1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/bio.h> 23 24 #ifdef CONFIG_F2FS_CHECK_FS 25 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 26 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 27 #else 28 #define f2fs_bug_on(sbi, condition) \ 29 do { \ 30 if (unlikely(condition)) { \ 31 WARN_ON(1); \ 32 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 33 } \ 34 } while (0) 35 #define f2fs_down_write(x, y) down_write(x) 36 #endif 37 38 /* 39 * For mount options 40 */ 41 #define F2FS_MOUNT_BG_GC 0x00000001 42 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 43 #define F2FS_MOUNT_DISCARD 0x00000004 44 #define F2FS_MOUNT_NOHEAP 0x00000008 45 #define F2FS_MOUNT_XATTR_USER 0x00000010 46 #define F2FS_MOUNT_POSIX_ACL 0x00000020 47 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 48 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 49 #define F2FS_MOUNT_INLINE_DATA 0x00000100 50 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 51 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 52 #define F2FS_MOUNT_NOBARRIER 0x00000800 53 #define F2FS_MOUNT_FASTBOOT 0x00001000 54 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 55 56 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 57 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 58 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 59 60 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 61 typecheck(unsigned long long, b) && \ 62 ((long long)((a) - (b)) > 0)) 63 64 typedef u32 block_t; /* 65 * should not change u32, since it is the on-disk block 66 * address format, __le32. 67 */ 68 typedef u32 nid_t; 69 70 struct f2fs_mount_info { 71 unsigned int opt; 72 }; 73 74 #define F2FS_FEATURE_ENCRYPT 0x0001 75 76 #define F2FS_HAS_FEATURE(sb, mask) \ 77 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 78 #define F2FS_SET_FEATURE(sb, mask) \ 79 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 80 #define F2FS_CLEAR_FEATURE(sb, mask) \ 81 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 82 83 #define CRCPOLY_LE 0xedb88320 84 85 static inline __u32 f2fs_crc32(void *buf, size_t len) 86 { 87 unsigned char *p = (unsigned char *)buf; 88 __u32 crc = F2FS_SUPER_MAGIC; 89 int i; 90 91 while (len--) { 92 crc ^= *p++; 93 for (i = 0; i < 8; i++) 94 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 95 } 96 return crc; 97 } 98 99 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 100 { 101 return f2fs_crc32(buf, buf_size) == blk_crc; 102 } 103 104 /* 105 * For checkpoint manager 106 */ 107 enum { 108 NAT_BITMAP, 109 SIT_BITMAP 110 }; 111 112 enum { 113 CP_UMOUNT, 114 CP_FASTBOOT, 115 CP_SYNC, 116 CP_RECOVERY, 117 CP_DISCARD, 118 }; 119 120 #define DEF_BATCHED_TRIM_SECTIONS 32 121 #define BATCHED_TRIM_SEGMENTS(sbi) \ 122 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 123 #define BATCHED_TRIM_BLOCKS(sbi) \ 124 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 125 126 struct cp_control { 127 int reason; 128 __u64 trim_start; 129 __u64 trim_end; 130 __u64 trim_minlen; 131 __u64 trimmed; 132 }; 133 134 /* 135 * For CP/NAT/SIT/SSA readahead 136 */ 137 enum { 138 META_CP, 139 META_NAT, 140 META_SIT, 141 META_SSA, 142 META_POR, 143 }; 144 145 /* for the list of ino */ 146 enum { 147 ORPHAN_INO, /* for orphan ino list */ 148 APPEND_INO, /* for append ino list */ 149 UPDATE_INO, /* for update ino list */ 150 MAX_INO_ENTRY, /* max. list */ 151 }; 152 153 struct ino_entry { 154 struct list_head list; /* list head */ 155 nid_t ino; /* inode number */ 156 }; 157 158 /* 159 * for the list of directory inodes or gc inodes. 160 * NOTE: there are two slab users for this structure, if we add/modify/delete 161 * fields in structure for one of slab users, it may affect fields or size of 162 * other one, in this condition, it's better to split both of slab and related 163 * data structure. 164 */ 165 struct inode_entry { 166 struct list_head list; /* list head */ 167 struct inode *inode; /* vfs inode pointer */ 168 }; 169 170 /* for the list of blockaddresses to be discarded */ 171 struct discard_entry { 172 struct list_head list; /* list head */ 173 block_t blkaddr; /* block address to be discarded */ 174 int len; /* # of consecutive blocks of the discard */ 175 }; 176 177 /* for the list of fsync inodes, used only during recovery */ 178 struct fsync_inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 block_t blkaddr; /* block address locating the last fsync */ 182 block_t last_dentry; /* block address locating the last dentry */ 183 block_t last_inode; /* block address locating the last inode */ 184 }; 185 186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 188 189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 193 194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 196 197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 198 { 199 int before = nats_in_cursum(rs); 200 rs->n_nats = cpu_to_le16(before + i); 201 return before; 202 } 203 204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 205 { 206 int before = sits_in_cursum(rs); 207 rs->n_sits = cpu_to_le16(before + i); 208 return before; 209 } 210 211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 212 int type) 213 { 214 if (type == NAT_JOURNAL) 215 return size <= MAX_NAT_JENTRIES(sum); 216 return size <= MAX_SIT_JENTRIES(sum); 217 } 218 219 /* 220 * ioctl commands 221 */ 222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 225 226 #define F2FS_IOCTL_MAGIC 0xf5 227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 233 234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 235 _IOR('f', 19, struct f2fs_encryption_policy) 236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 237 _IOW('f', 20, __u8[16]) 238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 239 _IOW('f', 21, struct f2fs_encryption_policy) 240 241 /* 242 * should be same as XFS_IOC_GOINGDOWN. 243 * Flags for going down operation used by FS_IOC_GOINGDOWN 244 */ 245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 249 250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 251 /* 252 * ioctl commands in 32 bit emulation 253 */ 254 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 255 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 256 #endif 257 258 /* 259 * For INODE and NODE manager 260 */ 261 /* for directory operations */ 262 struct f2fs_str { 263 unsigned char *name; 264 u32 len; 265 }; 266 267 struct f2fs_filename { 268 const struct qstr *usr_fname; 269 struct f2fs_str disk_name; 270 f2fs_hash_t hash; 271 #ifdef CONFIG_F2FS_FS_ENCRYPTION 272 struct f2fs_str crypto_buf; 273 #endif 274 }; 275 276 #define FSTR_INIT(n, l) { .name = n, .len = l } 277 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 278 #define fname_name(p) ((p)->disk_name.name) 279 #define fname_len(p) ((p)->disk_name.len) 280 281 struct f2fs_dentry_ptr { 282 struct inode *inode; 283 const void *bitmap; 284 struct f2fs_dir_entry *dentry; 285 __u8 (*filename)[F2FS_SLOT_LEN]; 286 int max; 287 }; 288 289 static inline void make_dentry_ptr(struct inode *inode, 290 struct f2fs_dentry_ptr *d, void *src, int type) 291 { 292 d->inode = inode; 293 294 if (type == 1) { 295 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 296 d->max = NR_DENTRY_IN_BLOCK; 297 d->bitmap = &t->dentry_bitmap; 298 d->dentry = t->dentry; 299 d->filename = t->filename; 300 } else { 301 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 302 d->max = NR_INLINE_DENTRY; 303 d->bitmap = &t->dentry_bitmap; 304 d->dentry = t->dentry; 305 d->filename = t->filename; 306 } 307 } 308 309 /* 310 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 311 * as its node offset to distinguish from index node blocks. 312 * But some bits are used to mark the node block. 313 */ 314 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 315 >> OFFSET_BIT_SHIFT) 316 enum { 317 ALLOC_NODE, /* allocate a new node page if needed */ 318 LOOKUP_NODE, /* look up a node without readahead */ 319 LOOKUP_NODE_RA, /* 320 * look up a node with readahead called 321 * by get_data_block. 322 */ 323 }; 324 325 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 326 327 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 328 329 /* vector size for gang look-up from extent cache that consists of radix tree */ 330 #define EXT_TREE_VEC_SIZE 64 331 332 /* for in-memory extent cache entry */ 333 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 334 335 /* number of extent info in extent cache we try to shrink */ 336 #define EXTENT_CACHE_SHRINK_NUMBER 128 337 338 struct extent_info { 339 unsigned int fofs; /* start offset in a file */ 340 u32 blk; /* start block address of the extent */ 341 unsigned int len; /* length of the extent */ 342 }; 343 344 struct extent_node { 345 struct rb_node rb_node; /* rb node located in rb-tree */ 346 struct list_head list; /* node in global extent list of sbi */ 347 struct extent_info ei; /* extent info */ 348 }; 349 350 struct extent_tree { 351 nid_t ino; /* inode number */ 352 struct rb_root root; /* root of extent info rb-tree */ 353 struct extent_node *cached_en; /* recently accessed extent node */ 354 struct extent_info largest; /* largested extent info */ 355 rwlock_t lock; /* protect extent info rb-tree */ 356 atomic_t refcount; /* reference count of rb-tree */ 357 unsigned int count; /* # of extent node in rb-tree*/ 358 }; 359 360 /* 361 * This structure is taken from ext4_map_blocks. 362 * 363 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 364 */ 365 #define F2FS_MAP_NEW (1 << BH_New) 366 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 367 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 368 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 369 F2FS_MAP_UNWRITTEN) 370 371 struct f2fs_map_blocks { 372 block_t m_pblk; 373 block_t m_lblk; 374 unsigned int m_len; 375 unsigned int m_flags; 376 }; 377 378 /* 379 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 380 */ 381 #define FADVISE_COLD_BIT 0x01 382 #define FADVISE_LOST_PINO_BIT 0x02 383 #define FADVISE_ENCRYPT_BIT 0x04 384 #define FADVISE_ENC_NAME_BIT 0x08 385 386 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 387 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 388 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 389 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 390 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 391 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 392 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 393 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 394 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 395 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 396 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 397 398 /* Encryption algorithms */ 399 #define F2FS_ENCRYPTION_MODE_INVALID 0 400 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 401 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 402 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 403 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 404 405 #include "f2fs_crypto.h" 406 407 #define DEF_DIR_LEVEL 0 408 409 struct f2fs_inode_info { 410 struct inode vfs_inode; /* serve a vfs inode */ 411 unsigned long i_flags; /* keep an inode flags for ioctl */ 412 unsigned char i_advise; /* use to give file attribute hints */ 413 unsigned char i_dir_level; /* use for dentry level for large dir */ 414 unsigned int i_current_depth; /* use only in directory structure */ 415 unsigned int i_pino; /* parent inode number */ 416 umode_t i_acl_mode; /* keep file acl mode temporarily */ 417 418 /* Use below internally in f2fs*/ 419 unsigned long flags; /* use to pass per-file flags */ 420 struct rw_semaphore i_sem; /* protect fi info */ 421 atomic_t dirty_pages; /* # of dirty pages */ 422 f2fs_hash_t chash; /* hash value of given file name */ 423 unsigned int clevel; /* maximum level of given file name */ 424 nid_t i_xattr_nid; /* node id that contains xattrs */ 425 unsigned long long xattr_ver; /* cp version of xattr modification */ 426 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 427 428 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 429 struct mutex inmem_lock; /* lock for inmemory pages */ 430 431 struct extent_tree *extent_tree; /* cached extent_tree entry */ 432 433 #ifdef CONFIG_F2FS_FS_ENCRYPTION 434 /* Encryption params */ 435 struct f2fs_crypt_info *i_crypt_info; 436 #endif 437 }; 438 439 static inline void get_extent_info(struct extent_info *ext, 440 struct f2fs_extent i_ext) 441 { 442 ext->fofs = le32_to_cpu(i_ext.fofs); 443 ext->blk = le32_to_cpu(i_ext.blk); 444 ext->len = le32_to_cpu(i_ext.len); 445 } 446 447 static inline void set_raw_extent(struct extent_info *ext, 448 struct f2fs_extent *i_ext) 449 { 450 i_ext->fofs = cpu_to_le32(ext->fofs); 451 i_ext->blk = cpu_to_le32(ext->blk); 452 i_ext->len = cpu_to_le32(ext->len); 453 } 454 455 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 456 u32 blk, unsigned int len) 457 { 458 ei->fofs = fofs; 459 ei->blk = blk; 460 ei->len = len; 461 } 462 463 static inline bool __is_extent_same(struct extent_info *ei1, 464 struct extent_info *ei2) 465 { 466 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 467 ei1->len == ei2->len); 468 } 469 470 static inline bool __is_extent_mergeable(struct extent_info *back, 471 struct extent_info *front) 472 { 473 return (back->fofs + back->len == front->fofs && 474 back->blk + back->len == front->blk); 475 } 476 477 static inline bool __is_back_mergeable(struct extent_info *cur, 478 struct extent_info *back) 479 { 480 return __is_extent_mergeable(back, cur); 481 } 482 483 static inline bool __is_front_mergeable(struct extent_info *cur, 484 struct extent_info *front) 485 { 486 return __is_extent_mergeable(cur, front); 487 } 488 489 struct f2fs_nm_info { 490 block_t nat_blkaddr; /* base disk address of NAT */ 491 nid_t max_nid; /* maximum possible node ids */ 492 nid_t available_nids; /* maximum available node ids */ 493 nid_t next_scan_nid; /* the next nid to be scanned */ 494 unsigned int ram_thresh; /* control the memory footprint */ 495 496 /* NAT cache management */ 497 struct radix_tree_root nat_root;/* root of the nat entry cache */ 498 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 499 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 500 struct list_head nat_entries; /* cached nat entry list (clean) */ 501 unsigned int nat_cnt; /* the # of cached nat entries */ 502 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 503 504 /* free node ids management */ 505 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 506 struct list_head free_nid_list; /* a list for free nids */ 507 spinlock_t free_nid_list_lock; /* protect free nid list */ 508 unsigned int fcnt; /* the number of free node id */ 509 struct mutex build_lock; /* lock for build free nids */ 510 511 /* for checkpoint */ 512 char *nat_bitmap; /* NAT bitmap pointer */ 513 int bitmap_size; /* bitmap size */ 514 }; 515 516 /* 517 * this structure is used as one of function parameters. 518 * all the information are dedicated to a given direct node block determined 519 * by the data offset in a file. 520 */ 521 struct dnode_of_data { 522 struct inode *inode; /* vfs inode pointer */ 523 struct page *inode_page; /* its inode page, NULL is possible */ 524 struct page *node_page; /* cached direct node page */ 525 nid_t nid; /* node id of the direct node block */ 526 unsigned int ofs_in_node; /* data offset in the node page */ 527 bool inode_page_locked; /* inode page is locked or not */ 528 block_t data_blkaddr; /* block address of the node block */ 529 }; 530 531 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 532 struct page *ipage, struct page *npage, nid_t nid) 533 { 534 memset(dn, 0, sizeof(*dn)); 535 dn->inode = inode; 536 dn->inode_page = ipage; 537 dn->node_page = npage; 538 dn->nid = nid; 539 } 540 541 /* 542 * For SIT manager 543 * 544 * By default, there are 6 active log areas across the whole main area. 545 * When considering hot and cold data separation to reduce cleaning overhead, 546 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 547 * respectively. 548 * In the current design, you should not change the numbers intentionally. 549 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 550 * logs individually according to the underlying devices. (default: 6) 551 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 552 * data and 8 for node logs. 553 */ 554 #define NR_CURSEG_DATA_TYPE (3) 555 #define NR_CURSEG_NODE_TYPE (3) 556 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 557 558 enum { 559 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 560 CURSEG_WARM_DATA, /* data blocks */ 561 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 562 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 563 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 564 CURSEG_COLD_NODE, /* indirect node blocks */ 565 NO_CHECK_TYPE, 566 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 567 }; 568 569 struct flush_cmd { 570 struct completion wait; 571 struct llist_node llnode; 572 int ret; 573 }; 574 575 struct flush_cmd_control { 576 struct task_struct *f2fs_issue_flush; /* flush thread */ 577 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 578 struct llist_head issue_list; /* list for command issue */ 579 struct llist_node *dispatch_list; /* list for command dispatch */ 580 }; 581 582 struct f2fs_sm_info { 583 struct sit_info *sit_info; /* whole segment information */ 584 struct free_segmap_info *free_info; /* free segment information */ 585 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 586 struct curseg_info *curseg_array; /* active segment information */ 587 588 block_t seg0_blkaddr; /* block address of 0'th segment */ 589 block_t main_blkaddr; /* start block address of main area */ 590 block_t ssa_blkaddr; /* start block address of SSA area */ 591 592 unsigned int segment_count; /* total # of segments */ 593 unsigned int main_segments; /* # of segments in main area */ 594 unsigned int reserved_segments; /* # of reserved segments */ 595 unsigned int ovp_segments; /* # of overprovision segments */ 596 597 /* a threshold to reclaim prefree segments */ 598 unsigned int rec_prefree_segments; 599 600 /* for small discard management */ 601 struct list_head discard_list; /* 4KB discard list */ 602 int nr_discards; /* # of discards in the list */ 603 int max_discards; /* max. discards to be issued */ 604 605 /* for batched trimming */ 606 unsigned int trim_sections; /* # of sections to trim */ 607 608 struct list_head sit_entry_set; /* sit entry set list */ 609 610 unsigned int ipu_policy; /* in-place-update policy */ 611 unsigned int min_ipu_util; /* in-place-update threshold */ 612 unsigned int min_fsync_blocks; /* threshold for fsync */ 613 614 /* for flush command control */ 615 struct flush_cmd_control *cmd_control_info; 616 617 }; 618 619 /* 620 * For superblock 621 */ 622 /* 623 * COUNT_TYPE for monitoring 624 * 625 * f2fs monitors the number of several block types such as on-writeback, 626 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 627 */ 628 enum count_type { 629 F2FS_WRITEBACK, 630 F2FS_DIRTY_DENTS, 631 F2FS_DIRTY_NODES, 632 F2FS_DIRTY_META, 633 F2FS_INMEM_PAGES, 634 NR_COUNT_TYPE, 635 }; 636 637 /* 638 * The below are the page types of bios used in submit_bio(). 639 * The available types are: 640 * DATA User data pages. It operates as async mode. 641 * NODE Node pages. It operates as async mode. 642 * META FS metadata pages such as SIT, NAT, CP. 643 * NR_PAGE_TYPE The number of page types. 644 * META_FLUSH Make sure the previous pages are written 645 * with waiting the bio's completion 646 * ... Only can be used with META. 647 */ 648 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 649 enum page_type { 650 DATA, 651 NODE, 652 META, 653 NR_PAGE_TYPE, 654 META_FLUSH, 655 INMEM, /* the below types are used by tracepoints only. */ 656 INMEM_DROP, 657 IPU, 658 OPU, 659 }; 660 661 struct f2fs_io_info { 662 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 663 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 664 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 665 block_t blk_addr; /* block address to be written */ 666 struct page *page; /* page to be written */ 667 struct page *encrypted_page; /* encrypted page */ 668 }; 669 670 #define is_read_io(rw) (((rw) & 1) == READ) 671 struct f2fs_bio_info { 672 struct f2fs_sb_info *sbi; /* f2fs superblock */ 673 struct bio *bio; /* bios to merge */ 674 sector_t last_block_in_bio; /* last block number */ 675 struct f2fs_io_info fio; /* store buffered io info. */ 676 struct rw_semaphore io_rwsem; /* blocking op for bio */ 677 }; 678 679 /* for inner inode cache management */ 680 struct inode_management { 681 struct radix_tree_root ino_root; /* ino entry array */ 682 spinlock_t ino_lock; /* for ino entry lock */ 683 struct list_head ino_list; /* inode list head */ 684 unsigned long ino_num; /* number of entries */ 685 }; 686 687 /* For s_flag in struct f2fs_sb_info */ 688 enum { 689 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 690 SBI_IS_CLOSE, /* specify unmounting */ 691 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 692 SBI_POR_DOING, /* recovery is doing or not */ 693 }; 694 695 struct f2fs_sb_info { 696 struct super_block *sb; /* pointer to VFS super block */ 697 struct proc_dir_entry *s_proc; /* proc entry */ 698 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 699 struct f2fs_super_block *raw_super; /* raw super block pointer */ 700 int s_flag; /* flags for sbi */ 701 702 /* for node-related operations */ 703 struct f2fs_nm_info *nm_info; /* node manager */ 704 struct inode *node_inode; /* cache node blocks */ 705 706 /* for segment-related operations */ 707 struct f2fs_sm_info *sm_info; /* segment manager */ 708 709 /* for bio operations */ 710 struct f2fs_bio_info read_io; /* for read bios */ 711 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 712 713 /* for checkpoint */ 714 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 715 struct inode *meta_inode; /* cache meta blocks */ 716 struct mutex cp_mutex; /* checkpoint procedure lock */ 717 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 718 struct rw_semaphore node_write; /* locking node writes */ 719 struct mutex writepages; /* mutex for writepages() */ 720 wait_queue_head_t cp_wait; 721 722 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 723 724 /* for orphan inode, use 0'th array */ 725 unsigned int max_orphans; /* max orphan inodes */ 726 727 /* for directory inode management */ 728 struct list_head dir_inode_list; /* dir inode list */ 729 spinlock_t dir_inode_lock; /* for dir inode list lock */ 730 731 /* for extent tree cache */ 732 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 733 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 734 struct list_head extent_list; /* lru list for shrinker */ 735 spinlock_t extent_lock; /* locking extent lru list */ 736 int total_ext_tree; /* extent tree count */ 737 atomic_t total_ext_node; /* extent info count */ 738 739 /* basic filesystem units */ 740 unsigned int log_sectors_per_block; /* log2 sectors per block */ 741 unsigned int log_blocksize; /* log2 block size */ 742 unsigned int blocksize; /* block size */ 743 unsigned int root_ino_num; /* root inode number*/ 744 unsigned int node_ino_num; /* node inode number*/ 745 unsigned int meta_ino_num; /* meta inode number*/ 746 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 747 unsigned int blocks_per_seg; /* blocks per segment */ 748 unsigned int segs_per_sec; /* segments per section */ 749 unsigned int secs_per_zone; /* sections per zone */ 750 unsigned int total_sections; /* total section count */ 751 unsigned int total_node_count; /* total node block count */ 752 unsigned int total_valid_node_count; /* valid node block count */ 753 unsigned int total_valid_inode_count; /* valid inode count */ 754 int active_logs; /* # of active logs */ 755 int dir_level; /* directory level */ 756 757 block_t user_block_count; /* # of user blocks */ 758 block_t total_valid_block_count; /* # of valid blocks */ 759 block_t alloc_valid_block_count; /* # of allocated blocks */ 760 block_t discard_blks; /* discard command candidats */ 761 block_t last_valid_block_count; /* for recovery */ 762 u32 s_next_generation; /* for NFS support */ 763 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 764 765 struct f2fs_mount_info mount_opt; /* mount options */ 766 767 /* for cleaning operations */ 768 struct mutex gc_mutex; /* mutex for GC */ 769 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 770 unsigned int cur_victim_sec; /* current victim section num */ 771 772 /* maximum # of trials to find a victim segment for SSR and GC */ 773 unsigned int max_victim_search; 774 775 /* 776 * for stat information. 777 * one is for the LFS mode, and the other is for the SSR mode. 778 */ 779 #ifdef CONFIG_F2FS_STAT_FS 780 struct f2fs_stat_info *stat_info; /* FS status information */ 781 unsigned int segment_count[2]; /* # of allocated segments */ 782 unsigned int block_count[2]; /* # of allocated blocks */ 783 atomic_t inplace_count; /* # of inplace update */ 784 atomic_t total_hit_ext; /* # of lookup extent cache */ 785 atomic_t read_hit_ext; /* # of hit extent cache */ 786 atomic_t inline_xattr; /* # of inline_xattr inodes */ 787 atomic_t inline_inode; /* # of inline_data inodes */ 788 atomic_t inline_dir; /* # of inline_dentry inodes */ 789 int bg_gc; /* background gc calls */ 790 unsigned int n_dirty_dirs; /* # of dir inodes */ 791 #endif 792 unsigned int last_victim[2]; /* last victim segment # */ 793 spinlock_t stat_lock; /* lock for stat operations */ 794 795 /* For sysfs suppport */ 796 struct kobject s_kobj; 797 struct completion s_kobj_unregister; 798 799 /* For shrinker support */ 800 struct list_head s_list; 801 struct mutex umount_mutex; 802 unsigned int shrinker_run_no; 803 }; 804 805 /* 806 * Inline functions 807 */ 808 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 809 { 810 return container_of(inode, struct f2fs_inode_info, vfs_inode); 811 } 812 813 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 814 { 815 return sb->s_fs_info; 816 } 817 818 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 819 { 820 return F2FS_SB(inode->i_sb); 821 } 822 823 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 824 { 825 return F2FS_I_SB(mapping->host); 826 } 827 828 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 829 { 830 return F2FS_M_SB(page->mapping); 831 } 832 833 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 834 { 835 return (struct f2fs_super_block *)(sbi->raw_super); 836 } 837 838 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 839 { 840 return (struct f2fs_checkpoint *)(sbi->ckpt); 841 } 842 843 static inline struct f2fs_node *F2FS_NODE(struct page *page) 844 { 845 return (struct f2fs_node *)page_address(page); 846 } 847 848 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 849 { 850 return &((struct f2fs_node *)page_address(page))->i; 851 } 852 853 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 854 { 855 return (struct f2fs_nm_info *)(sbi->nm_info); 856 } 857 858 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 859 { 860 return (struct f2fs_sm_info *)(sbi->sm_info); 861 } 862 863 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 864 { 865 return (struct sit_info *)(SM_I(sbi)->sit_info); 866 } 867 868 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 869 { 870 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 871 } 872 873 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 874 { 875 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 876 } 877 878 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 879 { 880 return sbi->meta_inode->i_mapping; 881 } 882 883 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 884 { 885 return sbi->node_inode->i_mapping; 886 } 887 888 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 889 { 890 return sbi->s_flag & (0x01 << type); 891 } 892 893 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 894 { 895 sbi->s_flag |= (0x01 << type); 896 } 897 898 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 899 { 900 sbi->s_flag &= ~(0x01 << type); 901 } 902 903 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 904 { 905 return le64_to_cpu(cp->checkpoint_ver); 906 } 907 908 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 909 { 910 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 911 return ckpt_flags & f; 912 } 913 914 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 915 { 916 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 917 ckpt_flags |= f; 918 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 919 } 920 921 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 922 { 923 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 924 ckpt_flags &= (~f); 925 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 926 } 927 928 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 929 { 930 down_read(&sbi->cp_rwsem); 931 } 932 933 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 934 { 935 up_read(&sbi->cp_rwsem); 936 } 937 938 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 939 { 940 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 941 } 942 943 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 944 { 945 up_write(&sbi->cp_rwsem); 946 } 947 948 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 949 { 950 int reason = CP_SYNC; 951 952 if (test_opt(sbi, FASTBOOT)) 953 reason = CP_FASTBOOT; 954 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 955 reason = CP_UMOUNT; 956 return reason; 957 } 958 959 static inline bool __remain_node_summaries(int reason) 960 { 961 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 962 } 963 964 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 965 { 966 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 967 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 968 } 969 970 /* 971 * Check whether the given nid is within node id range. 972 */ 973 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 974 { 975 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 976 return -EINVAL; 977 if (unlikely(nid >= NM_I(sbi)->max_nid)) 978 return -EINVAL; 979 return 0; 980 } 981 982 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 983 984 /* 985 * Check whether the inode has blocks or not 986 */ 987 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 988 { 989 if (F2FS_I(inode)->i_xattr_nid) 990 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 991 else 992 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 993 } 994 995 static inline bool f2fs_has_xattr_block(unsigned int ofs) 996 { 997 return ofs == XATTR_NODE_OFFSET; 998 } 999 1000 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1001 struct inode *inode, blkcnt_t count) 1002 { 1003 block_t valid_block_count; 1004 1005 spin_lock(&sbi->stat_lock); 1006 valid_block_count = 1007 sbi->total_valid_block_count + (block_t)count; 1008 if (unlikely(valid_block_count > sbi->user_block_count)) { 1009 spin_unlock(&sbi->stat_lock); 1010 return false; 1011 } 1012 inode->i_blocks += count; 1013 sbi->total_valid_block_count = valid_block_count; 1014 sbi->alloc_valid_block_count += (block_t)count; 1015 spin_unlock(&sbi->stat_lock); 1016 return true; 1017 } 1018 1019 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1020 struct inode *inode, 1021 blkcnt_t count) 1022 { 1023 spin_lock(&sbi->stat_lock); 1024 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1025 f2fs_bug_on(sbi, inode->i_blocks < count); 1026 inode->i_blocks -= count; 1027 sbi->total_valid_block_count -= (block_t)count; 1028 spin_unlock(&sbi->stat_lock); 1029 } 1030 1031 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1032 { 1033 atomic_inc(&sbi->nr_pages[count_type]); 1034 set_sbi_flag(sbi, SBI_IS_DIRTY); 1035 } 1036 1037 static inline void inode_inc_dirty_pages(struct inode *inode) 1038 { 1039 atomic_inc(&F2FS_I(inode)->dirty_pages); 1040 if (S_ISDIR(inode->i_mode)) 1041 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1042 } 1043 1044 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1045 { 1046 atomic_dec(&sbi->nr_pages[count_type]); 1047 } 1048 1049 static inline void inode_dec_dirty_pages(struct inode *inode) 1050 { 1051 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1052 !S_ISLNK(inode->i_mode)) 1053 return; 1054 1055 atomic_dec(&F2FS_I(inode)->dirty_pages); 1056 1057 if (S_ISDIR(inode->i_mode)) 1058 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1059 } 1060 1061 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1062 { 1063 return atomic_read(&sbi->nr_pages[count_type]); 1064 } 1065 1066 static inline int get_dirty_pages(struct inode *inode) 1067 { 1068 return atomic_read(&F2FS_I(inode)->dirty_pages); 1069 } 1070 1071 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1072 { 1073 unsigned int pages_per_sec = sbi->segs_per_sec * 1074 (1 << sbi->log_blocks_per_seg); 1075 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1076 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1077 } 1078 1079 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1080 { 1081 return sbi->total_valid_block_count; 1082 } 1083 1084 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1085 { 1086 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1087 1088 /* return NAT or SIT bitmap */ 1089 if (flag == NAT_BITMAP) 1090 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1091 else if (flag == SIT_BITMAP) 1092 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1093 1094 return 0; 1095 } 1096 1097 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1098 { 1099 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1100 } 1101 1102 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1103 { 1104 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1105 int offset; 1106 1107 if (__cp_payload(sbi) > 0) { 1108 if (flag == NAT_BITMAP) 1109 return &ckpt->sit_nat_version_bitmap; 1110 else 1111 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1112 } else { 1113 offset = (flag == NAT_BITMAP) ? 1114 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1115 return &ckpt->sit_nat_version_bitmap + offset; 1116 } 1117 } 1118 1119 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1120 { 1121 block_t start_addr; 1122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1123 unsigned long long ckpt_version = cur_cp_version(ckpt); 1124 1125 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1126 1127 /* 1128 * odd numbered checkpoint should at cp segment 0 1129 * and even segment must be at cp segment 1 1130 */ 1131 if (!(ckpt_version & 1)) 1132 start_addr += sbi->blocks_per_seg; 1133 1134 return start_addr; 1135 } 1136 1137 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1138 { 1139 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1140 } 1141 1142 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1143 struct inode *inode) 1144 { 1145 block_t valid_block_count; 1146 unsigned int valid_node_count; 1147 1148 spin_lock(&sbi->stat_lock); 1149 1150 valid_block_count = sbi->total_valid_block_count + 1; 1151 if (unlikely(valid_block_count > sbi->user_block_count)) { 1152 spin_unlock(&sbi->stat_lock); 1153 return false; 1154 } 1155 1156 valid_node_count = sbi->total_valid_node_count + 1; 1157 if (unlikely(valid_node_count > sbi->total_node_count)) { 1158 spin_unlock(&sbi->stat_lock); 1159 return false; 1160 } 1161 1162 if (inode) 1163 inode->i_blocks++; 1164 1165 sbi->alloc_valid_block_count++; 1166 sbi->total_valid_node_count++; 1167 sbi->total_valid_block_count++; 1168 spin_unlock(&sbi->stat_lock); 1169 1170 return true; 1171 } 1172 1173 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1174 struct inode *inode) 1175 { 1176 spin_lock(&sbi->stat_lock); 1177 1178 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1179 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1180 f2fs_bug_on(sbi, !inode->i_blocks); 1181 1182 inode->i_blocks--; 1183 sbi->total_valid_node_count--; 1184 sbi->total_valid_block_count--; 1185 1186 spin_unlock(&sbi->stat_lock); 1187 } 1188 1189 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1190 { 1191 return sbi->total_valid_node_count; 1192 } 1193 1194 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1195 { 1196 spin_lock(&sbi->stat_lock); 1197 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1198 sbi->total_valid_inode_count++; 1199 spin_unlock(&sbi->stat_lock); 1200 } 1201 1202 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1203 { 1204 spin_lock(&sbi->stat_lock); 1205 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1206 sbi->total_valid_inode_count--; 1207 spin_unlock(&sbi->stat_lock); 1208 } 1209 1210 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1211 { 1212 return sbi->total_valid_inode_count; 1213 } 1214 1215 static inline void f2fs_put_page(struct page *page, int unlock) 1216 { 1217 if (!page) 1218 return; 1219 1220 if (unlock) { 1221 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1222 unlock_page(page); 1223 } 1224 page_cache_release(page); 1225 } 1226 1227 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1228 { 1229 if (dn->node_page) 1230 f2fs_put_page(dn->node_page, 1); 1231 if (dn->inode_page && dn->node_page != dn->inode_page) 1232 f2fs_put_page(dn->inode_page, 0); 1233 dn->node_page = NULL; 1234 dn->inode_page = NULL; 1235 } 1236 1237 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1238 size_t size) 1239 { 1240 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1241 } 1242 1243 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1244 gfp_t flags) 1245 { 1246 void *entry; 1247 retry: 1248 entry = kmem_cache_alloc(cachep, flags); 1249 if (!entry) { 1250 cond_resched(); 1251 goto retry; 1252 } 1253 1254 return entry; 1255 } 1256 1257 static inline struct bio *f2fs_bio_alloc(int npages) 1258 { 1259 struct bio *bio; 1260 1261 /* No failure on bio allocation */ 1262 retry: 1263 bio = bio_alloc(GFP_NOIO, npages); 1264 if (!bio) { 1265 cond_resched(); 1266 goto retry; 1267 } 1268 return bio; 1269 } 1270 1271 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1272 unsigned long index, void *item) 1273 { 1274 while (radix_tree_insert(root, index, item)) 1275 cond_resched(); 1276 } 1277 1278 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1279 1280 static inline bool IS_INODE(struct page *page) 1281 { 1282 struct f2fs_node *p = F2FS_NODE(page); 1283 return RAW_IS_INODE(p); 1284 } 1285 1286 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1287 { 1288 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1289 } 1290 1291 static inline block_t datablock_addr(struct page *node_page, 1292 unsigned int offset) 1293 { 1294 struct f2fs_node *raw_node; 1295 __le32 *addr_array; 1296 raw_node = F2FS_NODE(node_page); 1297 addr_array = blkaddr_in_node(raw_node); 1298 return le32_to_cpu(addr_array[offset]); 1299 } 1300 1301 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1302 { 1303 int mask; 1304 1305 addr += (nr >> 3); 1306 mask = 1 << (7 - (nr & 0x07)); 1307 return mask & *addr; 1308 } 1309 1310 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1311 { 1312 int mask; 1313 1314 addr += (nr >> 3); 1315 mask = 1 << (7 - (nr & 0x07)); 1316 *addr |= mask; 1317 } 1318 1319 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1320 { 1321 int mask; 1322 1323 addr += (nr >> 3); 1324 mask = 1 << (7 - (nr & 0x07)); 1325 *addr &= ~mask; 1326 } 1327 1328 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1329 { 1330 int mask; 1331 int ret; 1332 1333 addr += (nr >> 3); 1334 mask = 1 << (7 - (nr & 0x07)); 1335 ret = mask & *addr; 1336 *addr |= mask; 1337 return ret; 1338 } 1339 1340 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1341 { 1342 int mask; 1343 int ret; 1344 1345 addr += (nr >> 3); 1346 mask = 1 << (7 - (nr & 0x07)); 1347 ret = mask & *addr; 1348 *addr &= ~mask; 1349 return ret; 1350 } 1351 1352 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1353 { 1354 int mask; 1355 1356 addr += (nr >> 3); 1357 mask = 1 << (7 - (nr & 0x07)); 1358 *addr ^= mask; 1359 } 1360 1361 /* used for f2fs_inode_info->flags */ 1362 enum { 1363 FI_NEW_INODE, /* indicate newly allocated inode */ 1364 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1365 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1366 FI_INC_LINK, /* need to increment i_nlink */ 1367 FI_ACL_MODE, /* indicate acl mode */ 1368 FI_NO_ALLOC, /* should not allocate any blocks */ 1369 FI_FREE_NID, /* free allocated nide */ 1370 FI_UPDATE_DIR, /* should update inode block for consistency */ 1371 FI_DELAY_IPUT, /* used for the recovery */ 1372 FI_NO_EXTENT, /* not to use the extent cache */ 1373 FI_INLINE_XATTR, /* used for inline xattr */ 1374 FI_INLINE_DATA, /* used for inline data*/ 1375 FI_INLINE_DENTRY, /* used for inline dentry */ 1376 FI_APPEND_WRITE, /* inode has appended data */ 1377 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1378 FI_NEED_IPU, /* used for ipu per file */ 1379 FI_ATOMIC_FILE, /* indicate atomic file */ 1380 FI_VOLATILE_FILE, /* indicate volatile file */ 1381 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1382 FI_DROP_CACHE, /* drop dirty page cache */ 1383 FI_DATA_EXIST, /* indicate data exists */ 1384 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1385 }; 1386 1387 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1388 { 1389 if (!test_bit(flag, &fi->flags)) 1390 set_bit(flag, &fi->flags); 1391 } 1392 1393 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1394 { 1395 return test_bit(flag, &fi->flags); 1396 } 1397 1398 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1399 { 1400 if (test_bit(flag, &fi->flags)) 1401 clear_bit(flag, &fi->flags); 1402 } 1403 1404 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1405 { 1406 fi->i_acl_mode = mode; 1407 set_inode_flag(fi, FI_ACL_MODE); 1408 } 1409 1410 static inline void get_inline_info(struct f2fs_inode_info *fi, 1411 struct f2fs_inode *ri) 1412 { 1413 if (ri->i_inline & F2FS_INLINE_XATTR) 1414 set_inode_flag(fi, FI_INLINE_XATTR); 1415 if (ri->i_inline & F2FS_INLINE_DATA) 1416 set_inode_flag(fi, FI_INLINE_DATA); 1417 if (ri->i_inline & F2FS_INLINE_DENTRY) 1418 set_inode_flag(fi, FI_INLINE_DENTRY); 1419 if (ri->i_inline & F2FS_DATA_EXIST) 1420 set_inode_flag(fi, FI_DATA_EXIST); 1421 if (ri->i_inline & F2FS_INLINE_DOTS) 1422 set_inode_flag(fi, FI_INLINE_DOTS); 1423 } 1424 1425 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1426 struct f2fs_inode *ri) 1427 { 1428 ri->i_inline = 0; 1429 1430 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1431 ri->i_inline |= F2FS_INLINE_XATTR; 1432 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1433 ri->i_inline |= F2FS_INLINE_DATA; 1434 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1435 ri->i_inline |= F2FS_INLINE_DENTRY; 1436 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1437 ri->i_inline |= F2FS_DATA_EXIST; 1438 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1439 ri->i_inline |= F2FS_INLINE_DOTS; 1440 } 1441 1442 static inline int f2fs_has_inline_xattr(struct inode *inode) 1443 { 1444 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1445 } 1446 1447 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1448 { 1449 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1450 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1451 return DEF_ADDRS_PER_INODE; 1452 } 1453 1454 static inline void *inline_xattr_addr(struct page *page) 1455 { 1456 struct f2fs_inode *ri = F2FS_INODE(page); 1457 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1458 F2FS_INLINE_XATTR_ADDRS]); 1459 } 1460 1461 static inline int inline_xattr_size(struct inode *inode) 1462 { 1463 if (f2fs_has_inline_xattr(inode)) 1464 return F2FS_INLINE_XATTR_ADDRS << 2; 1465 else 1466 return 0; 1467 } 1468 1469 static inline int f2fs_has_inline_data(struct inode *inode) 1470 { 1471 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1472 } 1473 1474 static inline void f2fs_clear_inline_inode(struct inode *inode) 1475 { 1476 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1477 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1478 } 1479 1480 static inline int f2fs_exist_data(struct inode *inode) 1481 { 1482 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1483 } 1484 1485 static inline int f2fs_has_inline_dots(struct inode *inode) 1486 { 1487 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1488 } 1489 1490 static inline bool f2fs_is_atomic_file(struct inode *inode) 1491 { 1492 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1493 } 1494 1495 static inline bool f2fs_is_volatile_file(struct inode *inode) 1496 { 1497 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1498 } 1499 1500 static inline bool f2fs_is_first_block_written(struct inode *inode) 1501 { 1502 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1503 } 1504 1505 static inline bool f2fs_is_drop_cache(struct inode *inode) 1506 { 1507 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1508 } 1509 1510 static inline void *inline_data_addr(struct page *page) 1511 { 1512 struct f2fs_inode *ri = F2FS_INODE(page); 1513 return (void *)&(ri->i_addr[1]); 1514 } 1515 1516 static inline int f2fs_has_inline_dentry(struct inode *inode) 1517 { 1518 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1519 } 1520 1521 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1522 { 1523 if (!f2fs_has_inline_dentry(dir)) 1524 kunmap(page); 1525 } 1526 1527 static inline int is_file(struct inode *inode, int type) 1528 { 1529 return F2FS_I(inode)->i_advise & type; 1530 } 1531 1532 static inline void set_file(struct inode *inode, int type) 1533 { 1534 F2FS_I(inode)->i_advise |= type; 1535 } 1536 1537 static inline void clear_file(struct inode *inode, int type) 1538 { 1539 F2FS_I(inode)->i_advise &= ~type; 1540 } 1541 1542 static inline int f2fs_readonly(struct super_block *sb) 1543 { 1544 return sb->s_flags & MS_RDONLY; 1545 } 1546 1547 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1548 { 1549 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1550 } 1551 1552 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1553 { 1554 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1555 sbi->sb->s_flags |= MS_RDONLY; 1556 } 1557 1558 static inline bool is_dot_dotdot(const struct qstr *str) 1559 { 1560 if (str->len == 1 && str->name[0] == '.') 1561 return true; 1562 1563 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1564 return true; 1565 1566 return false; 1567 } 1568 1569 static inline bool f2fs_may_extent_tree(struct inode *inode) 1570 { 1571 mode_t mode = inode->i_mode; 1572 1573 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1574 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1575 return false; 1576 1577 return S_ISREG(mode); 1578 } 1579 1580 #define get_inode_mode(i) \ 1581 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1582 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1583 1584 /* get offset of first page in next direct node */ 1585 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1586 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1587 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1588 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1589 1590 /* 1591 * file.c 1592 */ 1593 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1594 void truncate_data_blocks(struct dnode_of_data *); 1595 int truncate_blocks(struct inode *, u64, bool); 1596 void f2fs_truncate(struct inode *, bool); 1597 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1598 int f2fs_setattr(struct dentry *, struct iattr *); 1599 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1600 int truncate_data_blocks_range(struct dnode_of_data *, int); 1601 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1602 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1603 1604 /* 1605 * inode.c 1606 */ 1607 void f2fs_set_inode_flags(struct inode *); 1608 struct inode *f2fs_iget(struct super_block *, unsigned long); 1609 int try_to_free_nats(struct f2fs_sb_info *, int); 1610 void update_inode(struct inode *, struct page *); 1611 void update_inode_page(struct inode *); 1612 int f2fs_write_inode(struct inode *, struct writeback_control *); 1613 void f2fs_evict_inode(struct inode *); 1614 void handle_failed_inode(struct inode *); 1615 1616 /* 1617 * namei.c 1618 */ 1619 struct dentry *f2fs_get_parent(struct dentry *child); 1620 1621 /* 1622 * dir.c 1623 */ 1624 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1625 void set_de_type(struct f2fs_dir_entry *, umode_t); 1626 1627 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1628 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1629 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1630 unsigned int, struct f2fs_str *); 1631 void do_make_empty_dir(struct inode *, struct inode *, 1632 struct f2fs_dentry_ptr *); 1633 struct page *init_inode_metadata(struct inode *, struct inode *, 1634 const struct qstr *, struct page *); 1635 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1636 int room_for_filename(const void *, int, int); 1637 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1638 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1639 struct page **); 1640 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1641 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1642 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1643 struct page *, struct inode *); 1644 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1645 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1646 const struct qstr *, f2fs_hash_t , unsigned int); 1647 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1648 umode_t); 1649 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1650 struct inode *); 1651 int f2fs_do_tmpfile(struct inode *, struct inode *); 1652 bool f2fs_empty_dir(struct inode *); 1653 1654 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1655 { 1656 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1657 inode, inode->i_ino, inode->i_mode); 1658 } 1659 1660 /* 1661 * super.c 1662 */ 1663 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1664 int f2fs_sync_fs(struct super_block *, int); 1665 extern __printf(3, 4) 1666 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1667 1668 /* 1669 * hash.c 1670 */ 1671 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1672 1673 /* 1674 * node.c 1675 */ 1676 struct dnode_of_data; 1677 struct node_info; 1678 1679 bool available_free_memory(struct f2fs_sb_info *, int); 1680 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1681 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1682 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1683 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1684 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1685 int truncate_inode_blocks(struct inode *, pgoff_t); 1686 int truncate_xattr_node(struct inode *, struct page *); 1687 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1688 void remove_inode_page(struct inode *); 1689 struct page *new_inode_page(struct inode *); 1690 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1691 void ra_node_page(struct f2fs_sb_info *, nid_t); 1692 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1693 struct page *get_node_page_ra(struct page *, int); 1694 void sync_inode_page(struct dnode_of_data *); 1695 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1696 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1697 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1698 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1699 int try_to_free_nids(struct f2fs_sb_info *, int); 1700 void recover_inline_xattr(struct inode *, struct page *); 1701 void recover_xattr_data(struct inode *, struct page *, block_t); 1702 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1703 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1704 struct f2fs_summary_block *); 1705 void flush_nat_entries(struct f2fs_sb_info *); 1706 int build_node_manager(struct f2fs_sb_info *); 1707 void destroy_node_manager(struct f2fs_sb_info *); 1708 int __init create_node_manager_caches(void); 1709 void destroy_node_manager_caches(void); 1710 1711 /* 1712 * segment.c 1713 */ 1714 void register_inmem_page(struct inode *, struct page *); 1715 int commit_inmem_pages(struct inode *, bool); 1716 void f2fs_balance_fs(struct f2fs_sb_info *); 1717 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1718 int f2fs_issue_flush(struct f2fs_sb_info *); 1719 int create_flush_cmd_control(struct f2fs_sb_info *); 1720 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1721 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1722 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1723 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1724 void release_discard_addrs(struct f2fs_sb_info *); 1725 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1726 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1727 void allocate_new_segments(struct f2fs_sb_info *); 1728 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1729 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1730 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1731 void write_meta_page(struct f2fs_sb_info *, struct page *); 1732 void write_node_page(unsigned int, struct f2fs_io_info *); 1733 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1734 void rewrite_data_page(struct f2fs_io_info *); 1735 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1736 block_t, block_t, unsigned char, bool); 1737 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1738 block_t, block_t *, struct f2fs_summary *, int); 1739 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1740 void write_data_summaries(struct f2fs_sb_info *, block_t); 1741 void write_node_summaries(struct f2fs_sb_info *, block_t); 1742 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1743 int, unsigned int, int); 1744 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1745 int build_segment_manager(struct f2fs_sb_info *); 1746 void destroy_segment_manager(struct f2fs_sb_info *); 1747 int __init create_segment_manager_caches(void); 1748 void destroy_segment_manager_caches(void); 1749 1750 /* 1751 * checkpoint.c 1752 */ 1753 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1754 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1755 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1756 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1757 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1758 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1759 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1760 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1761 void release_dirty_inode(struct f2fs_sb_info *); 1762 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1763 int acquire_orphan_inode(struct f2fs_sb_info *); 1764 void release_orphan_inode(struct f2fs_sb_info *); 1765 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1766 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1767 int recover_orphan_inodes(struct f2fs_sb_info *); 1768 int get_valid_checkpoint(struct f2fs_sb_info *); 1769 void update_dirty_page(struct inode *, struct page *); 1770 void add_dirty_dir_inode(struct inode *); 1771 void remove_dirty_dir_inode(struct inode *); 1772 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1773 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1774 void init_ino_entry_info(struct f2fs_sb_info *); 1775 int __init create_checkpoint_caches(void); 1776 void destroy_checkpoint_caches(void); 1777 1778 /* 1779 * data.c 1780 */ 1781 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1782 int f2fs_submit_page_bio(struct f2fs_io_info *); 1783 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1784 void set_data_blkaddr(struct dnode_of_data *); 1785 int reserve_new_block(struct dnode_of_data *); 1786 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1787 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1788 struct page *get_read_data_page(struct inode *, pgoff_t, int); 1789 struct page *find_data_page(struct inode *, pgoff_t); 1790 struct page *get_lock_data_page(struct inode *, pgoff_t); 1791 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1792 int do_write_data_page(struct f2fs_io_info *); 1793 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1794 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1795 int f2fs_release_page(struct page *, gfp_t); 1796 1797 /* 1798 * gc.c 1799 */ 1800 int start_gc_thread(struct f2fs_sb_info *); 1801 void stop_gc_thread(struct f2fs_sb_info *); 1802 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1803 int f2fs_gc(struct f2fs_sb_info *); 1804 void build_gc_manager(struct f2fs_sb_info *); 1805 1806 /* 1807 * recovery.c 1808 */ 1809 int recover_fsync_data(struct f2fs_sb_info *); 1810 bool space_for_roll_forward(struct f2fs_sb_info *); 1811 1812 /* 1813 * debug.c 1814 */ 1815 #ifdef CONFIG_F2FS_STAT_FS 1816 struct f2fs_stat_info { 1817 struct list_head stat_list; 1818 struct f2fs_sb_info *sbi; 1819 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1820 int main_area_segs, main_area_sections, main_area_zones; 1821 int hit_ext, total_ext, ext_tree, ext_node; 1822 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1823 int nats, dirty_nats, sits, dirty_sits, fnids; 1824 int total_count, utilization; 1825 int bg_gc, inmem_pages, wb_pages; 1826 int inline_xattr, inline_inode, inline_dir; 1827 unsigned int valid_count, valid_node_count, valid_inode_count; 1828 unsigned int bimodal, avg_vblocks; 1829 int util_free, util_valid, util_invalid; 1830 int rsvd_segs, overp_segs; 1831 int dirty_count, node_pages, meta_pages; 1832 int prefree_count, call_count, cp_count; 1833 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1834 int bg_node_segs, bg_data_segs; 1835 int tot_blks, data_blks, node_blks; 1836 int bg_data_blks, bg_node_blks; 1837 int curseg[NR_CURSEG_TYPE]; 1838 int cursec[NR_CURSEG_TYPE]; 1839 int curzone[NR_CURSEG_TYPE]; 1840 1841 unsigned int segment_count[2]; 1842 unsigned int block_count[2]; 1843 unsigned int inplace_count; 1844 unsigned base_mem, cache_mem, page_mem; 1845 }; 1846 1847 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1848 { 1849 return (struct f2fs_stat_info *)sbi->stat_info; 1850 } 1851 1852 #define stat_inc_cp_count(si) ((si)->cp_count++) 1853 #define stat_inc_call_count(si) ((si)->call_count++) 1854 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1855 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1856 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1857 #define stat_inc_total_hit(sbi) (atomic_inc(&(sbi)->total_hit_ext)) 1858 #define stat_inc_read_hit(sbi) (atomic_inc(&(sbi)->read_hit_ext)) 1859 #define stat_inc_inline_xattr(inode) \ 1860 do { \ 1861 if (f2fs_has_inline_xattr(inode)) \ 1862 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1863 } while (0) 1864 #define stat_dec_inline_xattr(inode) \ 1865 do { \ 1866 if (f2fs_has_inline_xattr(inode)) \ 1867 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 1868 } while (0) 1869 #define stat_inc_inline_inode(inode) \ 1870 do { \ 1871 if (f2fs_has_inline_data(inode)) \ 1872 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1873 } while (0) 1874 #define stat_dec_inline_inode(inode) \ 1875 do { \ 1876 if (f2fs_has_inline_data(inode)) \ 1877 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1878 } while (0) 1879 #define stat_inc_inline_dir(inode) \ 1880 do { \ 1881 if (f2fs_has_inline_dentry(inode)) \ 1882 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1883 } while (0) 1884 #define stat_dec_inline_dir(inode) \ 1885 do { \ 1886 if (f2fs_has_inline_dentry(inode)) \ 1887 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1888 } while (0) 1889 #define stat_inc_seg_type(sbi, curseg) \ 1890 ((sbi)->segment_count[(curseg)->alloc_type]++) 1891 #define stat_inc_block_count(sbi, curseg) \ 1892 ((sbi)->block_count[(curseg)->alloc_type]++) 1893 #define stat_inc_inplace_blocks(sbi) \ 1894 (atomic_inc(&(sbi)->inplace_count)) 1895 #define stat_inc_seg_count(sbi, type, gc_type) \ 1896 do { \ 1897 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1898 (si)->tot_segs++; \ 1899 if (type == SUM_TYPE_DATA) { \ 1900 si->data_segs++; \ 1901 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 1902 } else { \ 1903 si->node_segs++; \ 1904 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 1905 } \ 1906 } while (0) 1907 1908 #define stat_inc_tot_blk_count(si, blks) \ 1909 (si->tot_blks += (blks)) 1910 1911 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 1912 do { \ 1913 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1914 stat_inc_tot_blk_count(si, blks); \ 1915 si->data_blks += (blks); \ 1916 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1917 } while (0) 1918 1919 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 1920 do { \ 1921 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1922 stat_inc_tot_blk_count(si, blks); \ 1923 si->node_blks += (blks); \ 1924 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1925 } while (0) 1926 1927 int f2fs_build_stats(struct f2fs_sb_info *); 1928 void f2fs_destroy_stats(struct f2fs_sb_info *); 1929 void __init f2fs_create_root_stats(void); 1930 void f2fs_destroy_root_stats(void); 1931 #else 1932 #define stat_inc_cp_count(si) 1933 #define stat_inc_call_count(si) 1934 #define stat_inc_bggc_count(si) 1935 #define stat_inc_dirty_dir(sbi) 1936 #define stat_dec_dirty_dir(sbi) 1937 #define stat_inc_total_hit(sb) 1938 #define stat_inc_read_hit(sb) 1939 #define stat_inc_inline_xattr(inode) 1940 #define stat_dec_inline_xattr(inode) 1941 #define stat_inc_inline_inode(inode) 1942 #define stat_dec_inline_inode(inode) 1943 #define stat_inc_inline_dir(inode) 1944 #define stat_dec_inline_dir(inode) 1945 #define stat_inc_seg_type(sbi, curseg) 1946 #define stat_inc_block_count(sbi, curseg) 1947 #define stat_inc_inplace_blocks(sbi) 1948 #define stat_inc_seg_count(sbi, type, gc_type) 1949 #define stat_inc_tot_blk_count(si, blks) 1950 #define stat_inc_data_blk_count(sbi, blks, gc_type) 1951 #define stat_inc_node_blk_count(sbi, blks, gc_type) 1952 1953 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1954 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1955 static inline void __init f2fs_create_root_stats(void) { } 1956 static inline void f2fs_destroy_root_stats(void) { } 1957 #endif 1958 1959 extern const struct file_operations f2fs_dir_operations; 1960 extern const struct file_operations f2fs_file_operations; 1961 extern const struct inode_operations f2fs_file_inode_operations; 1962 extern const struct address_space_operations f2fs_dblock_aops; 1963 extern const struct address_space_operations f2fs_node_aops; 1964 extern const struct address_space_operations f2fs_meta_aops; 1965 extern const struct inode_operations f2fs_dir_inode_operations; 1966 extern const struct inode_operations f2fs_symlink_inode_operations; 1967 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 1968 extern const struct inode_operations f2fs_special_inode_operations; 1969 extern struct kmem_cache *inode_entry_slab; 1970 1971 /* 1972 * inline.c 1973 */ 1974 bool f2fs_may_inline_data(struct inode *); 1975 bool f2fs_may_inline_dentry(struct inode *); 1976 void read_inline_data(struct page *, struct page *); 1977 bool truncate_inline_inode(struct page *, u64); 1978 int f2fs_read_inline_data(struct inode *, struct page *); 1979 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 1980 int f2fs_convert_inline_inode(struct inode *); 1981 int f2fs_write_inline_data(struct inode *, struct page *); 1982 bool recover_inline_data(struct inode *, struct page *); 1983 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 1984 struct f2fs_filename *, struct page **); 1985 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 1986 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 1987 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 1988 nid_t, umode_t); 1989 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 1990 struct inode *, struct inode *); 1991 bool f2fs_empty_inline_dir(struct inode *); 1992 int f2fs_read_inline_dir(struct file *, struct dir_context *, 1993 struct f2fs_str *); 1994 1995 /* 1996 * shrinker.c 1997 */ 1998 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 1999 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2000 void f2fs_join_shrinker(struct f2fs_sb_info *); 2001 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2002 2003 /* 2004 * extent_cache.c 2005 */ 2006 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2007 void f2fs_drop_largest_extent(struct inode *, pgoff_t); 2008 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2009 unsigned int f2fs_destroy_extent_node(struct inode *); 2010 void f2fs_destroy_extent_tree(struct inode *); 2011 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2012 void f2fs_update_extent_cache(struct dnode_of_data *); 2013 void init_extent_cache_info(struct f2fs_sb_info *); 2014 int __init create_extent_cache(void); 2015 void destroy_extent_cache(void); 2016 2017 /* 2018 * crypto support 2019 */ 2020 static inline int f2fs_encrypted_inode(struct inode *inode) 2021 { 2022 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2023 return file_is_encrypt(inode); 2024 #else 2025 return 0; 2026 #endif 2027 } 2028 2029 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2030 { 2031 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2032 file_set_encrypt(inode); 2033 #endif 2034 } 2035 2036 static inline bool f2fs_bio_encrypted(struct bio *bio) 2037 { 2038 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2039 return unlikely(bio->bi_private != NULL); 2040 #else 2041 return false; 2042 #endif 2043 } 2044 2045 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2046 { 2047 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2048 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2049 #else 2050 return 0; 2051 #endif 2052 } 2053 2054 static inline bool f2fs_may_encrypt(struct inode *inode) 2055 { 2056 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2057 mode_t mode = inode->i_mode; 2058 2059 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2060 #else 2061 return 0; 2062 #endif 2063 } 2064 2065 /* crypto_policy.c */ 2066 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2067 struct inode *); 2068 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2069 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2070 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2071 2072 /* crypt.c */ 2073 extern struct kmem_cache *f2fs_crypt_info_cachep; 2074 bool f2fs_valid_contents_enc_mode(uint32_t); 2075 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2076 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2077 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2078 struct page *f2fs_encrypt(struct inode *, struct page *); 2079 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *); 2080 int f2fs_decrypt_one(struct inode *, struct page *); 2081 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2082 2083 /* crypto_key.c */ 2084 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2085 int _f2fs_get_encryption_info(struct inode *inode); 2086 2087 /* crypto_fname.c */ 2088 bool f2fs_valid_filenames_enc_mode(uint32_t); 2089 u32 f2fs_fname_crypto_round_up(u32, u32); 2090 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2091 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2092 const struct f2fs_str *, struct f2fs_str *); 2093 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2094 struct f2fs_str *); 2095 2096 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2097 void f2fs_restore_and_release_control_page(struct page **); 2098 void f2fs_restore_control_page(struct page *); 2099 2100 int __init f2fs_init_crypto(void); 2101 int f2fs_crypto_initialize(void); 2102 void f2fs_exit_crypto(void); 2103 2104 int f2fs_has_encryption_key(struct inode *); 2105 2106 static inline int f2fs_get_encryption_info(struct inode *inode) 2107 { 2108 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2109 2110 if (!ci || 2111 (ci->ci_keyring_key && 2112 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2113 (1 << KEY_FLAG_REVOKED) | 2114 (1 << KEY_FLAG_DEAD))))) 2115 return _f2fs_get_encryption_info(inode); 2116 return 0; 2117 } 2118 2119 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2120 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2121 int lookup, struct f2fs_filename *); 2122 void f2fs_fname_free_filename(struct f2fs_filename *); 2123 #else 2124 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2125 static inline void f2fs_restore_control_page(struct page *p) { } 2126 2127 static inline int __init f2fs_init_crypto(void) { return 0; } 2128 static inline void f2fs_exit_crypto(void) { } 2129 2130 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2131 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2132 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2133 2134 static inline int f2fs_fname_setup_filename(struct inode *dir, 2135 const struct qstr *iname, 2136 int lookup, struct f2fs_filename *fname) 2137 { 2138 memset(fname, 0, sizeof(struct f2fs_filename)); 2139 fname->usr_fname = iname; 2140 fname->disk_name.name = (unsigned char *)iname->name; 2141 fname->disk_name.len = iname->len; 2142 return 0; 2143 } 2144 2145 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2146 #endif 2147 #endif 2148