xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 740432f835608d11b5386321ab5aa8f61e07fb27)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/bio.h>
23 
24 #ifdef CONFIG_F2FS_CHECK_FS
25 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
26 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
27 #else
28 #define f2fs_bug_on(sbi, condition)					\
29 	do {								\
30 		if (unlikely(condition)) {				\
31 			WARN_ON(1);					\
32 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
33 		}							\
34 	} while (0)
35 #define f2fs_down_write(x, y)	down_write(x)
36 #endif
37 
38 /*
39  * For mount options
40  */
41 #define F2FS_MOUNT_BG_GC		0x00000001
42 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
43 #define F2FS_MOUNT_DISCARD		0x00000004
44 #define F2FS_MOUNT_NOHEAP		0x00000008
45 #define F2FS_MOUNT_XATTR_USER		0x00000010
46 #define F2FS_MOUNT_POSIX_ACL		0x00000020
47 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
48 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
49 #define F2FS_MOUNT_INLINE_DATA		0x00000100
50 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
51 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
52 #define F2FS_MOUNT_NOBARRIER		0x00000800
53 #define F2FS_MOUNT_FASTBOOT		0x00001000
54 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
55 
56 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
57 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
58 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
59 
60 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
61 		typecheck(unsigned long long, b) &&			\
62 		((long long)((a) - (b)) > 0))
63 
64 typedef u32 block_t;	/*
65 			 * should not change u32, since it is the on-disk block
66 			 * address format, __le32.
67 			 */
68 typedef u32 nid_t;
69 
70 struct f2fs_mount_info {
71 	unsigned int	opt;
72 };
73 
74 #define F2FS_FEATURE_ENCRYPT	0x0001
75 
76 #define F2FS_HAS_FEATURE(sb, mask)					\
77 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
78 #define F2FS_SET_FEATURE(sb, mask)					\
79 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
80 #define F2FS_CLEAR_FEATURE(sb, mask)					\
81 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
82 
83 #define CRCPOLY_LE 0xedb88320
84 
85 static inline __u32 f2fs_crc32(void *buf, size_t len)
86 {
87 	unsigned char *p = (unsigned char *)buf;
88 	__u32 crc = F2FS_SUPER_MAGIC;
89 	int i;
90 
91 	while (len--) {
92 		crc ^= *p++;
93 		for (i = 0; i < 8; i++)
94 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
95 	}
96 	return crc;
97 }
98 
99 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
100 {
101 	return f2fs_crc32(buf, buf_size) == blk_crc;
102 }
103 
104 /*
105  * For checkpoint manager
106  */
107 enum {
108 	NAT_BITMAP,
109 	SIT_BITMAP
110 };
111 
112 enum {
113 	CP_UMOUNT,
114 	CP_FASTBOOT,
115 	CP_SYNC,
116 	CP_RECOVERY,
117 	CP_DISCARD,
118 };
119 
120 #define DEF_BATCHED_TRIM_SECTIONS	32
121 #define BATCHED_TRIM_SEGMENTS(sbi)	\
122 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
123 #define BATCHED_TRIM_BLOCKS(sbi)	\
124 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
125 
126 struct cp_control {
127 	int reason;
128 	__u64 trim_start;
129 	__u64 trim_end;
130 	__u64 trim_minlen;
131 	__u64 trimmed;
132 };
133 
134 /*
135  * For CP/NAT/SIT/SSA readahead
136  */
137 enum {
138 	META_CP,
139 	META_NAT,
140 	META_SIT,
141 	META_SSA,
142 	META_POR,
143 };
144 
145 /* for the list of ino */
146 enum {
147 	ORPHAN_INO,		/* for orphan ino list */
148 	APPEND_INO,		/* for append ino list */
149 	UPDATE_INO,		/* for update ino list */
150 	MAX_INO_ENTRY,		/* max. list */
151 };
152 
153 struct ino_entry {
154 	struct list_head list;	/* list head */
155 	nid_t ino;		/* inode number */
156 };
157 
158 /*
159  * for the list of directory inodes or gc inodes.
160  * NOTE: there are two slab users for this structure, if we add/modify/delete
161  * fields in structure for one of slab users, it may affect fields or size of
162  * other one, in this condition, it's better to split both of slab and related
163  * data structure.
164  */
165 struct inode_entry {
166 	struct list_head list;	/* list head */
167 	struct inode *inode;	/* vfs inode pointer */
168 };
169 
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 	struct list_head list;	/* list head */
173 	block_t blkaddr;	/* block address to be discarded */
174 	int len;		/* # of consecutive blocks of the discard */
175 };
176 
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 	struct list_head list;	/* list head */
180 	struct inode *inode;	/* vfs inode pointer */
181 	block_t blkaddr;	/* block address locating the last fsync */
182 	block_t last_dentry;	/* block address locating the last dentry */
183 	block_t last_inode;	/* block address locating the last inode */
184 };
185 
186 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
188 
189 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
193 
194 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196 
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 	int before = nats_in_cursum(rs);
200 	rs->n_nats = cpu_to_le16(before + i);
201 	return before;
202 }
203 
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 	int before = sits_in_cursum(rs);
207 	rs->n_sits = cpu_to_le16(before + i);
208 	return before;
209 }
210 
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 								int type)
213 {
214 	if (type == NAT_JOURNAL)
215 		return size <= MAX_NAT_JENTRIES(sum);
216 	return size <= MAX_SIT_JENTRIES(sum);
217 }
218 
219 /*
220  * ioctl commands
221  */
222 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
225 
226 #define F2FS_IOCTL_MAGIC		0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
233 
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
235 		_IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
237 		_IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
239 		_IOW('f', 21, struct f2fs_encryption_policy)
240 
241 /*
242  * should be same as XFS_IOC_GOINGDOWN.
243  * Flags for going down operation used by FS_IOC_GOINGDOWN
244  */
245 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
249 
250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
251 /*
252  * ioctl commands in 32 bit emulation
253  */
254 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
255 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
256 #endif
257 
258 /*
259  * For INODE and NODE manager
260  */
261 /* for directory operations */
262 struct f2fs_str {
263 	unsigned char *name;
264 	u32 len;
265 };
266 
267 struct f2fs_filename {
268 	const struct qstr *usr_fname;
269 	struct f2fs_str disk_name;
270 	f2fs_hash_t hash;
271 #ifdef CONFIG_F2FS_FS_ENCRYPTION
272 	struct f2fs_str crypto_buf;
273 #endif
274 };
275 
276 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
277 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
278 #define fname_name(p)		((p)->disk_name.name)
279 #define fname_len(p)		((p)->disk_name.len)
280 
281 struct f2fs_dentry_ptr {
282 	struct inode *inode;
283 	const void *bitmap;
284 	struct f2fs_dir_entry *dentry;
285 	__u8 (*filename)[F2FS_SLOT_LEN];
286 	int max;
287 };
288 
289 static inline void make_dentry_ptr(struct inode *inode,
290 		struct f2fs_dentry_ptr *d, void *src, int type)
291 {
292 	d->inode = inode;
293 
294 	if (type == 1) {
295 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
296 		d->max = NR_DENTRY_IN_BLOCK;
297 		d->bitmap = &t->dentry_bitmap;
298 		d->dentry = t->dentry;
299 		d->filename = t->filename;
300 	} else {
301 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
302 		d->max = NR_INLINE_DENTRY;
303 		d->bitmap = &t->dentry_bitmap;
304 		d->dentry = t->dentry;
305 		d->filename = t->filename;
306 	}
307 }
308 
309 /*
310  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
311  * as its node offset to distinguish from index node blocks.
312  * But some bits are used to mark the node block.
313  */
314 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
315 				>> OFFSET_BIT_SHIFT)
316 enum {
317 	ALLOC_NODE,			/* allocate a new node page if needed */
318 	LOOKUP_NODE,			/* look up a node without readahead */
319 	LOOKUP_NODE_RA,			/*
320 					 * look up a node with readahead called
321 					 * by get_data_block.
322 					 */
323 };
324 
325 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
326 
327 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
328 
329 /* vector size for gang look-up from extent cache that consists of radix tree */
330 #define EXT_TREE_VEC_SIZE	64
331 
332 /* for in-memory extent cache entry */
333 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
334 
335 /* number of extent info in extent cache we try to shrink */
336 #define EXTENT_CACHE_SHRINK_NUMBER	128
337 
338 struct extent_info {
339 	unsigned int fofs;		/* start offset in a file */
340 	u32 blk;			/* start block address of the extent */
341 	unsigned int len;		/* length of the extent */
342 };
343 
344 struct extent_node {
345 	struct rb_node rb_node;		/* rb node located in rb-tree */
346 	struct list_head list;		/* node in global extent list of sbi */
347 	struct extent_info ei;		/* extent info */
348 };
349 
350 struct extent_tree {
351 	nid_t ino;			/* inode number */
352 	struct rb_root root;		/* root of extent info rb-tree */
353 	struct extent_node *cached_en;	/* recently accessed extent node */
354 	struct extent_info largest;	/* largested extent info */
355 	rwlock_t lock;			/* protect extent info rb-tree */
356 	atomic_t refcount;		/* reference count of rb-tree */
357 	unsigned int count;		/* # of extent node in rb-tree*/
358 };
359 
360 /*
361  * This structure is taken from ext4_map_blocks.
362  *
363  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
364  */
365 #define F2FS_MAP_NEW		(1 << BH_New)
366 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
367 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
368 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
369 				F2FS_MAP_UNWRITTEN)
370 
371 struct f2fs_map_blocks {
372 	block_t m_pblk;
373 	block_t m_lblk;
374 	unsigned int m_len;
375 	unsigned int m_flags;
376 };
377 
378 /*
379  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
380  */
381 #define FADVISE_COLD_BIT	0x01
382 #define FADVISE_LOST_PINO_BIT	0x02
383 #define FADVISE_ENCRYPT_BIT	0x04
384 #define FADVISE_ENC_NAME_BIT	0x08
385 
386 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
387 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
388 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
389 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
390 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
391 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
392 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
393 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
394 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
395 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
396 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
397 
398 /* Encryption algorithms */
399 #define F2FS_ENCRYPTION_MODE_INVALID		0
400 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
401 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
402 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
403 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
404 
405 #include "f2fs_crypto.h"
406 
407 #define DEF_DIR_LEVEL		0
408 
409 struct f2fs_inode_info {
410 	struct inode vfs_inode;		/* serve a vfs inode */
411 	unsigned long i_flags;		/* keep an inode flags for ioctl */
412 	unsigned char i_advise;		/* use to give file attribute hints */
413 	unsigned char i_dir_level;	/* use for dentry level for large dir */
414 	unsigned int i_current_depth;	/* use only in directory structure */
415 	unsigned int i_pino;		/* parent inode number */
416 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
417 
418 	/* Use below internally in f2fs*/
419 	unsigned long flags;		/* use to pass per-file flags */
420 	struct rw_semaphore i_sem;	/* protect fi info */
421 	atomic_t dirty_pages;		/* # of dirty pages */
422 	f2fs_hash_t chash;		/* hash value of given file name */
423 	unsigned int clevel;		/* maximum level of given file name */
424 	nid_t i_xattr_nid;		/* node id that contains xattrs */
425 	unsigned long long xattr_ver;	/* cp version of xattr modification */
426 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
427 
428 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
429 	struct mutex inmem_lock;	/* lock for inmemory pages */
430 
431 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
432 
433 #ifdef CONFIG_F2FS_FS_ENCRYPTION
434 	/* Encryption params */
435 	struct f2fs_crypt_info *i_crypt_info;
436 #endif
437 };
438 
439 static inline void get_extent_info(struct extent_info *ext,
440 					struct f2fs_extent i_ext)
441 {
442 	ext->fofs = le32_to_cpu(i_ext.fofs);
443 	ext->blk = le32_to_cpu(i_ext.blk);
444 	ext->len = le32_to_cpu(i_ext.len);
445 }
446 
447 static inline void set_raw_extent(struct extent_info *ext,
448 					struct f2fs_extent *i_ext)
449 {
450 	i_ext->fofs = cpu_to_le32(ext->fofs);
451 	i_ext->blk = cpu_to_le32(ext->blk);
452 	i_ext->len = cpu_to_le32(ext->len);
453 }
454 
455 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
456 						u32 blk, unsigned int len)
457 {
458 	ei->fofs = fofs;
459 	ei->blk = blk;
460 	ei->len = len;
461 }
462 
463 static inline bool __is_extent_same(struct extent_info *ei1,
464 						struct extent_info *ei2)
465 {
466 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
467 						ei1->len == ei2->len);
468 }
469 
470 static inline bool __is_extent_mergeable(struct extent_info *back,
471 						struct extent_info *front)
472 {
473 	return (back->fofs + back->len == front->fofs &&
474 			back->blk + back->len == front->blk);
475 }
476 
477 static inline bool __is_back_mergeable(struct extent_info *cur,
478 						struct extent_info *back)
479 {
480 	return __is_extent_mergeable(back, cur);
481 }
482 
483 static inline bool __is_front_mergeable(struct extent_info *cur,
484 						struct extent_info *front)
485 {
486 	return __is_extent_mergeable(cur, front);
487 }
488 
489 struct f2fs_nm_info {
490 	block_t nat_blkaddr;		/* base disk address of NAT */
491 	nid_t max_nid;			/* maximum possible node ids */
492 	nid_t available_nids;		/* maximum available node ids */
493 	nid_t next_scan_nid;		/* the next nid to be scanned */
494 	unsigned int ram_thresh;	/* control the memory footprint */
495 
496 	/* NAT cache management */
497 	struct radix_tree_root nat_root;/* root of the nat entry cache */
498 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
499 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
500 	struct list_head nat_entries;	/* cached nat entry list (clean) */
501 	unsigned int nat_cnt;		/* the # of cached nat entries */
502 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
503 
504 	/* free node ids management */
505 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
506 	struct list_head free_nid_list;	/* a list for free nids */
507 	spinlock_t free_nid_list_lock;	/* protect free nid list */
508 	unsigned int fcnt;		/* the number of free node id */
509 	struct mutex build_lock;	/* lock for build free nids */
510 
511 	/* for checkpoint */
512 	char *nat_bitmap;		/* NAT bitmap pointer */
513 	int bitmap_size;		/* bitmap size */
514 };
515 
516 /*
517  * this structure is used as one of function parameters.
518  * all the information are dedicated to a given direct node block determined
519  * by the data offset in a file.
520  */
521 struct dnode_of_data {
522 	struct inode *inode;		/* vfs inode pointer */
523 	struct page *inode_page;	/* its inode page, NULL is possible */
524 	struct page *node_page;		/* cached direct node page */
525 	nid_t nid;			/* node id of the direct node block */
526 	unsigned int ofs_in_node;	/* data offset in the node page */
527 	bool inode_page_locked;		/* inode page is locked or not */
528 	block_t	data_blkaddr;		/* block address of the node block */
529 };
530 
531 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
532 		struct page *ipage, struct page *npage, nid_t nid)
533 {
534 	memset(dn, 0, sizeof(*dn));
535 	dn->inode = inode;
536 	dn->inode_page = ipage;
537 	dn->node_page = npage;
538 	dn->nid = nid;
539 }
540 
541 /*
542  * For SIT manager
543  *
544  * By default, there are 6 active log areas across the whole main area.
545  * When considering hot and cold data separation to reduce cleaning overhead,
546  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
547  * respectively.
548  * In the current design, you should not change the numbers intentionally.
549  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
550  * logs individually according to the underlying devices. (default: 6)
551  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
552  * data and 8 for node logs.
553  */
554 #define	NR_CURSEG_DATA_TYPE	(3)
555 #define NR_CURSEG_NODE_TYPE	(3)
556 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
557 
558 enum {
559 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
560 	CURSEG_WARM_DATA,	/* data blocks */
561 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
562 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
563 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
564 	CURSEG_COLD_NODE,	/* indirect node blocks */
565 	NO_CHECK_TYPE,
566 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
567 };
568 
569 struct flush_cmd {
570 	struct completion wait;
571 	struct llist_node llnode;
572 	int ret;
573 };
574 
575 struct flush_cmd_control {
576 	struct task_struct *f2fs_issue_flush;	/* flush thread */
577 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
578 	struct llist_head issue_list;		/* list for command issue */
579 	struct llist_node *dispatch_list;	/* list for command dispatch */
580 };
581 
582 struct f2fs_sm_info {
583 	struct sit_info *sit_info;		/* whole segment information */
584 	struct free_segmap_info *free_info;	/* free segment information */
585 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
586 	struct curseg_info *curseg_array;	/* active segment information */
587 
588 	block_t seg0_blkaddr;		/* block address of 0'th segment */
589 	block_t main_blkaddr;		/* start block address of main area */
590 	block_t ssa_blkaddr;		/* start block address of SSA area */
591 
592 	unsigned int segment_count;	/* total # of segments */
593 	unsigned int main_segments;	/* # of segments in main area */
594 	unsigned int reserved_segments;	/* # of reserved segments */
595 	unsigned int ovp_segments;	/* # of overprovision segments */
596 
597 	/* a threshold to reclaim prefree segments */
598 	unsigned int rec_prefree_segments;
599 
600 	/* for small discard management */
601 	struct list_head discard_list;		/* 4KB discard list */
602 	int nr_discards;			/* # of discards in the list */
603 	int max_discards;			/* max. discards to be issued */
604 
605 	/* for batched trimming */
606 	unsigned int trim_sections;		/* # of sections to trim */
607 
608 	struct list_head sit_entry_set;	/* sit entry set list */
609 
610 	unsigned int ipu_policy;	/* in-place-update policy */
611 	unsigned int min_ipu_util;	/* in-place-update threshold */
612 	unsigned int min_fsync_blocks;	/* threshold for fsync */
613 
614 	/* for flush command control */
615 	struct flush_cmd_control *cmd_control_info;
616 
617 };
618 
619 /*
620  * For superblock
621  */
622 /*
623  * COUNT_TYPE for monitoring
624  *
625  * f2fs monitors the number of several block types such as on-writeback,
626  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
627  */
628 enum count_type {
629 	F2FS_WRITEBACK,
630 	F2FS_DIRTY_DENTS,
631 	F2FS_DIRTY_NODES,
632 	F2FS_DIRTY_META,
633 	F2FS_INMEM_PAGES,
634 	NR_COUNT_TYPE,
635 };
636 
637 /*
638  * The below are the page types of bios used in submit_bio().
639  * The available types are:
640  * DATA			User data pages. It operates as async mode.
641  * NODE			Node pages. It operates as async mode.
642  * META			FS metadata pages such as SIT, NAT, CP.
643  * NR_PAGE_TYPE		The number of page types.
644  * META_FLUSH		Make sure the previous pages are written
645  *			with waiting the bio's completion
646  * ...			Only can be used with META.
647  */
648 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
649 enum page_type {
650 	DATA,
651 	NODE,
652 	META,
653 	NR_PAGE_TYPE,
654 	META_FLUSH,
655 	INMEM,		/* the below types are used by tracepoints only. */
656 	INMEM_DROP,
657 	IPU,
658 	OPU,
659 };
660 
661 struct f2fs_io_info {
662 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
663 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
664 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
665 	block_t blk_addr;	/* block address to be written */
666 	struct page *page;	/* page to be written */
667 	struct page *encrypted_page;	/* encrypted page */
668 };
669 
670 #define is_read_io(rw)	(((rw) & 1) == READ)
671 struct f2fs_bio_info {
672 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
673 	struct bio *bio;		/* bios to merge */
674 	sector_t last_block_in_bio;	/* last block number */
675 	struct f2fs_io_info fio;	/* store buffered io info. */
676 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
677 };
678 
679 /* for inner inode cache management */
680 struct inode_management {
681 	struct radix_tree_root ino_root;	/* ino entry array */
682 	spinlock_t ino_lock;			/* for ino entry lock */
683 	struct list_head ino_list;		/* inode list head */
684 	unsigned long ino_num;			/* number of entries */
685 };
686 
687 /* For s_flag in struct f2fs_sb_info */
688 enum {
689 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
690 	SBI_IS_CLOSE,				/* specify unmounting */
691 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
692 	SBI_POR_DOING,				/* recovery is doing or not */
693 };
694 
695 struct f2fs_sb_info {
696 	struct super_block *sb;			/* pointer to VFS super block */
697 	struct proc_dir_entry *s_proc;		/* proc entry */
698 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
699 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
700 	int s_flag;				/* flags for sbi */
701 
702 	/* for node-related operations */
703 	struct f2fs_nm_info *nm_info;		/* node manager */
704 	struct inode *node_inode;		/* cache node blocks */
705 
706 	/* for segment-related operations */
707 	struct f2fs_sm_info *sm_info;		/* segment manager */
708 
709 	/* for bio operations */
710 	struct f2fs_bio_info read_io;			/* for read bios */
711 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
712 
713 	/* for checkpoint */
714 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
715 	struct inode *meta_inode;		/* cache meta blocks */
716 	struct mutex cp_mutex;			/* checkpoint procedure lock */
717 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
718 	struct rw_semaphore node_write;		/* locking node writes */
719 	struct mutex writepages;		/* mutex for writepages() */
720 	wait_queue_head_t cp_wait;
721 
722 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
723 
724 	/* for orphan inode, use 0'th array */
725 	unsigned int max_orphans;		/* max orphan inodes */
726 
727 	/* for directory inode management */
728 	struct list_head dir_inode_list;	/* dir inode list */
729 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
730 
731 	/* for extent tree cache */
732 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
733 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
734 	struct list_head extent_list;		/* lru list for shrinker */
735 	spinlock_t extent_lock;			/* locking extent lru list */
736 	int total_ext_tree;			/* extent tree count */
737 	atomic_t total_ext_node;		/* extent info count */
738 
739 	/* basic filesystem units */
740 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
741 	unsigned int log_blocksize;		/* log2 block size */
742 	unsigned int blocksize;			/* block size */
743 	unsigned int root_ino_num;		/* root inode number*/
744 	unsigned int node_ino_num;		/* node inode number*/
745 	unsigned int meta_ino_num;		/* meta inode number*/
746 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
747 	unsigned int blocks_per_seg;		/* blocks per segment */
748 	unsigned int segs_per_sec;		/* segments per section */
749 	unsigned int secs_per_zone;		/* sections per zone */
750 	unsigned int total_sections;		/* total section count */
751 	unsigned int total_node_count;		/* total node block count */
752 	unsigned int total_valid_node_count;	/* valid node block count */
753 	unsigned int total_valid_inode_count;	/* valid inode count */
754 	int active_logs;			/* # of active logs */
755 	int dir_level;				/* directory level */
756 
757 	block_t user_block_count;		/* # of user blocks */
758 	block_t total_valid_block_count;	/* # of valid blocks */
759 	block_t alloc_valid_block_count;	/* # of allocated blocks */
760 	block_t discard_blks;			/* discard command candidats */
761 	block_t last_valid_block_count;		/* for recovery */
762 	u32 s_next_generation;			/* for NFS support */
763 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
764 
765 	struct f2fs_mount_info mount_opt;	/* mount options */
766 
767 	/* for cleaning operations */
768 	struct mutex gc_mutex;			/* mutex for GC */
769 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
770 	unsigned int cur_victim_sec;		/* current victim section num */
771 
772 	/* maximum # of trials to find a victim segment for SSR and GC */
773 	unsigned int max_victim_search;
774 
775 	/*
776 	 * for stat information.
777 	 * one is for the LFS mode, and the other is for the SSR mode.
778 	 */
779 #ifdef CONFIG_F2FS_STAT_FS
780 	struct f2fs_stat_info *stat_info;	/* FS status information */
781 	unsigned int segment_count[2];		/* # of allocated segments */
782 	unsigned int block_count[2];		/* # of allocated blocks */
783 	atomic_t inplace_count;		/* # of inplace update */
784 	atomic_t total_hit_ext;			/* # of lookup extent cache */
785 	atomic_t read_hit_ext;			/* # of hit extent cache */
786 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
787 	atomic_t inline_inode;			/* # of inline_data inodes */
788 	atomic_t inline_dir;			/* # of inline_dentry inodes */
789 	int bg_gc;				/* background gc calls */
790 	unsigned int n_dirty_dirs;		/* # of dir inodes */
791 #endif
792 	unsigned int last_victim[2];		/* last victim segment # */
793 	spinlock_t stat_lock;			/* lock for stat operations */
794 
795 	/* For sysfs suppport */
796 	struct kobject s_kobj;
797 	struct completion s_kobj_unregister;
798 
799 	/* For shrinker support */
800 	struct list_head s_list;
801 	struct mutex umount_mutex;
802 	unsigned int shrinker_run_no;
803 };
804 
805 /*
806  * Inline functions
807  */
808 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
809 {
810 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
811 }
812 
813 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
814 {
815 	return sb->s_fs_info;
816 }
817 
818 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
819 {
820 	return F2FS_SB(inode->i_sb);
821 }
822 
823 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
824 {
825 	return F2FS_I_SB(mapping->host);
826 }
827 
828 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
829 {
830 	return F2FS_M_SB(page->mapping);
831 }
832 
833 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
834 {
835 	return (struct f2fs_super_block *)(sbi->raw_super);
836 }
837 
838 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
839 {
840 	return (struct f2fs_checkpoint *)(sbi->ckpt);
841 }
842 
843 static inline struct f2fs_node *F2FS_NODE(struct page *page)
844 {
845 	return (struct f2fs_node *)page_address(page);
846 }
847 
848 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
849 {
850 	return &((struct f2fs_node *)page_address(page))->i;
851 }
852 
853 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
854 {
855 	return (struct f2fs_nm_info *)(sbi->nm_info);
856 }
857 
858 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
859 {
860 	return (struct f2fs_sm_info *)(sbi->sm_info);
861 }
862 
863 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
864 {
865 	return (struct sit_info *)(SM_I(sbi)->sit_info);
866 }
867 
868 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
869 {
870 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
871 }
872 
873 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
874 {
875 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
876 }
877 
878 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
879 {
880 	return sbi->meta_inode->i_mapping;
881 }
882 
883 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
884 {
885 	return sbi->node_inode->i_mapping;
886 }
887 
888 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
889 {
890 	return sbi->s_flag & (0x01 << type);
891 }
892 
893 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
894 {
895 	sbi->s_flag |= (0x01 << type);
896 }
897 
898 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
899 {
900 	sbi->s_flag &= ~(0x01 << type);
901 }
902 
903 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
904 {
905 	return le64_to_cpu(cp->checkpoint_ver);
906 }
907 
908 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
909 {
910 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
911 	return ckpt_flags & f;
912 }
913 
914 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
915 {
916 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
917 	ckpt_flags |= f;
918 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
919 }
920 
921 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
922 {
923 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
924 	ckpt_flags &= (~f);
925 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
926 }
927 
928 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
929 {
930 	down_read(&sbi->cp_rwsem);
931 }
932 
933 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
934 {
935 	up_read(&sbi->cp_rwsem);
936 }
937 
938 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
939 {
940 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
941 }
942 
943 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
944 {
945 	up_write(&sbi->cp_rwsem);
946 }
947 
948 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
949 {
950 	int reason = CP_SYNC;
951 
952 	if (test_opt(sbi, FASTBOOT))
953 		reason = CP_FASTBOOT;
954 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
955 		reason = CP_UMOUNT;
956 	return reason;
957 }
958 
959 static inline bool __remain_node_summaries(int reason)
960 {
961 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
962 }
963 
964 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
965 {
966 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
967 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
968 }
969 
970 /*
971  * Check whether the given nid is within node id range.
972  */
973 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
974 {
975 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
976 		return -EINVAL;
977 	if (unlikely(nid >= NM_I(sbi)->max_nid))
978 		return -EINVAL;
979 	return 0;
980 }
981 
982 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
983 
984 /*
985  * Check whether the inode has blocks or not
986  */
987 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
988 {
989 	if (F2FS_I(inode)->i_xattr_nid)
990 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
991 	else
992 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
993 }
994 
995 static inline bool f2fs_has_xattr_block(unsigned int ofs)
996 {
997 	return ofs == XATTR_NODE_OFFSET;
998 }
999 
1000 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1001 				 struct inode *inode, blkcnt_t count)
1002 {
1003 	block_t	valid_block_count;
1004 
1005 	spin_lock(&sbi->stat_lock);
1006 	valid_block_count =
1007 		sbi->total_valid_block_count + (block_t)count;
1008 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1009 		spin_unlock(&sbi->stat_lock);
1010 		return false;
1011 	}
1012 	inode->i_blocks += count;
1013 	sbi->total_valid_block_count = valid_block_count;
1014 	sbi->alloc_valid_block_count += (block_t)count;
1015 	spin_unlock(&sbi->stat_lock);
1016 	return true;
1017 }
1018 
1019 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1020 						struct inode *inode,
1021 						blkcnt_t count)
1022 {
1023 	spin_lock(&sbi->stat_lock);
1024 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1025 	f2fs_bug_on(sbi, inode->i_blocks < count);
1026 	inode->i_blocks -= count;
1027 	sbi->total_valid_block_count -= (block_t)count;
1028 	spin_unlock(&sbi->stat_lock);
1029 }
1030 
1031 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1032 {
1033 	atomic_inc(&sbi->nr_pages[count_type]);
1034 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1035 }
1036 
1037 static inline void inode_inc_dirty_pages(struct inode *inode)
1038 {
1039 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1040 	if (S_ISDIR(inode->i_mode))
1041 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1042 }
1043 
1044 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1045 {
1046 	atomic_dec(&sbi->nr_pages[count_type]);
1047 }
1048 
1049 static inline void inode_dec_dirty_pages(struct inode *inode)
1050 {
1051 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1052 			!S_ISLNK(inode->i_mode))
1053 		return;
1054 
1055 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1056 
1057 	if (S_ISDIR(inode->i_mode))
1058 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1059 }
1060 
1061 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1062 {
1063 	return atomic_read(&sbi->nr_pages[count_type]);
1064 }
1065 
1066 static inline int get_dirty_pages(struct inode *inode)
1067 {
1068 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1069 }
1070 
1071 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1072 {
1073 	unsigned int pages_per_sec = sbi->segs_per_sec *
1074 					(1 << sbi->log_blocks_per_seg);
1075 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1076 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1077 }
1078 
1079 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1080 {
1081 	return sbi->total_valid_block_count;
1082 }
1083 
1084 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1085 {
1086 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1087 
1088 	/* return NAT or SIT bitmap */
1089 	if (flag == NAT_BITMAP)
1090 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1091 	else if (flag == SIT_BITMAP)
1092 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1093 
1094 	return 0;
1095 }
1096 
1097 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1098 {
1099 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1100 }
1101 
1102 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1103 {
1104 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1105 	int offset;
1106 
1107 	if (__cp_payload(sbi) > 0) {
1108 		if (flag == NAT_BITMAP)
1109 			return &ckpt->sit_nat_version_bitmap;
1110 		else
1111 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1112 	} else {
1113 		offset = (flag == NAT_BITMAP) ?
1114 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1115 		return &ckpt->sit_nat_version_bitmap + offset;
1116 	}
1117 }
1118 
1119 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1120 {
1121 	block_t start_addr;
1122 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1123 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1124 
1125 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1126 
1127 	/*
1128 	 * odd numbered checkpoint should at cp segment 0
1129 	 * and even segment must be at cp segment 1
1130 	 */
1131 	if (!(ckpt_version & 1))
1132 		start_addr += sbi->blocks_per_seg;
1133 
1134 	return start_addr;
1135 }
1136 
1137 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1138 {
1139 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1140 }
1141 
1142 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1143 						struct inode *inode)
1144 {
1145 	block_t	valid_block_count;
1146 	unsigned int valid_node_count;
1147 
1148 	spin_lock(&sbi->stat_lock);
1149 
1150 	valid_block_count = sbi->total_valid_block_count + 1;
1151 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1152 		spin_unlock(&sbi->stat_lock);
1153 		return false;
1154 	}
1155 
1156 	valid_node_count = sbi->total_valid_node_count + 1;
1157 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1158 		spin_unlock(&sbi->stat_lock);
1159 		return false;
1160 	}
1161 
1162 	if (inode)
1163 		inode->i_blocks++;
1164 
1165 	sbi->alloc_valid_block_count++;
1166 	sbi->total_valid_node_count++;
1167 	sbi->total_valid_block_count++;
1168 	spin_unlock(&sbi->stat_lock);
1169 
1170 	return true;
1171 }
1172 
1173 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1174 						struct inode *inode)
1175 {
1176 	spin_lock(&sbi->stat_lock);
1177 
1178 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1179 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1180 	f2fs_bug_on(sbi, !inode->i_blocks);
1181 
1182 	inode->i_blocks--;
1183 	sbi->total_valid_node_count--;
1184 	sbi->total_valid_block_count--;
1185 
1186 	spin_unlock(&sbi->stat_lock);
1187 }
1188 
1189 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1190 {
1191 	return sbi->total_valid_node_count;
1192 }
1193 
1194 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1195 {
1196 	spin_lock(&sbi->stat_lock);
1197 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1198 	sbi->total_valid_inode_count++;
1199 	spin_unlock(&sbi->stat_lock);
1200 }
1201 
1202 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1203 {
1204 	spin_lock(&sbi->stat_lock);
1205 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1206 	sbi->total_valid_inode_count--;
1207 	spin_unlock(&sbi->stat_lock);
1208 }
1209 
1210 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1211 {
1212 	return sbi->total_valid_inode_count;
1213 }
1214 
1215 static inline void f2fs_put_page(struct page *page, int unlock)
1216 {
1217 	if (!page)
1218 		return;
1219 
1220 	if (unlock) {
1221 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1222 		unlock_page(page);
1223 	}
1224 	page_cache_release(page);
1225 }
1226 
1227 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1228 {
1229 	if (dn->node_page)
1230 		f2fs_put_page(dn->node_page, 1);
1231 	if (dn->inode_page && dn->node_page != dn->inode_page)
1232 		f2fs_put_page(dn->inode_page, 0);
1233 	dn->node_page = NULL;
1234 	dn->inode_page = NULL;
1235 }
1236 
1237 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1238 					size_t size)
1239 {
1240 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1241 }
1242 
1243 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1244 						gfp_t flags)
1245 {
1246 	void *entry;
1247 retry:
1248 	entry = kmem_cache_alloc(cachep, flags);
1249 	if (!entry) {
1250 		cond_resched();
1251 		goto retry;
1252 	}
1253 
1254 	return entry;
1255 }
1256 
1257 static inline struct bio *f2fs_bio_alloc(int npages)
1258 {
1259 	struct bio *bio;
1260 
1261 	/* No failure on bio allocation */
1262 retry:
1263 	bio = bio_alloc(GFP_NOIO, npages);
1264 	if (!bio) {
1265 		cond_resched();
1266 		goto retry;
1267 	}
1268 	return bio;
1269 }
1270 
1271 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1272 				unsigned long index, void *item)
1273 {
1274 	while (radix_tree_insert(root, index, item))
1275 		cond_resched();
1276 }
1277 
1278 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1279 
1280 static inline bool IS_INODE(struct page *page)
1281 {
1282 	struct f2fs_node *p = F2FS_NODE(page);
1283 	return RAW_IS_INODE(p);
1284 }
1285 
1286 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1287 {
1288 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1289 }
1290 
1291 static inline block_t datablock_addr(struct page *node_page,
1292 		unsigned int offset)
1293 {
1294 	struct f2fs_node *raw_node;
1295 	__le32 *addr_array;
1296 	raw_node = F2FS_NODE(node_page);
1297 	addr_array = blkaddr_in_node(raw_node);
1298 	return le32_to_cpu(addr_array[offset]);
1299 }
1300 
1301 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1302 {
1303 	int mask;
1304 
1305 	addr += (nr >> 3);
1306 	mask = 1 << (7 - (nr & 0x07));
1307 	return mask & *addr;
1308 }
1309 
1310 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1311 {
1312 	int mask;
1313 
1314 	addr += (nr >> 3);
1315 	mask = 1 << (7 - (nr & 0x07));
1316 	*addr |= mask;
1317 }
1318 
1319 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1320 {
1321 	int mask;
1322 
1323 	addr += (nr >> 3);
1324 	mask = 1 << (7 - (nr & 0x07));
1325 	*addr &= ~mask;
1326 }
1327 
1328 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1329 {
1330 	int mask;
1331 	int ret;
1332 
1333 	addr += (nr >> 3);
1334 	mask = 1 << (7 - (nr & 0x07));
1335 	ret = mask & *addr;
1336 	*addr |= mask;
1337 	return ret;
1338 }
1339 
1340 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1341 {
1342 	int mask;
1343 	int ret;
1344 
1345 	addr += (nr >> 3);
1346 	mask = 1 << (7 - (nr & 0x07));
1347 	ret = mask & *addr;
1348 	*addr &= ~mask;
1349 	return ret;
1350 }
1351 
1352 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1353 {
1354 	int mask;
1355 
1356 	addr += (nr >> 3);
1357 	mask = 1 << (7 - (nr & 0x07));
1358 	*addr ^= mask;
1359 }
1360 
1361 /* used for f2fs_inode_info->flags */
1362 enum {
1363 	FI_NEW_INODE,		/* indicate newly allocated inode */
1364 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1365 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1366 	FI_INC_LINK,		/* need to increment i_nlink */
1367 	FI_ACL_MODE,		/* indicate acl mode */
1368 	FI_NO_ALLOC,		/* should not allocate any blocks */
1369 	FI_FREE_NID,		/* free allocated nide */
1370 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1371 	FI_DELAY_IPUT,		/* used for the recovery */
1372 	FI_NO_EXTENT,		/* not to use the extent cache */
1373 	FI_INLINE_XATTR,	/* used for inline xattr */
1374 	FI_INLINE_DATA,		/* used for inline data*/
1375 	FI_INLINE_DENTRY,	/* used for inline dentry */
1376 	FI_APPEND_WRITE,	/* inode has appended data */
1377 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1378 	FI_NEED_IPU,		/* used for ipu per file */
1379 	FI_ATOMIC_FILE,		/* indicate atomic file */
1380 	FI_VOLATILE_FILE,	/* indicate volatile file */
1381 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1382 	FI_DROP_CACHE,		/* drop dirty page cache */
1383 	FI_DATA_EXIST,		/* indicate data exists */
1384 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1385 };
1386 
1387 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1388 {
1389 	if (!test_bit(flag, &fi->flags))
1390 		set_bit(flag, &fi->flags);
1391 }
1392 
1393 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1394 {
1395 	return test_bit(flag, &fi->flags);
1396 }
1397 
1398 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1399 {
1400 	if (test_bit(flag, &fi->flags))
1401 		clear_bit(flag, &fi->flags);
1402 }
1403 
1404 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1405 {
1406 	fi->i_acl_mode = mode;
1407 	set_inode_flag(fi, FI_ACL_MODE);
1408 }
1409 
1410 static inline void get_inline_info(struct f2fs_inode_info *fi,
1411 					struct f2fs_inode *ri)
1412 {
1413 	if (ri->i_inline & F2FS_INLINE_XATTR)
1414 		set_inode_flag(fi, FI_INLINE_XATTR);
1415 	if (ri->i_inline & F2FS_INLINE_DATA)
1416 		set_inode_flag(fi, FI_INLINE_DATA);
1417 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1418 		set_inode_flag(fi, FI_INLINE_DENTRY);
1419 	if (ri->i_inline & F2FS_DATA_EXIST)
1420 		set_inode_flag(fi, FI_DATA_EXIST);
1421 	if (ri->i_inline & F2FS_INLINE_DOTS)
1422 		set_inode_flag(fi, FI_INLINE_DOTS);
1423 }
1424 
1425 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1426 					struct f2fs_inode *ri)
1427 {
1428 	ri->i_inline = 0;
1429 
1430 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1431 		ri->i_inline |= F2FS_INLINE_XATTR;
1432 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1433 		ri->i_inline |= F2FS_INLINE_DATA;
1434 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1435 		ri->i_inline |= F2FS_INLINE_DENTRY;
1436 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1437 		ri->i_inline |= F2FS_DATA_EXIST;
1438 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1439 		ri->i_inline |= F2FS_INLINE_DOTS;
1440 }
1441 
1442 static inline int f2fs_has_inline_xattr(struct inode *inode)
1443 {
1444 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1445 }
1446 
1447 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1448 {
1449 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1450 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1451 	return DEF_ADDRS_PER_INODE;
1452 }
1453 
1454 static inline void *inline_xattr_addr(struct page *page)
1455 {
1456 	struct f2fs_inode *ri = F2FS_INODE(page);
1457 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1458 					F2FS_INLINE_XATTR_ADDRS]);
1459 }
1460 
1461 static inline int inline_xattr_size(struct inode *inode)
1462 {
1463 	if (f2fs_has_inline_xattr(inode))
1464 		return F2FS_INLINE_XATTR_ADDRS << 2;
1465 	else
1466 		return 0;
1467 }
1468 
1469 static inline int f2fs_has_inline_data(struct inode *inode)
1470 {
1471 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1472 }
1473 
1474 static inline void f2fs_clear_inline_inode(struct inode *inode)
1475 {
1476 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1477 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1478 }
1479 
1480 static inline int f2fs_exist_data(struct inode *inode)
1481 {
1482 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1483 }
1484 
1485 static inline int f2fs_has_inline_dots(struct inode *inode)
1486 {
1487 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1488 }
1489 
1490 static inline bool f2fs_is_atomic_file(struct inode *inode)
1491 {
1492 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1493 }
1494 
1495 static inline bool f2fs_is_volatile_file(struct inode *inode)
1496 {
1497 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1498 }
1499 
1500 static inline bool f2fs_is_first_block_written(struct inode *inode)
1501 {
1502 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1503 }
1504 
1505 static inline bool f2fs_is_drop_cache(struct inode *inode)
1506 {
1507 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1508 }
1509 
1510 static inline void *inline_data_addr(struct page *page)
1511 {
1512 	struct f2fs_inode *ri = F2FS_INODE(page);
1513 	return (void *)&(ri->i_addr[1]);
1514 }
1515 
1516 static inline int f2fs_has_inline_dentry(struct inode *inode)
1517 {
1518 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1519 }
1520 
1521 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1522 {
1523 	if (!f2fs_has_inline_dentry(dir))
1524 		kunmap(page);
1525 }
1526 
1527 static inline int is_file(struct inode *inode, int type)
1528 {
1529 	return F2FS_I(inode)->i_advise & type;
1530 }
1531 
1532 static inline void set_file(struct inode *inode, int type)
1533 {
1534 	F2FS_I(inode)->i_advise |= type;
1535 }
1536 
1537 static inline void clear_file(struct inode *inode, int type)
1538 {
1539 	F2FS_I(inode)->i_advise &= ~type;
1540 }
1541 
1542 static inline int f2fs_readonly(struct super_block *sb)
1543 {
1544 	return sb->s_flags & MS_RDONLY;
1545 }
1546 
1547 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1548 {
1549 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1550 }
1551 
1552 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1553 {
1554 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1555 	sbi->sb->s_flags |= MS_RDONLY;
1556 }
1557 
1558 static inline bool is_dot_dotdot(const struct qstr *str)
1559 {
1560 	if (str->len == 1 && str->name[0] == '.')
1561 		return true;
1562 
1563 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1564 		return true;
1565 
1566 	return false;
1567 }
1568 
1569 static inline bool f2fs_may_extent_tree(struct inode *inode)
1570 {
1571 	mode_t mode = inode->i_mode;
1572 
1573 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1574 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1575 		return false;
1576 
1577 	return S_ISREG(mode);
1578 }
1579 
1580 #define get_inode_mode(i) \
1581 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1582 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1583 
1584 /* get offset of first page in next direct node */
1585 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1586 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1587 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1588 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1589 
1590 /*
1591  * file.c
1592  */
1593 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1594 void truncate_data_blocks(struct dnode_of_data *);
1595 int truncate_blocks(struct inode *, u64, bool);
1596 void f2fs_truncate(struct inode *, bool);
1597 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1598 int f2fs_setattr(struct dentry *, struct iattr *);
1599 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1600 int truncate_data_blocks_range(struct dnode_of_data *, int);
1601 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1602 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1603 
1604 /*
1605  * inode.c
1606  */
1607 void f2fs_set_inode_flags(struct inode *);
1608 struct inode *f2fs_iget(struct super_block *, unsigned long);
1609 int try_to_free_nats(struct f2fs_sb_info *, int);
1610 void update_inode(struct inode *, struct page *);
1611 void update_inode_page(struct inode *);
1612 int f2fs_write_inode(struct inode *, struct writeback_control *);
1613 void f2fs_evict_inode(struct inode *);
1614 void handle_failed_inode(struct inode *);
1615 
1616 /*
1617  * namei.c
1618  */
1619 struct dentry *f2fs_get_parent(struct dentry *child);
1620 
1621 /*
1622  * dir.c
1623  */
1624 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1625 void set_de_type(struct f2fs_dir_entry *, umode_t);
1626 
1627 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1628 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1629 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1630 			unsigned int, struct f2fs_str *);
1631 void do_make_empty_dir(struct inode *, struct inode *,
1632 			struct f2fs_dentry_ptr *);
1633 struct page *init_inode_metadata(struct inode *, struct inode *,
1634 			const struct qstr *, struct page *);
1635 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1636 int room_for_filename(const void *, int, int);
1637 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1638 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1639 							struct page **);
1640 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1641 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1642 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1643 				struct page *, struct inode *);
1644 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1645 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1646 			const struct qstr *, f2fs_hash_t , unsigned int);
1647 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1648 			umode_t);
1649 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1650 							struct inode *);
1651 int f2fs_do_tmpfile(struct inode *, struct inode *);
1652 bool f2fs_empty_dir(struct inode *);
1653 
1654 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1655 {
1656 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1657 				inode, inode->i_ino, inode->i_mode);
1658 }
1659 
1660 /*
1661  * super.c
1662  */
1663 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1664 int f2fs_sync_fs(struct super_block *, int);
1665 extern __printf(3, 4)
1666 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1667 
1668 /*
1669  * hash.c
1670  */
1671 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1672 
1673 /*
1674  * node.c
1675  */
1676 struct dnode_of_data;
1677 struct node_info;
1678 
1679 bool available_free_memory(struct f2fs_sb_info *, int);
1680 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1681 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1682 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1683 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1684 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1685 int truncate_inode_blocks(struct inode *, pgoff_t);
1686 int truncate_xattr_node(struct inode *, struct page *);
1687 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1688 void remove_inode_page(struct inode *);
1689 struct page *new_inode_page(struct inode *);
1690 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1691 void ra_node_page(struct f2fs_sb_info *, nid_t);
1692 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1693 struct page *get_node_page_ra(struct page *, int);
1694 void sync_inode_page(struct dnode_of_data *);
1695 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1696 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1697 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1698 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1699 int try_to_free_nids(struct f2fs_sb_info *, int);
1700 void recover_inline_xattr(struct inode *, struct page *);
1701 void recover_xattr_data(struct inode *, struct page *, block_t);
1702 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1703 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1704 				struct f2fs_summary_block *);
1705 void flush_nat_entries(struct f2fs_sb_info *);
1706 int build_node_manager(struct f2fs_sb_info *);
1707 void destroy_node_manager(struct f2fs_sb_info *);
1708 int __init create_node_manager_caches(void);
1709 void destroy_node_manager_caches(void);
1710 
1711 /*
1712  * segment.c
1713  */
1714 void register_inmem_page(struct inode *, struct page *);
1715 int commit_inmem_pages(struct inode *, bool);
1716 void f2fs_balance_fs(struct f2fs_sb_info *);
1717 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1718 int f2fs_issue_flush(struct f2fs_sb_info *);
1719 int create_flush_cmd_control(struct f2fs_sb_info *);
1720 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1721 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1722 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1723 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1724 void release_discard_addrs(struct f2fs_sb_info *);
1725 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1726 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1727 void allocate_new_segments(struct f2fs_sb_info *);
1728 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1729 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1730 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1731 void write_meta_page(struct f2fs_sb_info *, struct page *);
1732 void write_node_page(unsigned int, struct f2fs_io_info *);
1733 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1734 void rewrite_data_page(struct f2fs_io_info *);
1735 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1736 				block_t, block_t, unsigned char, bool);
1737 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1738 		block_t, block_t *, struct f2fs_summary *, int);
1739 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1740 void write_data_summaries(struct f2fs_sb_info *, block_t);
1741 void write_node_summaries(struct f2fs_sb_info *, block_t);
1742 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1743 					int, unsigned int, int);
1744 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1745 int build_segment_manager(struct f2fs_sb_info *);
1746 void destroy_segment_manager(struct f2fs_sb_info *);
1747 int __init create_segment_manager_caches(void);
1748 void destroy_segment_manager_caches(void);
1749 
1750 /*
1751  * checkpoint.c
1752  */
1753 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1754 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1755 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1756 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1757 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1758 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1759 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1760 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1761 void release_dirty_inode(struct f2fs_sb_info *);
1762 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1763 int acquire_orphan_inode(struct f2fs_sb_info *);
1764 void release_orphan_inode(struct f2fs_sb_info *);
1765 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1766 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1767 int recover_orphan_inodes(struct f2fs_sb_info *);
1768 int get_valid_checkpoint(struct f2fs_sb_info *);
1769 void update_dirty_page(struct inode *, struct page *);
1770 void add_dirty_dir_inode(struct inode *);
1771 void remove_dirty_dir_inode(struct inode *);
1772 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1773 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1774 void init_ino_entry_info(struct f2fs_sb_info *);
1775 int __init create_checkpoint_caches(void);
1776 void destroy_checkpoint_caches(void);
1777 
1778 /*
1779  * data.c
1780  */
1781 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1782 int f2fs_submit_page_bio(struct f2fs_io_info *);
1783 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1784 void set_data_blkaddr(struct dnode_of_data *);
1785 int reserve_new_block(struct dnode_of_data *);
1786 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1787 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1788 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1789 struct page *find_data_page(struct inode *, pgoff_t);
1790 struct page *get_lock_data_page(struct inode *, pgoff_t);
1791 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1792 int do_write_data_page(struct f2fs_io_info *);
1793 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1794 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1795 int f2fs_release_page(struct page *, gfp_t);
1796 
1797 /*
1798  * gc.c
1799  */
1800 int start_gc_thread(struct f2fs_sb_info *);
1801 void stop_gc_thread(struct f2fs_sb_info *);
1802 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1803 int f2fs_gc(struct f2fs_sb_info *);
1804 void build_gc_manager(struct f2fs_sb_info *);
1805 
1806 /*
1807  * recovery.c
1808  */
1809 int recover_fsync_data(struct f2fs_sb_info *);
1810 bool space_for_roll_forward(struct f2fs_sb_info *);
1811 
1812 /*
1813  * debug.c
1814  */
1815 #ifdef CONFIG_F2FS_STAT_FS
1816 struct f2fs_stat_info {
1817 	struct list_head stat_list;
1818 	struct f2fs_sb_info *sbi;
1819 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1820 	int main_area_segs, main_area_sections, main_area_zones;
1821 	int hit_ext, total_ext, ext_tree, ext_node;
1822 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1823 	int nats, dirty_nats, sits, dirty_sits, fnids;
1824 	int total_count, utilization;
1825 	int bg_gc, inmem_pages, wb_pages;
1826 	int inline_xattr, inline_inode, inline_dir;
1827 	unsigned int valid_count, valid_node_count, valid_inode_count;
1828 	unsigned int bimodal, avg_vblocks;
1829 	int util_free, util_valid, util_invalid;
1830 	int rsvd_segs, overp_segs;
1831 	int dirty_count, node_pages, meta_pages;
1832 	int prefree_count, call_count, cp_count;
1833 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1834 	int bg_node_segs, bg_data_segs;
1835 	int tot_blks, data_blks, node_blks;
1836 	int bg_data_blks, bg_node_blks;
1837 	int curseg[NR_CURSEG_TYPE];
1838 	int cursec[NR_CURSEG_TYPE];
1839 	int curzone[NR_CURSEG_TYPE];
1840 
1841 	unsigned int segment_count[2];
1842 	unsigned int block_count[2];
1843 	unsigned int inplace_count;
1844 	unsigned base_mem, cache_mem, page_mem;
1845 };
1846 
1847 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1848 {
1849 	return (struct f2fs_stat_info *)sbi->stat_info;
1850 }
1851 
1852 #define stat_inc_cp_count(si)		((si)->cp_count++)
1853 #define stat_inc_call_count(si)		((si)->call_count++)
1854 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1855 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1856 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1857 #define stat_inc_total_hit(sbi)		(atomic_inc(&(sbi)->total_hit_ext))
1858 #define stat_inc_read_hit(sbi)		(atomic_inc(&(sbi)->read_hit_ext))
1859 #define stat_inc_inline_xattr(inode)					\
1860 	do {								\
1861 		if (f2fs_has_inline_xattr(inode))			\
1862 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1863 	} while (0)
1864 #define stat_dec_inline_xattr(inode)					\
1865 	do {								\
1866 		if (f2fs_has_inline_xattr(inode))			\
1867 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
1868 	} while (0)
1869 #define stat_inc_inline_inode(inode)					\
1870 	do {								\
1871 		if (f2fs_has_inline_data(inode))			\
1872 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1873 	} while (0)
1874 #define stat_dec_inline_inode(inode)					\
1875 	do {								\
1876 		if (f2fs_has_inline_data(inode))			\
1877 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1878 	} while (0)
1879 #define stat_inc_inline_dir(inode)					\
1880 	do {								\
1881 		if (f2fs_has_inline_dentry(inode))			\
1882 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1883 	} while (0)
1884 #define stat_dec_inline_dir(inode)					\
1885 	do {								\
1886 		if (f2fs_has_inline_dentry(inode))			\
1887 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1888 	} while (0)
1889 #define stat_inc_seg_type(sbi, curseg)					\
1890 		((sbi)->segment_count[(curseg)->alloc_type]++)
1891 #define stat_inc_block_count(sbi, curseg)				\
1892 		((sbi)->block_count[(curseg)->alloc_type]++)
1893 #define stat_inc_inplace_blocks(sbi)					\
1894 		(atomic_inc(&(sbi)->inplace_count))
1895 #define stat_inc_seg_count(sbi, type, gc_type)				\
1896 	do {								\
1897 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1898 		(si)->tot_segs++;					\
1899 		if (type == SUM_TYPE_DATA) {				\
1900 			si->data_segs++;				\
1901 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1902 		} else {						\
1903 			si->node_segs++;				\
1904 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1905 		}							\
1906 	} while (0)
1907 
1908 #define stat_inc_tot_blk_count(si, blks)				\
1909 	(si->tot_blks += (blks))
1910 
1911 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1912 	do {								\
1913 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1914 		stat_inc_tot_blk_count(si, blks);			\
1915 		si->data_blks += (blks);				\
1916 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1917 	} while (0)
1918 
1919 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1920 	do {								\
1921 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1922 		stat_inc_tot_blk_count(si, blks);			\
1923 		si->node_blks += (blks);				\
1924 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1925 	} while (0)
1926 
1927 int f2fs_build_stats(struct f2fs_sb_info *);
1928 void f2fs_destroy_stats(struct f2fs_sb_info *);
1929 void __init f2fs_create_root_stats(void);
1930 void f2fs_destroy_root_stats(void);
1931 #else
1932 #define stat_inc_cp_count(si)
1933 #define stat_inc_call_count(si)
1934 #define stat_inc_bggc_count(si)
1935 #define stat_inc_dirty_dir(sbi)
1936 #define stat_dec_dirty_dir(sbi)
1937 #define stat_inc_total_hit(sb)
1938 #define stat_inc_read_hit(sb)
1939 #define stat_inc_inline_xattr(inode)
1940 #define stat_dec_inline_xattr(inode)
1941 #define stat_inc_inline_inode(inode)
1942 #define stat_dec_inline_inode(inode)
1943 #define stat_inc_inline_dir(inode)
1944 #define stat_dec_inline_dir(inode)
1945 #define stat_inc_seg_type(sbi, curseg)
1946 #define stat_inc_block_count(sbi, curseg)
1947 #define stat_inc_inplace_blocks(sbi)
1948 #define stat_inc_seg_count(sbi, type, gc_type)
1949 #define stat_inc_tot_blk_count(si, blks)
1950 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1951 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1952 
1953 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1954 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1955 static inline void __init f2fs_create_root_stats(void) { }
1956 static inline void f2fs_destroy_root_stats(void) { }
1957 #endif
1958 
1959 extern const struct file_operations f2fs_dir_operations;
1960 extern const struct file_operations f2fs_file_operations;
1961 extern const struct inode_operations f2fs_file_inode_operations;
1962 extern const struct address_space_operations f2fs_dblock_aops;
1963 extern const struct address_space_operations f2fs_node_aops;
1964 extern const struct address_space_operations f2fs_meta_aops;
1965 extern const struct inode_operations f2fs_dir_inode_operations;
1966 extern const struct inode_operations f2fs_symlink_inode_operations;
1967 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1968 extern const struct inode_operations f2fs_special_inode_operations;
1969 extern struct kmem_cache *inode_entry_slab;
1970 
1971 /*
1972  * inline.c
1973  */
1974 bool f2fs_may_inline_data(struct inode *);
1975 bool f2fs_may_inline_dentry(struct inode *);
1976 void read_inline_data(struct page *, struct page *);
1977 bool truncate_inline_inode(struct page *, u64);
1978 int f2fs_read_inline_data(struct inode *, struct page *);
1979 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1980 int f2fs_convert_inline_inode(struct inode *);
1981 int f2fs_write_inline_data(struct inode *, struct page *);
1982 bool recover_inline_data(struct inode *, struct page *);
1983 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1984 				struct f2fs_filename *, struct page **);
1985 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1986 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1987 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1988 						nid_t, umode_t);
1989 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1990 						struct inode *, struct inode *);
1991 bool f2fs_empty_inline_dir(struct inode *);
1992 int f2fs_read_inline_dir(struct file *, struct dir_context *,
1993 						struct f2fs_str *);
1994 
1995 /*
1996  * shrinker.c
1997  */
1998 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
1999 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2000 void f2fs_join_shrinker(struct f2fs_sb_info *);
2001 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2002 
2003 /*
2004  * extent_cache.c
2005  */
2006 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2007 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2008 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2009 unsigned int f2fs_destroy_extent_node(struct inode *);
2010 void f2fs_destroy_extent_tree(struct inode *);
2011 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2012 void f2fs_update_extent_cache(struct dnode_of_data *);
2013 void init_extent_cache_info(struct f2fs_sb_info *);
2014 int __init create_extent_cache(void);
2015 void destroy_extent_cache(void);
2016 
2017 /*
2018  * crypto support
2019  */
2020 static inline int f2fs_encrypted_inode(struct inode *inode)
2021 {
2022 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2023 	return file_is_encrypt(inode);
2024 #else
2025 	return 0;
2026 #endif
2027 }
2028 
2029 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2030 {
2031 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2032 	file_set_encrypt(inode);
2033 #endif
2034 }
2035 
2036 static inline bool f2fs_bio_encrypted(struct bio *bio)
2037 {
2038 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2039 	return unlikely(bio->bi_private != NULL);
2040 #else
2041 	return false;
2042 #endif
2043 }
2044 
2045 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2046 {
2047 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2048 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2049 #else
2050 	return 0;
2051 #endif
2052 }
2053 
2054 static inline bool f2fs_may_encrypt(struct inode *inode)
2055 {
2056 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2057 	mode_t mode = inode->i_mode;
2058 
2059 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2060 #else
2061 	return 0;
2062 #endif
2063 }
2064 
2065 /* crypto_policy.c */
2066 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2067 							struct inode *);
2068 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2069 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2070 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2071 
2072 /* crypt.c */
2073 extern struct kmem_cache *f2fs_crypt_info_cachep;
2074 bool f2fs_valid_contents_enc_mode(uint32_t);
2075 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2076 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2077 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2078 struct page *f2fs_encrypt(struct inode *, struct page *);
2079 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2080 int f2fs_decrypt_one(struct inode *, struct page *);
2081 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2082 
2083 /* crypto_key.c */
2084 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2085 int _f2fs_get_encryption_info(struct inode *inode);
2086 
2087 /* crypto_fname.c */
2088 bool f2fs_valid_filenames_enc_mode(uint32_t);
2089 u32 f2fs_fname_crypto_round_up(u32, u32);
2090 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2091 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2092 			const struct f2fs_str *, struct f2fs_str *);
2093 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2094 			struct f2fs_str *);
2095 
2096 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2097 void f2fs_restore_and_release_control_page(struct page **);
2098 void f2fs_restore_control_page(struct page *);
2099 
2100 int __init f2fs_init_crypto(void);
2101 int f2fs_crypto_initialize(void);
2102 void f2fs_exit_crypto(void);
2103 
2104 int f2fs_has_encryption_key(struct inode *);
2105 
2106 static inline int f2fs_get_encryption_info(struct inode *inode)
2107 {
2108 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2109 
2110 	if (!ci ||
2111 		(ci->ci_keyring_key &&
2112 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2113 					       (1 << KEY_FLAG_REVOKED) |
2114 					       (1 << KEY_FLAG_DEAD)))))
2115 		return _f2fs_get_encryption_info(inode);
2116 	return 0;
2117 }
2118 
2119 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2120 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2121 				int lookup, struct f2fs_filename *);
2122 void f2fs_fname_free_filename(struct f2fs_filename *);
2123 #else
2124 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2125 static inline void f2fs_restore_control_page(struct page *p) { }
2126 
2127 static inline int __init f2fs_init_crypto(void) { return 0; }
2128 static inline void f2fs_exit_crypto(void) { }
2129 
2130 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2131 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2132 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2133 
2134 static inline int f2fs_fname_setup_filename(struct inode *dir,
2135 					const struct qstr *iname,
2136 					int lookup, struct f2fs_filename *fname)
2137 {
2138 	memset(fname, 0, sizeof(struct f2fs_filename));
2139 	fname->usr_fname = iname;
2140 	fname->disk_name.name = (unsigned char *)iname->name;
2141 	fname->disk_name.len = iname->len;
2142 	return 0;
2143 }
2144 
2145 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2146 #endif
2147 #endif
2148