xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 7a2b15cfa8dbbd54beb4e2ce7b2f42eb0ad00425)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int discard_unit;		/*
166 					 * discard command's offset/size should
167 					 * be aligned to this unit: block,
168 					 * segment or section
169 					 */
170 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
171 	block_t unusable_cap_perc;	/* percentage for cap */
172 	block_t unusable_cap;		/* Amount of space allowed to be
173 					 * unusable when disabling checkpoint
174 					 */
175 
176 	/* For compression */
177 	unsigned char compress_algorithm;	/* algorithm type */
178 	unsigned char compress_log_size;	/* cluster log size */
179 	unsigned char compress_level;		/* compress level */
180 	bool compress_chksum;			/* compressed data chksum */
181 	unsigned char compress_ext_cnt;		/* extension count */
182 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
183 	int compress_mode;			/* compression mode */
184 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
185 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 };
187 
188 #define F2FS_FEATURE_ENCRYPT		0x0001
189 #define F2FS_FEATURE_BLKZONED		0x0002
190 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
191 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
192 #define F2FS_FEATURE_PRJQUOTA		0x0010
193 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
195 #define F2FS_FEATURE_QUOTA_INO		0x0080
196 #define F2FS_FEATURE_INODE_CRTIME	0x0100
197 #define F2FS_FEATURE_LOST_FOUND		0x0200
198 #define F2FS_FEATURE_VERITY		0x0400
199 #define F2FS_FEATURE_SB_CHKSUM		0x0800
200 #define F2FS_FEATURE_CASEFOLD		0x1000
201 #define F2FS_FEATURE_COMPRESSION	0x2000
202 #define F2FS_FEATURE_RO			0x4000
203 
204 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
205 	((raw_super->feature & cpu_to_le32(mask)) != 0)
206 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	DATA_GENERIC_ENHANCE_UPDATE,	/*
268 					 * strong check on range and segment
269 					 * bitmap for update case
270 					 */
271 	META_GENERIC,
272 };
273 
274 /* for the list of ino */
275 enum {
276 	ORPHAN_INO,		/* for orphan ino list */
277 	APPEND_INO,		/* for append ino list */
278 	UPDATE_INO,		/* for update ino list */
279 	TRANS_DIR_INO,		/* for transactions dir ino list */
280 	FLUSH_INO,		/* for multiple device flushing */
281 	MAX_INO_ENTRY,		/* max. list */
282 };
283 
284 struct ino_entry {
285 	struct list_head list;		/* list head */
286 	nid_t ino;			/* inode number */
287 	unsigned int dirty_device;	/* dirty device bitmap */
288 };
289 
290 /* for the list of inodes to be GCed */
291 struct inode_entry {
292 	struct list_head list;	/* list head */
293 	struct inode *inode;	/* vfs inode pointer */
294 };
295 
296 struct fsync_node_entry {
297 	struct list_head list;	/* list head */
298 	struct page *page;	/* warm node page pointer */
299 	unsigned int seq_id;	/* sequence id */
300 };
301 
302 struct ckpt_req {
303 	struct completion wait;		/* completion for checkpoint done */
304 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
305 	int ret;			/* return code of checkpoint */
306 	ktime_t queue_time;		/* request queued time */
307 };
308 
309 struct ckpt_req_control {
310 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
311 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
312 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
313 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
314 	atomic_t total_ckpt;		/* # of total ckpts */
315 	atomic_t queued_ckpt;		/* # of queued ckpts */
316 	struct llist_head issue_list;	/* list for command issue */
317 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
318 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
319 	unsigned int peak_time;		/* peak wait time in msec until now */
320 };
321 
322 /* for the bitmap indicate blocks to be discarded */
323 struct discard_entry {
324 	struct list_head list;	/* list head */
325 	block_t start_blkaddr;	/* start blockaddr of current segment */
326 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
327 };
328 
329 /* minimum discard granularity, unit: block count */
330 #define MIN_DISCARD_GRANULARITY		1
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 /* default maximum discard granularity of ordered discard, unit: block count */
334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
335 
336 /* max discard pend list number */
337 #define MAX_PLIST_NUM		512
338 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
339 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
340 
341 enum {
342 	D_PREP,			/* initial */
343 	D_PARTIAL,		/* partially submitted */
344 	D_SUBMIT,		/* all submitted */
345 	D_DONE,			/* finished */
346 };
347 
348 struct discard_info {
349 	block_t lstart;			/* logical start address */
350 	block_t len;			/* length */
351 	block_t start;			/* actual start address in dev */
352 };
353 
354 struct discard_cmd {
355 	struct rb_node rb_node;		/* rb node located in rb-tree */
356 	union {
357 		struct {
358 			block_t lstart;	/* logical start address */
359 			block_t len;	/* length */
360 			block_t start;	/* actual start address in dev */
361 		};
362 		struct discard_info di;	/* discard info */
363 
364 	};
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 struct discard_policy {
385 	int type;			/* type of discard */
386 	unsigned int min_interval;	/* used for candidates exist */
387 	unsigned int mid_interval;	/* used for device busy */
388 	unsigned int max_interval;	/* used for candidates not exist */
389 	unsigned int max_requests;	/* # of discards issued per round */
390 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
391 	bool io_aware;			/* issue discard in idle time */
392 	bool sync;			/* submit discard with REQ_SYNC flag */
393 	bool ordered;			/* issue discard by lba order */
394 	bool timeout;			/* discard timeout for put_super */
395 	unsigned int granularity;	/* discard granularity */
396 };
397 
398 struct discard_cmd_control {
399 	struct task_struct *f2fs_issue_discard;	/* discard thread */
400 	struct list_head entry_list;		/* 4KB discard entry list */
401 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
402 	struct list_head wait_list;		/* store on-flushing entries */
403 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
404 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
405 	struct mutex cmd_lock;
406 	unsigned int nr_discards;		/* # of discards in the list */
407 	unsigned int max_discards;		/* max. discards to be issued */
408 	unsigned int max_discard_request;	/* max. discard request per round */
409 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
410 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
411 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
412 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
413 	unsigned int discard_granularity;	/* discard granularity */
414 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
415 	unsigned int undiscard_blks;		/* # of undiscard blocks */
416 	unsigned int next_pos;			/* next discard position */
417 	atomic_t issued_discard;		/* # of issued discard */
418 	atomic_t queued_discard;		/* # of queued discard */
419 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
420 	struct rb_root_cached root;		/* root of discard rb-tree */
421 	bool rbtree_check;			/* config for consistence check */
422 	bool discard_wake;			/* to wake up discard thread */
423 };
424 
425 /* for the list of fsync inodes, used only during recovery */
426 struct fsync_inode_entry {
427 	struct list_head list;	/* list head */
428 	struct inode *inode;	/* vfs inode pointer */
429 	block_t blkaddr;	/* block address locating the last fsync */
430 	block_t last_dentry;	/* block address locating the last dentry */
431 };
432 
433 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
434 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
435 
436 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
437 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
438 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
439 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
440 
441 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
442 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
443 
444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = nats_in_cursum(journal);
447 
448 	journal->n_nats = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = sits_in_cursum(journal);
455 
456 	journal->n_sits = cpu_to_le16(before + i);
457 	return before;
458 }
459 
460 static inline bool __has_cursum_space(struct f2fs_journal *journal,
461 							int size, int type)
462 {
463 	if (type == NAT_JOURNAL)
464 		return size <= MAX_NAT_JENTRIES(journal);
465 	return size <= MAX_SIT_JENTRIES(journal);
466 }
467 
468 /* for inline stuff */
469 #define DEF_INLINE_RESERVED_SIZE	1
470 static inline int get_extra_isize(struct inode *inode);
471 static inline int get_inline_xattr_addrs(struct inode *inode);
472 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
473 				(CUR_ADDRS_PER_INODE(inode) -		\
474 				get_inline_xattr_addrs(inode) -	\
475 				DEF_INLINE_RESERVED_SIZE))
476 
477 /* for inline dir */
478 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				BITS_PER_BYTE + 1))
481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
482 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
483 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
484 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
485 				NR_INLINE_DENTRY(inode) + \
486 				INLINE_DENTRY_BITMAP_SIZE(inode)))
487 
488 /*
489  * For INODE and NODE manager
490  */
491 /* for directory operations */
492 
493 struct f2fs_filename {
494 	/*
495 	 * The filename the user specified.  This is NULL for some
496 	 * filesystem-internal operations, e.g. converting an inline directory
497 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
498 	 */
499 	const struct qstr *usr_fname;
500 
501 	/*
502 	 * The on-disk filename.  For encrypted directories, this is encrypted.
503 	 * This may be NULL for lookups in an encrypted dir without the key.
504 	 */
505 	struct fscrypt_str disk_name;
506 
507 	/* The dirhash of this filename */
508 	f2fs_hash_t hash;
509 
510 #ifdef CONFIG_FS_ENCRYPTION
511 	/*
512 	 * For lookups in encrypted directories: either the buffer backing
513 	 * disk_name, or a buffer that holds the decoded no-key name.
514 	 */
515 	struct fscrypt_str crypto_buf;
516 #endif
517 #if IS_ENABLED(CONFIG_UNICODE)
518 	/*
519 	 * For casefolded directories: the casefolded name, but it's left NULL
520 	 * if the original name is not valid Unicode, if the original name is
521 	 * "." or "..", if the directory is both casefolded and encrypted and
522 	 * its encryption key is unavailable, or if the filesystem is doing an
523 	 * internal operation where usr_fname is also NULL.  In all these cases
524 	 * we fall back to treating the name as an opaque byte sequence.
525 	 */
526 	struct fscrypt_str cf_name;
527 #endif
528 };
529 
530 struct f2fs_dentry_ptr {
531 	struct inode *inode;
532 	void *bitmap;
533 	struct f2fs_dir_entry *dentry;
534 	__u8 (*filename)[F2FS_SLOT_LEN];
535 	int max;
536 	int nr_bitmap;
537 };
538 
539 static inline void make_dentry_ptr_block(struct inode *inode,
540 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
541 {
542 	d->inode = inode;
543 	d->max = NR_DENTRY_IN_BLOCK;
544 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
545 	d->bitmap = t->dentry_bitmap;
546 	d->dentry = t->dentry;
547 	d->filename = t->filename;
548 }
549 
550 static inline void make_dentry_ptr_inline(struct inode *inode,
551 					struct f2fs_dentry_ptr *d, void *t)
552 {
553 	int entry_cnt = NR_INLINE_DENTRY(inode);
554 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
555 	int reserved_size = INLINE_RESERVED_SIZE(inode);
556 
557 	d->inode = inode;
558 	d->max = entry_cnt;
559 	d->nr_bitmap = bitmap_size;
560 	d->bitmap = t;
561 	d->dentry = t + bitmap_size + reserved_size;
562 	d->filename = t + bitmap_size + reserved_size +
563 					SIZE_OF_DIR_ENTRY * entry_cnt;
564 }
565 
566 /*
567  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
568  * as its node offset to distinguish from index node blocks.
569  * But some bits are used to mark the node block.
570  */
571 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
572 				>> OFFSET_BIT_SHIFT)
573 enum {
574 	ALLOC_NODE,			/* allocate a new node page if needed */
575 	LOOKUP_NODE,			/* look up a node without readahead */
576 	LOOKUP_NODE_RA,			/*
577 					 * look up a node with readahead called
578 					 * by get_data_block.
579 					 */
580 };
581 
582 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
583 
584 /* congestion wait timeout value, default: 20ms */
585 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
586 
587 /* maximum retry quota flush count */
588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
589 
590 /* maximum retry of EIO'ed page */
591 #define MAX_RETRY_PAGE_EIO			100
592 
593 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
594 
595 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
596 
597 /* dirty segments threshold for triggering CP */
598 #define DEFAULT_DIRTY_THRESHOLD		4
599 
600 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
601 #define RECOVERY_MIN_RA_BLOCKS		1
602 
603 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
604 
605 /* for in-memory extent cache entry */
606 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
607 
608 /* number of extent info in extent cache we try to shrink */
609 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
610 
611 /* number of age extent info in extent cache we try to shrink */
612 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
613 #define LAST_AGE_WEIGHT			30
614 #define SAME_AGE_REGION			1024
615 
616 /*
617  * Define data block with age less than 1GB as hot data
618  * define data block with age less than 10GB but more than 1GB as warm data
619  */
620 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
621 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
622 
623 /* extent cache type */
624 enum extent_type {
625 	EX_READ,
626 	EX_BLOCK_AGE,
627 	NR_EXTENT_CACHES,
628 };
629 
630 struct rb_entry {
631 	struct rb_node rb_node;		/* rb node located in rb-tree */
632 	union {
633 		struct {
634 			unsigned int ofs;	/* start offset of the entry */
635 			unsigned int len;	/* length of the entry */
636 		};
637 		unsigned long long key;		/* 64-bits key */
638 	} __packed;
639 };
640 
641 struct extent_info {
642 	unsigned int fofs;		/* start offset in a file */
643 	unsigned int len;		/* length of the extent */
644 	union {
645 		/* read extent_cache */
646 		struct {
647 			/* start block address of the extent */
648 			block_t blk;
649 #ifdef CONFIG_F2FS_FS_COMPRESSION
650 			/* physical extent length of compressed blocks */
651 			unsigned int c_len;
652 #endif
653 		};
654 		/* block age extent_cache */
655 		struct {
656 			/* block age of the extent */
657 			unsigned long long age;
658 			/* last total blocks allocated */
659 			unsigned long long last_blocks;
660 		};
661 	};
662 };
663 
664 struct extent_node {
665 	struct rb_node rb_node;		/* rb node located in rb-tree */
666 	struct extent_info ei;		/* extent info */
667 	struct list_head list;		/* node in global extent list of sbi */
668 	struct extent_tree *et;		/* extent tree pointer */
669 };
670 
671 struct extent_tree {
672 	nid_t ino;			/* inode number */
673 	enum extent_type type;		/* keep the extent tree type */
674 	struct rb_root_cached root;	/* root of extent info rb-tree */
675 	struct extent_node *cached_en;	/* recently accessed extent node */
676 	struct list_head list;		/* to be used by sbi->zombie_list */
677 	rwlock_t lock;			/* protect extent info rb-tree */
678 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
679 	bool largest_updated;		/* largest extent updated */
680 	struct extent_info largest;	/* largest cached extent for EX_READ */
681 };
682 
683 struct extent_tree_info {
684 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
685 	struct mutex extent_tree_lock;	/* locking extent radix tree */
686 	struct list_head extent_list;		/* lru list for shrinker */
687 	spinlock_t extent_lock;			/* locking extent lru list */
688 	atomic_t total_ext_tree;		/* extent tree count */
689 	struct list_head zombie_list;		/* extent zombie tree list */
690 	atomic_t total_zombie_tree;		/* extent zombie tree count */
691 	atomic_t total_ext_node;		/* extent info count */
692 };
693 
694 /*
695  * State of block returned by f2fs_map_blocks.
696  */
697 #define F2FS_MAP_NEW		(1U << 0)
698 #define F2FS_MAP_MAPPED		(1U << 1)
699 #define F2FS_MAP_DELALLOC	(1U << 2)
700 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
701 				F2FS_MAP_DELALLOC)
702 
703 struct f2fs_map_blocks {
704 	struct block_device *m_bdev;	/* for multi-device dio */
705 	block_t m_pblk;
706 	block_t m_lblk;
707 	unsigned int m_len;
708 	unsigned int m_flags;
709 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
710 	pgoff_t *m_next_extent;		/* point to next possible extent */
711 	int m_seg_type;
712 	bool m_may_create;		/* indicate it is from write path */
713 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
714 };
715 
716 /* for flag in get_data_block */
717 enum {
718 	F2FS_GET_BLOCK_DEFAULT,
719 	F2FS_GET_BLOCK_FIEMAP,
720 	F2FS_GET_BLOCK_BMAP,
721 	F2FS_GET_BLOCK_DIO,
722 	F2FS_GET_BLOCK_PRE_DIO,
723 	F2FS_GET_BLOCK_PRE_AIO,
724 	F2FS_GET_BLOCK_PRECACHE,
725 };
726 
727 /*
728  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
729  */
730 #define FADVISE_COLD_BIT	0x01
731 #define FADVISE_LOST_PINO_BIT	0x02
732 #define FADVISE_ENCRYPT_BIT	0x04
733 #define FADVISE_ENC_NAME_BIT	0x08
734 #define FADVISE_KEEP_SIZE_BIT	0x10
735 #define FADVISE_HOT_BIT		0x20
736 #define FADVISE_VERITY_BIT	0x40
737 #define FADVISE_TRUNC_BIT	0x80
738 
739 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
740 
741 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
742 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
743 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
744 
745 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
746 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
747 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
748 
749 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
750 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
751 
752 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
753 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
754 
755 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
756 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
757 
758 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
759 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
760 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
761 
762 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
763 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
764 
765 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
766 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
767 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
768 
769 #define DEF_DIR_LEVEL		0
770 
771 enum {
772 	GC_FAILURE_PIN,
773 	MAX_GC_FAILURE
774 };
775 
776 /* used for f2fs_inode_info->flags */
777 enum {
778 	FI_NEW_INODE,		/* indicate newly allocated inode */
779 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
780 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
781 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
782 	FI_INC_LINK,		/* need to increment i_nlink */
783 	FI_ACL_MODE,		/* indicate acl mode */
784 	FI_NO_ALLOC,		/* should not allocate any blocks */
785 	FI_FREE_NID,		/* free allocated nide */
786 	FI_NO_EXTENT,		/* not to use the extent cache */
787 	FI_INLINE_XATTR,	/* used for inline xattr */
788 	FI_INLINE_DATA,		/* used for inline data*/
789 	FI_INLINE_DENTRY,	/* used for inline dentry */
790 	FI_APPEND_WRITE,	/* inode has appended data */
791 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
792 	FI_NEED_IPU,		/* used for ipu per file */
793 	FI_ATOMIC_FILE,		/* indicate atomic file */
794 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
795 	FI_DROP_CACHE,		/* drop dirty page cache */
796 	FI_DATA_EXIST,		/* indicate data exists */
797 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
798 	FI_SKIP_WRITES,		/* should skip data page writeback */
799 	FI_OPU_WRITE,		/* used for opu per file */
800 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
801 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
802 	FI_HOT_DATA,		/* indicate file is hot */
803 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
804 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
805 	FI_PIN_FILE,		/* indicate file should not be gced */
806 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
807 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
808 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
809 	FI_MMAP_FILE,		/* indicate file was mmapped */
810 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
811 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
812 	FI_ALIGNED_WRITE,	/* enable aligned write */
813 	FI_COW_FILE,		/* indicate COW file */
814 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
815 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
816 	FI_MAX,			/* max flag, never be used */
817 };
818 
819 struct f2fs_inode_info {
820 	struct inode vfs_inode;		/* serve a vfs inode */
821 	unsigned long i_flags;		/* keep an inode flags for ioctl */
822 	unsigned char i_advise;		/* use to give file attribute hints */
823 	unsigned char i_dir_level;	/* use for dentry level for large dir */
824 	unsigned int i_current_depth;	/* only for directory depth */
825 	/* for gc failure statistic */
826 	unsigned int i_gc_failures[MAX_GC_FAILURE];
827 	unsigned int i_pino;		/* parent inode number */
828 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
829 
830 	/* Use below internally in f2fs*/
831 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
832 	struct f2fs_rwsem i_sem;	/* protect fi info */
833 	atomic_t dirty_pages;		/* # of dirty pages */
834 	f2fs_hash_t chash;		/* hash value of given file name */
835 	unsigned int clevel;		/* maximum level of given file name */
836 	struct task_struct *task;	/* lookup and create consistency */
837 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
838 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
839 	nid_t i_xattr_nid;		/* node id that contains xattrs */
840 	loff_t	last_disk_size;		/* lastly written file size */
841 	spinlock_t i_size_lock;		/* protect last_disk_size */
842 
843 #ifdef CONFIG_QUOTA
844 	struct dquot *i_dquot[MAXQUOTAS];
845 
846 	/* quota space reservation, managed internally by quota code */
847 	qsize_t i_reserved_quota;
848 #endif
849 	struct list_head dirty_list;	/* dirty list for dirs and files */
850 	struct list_head gdirty_list;	/* linked in global dirty list */
851 	struct task_struct *atomic_write_task;	/* store atomic write task */
852 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
853 					/* cached extent_tree entry */
854 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
855 
856 	/* avoid racing between foreground op and gc */
857 	struct f2fs_rwsem i_gc_rwsem[2];
858 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
859 
860 	int i_extra_isize;		/* size of extra space located in i_addr */
861 	kprojid_t i_projid;		/* id for project quota */
862 	int i_inline_xattr_size;	/* inline xattr size */
863 	struct timespec64 i_crtime;	/* inode creation time */
864 	struct timespec64 i_disk_time[4];/* inode disk times */
865 
866 	/* for file compress */
867 	atomic_t i_compr_blocks;		/* # of compressed blocks */
868 	unsigned char i_compress_algorithm;	/* algorithm type */
869 	unsigned char i_log_cluster_size;	/* log of cluster size */
870 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
871 	unsigned short i_compress_flag;		/* compress flag */
872 	unsigned int i_cluster_size;		/* cluster size */
873 
874 	unsigned int atomic_write_cnt;
875 	loff_t original_i_size;		/* original i_size before atomic write */
876 };
877 
878 static inline void get_read_extent_info(struct extent_info *ext,
879 					struct f2fs_extent *i_ext)
880 {
881 	ext->fofs = le32_to_cpu(i_ext->fofs);
882 	ext->blk = le32_to_cpu(i_ext->blk);
883 	ext->len = le32_to_cpu(i_ext->len);
884 }
885 
886 static inline void set_raw_read_extent(struct extent_info *ext,
887 					struct f2fs_extent *i_ext)
888 {
889 	i_ext->fofs = cpu_to_le32(ext->fofs);
890 	i_ext->blk = cpu_to_le32(ext->blk);
891 	i_ext->len = cpu_to_le32(ext->len);
892 }
893 
894 static inline bool __is_discard_mergeable(struct discard_info *back,
895 			struct discard_info *front, unsigned int max_len)
896 {
897 	return (back->lstart + back->len == front->lstart) &&
898 		(back->len + front->len <= max_len);
899 }
900 
901 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
902 			struct discard_info *back, unsigned int max_len)
903 {
904 	return __is_discard_mergeable(back, cur, max_len);
905 }
906 
907 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
908 			struct discard_info *front, unsigned int max_len)
909 {
910 	return __is_discard_mergeable(cur, front, max_len);
911 }
912 
913 /*
914  * For free nid management
915  */
916 enum nid_state {
917 	FREE_NID,		/* newly added to free nid list */
918 	PREALLOC_NID,		/* it is preallocated */
919 	MAX_NID_STATE,
920 };
921 
922 enum nat_state {
923 	TOTAL_NAT,
924 	DIRTY_NAT,
925 	RECLAIMABLE_NAT,
926 	MAX_NAT_STATE,
927 };
928 
929 struct f2fs_nm_info {
930 	block_t nat_blkaddr;		/* base disk address of NAT */
931 	nid_t max_nid;			/* maximum possible node ids */
932 	nid_t available_nids;		/* # of available node ids */
933 	nid_t next_scan_nid;		/* the next nid to be scanned */
934 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
935 	unsigned int ram_thresh;	/* control the memory footprint */
936 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
937 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
938 
939 	/* NAT cache management */
940 	struct radix_tree_root nat_root;/* root of the nat entry cache */
941 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
942 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
943 	struct list_head nat_entries;	/* cached nat entry list (clean) */
944 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
945 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
946 	unsigned int nat_blocks;	/* # of nat blocks */
947 
948 	/* free node ids management */
949 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
950 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
951 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
952 	spinlock_t nid_list_lock;	/* protect nid lists ops */
953 	struct mutex build_lock;	/* lock for build free nids */
954 	unsigned char **free_nid_bitmap;
955 	unsigned char *nat_block_bitmap;
956 	unsigned short *free_nid_count;	/* free nid count of NAT block */
957 
958 	/* for checkpoint */
959 	char *nat_bitmap;		/* NAT bitmap pointer */
960 
961 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
962 	unsigned char *nat_bits;	/* NAT bits blocks */
963 	unsigned char *full_nat_bits;	/* full NAT pages */
964 	unsigned char *empty_nat_bits;	/* empty NAT pages */
965 #ifdef CONFIG_F2FS_CHECK_FS
966 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
967 #endif
968 	int bitmap_size;		/* bitmap size */
969 };
970 
971 /*
972  * this structure is used as one of function parameters.
973  * all the information are dedicated to a given direct node block determined
974  * by the data offset in a file.
975  */
976 struct dnode_of_data {
977 	struct inode *inode;		/* vfs inode pointer */
978 	struct page *inode_page;	/* its inode page, NULL is possible */
979 	struct page *node_page;		/* cached direct node page */
980 	nid_t nid;			/* node id of the direct node block */
981 	unsigned int ofs_in_node;	/* data offset in the node page */
982 	bool inode_page_locked;		/* inode page is locked or not */
983 	bool node_changed;		/* is node block changed */
984 	char cur_level;			/* level of hole node page */
985 	char max_level;			/* level of current page located */
986 	block_t	data_blkaddr;		/* block address of the node block */
987 };
988 
989 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
990 		struct page *ipage, struct page *npage, nid_t nid)
991 {
992 	memset(dn, 0, sizeof(*dn));
993 	dn->inode = inode;
994 	dn->inode_page = ipage;
995 	dn->node_page = npage;
996 	dn->nid = nid;
997 }
998 
999 /*
1000  * For SIT manager
1001  *
1002  * By default, there are 6 active log areas across the whole main area.
1003  * When considering hot and cold data separation to reduce cleaning overhead,
1004  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1005  * respectively.
1006  * In the current design, you should not change the numbers intentionally.
1007  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1008  * logs individually according to the underlying devices. (default: 6)
1009  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1010  * data and 8 for node logs.
1011  */
1012 #define	NR_CURSEG_DATA_TYPE	(3)
1013 #define NR_CURSEG_NODE_TYPE	(3)
1014 #define NR_CURSEG_INMEM_TYPE	(2)
1015 #define NR_CURSEG_RO_TYPE	(2)
1016 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1017 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1018 
1019 enum {
1020 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1021 	CURSEG_WARM_DATA,	/* data blocks */
1022 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1023 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1024 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1025 	CURSEG_COLD_NODE,	/* indirect node blocks */
1026 	NR_PERSISTENT_LOG,	/* number of persistent log */
1027 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1028 				/* pinned file that needs consecutive block address */
1029 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1030 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1031 };
1032 
1033 struct flush_cmd {
1034 	struct completion wait;
1035 	struct llist_node llnode;
1036 	nid_t ino;
1037 	int ret;
1038 };
1039 
1040 struct flush_cmd_control {
1041 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1042 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1043 	atomic_t issued_flush;			/* # of issued flushes */
1044 	atomic_t queued_flush;			/* # of queued flushes */
1045 	struct llist_head issue_list;		/* list for command issue */
1046 	struct llist_node *dispatch_list;	/* list for command dispatch */
1047 };
1048 
1049 struct f2fs_sm_info {
1050 	struct sit_info *sit_info;		/* whole segment information */
1051 	struct free_segmap_info *free_info;	/* free segment information */
1052 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1053 	struct curseg_info *curseg_array;	/* active segment information */
1054 
1055 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1056 
1057 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1058 	block_t main_blkaddr;		/* start block address of main area */
1059 	block_t ssa_blkaddr;		/* start block address of SSA area */
1060 
1061 	unsigned int segment_count;	/* total # of segments */
1062 	unsigned int main_segments;	/* # of segments in main area */
1063 	unsigned int reserved_segments;	/* # of reserved segments */
1064 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1065 	unsigned int ovp_segments;	/* # of overprovision segments */
1066 
1067 	/* a threshold to reclaim prefree segments */
1068 	unsigned int rec_prefree_segments;
1069 
1070 	struct list_head sit_entry_set;	/* sit entry set list */
1071 
1072 	unsigned int ipu_policy;	/* in-place-update policy */
1073 	unsigned int min_ipu_util;	/* in-place-update threshold */
1074 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1075 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1076 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1077 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1078 
1079 	/* for flush command control */
1080 	struct flush_cmd_control *fcc_info;
1081 
1082 	/* for discard command control */
1083 	struct discard_cmd_control *dcc_info;
1084 };
1085 
1086 /*
1087  * For superblock
1088  */
1089 /*
1090  * COUNT_TYPE for monitoring
1091  *
1092  * f2fs monitors the number of several block types such as on-writeback,
1093  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1094  */
1095 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1096 enum count_type {
1097 	F2FS_DIRTY_DENTS,
1098 	F2FS_DIRTY_DATA,
1099 	F2FS_DIRTY_QDATA,
1100 	F2FS_DIRTY_NODES,
1101 	F2FS_DIRTY_META,
1102 	F2FS_DIRTY_IMETA,
1103 	F2FS_WB_CP_DATA,
1104 	F2FS_WB_DATA,
1105 	F2FS_RD_DATA,
1106 	F2FS_RD_NODE,
1107 	F2FS_RD_META,
1108 	F2FS_DIO_WRITE,
1109 	F2FS_DIO_READ,
1110 	NR_COUNT_TYPE,
1111 };
1112 
1113 /*
1114  * The below are the page types of bios used in submit_bio().
1115  * The available types are:
1116  * DATA			User data pages. It operates as async mode.
1117  * NODE			Node pages. It operates as async mode.
1118  * META			FS metadata pages such as SIT, NAT, CP.
1119  * NR_PAGE_TYPE		The number of page types.
1120  * META_FLUSH		Make sure the previous pages are written
1121  *			with waiting the bio's completion
1122  * ...			Only can be used with META.
1123  */
1124 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1125 enum page_type {
1126 	DATA = 0,
1127 	NODE = 1,	/* should not change this */
1128 	META,
1129 	NR_PAGE_TYPE,
1130 	META_FLUSH,
1131 	IPU,		/* the below types are used by tracepoints only. */
1132 	OPU,
1133 };
1134 
1135 enum temp_type {
1136 	HOT = 0,	/* must be zero for meta bio */
1137 	WARM,
1138 	COLD,
1139 	NR_TEMP_TYPE,
1140 };
1141 
1142 enum need_lock_type {
1143 	LOCK_REQ = 0,
1144 	LOCK_DONE,
1145 	LOCK_RETRY,
1146 };
1147 
1148 enum cp_reason_type {
1149 	CP_NO_NEEDED,
1150 	CP_NON_REGULAR,
1151 	CP_COMPRESSED,
1152 	CP_HARDLINK,
1153 	CP_SB_NEED_CP,
1154 	CP_WRONG_PINO,
1155 	CP_NO_SPC_ROLL,
1156 	CP_NODE_NEED_CP,
1157 	CP_FASTBOOT_MODE,
1158 	CP_SPEC_LOG_NUM,
1159 	CP_RECOVER_DIR,
1160 };
1161 
1162 enum iostat_type {
1163 	/* WRITE IO */
1164 	APP_DIRECT_IO,			/* app direct write IOs */
1165 	APP_BUFFERED_IO,		/* app buffered write IOs */
1166 	APP_WRITE_IO,			/* app write IOs */
1167 	APP_MAPPED_IO,			/* app mapped IOs */
1168 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1169 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1170 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1171 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1172 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1173 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1174 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1175 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1176 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1177 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1178 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1179 
1180 	/* READ IO */
1181 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1182 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1183 	APP_READ_IO,			/* app read IOs */
1184 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1185 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1186 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1187 	FS_DATA_READ_IO,		/* data read IOs */
1188 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1189 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1190 	FS_NODE_READ_IO,		/* node read IOs */
1191 	FS_META_READ_IO,		/* meta read IOs */
1192 
1193 	/* other */
1194 	FS_DISCARD_IO,			/* discard */
1195 	NR_IO_TYPE,
1196 };
1197 
1198 struct f2fs_io_info {
1199 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1200 	nid_t ino;		/* inode number */
1201 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1202 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1203 	enum req_op op;		/* contains REQ_OP_ */
1204 	blk_opf_t op_flags;	/* req_flag_bits */
1205 	block_t new_blkaddr;	/* new block address to be written */
1206 	block_t old_blkaddr;	/* old block address before Cow */
1207 	struct page *page;	/* page to be written */
1208 	struct page *encrypted_page;	/* encrypted page */
1209 	struct page *compressed_page;	/* compressed page */
1210 	struct list_head list;		/* serialize IOs */
1211 	bool submitted;		/* indicate IO submission */
1212 	int need_lock;		/* indicate we need to lock cp_rwsem */
1213 	bool in_list;		/* indicate fio is in io_list */
1214 	bool is_por;		/* indicate IO is from recovery or not */
1215 	bool retry;		/* need to reallocate block address */
1216 	int compr_blocks;	/* # of compressed block addresses */
1217 	bool encrypted;		/* indicate file is encrypted */
1218 	bool post_read;		/* require post read */
1219 	enum iostat_type io_type;	/* io type */
1220 	struct writeback_control *io_wbc; /* writeback control */
1221 	struct bio **bio;		/* bio for ipu */
1222 	sector_t *last_block;		/* last block number in bio */
1223 	unsigned char version;		/* version of the node */
1224 };
1225 
1226 struct bio_entry {
1227 	struct bio *bio;
1228 	struct list_head list;
1229 };
1230 
1231 #define is_read_io(rw) ((rw) == READ)
1232 struct f2fs_bio_info {
1233 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1234 	struct bio *bio;		/* bios to merge */
1235 	sector_t last_block_in_bio;	/* last block number */
1236 	struct f2fs_io_info fio;	/* store buffered io info. */
1237 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1238 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1239 	struct list_head io_list;	/* track fios */
1240 	struct list_head bio_list;	/* bio entry list head */
1241 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1242 };
1243 
1244 #define FDEV(i)				(sbi->devs[i])
1245 #define RDEV(i)				(raw_super->devs[i])
1246 struct f2fs_dev_info {
1247 	struct block_device *bdev;
1248 	char path[MAX_PATH_LEN];
1249 	unsigned int total_segments;
1250 	block_t start_blk;
1251 	block_t end_blk;
1252 #ifdef CONFIG_BLK_DEV_ZONED
1253 	unsigned int nr_blkz;		/* Total number of zones */
1254 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1255 #endif
1256 };
1257 
1258 enum inode_type {
1259 	DIR_INODE,			/* for dirty dir inode */
1260 	FILE_INODE,			/* for dirty regular/symlink inode */
1261 	DIRTY_META,			/* for all dirtied inode metadata */
1262 	NR_INODE_TYPE,
1263 };
1264 
1265 /* for inner inode cache management */
1266 struct inode_management {
1267 	struct radix_tree_root ino_root;	/* ino entry array */
1268 	spinlock_t ino_lock;			/* for ino entry lock */
1269 	struct list_head ino_list;		/* inode list head */
1270 	unsigned long ino_num;			/* number of entries */
1271 };
1272 
1273 /* for GC_AT */
1274 struct atgc_management {
1275 	bool atgc_enabled;			/* ATGC is enabled or not */
1276 	struct rb_root_cached root;		/* root of victim rb-tree */
1277 	struct list_head victim_list;		/* linked with all victim entries */
1278 	unsigned int victim_count;		/* victim count in rb-tree */
1279 	unsigned int candidate_ratio;		/* candidate ratio */
1280 	unsigned int max_candidate_count;	/* max candidate count */
1281 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1282 	unsigned long long age_threshold;	/* age threshold */
1283 };
1284 
1285 struct f2fs_gc_control {
1286 	unsigned int victim_segno;	/* target victim segment number */
1287 	int init_gc_type;		/* FG_GC or BG_GC */
1288 	bool no_bg_gc;			/* check the space and stop bg_gc */
1289 	bool should_migrate_blocks;	/* should migrate blocks */
1290 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1291 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1292 };
1293 
1294 /* For s_flag in struct f2fs_sb_info */
1295 enum {
1296 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1297 	SBI_IS_CLOSE,				/* specify unmounting */
1298 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1299 	SBI_POR_DOING,				/* recovery is doing or not */
1300 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1301 	SBI_NEED_CP,				/* need to checkpoint */
1302 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1303 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1304 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1305 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1306 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1307 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1308 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1309 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1310 	SBI_IS_FREEZING,			/* freezefs is in process */
1311 };
1312 
1313 enum {
1314 	CP_TIME,
1315 	REQ_TIME,
1316 	DISCARD_TIME,
1317 	GC_TIME,
1318 	DISABLE_TIME,
1319 	UMOUNT_DISCARD_TIMEOUT,
1320 	MAX_TIME,
1321 };
1322 
1323 /* Note that you need to keep synchronization with this gc_mode_names array */
1324 enum {
1325 	GC_NORMAL,
1326 	GC_IDLE_CB,
1327 	GC_IDLE_GREEDY,
1328 	GC_IDLE_AT,
1329 	GC_URGENT_HIGH,
1330 	GC_URGENT_LOW,
1331 	GC_URGENT_MID,
1332 	MAX_GC_MODE,
1333 };
1334 
1335 enum {
1336 	BGGC_MODE_ON,		/* background gc is on */
1337 	BGGC_MODE_OFF,		/* background gc is off */
1338 	BGGC_MODE_SYNC,		/*
1339 				 * background gc is on, migrating blocks
1340 				 * like foreground gc
1341 				 */
1342 };
1343 
1344 enum {
1345 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1346 	FS_MODE_LFS,			/* use lfs allocation only */
1347 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1348 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1349 };
1350 
1351 enum {
1352 	ALLOC_MODE_DEFAULT,	/* stay default */
1353 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1354 };
1355 
1356 enum fsync_mode {
1357 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1358 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1359 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1360 };
1361 
1362 enum {
1363 	COMPR_MODE_FS,		/*
1364 				 * automatically compress compression
1365 				 * enabled files
1366 				 */
1367 	COMPR_MODE_USER,	/*
1368 				 * automatical compression is disabled.
1369 				 * user can control the file compression
1370 				 * using ioctls
1371 				 */
1372 };
1373 
1374 enum {
1375 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1376 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1377 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1378 };
1379 
1380 enum {
1381 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1382 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1383 };
1384 
1385 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1386 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1387 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1388 
1389 /*
1390  * Layout of f2fs page.private:
1391  *
1392  * Layout A: lowest bit should be 1
1393  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1394  * bit 0	PAGE_PRIVATE_NOT_POINTER
1395  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1396  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1397  * bit 3	PAGE_PRIVATE_INLINE_INODE
1398  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1399  * bit 5-	f2fs private data
1400  *
1401  * Layout B: lowest bit should be 0
1402  * page.private is a wrapped pointer.
1403  */
1404 enum {
1405 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1406 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1407 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1408 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1409 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1410 	PAGE_PRIVATE_MAX
1411 };
1412 
1413 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1414 static inline bool page_private_##name(struct page *page) \
1415 { \
1416 	return PagePrivate(page) && \
1417 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1418 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1419 }
1420 
1421 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1422 static inline void set_page_private_##name(struct page *page) \
1423 { \
1424 	if (!PagePrivate(page)) { \
1425 		get_page(page); \
1426 		SetPagePrivate(page); \
1427 		set_page_private(page, 0); \
1428 	} \
1429 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1430 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1431 }
1432 
1433 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1434 static inline void clear_page_private_##name(struct page *page) \
1435 { \
1436 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1437 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1438 		set_page_private(page, 0); \
1439 		if (PagePrivate(page)) { \
1440 			ClearPagePrivate(page); \
1441 			put_page(page); \
1442 		}\
1443 	} \
1444 }
1445 
1446 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1447 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1448 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1449 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1450 
1451 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1452 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1453 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1454 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1455 
1456 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1457 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1458 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1459 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1460 
1461 static inline unsigned long get_page_private_data(struct page *page)
1462 {
1463 	unsigned long data = page_private(page);
1464 
1465 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1466 		return 0;
1467 	return data >> PAGE_PRIVATE_MAX;
1468 }
1469 
1470 static inline void set_page_private_data(struct page *page, unsigned long data)
1471 {
1472 	if (!PagePrivate(page)) {
1473 		get_page(page);
1474 		SetPagePrivate(page);
1475 		set_page_private(page, 0);
1476 	}
1477 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1478 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1479 }
1480 
1481 static inline void clear_page_private_data(struct page *page)
1482 {
1483 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1484 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1485 		set_page_private(page, 0);
1486 		if (PagePrivate(page)) {
1487 			ClearPagePrivate(page);
1488 			put_page(page);
1489 		}
1490 	}
1491 }
1492 
1493 /* For compression */
1494 enum compress_algorithm_type {
1495 	COMPRESS_LZO,
1496 	COMPRESS_LZ4,
1497 	COMPRESS_ZSTD,
1498 	COMPRESS_LZORLE,
1499 	COMPRESS_MAX,
1500 };
1501 
1502 enum compress_flag {
1503 	COMPRESS_CHKSUM,
1504 	COMPRESS_MAX_FLAG,
1505 };
1506 
1507 #define	COMPRESS_WATERMARK			20
1508 #define	COMPRESS_PERCENT			20
1509 
1510 #define COMPRESS_DATA_RESERVED_SIZE		4
1511 struct compress_data {
1512 	__le32 clen;			/* compressed data size */
1513 	__le32 chksum;			/* compressed data chksum */
1514 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1515 	u8 cdata[];			/* compressed data */
1516 };
1517 
1518 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1519 
1520 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1521 
1522 #define	COMPRESS_LEVEL_OFFSET	8
1523 
1524 /* compress context */
1525 struct compress_ctx {
1526 	struct inode *inode;		/* inode the context belong to */
1527 	pgoff_t cluster_idx;		/* cluster index number */
1528 	unsigned int cluster_size;	/* page count in cluster */
1529 	unsigned int log_cluster_size;	/* log of cluster size */
1530 	struct page **rpages;		/* pages store raw data in cluster */
1531 	unsigned int nr_rpages;		/* total page number in rpages */
1532 	struct page **cpages;		/* pages store compressed data in cluster */
1533 	unsigned int nr_cpages;		/* total page number in cpages */
1534 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1535 	void *rbuf;			/* virtual mapped address on rpages */
1536 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1537 	size_t rlen;			/* valid data length in rbuf */
1538 	size_t clen;			/* valid data length in cbuf */
1539 	void *private;			/* payload buffer for specified compression algorithm */
1540 	void *private2;			/* extra payload buffer */
1541 };
1542 
1543 /* compress context for write IO path */
1544 struct compress_io_ctx {
1545 	u32 magic;			/* magic number to indicate page is compressed */
1546 	struct inode *inode;		/* inode the context belong to */
1547 	struct page **rpages;		/* pages store raw data in cluster */
1548 	unsigned int nr_rpages;		/* total page number in rpages */
1549 	atomic_t pending_pages;		/* in-flight compressed page count */
1550 };
1551 
1552 /* Context for decompressing one cluster on the read IO path */
1553 struct decompress_io_ctx {
1554 	u32 magic;			/* magic number to indicate page is compressed */
1555 	struct inode *inode;		/* inode the context belong to */
1556 	pgoff_t cluster_idx;		/* cluster index number */
1557 	unsigned int cluster_size;	/* page count in cluster */
1558 	unsigned int log_cluster_size;	/* log of cluster size */
1559 	struct page **rpages;		/* pages store raw data in cluster */
1560 	unsigned int nr_rpages;		/* total page number in rpages */
1561 	struct page **cpages;		/* pages store compressed data in cluster */
1562 	unsigned int nr_cpages;		/* total page number in cpages */
1563 	struct page **tpages;		/* temp pages to pad holes in cluster */
1564 	void *rbuf;			/* virtual mapped address on rpages */
1565 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1566 	size_t rlen;			/* valid data length in rbuf */
1567 	size_t clen;			/* valid data length in cbuf */
1568 
1569 	/*
1570 	 * The number of compressed pages remaining to be read in this cluster.
1571 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1572 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1573 	 * is decompressed (or an error is reported).
1574 	 *
1575 	 * If an error occurs before all the pages have been submitted for I/O,
1576 	 * then this will never reach 0.  In this case the I/O submitter is
1577 	 * responsible for calling f2fs_decompress_end_io() instead.
1578 	 */
1579 	atomic_t remaining_pages;
1580 
1581 	/*
1582 	 * Number of references to this decompress_io_ctx.
1583 	 *
1584 	 * One reference is held for I/O completion.  This reference is dropped
1585 	 * after the pagecache pages are updated and unlocked -- either after
1586 	 * decompression (and verity if enabled), or after an error.
1587 	 *
1588 	 * In addition, each compressed page holds a reference while it is in a
1589 	 * bio.  These references are necessary prevent compressed pages from
1590 	 * being freed while they are still in a bio.
1591 	 */
1592 	refcount_t refcnt;
1593 
1594 	bool failed;			/* IO error occurred before decompression? */
1595 	bool need_verity;		/* need fs-verity verification after decompression? */
1596 	void *private;			/* payload buffer for specified decompression algorithm */
1597 	void *private2;			/* extra payload buffer */
1598 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1599 	struct work_struct free_work;	/* work for late free this structure itself */
1600 };
1601 
1602 #define NULL_CLUSTER			((unsigned int)(~0))
1603 #define MIN_COMPRESS_LOG_SIZE		2
1604 #define MAX_COMPRESS_LOG_SIZE		8
1605 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1606 
1607 struct f2fs_sb_info {
1608 	struct super_block *sb;			/* pointer to VFS super block */
1609 	struct proc_dir_entry *s_proc;		/* proc entry */
1610 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1611 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1612 	int valid_super_block;			/* valid super block no */
1613 	unsigned long s_flag;				/* flags for sbi */
1614 	struct mutex writepages;		/* mutex for writepages() */
1615 
1616 #ifdef CONFIG_BLK_DEV_ZONED
1617 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1618 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1619 #endif
1620 
1621 	/* for node-related operations */
1622 	struct f2fs_nm_info *nm_info;		/* node manager */
1623 	struct inode *node_inode;		/* cache node blocks */
1624 
1625 	/* for segment-related operations */
1626 	struct f2fs_sm_info *sm_info;		/* segment manager */
1627 
1628 	/* for bio operations */
1629 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1630 	/* keep migration IO order for LFS mode */
1631 	struct f2fs_rwsem io_order_lock;
1632 	mempool_t *write_io_dummy;		/* Dummy pages */
1633 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1634 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1635 
1636 	/* for checkpoint */
1637 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1638 	int cur_cp_pack;			/* remain current cp pack */
1639 	spinlock_t cp_lock;			/* for flag in ckpt */
1640 	struct inode *meta_inode;		/* cache meta blocks */
1641 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1642 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1643 	struct f2fs_rwsem node_write;		/* locking node writes */
1644 	struct f2fs_rwsem node_change;	/* locking node change */
1645 	wait_queue_head_t cp_wait;
1646 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1647 	long interval_time[MAX_TIME];		/* to store thresholds */
1648 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1649 
1650 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1651 
1652 	spinlock_t fsync_node_lock;		/* for node entry lock */
1653 	struct list_head fsync_node_list;	/* node list head */
1654 	unsigned int fsync_seg_id;		/* sequence id */
1655 	unsigned int fsync_node_num;		/* number of node entries */
1656 
1657 	/* for orphan inode, use 0'th array */
1658 	unsigned int max_orphans;		/* max orphan inodes */
1659 
1660 	/* for inode management */
1661 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1662 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1663 	struct mutex flush_lock;		/* for flush exclusion */
1664 
1665 	/* for extent tree cache */
1666 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1667 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1668 
1669 	/* The threshold used for hot and warm data seperation*/
1670 	unsigned int hot_data_age_threshold;
1671 	unsigned int warm_data_age_threshold;
1672 
1673 	/* basic filesystem units */
1674 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1675 	unsigned int log_blocksize;		/* log2 block size */
1676 	unsigned int blocksize;			/* block size */
1677 	unsigned int root_ino_num;		/* root inode number*/
1678 	unsigned int node_ino_num;		/* node inode number*/
1679 	unsigned int meta_ino_num;		/* meta inode number*/
1680 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1681 	unsigned int blocks_per_seg;		/* blocks per segment */
1682 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1683 	unsigned int segs_per_sec;		/* segments per section */
1684 	unsigned int secs_per_zone;		/* sections per zone */
1685 	unsigned int total_sections;		/* total section count */
1686 	unsigned int total_node_count;		/* total node block count */
1687 	unsigned int total_valid_node_count;	/* valid node block count */
1688 	int dir_level;				/* directory level */
1689 	bool readdir_ra;			/* readahead inode in readdir */
1690 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1691 
1692 	block_t user_block_count;		/* # of user blocks */
1693 	block_t total_valid_block_count;	/* # of valid blocks */
1694 	block_t discard_blks;			/* discard command candidats */
1695 	block_t last_valid_block_count;		/* for recovery */
1696 	block_t reserved_blocks;		/* configurable reserved blocks */
1697 	block_t current_reserved_blocks;	/* current reserved blocks */
1698 
1699 	/* Additional tracking for no checkpoint mode */
1700 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1701 
1702 	unsigned int nquota_files;		/* # of quota sysfile */
1703 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1704 
1705 	/* # of pages, see count_type */
1706 	atomic_t nr_pages[NR_COUNT_TYPE];
1707 	/* # of allocated blocks */
1708 	struct percpu_counter alloc_valid_block_count;
1709 	/* # of node block writes as roll forward recovery */
1710 	struct percpu_counter rf_node_block_count;
1711 
1712 	/* writeback control */
1713 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1714 
1715 	/* valid inode count */
1716 	struct percpu_counter total_valid_inode_count;
1717 
1718 	struct f2fs_mount_info mount_opt;	/* mount options */
1719 
1720 	/* for cleaning operations */
1721 	struct f2fs_rwsem gc_lock;		/*
1722 						 * semaphore for GC, avoid
1723 						 * race between GC and GC or CP
1724 						 */
1725 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1726 	struct atgc_management am;		/* atgc management */
1727 	unsigned int cur_victim_sec;		/* current victim section num */
1728 	unsigned int gc_mode;			/* current GC state */
1729 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1730 	spinlock_t gc_remaining_trials_lock;
1731 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1732 	unsigned int gc_remaining_trials;
1733 
1734 	/* for skip statistic */
1735 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1736 
1737 	/* threshold for gc trials on pinned files */
1738 	u64 gc_pin_file_threshold;
1739 	struct f2fs_rwsem pin_sem;
1740 
1741 	/* maximum # of trials to find a victim segment for SSR and GC */
1742 	unsigned int max_victim_search;
1743 	/* migration granularity of garbage collection, unit: segment */
1744 	unsigned int migration_granularity;
1745 
1746 	/*
1747 	 * for stat information.
1748 	 * one is for the LFS mode, and the other is for the SSR mode.
1749 	 */
1750 #ifdef CONFIG_F2FS_STAT_FS
1751 	struct f2fs_stat_info *stat_info;	/* FS status information */
1752 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1753 	unsigned int segment_count[2];		/* # of allocated segments */
1754 	unsigned int block_count[2];		/* # of allocated blocks */
1755 	atomic_t inplace_count;		/* # of inplace update */
1756 	/* # of lookup extent cache */
1757 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1758 	/* # of hit rbtree extent node */
1759 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1760 	/* # of hit cached extent node */
1761 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1762 	/* # of hit largest extent node in read extent cache */
1763 	atomic64_t read_hit_largest;
1764 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1765 	atomic_t inline_inode;			/* # of inline_data inodes */
1766 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1767 	atomic_t compr_inode;			/* # of compressed inodes */
1768 	atomic64_t compr_blocks;		/* # of compressed blocks */
1769 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1770 	atomic_t atomic_files;			/* # of opened atomic file */
1771 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1772 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1773 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1774 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1775 #endif
1776 	spinlock_t stat_lock;			/* lock for stat operations */
1777 
1778 	/* to attach REQ_META|REQ_FUA flags */
1779 	unsigned int data_io_flag;
1780 	unsigned int node_io_flag;
1781 
1782 	/* For sysfs support */
1783 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1784 	struct completion s_kobj_unregister;
1785 
1786 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1787 	struct completion s_stat_kobj_unregister;
1788 
1789 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1790 	struct completion s_feature_list_kobj_unregister;
1791 
1792 	/* For shrinker support */
1793 	struct list_head s_list;
1794 	struct mutex umount_mutex;
1795 	unsigned int shrinker_run_no;
1796 
1797 	/* For multi devices */
1798 	int s_ndevs;				/* number of devices */
1799 	struct f2fs_dev_info *devs;		/* for device list */
1800 	unsigned int dirty_device;		/* for checkpoint data flush */
1801 	spinlock_t dev_lock;			/* protect dirty_device */
1802 	bool aligned_blksize;			/* all devices has the same logical blksize */
1803 
1804 	/* For write statistics */
1805 	u64 sectors_written_start;
1806 	u64 kbytes_written;
1807 
1808 	/* Reference to checksum algorithm driver via cryptoapi */
1809 	struct crypto_shash *s_chksum_driver;
1810 
1811 	/* Precomputed FS UUID checksum for seeding other checksums */
1812 	__u32 s_chksum_seed;
1813 
1814 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1815 
1816 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1817 	spinlock_t error_lock;			/* protect errors array */
1818 	bool error_dirty;			/* errors of sb is dirty */
1819 
1820 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1821 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1822 
1823 	/* For reclaimed segs statistics per each GC mode */
1824 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1825 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1826 
1827 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1828 
1829 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1830 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1831 
1832 	/* For atomic write statistics */
1833 	atomic64_t current_atomic_write;
1834 	s64 peak_atomic_write;
1835 	u64 committed_atomic_block;
1836 	u64 revoked_atomic_block;
1837 
1838 #ifdef CONFIG_F2FS_FS_COMPRESSION
1839 	struct kmem_cache *page_array_slab;	/* page array entry */
1840 	unsigned int page_array_slab_size;	/* default page array slab size */
1841 
1842 	/* For runtime compression statistics */
1843 	u64 compr_written_block;
1844 	u64 compr_saved_block;
1845 	u32 compr_new_inode;
1846 
1847 	/* For compressed block cache */
1848 	struct inode *compress_inode;		/* cache compressed blocks */
1849 	unsigned int compress_percent;		/* cache page percentage */
1850 	unsigned int compress_watermark;	/* cache page watermark */
1851 	atomic_t compress_page_hit;		/* cache hit count */
1852 #endif
1853 
1854 #ifdef CONFIG_F2FS_IOSTAT
1855 	/* For app/fs IO statistics */
1856 	spinlock_t iostat_lock;
1857 	unsigned long long iostat_count[NR_IO_TYPE];
1858 	unsigned long long iostat_bytes[NR_IO_TYPE];
1859 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1860 	bool iostat_enable;
1861 	unsigned long iostat_next_period;
1862 	unsigned int iostat_period_ms;
1863 
1864 	/* For io latency related statistics info in one iostat period */
1865 	spinlock_t iostat_lat_lock;
1866 	struct iostat_lat_info *iostat_io_lat;
1867 #endif
1868 };
1869 
1870 #ifdef CONFIG_F2FS_FAULT_INJECTION
1871 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1872 									__builtin_return_address(0))
1873 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1874 				const char *func, const char *parent_func)
1875 {
1876 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1877 
1878 	if (!ffi->inject_rate)
1879 		return false;
1880 
1881 	if (!IS_FAULT_SET(ffi, type))
1882 		return false;
1883 
1884 	atomic_inc(&ffi->inject_ops);
1885 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1886 		atomic_set(&ffi->inject_ops, 0);
1887 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1888 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1889 			func, parent_func);
1890 		return true;
1891 	}
1892 	return false;
1893 }
1894 #else
1895 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1896 {
1897 	return false;
1898 }
1899 #endif
1900 
1901 /*
1902  * Test if the mounted volume is a multi-device volume.
1903  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1904  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1905  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1906  */
1907 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1908 {
1909 	return sbi->s_ndevs > 1;
1910 }
1911 
1912 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1913 {
1914 	unsigned long now = jiffies;
1915 
1916 	sbi->last_time[type] = now;
1917 
1918 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1919 	if (type == REQ_TIME) {
1920 		sbi->last_time[DISCARD_TIME] = now;
1921 		sbi->last_time[GC_TIME] = now;
1922 	}
1923 }
1924 
1925 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1926 {
1927 	unsigned long interval = sbi->interval_time[type] * HZ;
1928 
1929 	return time_after(jiffies, sbi->last_time[type] + interval);
1930 }
1931 
1932 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1933 						int type)
1934 {
1935 	unsigned long interval = sbi->interval_time[type] * HZ;
1936 	unsigned int wait_ms = 0;
1937 	long delta;
1938 
1939 	delta = (sbi->last_time[type] + interval) - jiffies;
1940 	if (delta > 0)
1941 		wait_ms = jiffies_to_msecs(delta);
1942 
1943 	return wait_ms;
1944 }
1945 
1946 /*
1947  * Inline functions
1948  */
1949 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1950 			      const void *address, unsigned int length)
1951 {
1952 	struct {
1953 		struct shash_desc shash;
1954 		char ctx[4];
1955 	} desc;
1956 	int err;
1957 
1958 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1959 
1960 	desc.shash.tfm = sbi->s_chksum_driver;
1961 	*(u32 *)desc.ctx = crc;
1962 
1963 	err = crypto_shash_update(&desc.shash, address, length);
1964 	BUG_ON(err);
1965 
1966 	return *(u32 *)desc.ctx;
1967 }
1968 
1969 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1970 			   unsigned int length)
1971 {
1972 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1973 }
1974 
1975 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1976 				  void *buf, size_t buf_size)
1977 {
1978 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1979 }
1980 
1981 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1982 			      const void *address, unsigned int length)
1983 {
1984 	return __f2fs_crc32(sbi, crc, address, length);
1985 }
1986 
1987 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1988 {
1989 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1990 }
1991 
1992 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1993 {
1994 	return sb->s_fs_info;
1995 }
1996 
1997 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1998 {
1999 	return F2FS_SB(inode->i_sb);
2000 }
2001 
2002 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2003 {
2004 	return F2FS_I_SB(mapping->host);
2005 }
2006 
2007 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2008 {
2009 	return F2FS_M_SB(page_file_mapping(page));
2010 }
2011 
2012 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2013 {
2014 	return (struct f2fs_super_block *)(sbi->raw_super);
2015 }
2016 
2017 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2018 {
2019 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2020 }
2021 
2022 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2023 {
2024 	return (struct f2fs_node *)page_address(page);
2025 }
2026 
2027 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2028 {
2029 	return &((struct f2fs_node *)page_address(page))->i;
2030 }
2031 
2032 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2033 {
2034 	return (struct f2fs_nm_info *)(sbi->nm_info);
2035 }
2036 
2037 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2038 {
2039 	return (struct f2fs_sm_info *)(sbi->sm_info);
2040 }
2041 
2042 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2043 {
2044 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2045 }
2046 
2047 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2048 {
2049 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2050 }
2051 
2052 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2053 {
2054 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2055 }
2056 
2057 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2058 {
2059 	return sbi->meta_inode->i_mapping;
2060 }
2061 
2062 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2063 {
2064 	return sbi->node_inode->i_mapping;
2065 }
2066 
2067 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2068 {
2069 	return test_bit(type, &sbi->s_flag);
2070 }
2071 
2072 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2073 {
2074 	set_bit(type, &sbi->s_flag);
2075 }
2076 
2077 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2078 {
2079 	clear_bit(type, &sbi->s_flag);
2080 }
2081 
2082 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2083 {
2084 	return le64_to_cpu(cp->checkpoint_ver);
2085 }
2086 
2087 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2088 {
2089 	if (type < F2FS_MAX_QUOTAS)
2090 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2091 	return 0;
2092 }
2093 
2094 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2095 {
2096 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2097 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2098 }
2099 
2100 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2101 {
2102 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2103 
2104 	return ckpt_flags & f;
2105 }
2106 
2107 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2108 {
2109 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2110 }
2111 
2112 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2113 {
2114 	unsigned int ckpt_flags;
2115 
2116 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2117 	ckpt_flags |= f;
2118 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2119 }
2120 
2121 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2122 {
2123 	unsigned long flags;
2124 
2125 	spin_lock_irqsave(&sbi->cp_lock, flags);
2126 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2127 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2128 }
2129 
2130 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2131 {
2132 	unsigned int ckpt_flags;
2133 
2134 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2135 	ckpt_flags &= (~f);
2136 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2137 }
2138 
2139 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2140 {
2141 	unsigned long flags;
2142 
2143 	spin_lock_irqsave(&sbi->cp_lock, flags);
2144 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2145 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2146 }
2147 
2148 #define init_f2fs_rwsem(sem)					\
2149 do {								\
2150 	static struct lock_class_key __key;			\
2151 								\
2152 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2153 } while (0)
2154 
2155 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2156 		const char *sem_name, struct lock_class_key *key)
2157 {
2158 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2159 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2160 	init_waitqueue_head(&sem->read_waiters);
2161 #endif
2162 }
2163 
2164 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2165 {
2166 	return rwsem_is_locked(&sem->internal_rwsem);
2167 }
2168 
2169 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2170 {
2171 	return rwsem_is_contended(&sem->internal_rwsem);
2172 }
2173 
2174 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2175 {
2176 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2177 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2178 #else
2179 	down_read(&sem->internal_rwsem);
2180 #endif
2181 }
2182 
2183 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2184 {
2185 	return down_read_trylock(&sem->internal_rwsem);
2186 }
2187 
2188 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2189 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2190 {
2191 	down_read_nested(&sem->internal_rwsem, subclass);
2192 }
2193 #else
2194 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2195 #endif
2196 
2197 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2198 {
2199 	up_read(&sem->internal_rwsem);
2200 }
2201 
2202 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2203 {
2204 	down_write(&sem->internal_rwsem);
2205 }
2206 
2207 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2208 {
2209 	return down_write_trylock(&sem->internal_rwsem);
2210 }
2211 
2212 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2213 {
2214 	up_write(&sem->internal_rwsem);
2215 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2216 	wake_up_all(&sem->read_waiters);
2217 #endif
2218 }
2219 
2220 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2221 {
2222 	f2fs_down_read(&sbi->cp_rwsem);
2223 }
2224 
2225 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2226 {
2227 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2228 		return 0;
2229 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2230 }
2231 
2232 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2233 {
2234 	f2fs_up_read(&sbi->cp_rwsem);
2235 }
2236 
2237 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2238 {
2239 	f2fs_down_write(&sbi->cp_rwsem);
2240 }
2241 
2242 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2243 {
2244 	f2fs_up_write(&sbi->cp_rwsem);
2245 }
2246 
2247 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2248 {
2249 	int reason = CP_SYNC;
2250 
2251 	if (test_opt(sbi, FASTBOOT))
2252 		reason = CP_FASTBOOT;
2253 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2254 		reason = CP_UMOUNT;
2255 	return reason;
2256 }
2257 
2258 static inline bool __remain_node_summaries(int reason)
2259 {
2260 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2261 }
2262 
2263 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2264 {
2265 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2266 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2267 }
2268 
2269 /*
2270  * Check whether the inode has blocks or not
2271  */
2272 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2273 {
2274 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2275 
2276 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2277 }
2278 
2279 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2280 {
2281 	return ofs == XATTR_NODE_OFFSET;
2282 }
2283 
2284 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2285 					struct inode *inode, bool cap)
2286 {
2287 	if (!inode)
2288 		return true;
2289 	if (!test_opt(sbi, RESERVE_ROOT))
2290 		return false;
2291 	if (IS_NOQUOTA(inode))
2292 		return true;
2293 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2294 		return true;
2295 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2296 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2297 		return true;
2298 	if (cap && capable(CAP_SYS_RESOURCE))
2299 		return true;
2300 	return false;
2301 }
2302 
2303 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2304 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2305 				 struct inode *inode, blkcnt_t *count)
2306 {
2307 	blkcnt_t diff = 0, release = 0;
2308 	block_t avail_user_block_count;
2309 	int ret;
2310 
2311 	ret = dquot_reserve_block(inode, *count);
2312 	if (ret)
2313 		return ret;
2314 
2315 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2316 		release = *count;
2317 		goto release_quota;
2318 	}
2319 
2320 	/*
2321 	 * let's increase this in prior to actual block count change in order
2322 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2323 	 */
2324 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2325 
2326 	spin_lock(&sbi->stat_lock);
2327 	sbi->total_valid_block_count += (block_t)(*count);
2328 	avail_user_block_count = sbi->user_block_count -
2329 					sbi->current_reserved_blocks;
2330 
2331 	if (!__allow_reserved_blocks(sbi, inode, true))
2332 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2333 
2334 	if (F2FS_IO_ALIGNED(sbi))
2335 		avail_user_block_count -= sbi->blocks_per_seg *
2336 				SM_I(sbi)->additional_reserved_segments;
2337 
2338 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2339 		if (avail_user_block_count > sbi->unusable_block_count)
2340 			avail_user_block_count -= sbi->unusable_block_count;
2341 		else
2342 			avail_user_block_count = 0;
2343 	}
2344 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2345 		diff = sbi->total_valid_block_count - avail_user_block_count;
2346 		if (diff > *count)
2347 			diff = *count;
2348 		*count -= diff;
2349 		release = diff;
2350 		sbi->total_valid_block_count -= diff;
2351 		if (!*count) {
2352 			spin_unlock(&sbi->stat_lock);
2353 			goto enospc;
2354 		}
2355 	}
2356 	spin_unlock(&sbi->stat_lock);
2357 
2358 	if (unlikely(release)) {
2359 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2360 		dquot_release_reservation_block(inode, release);
2361 	}
2362 	f2fs_i_blocks_write(inode, *count, true, true);
2363 	return 0;
2364 
2365 enospc:
2366 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2367 release_quota:
2368 	dquot_release_reservation_block(inode, release);
2369 	return -ENOSPC;
2370 }
2371 
2372 __printf(2, 3)
2373 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2374 
2375 #define f2fs_err(sbi, fmt, ...)						\
2376 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2377 #define f2fs_warn(sbi, fmt, ...)					\
2378 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2379 #define f2fs_notice(sbi, fmt, ...)					\
2380 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2381 #define f2fs_info(sbi, fmt, ...)					\
2382 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2383 #define f2fs_debug(sbi, fmt, ...)					\
2384 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2385 
2386 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2387 						struct inode *inode,
2388 						block_t count)
2389 {
2390 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2391 
2392 	spin_lock(&sbi->stat_lock);
2393 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2394 	sbi->total_valid_block_count -= (block_t)count;
2395 	if (sbi->reserved_blocks &&
2396 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2397 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2398 					sbi->current_reserved_blocks + count);
2399 	spin_unlock(&sbi->stat_lock);
2400 	if (unlikely(inode->i_blocks < sectors)) {
2401 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2402 			  inode->i_ino,
2403 			  (unsigned long long)inode->i_blocks,
2404 			  (unsigned long long)sectors);
2405 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2406 		return;
2407 	}
2408 	f2fs_i_blocks_write(inode, count, false, true);
2409 }
2410 
2411 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2412 {
2413 	atomic_inc(&sbi->nr_pages[count_type]);
2414 
2415 	if (count_type == F2FS_DIRTY_DENTS ||
2416 			count_type == F2FS_DIRTY_NODES ||
2417 			count_type == F2FS_DIRTY_META ||
2418 			count_type == F2FS_DIRTY_QDATA ||
2419 			count_type == F2FS_DIRTY_IMETA)
2420 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2421 }
2422 
2423 static inline void inode_inc_dirty_pages(struct inode *inode)
2424 {
2425 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2426 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2427 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2428 	if (IS_NOQUOTA(inode))
2429 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2430 }
2431 
2432 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2433 {
2434 	atomic_dec(&sbi->nr_pages[count_type]);
2435 }
2436 
2437 static inline void inode_dec_dirty_pages(struct inode *inode)
2438 {
2439 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2440 			!S_ISLNK(inode->i_mode))
2441 		return;
2442 
2443 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2444 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2445 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2446 	if (IS_NOQUOTA(inode))
2447 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2448 }
2449 
2450 static inline void inc_atomic_write_cnt(struct inode *inode)
2451 {
2452 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2453 	struct f2fs_inode_info *fi = F2FS_I(inode);
2454 	u64 current_write;
2455 
2456 	fi->atomic_write_cnt++;
2457 	atomic64_inc(&sbi->current_atomic_write);
2458 	current_write = atomic64_read(&sbi->current_atomic_write);
2459 	if (current_write > sbi->peak_atomic_write)
2460 		sbi->peak_atomic_write = current_write;
2461 }
2462 
2463 static inline void release_atomic_write_cnt(struct inode *inode)
2464 {
2465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2466 	struct f2fs_inode_info *fi = F2FS_I(inode);
2467 
2468 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2469 	fi->atomic_write_cnt = 0;
2470 }
2471 
2472 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2473 {
2474 	return atomic_read(&sbi->nr_pages[count_type]);
2475 }
2476 
2477 static inline int get_dirty_pages(struct inode *inode)
2478 {
2479 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2480 }
2481 
2482 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2483 {
2484 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2485 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2486 						sbi->log_blocks_per_seg;
2487 
2488 	return segs / sbi->segs_per_sec;
2489 }
2490 
2491 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2492 {
2493 	return sbi->total_valid_block_count;
2494 }
2495 
2496 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2497 {
2498 	return sbi->discard_blks;
2499 }
2500 
2501 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2502 {
2503 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2504 
2505 	/* return NAT or SIT bitmap */
2506 	if (flag == NAT_BITMAP)
2507 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2508 	else if (flag == SIT_BITMAP)
2509 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2510 
2511 	return 0;
2512 }
2513 
2514 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2515 {
2516 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2517 }
2518 
2519 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2520 {
2521 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2522 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2523 	int offset;
2524 
2525 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2526 		offset = (flag == SIT_BITMAP) ?
2527 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2528 		/*
2529 		 * if large_nat_bitmap feature is enabled, leave checksum
2530 		 * protection for all nat/sit bitmaps.
2531 		 */
2532 		return tmp_ptr + offset + sizeof(__le32);
2533 	}
2534 
2535 	if (__cp_payload(sbi) > 0) {
2536 		if (flag == NAT_BITMAP)
2537 			return tmp_ptr;
2538 		else
2539 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2540 	} else {
2541 		offset = (flag == NAT_BITMAP) ?
2542 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2543 		return tmp_ptr + offset;
2544 	}
2545 }
2546 
2547 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2548 {
2549 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2550 
2551 	if (sbi->cur_cp_pack == 2)
2552 		start_addr += sbi->blocks_per_seg;
2553 	return start_addr;
2554 }
2555 
2556 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2557 {
2558 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2559 
2560 	if (sbi->cur_cp_pack == 1)
2561 		start_addr += sbi->blocks_per_seg;
2562 	return start_addr;
2563 }
2564 
2565 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2566 {
2567 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2568 }
2569 
2570 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2571 {
2572 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2573 }
2574 
2575 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2576 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2577 					struct inode *inode, bool is_inode)
2578 {
2579 	block_t	valid_block_count;
2580 	unsigned int valid_node_count, user_block_count;
2581 	int err;
2582 
2583 	if (is_inode) {
2584 		if (inode) {
2585 			err = dquot_alloc_inode(inode);
2586 			if (err)
2587 				return err;
2588 		}
2589 	} else {
2590 		err = dquot_reserve_block(inode, 1);
2591 		if (err)
2592 			return err;
2593 	}
2594 
2595 	if (time_to_inject(sbi, FAULT_BLOCK))
2596 		goto enospc;
2597 
2598 	spin_lock(&sbi->stat_lock);
2599 
2600 	valid_block_count = sbi->total_valid_block_count +
2601 					sbi->current_reserved_blocks + 1;
2602 
2603 	if (!__allow_reserved_blocks(sbi, inode, false))
2604 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2605 
2606 	if (F2FS_IO_ALIGNED(sbi))
2607 		valid_block_count += sbi->blocks_per_seg *
2608 				SM_I(sbi)->additional_reserved_segments;
2609 
2610 	user_block_count = sbi->user_block_count;
2611 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2612 		user_block_count -= sbi->unusable_block_count;
2613 
2614 	if (unlikely(valid_block_count > user_block_count)) {
2615 		spin_unlock(&sbi->stat_lock);
2616 		goto enospc;
2617 	}
2618 
2619 	valid_node_count = sbi->total_valid_node_count + 1;
2620 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2621 		spin_unlock(&sbi->stat_lock);
2622 		goto enospc;
2623 	}
2624 
2625 	sbi->total_valid_node_count++;
2626 	sbi->total_valid_block_count++;
2627 	spin_unlock(&sbi->stat_lock);
2628 
2629 	if (inode) {
2630 		if (is_inode)
2631 			f2fs_mark_inode_dirty_sync(inode, true);
2632 		else
2633 			f2fs_i_blocks_write(inode, 1, true, true);
2634 	}
2635 
2636 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2637 	return 0;
2638 
2639 enospc:
2640 	if (is_inode) {
2641 		if (inode)
2642 			dquot_free_inode(inode);
2643 	} else {
2644 		dquot_release_reservation_block(inode, 1);
2645 	}
2646 	return -ENOSPC;
2647 }
2648 
2649 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2650 					struct inode *inode, bool is_inode)
2651 {
2652 	spin_lock(&sbi->stat_lock);
2653 
2654 	if (unlikely(!sbi->total_valid_block_count ||
2655 			!sbi->total_valid_node_count)) {
2656 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2657 			  sbi->total_valid_block_count,
2658 			  sbi->total_valid_node_count);
2659 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2660 	} else {
2661 		sbi->total_valid_block_count--;
2662 		sbi->total_valid_node_count--;
2663 	}
2664 
2665 	if (sbi->reserved_blocks &&
2666 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2667 		sbi->current_reserved_blocks++;
2668 
2669 	spin_unlock(&sbi->stat_lock);
2670 
2671 	if (is_inode) {
2672 		dquot_free_inode(inode);
2673 	} else {
2674 		if (unlikely(inode->i_blocks == 0)) {
2675 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2676 				  inode->i_ino,
2677 				  (unsigned long long)inode->i_blocks);
2678 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2679 			return;
2680 		}
2681 		f2fs_i_blocks_write(inode, 1, false, true);
2682 	}
2683 }
2684 
2685 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2686 {
2687 	return sbi->total_valid_node_count;
2688 }
2689 
2690 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2691 {
2692 	percpu_counter_inc(&sbi->total_valid_inode_count);
2693 }
2694 
2695 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2696 {
2697 	percpu_counter_dec(&sbi->total_valid_inode_count);
2698 }
2699 
2700 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2701 {
2702 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2703 }
2704 
2705 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2706 						pgoff_t index, bool for_write)
2707 {
2708 	struct page *page;
2709 	unsigned int flags;
2710 
2711 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2712 		if (!for_write)
2713 			page = find_get_page_flags(mapping, index,
2714 							FGP_LOCK | FGP_ACCESSED);
2715 		else
2716 			page = find_lock_page(mapping, index);
2717 		if (page)
2718 			return page;
2719 
2720 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2721 			return NULL;
2722 	}
2723 
2724 	if (!for_write)
2725 		return grab_cache_page(mapping, index);
2726 
2727 	flags = memalloc_nofs_save();
2728 	page = grab_cache_page_write_begin(mapping, index);
2729 	memalloc_nofs_restore(flags);
2730 
2731 	return page;
2732 }
2733 
2734 static inline struct page *f2fs_pagecache_get_page(
2735 				struct address_space *mapping, pgoff_t index,
2736 				int fgp_flags, gfp_t gfp_mask)
2737 {
2738 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2739 		return NULL;
2740 
2741 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2742 }
2743 
2744 static inline void f2fs_put_page(struct page *page, int unlock)
2745 {
2746 	if (!page)
2747 		return;
2748 
2749 	if (unlock) {
2750 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2751 		unlock_page(page);
2752 	}
2753 	put_page(page);
2754 }
2755 
2756 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2757 {
2758 	if (dn->node_page)
2759 		f2fs_put_page(dn->node_page, 1);
2760 	if (dn->inode_page && dn->node_page != dn->inode_page)
2761 		f2fs_put_page(dn->inode_page, 0);
2762 	dn->node_page = NULL;
2763 	dn->inode_page = NULL;
2764 }
2765 
2766 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2767 					size_t size)
2768 {
2769 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2770 }
2771 
2772 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2773 						gfp_t flags)
2774 {
2775 	void *entry;
2776 
2777 	entry = kmem_cache_alloc(cachep, flags);
2778 	if (!entry)
2779 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2780 	return entry;
2781 }
2782 
2783 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2784 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2785 {
2786 	if (nofail)
2787 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2788 
2789 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2790 		return NULL;
2791 
2792 	return kmem_cache_alloc(cachep, flags);
2793 }
2794 
2795 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2796 {
2797 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2798 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2799 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2800 		get_pages(sbi, F2FS_DIO_READ) ||
2801 		get_pages(sbi, F2FS_DIO_WRITE))
2802 		return true;
2803 
2804 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2805 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2806 		return true;
2807 
2808 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2809 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2810 		return true;
2811 	return false;
2812 }
2813 
2814 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2815 {
2816 	if (sbi->gc_mode == GC_URGENT_HIGH)
2817 		return true;
2818 
2819 	if (is_inflight_io(sbi, type))
2820 		return false;
2821 
2822 	if (sbi->gc_mode == GC_URGENT_MID)
2823 		return true;
2824 
2825 	if (sbi->gc_mode == GC_URGENT_LOW &&
2826 			(type == DISCARD_TIME || type == GC_TIME))
2827 		return true;
2828 
2829 	return f2fs_time_over(sbi, type);
2830 }
2831 
2832 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2833 				unsigned long index, void *item)
2834 {
2835 	while (radix_tree_insert(root, index, item))
2836 		cond_resched();
2837 }
2838 
2839 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2840 
2841 static inline bool IS_INODE(struct page *page)
2842 {
2843 	struct f2fs_node *p = F2FS_NODE(page);
2844 
2845 	return RAW_IS_INODE(p);
2846 }
2847 
2848 static inline int offset_in_addr(struct f2fs_inode *i)
2849 {
2850 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2851 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2852 }
2853 
2854 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2855 {
2856 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2857 }
2858 
2859 static inline int f2fs_has_extra_attr(struct inode *inode);
2860 static inline block_t data_blkaddr(struct inode *inode,
2861 			struct page *node_page, unsigned int offset)
2862 {
2863 	struct f2fs_node *raw_node;
2864 	__le32 *addr_array;
2865 	int base = 0;
2866 	bool is_inode = IS_INODE(node_page);
2867 
2868 	raw_node = F2FS_NODE(node_page);
2869 
2870 	if (is_inode) {
2871 		if (!inode)
2872 			/* from GC path only */
2873 			base = offset_in_addr(&raw_node->i);
2874 		else if (f2fs_has_extra_attr(inode))
2875 			base = get_extra_isize(inode);
2876 	}
2877 
2878 	addr_array = blkaddr_in_node(raw_node);
2879 	return le32_to_cpu(addr_array[base + offset]);
2880 }
2881 
2882 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2883 {
2884 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2885 }
2886 
2887 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2888 {
2889 	int mask;
2890 
2891 	addr += (nr >> 3);
2892 	mask = 1 << (7 - (nr & 0x07));
2893 	return mask & *addr;
2894 }
2895 
2896 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2897 {
2898 	int mask;
2899 
2900 	addr += (nr >> 3);
2901 	mask = 1 << (7 - (nr & 0x07));
2902 	*addr |= mask;
2903 }
2904 
2905 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2906 {
2907 	int mask;
2908 
2909 	addr += (nr >> 3);
2910 	mask = 1 << (7 - (nr & 0x07));
2911 	*addr &= ~mask;
2912 }
2913 
2914 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2915 {
2916 	int mask;
2917 	int ret;
2918 
2919 	addr += (nr >> 3);
2920 	mask = 1 << (7 - (nr & 0x07));
2921 	ret = mask & *addr;
2922 	*addr |= mask;
2923 	return ret;
2924 }
2925 
2926 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2927 {
2928 	int mask;
2929 	int ret;
2930 
2931 	addr += (nr >> 3);
2932 	mask = 1 << (7 - (nr & 0x07));
2933 	ret = mask & *addr;
2934 	*addr &= ~mask;
2935 	return ret;
2936 }
2937 
2938 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2939 {
2940 	int mask;
2941 
2942 	addr += (nr >> 3);
2943 	mask = 1 << (7 - (nr & 0x07));
2944 	*addr ^= mask;
2945 }
2946 
2947 /*
2948  * On-disk inode flags (f2fs_inode::i_flags)
2949  */
2950 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2951 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2952 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2953 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2954 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2955 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2956 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2957 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2958 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2959 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2960 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2961 
2962 /* Flags that should be inherited by new inodes from their parent. */
2963 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2964 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2965 			   F2FS_CASEFOLD_FL)
2966 
2967 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2968 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2969 				F2FS_CASEFOLD_FL))
2970 
2971 /* Flags that are appropriate for non-directories/regular files. */
2972 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2973 
2974 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2975 {
2976 	if (S_ISDIR(mode))
2977 		return flags;
2978 	else if (S_ISREG(mode))
2979 		return flags & F2FS_REG_FLMASK;
2980 	else
2981 		return flags & F2FS_OTHER_FLMASK;
2982 }
2983 
2984 static inline void __mark_inode_dirty_flag(struct inode *inode,
2985 						int flag, bool set)
2986 {
2987 	switch (flag) {
2988 	case FI_INLINE_XATTR:
2989 	case FI_INLINE_DATA:
2990 	case FI_INLINE_DENTRY:
2991 	case FI_NEW_INODE:
2992 		if (set)
2993 			return;
2994 		fallthrough;
2995 	case FI_DATA_EXIST:
2996 	case FI_INLINE_DOTS:
2997 	case FI_PIN_FILE:
2998 	case FI_COMPRESS_RELEASED:
2999 		f2fs_mark_inode_dirty_sync(inode, true);
3000 	}
3001 }
3002 
3003 static inline void set_inode_flag(struct inode *inode, int flag)
3004 {
3005 	set_bit(flag, F2FS_I(inode)->flags);
3006 	__mark_inode_dirty_flag(inode, flag, true);
3007 }
3008 
3009 static inline int is_inode_flag_set(struct inode *inode, int flag)
3010 {
3011 	return test_bit(flag, F2FS_I(inode)->flags);
3012 }
3013 
3014 static inline void clear_inode_flag(struct inode *inode, int flag)
3015 {
3016 	clear_bit(flag, F2FS_I(inode)->flags);
3017 	__mark_inode_dirty_flag(inode, flag, false);
3018 }
3019 
3020 static inline bool f2fs_verity_in_progress(struct inode *inode)
3021 {
3022 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3023 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3024 }
3025 
3026 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3027 {
3028 	F2FS_I(inode)->i_acl_mode = mode;
3029 	set_inode_flag(inode, FI_ACL_MODE);
3030 	f2fs_mark_inode_dirty_sync(inode, false);
3031 }
3032 
3033 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3034 {
3035 	if (inc)
3036 		inc_nlink(inode);
3037 	else
3038 		drop_nlink(inode);
3039 	f2fs_mark_inode_dirty_sync(inode, true);
3040 }
3041 
3042 static inline void f2fs_i_blocks_write(struct inode *inode,
3043 					block_t diff, bool add, bool claim)
3044 {
3045 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3046 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3047 
3048 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3049 	if (add) {
3050 		if (claim)
3051 			dquot_claim_block(inode, diff);
3052 		else
3053 			dquot_alloc_block_nofail(inode, diff);
3054 	} else {
3055 		dquot_free_block(inode, diff);
3056 	}
3057 
3058 	f2fs_mark_inode_dirty_sync(inode, true);
3059 	if (clean || recover)
3060 		set_inode_flag(inode, FI_AUTO_RECOVER);
3061 }
3062 
3063 static inline bool f2fs_is_atomic_file(struct inode *inode);
3064 
3065 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3066 {
3067 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3068 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3069 
3070 	if (i_size_read(inode) == i_size)
3071 		return;
3072 
3073 	i_size_write(inode, i_size);
3074 
3075 	if (f2fs_is_atomic_file(inode))
3076 		return;
3077 
3078 	f2fs_mark_inode_dirty_sync(inode, true);
3079 	if (clean || recover)
3080 		set_inode_flag(inode, FI_AUTO_RECOVER);
3081 }
3082 
3083 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3084 {
3085 	F2FS_I(inode)->i_current_depth = depth;
3086 	f2fs_mark_inode_dirty_sync(inode, true);
3087 }
3088 
3089 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3090 					unsigned int count)
3091 {
3092 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3093 	f2fs_mark_inode_dirty_sync(inode, true);
3094 }
3095 
3096 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3097 {
3098 	F2FS_I(inode)->i_xattr_nid = xnid;
3099 	f2fs_mark_inode_dirty_sync(inode, true);
3100 }
3101 
3102 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3103 {
3104 	F2FS_I(inode)->i_pino = pino;
3105 	f2fs_mark_inode_dirty_sync(inode, true);
3106 }
3107 
3108 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3109 {
3110 	struct f2fs_inode_info *fi = F2FS_I(inode);
3111 
3112 	if (ri->i_inline & F2FS_INLINE_XATTR)
3113 		set_bit(FI_INLINE_XATTR, fi->flags);
3114 	if (ri->i_inline & F2FS_INLINE_DATA)
3115 		set_bit(FI_INLINE_DATA, fi->flags);
3116 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3117 		set_bit(FI_INLINE_DENTRY, fi->flags);
3118 	if (ri->i_inline & F2FS_DATA_EXIST)
3119 		set_bit(FI_DATA_EXIST, fi->flags);
3120 	if (ri->i_inline & F2FS_INLINE_DOTS)
3121 		set_bit(FI_INLINE_DOTS, fi->flags);
3122 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3123 		set_bit(FI_EXTRA_ATTR, fi->flags);
3124 	if (ri->i_inline & F2FS_PIN_FILE)
3125 		set_bit(FI_PIN_FILE, fi->flags);
3126 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3127 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3128 }
3129 
3130 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3131 {
3132 	ri->i_inline = 0;
3133 
3134 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3135 		ri->i_inline |= F2FS_INLINE_XATTR;
3136 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3137 		ri->i_inline |= F2FS_INLINE_DATA;
3138 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3139 		ri->i_inline |= F2FS_INLINE_DENTRY;
3140 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3141 		ri->i_inline |= F2FS_DATA_EXIST;
3142 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3143 		ri->i_inline |= F2FS_INLINE_DOTS;
3144 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3145 		ri->i_inline |= F2FS_EXTRA_ATTR;
3146 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3147 		ri->i_inline |= F2FS_PIN_FILE;
3148 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3149 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3150 }
3151 
3152 static inline int f2fs_has_extra_attr(struct inode *inode)
3153 {
3154 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3155 }
3156 
3157 static inline int f2fs_has_inline_xattr(struct inode *inode)
3158 {
3159 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3160 }
3161 
3162 static inline int f2fs_compressed_file(struct inode *inode)
3163 {
3164 	return S_ISREG(inode->i_mode) &&
3165 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3166 }
3167 
3168 static inline bool f2fs_need_compress_data(struct inode *inode)
3169 {
3170 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3171 
3172 	if (!f2fs_compressed_file(inode))
3173 		return false;
3174 
3175 	if (compress_mode == COMPR_MODE_FS)
3176 		return true;
3177 	else if (compress_mode == COMPR_MODE_USER &&
3178 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3179 		return true;
3180 
3181 	return false;
3182 }
3183 
3184 static inline unsigned int addrs_per_inode(struct inode *inode)
3185 {
3186 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3187 				get_inline_xattr_addrs(inode);
3188 
3189 	if (!f2fs_compressed_file(inode))
3190 		return addrs;
3191 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3192 }
3193 
3194 static inline unsigned int addrs_per_block(struct inode *inode)
3195 {
3196 	if (!f2fs_compressed_file(inode))
3197 		return DEF_ADDRS_PER_BLOCK;
3198 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3199 }
3200 
3201 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3202 {
3203 	struct f2fs_inode *ri = F2FS_INODE(page);
3204 
3205 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3206 					get_inline_xattr_addrs(inode)]);
3207 }
3208 
3209 static inline int inline_xattr_size(struct inode *inode)
3210 {
3211 	if (f2fs_has_inline_xattr(inode))
3212 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3213 	return 0;
3214 }
3215 
3216 /*
3217  * Notice: check inline_data flag without inode page lock is unsafe.
3218  * It could change at any time by f2fs_convert_inline_page().
3219  */
3220 static inline int f2fs_has_inline_data(struct inode *inode)
3221 {
3222 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3223 }
3224 
3225 static inline int f2fs_exist_data(struct inode *inode)
3226 {
3227 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3228 }
3229 
3230 static inline int f2fs_has_inline_dots(struct inode *inode)
3231 {
3232 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3233 }
3234 
3235 static inline int f2fs_is_mmap_file(struct inode *inode)
3236 {
3237 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3238 }
3239 
3240 static inline bool f2fs_is_pinned_file(struct inode *inode)
3241 {
3242 	return is_inode_flag_set(inode, FI_PIN_FILE);
3243 }
3244 
3245 static inline bool f2fs_is_atomic_file(struct inode *inode)
3246 {
3247 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3248 }
3249 
3250 static inline bool f2fs_is_cow_file(struct inode *inode)
3251 {
3252 	return is_inode_flag_set(inode, FI_COW_FILE);
3253 }
3254 
3255 static inline bool f2fs_is_first_block_written(struct inode *inode)
3256 {
3257 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3258 }
3259 
3260 static inline bool f2fs_is_drop_cache(struct inode *inode)
3261 {
3262 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3263 }
3264 
3265 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3266 {
3267 	struct f2fs_inode *ri = F2FS_INODE(page);
3268 	int extra_size = get_extra_isize(inode);
3269 
3270 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3271 }
3272 
3273 static inline int f2fs_has_inline_dentry(struct inode *inode)
3274 {
3275 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3276 }
3277 
3278 static inline int is_file(struct inode *inode, int type)
3279 {
3280 	return F2FS_I(inode)->i_advise & type;
3281 }
3282 
3283 static inline void set_file(struct inode *inode, int type)
3284 {
3285 	if (is_file(inode, type))
3286 		return;
3287 	F2FS_I(inode)->i_advise |= type;
3288 	f2fs_mark_inode_dirty_sync(inode, true);
3289 }
3290 
3291 static inline void clear_file(struct inode *inode, int type)
3292 {
3293 	if (!is_file(inode, type))
3294 		return;
3295 	F2FS_I(inode)->i_advise &= ~type;
3296 	f2fs_mark_inode_dirty_sync(inode, true);
3297 }
3298 
3299 static inline bool f2fs_is_time_consistent(struct inode *inode)
3300 {
3301 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3302 		return false;
3303 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3304 		return false;
3305 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3306 		return false;
3307 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3308 						&F2FS_I(inode)->i_crtime))
3309 		return false;
3310 	return true;
3311 }
3312 
3313 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3314 {
3315 	bool ret;
3316 
3317 	if (dsync) {
3318 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3319 
3320 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3321 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3322 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3323 		return ret;
3324 	}
3325 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3326 			file_keep_isize(inode) ||
3327 			i_size_read(inode) & ~PAGE_MASK)
3328 		return false;
3329 
3330 	if (!f2fs_is_time_consistent(inode))
3331 		return false;
3332 
3333 	spin_lock(&F2FS_I(inode)->i_size_lock);
3334 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3335 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3336 
3337 	return ret;
3338 }
3339 
3340 static inline bool f2fs_readonly(struct super_block *sb)
3341 {
3342 	return sb_rdonly(sb);
3343 }
3344 
3345 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3346 {
3347 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3348 }
3349 
3350 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3351 {
3352 	if (len == 1 && name[0] == '.')
3353 		return true;
3354 
3355 	if (len == 2 && name[0] == '.' && name[1] == '.')
3356 		return true;
3357 
3358 	return false;
3359 }
3360 
3361 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3362 					size_t size, gfp_t flags)
3363 {
3364 	if (time_to_inject(sbi, FAULT_KMALLOC))
3365 		return NULL;
3366 
3367 	return kmalloc(size, flags);
3368 }
3369 
3370 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3371 					size_t size, gfp_t flags)
3372 {
3373 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3374 }
3375 
3376 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3377 					size_t size, gfp_t flags)
3378 {
3379 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3380 		return NULL;
3381 
3382 	return kvmalloc(size, flags);
3383 }
3384 
3385 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3386 					size_t size, gfp_t flags)
3387 {
3388 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3389 }
3390 
3391 static inline int get_extra_isize(struct inode *inode)
3392 {
3393 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3394 }
3395 
3396 static inline int get_inline_xattr_addrs(struct inode *inode)
3397 {
3398 	return F2FS_I(inode)->i_inline_xattr_size;
3399 }
3400 
3401 #define f2fs_get_inode_mode(i) \
3402 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3403 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3404 
3405 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3406 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3407 	offsetof(struct f2fs_inode, i_extra_isize))	\
3408 
3409 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3410 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3411 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3412 		sizeof((f2fs_inode)->field))			\
3413 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3414 
3415 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3416 
3417 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3418 
3419 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3420 					block_t blkaddr, int type);
3421 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3422 					block_t blkaddr, int type)
3423 {
3424 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3425 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3426 			 blkaddr, type);
3427 		f2fs_bug_on(sbi, 1);
3428 	}
3429 }
3430 
3431 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3432 {
3433 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3434 			blkaddr == COMPRESS_ADDR)
3435 		return false;
3436 	return true;
3437 }
3438 
3439 /*
3440  * file.c
3441  */
3442 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3443 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3444 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3445 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3446 int f2fs_truncate(struct inode *inode);
3447 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3448 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3449 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3450 		 struct iattr *attr);
3451 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3452 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3453 int f2fs_precache_extents(struct inode *inode);
3454 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3455 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3456 		      struct dentry *dentry, struct fileattr *fa);
3457 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3458 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3459 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3460 int f2fs_pin_file_control(struct inode *inode, bool inc);
3461 
3462 /*
3463  * inode.c
3464  */
3465 void f2fs_set_inode_flags(struct inode *inode);
3466 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3467 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3468 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3469 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3470 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3471 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3472 void f2fs_update_inode_page(struct inode *inode);
3473 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3474 void f2fs_evict_inode(struct inode *inode);
3475 void f2fs_handle_failed_inode(struct inode *inode);
3476 
3477 /*
3478  * namei.c
3479  */
3480 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3481 							bool hot, bool set);
3482 struct dentry *f2fs_get_parent(struct dentry *child);
3483 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3484 		     struct inode **new_inode);
3485 
3486 /*
3487  * dir.c
3488  */
3489 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3490 int f2fs_init_casefolded_name(const struct inode *dir,
3491 			      struct f2fs_filename *fname);
3492 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3493 			int lookup, struct f2fs_filename *fname);
3494 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3495 			struct f2fs_filename *fname);
3496 void f2fs_free_filename(struct f2fs_filename *fname);
3497 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3498 			const struct f2fs_filename *fname, int *max_slots);
3499 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3500 			unsigned int start_pos, struct fscrypt_str *fstr);
3501 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3502 			struct f2fs_dentry_ptr *d);
3503 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3504 			const struct f2fs_filename *fname, struct page *dpage);
3505 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3506 			unsigned int current_depth);
3507 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3508 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3509 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3510 					 const struct f2fs_filename *fname,
3511 					 struct page **res_page);
3512 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3513 			const struct qstr *child, struct page **res_page);
3514 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3515 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3516 			struct page **page);
3517 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3518 			struct page *page, struct inode *inode);
3519 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3520 			  const struct f2fs_filename *fname);
3521 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3522 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3523 			unsigned int bit_pos);
3524 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3525 			struct inode *inode, nid_t ino, umode_t mode);
3526 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3527 			struct inode *inode, nid_t ino, umode_t mode);
3528 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3529 			struct inode *inode, nid_t ino, umode_t mode);
3530 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3531 			struct inode *dir, struct inode *inode);
3532 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3533 bool f2fs_empty_dir(struct inode *dir);
3534 
3535 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3536 {
3537 	if (fscrypt_is_nokey_name(dentry))
3538 		return -ENOKEY;
3539 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3540 				inode, inode->i_ino, inode->i_mode);
3541 }
3542 
3543 /*
3544  * super.c
3545  */
3546 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3547 void f2fs_inode_synced(struct inode *inode);
3548 int f2fs_dquot_initialize(struct inode *inode);
3549 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3550 int f2fs_quota_sync(struct super_block *sb, int type);
3551 loff_t max_file_blocks(struct inode *inode);
3552 void f2fs_quota_off_umount(struct super_block *sb);
3553 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3554 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3555 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3556 int f2fs_sync_fs(struct super_block *sb, int sync);
3557 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3558 
3559 /*
3560  * hash.c
3561  */
3562 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3563 
3564 /*
3565  * node.c
3566  */
3567 struct node_info;
3568 
3569 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3570 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3571 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3572 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3573 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3574 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3575 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3576 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3577 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3578 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3579 				struct node_info *ni, bool checkpoint_context);
3580 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3581 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3582 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3583 int f2fs_truncate_xattr_node(struct inode *inode);
3584 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3585 					unsigned int seq_id);
3586 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3587 int f2fs_remove_inode_page(struct inode *inode);
3588 struct page *f2fs_new_inode_page(struct inode *inode);
3589 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3590 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3591 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3592 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3593 int f2fs_move_node_page(struct page *node_page, int gc_type);
3594 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3595 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3596 			struct writeback_control *wbc, bool atomic,
3597 			unsigned int *seq_id);
3598 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3599 			struct writeback_control *wbc,
3600 			bool do_balance, enum iostat_type io_type);
3601 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3602 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3603 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3604 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3605 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3606 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3607 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3608 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3609 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3610 			unsigned int segno, struct f2fs_summary_block *sum);
3611 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3612 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3613 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3614 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3615 int __init f2fs_create_node_manager_caches(void);
3616 void f2fs_destroy_node_manager_caches(void);
3617 
3618 /*
3619  * segment.c
3620  */
3621 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3622 int f2fs_commit_atomic_write(struct inode *inode);
3623 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3624 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3625 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3626 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3627 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3628 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3629 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3630 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3631 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3632 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3633 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3634 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3635 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3636 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3637 					struct cp_control *cpc);
3638 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3639 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3640 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3641 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3642 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3643 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3644 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3645 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3646 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3647 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3648 			unsigned int *newseg, bool new_sec, int dir);
3649 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3650 					unsigned int start, unsigned int end);
3651 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3652 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3653 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3654 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3655 					struct cp_control *cpc);
3656 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3657 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3658 					block_t blk_addr);
3659 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3660 						enum iostat_type io_type);
3661 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3662 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3663 			struct f2fs_io_info *fio);
3664 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3665 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3666 			block_t old_blkaddr, block_t new_blkaddr,
3667 			bool recover_curseg, bool recover_newaddr,
3668 			bool from_gc);
3669 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3670 			block_t old_addr, block_t new_addr,
3671 			unsigned char version, bool recover_curseg,
3672 			bool recover_newaddr);
3673 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3674 			block_t old_blkaddr, block_t *new_blkaddr,
3675 			struct f2fs_summary *sum, int type,
3676 			struct f2fs_io_info *fio);
3677 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3678 					block_t blkaddr, unsigned int blkcnt);
3679 void f2fs_wait_on_page_writeback(struct page *page,
3680 			enum page_type type, bool ordered, bool locked);
3681 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3682 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3683 								block_t len);
3684 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3685 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3686 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3687 			unsigned int val, int alloc);
3688 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3689 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3690 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3691 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3692 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3693 int __init f2fs_create_segment_manager_caches(void);
3694 void f2fs_destroy_segment_manager_caches(void);
3695 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3696 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3697 			unsigned int segno);
3698 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3699 			unsigned int segno);
3700 
3701 #define DEF_FRAGMENT_SIZE	4
3702 #define MIN_FRAGMENT_SIZE	1
3703 #define MAX_FRAGMENT_SIZE	512
3704 
3705 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3706 {
3707 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3708 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3709 }
3710 
3711 /*
3712  * checkpoint.c
3713  */
3714 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3715 							unsigned char reason);
3716 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3717 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3718 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3719 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3720 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3721 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3722 					block_t blkaddr, int type);
3723 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3724 			int type, bool sync);
3725 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3726 							unsigned int ra_blocks);
3727 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3728 			long nr_to_write, enum iostat_type io_type);
3729 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3730 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3731 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3732 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3733 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3734 					unsigned int devidx, int type);
3735 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3736 					unsigned int devidx, int type);
3737 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3738 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3739 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3740 void f2fs_add_orphan_inode(struct inode *inode);
3741 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3742 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3743 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3744 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3745 void f2fs_remove_dirty_inode(struct inode *inode);
3746 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3747 								bool from_cp);
3748 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3749 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3750 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3751 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3752 int __init f2fs_create_checkpoint_caches(void);
3753 void f2fs_destroy_checkpoint_caches(void);
3754 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3755 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3756 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3757 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3758 
3759 /*
3760  * data.c
3761  */
3762 int __init f2fs_init_bioset(void);
3763 void f2fs_destroy_bioset(void);
3764 int f2fs_init_bio_entry_cache(void);
3765 void f2fs_destroy_bio_entry_cache(void);
3766 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3767 			  enum page_type type);
3768 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3769 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3770 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3771 				struct inode *inode, struct page *page,
3772 				nid_t ino, enum page_type type);
3773 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3774 					struct bio **bio, struct page *page);
3775 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3776 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3777 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3778 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3779 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3780 		block_t blk_addr, sector_t *sector);
3781 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3782 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3783 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3784 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3785 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3786 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3787 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3788 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3789 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3790 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3791 							pgoff_t *next_pgofs);
3792 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3793 			bool for_write);
3794 struct page *f2fs_get_new_data_page(struct inode *inode,
3795 			struct page *ipage, pgoff_t index, bool new_i_size);
3796 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3797 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3798 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3799 			u64 start, u64 len);
3800 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3801 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3802 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3803 int f2fs_write_single_data_page(struct page *page, int *submitted,
3804 				struct bio **bio, sector_t *last_block,
3805 				struct writeback_control *wbc,
3806 				enum iostat_type io_type,
3807 				int compr_blocks, bool allow_balance);
3808 void f2fs_write_failed(struct inode *inode, loff_t to);
3809 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3810 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3811 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3812 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3813 int f2fs_init_post_read_processing(void);
3814 void f2fs_destroy_post_read_processing(void);
3815 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3816 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3817 extern const struct iomap_ops f2fs_iomap_ops;
3818 
3819 /*
3820  * gc.c
3821  */
3822 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3823 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3824 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3825 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3826 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3827 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3828 int __init f2fs_create_garbage_collection_cache(void);
3829 void f2fs_destroy_garbage_collection_cache(void);
3830 
3831 /*
3832  * recovery.c
3833  */
3834 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3835 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3836 int __init f2fs_create_recovery_cache(void);
3837 void f2fs_destroy_recovery_cache(void);
3838 
3839 /*
3840  * debug.c
3841  */
3842 #ifdef CONFIG_F2FS_STAT_FS
3843 struct f2fs_stat_info {
3844 	struct list_head stat_list;
3845 	struct f2fs_sb_info *sbi;
3846 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3847 	int main_area_segs, main_area_sections, main_area_zones;
3848 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3849 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3850 	unsigned long long total_ext[NR_EXTENT_CACHES];
3851 	unsigned long long hit_total[NR_EXTENT_CACHES];
3852 	int ext_tree[NR_EXTENT_CACHES];
3853 	int zombie_tree[NR_EXTENT_CACHES];
3854 	int ext_node[NR_EXTENT_CACHES];
3855 	/* to count memory footprint */
3856 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3857 	/* for read extent cache */
3858 	unsigned long long hit_largest;
3859 	/* for block age extent cache */
3860 	unsigned long long allocated_data_blocks;
3861 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3862 	int ndirty_data, ndirty_qdata;
3863 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3864 	int nats, dirty_nats, sits, dirty_sits;
3865 	int free_nids, avail_nids, alloc_nids;
3866 	int total_count, utilization;
3867 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3868 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3869 	int nr_dio_read, nr_dio_write;
3870 	unsigned int io_skip_bggc, other_skip_bggc;
3871 	int nr_flushing, nr_flushed, flush_list_empty;
3872 	int nr_discarding, nr_discarded;
3873 	int nr_discard_cmd;
3874 	unsigned int undiscard_blks;
3875 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3876 	unsigned int cur_ckpt_time, peak_ckpt_time;
3877 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3878 	int compr_inode, swapfile_inode;
3879 	unsigned long long compr_blocks;
3880 	int aw_cnt, max_aw_cnt;
3881 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3882 	unsigned int bimodal, avg_vblocks;
3883 	int util_free, util_valid, util_invalid;
3884 	int rsvd_segs, overp_segs;
3885 	int dirty_count, node_pages, meta_pages, compress_pages;
3886 	int compress_page_hit;
3887 	int prefree_count, call_count, cp_count, bg_cp_count;
3888 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3889 	int bg_node_segs, bg_data_segs;
3890 	int tot_blks, data_blks, node_blks;
3891 	int bg_data_blks, bg_node_blks;
3892 	int curseg[NR_CURSEG_TYPE];
3893 	int cursec[NR_CURSEG_TYPE];
3894 	int curzone[NR_CURSEG_TYPE];
3895 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3896 	unsigned int full_seg[NR_CURSEG_TYPE];
3897 	unsigned int valid_blks[NR_CURSEG_TYPE];
3898 
3899 	unsigned int meta_count[META_MAX];
3900 	unsigned int segment_count[2];
3901 	unsigned int block_count[2];
3902 	unsigned int inplace_count;
3903 	unsigned long long base_mem, cache_mem, page_mem;
3904 };
3905 
3906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3907 {
3908 	return (struct f2fs_stat_info *)sbi->stat_info;
3909 }
3910 
3911 #define stat_inc_cp_count(si)		((si)->cp_count++)
3912 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3913 #define stat_inc_call_count(si)		((si)->call_count++)
3914 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3915 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3916 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3917 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3918 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3919 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3920 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3921 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3922 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3923 #define stat_inc_inline_xattr(inode)					\
3924 	do {								\
3925 		if (f2fs_has_inline_xattr(inode))			\
3926 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3927 	} while (0)
3928 #define stat_dec_inline_xattr(inode)					\
3929 	do {								\
3930 		if (f2fs_has_inline_xattr(inode))			\
3931 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3932 	} while (0)
3933 #define stat_inc_inline_inode(inode)					\
3934 	do {								\
3935 		if (f2fs_has_inline_data(inode))			\
3936 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3937 	} while (0)
3938 #define stat_dec_inline_inode(inode)					\
3939 	do {								\
3940 		if (f2fs_has_inline_data(inode))			\
3941 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3942 	} while (0)
3943 #define stat_inc_inline_dir(inode)					\
3944 	do {								\
3945 		if (f2fs_has_inline_dentry(inode))			\
3946 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3947 	} while (0)
3948 #define stat_dec_inline_dir(inode)					\
3949 	do {								\
3950 		if (f2fs_has_inline_dentry(inode))			\
3951 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3952 	} while (0)
3953 #define stat_inc_compr_inode(inode)					\
3954 	do {								\
3955 		if (f2fs_compressed_file(inode))			\
3956 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3957 	} while (0)
3958 #define stat_dec_compr_inode(inode)					\
3959 	do {								\
3960 		if (f2fs_compressed_file(inode))			\
3961 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3962 	} while (0)
3963 #define stat_add_compr_blocks(inode, blocks)				\
3964 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3965 #define stat_sub_compr_blocks(inode, blocks)				\
3966 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3967 #define stat_inc_swapfile_inode(inode)					\
3968 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3969 #define stat_dec_swapfile_inode(inode)					\
3970 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3971 #define stat_inc_atomic_inode(inode)					\
3972 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3973 #define stat_dec_atomic_inode(inode)					\
3974 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3975 #define stat_inc_meta_count(sbi, blkaddr)				\
3976 	do {								\
3977 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3978 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3979 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3980 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3981 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3982 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3983 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3984 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3985 	} while (0)
3986 #define stat_inc_seg_type(sbi, curseg)					\
3987 		((sbi)->segment_count[(curseg)->alloc_type]++)
3988 #define stat_inc_block_count(sbi, curseg)				\
3989 		((sbi)->block_count[(curseg)->alloc_type]++)
3990 #define stat_inc_inplace_blocks(sbi)					\
3991 		(atomic_inc(&(sbi)->inplace_count))
3992 #define stat_update_max_atomic_write(inode)				\
3993 	do {								\
3994 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3995 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3996 		if (cur > max)						\
3997 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3998 	} while (0)
3999 #define stat_inc_seg_count(sbi, type, gc_type)				\
4000 	do {								\
4001 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4002 		si->tot_segs++;						\
4003 		if ((type) == SUM_TYPE_DATA) {				\
4004 			si->data_segs++;				\
4005 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4006 		} else {						\
4007 			si->node_segs++;				\
4008 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4009 		}							\
4010 	} while (0)
4011 
4012 #define stat_inc_tot_blk_count(si, blks)				\
4013 	((si)->tot_blks += (blks))
4014 
4015 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4016 	do {								\
4017 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4018 		stat_inc_tot_blk_count(si, blks);			\
4019 		si->data_blks += (blks);				\
4020 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4021 	} while (0)
4022 
4023 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4024 	do {								\
4025 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4026 		stat_inc_tot_blk_count(si, blks);			\
4027 		si->node_blks += (blks);				\
4028 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4029 	} while (0)
4030 
4031 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4032 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4033 void __init f2fs_create_root_stats(void);
4034 void f2fs_destroy_root_stats(void);
4035 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4036 #else
4037 #define stat_inc_cp_count(si)				do { } while (0)
4038 #define stat_inc_bg_cp_count(si)			do { } while (0)
4039 #define stat_inc_call_count(si)				do { } while (0)
4040 #define stat_inc_bggc_count(si)				do { } while (0)
4041 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4042 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4043 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4044 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4045 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4046 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4047 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4048 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4049 #define stat_inc_inline_xattr(inode)			do { } while (0)
4050 #define stat_dec_inline_xattr(inode)			do { } while (0)
4051 #define stat_inc_inline_inode(inode)			do { } while (0)
4052 #define stat_dec_inline_inode(inode)			do { } while (0)
4053 #define stat_inc_inline_dir(inode)			do { } while (0)
4054 #define stat_dec_inline_dir(inode)			do { } while (0)
4055 #define stat_inc_compr_inode(inode)			do { } while (0)
4056 #define stat_dec_compr_inode(inode)			do { } while (0)
4057 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4058 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4059 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4060 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4061 #define stat_inc_atomic_inode(inode)			do { } while (0)
4062 #define stat_dec_atomic_inode(inode)			do { } while (0)
4063 #define stat_update_max_atomic_write(inode)		do { } while (0)
4064 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4065 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4066 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4067 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4068 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4069 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4070 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4071 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4072 
4073 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4074 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4075 static inline void __init f2fs_create_root_stats(void) { }
4076 static inline void f2fs_destroy_root_stats(void) { }
4077 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4078 #endif
4079 
4080 extern const struct file_operations f2fs_dir_operations;
4081 extern const struct file_operations f2fs_file_operations;
4082 extern const struct inode_operations f2fs_file_inode_operations;
4083 extern const struct address_space_operations f2fs_dblock_aops;
4084 extern const struct address_space_operations f2fs_node_aops;
4085 extern const struct address_space_operations f2fs_meta_aops;
4086 extern const struct inode_operations f2fs_dir_inode_operations;
4087 extern const struct inode_operations f2fs_symlink_inode_operations;
4088 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4089 extern const struct inode_operations f2fs_special_inode_operations;
4090 extern struct kmem_cache *f2fs_inode_entry_slab;
4091 
4092 /*
4093  * inline.c
4094  */
4095 bool f2fs_may_inline_data(struct inode *inode);
4096 bool f2fs_sanity_check_inline_data(struct inode *inode);
4097 bool f2fs_may_inline_dentry(struct inode *inode);
4098 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4099 void f2fs_truncate_inline_inode(struct inode *inode,
4100 						struct page *ipage, u64 from);
4101 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4102 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4103 int f2fs_convert_inline_inode(struct inode *inode);
4104 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4105 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4106 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4107 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4108 					const struct f2fs_filename *fname,
4109 					struct page **res_page);
4110 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4111 			struct page *ipage);
4112 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4113 			struct inode *inode, nid_t ino, umode_t mode);
4114 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4115 				struct page *page, struct inode *dir,
4116 				struct inode *inode);
4117 bool f2fs_empty_inline_dir(struct inode *dir);
4118 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4119 			struct fscrypt_str *fstr);
4120 int f2fs_inline_data_fiemap(struct inode *inode,
4121 			struct fiemap_extent_info *fieinfo,
4122 			__u64 start, __u64 len);
4123 
4124 /*
4125  * shrinker.c
4126  */
4127 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4128 			struct shrink_control *sc);
4129 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4130 			struct shrink_control *sc);
4131 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4132 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4133 
4134 /*
4135  * extent_cache.c
4136  */
4137 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4138 				struct rb_entry *cached_re, unsigned int ofs);
4139 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4140 				struct rb_root_cached *root,
4141 				struct rb_node **parent,
4142 				unsigned long long key, bool *left_most);
4143 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4144 				struct rb_root_cached *root,
4145 				struct rb_node **parent,
4146 				unsigned int ofs, bool *leftmost);
4147 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4148 		struct rb_entry *cached_re, unsigned int ofs,
4149 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4150 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4151 		bool force, bool *leftmost);
4152 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4153 				struct rb_root_cached *root, bool check_key);
4154 void f2fs_init_extent_tree(struct inode *inode);
4155 void f2fs_drop_extent_tree(struct inode *inode);
4156 void f2fs_destroy_extent_node(struct inode *inode);
4157 void f2fs_destroy_extent_tree(struct inode *inode);
4158 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4159 int __init f2fs_create_extent_cache(void);
4160 void f2fs_destroy_extent_cache(void);
4161 
4162 /* read extent cache ops */
4163 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4164 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4165 			struct extent_info *ei);
4166 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4167 			block_t *blkaddr);
4168 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4169 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4170 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4171 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4172 			int nr_shrink);
4173 
4174 /* block age extent cache ops */
4175 void f2fs_init_age_extent_tree(struct inode *inode);
4176 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4177 			struct extent_info *ei);
4178 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4179 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4180 			pgoff_t fofs, unsigned int len);
4181 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4182 			int nr_shrink);
4183 
4184 /*
4185  * sysfs.c
4186  */
4187 #define MIN_RA_MUL	2
4188 #define MAX_RA_MUL	256
4189 
4190 int __init f2fs_init_sysfs(void);
4191 void f2fs_exit_sysfs(void);
4192 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4193 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4194 
4195 /* verity.c */
4196 extern const struct fsverity_operations f2fs_verityops;
4197 
4198 /*
4199  * crypto support
4200  */
4201 static inline bool f2fs_encrypted_file(struct inode *inode)
4202 {
4203 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4204 }
4205 
4206 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4207 {
4208 #ifdef CONFIG_FS_ENCRYPTION
4209 	file_set_encrypt(inode);
4210 	f2fs_set_inode_flags(inode);
4211 #endif
4212 }
4213 
4214 /*
4215  * Returns true if the reads of the inode's data need to undergo some
4216  * postprocessing step, like decryption or authenticity verification.
4217  */
4218 static inline bool f2fs_post_read_required(struct inode *inode)
4219 {
4220 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4221 		f2fs_compressed_file(inode);
4222 }
4223 
4224 /*
4225  * compress.c
4226  */
4227 #ifdef CONFIG_F2FS_FS_COMPRESSION
4228 bool f2fs_is_compressed_page(struct page *page);
4229 struct page *f2fs_compress_control_page(struct page *page);
4230 int f2fs_prepare_compress_overwrite(struct inode *inode,
4231 			struct page **pagep, pgoff_t index, void **fsdata);
4232 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4233 					pgoff_t index, unsigned copied);
4234 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4235 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4236 bool f2fs_is_compress_backend_ready(struct inode *inode);
4237 int __init f2fs_init_compress_mempool(void);
4238 void f2fs_destroy_compress_mempool(void);
4239 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4240 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4241 				block_t blkaddr, bool in_task);
4242 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4243 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4244 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4245 				int index, int nr_pages, bool uptodate);
4246 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4247 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4248 int f2fs_write_multi_pages(struct compress_ctx *cc,
4249 						int *submitted,
4250 						struct writeback_control *wbc,
4251 						enum iostat_type io_type);
4252 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4253 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4254 				pgoff_t fofs, block_t blkaddr,
4255 				unsigned int llen, unsigned int c_len);
4256 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4257 				unsigned nr_pages, sector_t *last_block_in_bio,
4258 				bool is_readahead, bool for_write);
4259 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4260 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4261 				bool in_task);
4262 void f2fs_put_page_dic(struct page *page, bool in_task);
4263 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4264 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4265 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4266 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4267 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4268 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4269 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4270 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4271 int __init f2fs_init_compress_cache(void);
4272 void f2fs_destroy_compress_cache(void);
4273 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4274 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4275 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4276 						nid_t ino, block_t blkaddr);
4277 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4278 								block_t blkaddr);
4279 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4280 #define inc_compr_inode_stat(inode)					\
4281 	do {								\
4282 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4283 		sbi->compr_new_inode++;					\
4284 	} while (0)
4285 #define add_compr_block_stat(inode, blocks)				\
4286 	do {								\
4287 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4288 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4289 		sbi->compr_written_block += blocks;			\
4290 		sbi->compr_saved_block += diff;				\
4291 	} while (0)
4292 #else
4293 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4294 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4295 {
4296 	if (!f2fs_compressed_file(inode))
4297 		return true;
4298 	/* not support compression */
4299 	return false;
4300 }
4301 static inline struct page *f2fs_compress_control_page(struct page *page)
4302 {
4303 	WARN_ON_ONCE(1);
4304 	return ERR_PTR(-EINVAL);
4305 }
4306 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4307 static inline void f2fs_destroy_compress_mempool(void) { }
4308 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4309 				bool in_task) { }
4310 static inline void f2fs_end_read_compressed_page(struct page *page,
4311 				bool failed, block_t blkaddr, bool in_task)
4312 {
4313 	WARN_ON_ONCE(1);
4314 }
4315 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4316 {
4317 	WARN_ON_ONCE(1);
4318 }
4319 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4320 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4321 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4322 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4323 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4324 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4325 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4326 static inline void f2fs_destroy_compress_cache(void) { }
4327 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4328 				block_t blkaddr) { }
4329 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4330 				struct page *page, nid_t ino, block_t blkaddr) { }
4331 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4332 				struct page *page, block_t blkaddr) { return false; }
4333 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4334 							nid_t ino) { }
4335 #define inc_compr_inode_stat(inode)		do { } while (0)
4336 static inline void f2fs_update_read_extent_tree_range_compressed(
4337 				struct inode *inode,
4338 				pgoff_t fofs, block_t blkaddr,
4339 				unsigned int llen, unsigned int c_len) { }
4340 #endif
4341 
4342 static inline int set_compress_context(struct inode *inode)
4343 {
4344 #ifdef CONFIG_F2FS_FS_COMPRESSION
4345 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4346 
4347 	F2FS_I(inode)->i_compress_algorithm =
4348 			F2FS_OPTION(sbi).compress_algorithm;
4349 	F2FS_I(inode)->i_log_cluster_size =
4350 			F2FS_OPTION(sbi).compress_log_size;
4351 	F2FS_I(inode)->i_compress_flag =
4352 			F2FS_OPTION(sbi).compress_chksum ?
4353 				1 << COMPRESS_CHKSUM : 0;
4354 	F2FS_I(inode)->i_cluster_size =
4355 			1 << F2FS_I(inode)->i_log_cluster_size;
4356 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4357 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4358 			F2FS_OPTION(sbi).compress_level)
4359 		F2FS_I(inode)->i_compress_flag |=
4360 				F2FS_OPTION(sbi).compress_level <<
4361 				COMPRESS_LEVEL_OFFSET;
4362 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4363 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4364 	stat_inc_compr_inode(inode);
4365 	inc_compr_inode_stat(inode);
4366 	f2fs_mark_inode_dirty_sync(inode, true);
4367 	return 0;
4368 #else
4369 	return -EOPNOTSUPP;
4370 #endif
4371 }
4372 
4373 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4374 {
4375 	struct f2fs_inode_info *fi = F2FS_I(inode);
4376 
4377 	if (!f2fs_compressed_file(inode))
4378 		return true;
4379 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4380 		return false;
4381 
4382 	fi->i_flags &= ~F2FS_COMPR_FL;
4383 	stat_dec_compr_inode(inode);
4384 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4385 	f2fs_mark_inode_dirty_sync(inode, true);
4386 	return true;
4387 }
4388 
4389 #define F2FS_FEATURE_FUNCS(name, flagname) \
4390 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4391 { \
4392 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4393 }
4394 
4395 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4396 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4397 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4398 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4399 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4400 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4401 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4402 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4403 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4404 F2FS_FEATURE_FUNCS(verity, VERITY);
4405 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4406 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4407 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4408 F2FS_FEATURE_FUNCS(readonly, RO);
4409 
4410 #ifdef CONFIG_BLK_DEV_ZONED
4411 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4412 				    block_t blkaddr)
4413 {
4414 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4415 
4416 	return test_bit(zno, FDEV(devi).blkz_seq);
4417 }
4418 #endif
4419 
4420 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4421 {
4422 	return f2fs_sb_has_blkzoned(sbi);
4423 }
4424 
4425 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4426 {
4427 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4428 }
4429 
4430 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4431 {
4432 	int i;
4433 
4434 	if (!f2fs_is_multi_device(sbi))
4435 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4436 
4437 	for (i = 0; i < sbi->s_ndevs; i++)
4438 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4439 			return true;
4440 	return false;
4441 }
4442 
4443 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4444 {
4445 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4446 					f2fs_hw_should_discard(sbi);
4447 }
4448 
4449 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4450 {
4451 	int i;
4452 
4453 	if (!f2fs_is_multi_device(sbi))
4454 		return bdev_read_only(sbi->sb->s_bdev);
4455 
4456 	for (i = 0; i < sbi->s_ndevs; i++)
4457 		if (bdev_read_only(FDEV(i).bdev))
4458 			return true;
4459 	return false;
4460 }
4461 
4462 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4463 {
4464 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4465 }
4466 
4467 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4468 {
4469 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4470 }
4471 
4472 static inline bool f2fs_may_compress(struct inode *inode)
4473 {
4474 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4475 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4476 		return false;
4477 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4478 }
4479 
4480 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4481 						u64 blocks, bool add)
4482 {
4483 	struct f2fs_inode_info *fi = F2FS_I(inode);
4484 	int diff = fi->i_cluster_size - blocks;
4485 
4486 	/* don't update i_compr_blocks if saved blocks were released */
4487 	if (!add && !atomic_read(&fi->i_compr_blocks))
4488 		return;
4489 
4490 	if (add) {
4491 		atomic_add(diff, &fi->i_compr_blocks);
4492 		stat_add_compr_blocks(inode, diff);
4493 	} else {
4494 		atomic_sub(diff, &fi->i_compr_blocks);
4495 		stat_sub_compr_blocks(inode, diff);
4496 	}
4497 	f2fs_mark_inode_dirty_sync(inode, true);
4498 }
4499 
4500 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4501 								int flag)
4502 {
4503 	if (!f2fs_is_multi_device(sbi))
4504 		return false;
4505 	if (flag != F2FS_GET_BLOCK_DIO)
4506 		return false;
4507 	return sbi->aligned_blksize;
4508 }
4509 
4510 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4511 {
4512 	return fsverity_active(inode) &&
4513 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4514 }
4515 
4516 #ifdef CONFIG_F2FS_FAULT_INJECTION
4517 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4518 							unsigned int type);
4519 #else
4520 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4521 #endif
4522 
4523 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4524 {
4525 #ifdef CONFIG_QUOTA
4526 	if (f2fs_sb_has_quota_ino(sbi))
4527 		return true;
4528 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4529 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4530 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4531 		return true;
4532 #endif
4533 	return false;
4534 }
4535 
4536 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4537 {
4538 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4539 }
4540 
4541 static inline void f2fs_io_schedule_timeout(long timeout)
4542 {
4543 	set_current_state(TASK_UNINTERRUPTIBLE);
4544 	io_schedule_timeout(timeout);
4545 }
4546 
4547 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4548 					enum page_type type)
4549 {
4550 	if (unlikely(f2fs_cp_error(sbi)))
4551 		return;
4552 
4553 	if (ofs == sbi->page_eio_ofs[type]) {
4554 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4555 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4556 	} else {
4557 		sbi->page_eio_ofs[type] = ofs;
4558 		sbi->page_eio_cnt[type] = 0;
4559 	}
4560 }
4561 
4562 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4563 {
4564 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4565 }
4566 
4567 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4568 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4569 
4570 #endif /* _LINUX_F2FS_H */
4571