tree_insert(root, index, item)) 1994 cond_resched(); 1995 } 1996 1997 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1998 1999 static inline bool IS_INODE(struct page *page) 2000 { 2001 struct f2fs_node *p = F2FS_NODE(page); 2002 2003 return RAW_IS_INODE(p); 2004 } 2005 2006 static inline int offset_in_addr(struct f2fs_inode *i) 2007 { 2008 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2009 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2010 } 2011 2012 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2013 { 2014 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2015 } 2016 2017 static inline int f2fs_has_extra_attr(struct inode *inode); 2018 static inline block_t datablock_addr(struct inode *inode, 2019 struct page *node_page, unsigned int offset) 2020 { 2021 struct f2fs_node *raw_node; 2022 __le32 *addr_array; 2023 int base = 0; 2024 bool is_inode = IS_INODE(node_page); 2025 2026 raw_node = F2FS_NODE(node_page); 2027 2028 /* from GC path only */ 2029 if (is_inode) { 2030 if (!inode) 2031 base = offset_in_addr(&raw_node->i); 2032 else if (f2fs_has_extra_attr(inode)) 2033 base = get_extra_isize(inode); 2034 } 2035 2036 addr_array = blkaddr_in_node(raw_node); 2037 return le32_to_cpu(addr_array[base + offset]); 2038 } 2039 2040 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2041 { 2042 int mask; 2043 2044 addr += (nr >> 3); 2045 mask = 1 << (7 - (nr & 0x07)); 2046 return mask & *addr; 2047 } 2048 2049 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2050 { 2051 int mask; 2052 2053 addr += (nr >> 3); 2054 mask = 1 << (7 - (nr & 0x07)); 2055 *addr |= mask; 2056 } 2057 2058 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2059 { 2060 int mask; 2061 2062 addr += (nr >> 3); 2063 mask = 1 << (7 - (nr & 0x07)); 2064 *addr &= ~mask; 2065 } 2066 2067 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2068 { 2069 int mask; 2070 int ret; 2071 2072 addr += (nr >> 3); 2073 mask = 1 << (7 - (nr & 0x07)); 2074 ret = mask & *addr; 2075 *addr |= mask; 2076 return ret; 2077 } 2078 2079 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2080 { 2081 int mask; 2082 int ret; 2083 2084 addr += (nr >> 3); 2085 mask = 1 << (7 - (nr & 0x07)); 2086 ret = mask & *addr; 2087 *addr &= ~mask; 2088 return ret; 2089 } 2090 2091 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2092 { 2093 int mask; 2094 2095 addr += (nr >> 3); 2096 mask = 1 << (7 - (nr & 0x07)); 2097 *addr ^= mask; 2098 } 2099 2100 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2101 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2102 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2103 2104 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2105 { 2106 if (S_ISDIR(mode)) 2107 return flags; 2108 else if (S_ISREG(mode)) 2109 return flags & F2FS_REG_FLMASK; 2110 else 2111 return flags & F2FS_OTHER_FLMASK; 2112 } 2113 2114 /* used for f2fs_inode_info->flags */ 2115 enum { 2116 FI_NEW_INODE, /* indicate newly allocated inode */ 2117 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2118 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2119 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2120 FI_INC_LINK, /* need to increment i_nlink */ 2121 FI_ACL_MODE, /* indicate acl mode */ 2122 FI_NO_ALLOC, /* should not allocate any blocks */ 2123 FI_FREE_NID, /* free allocated nide */ 2124 FI_NO_EXTENT, /* not to use the extent cache */ 2125 FI_INLINE_XATTR, /* used for inline xattr */ 2126 FI_INLINE_DATA, /* used for inline data*/ 2127 FI_INLINE_DENTRY, /* used for inline dentry */ 2128 FI_APPEND_WRITE, /* inode has appended data */ 2129 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2130 FI_NEED_IPU, /* used for ipu per file */ 2131 FI_ATOMIC_FILE, /* indicate atomic file */ 2132 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2133 FI_VOLATILE_FILE, /* indicate volatile file */ 2134 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2135 FI_DROP_CACHE, /* drop dirty page cache */ 2136 FI_DATA_EXIST, /* indicate data exists */ 2137 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2138 FI_DO_DEFRAG, /* indicate defragment is running */ 2139 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2140 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2141 FI_HOT_DATA, /* indicate file is hot */ 2142 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2143 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2144 }; 2145 2146 static inline void __mark_inode_dirty_flag(struct inode *inode, 2147 int flag, bool set) 2148 { 2149 switch (flag) { 2150 case FI_INLINE_XATTR: 2151 case FI_INLINE_DATA: 2152 case FI_INLINE_DENTRY: 2153 case FI_NEW_INODE: 2154 if (set) 2155 return; 2156 case FI_DATA_EXIST: 2157 case FI_INLINE_DOTS: 2158 f2fs_mark_inode_dirty_sync(inode, true); 2159 } 2160 } 2161 2162 static inline void set_inode_flag(struct inode *inode, int flag) 2163 { 2164 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2165 set_bit(flag, &F2FS_I(inode)->flags); 2166 __mark_inode_dirty_flag(inode, flag, true); 2167 } 2168 2169 static inline int is_inode_flag_set(struct inode *inode, int flag) 2170 { 2171 return test_bit(flag, &F2FS_I(inode)->flags); 2172 } 2173 2174 static inline void clear_inode_flag(struct inode *inode, int flag) 2175 { 2176 if (test_bit(flag, &F2FS_I(inode)->flags)) 2177 clear_bit(flag, &F2FS_I(inode)->flags); 2178 __mark_inode_dirty_flag(inode, flag, false); 2179 } 2180 2181 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2182 { 2183 F2FS_I(inode)->i_acl_mode = mode; 2184 set_inode_flag(inode, FI_ACL_MODE); 2185 f2fs_mark_inode_dirty_sync(inode, false); 2186 } 2187 2188 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2189 { 2190 if (inc) 2191 inc_nlink(inode); 2192 else 2193 drop_nlink(inode); 2194 f2fs_mark_inode_dirty_sync(inode, true); 2195 } 2196 2197 static inline void f2fs_i_blocks_write(struct inode *inode, 2198 block_t diff, bool add, bool claim) 2199 { 2200 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2201 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2202 2203 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2204 if (add) { 2205 if (claim) 2206 dquot_claim_block(inode, diff); 2207 else 2208 dquot_alloc_block_nofail(inode, diff); 2209 } else { 2210 dquot_free_block(inode, diff); 2211 } 2212 2213 f2fs_mark_inode_dirty_sync(inode, true); 2214 if (clean || recover) 2215 set_inode_flag(inode, FI_AUTO_RECOVER); 2216 } 2217 2218 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2219 { 2220 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2221 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2222 2223 if (i_size_read(inode) == i_size) 2224 return; 2225 2226 i_size_write(inode, i_size); 2227 f2fs_mark_inode_dirty_sync(inode, true); 2228 if (clean || recover) 2229 set_inode_flag(inode, FI_AUTO_RECOVER); 2230 } 2231 2232 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2233 { 2234 F2FS_I(inode)->i_current_depth = depth; 2235 f2fs_mark_inode_dirty_sync(inode, true); 2236 } 2237 2238 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2239 { 2240 F2FS_I(inode)->i_xattr_nid = xnid; 2241 f2fs_mark_inode_dirty_sync(inode, true); 2242 } 2243 2244 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2245 { 2246 F2FS_I(inode)->i_pino = pino; 2247 f2fs_mark_inode_dirty_sync(inode, true); 2248 } 2249 2250 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2251 { 2252 struct f2fs_inode_info *fi = F2FS_I(inode); 2253 2254 if (ri->i_inline & F2FS_INLINE_XATTR) 2255 set_bit(FI_INLINE_XATTR, &fi->flags); 2256 if (ri->i_inline & F2FS_INLINE_DATA) 2257 set_bit(FI_INLINE_DATA, &fi->flags); 2258 if (ri->i_inline & F2FS_INLINE_DENTRY) 2259 set_bit(FI_INLINE_DENTRY, &fi->flags); 2260 if (ri->i_inline & F2FS_DATA_EXIST) 2261 set_bit(FI_DATA_EXIST, &fi->flags); 2262 if (ri->i_inline & F2FS_INLINE_DOTS) 2263 set_bit(FI_INLINE_DOTS, &fi->flags); 2264 if (ri->i_inline & F2FS_EXTRA_ATTR) 2265 set_bit(FI_EXTRA_ATTR, &fi->flags); 2266 } 2267 2268 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2269 { 2270 ri->i_inline = 0; 2271 2272 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2273 ri->i_inline |= F2FS_INLINE_XATTR; 2274 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2275 ri->i_inline |= F2FS_INLINE_DATA; 2276 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2277 ri->i_inline |= F2FS_INLINE_DENTRY; 2278 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2279 ri->i_inline |= F2FS_DATA_EXIST; 2280 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2281 ri->i_inline |= F2FS_INLINE_DOTS; 2282 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2283 ri->i_inline |= F2FS_EXTRA_ATTR; 2284 } 2285 2286 static inline int f2fs_has_extra_attr(struct inode *inode) 2287 { 2288 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2289 } 2290 2291 static inline int f2fs_has_inline_xattr(struct inode *inode) 2292 { 2293 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2294 } 2295 2296 static inline unsigned int addrs_per_inode(struct inode *inode) 2297 { 2298 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode); 2299 } 2300 2301 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2302 { 2303 struct f2fs_inode *ri = F2FS_INODE(page); 2304 2305 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2306 F2FS_INLINE_XATTR_ADDRS(inode)]); 2307 } 2308 2309 static inline int inline_xattr_size(struct inode *inode) 2310 { 2311 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2312 } 2313 2314 static inline int f2fs_has_inline_data(struct inode *inode) 2315 { 2316 return is_inode_flag_set(inode, FI_INLINE_DATA); 2317 } 2318 2319 static inline int f2fs_exist_data(struct inode *inode) 2320 { 2321 return is_inode_flag_set(inode, FI_DATA_EXIST); 2322 } 2323 2324 static inline int f2fs_has_inline_dots(struct inode *inode) 2325 { 2326 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2327 } 2328 2329 static inline bool f2fs_is_atomic_file(struct inode *inode) 2330 { 2331 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2332 } 2333 2334 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2335 { 2336 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2337 } 2338 2339 static inline bool f2fs_is_volatile_file(struct inode *inode) 2340 { 2341 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2342 } 2343 2344 static inline bool f2fs_is_first_block_written(struct inode *inode) 2345 { 2346 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2347 } 2348 2349 static inline bool f2fs_is_drop_cache(struct inode *inode) 2350 { 2351 return is_inode_flag_set(inode, FI_DROP_CACHE); 2352 } 2353 2354 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2355 { 2356 struct f2fs_inode *ri = F2FS_INODE(page); 2357 int extra_size = get_extra_isize(inode); 2358 2359 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2360 } 2361 2362 static inline int f2fs_has_inline_dentry(struct inode *inode) 2363 { 2364 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2365 } 2366 2367 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2368 { 2369 if (!f2fs_has_inline_dentry(dir)) 2370 kunmap(page); 2371 } 2372 2373 static inline int is_file(struct inode *inode, int type) 2374 { 2375 return F2FS_I(inode)->i_advise & type; 2376 } 2377 2378 static inline void set_file(struct inode *inode, int type) 2379 { 2380 F2FS_I(inode)->i_advise |= type; 2381 f2fs_mark_inode_dirty_sync(inode, true); 2382 } 2383 2384 static inline void clear_file(struct inode *inode, int type) 2385 { 2386 F2FS_I(inode)->i_advise &= ~type; 2387 f2fs_mark_inode_dirty_sync(inode, true); 2388 } 2389 2390 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2391 { 2392 bool ret; 2393 2394 if (dsync) { 2395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2396 2397 spin_lock(&sbi->inode_lock[DIRTY_META]); 2398 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2399 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2400 return ret; 2401 } 2402 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2403 file_keep_isize(inode) || 2404 i_size_read(inode) & PAGE_MASK) 2405 return false; 2406 2407 down_read(&F2FS_I(inode)->i_sem); 2408 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2409 up_read(&F2FS_I(inode)->i_sem); 2410 2411 return ret; 2412 } 2413 2414 static inline int f2fs_readonly(struct super_block *sb) 2415 { 2416 return sb->s_flags & SB_RDONLY; 2417 } 2418 2419 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2420 { 2421 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2422 } 2423 2424 static inline bool is_dot_dotdot(const struct qstr *str) 2425 { 2426 if (str->len == 1 && str->name[0] == '.') 2427 return true; 2428 2429 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2430 return true; 2431 2432 return false; 2433 } 2434 2435 static inline bool f2fs_may_extent_tree(struct inode *inode) 2436 { 2437 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2438 is_inode_flag_set(inode, FI_NO_EXTENT)) 2439 return false; 2440 2441 return S_ISREG(inode->i_mode); 2442 } 2443 2444 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2445 size_t size, gfp_t flags) 2446 { 2447 #ifdef CONFIG_F2FS_FAULT_INJECTION 2448 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2449 f2fs_show_injection_info(FAULT_KMALLOC); 2450 return NULL; 2451 } 2452 #endif 2453 return kmalloc(size, flags); 2454 } 2455 2456 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2457 size_t size, gfp_t flags) 2458 { 2459 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2460 } 2461 2462 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2463 size_t size, gfp_t flags) 2464 { 2465 #ifdef CONFIG_F2FS_FAULT_INJECTION 2466 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2467 f2fs_show_injection_info(FAULT_KVMALLOC); 2468 return NULL; 2469 } 2470 #endif 2471 return kvmalloc(size, flags); 2472 } 2473 2474 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2475 size_t size, gfp_t flags) 2476 { 2477 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2478 } 2479 2480 static inline int get_extra_isize(struct inode *inode) 2481 { 2482 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2483 } 2484 2485 static inline int get_inline_xattr_addrs(struct inode *inode) 2486 { 2487 return F2FS_I(inode)->i_inline_xattr_size; 2488 } 2489 2490 #define get_inode_mode(i) \ 2491 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2492 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2493 2494 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2495 (offsetof(struct f2fs_inode, i_extra_end) - \ 2496 offsetof(struct f2fs_inode, i_extra_isize)) \ 2497 2498 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2499 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2500 ((offsetof(typeof(*f2fs_inode), field) + \ 2501 sizeof((f2fs_inode)->field)) \ 2502 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2503 2504 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2505 { 2506 int i; 2507 2508 spin_lock(&sbi->iostat_lock); 2509 for (i = 0; i < NR_IO_TYPE; i++) 2510 sbi->write_iostat[i] = 0; 2511 spin_unlock(&sbi->iostat_lock); 2512 } 2513 2514 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2515 enum iostat_type type, unsigned long long io_bytes) 2516 { 2517 if (!sbi->iostat_enable) 2518 return; 2519 spin_lock(&sbi->iostat_lock); 2520 sbi->write_iostat[type] += io_bytes; 2521 2522 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2523 sbi->write_iostat[APP_BUFFERED_IO] = 2524 sbi->write_iostat[APP_WRITE_IO] - 2525 sbi->write_iostat[APP_DIRECT_IO]; 2526 spin_unlock(&sbi->iostat_lock); 2527 } 2528 2529 /* 2530 * file.c 2531 */ 2532 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2533 void truncate_data_blocks(struct dnode_of_data *dn); 2534 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2535 int f2fs_truncate(struct inode *inode); 2536 int f2fs_getattr(const struct path *path, struct kstat *stat, 2537 u32 request_mask, unsigned int flags); 2538 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2539 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2540 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2541 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2542 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2543 2544 /* 2545 * inode.c 2546 */ 2547 void f2fs_set_inode_flags(struct inode *inode); 2548 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2549 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2550 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2551 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2552 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2553 void update_inode(struct inode *inode, struct page *node_page); 2554 void update_inode_page(struct inode *inode); 2555 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2556 void f2fs_evict_inode(struct inode *inode); 2557 void handle_failed_inode(struct inode *inode); 2558 2559 /* 2560 * namei.c 2561 */ 2562 struct dentry *f2fs_get_parent(struct dentry *child); 2563 2564 /* 2565 * dir.c 2566 */ 2567 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2568 unsigned char get_de_type(struct f2fs_dir_entry *de); 2569 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2570 f2fs_hash_t namehash, int *max_slots, 2571 struct f2fs_dentry_ptr *d); 2572 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2573 unsigned int start_pos, struct fscrypt_str *fstr); 2574 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2575 struct f2fs_dentry_ptr *d); 2576 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2577 const struct qstr *new_name, 2578 const struct qstr *orig_name, struct page *dpage); 2579 void update_parent_metadata(struct inode *dir, struct inode *inode, 2580 unsigned int current_depth); 2581 int room_for_filename(const void *bitmap, int slots, int max_slots); 2582 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2583 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2584 struct fscrypt_name *fname, struct page **res_page); 2585 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2586 const struct qstr *child, struct page **res_page); 2587 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2588 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2589 struct page **page); 2590 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2591 struct page *page, struct inode *inode); 2592 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2593 const struct qstr *name, f2fs_hash_t name_hash, 2594 unsigned int bit_pos); 2595 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2596 const struct qstr *orig_name, 2597 struct inode *inode, nid_t ino, umode_t mode); 2598 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2599 struct inode *inode, nid_t ino, umode_t mode); 2600 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2601 struct inode *inode, nid_t ino, umode_t mode); 2602 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2603 struct inode *dir, struct inode *inode); 2604 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2605 bool f2fs_empty_dir(struct inode *dir); 2606 2607 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2608 { 2609 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2610 inode, inode->i_ino, inode->i_mode); 2611 } 2612 2613 /* 2614 * super.c 2615 */ 2616 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2617 void f2fs_inode_synced(struct inode *inode); 2618 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2619 void f2fs_quota_off_umount(struct super_block *sb); 2620 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2621 int f2fs_sync_fs(struct super_block *sb, int sync); 2622 extern __printf(3, 4) 2623 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2624 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2625 2626 /* 2627 * hash.c 2628 */ 2629 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2630 struct fscrypt_name *fname); 2631 2632 /* 2633 * node.c 2634 */ 2635 struct dnode_of_data; 2636 struct node_info; 2637 2638 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2639 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2640 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2641 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2642 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2643 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2644 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2645 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2646 int truncate_xattr_node(struct inode *inode); 2647 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2648 int remove_inode_page(struct inode *inode); 2649 struct page *new_inode_page(struct inode *inode); 2650 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2651 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2652 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2653 struct page *get_node_page_ra(struct page *parent, int start); 2654 void move_node_page(struct page *node_page, int gc_type); 2655 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2656 struct writeback_control *wbc, bool atomic); 2657 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2658 bool do_balance, enum iostat_type io_type); 2659 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2660 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2661 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2662 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2663 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2664 void recover_inline_xattr(struct inode *inode, struct page *page); 2665 int recover_xattr_data(struct inode *inode, struct page *page); 2666 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2667 void restore_node_summary(struct f2fs_sb_info *sbi, 2668 unsigned int segno, struct f2fs_summary_block *sum); 2669 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2670 int build_node_manager(struct f2fs_sb_info *sbi); 2671 void destroy_node_manager(struct f2fs_sb_info *sbi); 2672 int __init create_node_manager_caches(void); 2673 void destroy_node_manager_caches(void); 2674 2675 /* 2676 * segment.c 2677 */ 2678 bool need_SSR(struct f2fs_sb_info *sbi); 2679 void register_inmem_page(struct inode *inode, struct page *page); 2680 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2681 void drop_inmem_pages(struct inode *inode); 2682 void drop_inmem_page(struct inode *inode, struct page *page); 2683 int commit_inmem_pages(struct inode *inode); 2684 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2685 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2686 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2687 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2688 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2689 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2690 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2691 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2692 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2693 unsigned int granularity); 2694 void stop_discard_thread(struct f2fs_sb_info *sbi); 2695 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2696 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2697 void release_discard_addrs(struct f2fs_sb_info *sbi); 2698 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2699 void allocate_new_segments(struct f2fs_sb_info *sbi); 2700 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2701 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2702 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2703 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2704 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2705 enum iostat_type io_type); 2706 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2707 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2708 int rewrite_data_page(struct f2fs_io_info *fio); 2709 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2710 block_t old_blkaddr, block_t new_blkaddr, 2711 bool recover_curseg, bool recover_newaddr); 2712 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2713 block_t old_addr, block_t new_addr, 2714 unsigned char version, bool recover_curseg, 2715 bool recover_newaddr); 2716 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2717 block_t old_blkaddr, block_t *new_blkaddr, 2718 struct f2fs_summary *sum, int type, 2719 struct f2fs_io_info *fio, bool add_list); 2720 void f2fs_wait_on_page_writeback(struct page *page, 2721 enum page_type type, bool ordered); 2722 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2723 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2724 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2725 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2726 unsigned int val, int alloc); 2727 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2728 int build_segment_manager(struct f2fs_sb_info *sbi); 2729 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2730 int __init create_segment_manager_caches(void); 2731 void destroy_segment_manager_caches(void); 2732 int rw_hint_to_seg_type(enum rw_hint hint); 2733 2734 /* 2735 * checkpoint.c 2736 */ 2737 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2738 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2739 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2740 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2741 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2742 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2743 int type, bool sync); 2744 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2745 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2746 long nr_to_write, enum iostat_type io_type); 2747 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2748 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2749 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2750 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2751 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2752 unsigned int devidx, int type); 2753 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2754 unsigned int devidx, int type); 2755 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2756 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2757 void release_orphan_inode(struct f2fs_sb_info *sbi); 2758 void add_orphan_inode(struct inode *inode); 2759 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2760 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2761 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2762 void update_dirty_page(struct inode *inode, struct page *page); 2763 void remove_dirty_inode(struct inode *inode); 2764 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2765 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2766 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2767 int __init create_checkpoint_caches(void); 2768 void destroy_checkpoint_caches(void); 2769 2770 /* 2771 * data.c 2772 */ 2773 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2774 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2775 struct inode *inode, nid_t ino, pgoff_t idx, 2776 enum page_type type); 2777 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2778 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2779 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2780 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2781 block_t blk_addr, struct bio *bio); 2782 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2783 void set_data_blkaddr(struct dnode_of_data *dn); 2784 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2785 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2786 int reserve_new_block(struct dnode_of_data *dn); 2787 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2788 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2789 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2790 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2791 int op_flags, bool for_write); 2792 struct page *find_data_page(struct inode *inode, pgoff_t index); 2793 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2794 bool for_write); 2795 struct page *get_new_data_page(struct inode *inode, 2796 struct page *ipage, pgoff_t index, bool new_i_size); 2797 int do_write_data_page(struct f2fs_io_info *fio); 2798 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2799 int create, int flag); 2800 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2801 u64 start, u64 len); 2802 void f2fs_set_page_dirty_nobuffers(struct page *page); 2803 int __f2fs_write_data_pages(struct address_space *mapping, 2804 struct writeback_control *wbc, 2805 enum iostat_type io_type); 2806 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2807 unsigned int length); 2808 int f2fs_release_page(struct page *page, gfp_t wait); 2809 #ifdef CONFIG_MIGRATION 2810 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2811 struct page *page, enum migrate_mode mode); 2812 #endif 2813 2814 /* 2815 * gc.c 2816 */ 2817 int start_gc_thread(struct f2fs_sb_info *sbi); 2818 void stop_gc_thread(struct f2fs_sb_info *sbi); 2819 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2820 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2821 unsigned int segno); 2822 void build_gc_manager(struct f2fs_sb_info *sbi); 2823 2824 /* 2825 * recovery.c 2826 */ 2827 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2828 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2829 2830 /* 2831 * debug.c 2832 */ 2833 #ifdef CONFIG_F2FS_STAT_FS 2834 struct f2fs_stat_info { 2835 struct list_head stat_list; 2836 struct f2fs_sb_info *sbi; 2837 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2838 int main_area_segs, main_area_sections, main_area_zones; 2839 unsigned long long hit_largest, hit_cached, hit_rbtree; 2840 unsigned long long hit_total, total_ext; 2841 int ext_tree, zombie_tree, ext_node; 2842 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2843 int ndirty_data, ndirty_qdata; 2844 int inmem_pages; 2845 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2846 int nats, dirty_nats, sits, dirty_sits; 2847 int free_nids, avail_nids, alloc_nids; 2848 int total_count, utilization; 2849 int bg_gc, nr_wb_cp_data, nr_wb_data; 2850 int nr_flushing, nr_flushed, flush_list_empty; 2851 int nr_discarding, nr_discarded; 2852 int nr_discard_cmd; 2853 unsigned int undiscard_blks; 2854 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2855 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2856 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2857 unsigned int bimodal, avg_vblocks; 2858 int util_free, util_valid, util_invalid; 2859 int rsvd_segs, overp_segs; 2860 int dirty_count, node_pages, meta_pages; 2861 int prefree_count, call_count, cp_count, bg_cp_count; 2862 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2863 int bg_node_segs, bg_data_segs; 2864 int tot_blks, data_blks, node_blks; 2865 int bg_data_blks, bg_node_blks; 2866 int curseg[NR_CURSEG_TYPE]; 2867 int cursec[NR_CURSEG_TYPE]; 2868 int curzone[NR_CURSEG_TYPE]; 2869 2870 unsigned int segment_count[2]; 2871 unsigned int block_count[2]; 2872 unsigned int inplace_count; 2873 unsigned long long base_mem, cache_mem, page_mem; 2874 }; 2875 2876 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2877 { 2878 return (struct f2fs_stat_info *)sbi->stat_info; 2879 } 2880 2881 #define stat_inc_cp_count(si) ((si)->cp_count++) 2882 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2883 #define stat_inc_call_count(si) ((si)->call_count++) 2884 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2885 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2886 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2887 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2888 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2889 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2890 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2891 #define stat_inc_inline_xattr(inode) \ 2892 do { \ 2893 if (f2fs_has_inline_xattr(inode)) \ 2894 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2895 } while (0) 2896 #define stat_dec_inline_xattr(inode) \ 2897 do { \ 2898 if (f2fs_has_inline_xattr(inode)) \ 2899 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2900 } while (0) 2901 #define stat_inc_inline_inode(inode) \ 2902 do { \ 2903 if (f2fs_has_inline_data(inode)) \ 2904 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2905 } while (0) 2906 #define stat_dec_inline_inode(inode) \ 2907 do { \ 2908 if (f2fs_has_inline_data(inode)) \ 2909 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2910 } while (0) 2911 #define stat_inc_inline_dir(inode) \ 2912 do { \ 2913 if (f2fs_has_inline_dentry(inode)) \ 2914 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2915 } while (0) 2916 #define stat_dec_inline_dir(inode) \ 2917 do { \ 2918 if (f2fs_has_inline_dentry(inode)) \ 2919 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2920 } while (0) 2921 #define stat_inc_seg_type(sbi, curseg) \ 2922 ((sbi)->segment_count[(curseg)->alloc_type]++) 2923 #define stat_inc_block_count(sbi, curseg) \ 2924 ((sbi)->block_count[(curseg)->alloc_type]++) 2925 #define stat_inc_inplace_blocks(sbi) \ 2926 (atomic_inc(&(sbi)->inplace_count)) 2927 #define stat_inc_atomic_write(inode) \ 2928 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2929 #define stat_dec_atomic_write(inode) \ 2930 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2931 #define stat_update_max_atomic_write(inode) \ 2932 do { \ 2933 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2934 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2935 if (cur > max) \ 2936 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2937 } while (0) 2938 #define stat_inc_volatile_write(inode) \ 2939 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2940 #define stat_dec_volatile_write(inode) \ 2941 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2942 #define stat_update_max_volatile_write(inode) \ 2943 do { \ 2944 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2945 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2946 if (cur > max) \ 2947 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2948 } while (0) 2949 #define stat_inc_seg_count(sbi, type, gc_type) \ 2950 do { \ 2951 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2952 si->tot_segs++; \ 2953 if ((type) == SUM_TYPE_DATA) { \ 2954 si->data_segs++; \ 2955 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2956 } else { \ 2957 si->node_segs++; \ 2958 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2959 } \ 2960 } while (0) 2961 2962 #define stat_inc_tot_blk_count(si, blks) \ 2963 ((si)->tot_blks += (blks)) 2964 2965 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2966 do { \ 2967 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2968 stat_inc_tot_blk_count(si, blks); \ 2969 si->data_blks += (blks); \ 2970 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2971 } while (0) 2972 2973 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2974 do { \ 2975 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2976 stat_inc_tot_blk_count(si, blks); \ 2977 si->node_blks += (blks); \ 2978 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2979 } while (0) 2980 2981 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2982 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2983 int __init f2fs_create_root_stats(void); 2984 void f2fs_destroy_root_stats(void); 2985 #else 2986 #define stat_inc_cp_count(si) do { } while (0) 2987 #define stat_inc_bg_cp_count(si) do { } while (0) 2988 #define stat_inc_call_count(si) do { } while (0) 2989 #define stat_inc_bggc_count(si) do { } while (0) 2990 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2991 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2992 #define stat_inc_total_hit(sb) do { } while (0) 2993 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2994 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2995 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2996 #define stat_inc_inline_xattr(inode) do { } while (0) 2997 #define stat_dec_inline_xattr(inode) do { } while (0) 2998 #define stat_inc_inline_inode(inode) do { } while (0) 2999 #define stat_dec_inline_inode(inode) do { } while (0) 3000 #define stat_inc_inline_dir(inode) do { } while (0) 3001 #define stat_dec_inline_dir(inode) do { } while (0) 3002 #define stat_inc_atomic_write(inode) do { } while (0) 3003 #define stat_dec_atomic_write(inode) do { } while (0) 3004 #define stat_update_max_atomic_write(inode) do { } while (0) 3005 #define stat_inc_volatile_write(inode) do { } while (0) 3006 #define stat_dec_volatile_write(inode) do { } while (0) 3007 #define stat_update_max_volatile_write(inode) do { } while (0) 3008 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3009 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3010 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3011 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3012 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3013 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3014 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3015 3016 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3017 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3018 static inline int __init f2fs_create_root_stats(void) { return 0; } 3019 static inline void f2fs_destroy_root_stats(void) { } 3020 #endif 3021 3022 extern const struct file_operations f2fs_dir_operations; 3023 extern const struct file_operations f2fs_file_operations; 3024 extern const struct inode_operations f2fs_file_inode_operations; 3025 extern const struct address_space_operations f2fs_dblock_aops; 3026 extern const struct address_space_operations f2fs_node_aops; 3027 extern const struct address_space_operations f2fs_meta_aops; 3028 extern const struct inode_operations f2fs_dir_inode_operations; 3029 extern const struct inode_operations f2fs_symlink_inode_operations; 3030 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3031 extern const struct inode_operations f2fs_special_inode_operations; 3032 extern struct kmem_cache *inode_entry_slab; 3033 3034 /* 3035 * inline.c 3036 */ 3037 bool f2fs_may_inline_data(struct inode *inode); 3038 bool f2fs_may_inline_dentry(struct inode *inode); 3039 void read_inline_data(struct page *page, struct page *ipage); 3040 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3041 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3042 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3043 int f2fs_convert_inline_inode(struct inode *inode); 3044 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3045 bool recover_inline_data(struct inode *inode, struct page *npage); 3046 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3047 struct fscrypt_name *fname, struct page **res_page); 3048 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3049 struct page *ipage); 3050 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3051 const struct qstr *orig_name, 3052 struct inode *inode, nid_t ino, umode_t mode); 3053 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3054 struct inode *dir, struct inode *inode); 3055 bool f2fs_empty_inline_dir(struct inode *dir); 3056 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3057 struct fscrypt_str *fstr); 3058 int f2fs_inline_data_fiemap(struct inode *inode, 3059 struct fiemap_extent_info *fieinfo, 3060 __u64 start, __u64 len); 3061 3062 /* 3063 * shrinker.c 3064 */ 3065 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3066 struct shrink_control *sc); 3067 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3068 struct shrink_control *sc); 3069 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3070 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3071 3072 /* 3073 * extent_cache.c 3074 */ 3075 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3076 struct rb_entry *cached_re, unsigned int ofs); 3077 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3078 struct rb_root *root, struct rb_node **parent, 3079 unsigned int ofs); 3080 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3081 struct rb_entry *cached_re, unsigned int ofs, 3082 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3083 struct rb_node ***insert_p, struct rb_node **insert_parent, 3084 bool force); 3085 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3086 struct rb_root *root); 3087 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3088 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3089 void f2fs_drop_extent_tree(struct inode *inode); 3090 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3091 void f2fs_destroy_extent_tree(struct inode *inode); 3092 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3093 struct extent_info *ei); 3094 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3095 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3096 pgoff_t fofs, block_t blkaddr, unsigned int len); 3097 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3098 int __init create_extent_cache(void); 3099 void destroy_extent_cache(void); 3100 3101 /* 3102 * sysfs.c 3103 */ 3104 int __init f2fs_init_sysfs(void); 3105 void f2fs_exit_sysfs(void); 3106 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3107 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3108 3109 /* 3110 * crypto support 3111 */ 3112 static inline bool f2fs_encrypted_inode(struct inode *inode) 3113 { 3114 return file_is_encrypt(inode); 3115 } 3116 3117 static inline bool f2fs_encrypted_file(struct inode *inode) 3118 { 3119 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3120 } 3121 3122 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3123 { 3124 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3125 file_set_encrypt(inode); 3126 inode->i_flags |= S_ENCRYPTED; 3127 #endif 3128 } 3129 3130 static inline bool f2fs_bio_encrypted(struct bio *bio) 3131 { 3132 return bio->bi_private != NULL; 3133 } 3134 3135 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3136 { 3137 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3138 } 3139 3140 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3141 { 3142 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3143 } 3144 3145 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3146 { 3147 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3148 } 3149 3150 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3151 { 3152 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3153 } 3154 3155 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3156 { 3157 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3158 } 3159 3160 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3161 { 3162 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3163 } 3164 3165 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3166 { 3167 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3168 } 3169 3170 #ifdef CONFIG_BLK_DEV_ZONED 3171 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3172 struct block_device *bdev, block_t blkaddr) 3173 { 3174 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3175 int i; 3176 3177 for (i = 0; i < sbi->s_ndevs; i++) 3178 if (FDEV(i).bdev == bdev) 3179 return FDEV(i).blkz_type[zno]; 3180 return -EINVAL; 3181 } 3182 #endif 3183 3184 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3185 { 3186 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3187 3188 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3189 } 3190 3191 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3192 { 3193 clear_opt(sbi, ADAPTIVE); 3194 clear_opt(sbi, LFS); 3195 3196 switch (mt) { 3197 case F2FS_MOUNT_ADAPTIVE: 3198 set_opt(sbi, ADAPTIVE); 3199 break; 3200 case F2FS_MOUNT_LFS: 3201 set_opt(sbi, LFS); 3202 break; 3203 } 3204 } 3205 3206 static inline bool f2fs_may_encrypt(struct inode *inode) 3207 { 3208 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3209 umode_t mode = inode->i_mode; 3210 3211 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3212 #else 3213 return 0; 3214 #endif 3215 } 3216 3217 #endif 3218