1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <crypto/hash.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (WARN_ON(condition)) \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } while (0) 39 #endif 40 41 enum { 42 FAULT_KMALLOC, 43 FAULT_KVMALLOC, 44 FAULT_PAGE_ALLOC, 45 FAULT_PAGE_GET, 46 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 47 FAULT_ALLOC_NID, 48 FAULT_ORPHAN, 49 FAULT_BLOCK, 50 FAULT_DIR_DEPTH, 51 FAULT_EVICT_INODE, 52 FAULT_TRUNCATE, 53 FAULT_READ_IO, 54 FAULT_CHECKPOINT, 55 FAULT_DISCARD, 56 FAULT_WRITE_IO, 57 FAULT_SLAB_ALLOC, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 78 #define F2FS_MOUNT_DISCARD 0x00000004 79 #define F2FS_MOUNT_NOHEAP 0x00000008 80 #define F2FS_MOUNT_XATTR_USER 0x00000010 81 #define F2FS_MOUNT_POSIX_ACL 0x00000020 82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 84 #define F2FS_MOUNT_INLINE_DATA 0x00000100 85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 87 #define F2FS_MOUNT_NOBARRIER 0x00000800 88 #define F2FS_MOUNT_FASTBOOT 0x00001000 89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 #define F2FS_MOUNT_QUOTA 0x00400000 96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 97 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 98 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 99 #define F2FS_MOUNT_NORECOVERY 0x04000000 100 #define F2FS_MOUNT_ATGC 0x08000000 101 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 102 #define F2FS_MOUNT_GC_MERGE 0x20000000 103 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 104 105 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 106 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 107 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 108 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 109 110 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 111 typecheck(unsigned long long, b) && \ 112 ((long long)((a) - (b)) > 0)) 113 114 typedef u32 block_t; /* 115 * should not change u32, since it is the on-disk block 116 * address format, __le32. 117 */ 118 typedef u32 nid_t; 119 120 #define COMPRESS_EXT_NUM 16 121 122 struct f2fs_mount_info { 123 unsigned int opt; 124 int write_io_size_bits; /* Write IO size bits */ 125 block_t root_reserved_blocks; /* root reserved blocks */ 126 kuid_t s_resuid; /* reserved blocks for uid */ 127 kgid_t s_resgid; /* reserved blocks for gid */ 128 int active_logs; /* # of active logs */ 129 int inline_xattr_size; /* inline xattr size */ 130 #ifdef CONFIG_F2FS_FAULT_INJECTION 131 struct f2fs_fault_info fault_info; /* For fault injection */ 132 #endif 133 #ifdef CONFIG_QUOTA 134 /* Names of quota files with journalled quota */ 135 char *s_qf_names[MAXQUOTAS]; 136 int s_jquota_fmt; /* Format of quota to use */ 137 #endif 138 /* For which write hints are passed down to block layer */ 139 int whint_mode; 140 int alloc_mode; /* segment allocation policy */ 141 int fsync_mode; /* fsync policy */ 142 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 143 int bggc_mode; /* bggc mode: off, on or sync */ 144 int discard_unit; /* 145 * discard command's offset/size should 146 * be aligned to this unit: block, 147 * segment or section 148 */ 149 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 150 block_t unusable_cap_perc; /* percentage for cap */ 151 block_t unusable_cap; /* Amount of space allowed to be 152 * unusable when disabling checkpoint 153 */ 154 155 /* For compression */ 156 unsigned char compress_algorithm; /* algorithm type */ 157 unsigned char compress_log_size; /* cluster log size */ 158 unsigned char compress_level; /* compress level */ 159 bool compress_chksum; /* compressed data chksum */ 160 unsigned char compress_ext_cnt; /* extension count */ 161 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 162 int compress_mode; /* compression mode */ 163 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 164 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 165 }; 166 167 #define F2FS_FEATURE_ENCRYPT 0x0001 168 #define F2FS_FEATURE_BLKZONED 0x0002 169 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 170 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 171 #define F2FS_FEATURE_PRJQUOTA 0x0010 172 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 173 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 174 #define F2FS_FEATURE_QUOTA_INO 0x0080 175 #define F2FS_FEATURE_INODE_CRTIME 0x0100 176 #define F2FS_FEATURE_LOST_FOUND 0x0200 177 #define F2FS_FEATURE_VERITY 0x0400 178 #define F2FS_FEATURE_SB_CHKSUM 0x0800 179 #define F2FS_FEATURE_CASEFOLD 0x1000 180 #define F2FS_FEATURE_COMPRESSION 0x2000 181 #define F2FS_FEATURE_RO 0x4000 182 183 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 184 ((raw_super->feature & cpu_to_le32(mask)) != 0) 185 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 186 #define F2FS_SET_FEATURE(sbi, mask) \ 187 (sbi->raw_super->feature |= cpu_to_le32(mask)) 188 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 189 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 190 191 /* 192 * Default values for user and/or group using reserved blocks 193 */ 194 #define F2FS_DEF_RESUID 0 195 #define F2FS_DEF_RESGID 0 196 197 /* 198 * For checkpoint manager 199 */ 200 enum { 201 NAT_BITMAP, 202 SIT_BITMAP 203 }; 204 205 #define CP_UMOUNT 0x00000001 206 #define CP_FASTBOOT 0x00000002 207 #define CP_SYNC 0x00000004 208 #define CP_RECOVERY 0x00000008 209 #define CP_DISCARD 0x00000010 210 #define CP_TRIMMED 0x00000020 211 #define CP_PAUSE 0x00000040 212 #define CP_RESIZE 0x00000080 213 214 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 215 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 216 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 217 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 218 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 219 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 220 #define DEF_CP_INTERVAL 60 /* 60 secs */ 221 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 222 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 223 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 224 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 225 226 struct cp_control { 227 int reason; 228 __u64 trim_start; 229 __u64 trim_end; 230 __u64 trim_minlen; 231 }; 232 233 /* 234 * indicate meta/data type 235 */ 236 enum { 237 META_CP, 238 META_NAT, 239 META_SIT, 240 META_SSA, 241 META_MAX, 242 META_POR, 243 DATA_GENERIC, /* check range only */ 244 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 245 DATA_GENERIC_ENHANCE_READ, /* 246 * strong check on range and segment 247 * bitmap but no warning due to race 248 * condition of read on truncated area 249 * by extent_cache 250 */ 251 META_GENERIC, 252 }; 253 254 /* for the list of ino */ 255 enum { 256 ORPHAN_INO, /* for orphan ino list */ 257 APPEND_INO, /* for append ino list */ 258 UPDATE_INO, /* for update ino list */ 259 TRANS_DIR_INO, /* for trasactions dir ino list */ 260 FLUSH_INO, /* for multiple device flushing */ 261 MAX_INO_ENTRY, /* max. list */ 262 }; 263 264 struct ino_entry { 265 struct list_head list; /* list head */ 266 nid_t ino; /* inode number */ 267 unsigned int dirty_device; /* dirty device bitmap */ 268 }; 269 270 /* for the list of inodes to be GCed */ 271 struct inode_entry { 272 struct list_head list; /* list head */ 273 struct inode *inode; /* vfs inode pointer */ 274 }; 275 276 struct fsync_node_entry { 277 struct list_head list; /* list head */ 278 struct page *page; /* warm node page pointer */ 279 unsigned int seq_id; /* sequence id */ 280 }; 281 282 struct ckpt_req { 283 struct completion wait; /* completion for checkpoint done */ 284 struct llist_node llnode; /* llist_node to be linked in wait queue */ 285 int ret; /* return code of checkpoint */ 286 ktime_t queue_time; /* request queued time */ 287 }; 288 289 struct ckpt_req_control { 290 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 291 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 292 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 293 atomic_t issued_ckpt; /* # of actually issued ckpts */ 294 atomic_t total_ckpt; /* # of total ckpts */ 295 atomic_t queued_ckpt; /* # of queued ckpts */ 296 struct llist_head issue_list; /* list for command issue */ 297 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 298 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 299 unsigned int peak_time; /* peak wait time in msec until now */ 300 }; 301 302 /* for the bitmap indicate blocks to be discarded */ 303 struct discard_entry { 304 struct list_head list; /* list head */ 305 block_t start_blkaddr; /* start blockaddr of current segment */ 306 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 307 }; 308 309 /* default discard granularity of inner discard thread, unit: block count */ 310 #define DEFAULT_DISCARD_GRANULARITY 16 311 312 /* max discard pend list number */ 313 #define MAX_PLIST_NUM 512 314 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 315 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 316 317 enum { 318 D_PREP, /* initial */ 319 D_PARTIAL, /* partially submitted */ 320 D_SUBMIT, /* all submitted */ 321 D_DONE, /* finished */ 322 }; 323 324 struct discard_info { 325 block_t lstart; /* logical start address */ 326 block_t len; /* length */ 327 block_t start; /* actual start address in dev */ 328 }; 329 330 struct discard_cmd { 331 struct rb_node rb_node; /* rb node located in rb-tree */ 332 union { 333 struct { 334 block_t lstart; /* logical start address */ 335 block_t len; /* length */ 336 block_t start; /* actual start address in dev */ 337 }; 338 struct discard_info di; /* discard info */ 339 340 }; 341 struct list_head list; /* command list */ 342 struct completion wait; /* compleation */ 343 struct block_device *bdev; /* bdev */ 344 unsigned short ref; /* reference count */ 345 unsigned char state; /* state */ 346 unsigned char queued; /* queued discard */ 347 int error; /* bio error */ 348 spinlock_t lock; /* for state/bio_ref updating */ 349 unsigned short bio_ref; /* bio reference count */ 350 }; 351 352 enum { 353 DPOLICY_BG, 354 DPOLICY_FORCE, 355 DPOLICY_FSTRIM, 356 DPOLICY_UMOUNT, 357 MAX_DPOLICY, 358 }; 359 360 struct discard_policy { 361 int type; /* type of discard */ 362 unsigned int min_interval; /* used for candidates exist */ 363 unsigned int mid_interval; /* used for device busy */ 364 unsigned int max_interval; /* used for candidates not exist */ 365 unsigned int max_requests; /* # of discards issued per round */ 366 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 367 bool io_aware; /* issue discard in idle time */ 368 bool sync; /* submit discard with REQ_SYNC flag */ 369 bool ordered; /* issue discard by lba order */ 370 bool timeout; /* discard timeout for put_super */ 371 unsigned int granularity; /* discard granularity */ 372 }; 373 374 struct discard_cmd_control { 375 struct task_struct *f2fs_issue_discard; /* discard thread */ 376 struct list_head entry_list; /* 4KB discard entry list */ 377 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 378 struct list_head wait_list; /* store on-flushing entries */ 379 struct list_head fstrim_list; /* in-flight discard from fstrim */ 380 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 381 unsigned int discard_wake; /* to wake up discard thread */ 382 struct mutex cmd_lock; 383 unsigned int nr_discards; /* # of discards in the list */ 384 unsigned int max_discards; /* max. discards to be issued */ 385 unsigned int discard_granularity; /* discard granularity */ 386 unsigned int undiscard_blks; /* # of undiscard blocks */ 387 unsigned int next_pos; /* next discard position */ 388 atomic_t issued_discard; /* # of issued discard */ 389 atomic_t queued_discard; /* # of queued discard */ 390 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 391 struct rb_root_cached root; /* root of discard rb-tree */ 392 bool rbtree_check; /* config for consistence check */ 393 }; 394 395 /* for the list of fsync inodes, used only during recovery */ 396 struct fsync_inode_entry { 397 struct list_head list; /* list head */ 398 struct inode *inode; /* vfs inode pointer */ 399 block_t blkaddr; /* block address locating the last fsync */ 400 block_t last_dentry; /* block address locating the last dentry */ 401 }; 402 403 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 404 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 405 406 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 407 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 408 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 409 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 410 411 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 412 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 413 414 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 415 { 416 int before = nats_in_cursum(journal); 417 418 journal->n_nats = cpu_to_le16(before + i); 419 return before; 420 } 421 422 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 423 { 424 int before = sits_in_cursum(journal); 425 426 journal->n_sits = cpu_to_le16(before + i); 427 return before; 428 } 429 430 static inline bool __has_cursum_space(struct f2fs_journal *journal, 431 int size, int type) 432 { 433 if (type == NAT_JOURNAL) 434 return size <= MAX_NAT_JENTRIES(journal); 435 return size <= MAX_SIT_JENTRIES(journal); 436 } 437 438 /* for inline stuff */ 439 #define DEF_INLINE_RESERVED_SIZE 1 440 static inline int get_extra_isize(struct inode *inode); 441 static inline int get_inline_xattr_addrs(struct inode *inode); 442 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 443 (CUR_ADDRS_PER_INODE(inode) - \ 444 get_inline_xattr_addrs(inode) - \ 445 DEF_INLINE_RESERVED_SIZE)) 446 447 /* for inline dir */ 448 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 450 BITS_PER_BYTE + 1)) 451 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 452 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 453 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 454 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 455 NR_INLINE_DENTRY(inode) + \ 456 INLINE_DENTRY_BITMAP_SIZE(inode))) 457 458 /* 459 * For INODE and NODE manager 460 */ 461 /* for directory operations */ 462 463 struct f2fs_filename { 464 /* 465 * The filename the user specified. This is NULL for some 466 * filesystem-internal operations, e.g. converting an inline directory 467 * to a non-inline one, or roll-forward recovering an encrypted dentry. 468 */ 469 const struct qstr *usr_fname; 470 471 /* 472 * The on-disk filename. For encrypted directories, this is encrypted. 473 * This may be NULL for lookups in an encrypted dir without the key. 474 */ 475 struct fscrypt_str disk_name; 476 477 /* The dirhash of this filename */ 478 f2fs_hash_t hash; 479 480 #ifdef CONFIG_FS_ENCRYPTION 481 /* 482 * For lookups in encrypted directories: either the buffer backing 483 * disk_name, or a buffer that holds the decoded no-key name. 484 */ 485 struct fscrypt_str crypto_buf; 486 #endif 487 #ifdef CONFIG_UNICODE 488 /* 489 * For casefolded directories: the casefolded name, but it's left NULL 490 * if the original name is not valid Unicode, if the directory is both 491 * casefolded and encrypted and its encryption key is unavailable, or if 492 * the filesystem is doing an internal operation where usr_fname is also 493 * NULL. In all these cases we fall back to treating the name as an 494 * opaque byte sequence. 495 */ 496 struct fscrypt_str cf_name; 497 #endif 498 }; 499 500 struct f2fs_dentry_ptr { 501 struct inode *inode; 502 void *bitmap; 503 struct f2fs_dir_entry *dentry; 504 __u8 (*filename)[F2FS_SLOT_LEN]; 505 int max; 506 int nr_bitmap; 507 }; 508 509 static inline void make_dentry_ptr_block(struct inode *inode, 510 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 511 { 512 d->inode = inode; 513 d->max = NR_DENTRY_IN_BLOCK; 514 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 515 d->bitmap = t->dentry_bitmap; 516 d->dentry = t->dentry; 517 d->filename = t->filename; 518 } 519 520 static inline void make_dentry_ptr_inline(struct inode *inode, 521 struct f2fs_dentry_ptr *d, void *t) 522 { 523 int entry_cnt = NR_INLINE_DENTRY(inode); 524 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 525 int reserved_size = INLINE_RESERVED_SIZE(inode); 526 527 d->inode = inode; 528 d->max = entry_cnt; 529 d->nr_bitmap = bitmap_size; 530 d->bitmap = t; 531 d->dentry = t + bitmap_size + reserved_size; 532 d->filename = t + bitmap_size + reserved_size + 533 SIZE_OF_DIR_ENTRY * entry_cnt; 534 } 535 536 /* 537 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 538 * as its node offset to distinguish from index node blocks. 539 * But some bits are used to mark the node block. 540 */ 541 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 542 >> OFFSET_BIT_SHIFT) 543 enum { 544 ALLOC_NODE, /* allocate a new node page if needed */ 545 LOOKUP_NODE, /* look up a node without readahead */ 546 LOOKUP_NODE_RA, /* 547 * look up a node with readahead called 548 * by get_data_block. 549 */ 550 }; 551 552 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 553 554 /* congestion wait timeout value, default: 20ms */ 555 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 556 557 /* maximum retry quota flush count */ 558 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 559 560 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 561 562 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 563 564 /* dirty segments threshold for triggering CP */ 565 #define DEFAULT_DIRTY_THRESHOLD 4 566 567 /* for in-memory extent cache entry */ 568 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 569 570 /* number of extent info in extent cache we try to shrink */ 571 #define EXTENT_CACHE_SHRINK_NUMBER 128 572 573 struct rb_entry { 574 struct rb_node rb_node; /* rb node located in rb-tree */ 575 union { 576 struct { 577 unsigned int ofs; /* start offset of the entry */ 578 unsigned int len; /* length of the entry */ 579 }; 580 unsigned long long key; /* 64-bits key */ 581 } __packed; 582 }; 583 584 struct extent_info { 585 unsigned int fofs; /* start offset in a file */ 586 unsigned int len; /* length of the extent */ 587 u32 blk; /* start block address of the extent */ 588 #ifdef CONFIG_F2FS_FS_COMPRESSION 589 unsigned int c_len; /* physical extent length of compressed blocks */ 590 #endif 591 }; 592 593 struct extent_node { 594 struct rb_node rb_node; /* rb node located in rb-tree */ 595 struct extent_info ei; /* extent info */ 596 struct list_head list; /* node in global extent list of sbi */ 597 struct extent_tree *et; /* extent tree pointer */ 598 }; 599 600 struct extent_tree { 601 nid_t ino; /* inode number */ 602 struct rb_root_cached root; /* root of extent info rb-tree */ 603 struct extent_node *cached_en; /* recently accessed extent node */ 604 struct extent_info largest; /* largested extent info */ 605 struct list_head list; /* to be used by sbi->zombie_list */ 606 rwlock_t lock; /* protect extent info rb-tree */ 607 atomic_t node_cnt; /* # of extent node in rb-tree*/ 608 bool largest_updated; /* largest extent updated */ 609 }; 610 611 /* 612 * This structure is taken from ext4_map_blocks. 613 * 614 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 615 */ 616 #define F2FS_MAP_NEW (1 << BH_New) 617 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 618 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 619 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 620 F2FS_MAP_UNWRITTEN) 621 622 struct f2fs_map_blocks { 623 struct block_device *m_bdev; /* for multi-device dio */ 624 block_t m_pblk; 625 block_t m_lblk; 626 unsigned int m_len; 627 unsigned int m_flags; 628 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 629 pgoff_t *m_next_extent; /* point to next possible extent */ 630 int m_seg_type; 631 bool m_may_create; /* indicate it is from write path */ 632 bool m_multidev_dio; /* indicate it allows multi-device dio */ 633 }; 634 635 /* for flag in get_data_block */ 636 enum { 637 F2FS_GET_BLOCK_DEFAULT, 638 F2FS_GET_BLOCK_FIEMAP, 639 F2FS_GET_BLOCK_BMAP, 640 F2FS_GET_BLOCK_DIO, 641 F2FS_GET_BLOCK_PRE_DIO, 642 F2FS_GET_BLOCK_PRE_AIO, 643 F2FS_GET_BLOCK_PRECACHE, 644 }; 645 646 /* 647 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 648 */ 649 #define FADVISE_COLD_BIT 0x01 650 #define FADVISE_LOST_PINO_BIT 0x02 651 #define FADVISE_ENCRYPT_BIT 0x04 652 #define FADVISE_ENC_NAME_BIT 0x08 653 #define FADVISE_KEEP_SIZE_BIT 0x10 654 #define FADVISE_HOT_BIT 0x20 655 #define FADVISE_VERITY_BIT 0x40 656 657 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 658 659 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 660 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 661 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 662 663 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 664 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 665 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 666 667 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 668 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 669 670 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 671 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 672 673 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 674 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 675 676 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 677 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 678 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 679 680 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 681 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 682 683 #define DEF_DIR_LEVEL 0 684 685 enum { 686 GC_FAILURE_PIN, 687 GC_FAILURE_ATOMIC, 688 MAX_GC_FAILURE 689 }; 690 691 /* used for f2fs_inode_info->flags */ 692 enum { 693 FI_NEW_INODE, /* indicate newly allocated inode */ 694 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 695 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 696 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 697 FI_INC_LINK, /* need to increment i_nlink */ 698 FI_ACL_MODE, /* indicate acl mode */ 699 FI_NO_ALLOC, /* should not allocate any blocks */ 700 FI_FREE_NID, /* free allocated nide */ 701 FI_NO_EXTENT, /* not to use the extent cache */ 702 FI_INLINE_XATTR, /* used for inline xattr */ 703 FI_INLINE_DATA, /* used for inline data*/ 704 FI_INLINE_DENTRY, /* used for inline dentry */ 705 FI_APPEND_WRITE, /* inode has appended data */ 706 FI_UPDATE_WRITE, /* inode has in-place-update data */ 707 FI_NEED_IPU, /* used for ipu per file */ 708 FI_ATOMIC_FILE, /* indicate atomic file */ 709 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 710 FI_VOLATILE_FILE, /* indicate volatile file */ 711 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 712 FI_DROP_CACHE, /* drop dirty page cache */ 713 FI_DATA_EXIST, /* indicate data exists */ 714 FI_INLINE_DOTS, /* indicate inline dot dentries */ 715 FI_DO_DEFRAG, /* indicate defragment is running */ 716 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 717 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 718 FI_HOT_DATA, /* indicate file is hot */ 719 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 720 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 721 FI_PIN_FILE, /* indicate file should not be gced */ 722 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 723 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 724 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 725 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 726 FI_MMAP_FILE, /* indicate file was mmapped */ 727 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 728 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 729 FI_ALIGNED_WRITE, /* enable aligned write */ 730 FI_MAX, /* max flag, never be used */ 731 }; 732 733 struct f2fs_inode_info { 734 struct inode vfs_inode; /* serve a vfs inode */ 735 unsigned long i_flags; /* keep an inode flags for ioctl */ 736 unsigned char i_advise; /* use to give file attribute hints */ 737 unsigned char i_dir_level; /* use for dentry level for large dir */ 738 unsigned int i_current_depth; /* only for directory depth */ 739 /* for gc failure statistic */ 740 unsigned int i_gc_failures[MAX_GC_FAILURE]; 741 unsigned int i_pino; /* parent inode number */ 742 umode_t i_acl_mode; /* keep file acl mode temporarily */ 743 744 /* Use below internally in f2fs*/ 745 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 746 struct rw_semaphore i_sem; /* protect fi info */ 747 atomic_t dirty_pages; /* # of dirty pages */ 748 f2fs_hash_t chash; /* hash value of given file name */ 749 unsigned int clevel; /* maximum level of given file name */ 750 struct task_struct *task; /* lookup and create consistency */ 751 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 752 nid_t i_xattr_nid; /* node id that contains xattrs */ 753 loff_t last_disk_size; /* lastly written file size */ 754 spinlock_t i_size_lock; /* protect last_disk_size */ 755 756 #ifdef CONFIG_QUOTA 757 struct dquot *i_dquot[MAXQUOTAS]; 758 759 /* quota space reservation, managed internally by quota code */ 760 qsize_t i_reserved_quota; 761 #endif 762 struct list_head dirty_list; /* dirty list for dirs and files */ 763 struct list_head gdirty_list; /* linked in global dirty list */ 764 struct list_head inmem_ilist; /* list for inmem inodes */ 765 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 766 struct task_struct *inmem_task; /* store inmemory task */ 767 struct mutex inmem_lock; /* lock for inmemory pages */ 768 struct extent_tree *extent_tree; /* cached extent_tree entry */ 769 770 /* avoid racing between foreground op and gc */ 771 struct rw_semaphore i_gc_rwsem[2]; 772 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 773 774 int i_extra_isize; /* size of extra space located in i_addr */ 775 kprojid_t i_projid; /* id for project quota */ 776 int i_inline_xattr_size; /* inline xattr size */ 777 struct timespec64 i_crtime; /* inode creation time */ 778 struct timespec64 i_disk_time[4];/* inode disk times */ 779 780 /* for file compress */ 781 atomic_t i_compr_blocks; /* # of compressed blocks */ 782 unsigned char i_compress_algorithm; /* algorithm type */ 783 unsigned char i_log_cluster_size; /* log of cluster size */ 784 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 785 unsigned short i_compress_flag; /* compress flag */ 786 unsigned int i_cluster_size; /* cluster size */ 787 }; 788 789 static inline void get_extent_info(struct extent_info *ext, 790 struct f2fs_extent *i_ext) 791 { 792 ext->fofs = le32_to_cpu(i_ext->fofs); 793 ext->blk = le32_to_cpu(i_ext->blk); 794 ext->len = le32_to_cpu(i_ext->len); 795 } 796 797 static inline void set_raw_extent(struct extent_info *ext, 798 struct f2fs_extent *i_ext) 799 { 800 i_ext->fofs = cpu_to_le32(ext->fofs); 801 i_ext->blk = cpu_to_le32(ext->blk); 802 i_ext->len = cpu_to_le32(ext->len); 803 } 804 805 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 806 u32 blk, unsigned int len) 807 { 808 ei->fofs = fofs; 809 ei->blk = blk; 810 ei->len = len; 811 #ifdef CONFIG_F2FS_FS_COMPRESSION 812 ei->c_len = 0; 813 #endif 814 } 815 816 static inline bool __is_discard_mergeable(struct discard_info *back, 817 struct discard_info *front, unsigned int max_len) 818 { 819 return (back->lstart + back->len == front->lstart) && 820 (back->len + front->len <= max_len); 821 } 822 823 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 824 struct discard_info *back, unsigned int max_len) 825 { 826 return __is_discard_mergeable(back, cur, max_len); 827 } 828 829 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 830 struct discard_info *front, unsigned int max_len) 831 { 832 return __is_discard_mergeable(cur, front, max_len); 833 } 834 835 static inline bool __is_extent_mergeable(struct extent_info *back, 836 struct extent_info *front) 837 { 838 #ifdef CONFIG_F2FS_FS_COMPRESSION 839 if (back->c_len && back->len != back->c_len) 840 return false; 841 if (front->c_len && front->len != front->c_len) 842 return false; 843 #endif 844 return (back->fofs + back->len == front->fofs && 845 back->blk + back->len == front->blk); 846 } 847 848 static inline bool __is_back_mergeable(struct extent_info *cur, 849 struct extent_info *back) 850 { 851 return __is_extent_mergeable(back, cur); 852 } 853 854 static inline bool __is_front_mergeable(struct extent_info *cur, 855 struct extent_info *front) 856 { 857 return __is_extent_mergeable(cur, front); 858 } 859 860 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 861 static inline void __try_update_largest_extent(struct extent_tree *et, 862 struct extent_node *en) 863 { 864 if (en->ei.len > et->largest.len) { 865 et->largest = en->ei; 866 et->largest_updated = true; 867 } 868 } 869 870 /* 871 * For free nid management 872 */ 873 enum nid_state { 874 FREE_NID, /* newly added to free nid list */ 875 PREALLOC_NID, /* it is preallocated */ 876 MAX_NID_STATE, 877 }; 878 879 enum nat_state { 880 TOTAL_NAT, 881 DIRTY_NAT, 882 RECLAIMABLE_NAT, 883 MAX_NAT_STATE, 884 }; 885 886 struct f2fs_nm_info { 887 block_t nat_blkaddr; /* base disk address of NAT */ 888 nid_t max_nid; /* maximum possible node ids */ 889 nid_t available_nids; /* # of available node ids */ 890 nid_t next_scan_nid; /* the next nid to be scanned */ 891 unsigned int ram_thresh; /* control the memory footprint */ 892 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 893 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 894 895 /* NAT cache management */ 896 struct radix_tree_root nat_root;/* root of the nat entry cache */ 897 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 898 struct rw_semaphore nat_tree_lock; /* protect nat entry tree */ 899 struct list_head nat_entries; /* cached nat entry list (clean) */ 900 spinlock_t nat_list_lock; /* protect clean nat entry list */ 901 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 902 unsigned int nat_blocks; /* # of nat blocks */ 903 904 /* free node ids management */ 905 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 906 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 907 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 908 spinlock_t nid_list_lock; /* protect nid lists ops */ 909 struct mutex build_lock; /* lock for build free nids */ 910 unsigned char **free_nid_bitmap; 911 unsigned char *nat_block_bitmap; 912 unsigned short *free_nid_count; /* free nid count of NAT block */ 913 914 /* for checkpoint */ 915 char *nat_bitmap; /* NAT bitmap pointer */ 916 917 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 918 unsigned char *nat_bits; /* NAT bits blocks */ 919 unsigned char *full_nat_bits; /* full NAT pages */ 920 unsigned char *empty_nat_bits; /* empty NAT pages */ 921 #ifdef CONFIG_F2FS_CHECK_FS 922 char *nat_bitmap_mir; /* NAT bitmap mirror */ 923 #endif 924 int bitmap_size; /* bitmap size */ 925 }; 926 927 /* 928 * this structure is used as one of function parameters. 929 * all the information are dedicated to a given direct node block determined 930 * by the data offset in a file. 931 */ 932 struct dnode_of_data { 933 struct inode *inode; /* vfs inode pointer */ 934 struct page *inode_page; /* its inode page, NULL is possible */ 935 struct page *node_page; /* cached direct node page */ 936 nid_t nid; /* node id of the direct node block */ 937 unsigned int ofs_in_node; /* data offset in the node page */ 938 bool inode_page_locked; /* inode page is locked or not */ 939 bool node_changed; /* is node block changed */ 940 char cur_level; /* level of hole node page */ 941 char max_level; /* level of current page located */ 942 block_t data_blkaddr; /* block address of the node block */ 943 }; 944 945 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 946 struct page *ipage, struct page *npage, nid_t nid) 947 { 948 memset(dn, 0, sizeof(*dn)); 949 dn->inode = inode; 950 dn->inode_page = ipage; 951 dn->node_page = npage; 952 dn->nid = nid; 953 } 954 955 /* 956 * For SIT manager 957 * 958 * By default, there are 6 active log areas across the whole main area. 959 * When considering hot and cold data separation to reduce cleaning overhead, 960 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 961 * respectively. 962 * In the current design, you should not change the numbers intentionally. 963 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 964 * logs individually according to the underlying devices. (default: 6) 965 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 966 * data and 8 for node logs. 967 */ 968 #define NR_CURSEG_DATA_TYPE (3) 969 #define NR_CURSEG_NODE_TYPE (3) 970 #define NR_CURSEG_INMEM_TYPE (2) 971 #define NR_CURSEG_RO_TYPE (2) 972 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 973 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 974 975 enum { 976 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 977 CURSEG_WARM_DATA, /* data blocks */ 978 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 979 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 980 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 981 CURSEG_COLD_NODE, /* indirect node blocks */ 982 NR_PERSISTENT_LOG, /* number of persistent log */ 983 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 984 /* pinned file that needs consecutive block address */ 985 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 986 NO_CHECK_TYPE, /* number of persistent & inmem log */ 987 }; 988 989 struct flush_cmd { 990 struct completion wait; 991 struct llist_node llnode; 992 nid_t ino; 993 int ret; 994 }; 995 996 struct flush_cmd_control { 997 struct task_struct *f2fs_issue_flush; /* flush thread */ 998 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 999 atomic_t issued_flush; /* # of issued flushes */ 1000 atomic_t queued_flush; /* # of queued flushes */ 1001 struct llist_head issue_list; /* list for command issue */ 1002 struct llist_node *dispatch_list; /* list for command dispatch */ 1003 }; 1004 1005 struct f2fs_sm_info { 1006 struct sit_info *sit_info; /* whole segment information */ 1007 struct free_segmap_info *free_info; /* free segment information */ 1008 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1009 struct curseg_info *curseg_array; /* active segment information */ 1010 1011 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 1012 1013 block_t seg0_blkaddr; /* block address of 0'th segment */ 1014 block_t main_blkaddr; /* start block address of main area */ 1015 block_t ssa_blkaddr; /* start block address of SSA area */ 1016 1017 unsigned int segment_count; /* total # of segments */ 1018 unsigned int main_segments; /* # of segments in main area */ 1019 unsigned int reserved_segments; /* # of reserved segments */ 1020 unsigned int ovp_segments; /* # of overprovision segments */ 1021 1022 /* a threshold to reclaim prefree segments */ 1023 unsigned int rec_prefree_segments; 1024 1025 /* for batched trimming */ 1026 unsigned int trim_sections; /* # of sections to trim */ 1027 1028 struct list_head sit_entry_set; /* sit entry set list */ 1029 1030 unsigned int ipu_policy; /* in-place-update policy */ 1031 unsigned int min_ipu_util; /* in-place-update threshold */ 1032 unsigned int min_fsync_blocks; /* threshold for fsync */ 1033 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1034 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1035 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1036 1037 /* for flush command control */ 1038 struct flush_cmd_control *fcc_info; 1039 1040 /* for discard command control */ 1041 struct discard_cmd_control *dcc_info; 1042 }; 1043 1044 /* 1045 * For superblock 1046 */ 1047 /* 1048 * COUNT_TYPE for monitoring 1049 * 1050 * f2fs monitors the number of several block types such as on-writeback, 1051 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1052 */ 1053 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1054 enum count_type { 1055 F2FS_DIRTY_DENTS, 1056 F2FS_DIRTY_DATA, 1057 F2FS_DIRTY_QDATA, 1058 F2FS_DIRTY_NODES, 1059 F2FS_DIRTY_META, 1060 F2FS_INMEM_PAGES, 1061 F2FS_DIRTY_IMETA, 1062 F2FS_WB_CP_DATA, 1063 F2FS_WB_DATA, 1064 F2FS_RD_DATA, 1065 F2FS_RD_NODE, 1066 F2FS_RD_META, 1067 F2FS_DIO_WRITE, 1068 F2FS_DIO_READ, 1069 NR_COUNT_TYPE, 1070 }; 1071 1072 /* 1073 * The below are the page types of bios used in submit_bio(). 1074 * The available types are: 1075 * DATA User data pages. It operates as async mode. 1076 * NODE Node pages. It operates as async mode. 1077 * META FS metadata pages such as SIT, NAT, CP. 1078 * NR_PAGE_TYPE The number of page types. 1079 * META_FLUSH Make sure the previous pages are written 1080 * with waiting the bio's completion 1081 * ... Only can be used with META. 1082 */ 1083 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1084 enum page_type { 1085 DATA, 1086 NODE, 1087 META, 1088 NR_PAGE_TYPE, 1089 META_FLUSH, 1090 INMEM, /* the below types are used by tracepoints only. */ 1091 INMEM_DROP, 1092 INMEM_INVALIDATE, 1093 INMEM_REVOKE, 1094 IPU, 1095 OPU, 1096 }; 1097 1098 enum temp_type { 1099 HOT = 0, /* must be zero for meta bio */ 1100 WARM, 1101 COLD, 1102 NR_TEMP_TYPE, 1103 }; 1104 1105 enum need_lock_type { 1106 LOCK_REQ = 0, 1107 LOCK_DONE, 1108 LOCK_RETRY, 1109 }; 1110 1111 enum cp_reason_type { 1112 CP_NO_NEEDED, 1113 CP_NON_REGULAR, 1114 CP_COMPRESSED, 1115 CP_HARDLINK, 1116 CP_SB_NEED_CP, 1117 CP_WRONG_PINO, 1118 CP_NO_SPC_ROLL, 1119 CP_NODE_NEED_CP, 1120 CP_FASTBOOT_MODE, 1121 CP_SPEC_LOG_NUM, 1122 CP_RECOVER_DIR, 1123 }; 1124 1125 enum iostat_type { 1126 /* WRITE IO */ 1127 APP_DIRECT_IO, /* app direct write IOs */ 1128 APP_BUFFERED_IO, /* app buffered write IOs */ 1129 APP_WRITE_IO, /* app write IOs */ 1130 APP_MAPPED_IO, /* app mapped IOs */ 1131 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1132 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1133 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1134 FS_GC_DATA_IO, /* data IOs from forground gc */ 1135 FS_GC_NODE_IO, /* node IOs from forground gc */ 1136 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1137 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1138 FS_CP_META_IO, /* meta IOs from checkpoint */ 1139 1140 /* READ IO */ 1141 APP_DIRECT_READ_IO, /* app direct read IOs */ 1142 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1143 APP_READ_IO, /* app read IOs */ 1144 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1145 FS_DATA_READ_IO, /* data read IOs */ 1146 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1147 FS_CDATA_READ_IO, /* compressed data read IOs */ 1148 FS_NODE_READ_IO, /* node read IOs */ 1149 FS_META_READ_IO, /* meta read IOs */ 1150 1151 /* other */ 1152 FS_DISCARD, /* discard */ 1153 NR_IO_TYPE, 1154 }; 1155 1156 struct f2fs_io_info { 1157 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1158 nid_t ino; /* inode number */ 1159 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1160 enum temp_type temp; /* contains HOT/WARM/COLD */ 1161 int op; /* contains REQ_OP_ */ 1162 int op_flags; /* req_flag_bits */ 1163 block_t new_blkaddr; /* new block address to be written */ 1164 block_t old_blkaddr; /* old block address before Cow */ 1165 struct page *page; /* page to be written */ 1166 struct page *encrypted_page; /* encrypted page */ 1167 struct page *compressed_page; /* compressed page */ 1168 struct list_head list; /* serialize IOs */ 1169 bool submitted; /* indicate IO submission */ 1170 int need_lock; /* indicate we need to lock cp_rwsem */ 1171 bool in_list; /* indicate fio is in io_list */ 1172 bool is_por; /* indicate IO is from recovery or not */ 1173 bool retry; /* need to reallocate block address */ 1174 int compr_blocks; /* # of compressed block addresses */ 1175 bool encrypted; /* indicate file is encrypted */ 1176 enum iostat_type io_type; /* io type */ 1177 struct writeback_control *io_wbc; /* writeback control */ 1178 struct bio **bio; /* bio for ipu */ 1179 sector_t *last_block; /* last block number in bio */ 1180 unsigned char version; /* version of the node */ 1181 }; 1182 1183 struct bio_entry { 1184 struct bio *bio; 1185 struct list_head list; 1186 }; 1187 1188 #define is_read_io(rw) ((rw) == READ) 1189 struct f2fs_bio_info { 1190 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1191 struct bio *bio; /* bios to merge */ 1192 sector_t last_block_in_bio; /* last block number */ 1193 struct f2fs_io_info fio; /* store buffered io info. */ 1194 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1195 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1196 struct list_head io_list; /* track fios */ 1197 struct list_head bio_list; /* bio entry list head */ 1198 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1199 }; 1200 1201 #define FDEV(i) (sbi->devs[i]) 1202 #define RDEV(i) (raw_super->devs[i]) 1203 struct f2fs_dev_info { 1204 struct block_device *bdev; 1205 char path[MAX_PATH_LEN]; 1206 unsigned int total_segments; 1207 block_t start_blk; 1208 block_t end_blk; 1209 #ifdef CONFIG_BLK_DEV_ZONED 1210 unsigned int nr_blkz; /* Total number of zones */ 1211 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1212 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */ 1213 #endif 1214 }; 1215 1216 enum inode_type { 1217 DIR_INODE, /* for dirty dir inode */ 1218 FILE_INODE, /* for dirty regular/symlink inode */ 1219 DIRTY_META, /* for all dirtied inode metadata */ 1220 ATOMIC_FILE, /* for all atomic files */ 1221 NR_INODE_TYPE, 1222 }; 1223 1224 /* for inner inode cache management */ 1225 struct inode_management { 1226 struct radix_tree_root ino_root; /* ino entry array */ 1227 spinlock_t ino_lock; /* for ino entry lock */ 1228 struct list_head ino_list; /* inode list head */ 1229 unsigned long ino_num; /* number of entries */ 1230 }; 1231 1232 /* for GC_AT */ 1233 struct atgc_management { 1234 bool atgc_enabled; /* ATGC is enabled or not */ 1235 struct rb_root_cached root; /* root of victim rb-tree */ 1236 struct list_head victim_list; /* linked with all victim entries */ 1237 unsigned int victim_count; /* victim count in rb-tree */ 1238 unsigned int candidate_ratio; /* candidate ratio */ 1239 unsigned int max_candidate_count; /* max candidate count */ 1240 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1241 unsigned long long age_threshold; /* age threshold */ 1242 }; 1243 1244 /* For s_flag in struct f2fs_sb_info */ 1245 enum { 1246 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1247 SBI_IS_CLOSE, /* specify unmounting */ 1248 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1249 SBI_POR_DOING, /* recovery is doing or not */ 1250 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1251 SBI_NEED_CP, /* need to checkpoint */ 1252 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1253 SBI_IS_RECOVERED, /* recovered orphan/data */ 1254 SBI_CP_DISABLED, /* CP was disabled last mount */ 1255 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1256 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1257 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1258 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1259 SBI_IS_RESIZEFS, /* resizefs is in process */ 1260 }; 1261 1262 enum { 1263 CP_TIME, 1264 REQ_TIME, 1265 DISCARD_TIME, 1266 GC_TIME, 1267 DISABLE_TIME, 1268 UMOUNT_DISCARD_TIMEOUT, 1269 MAX_TIME, 1270 }; 1271 1272 enum { 1273 GC_NORMAL, 1274 GC_IDLE_CB, 1275 GC_IDLE_GREEDY, 1276 GC_IDLE_AT, 1277 GC_URGENT_HIGH, 1278 GC_URGENT_LOW, 1279 MAX_GC_MODE, 1280 }; 1281 1282 enum { 1283 BGGC_MODE_ON, /* background gc is on */ 1284 BGGC_MODE_OFF, /* background gc is off */ 1285 BGGC_MODE_SYNC, /* 1286 * background gc is on, migrating blocks 1287 * like foreground gc 1288 */ 1289 }; 1290 1291 enum { 1292 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1293 FS_MODE_LFS, /* use lfs allocation only */ 1294 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1295 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1296 }; 1297 1298 enum { 1299 WHINT_MODE_OFF, /* not pass down write hints */ 1300 WHINT_MODE_USER, /* try to pass down hints given by users */ 1301 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1302 }; 1303 1304 enum { 1305 ALLOC_MODE_DEFAULT, /* stay default */ 1306 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1307 }; 1308 1309 enum fsync_mode { 1310 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1311 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1312 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1313 }; 1314 1315 enum { 1316 COMPR_MODE_FS, /* 1317 * automatically compress compression 1318 * enabled files 1319 */ 1320 COMPR_MODE_USER, /* 1321 * automatical compression is disabled. 1322 * user can control the file compression 1323 * using ioctls 1324 */ 1325 }; 1326 1327 enum { 1328 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1329 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1330 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1331 }; 1332 1333 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1334 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1335 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1336 1337 /* 1338 * Layout of f2fs page.private: 1339 * 1340 * Layout A: lowest bit should be 1 1341 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1342 * bit 0 PAGE_PRIVATE_NOT_POINTER 1343 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE 1344 * bit 2 PAGE_PRIVATE_DUMMY_WRITE 1345 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION 1346 * bit 4 PAGE_PRIVATE_INLINE_INODE 1347 * bit 5 PAGE_PRIVATE_REF_RESOURCE 1348 * bit 6- f2fs private data 1349 * 1350 * Layout B: lowest bit should be 0 1351 * page.private is a wrapped pointer. 1352 */ 1353 enum { 1354 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1355 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1356 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1357 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1358 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1359 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1360 PAGE_PRIVATE_MAX 1361 }; 1362 1363 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1364 static inline bool page_private_##name(struct page *page) \ 1365 { \ 1366 return PagePrivate(page) && \ 1367 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1368 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1369 } 1370 1371 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1372 static inline void set_page_private_##name(struct page *page) \ 1373 { \ 1374 if (!PagePrivate(page)) { \ 1375 get_page(page); \ 1376 SetPagePrivate(page); \ 1377 set_page_private(page, 0); \ 1378 } \ 1379 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1380 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1381 } 1382 1383 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1384 static inline void clear_page_private_##name(struct page *page) \ 1385 { \ 1386 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1387 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \ 1388 set_page_private(page, 0); \ 1389 if (PagePrivate(page)) { \ 1390 ClearPagePrivate(page); \ 1391 put_page(page); \ 1392 }\ 1393 } \ 1394 } 1395 1396 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1397 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE); 1398 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1399 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1400 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 1401 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1402 1403 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1404 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1405 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1406 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 1407 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1408 1409 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1410 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1411 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1412 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 1413 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1414 1415 static inline unsigned long get_page_private_data(struct page *page) 1416 { 1417 unsigned long data = page_private(page); 1418 1419 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1420 return 0; 1421 return data >> PAGE_PRIVATE_MAX; 1422 } 1423 1424 static inline void set_page_private_data(struct page *page, unsigned long data) 1425 { 1426 if (!PagePrivate(page)) { 1427 get_page(page); 1428 SetPagePrivate(page); 1429 set_page_private(page, 0); 1430 } 1431 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1432 page_private(page) |= data << PAGE_PRIVATE_MAX; 1433 } 1434 1435 static inline void clear_page_private_data(struct page *page) 1436 { 1437 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1; 1438 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { 1439 set_page_private(page, 0); 1440 if (PagePrivate(page)) { 1441 ClearPagePrivate(page); 1442 put_page(page); 1443 } 1444 } 1445 } 1446 1447 /* For compression */ 1448 enum compress_algorithm_type { 1449 COMPRESS_LZO, 1450 COMPRESS_LZ4, 1451 COMPRESS_ZSTD, 1452 COMPRESS_LZORLE, 1453 COMPRESS_MAX, 1454 }; 1455 1456 enum compress_flag { 1457 COMPRESS_CHKSUM, 1458 COMPRESS_MAX_FLAG, 1459 }; 1460 1461 #define COMPRESS_WATERMARK 20 1462 #define COMPRESS_PERCENT 20 1463 1464 #define COMPRESS_DATA_RESERVED_SIZE 4 1465 struct compress_data { 1466 __le32 clen; /* compressed data size */ 1467 __le32 chksum; /* compressed data chksum */ 1468 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1469 u8 cdata[]; /* compressed data */ 1470 }; 1471 1472 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1473 1474 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1475 1476 #define COMPRESS_LEVEL_OFFSET 8 1477 1478 /* compress context */ 1479 struct compress_ctx { 1480 struct inode *inode; /* inode the context belong to */ 1481 pgoff_t cluster_idx; /* cluster index number */ 1482 unsigned int cluster_size; /* page count in cluster */ 1483 unsigned int log_cluster_size; /* log of cluster size */ 1484 struct page **rpages; /* pages store raw data in cluster */ 1485 unsigned int nr_rpages; /* total page number in rpages */ 1486 struct page **cpages; /* pages store compressed data in cluster */ 1487 unsigned int nr_cpages; /* total page number in cpages */ 1488 void *rbuf; /* virtual mapped address on rpages */ 1489 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1490 size_t rlen; /* valid data length in rbuf */ 1491 size_t clen; /* valid data length in cbuf */ 1492 void *private; /* payload buffer for specified compression algorithm */ 1493 void *private2; /* extra payload buffer */ 1494 }; 1495 1496 /* compress context for write IO path */ 1497 struct compress_io_ctx { 1498 u32 magic; /* magic number to indicate page is compressed */ 1499 struct inode *inode; /* inode the context belong to */ 1500 struct page **rpages; /* pages store raw data in cluster */ 1501 unsigned int nr_rpages; /* total page number in rpages */ 1502 atomic_t pending_pages; /* in-flight compressed page count */ 1503 }; 1504 1505 /* Context for decompressing one cluster on the read IO path */ 1506 struct decompress_io_ctx { 1507 u32 magic; /* magic number to indicate page is compressed */ 1508 struct inode *inode; /* inode the context belong to */ 1509 pgoff_t cluster_idx; /* cluster index number */ 1510 unsigned int cluster_size; /* page count in cluster */ 1511 unsigned int log_cluster_size; /* log of cluster size */ 1512 struct page **rpages; /* pages store raw data in cluster */ 1513 unsigned int nr_rpages; /* total page number in rpages */ 1514 struct page **cpages; /* pages store compressed data in cluster */ 1515 unsigned int nr_cpages; /* total page number in cpages */ 1516 struct page **tpages; /* temp pages to pad holes in cluster */ 1517 void *rbuf; /* virtual mapped address on rpages */ 1518 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1519 size_t rlen; /* valid data length in rbuf */ 1520 size_t clen; /* valid data length in cbuf */ 1521 1522 /* 1523 * The number of compressed pages remaining to be read in this cluster. 1524 * This is initially nr_cpages. It is decremented by 1 each time a page 1525 * has been read (or failed to be read). When it reaches 0, the cluster 1526 * is decompressed (or an error is reported). 1527 * 1528 * If an error occurs before all the pages have been submitted for I/O, 1529 * then this will never reach 0. In this case the I/O submitter is 1530 * responsible for calling f2fs_decompress_end_io() instead. 1531 */ 1532 atomic_t remaining_pages; 1533 1534 /* 1535 * Number of references to this decompress_io_ctx. 1536 * 1537 * One reference is held for I/O completion. This reference is dropped 1538 * after the pagecache pages are updated and unlocked -- either after 1539 * decompression (and verity if enabled), or after an error. 1540 * 1541 * In addition, each compressed page holds a reference while it is in a 1542 * bio. These references are necessary prevent compressed pages from 1543 * being freed while they are still in a bio. 1544 */ 1545 refcount_t refcnt; 1546 1547 bool failed; /* IO error occurred before decompression? */ 1548 bool need_verity; /* need fs-verity verification after decompression? */ 1549 void *private; /* payload buffer for specified decompression algorithm */ 1550 void *private2; /* extra payload buffer */ 1551 struct work_struct verity_work; /* work to verify the decompressed pages */ 1552 }; 1553 1554 #define NULL_CLUSTER ((unsigned int)(~0)) 1555 #define MIN_COMPRESS_LOG_SIZE 2 1556 #define MAX_COMPRESS_LOG_SIZE 8 1557 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1558 1559 struct f2fs_sb_info { 1560 struct super_block *sb; /* pointer to VFS super block */ 1561 struct proc_dir_entry *s_proc; /* proc entry */ 1562 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1563 struct rw_semaphore sb_lock; /* lock for raw super block */ 1564 int valid_super_block; /* valid super block no */ 1565 unsigned long s_flag; /* flags for sbi */ 1566 struct mutex writepages; /* mutex for writepages() */ 1567 1568 #ifdef CONFIG_BLK_DEV_ZONED 1569 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1570 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1571 #endif 1572 1573 /* for node-related operations */ 1574 struct f2fs_nm_info *nm_info; /* node manager */ 1575 struct inode *node_inode; /* cache node blocks */ 1576 1577 /* for segment-related operations */ 1578 struct f2fs_sm_info *sm_info; /* segment manager */ 1579 1580 /* for bio operations */ 1581 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1582 /* keep migration IO order for LFS mode */ 1583 struct rw_semaphore io_order_lock; 1584 mempool_t *write_io_dummy; /* Dummy pages */ 1585 1586 /* for checkpoint */ 1587 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1588 int cur_cp_pack; /* remain current cp pack */ 1589 spinlock_t cp_lock; /* for flag in ckpt */ 1590 struct inode *meta_inode; /* cache meta blocks */ 1591 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */ 1592 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1593 struct rw_semaphore node_write; /* locking node writes */ 1594 struct rw_semaphore node_change; /* locking node change */ 1595 wait_queue_head_t cp_wait; 1596 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1597 long interval_time[MAX_TIME]; /* to store thresholds */ 1598 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1599 1600 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1601 1602 spinlock_t fsync_node_lock; /* for node entry lock */ 1603 struct list_head fsync_node_list; /* node list head */ 1604 unsigned int fsync_seg_id; /* sequence id */ 1605 unsigned int fsync_node_num; /* number of node entries */ 1606 1607 /* for orphan inode, use 0'th array */ 1608 unsigned int max_orphans; /* max orphan inodes */ 1609 1610 /* for inode management */ 1611 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1612 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1613 struct mutex flush_lock; /* for flush exclusion */ 1614 1615 /* for extent tree cache */ 1616 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1617 struct mutex extent_tree_lock; /* locking extent radix tree */ 1618 struct list_head extent_list; /* lru list for shrinker */ 1619 spinlock_t extent_lock; /* locking extent lru list */ 1620 atomic_t total_ext_tree; /* extent tree count */ 1621 struct list_head zombie_list; /* extent zombie tree list */ 1622 atomic_t total_zombie_tree; /* extent zombie tree count */ 1623 atomic_t total_ext_node; /* extent info count */ 1624 1625 /* basic filesystem units */ 1626 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1627 unsigned int log_blocksize; /* log2 block size */ 1628 unsigned int blocksize; /* block size */ 1629 unsigned int root_ino_num; /* root inode number*/ 1630 unsigned int node_ino_num; /* node inode number*/ 1631 unsigned int meta_ino_num; /* meta inode number*/ 1632 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1633 unsigned int blocks_per_seg; /* blocks per segment */ 1634 unsigned int segs_per_sec; /* segments per section */ 1635 unsigned int secs_per_zone; /* sections per zone */ 1636 unsigned int total_sections; /* total section count */ 1637 unsigned int total_node_count; /* total node block count */ 1638 unsigned int total_valid_node_count; /* valid node block count */ 1639 int dir_level; /* directory level */ 1640 int readdir_ra; /* readahead inode in readdir */ 1641 u64 max_io_bytes; /* max io bytes to merge IOs */ 1642 1643 block_t user_block_count; /* # of user blocks */ 1644 block_t total_valid_block_count; /* # of valid blocks */ 1645 block_t discard_blks; /* discard command candidats */ 1646 block_t last_valid_block_count; /* for recovery */ 1647 block_t reserved_blocks; /* configurable reserved blocks */ 1648 block_t current_reserved_blocks; /* current reserved blocks */ 1649 1650 /* Additional tracking for no checkpoint mode */ 1651 block_t unusable_block_count; /* # of blocks saved by last cp */ 1652 1653 unsigned int nquota_files; /* # of quota sysfile */ 1654 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1655 1656 /* # of pages, see count_type */ 1657 atomic_t nr_pages[NR_COUNT_TYPE]; 1658 /* # of allocated blocks */ 1659 struct percpu_counter alloc_valid_block_count; 1660 1661 /* writeback control */ 1662 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1663 1664 /* valid inode count */ 1665 struct percpu_counter total_valid_inode_count; 1666 1667 struct f2fs_mount_info mount_opt; /* mount options */ 1668 1669 /* for cleaning operations */ 1670 struct rw_semaphore gc_lock; /* 1671 * semaphore for GC, avoid 1672 * race between GC and GC or CP 1673 */ 1674 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1675 struct atgc_management am; /* atgc management */ 1676 unsigned int cur_victim_sec; /* current victim section num */ 1677 unsigned int gc_mode; /* current GC state */ 1678 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1679 1680 /* for skip statistic */ 1681 unsigned int atomic_files; /* # of opened atomic file */ 1682 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1683 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1684 1685 /* threshold for gc trials on pinned files */ 1686 u64 gc_pin_file_threshold; 1687 struct rw_semaphore pin_sem; 1688 1689 /* maximum # of trials to find a victim segment for SSR and GC */ 1690 unsigned int max_victim_search; 1691 /* migration granularity of garbage collection, unit: segment */ 1692 unsigned int migration_granularity; 1693 1694 /* 1695 * for stat information. 1696 * one is for the LFS mode, and the other is for the SSR mode. 1697 */ 1698 #ifdef CONFIG_F2FS_STAT_FS 1699 struct f2fs_stat_info *stat_info; /* FS status information */ 1700 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1701 unsigned int segment_count[2]; /* # of allocated segments */ 1702 unsigned int block_count[2]; /* # of allocated blocks */ 1703 atomic_t inplace_count; /* # of inplace update */ 1704 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1705 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1706 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1707 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1708 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1709 atomic_t inline_inode; /* # of inline_data inodes */ 1710 atomic_t inline_dir; /* # of inline_dentry inodes */ 1711 atomic_t compr_inode; /* # of compressed inodes */ 1712 atomic64_t compr_blocks; /* # of compressed blocks */ 1713 atomic_t vw_cnt; /* # of volatile writes */ 1714 atomic_t max_aw_cnt; /* max # of atomic writes */ 1715 atomic_t max_vw_cnt; /* max # of volatile writes */ 1716 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1717 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1718 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1719 #endif 1720 spinlock_t stat_lock; /* lock for stat operations */ 1721 1722 /* to attach REQ_META|REQ_FUA flags */ 1723 unsigned int data_io_flag; 1724 unsigned int node_io_flag; 1725 1726 /* For sysfs suppport */ 1727 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1728 struct completion s_kobj_unregister; 1729 1730 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1731 struct completion s_stat_kobj_unregister; 1732 1733 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1734 struct completion s_feature_list_kobj_unregister; 1735 1736 /* For shrinker support */ 1737 struct list_head s_list; 1738 struct mutex umount_mutex; 1739 unsigned int shrinker_run_no; 1740 1741 /* For multi devices */ 1742 int s_ndevs; /* number of devices */ 1743 struct f2fs_dev_info *devs; /* for device list */ 1744 unsigned int dirty_device; /* for checkpoint data flush */ 1745 spinlock_t dev_lock; /* protect dirty_device */ 1746 bool aligned_blksize; /* all devices has the same logical blksize */ 1747 1748 /* For write statistics */ 1749 u64 sectors_written_start; 1750 u64 kbytes_written; 1751 1752 /* Reference to checksum algorithm driver via cryptoapi */ 1753 struct crypto_shash *s_chksum_driver; 1754 1755 /* Precomputed FS UUID checksum for seeding other checksums */ 1756 __u32 s_chksum_seed; 1757 1758 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1759 1760 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1761 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1762 1763 /* For reclaimed segs statistics per each GC mode */ 1764 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1765 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1766 1767 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1768 1769 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1770 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1771 1772 #ifdef CONFIG_F2FS_FS_COMPRESSION 1773 struct kmem_cache *page_array_slab; /* page array entry */ 1774 unsigned int page_array_slab_size; /* default page array slab size */ 1775 1776 /* For runtime compression statistics */ 1777 u64 compr_written_block; 1778 u64 compr_saved_block; 1779 u32 compr_new_inode; 1780 1781 /* For compressed block cache */ 1782 struct inode *compress_inode; /* cache compressed blocks */ 1783 unsigned int compress_percent; /* cache page percentage */ 1784 unsigned int compress_watermark; /* cache page watermark */ 1785 atomic_t compress_page_hit; /* cache hit count */ 1786 #endif 1787 1788 #ifdef CONFIG_F2FS_IOSTAT 1789 /* For app/fs IO statistics */ 1790 spinlock_t iostat_lock; 1791 unsigned long long rw_iostat[NR_IO_TYPE]; 1792 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1793 bool iostat_enable; 1794 unsigned long iostat_next_period; 1795 unsigned int iostat_period_ms; 1796 1797 /* For io latency related statistics info in one iostat period */ 1798 spinlock_t iostat_lat_lock; 1799 struct iostat_lat_info *iostat_io_lat; 1800 #endif 1801 }; 1802 1803 struct f2fs_private_dio { 1804 struct inode *inode; 1805 void *orig_private; 1806 bio_end_io_t *orig_end_io; 1807 bool write; 1808 }; 1809 1810 #ifdef CONFIG_F2FS_FAULT_INJECTION 1811 #define f2fs_show_injection_info(sbi, type) \ 1812 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1813 KERN_INFO, sbi->sb->s_id, \ 1814 f2fs_fault_name[type], \ 1815 __func__, __builtin_return_address(0)) 1816 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1817 { 1818 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1819 1820 if (!ffi->inject_rate) 1821 return false; 1822 1823 if (!IS_FAULT_SET(ffi, type)) 1824 return false; 1825 1826 atomic_inc(&ffi->inject_ops); 1827 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1828 atomic_set(&ffi->inject_ops, 0); 1829 return true; 1830 } 1831 return false; 1832 } 1833 #else 1834 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1835 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1836 { 1837 return false; 1838 } 1839 #endif 1840 1841 /* 1842 * Test if the mounted volume is a multi-device volume. 1843 * - For a single regular disk volume, sbi->s_ndevs is 0. 1844 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1845 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1846 */ 1847 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1848 { 1849 return sbi->s_ndevs > 1; 1850 } 1851 1852 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1853 { 1854 unsigned long now = jiffies; 1855 1856 sbi->last_time[type] = now; 1857 1858 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1859 if (type == REQ_TIME) { 1860 sbi->last_time[DISCARD_TIME] = now; 1861 sbi->last_time[GC_TIME] = now; 1862 } 1863 } 1864 1865 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1866 { 1867 unsigned long interval = sbi->interval_time[type] * HZ; 1868 1869 return time_after(jiffies, sbi->last_time[type] + interval); 1870 } 1871 1872 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1873 int type) 1874 { 1875 unsigned long interval = sbi->interval_time[type] * HZ; 1876 unsigned int wait_ms = 0; 1877 long delta; 1878 1879 delta = (sbi->last_time[type] + interval) - jiffies; 1880 if (delta > 0) 1881 wait_ms = jiffies_to_msecs(delta); 1882 1883 return wait_ms; 1884 } 1885 1886 /* 1887 * Inline functions 1888 */ 1889 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1890 const void *address, unsigned int length) 1891 { 1892 struct { 1893 struct shash_desc shash; 1894 char ctx[4]; 1895 } desc; 1896 int err; 1897 1898 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1899 1900 desc.shash.tfm = sbi->s_chksum_driver; 1901 *(u32 *)desc.ctx = crc; 1902 1903 err = crypto_shash_update(&desc.shash, address, length); 1904 BUG_ON(err); 1905 1906 return *(u32 *)desc.ctx; 1907 } 1908 1909 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1910 unsigned int length) 1911 { 1912 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1913 } 1914 1915 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1916 void *buf, size_t buf_size) 1917 { 1918 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1919 } 1920 1921 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1922 const void *address, unsigned int length) 1923 { 1924 return __f2fs_crc32(sbi, crc, address, length); 1925 } 1926 1927 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1928 { 1929 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1930 } 1931 1932 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1933 { 1934 return sb->s_fs_info; 1935 } 1936 1937 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1938 { 1939 return F2FS_SB(inode->i_sb); 1940 } 1941 1942 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1943 { 1944 return F2FS_I_SB(mapping->host); 1945 } 1946 1947 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1948 { 1949 return F2FS_M_SB(page_file_mapping(page)); 1950 } 1951 1952 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1953 { 1954 return (struct f2fs_super_block *)(sbi->raw_super); 1955 } 1956 1957 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1958 { 1959 return (struct f2fs_checkpoint *)(sbi->ckpt); 1960 } 1961 1962 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1963 { 1964 return (struct f2fs_node *)page_address(page); 1965 } 1966 1967 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1968 { 1969 return &((struct f2fs_node *)page_address(page))->i; 1970 } 1971 1972 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1973 { 1974 return (struct f2fs_nm_info *)(sbi->nm_info); 1975 } 1976 1977 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1978 { 1979 return (struct f2fs_sm_info *)(sbi->sm_info); 1980 } 1981 1982 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1983 { 1984 return (struct sit_info *)(SM_I(sbi)->sit_info); 1985 } 1986 1987 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1988 { 1989 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1990 } 1991 1992 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1993 { 1994 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1995 } 1996 1997 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1998 { 1999 return sbi->meta_inode->i_mapping; 2000 } 2001 2002 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2003 { 2004 return sbi->node_inode->i_mapping; 2005 } 2006 2007 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2008 { 2009 return test_bit(type, &sbi->s_flag); 2010 } 2011 2012 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2013 { 2014 set_bit(type, &sbi->s_flag); 2015 } 2016 2017 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2018 { 2019 clear_bit(type, &sbi->s_flag); 2020 } 2021 2022 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2023 { 2024 return le64_to_cpu(cp->checkpoint_ver); 2025 } 2026 2027 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2028 { 2029 if (type < F2FS_MAX_QUOTAS) 2030 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2031 return 0; 2032 } 2033 2034 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2035 { 2036 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2037 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2038 } 2039 2040 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2041 { 2042 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2043 2044 return ckpt_flags & f; 2045 } 2046 2047 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2048 { 2049 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2050 } 2051 2052 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2053 { 2054 unsigned int ckpt_flags; 2055 2056 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2057 ckpt_flags |= f; 2058 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2059 } 2060 2061 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2062 { 2063 unsigned long flags; 2064 2065 spin_lock_irqsave(&sbi->cp_lock, flags); 2066 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2067 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2068 } 2069 2070 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2071 { 2072 unsigned int ckpt_flags; 2073 2074 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2075 ckpt_flags &= (~f); 2076 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2077 } 2078 2079 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2080 { 2081 unsigned long flags; 2082 2083 spin_lock_irqsave(&sbi->cp_lock, flags); 2084 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2085 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2086 } 2087 2088 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2089 { 2090 down_read(&sbi->cp_rwsem); 2091 } 2092 2093 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2094 { 2095 return down_read_trylock(&sbi->cp_rwsem); 2096 } 2097 2098 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2099 { 2100 up_read(&sbi->cp_rwsem); 2101 } 2102 2103 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2104 { 2105 down_write(&sbi->cp_rwsem); 2106 } 2107 2108 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2109 { 2110 up_write(&sbi->cp_rwsem); 2111 } 2112 2113 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2114 { 2115 int reason = CP_SYNC; 2116 2117 if (test_opt(sbi, FASTBOOT)) 2118 reason = CP_FASTBOOT; 2119 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2120 reason = CP_UMOUNT; 2121 return reason; 2122 } 2123 2124 static inline bool __remain_node_summaries(int reason) 2125 { 2126 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2127 } 2128 2129 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2130 { 2131 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2132 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2133 } 2134 2135 /* 2136 * Check whether the inode has blocks or not 2137 */ 2138 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2139 { 2140 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2141 2142 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2143 } 2144 2145 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2146 { 2147 return ofs == XATTR_NODE_OFFSET; 2148 } 2149 2150 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2151 struct inode *inode, bool cap) 2152 { 2153 if (!inode) 2154 return true; 2155 if (!test_opt(sbi, RESERVE_ROOT)) 2156 return false; 2157 if (IS_NOQUOTA(inode)) 2158 return true; 2159 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2160 return true; 2161 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2162 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2163 return true; 2164 if (cap && capable(CAP_SYS_RESOURCE)) 2165 return true; 2166 return false; 2167 } 2168 2169 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2170 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2171 struct inode *inode, blkcnt_t *count) 2172 { 2173 blkcnt_t diff = 0, release = 0; 2174 block_t avail_user_block_count; 2175 int ret; 2176 2177 ret = dquot_reserve_block(inode, *count); 2178 if (ret) 2179 return ret; 2180 2181 if (time_to_inject(sbi, FAULT_BLOCK)) { 2182 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2183 release = *count; 2184 goto release_quota; 2185 } 2186 2187 /* 2188 * let's increase this in prior to actual block count change in order 2189 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2190 */ 2191 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2192 2193 spin_lock(&sbi->stat_lock); 2194 sbi->total_valid_block_count += (block_t)(*count); 2195 avail_user_block_count = sbi->user_block_count - 2196 sbi->current_reserved_blocks; 2197 2198 if (!__allow_reserved_blocks(sbi, inode, true)) 2199 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2200 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2201 if (avail_user_block_count > sbi->unusable_block_count) 2202 avail_user_block_count -= sbi->unusable_block_count; 2203 else 2204 avail_user_block_count = 0; 2205 } 2206 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2207 diff = sbi->total_valid_block_count - avail_user_block_count; 2208 if (diff > *count) 2209 diff = *count; 2210 *count -= diff; 2211 release = diff; 2212 sbi->total_valid_block_count -= diff; 2213 if (!*count) { 2214 spin_unlock(&sbi->stat_lock); 2215 goto enospc; 2216 } 2217 } 2218 spin_unlock(&sbi->stat_lock); 2219 2220 if (unlikely(release)) { 2221 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2222 dquot_release_reservation_block(inode, release); 2223 } 2224 f2fs_i_blocks_write(inode, *count, true, true); 2225 return 0; 2226 2227 enospc: 2228 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2229 release_quota: 2230 dquot_release_reservation_block(inode, release); 2231 return -ENOSPC; 2232 } 2233 2234 __printf(2, 3) 2235 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2236 2237 #define f2fs_err(sbi, fmt, ...) \ 2238 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2239 #define f2fs_warn(sbi, fmt, ...) \ 2240 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2241 #define f2fs_notice(sbi, fmt, ...) \ 2242 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2243 #define f2fs_info(sbi, fmt, ...) \ 2244 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2245 #define f2fs_debug(sbi, fmt, ...) \ 2246 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2247 2248 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2249 struct inode *inode, 2250 block_t count) 2251 { 2252 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2253 2254 spin_lock(&sbi->stat_lock); 2255 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2256 sbi->total_valid_block_count -= (block_t)count; 2257 if (sbi->reserved_blocks && 2258 sbi->current_reserved_blocks < sbi->reserved_blocks) 2259 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2260 sbi->current_reserved_blocks + count); 2261 spin_unlock(&sbi->stat_lock); 2262 if (unlikely(inode->i_blocks < sectors)) { 2263 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2264 inode->i_ino, 2265 (unsigned long long)inode->i_blocks, 2266 (unsigned long long)sectors); 2267 set_sbi_flag(sbi, SBI_NEED_FSCK); 2268 return; 2269 } 2270 f2fs_i_blocks_write(inode, count, false, true); 2271 } 2272 2273 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2274 { 2275 atomic_inc(&sbi->nr_pages[count_type]); 2276 2277 if (count_type == F2FS_DIRTY_DENTS || 2278 count_type == F2FS_DIRTY_NODES || 2279 count_type == F2FS_DIRTY_META || 2280 count_type == F2FS_DIRTY_QDATA || 2281 count_type == F2FS_DIRTY_IMETA) 2282 set_sbi_flag(sbi, SBI_IS_DIRTY); 2283 } 2284 2285 static inline void inode_inc_dirty_pages(struct inode *inode) 2286 { 2287 atomic_inc(&F2FS_I(inode)->dirty_pages); 2288 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2289 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2290 if (IS_NOQUOTA(inode)) 2291 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2292 } 2293 2294 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2295 { 2296 atomic_dec(&sbi->nr_pages[count_type]); 2297 } 2298 2299 static inline void inode_dec_dirty_pages(struct inode *inode) 2300 { 2301 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2302 !S_ISLNK(inode->i_mode)) 2303 return; 2304 2305 atomic_dec(&F2FS_I(inode)->dirty_pages); 2306 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2307 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2308 if (IS_NOQUOTA(inode)) 2309 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2310 } 2311 2312 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2313 { 2314 return atomic_read(&sbi->nr_pages[count_type]); 2315 } 2316 2317 static inline int get_dirty_pages(struct inode *inode) 2318 { 2319 return atomic_read(&F2FS_I(inode)->dirty_pages); 2320 } 2321 2322 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2323 { 2324 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2325 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2326 sbi->log_blocks_per_seg; 2327 2328 return segs / sbi->segs_per_sec; 2329 } 2330 2331 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2332 { 2333 return sbi->total_valid_block_count; 2334 } 2335 2336 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2337 { 2338 return sbi->discard_blks; 2339 } 2340 2341 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2342 { 2343 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2344 2345 /* return NAT or SIT bitmap */ 2346 if (flag == NAT_BITMAP) 2347 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2348 else if (flag == SIT_BITMAP) 2349 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2350 2351 return 0; 2352 } 2353 2354 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2355 { 2356 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2357 } 2358 2359 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2360 { 2361 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2362 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2363 int offset; 2364 2365 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2366 offset = (flag == SIT_BITMAP) ? 2367 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2368 /* 2369 * if large_nat_bitmap feature is enabled, leave checksum 2370 * protection for all nat/sit bitmaps. 2371 */ 2372 return tmp_ptr + offset + sizeof(__le32); 2373 } 2374 2375 if (__cp_payload(sbi) > 0) { 2376 if (flag == NAT_BITMAP) 2377 return &ckpt->sit_nat_version_bitmap; 2378 else 2379 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2380 } else { 2381 offset = (flag == NAT_BITMAP) ? 2382 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2383 return tmp_ptr + offset; 2384 } 2385 } 2386 2387 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2388 { 2389 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2390 2391 if (sbi->cur_cp_pack == 2) 2392 start_addr += sbi->blocks_per_seg; 2393 return start_addr; 2394 } 2395 2396 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2397 { 2398 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2399 2400 if (sbi->cur_cp_pack == 1) 2401 start_addr += sbi->blocks_per_seg; 2402 return start_addr; 2403 } 2404 2405 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2406 { 2407 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2408 } 2409 2410 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2411 { 2412 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2413 } 2414 2415 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2416 struct inode *inode, bool is_inode) 2417 { 2418 block_t valid_block_count; 2419 unsigned int valid_node_count, user_block_count; 2420 int err; 2421 2422 if (is_inode) { 2423 if (inode) { 2424 err = dquot_alloc_inode(inode); 2425 if (err) 2426 return err; 2427 } 2428 } else { 2429 err = dquot_reserve_block(inode, 1); 2430 if (err) 2431 return err; 2432 } 2433 2434 if (time_to_inject(sbi, FAULT_BLOCK)) { 2435 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2436 goto enospc; 2437 } 2438 2439 spin_lock(&sbi->stat_lock); 2440 2441 valid_block_count = sbi->total_valid_block_count + 2442 sbi->current_reserved_blocks + 1; 2443 2444 if (!__allow_reserved_blocks(sbi, inode, false)) 2445 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2446 user_block_count = sbi->user_block_count; 2447 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2448 user_block_count -= sbi->unusable_block_count; 2449 2450 if (unlikely(valid_block_count > user_block_count)) { 2451 spin_unlock(&sbi->stat_lock); 2452 goto enospc; 2453 } 2454 2455 valid_node_count = sbi->total_valid_node_count + 1; 2456 if (unlikely(valid_node_count > sbi->total_node_count)) { 2457 spin_unlock(&sbi->stat_lock); 2458 goto enospc; 2459 } 2460 2461 sbi->total_valid_node_count++; 2462 sbi->total_valid_block_count++; 2463 spin_unlock(&sbi->stat_lock); 2464 2465 if (inode) { 2466 if (is_inode) 2467 f2fs_mark_inode_dirty_sync(inode, true); 2468 else 2469 f2fs_i_blocks_write(inode, 1, true, true); 2470 } 2471 2472 percpu_counter_inc(&sbi->alloc_valid_block_count); 2473 return 0; 2474 2475 enospc: 2476 if (is_inode) { 2477 if (inode) 2478 dquot_free_inode(inode); 2479 } else { 2480 dquot_release_reservation_block(inode, 1); 2481 } 2482 return -ENOSPC; 2483 } 2484 2485 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2486 struct inode *inode, bool is_inode) 2487 { 2488 spin_lock(&sbi->stat_lock); 2489 2490 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2491 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2492 2493 sbi->total_valid_node_count--; 2494 sbi->total_valid_block_count--; 2495 if (sbi->reserved_blocks && 2496 sbi->current_reserved_blocks < sbi->reserved_blocks) 2497 sbi->current_reserved_blocks++; 2498 2499 spin_unlock(&sbi->stat_lock); 2500 2501 if (is_inode) { 2502 dquot_free_inode(inode); 2503 } else { 2504 if (unlikely(inode->i_blocks == 0)) { 2505 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2506 inode->i_ino, 2507 (unsigned long long)inode->i_blocks); 2508 set_sbi_flag(sbi, SBI_NEED_FSCK); 2509 return; 2510 } 2511 f2fs_i_blocks_write(inode, 1, false, true); 2512 } 2513 } 2514 2515 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2516 { 2517 return sbi->total_valid_node_count; 2518 } 2519 2520 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2521 { 2522 percpu_counter_inc(&sbi->total_valid_inode_count); 2523 } 2524 2525 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2526 { 2527 percpu_counter_dec(&sbi->total_valid_inode_count); 2528 } 2529 2530 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2531 { 2532 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2533 } 2534 2535 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2536 pgoff_t index, bool for_write) 2537 { 2538 struct page *page; 2539 2540 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2541 if (!for_write) 2542 page = find_get_page_flags(mapping, index, 2543 FGP_LOCK | FGP_ACCESSED); 2544 else 2545 page = find_lock_page(mapping, index); 2546 if (page) 2547 return page; 2548 2549 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2550 f2fs_show_injection_info(F2FS_M_SB(mapping), 2551 FAULT_PAGE_ALLOC); 2552 return NULL; 2553 } 2554 } 2555 2556 if (!for_write) 2557 return grab_cache_page(mapping, index); 2558 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2559 } 2560 2561 static inline struct page *f2fs_pagecache_get_page( 2562 struct address_space *mapping, pgoff_t index, 2563 int fgp_flags, gfp_t gfp_mask) 2564 { 2565 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2566 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2567 return NULL; 2568 } 2569 2570 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2571 } 2572 2573 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2574 { 2575 char *src_kaddr = kmap(src); 2576 char *dst_kaddr = kmap(dst); 2577 2578 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2579 kunmap(dst); 2580 kunmap(src); 2581 } 2582 2583 static inline void f2fs_put_page(struct page *page, int unlock) 2584 { 2585 if (!page) 2586 return; 2587 2588 if (unlock) { 2589 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2590 unlock_page(page); 2591 } 2592 put_page(page); 2593 } 2594 2595 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2596 { 2597 if (dn->node_page) 2598 f2fs_put_page(dn->node_page, 1); 2599 if (dn->inode_page && dn->node_page != dn->inode_page) 2600 f2fs_put_page(dn->inode_page, 0); 2601 dn->node_page = NULL; 2602 dn->inode_page = NULL; 2603 } 2604 2605 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2606 size_t size) 2607 { 2608 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2609 } 2610 2611 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2612 gfp_t flags) 2613 { 2614 void *entry; 2615 2616 entry = kmem_cache_alloc(cachep, flags); 2617 if (!entry) 2618 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2619 return entry; 2620 } 2621 2622 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2623 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2624 { 2625 if (nofail) 2626 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2627 2628 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) { 2629 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC); 2630 return NULL; 2631 } 2632 2633 return kmem_cache_alloc(cachep, flags); 2634 } 2635 2636 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2637 { 2638 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2639 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2640 get_pages(sbi, F2FS_WB_CP_DATA) || 2641 get_pages(sbi, F2FS_DIO_READ) || 2642 get_pages(sbi, F2FS_DIO_WRITE)) 2643 return true; 2644 2645 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2646 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2647 return true; 2648 2649 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2650 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2651 return true; 2652 return false; 2653 } 2654 2655 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2656 { 2657 if (sbi->gc_mode == GC_URGENT_HIGH) 2658 return true; 2659 2660 if (is_inflight_io(sbi, type)) 2661 return false; 2662 2663 if (sbi->gc_mode == GC_URGENT_LOW && 2664 (type == DISCARD_TIME || type == GC_TIME)) 2665 return true; 2666 2667 return f2fs_time_over(sbi, type); 2668 } 2669 2670 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2671 unsigned long index, void *item) 2672 { 2673 while (radix_tree_insert(root, index, item)) 2674 cond_resched(); 2675 } 2676 2677 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2678 2679 static inline bool IS_INODE(struct page *page) 2680 { 2681 struct f2fs_node *p = F2FS_NODE(page); 2682 2683 return RAW_IS_INODE(p); 2684 } 2685 2686 static inline int offset_in_addr(struct f2fs_inode *i) 2687 { 2688 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2689 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2690 } 2691 2692 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2693 { 2694 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2695 } 2696 2697 static inline int f2fs_has_extra_attr(struct inode *inode); 2698 static inline block_t data_blkaddr(struct inode *inode, 2699 struct page *node_page, unsigned int offset) 2700 { 2701 struct f2fs_node *raw_node; 2702 __le32 *addr_array; 2703 int base = 0; 2704 bool is_inode = IS_INODE(node_page); 2705 2706 raw_node = F2FS_NODE(node_page); 2707 2708 if (is_inode) { 2709 if (!inode) 2710 /* from GC path only */ 2711 base = offset_in_addr(&raw_node->i); 2712 else if (f2fs_has_extra_attr(inode)) 2713 base = get_extra_isize(inode); 2714 } 2715 2716 addr_array = blkaddr_in_node(raw_node); 2717 return le32_to_cpu(addr_array[base + offset]); 2718 } 2719 2720 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2721 { 2722 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2723 } 2724 2725 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2726 { 2727 int mask; 2728 2729 addr += (nr >> 3); 2730 mask = 1 << (7 - (nr & 0x07)); 2731 return mask & *addr; 2732 } 2733 2734 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2735 { 2736 int mask; 2737 2738 addr += (nr >> 3); 2739 mask = 1 << (7 - (nr & 0x07)); 2740 *addr |= mask; 2741 } 2742 2743 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2744 { 2745 int mask; 2746 2747 addr += (nr >> 3); 2748 mask = 1 << (7 - (nr & 0x07)); 2749 *addr &= ~mask; 2750 } 2751 2752 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2753 { 2754 int mask; 2755 int ret; 2756 2757 addr += (nr >> 3); 2758 mask = 1 << (7 - (nr & 0x07)); 2759 ret = mask & *addr; 2760 *addr |= mask; 2761 return ret; 2762 } 2763 2764 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2765 { 2766 int mask; 2767 int ret; 2768 2769 addr += (nr >> 3); 2770 mask = 1 << (7 - (nr & 0x07)); 2771 ret = mask & *addr; 2772 *addr &= ~mask; 2773 return ret; 2774 } 2775 2776 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2777 { 2778 int mask; 2779 2780 addr += (nr >> 3); 2781 mask = 1 << (7 - (nr & 0x07)); 2782 *addr ^= mask; 2783 } 2784 2785 /* 2786 * On-disk inode flags (f2fs_inode::i_flags) 2787 */ 2788 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2789 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2790 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2791 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2792 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2793 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2794 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2795 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2796 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2797 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2798 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2799 2800 /* Flags that should be inherited by new inodes from their parent. */ 2801 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2802 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2803 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL) 2804 2805 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2806 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2807 F2FS_CASEFOLD_FL)) 2808 2809 /* Flags that are appropriate for non-directories/regular files. */ 2810 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2811 2812 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2813 { 2814 if (S_ISDIR(mode)) 2815 return flags; 2816 else if (S_ISREG(mode)) 2817 return flags & F2FS_REG_FLMASK; 2818 else 2819 return flags & F2FS_OTHER_FLMASK; 2820 } 2821 2822 static inline void __mark_inode_dirty_flag(struct inode *inode, 2823 int flag, bool set) 2824 { 2825 switch (flag) { 2826 case FI_INLINE_XATTR: 2827 case FI_INLINE_DATA: 2828 case FI_INLINE_DENTRY: 2829 case FI_NEW_INODE: 2830 if (set) 2831 return; 2832 fallthrough; 2833 case FI_DATA_EXIST: 2834 case FI_INLINE_DOTS: 2835 case FI_PIN_FILE: 2836 case FI_COMPRESS_RELEASED: 2837 f2fs_mark_inode_dirty_sync(inode, true); 2838 } 2839 } 2840 2841 static inline void set_inode_flag(struct inode *inode, int flag) 2842 { 2843 set_bit(flag, F2FS_I(inode)->flags); 2844 __mark_inode_dirty_flag(inode, flag, true); 2845 } 2846 2847 static inline int is_inode_flag_set(struct inode *inode, int flag) 2848 { 2849 return test_bit(flag, F2FS_I(inode)->flags); 2850 } 2851 2852 static inline void clear_inode_flag(struct inode *inode, int flag) 2853 { 2854 clear_bit(flag, F2FS_I(inode)->flags); 2855 __mark_inode_dirty_flag(inode, flag, false); 2856 } 2857 2858 static inline bool f2fs_verity_in_progress(struct inode *inode) 2859 { 2860 return IS_ENABLED(CONFIG_FS_VERITY) && 2861 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2862 } 2863 2864 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2865 { 2866 F2FS_I(inode)->i_acl_mode = mode; 2867 set_inode_flag(inode, FI_ACL_MODE); 2868 f2fs_mark_inode_dirty_sync(inode, false); 2869 } 2870 2871 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2872 { 2873 if (inc) 2874 inc_nlink(inode); 2875 else 2876 drop_nlink(inode); 2877 f2fs_mark_inode_dirty_sync(inode, true); 2878 } 2879 2880 static inline void f2fs_i_blocks_write(struct inode *inode, 2881 block_t diff, bool add, bool claim) 2882 { 2883 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2884 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2885 2886 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2887 if (add) { 2888 if (claim) 2889 dquot_claim_block(inode, diff); 2890 else 2891 dquot_alloc_block_nofail(inode, diff); 2892 } else { 2893 dquot_free_block(inode, diff); 2894 } 2895 2896 f2fs_mark_inode_dirty_sync(inode, true); 2897 if (clean || recover) 2898 set_inode_flag(inode, FI_AUTO_RECOVER); 2899 } 2900 2901 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2902 { 2903 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2904 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2905 2906 if (i_size_read(inode) == i_size) 2907 return; 2908 2909 i_size_write(inode, i_size); 2910 f2fs_mark_inode_dirty_sync(inode, true); 2911 if (clean || recover) 2912 set_inode_flag(inode, FI_AUTO_RECOVER); 2913 } 2914 2915 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2916 { 2917 F2FS_I(inode)->i_current_depth = depth; 2918 f2fs_mark_inode_dirty_sync(inode, true); 2919 } 2920 2921 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2922 unsigned int count) 2923 { 2924 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2925 f2fs_mark_inode_dirty_sync(inode, true); 2926 } 2927 2928 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2929 { 2930 F2FS_I(inode)->i_xattr_nid = xnid; 2931 f2fs_mark_inode_dirty_sync(inode, true); 2932 } 2933 2934 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2935 { 2936 F2FS_I(inode)->i_pino = pino; 2937 f2fs_mark_inode_dirty_sync(inode, true); 2938 } 2939 2940 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2941 { 2942 struct f2fs_inode_info *fi = F2FS_I(inode); 2943 2944 if (ri->i_inline & F2FS_INLINE_XATTR) 2945 set_bit(FI_INLINE_XATTR, fi->flags); 2946 if (ri->i_inline & F2FS_INLINE_DATA) 2947 set_bit(FI_INLINE_DATA, fi->flags); 2948 if (ri->i_inline & F2FS_INLINE_DENTRY) 2949 set_bit(FI_INLINE_DENTRY, fi->flags); 2950 if (ri->i_inline & F2FS_DATA_EXIST) 2951 set_bit(FI_DATA_EXIST, fi->flags); 2952 if (ri->i_inline & F2FS_INLINE_DOTS) 2953 set_bit(FI_INLINE_DOTS, fi->flags); 2954 if (ri->i_inline & F2FS_EXTRA_ATTR) 2955 set_bit(FI_EXTRA_ATTR, fi->flags); 2956 if (ri->i_inline & F2FS_PIN_FILE) 2957 set_bit(FI_PIN_FILE, fi->flags); 2958 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 2959 set_bit(FI_COMPRESS_RELEASED, fi->flags); 2960 } 2961 2962 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2963 { 2964 ri->i_inline = 0; 2965 2966 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2967 ri->i_inline |= F2FS_INLINE_XATTR; 2968 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2969 ri->i_inline |= F2FS_INLINE_DATA; 2970 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2971 ri->i_inline |= F2FS_INLINE_DENTRY; 2972 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2973 ri->i_inline |= F2FS_DATA_EXIST; 2974 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2975 ri->i_inline |= F2FS_INLINE_DOTS; 2976 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2977 ri->i_inline |= F2FS_EXTRA_ATTR; 2978 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2979 ri->i_inline |= F2FS_PIN_FILE; 2980 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 2981 ri->i_inline |= F2FS_COMPRESS_RELEASED; 2982 } 2983 2984 static inline int f2fs_has_extra_attr(struct inode *inode) 2985 { 2986 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2987 } 2988 2989 static inline int f2fs_has_inline_xattr(struct inode *inode) 2990 { 2991 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2992 } 2993 2994 static inline int f2fs_compressed_file(struct inode *inode) 2995 { 2996 return S_ISREG(inode->i_mode) && 2997 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 2998 } 2999 3000 static inline bool f2fs_need_compress_data(struct inode *inode) 3001 { 3002 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3003 3004 if (!f2fs_compressed_file(inode)) 3005 return false; 3006 3007 if (compress_mode == COMPR_MODE_FS) 3008 return true; 3009 else if (compress_mode == COMPR_MODE_USER && 3010 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3011 return true; 3012 3013 return false; 3014 } 3015 3016 static inline unsigned int addrs_per_inode(struct inode *inode) 3017 { 3018 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3019 get_inline_xattr_addrs(inode); 3020 3021 if (!f2fs_compressed_file(inode)) 3022 return addrs; 3023 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3024 } 3025 3026 static inline unsigned int addrs_per_block(struct inode *inode) 3027 { 3028 if (!f2fs_compressed_file(inode)) 3029 return DEF_ADDRS_PER_BLOCK; 3030 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3031 } 3032 3033 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3034 { 3035 struct f2fs_inode *ri = F2FS_INODE(page); 3036 3037 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3038 get_inline_xattr_addrs(inode)]); 3039 } 3040 3041 static inline int inline_xattr_size(struct inode *inode) 3042 { 3043 if (f2fs_has_inline_xattr(inode)) 3044 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3045 return 0; 3046 } 3047 3048 static inline int f2fs_has_inline_data(struct inode *inode) 3049 { 3050 return is_inode_flag_set(inode, FI_INLINE_DATA); 3051 } 3052 3053 static inline int f2fs_exist_data(struct inode *inode) 3054 { 3055 return is_inode_flag_set(inode, FI_DATA_EXIST); 3056 } 3057 3058 static inline int f2fs_has_inline_dots(struct inode *inode) 3059 { 3060 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3061 } 3062 3063 static inline int f2fs_is_mmap_file(struct inode *inode) 3064 { 3065 return is_inode_flag_set(inode, FI_MMAP_FILE); 3066 } 3067 3068 static inline bool f2fs_is_pinned_file(struct inode *inode) 3069 { 3070 return is_inode_flag_set(inode, FI_PIN_FILE); 3071 } 3072 3073 static inline bool f2fs_is_atomic_file(struct inode *inode) 3074 { 3075 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3076 } 3077 3078 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 3079 { 3080 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 3081 } 3082 3083 static inline bool f2fs_is_volatile_file(struct inode *inode) 3084 { 3085 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 3086 } 3087 3088 static inline bool f2fs_is_first_block_written(struct inode *inode) 3089 { 3090 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3091 } 3092 3093 static inline bool f2fs_is_drop_cache(struct inode *inode) 3094 { 3095 return is_inode_flag_set(inode, FI_DROP_CACHE); 3096 } 3097 3098 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3099 { 3100 struct f2fs_inode *ri = F2FS_INODE(page); 3101 int extra_size = get_extra_isize(inode); 3102 3103 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3104 } 3105 3106 static inline int f2fs_has_inline_dentry(struct inode *inode) 3107 { 3108 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3109 } 3110 3111 static inline int is_file(struct inode *inode, int type) 3112 { 3113 return F2FS_I(inode)->i_advise & type; 3114 } 3115 3116 static inline void set_file(struct inode *inode, int type) 3117 { 3118 F2FS_I(inode)->i_advise |= type; 3119 f2fs_mark_inode_dirty_sync(inode, true); 3120 } 3121 3122 static inline void clear_file(struct inode *inode, int type) 3123 { 3124 F2FS_I(inode)->i_advise &= ~type; 3125 f2fs_mark_inode_dirty_sync(inode, true); 3126 } 3127 3128 static inline bool f2fs_is_time_consistent(struct inode *inode) 3129 { 3130 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3131 return false; 3132 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3133 return false; 3134 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3135 return false; 3136 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3137 &F2FS_I(inode)->i_crtime)) 3138 return false; 3139 return true; 3140 } 3141 3142 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3143 { 3144 bool ret; 3145 3146 if (dsync) { 3147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3148 3149 spin_lock(&sbi->inode_lock[DIRTY_META]); 3150 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3151 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3152 return ret; 3153 } 3154 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3155 file_keep_isize(inode) || 3156 i_size_read(inode) & ~PAGE_MASK) 3157 return false; 3158 3159 if (!f2fs_is_time_consistent(inode)) 3160 return false; 3161 3162 spin_lock(&F2FS_I(inode)->i_size_lock); 3163 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3164 spin_unlock(&F2FS_I(inode)->i_size_lock); 3165 3166 return ret; 3167 } 3168 3169 static inline bool f2fs_readonly(struct super_block *sb) 3170 { 3171 return sb_rdonly(sb); 3172 } 3173 3174 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3175 { 3176 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3177 } 3178 3179 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3180 { 3181 if (len == 1 && name[0] == '.') 3182 return true; 3183 3184 if (len == 2 && name[0] == '.' && name[1] == '.') 3185 return true; 3186 3187 return false; 3188 } 3189 3190 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3191 size_t size, gfp_t flags) 3192 { 3193 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3194 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3195 return NULL; 3196 } 3197 3198 return kmalloc(size, flags); 3199 } 3200 3201 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3202 size_t size, gfp_t flags) 3203 { 3204 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3205 } 3206 3207 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3208 size_t size, gfp_t flags) 3209 { 3210 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3211 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3212 return NULL; 3213 } 3214 3215 return kvmalloc(size, flags); 3216 } 3217 3218 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3219 size_t size, gfp_t flags) 3220 { 3221 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3222 } 3223 3224 static inline int get_extra_isize(struct inode *inode) 3225 { 3226 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3227 } 3228 3229 static inline int get_inline_xattr_addrs(struct inode *inode) 3230 { 3231 return F2FS_I(inode)->i_inline_xattr_size; 3232 } 3233 3234 #define f2fs_get_inode_mode(i) \ 3235 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3236 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3237 3238 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3239 (offsetof(struct f2fs_inode, i_extra_end) - \ 3240 offsetof(struct f2fs_inode, i_extra_isize)) \ 3241 3242 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3243 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3244 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3245 sizeof((f2fs_inode)->field)) \ 3246 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3247 3248 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3249 3250 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3251 3252 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3253 block_t blkaddr, int type); 3254 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3255 block_t blkaddr, int type) 3256 { 3257 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3258 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3259 blkaddr, type); 3260 f2fs_bug_on(sbi, 1); 3261 } 3262 } 3263 3264 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3265 { 3266 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3267 blkaddr == COMPRESS_ADDR) 3268 return false; 3269 return true; 3270 } 3271 3272 /* 3273 * file.c 3274 */ 3275 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3276 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3277 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3278 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3279 int f2fs_truncate(struct inode *inode); 3280 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3281 struct kstat *stat, u32 request_mask, unsigned int flags); 3282 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3283 struct iattr *attr); 3284 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3285 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3286 int f2fs_precache_extents(struct inode *inode); 3287 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3288 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3289 struct dentry *dentry, struct fileattr *fa); 3290 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3291 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3292 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3293 int f2fs_pin_file_control(struct inode *inode, bool inc); 3294 3295 /* 3296 * inode.c 3297 */ 3298 void f2fs_set_inode_flags(struct inode *inode); 3299 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3300 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3301 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3302 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3303 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3304 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3305 void f2fs_update_inode_page(struct inode *inode); 3306 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3307 void f2fs_evict_inode(struct inode *inode); 3308 void f2fs_handle_failed_inode(struct inode *inode); 3309 3310 /* 3311 * namei.c 3312 */ 3313 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3314 bool hot, bool set); 3315 struct dentry *f2fs_get_parent(struct dentry *child); 3316 3317 /* 3318 * dir.c 3319 */ 3320 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3321 int f2fs_init_casefolded_name(const struct inode *dir, 3322 struct f2fs_filename *fname); 3323 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3324 int lookup, struct f2fs_filename *fname); 3325 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3326 struct f2fs_filename *fname); 3327 void f2fs_free_filename(struct f2fs_filename *fname); 3328 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3329 const struct f2fs_filename *fname, int *max_slots); 3330 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3331 unsigned int start_pos, struct fscrypt_str *fstr); 3332 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3333 struct f2fs_dentry_ptr *d); 3334 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3335 const struct f2fs_filename *fname, struct page *dpage); 3336 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3337 unsigned int current_depth); 3338 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3339 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3340 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3341 const struct f2fs_filename *fname, 3342 struct page **res_page); 3343 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3344 const struct qstr *child, struct page **res_page); 3345 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3346 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3347 struct page **page); 3348 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3349 struct page *page, struct inode *inode); 3350 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3351 const struct f2fs_filename *fname); 3352 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3353 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3354 unsigned int bit_pos); 3355 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3356 struct inode *inode, nid_t ino, umode_t mode); 3357 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3358 struct inode *inode, nid_t ino, umode_t mode); 3359 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3360 struct inode *inode, nid_t ino, umode_t mode); 3361 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3362 struct inode *dir, struct inode *inode); 3363 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3364 bool f2fs_empty_dir(struct inode *dir); 3365 3366 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3367 { 3368 if (fscrypt_is_nokey_name(dentry)) 3369 return -ENOKEY; 3370 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3371 inode, inode->i_ino, inode->i_mode); 3372 } 3373 3374 /* 3375 * super.c 3376 */ 3377 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3378 void f2fs_inode_synced(struct inode *inode); 3379 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3380 int f2fs_quota_sync(struct super_block *sb, int type); 3381 loff_t max_file_blocks(struct inode *inode); 3382 void f2fs_quota_off_umount(struct super_block *sb); 3383 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3384 int f2fs_sync_fs(struct super_block *sb, int sync); 3385 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3386 3387 /* 3388 * hash.c 3389 */ 3390 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3391 3392 /* 3393 * node.c 3394 */ 3395 struct node_info; 3396 3397 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3398 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3399 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3400 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3401 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3402 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3403 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3404 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3405 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3406 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3407 struct node_info *ni); 3408 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3409 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3410 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3411 int f2fs_truncate_xattr_node(struct inode *inode); 3412 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3413 unsigned int seq_id); 3414 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3415 int f2fs_remove_inode_page(struct inode *inode); 3416 struct page *f2fs_new_inode_page(struct inode *inode); 3417 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3418 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3419 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3420 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3421 int f2fs_move_node_page(struct page *node_page, int gc_type); 3422 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3423 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3424 struct writeback_control *wbc, bool atomic, 3425 unsigned int *seq_id); 3426 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3427 struct writeback_control *wbc, 3428 bool do_balance, enum iostat_type io_type); 3429 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3430 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3431 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3432 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3433 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3434 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3435 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3436 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3437 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3438 unsigned int segno, struct f2fs_summary_block *sum); 3439 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3440 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3441 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3442 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3443 int __init f2fs_create_node_manager_caches(void); 3444 void f2fs_destroy_node_manager_caches(void); 3445 3446 /* 3447 * segment.c 3448 */ 3449 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3450 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3451 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3452 void f2fs_drop_inmem_pages(struct inode *inode); 3453 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3454 int f2fs_commit_inmem_pages(struct inode *inode); 3455 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3456 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3457 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3458 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3459 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3460 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3461 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3462 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3463 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3464 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3465 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3466 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3467 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3468 struct cp_control *cpc); 3469 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3470 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3471 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3472 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3473 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3474 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3475 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3476 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3477 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3478 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3479 unsigned int *newseg, bool new_sec, int dir); 3480 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3481 unsigned int start, unsigned int end); 3482 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3483 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3484 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3485 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3486 struct cp_control *cpc); 3487 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3488 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3489 block_t blk_addr); 3490 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3491 enum iostat_type io_type); 3492 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3493 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3494 struct f2fs_io_info *fio); 3495 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3496 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3497 block_t old_blkaddr, block_t new_blkaddr, 3498 bool recover_curseg, bool recover_newaddr, 3499 bool from_gc); 3500 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3501 block_t old_addr, block_t new_addr, 3502 unsigned char version, bool recover_curseg, 3503 bool recover_newaddr); 3504 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3505 block_t old_blkaddr, block_t *new_blkaddr, 3506 struct f2fs_summary *sum, int type, 3507 struct f2fs_io_info *fio); 3508 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3509 block_t blkaddr, unsigned int blkcnt); 3510 void f2fs_wait_on_page_writeback(struct page *page, 3511 enum page_type type, bool ordered, bool locked); 3512 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3513 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3514 block_t len); 3515 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3516 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3517 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3518 unsigned int val, int alloc); 3519 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3520 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3521 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3522 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3523 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3524 int __init f2fs_create_segment_manager_caches(void); 3525 void f2fs_destroy_segment_manager_caches(void); 3526 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3527 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3528 enum page_type type, enum temp_type temp); 3529 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3530 unsigned int segno); 3531 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3532 unsigned int segno); 3533 3534 #define DEF_FRAGMENT_SIZE 4 3535 #define MIN_FRAGMENT_SIZE 1 3536 #define MAX_FRAGMENT_SIZE 512 3537 3538 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3539 { 3540 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3541 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3542 } 3543 3544 /* 3545 * checkpoint.c 3546 */ 3547 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3548 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3549 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3550 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3551 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3552 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3553 block_t blkaddr, int type); 3554 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3555 int type, bool sync); 3556 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3557 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3558 long nr_to_write, enum iostat_type io_type); 3559 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3560 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3561 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3562 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3563 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3564 unsigned int devidx, int type); 3565 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3566 unsigned int devidx, int type); 3567 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3568 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3569 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3570 void f2fs_add_orphan_inode(struct inode *inode); 3571 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3572 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3573 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3574 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3575 void f2fs_remove_dirty_inode(struct inode *inode); 3576 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3577 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3578 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3579 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3580 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3581 int __init f2fs_create_checkpoint_caches(void); 3582 void f2fs_destroy_checkpoint_caches(void); 3583 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3584 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3585 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3586 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3587 3588 /* 3589 * data.c 3590 */ 3591 int __init f2fs_init_bioset(void); 3592 void f2fs_destroy_bioset(void); 3593 int f2fs_init_bio_entry_cache(void); 3594 void f2fs_destroy_bio_entry_cache(void); 3595 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3596 struct bio *bio, enum page_type type); 3597 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3598 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3599 struct inode *inode, struct page *page, 3600 nid_t ino, enum page_type type); 3601 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3602 struct bio **bio, struct page *page); 3603 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3604 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3605 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3606 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3607 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3608 block_t blk_addr, struct bio *bio); 3609 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3610 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3611 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3612 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3613 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3614 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3615 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3616 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3617 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3618 int op_flags, bool for_write); 3619 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3620 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3621 bool for_write); 3622 struct page *f2fs_get_new_data_page(struct inode *inode, 3623 struct page *ipage, pgoff_t index, bool new_i_size); 3624 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3625 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3626 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3627 int create, int flag); 3628 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3629 u64 start, u64 len); 3630 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3631 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3632 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3633 int f2fs_write_single_data_page(struct page *page, int *submitted, 3634 struct bio **bio, sector_t *last_block, 3635 struct writeback_control *wbc, 3636 enum iostat_type io_type, 3637 int compr_blocks, bool allow_balance); 3638 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3639 unsigned int length); 3640 int f2fs_release_page(struct page *page, gfp_t wait); 3641 #ifdef CONFIG_MIGRATION 3642 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3643 struct page *page, enum migrate_mode mode); 3644 #endif 3645 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3646 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3647 int f2fs_init_post_read_processing(void); 3648 void f2fs_destroy_post_read_processing(void); 3649 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3650 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3651 3652 /* 3653 * gc.c 3654 */ 3655 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3656 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3657 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3658 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force, 3659 unsigned int segno); 3660 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3661 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3662 int __init f2fs_create_garbage_collection_cache(void); 3663 void f2fs_destroy_garbage_collection_cache(void); 3664 3665 /* 3666 * recovery.c 3667 */ 3668 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3669 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3670 int __init f2fs_create_recovery_cache(void); 3671 void f2fs_destroy_recovery_cache(void); 3672 3673 /* 3674 * debug.c 3675 */ 3676 #ifdef CONFIG_F2FS_STAT_FS 3677 struct f2fs_stat_info { 3678 struct list_head stat_list; 3679 struct f2fs_sb_info *sbi; 3680 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3681 int main_area_segs, main_area_sections, main_area_zones; 3682 unsigned long long hit_largest, hit_cached, hit_rbtree; 3683 unsigned long long hit_total, total_ext; 3684 int ext_tree, zombie_tree, ext_node; 3685 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3686 int ndirty_data, ndirty_qdata; 3687 int inmem_pages; 3688 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3689 int nats, dirty_nats, sits, dirty_sits; 3690 int free_nids, avail_nids, alloc_nids; 3691 int total_count, utilization; 3692 int bg_gc, nr_wb_cp_data, nr_wb_data; 3693 int nr_rd_data, nr_rd_node, nr_rd_meta; 3694 int nr_dio_read, nr_dio_write; 3695 unsigned int io_skip_bggc, other_skip_bggc; 3696 int nr_flushing, nr_flushed, flush_list_empty; 3697 int nr_discarding, nr_discarded; 3698 int nr_discard_cmd; 3699 unsigned int undiscard_blks; 3700 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3701 unsigned int cur_ckpt_time, peak_ckpt_time; 3702 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3703 int compr_inode; 3704 unsigned long long compr_blocks; 3705 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3706 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3707 unsigned int bimodal, avg_vblocks; 3708 int util_free, util_valid, util_invalid; 3709 int rsvd_segs, overp_segs; 3710 int dirty_count, node_pages, meta_pages, compress_pages; 3711 int compress_page_hit; 3712 int prefree_count, call_count, cp_count, bg_cp_count; 3713 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3714 int bg_node_segs, bg_data_segs; 3715 int tot_blks, data_blks, node_blks; 3716 int bg_data_blks, bg_node_blks; 3717 unsigned long long skipped_atomic_files[2]; 3718 int curseg[NR_CURSEG_TYPE]; 3719 int cursec[NR_CURSEG_TYPE]; 3720 int curzone[NR_CURSEG_TYPE]; 3721 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3722 unsigned int full_seg[NR_CURSEG_TYPE]; 3723 unsigned int valid_blks[NR_CURSEG_TYPE]; 3724 3725 unsigned int meta_count[META_MAX]; 3726 unsigned int segment_count[2]; 3727 unsigned int block_count[2]; 3728 unsigned int inplace_count; 3729 unsigned long long base_mem, cache_mem, page_mem; 3730 }; 3731 3732 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3733 { 3734 return (struct f2fs_stat_info *)sbi->stat_info; 3735 } 3736 3737 #define stat_inc_cp_count(si) ((si)->cp_count++) 3738 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3739 #define stat_inc_call_count(si) ((si)->call_count++) 3740 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3741 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3742 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3743 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3744 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3745 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3746 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3747 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3748 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3749 #define stat_inc_inline_xattr(inode) \ 3750 do { \ 3751 if (f2fs_has_inline_xattr(inode)) \ 3752 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3753 } while (0) 3754 #define stat_dec_inline_xattr(inode) \ 3755 do { \ 3756 if (f2fs_has_inline_xattr(inode)) \ 3757 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3758 } while (0) 3759 #define stat_inc_inline_inode(inode) \ 3760 do { \ 3761 if (f2fs_has_inline_data(inode)) \ 3762 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3763 } while (0) 3764 #define stat_dec_inline_inode(inode) \ 3765 do { \ 3766 if (f2fs_has_inline_data(inode)) \ 3767 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3768 } while (0) 3769 #define stat_inc_inline_dir(inode) \ 3770 do { \ 3771 if (f2fs_has_inline_dentry(inode)) \ 3772 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3773 } while (0) 3774 #define stat_dec_inline_dir(inode) \ 3775 do { \ 3776 if (f2fs_has_inline_dentry(inode)) \ 3777 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3778 } while (0) 3779 #define stat_inc_compr_inode(inode) \ 3780 do { \ 3781 if (f2fs_compressed_file(inode)) \ 3782 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3783 } while (0) 3784 #define stat_dec_compr_inode(inode) \ 3785 do { \ 3786 if (f2fs_compressed_file(inode)) \ 3787 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3788 } while (0) 3789 #define stat_add_compr_blocks(inode, blocks) \ 3790 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3791 #define stat_sub_compr_blocks(inode, blocks) \ 3792 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3793 #define stat_inc_meta_count(sbi, blkaddr) \ 3794 do { \ 3795 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3796 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3797 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3798 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3799 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3800 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3801 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3802 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3803 } while (0) 3804 #define stat_inc_seg_type(sbi, curseg) \ 3805 ((sbi)->segment_count[(curseg)->alloc_type]++) 3806 #define stat_inc_block_count(sbi, curseg) \ 3807 ((sbi)->block_count[(curseg)->alloc_type]++) 3808 #define stat_inc_inplace_blocks(sbi) \ 3809 (atomic_inc(&(sbi)->inplace_count)) 3810 #define stat_update_max_atomic_write(inode) \ 3811 do { \ 3812 int cur = F2FS_I_SB(inode)->atomic_files; \ 3813 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3814 if (cur > max) \ 3815 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3816 } while (0) 3817 #define stat_inc_volatile_write(inode) \ 3818 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3819 #define stat_dec_volatile_write(inode) \ 3820 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3821 #define stat_update_max_volatile_write(inode) \ 3822 do { \ 3823 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3824 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3825 if (cur > max) \ 3826 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3827 } while (0) 3828 #define stat_inc_seg_count(sbi, type, gc_type) \ 3829 do { \ 3830 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3831 si->tot_segs++; \ 3832 if ((type) == SUM_TYPE_DATA) { \ 3833 si->data_segs++; \ 3834 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3835 } else { \ 3836 si->node_segs++; \ 3837 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3838 } \ 3839 } while (0) 3840 3841 #define stat_inc_tot_blk_count(si, blks) \ 3842 ((si)->tot_blks += (blks)) 3843 3844 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3845 do { \ 3846 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3847 stat_inc_tot_blk_count(si, blks); \ 3848 si->data_blks += (blks); \ 3849 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3850 } while (0) 3851 3852 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3853 do { \ 3854 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3855 stat_inc_tot_blk_count(si, blks); \ 3856 si->node_blks += (blks); \ 3857 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3858 } while (0) 3859 3860 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3861 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3862 void __init f2fs_create_root_stats(void); 3863 void f2fs_destroy_root_stats(void); 3864 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 3865 #else 3866 #define stat_inc_cp_count(si) do { } while (0) 3867 #define stat_inc_bg_cp_count(si) do { } while (0) 3868 #define stat_inc_call_count(si) do { } while (0) 3869 #define stat_inc_bggc_count(si) do { } while (0) 3870 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3871 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3872 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3873 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3874 #define stat_inc_total_hit(sbi) do { } while (0) 3875 #define stat_inc_rbtree_node_hit(sbi) do { } while (0) 3876 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3877 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3878 #define stat_inc_inline_xattr(inode) do { } while (0) 3879 #define stat_dec_inline_xattr(inode) do { } while (0) 3880 #define stat_inc_inline_inode(inode) do { } while (0) 3881 #define stat_dec_inline_inode(inode) do { } while (0) 3882 #define stat_inc_inline_dir(inode) do { } while (0) 3883 #define stat_dec_inline_dir(inode) do { } while (0) 3884 #define stat_inc_compr_inode(inode) do { } while (0) 3885 #define stat_dec_compr_inode(inode) do { } while (0) 3886 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 3887 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 3888 #define stat_update_max_atomic_write(inode) do { } while (0) 3889 #define stat_inc_volatile_write(inode) do { } while (0) 3890 #define stat_dec_volatile_write(inode) do { } while (0) 3891 #define stat_update_max_volatile_write(inode) do { } while (0) 3892 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3893 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3894 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3895 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3896 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3897 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3898 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3899 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3900 3901 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3902 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3903 static inline void __init f2fs_create_root_stats(void) { } 3904 static inline void f2fs_destroy_root_stats(void) { } 3905 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 3906 #endif 3907 3908 extern const struct file_operations f2fs_dir_operations; 3909 extern const struct file_operations f2fs_file_operations; 3910 extern const struct inode_operations f2fs_file_inode_operations; 3911 extern const struct address_space_operations f2fs_dblock_aops; 3912 extern const struct address_space_operations f2fs_node_aops; 3913 extern const struct address_space_operations f2fs_meta_aops; 3914 extern const struct inode_operations f2fs_dir_inode_operations; 3915 extern const struct inode_operations f2fs_symlink_inode_operations; 3916 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3917 extern const struct inode_operations f2fs_special_inode_operations; 3918 extern struct kmem_cache *f2fs_inode_entry_slab; 3919 3920 /* 3921 * inline.c 3922 */ 3923 bool f2fs_may_inline_data(struct inode *inode); 3924 bool f2fs_may_inline_dentry(struct inode *inode); 3925 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3926 void f2fs_truncate_inline_inode(struct inode *inode, 3927 struct page *ipage, u64 from); 3928 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3929 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3930 int f2fs_convert_inline_inode(struct inode *inode); 3931 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 3932 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3933 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3934 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3935 const struct f2fs_filename *fname, 3936 struct page **res_page); 3937 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3938 struct page *ipage); 3939 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 3940 struct inode *inode, nid_t ino, umode_t mode); 3941 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3942 struct page *page, struct inode *dir, 3943 struct inode *inode); 3944 bool f2fs_empty_inline_dir(struct inode *dir); 3945 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3946 struct fscrypt_str *fstr); 3947 int f2fs_inline_data_fiemap(struct inode *inode, 3948 struct fiemap_extent_info *fieinfo, 3949 __u64 start, __u64 len); 3950 3951 /* 3952 * shrinker.c 3953 */ 3954 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3955 struct shrink_control *sc); 3956 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3957 struct shrink_control *sc); 3958 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3959 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3960 3961 /* 3962 * extent_cache.c 3963 */ 3964 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3965 struct rb_entry *cached_re, unsigned int ofs); 3966 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 3967 struct rb_root_cached *root, 3968 struct rb_node **parent, 3969 unsigned long long key, bool *left_most); 3970 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3971 struct rb_root_cached *root, 3972 struct rb_node **parent, 3973 unsigned int ofs, bool *leftmost); 3974 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3975 struct rb_entry *cached_re, unsigned int ofs, 3976 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3977 struct rb_node ***insert_p, struct rb_node **insert_parent, 3978 bool force, bool *leftmost); 3979 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3980 struct rb_root_cached *root, bool check_key); 3981 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3982 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage); 3983 void f2fs_drop_extent_tree(struct inode *inode); 3984 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3985 void f2fs_destroy_extent_tree(struct inode *inode); 3986 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3987 struct extent_info *ei); 3988 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3989 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3990 pgoff_t fofs, block_t blkaddr, unsigned int len); 3991 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3992 int __init f2fs_create_extent_cache(void); 3993 void f2fs_destroy_extent_cache(void); 3994 3995 /* 3996 * sysfs.c 3997 */ 3998 #define MIN_RA_MUL 2 3999 #define MAX_RA_MUL 256 4000 4001 int __init f2fs_init_sysfs(void); 4002 void f2fs_exit_sysfs(void); 4003 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4004 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4005 4006 /* verity.c */ 4007 extern const struct fsverity_operations f2fs_verityops; 4008 4009 /* 4010 * crypto support 4011 */ 4012 static inline bool f2fs_encrypted_file(struct inode *inode) 4013 { 4014 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4015 } 4016 4017 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4018 { 4019 #ifdef CONFIG_FS_ENCRYPTION 4020 file_set_encrypt(inode); 4021 f2fs_set_inode_flags(inode); 4022 #endif 4023 } 4024 4025 /* 4026 * Returns true if the reads of the inode's data need to undergo some 4027 * postprocessing step, like decryption or authenticity verification. 4028 */ 4029 static inline bool f2fs_post_read_required(struct inode *inode) 4030 { 4031 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4032 f2fs_compressed_file(inode); 4033 } 4034 4035 /* 4036 * compress.c 4037 */ 4038 #ifdef CONFIG_F2FS_FS_COMPRESSION 4039 bool f2fs_is_compressed_page(struct page *page); 4040 struct page *f2fs_compress_control_page(struct page *page); 4041 int f2fs_prepare_compress_overwrite(struct inode *inode, 4042 struct page **pagep, pgoff_t index, void **fsdata); 4043 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4044 pgoff_t index, unsigned copied); 4045 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4046 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4047 bool f2fs_is_compress_backend_ready(struct inode *inode); 4048 int f2fs_init_compress_mempool(void); 4049 void f2fs_destroy_compress_mempool(void); 4050 void f2fs_decompress_cluster(struct decompress_io_ctx *dic); 4051 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4052 block_t blkaddr); 4053 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4054 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4055 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4056 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4057 int f2fs_write_multi_pages(struct compress_ctx *cc, 4058 int *submitted, 4059 struct writeback_control *wbc, 4060 enum iostat_type io_type); 4061 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4062 void f2fs_update_extent_tree_range_compressed(struct inode *inode, 4063 pgoff_t fofs, block_t blkaddr, unsigned int llen, 4064 unsigned int c_len); 4065 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4066 unsigned nr_pages, sector_t *last_block_in_bio, 4067 bool is_readahead, bool for_write); 4068 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4069 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed); 4070 void f2fs_put_page_dic(struct page *page); 4071 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4072 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4073 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4074 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4075 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4076 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4077 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4078 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4079 int __init f2fs_init_compress_cache(void); 4080 void f2fs_destroy_compress_cache(void); 4081 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4082 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4083 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4084 nid_t ino, block_t blkaddr); 4085 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4086 block_t blkaddr); 4087 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4088 #define inc_compr_inode_stat(inode) \ 4089 do { \ 4090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4091 sbi->compr_new_inode++; \ 4092 } while (0) 4093 #define add_compr_block_stat(inode, blocks) \ 4094 do { \ 4095 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4096 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4097 sbi->compr_written_block += blocks; \ 4098 sbi->compr_saved_block += diff; \ 4099 } while (0) 4100 #else 4101 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4102 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4103 { 4104 if (!f2fs_compressed_file(inode)) 4105 return true; 4106 /* not support compression */ 4107 return false; 4108 } 4109 static inline struct page *f2fs_compress_control_page(struct page *page) 4110 { 4111 WARN_ON_ONCE(1); 4112 return ERR_PTR(-EINVAL); 4113 } 4114 static inline int f2fs_init_compress_mempool(void) { return 0; } 4115 static inline void f2fs_destroy_compress_mempool(void) { } 4116 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { } 4117 static inline void f2fs_end_read_compressed_page(struct page *page, 4118 bool failed, block_t blkaddr) 4119 { 4120 WARN_ON_ONCE(1); 4121 } 4122 static inline void f2fs_put_page_dic(struct page *page) 4123 { 4124 WARN_ON_ONCE(1); 4125 } 4126 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4127 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4128 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4129 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4130 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4131 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4132 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4133 static inline void f2fs_destroy_compress_cache(void) { } 4134 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4135 block_t blkaddr) { } 4136 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4137 struct page *page, nid_t ino, block_t blkaddr) { } 4138 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4139 struct page *page, block_t blkaddr) { return false; } 4140 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4141 nid_t ino) { } 4142 #define inc_compr_inode_stat(inode) do { } while (0) 4143 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode, 4144 pgoff_t fofs, block_t blkaddr, unsigned int llen, 4145 unsigned int c_len) { } 4146 #endif 4147 4148 static inline void set_compress_context(struct inode *inode) 4149 { 4150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4151 4152 F2FS_I(inode)->i_compress_algorithm = 4153 F2FS_OPTION(sbi).compress_algorithm; 4154 F2FS_I(inode)->i_log_cluster_size = 4155 F2FS_OPTION(sbi).compress_log_size; 4156 F2FS_I(inode)->i_compress_flag = 4157 F2FS_OPTION(sbi).compress_chksum ? 4158 1 << COMPRESS_CHKSUM : 0; 4159 F2FS_I(inode)->i_cluster_size = 4160 1 << F2FS_I(inode)->i_log_cluster_size; 4161 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4162 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4163 F2FS_OPTION(sbi).compress_level) 4164 F2FS_I(inode)->i_compress_flag |= 4165 F2FS_OPTION(sbi).compress_level << 4166 COMPRESS_LEVEL_OFFSET; 4167 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4168 set_inode_flag(inode, FI_COMPRESSED_FILE); 4169 stat_inc_compr_inode(inode); 4170 inc_compr_inode_stat(inode); 4171 f2fs_mark_inode_dirty_sync(inode, true); 4172 } 4173 4174 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4175 { 4176 struct f2fs_inode_info *fi = F2FS_I(inode); 4177 4178 if (!f2fs_compressed_file(inode)) 4179 return true; 4180 if (S_ISREG(inode->i_mode) && 4181 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks))) 4182 return false; 4183 4184 fi->i_flags &= ~F2FS_COMPR_FL; 4185 stat_dec_compr_inode(inode); 4186 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4187 f2fs_mark_inode_dirty_sync(inode, true); 4188 return true; 4189 } 4190 4191 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4192 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4193 { \ 4194 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4195 } 4196 4197 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4198 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4199 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4200 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4201 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4202 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4203 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4204 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4205 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4206 F2FS_FEATURE_FUNCS(verity, VERITY); 4207 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4208 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4209 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4210 F2FS_FEATURE_FUNCS(readonly, RO); 4211 4212 static inline bool f2fs_may_extent_tree(struct inode *inode) 4213 { 4214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4215 4216 if (!test_opt(sbi, EXTENT_CACHE) || 4217 is_inode_flag_set(inode, FI_NO_EXTENT) || 4218 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) && 4219 !f2fs_sb_has_readonly(sbi))) 4220 return false; 4221 4222 /* 4223 * for recovered files during mount do not create extents 4224 * if shrinker is not registered. 4225 */ 4226 if (list_empty(&sbi->s_list)) 4227 return false; 4228 4229 return S_ISREG(inode->i_mode); 4230 } 4231 4232 #ifdef CONFIG_BLK_DEV_ZONED 4233 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4234 block_t blkaddr) 4235 { 4236 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4237 4238 return test_bit(zno, FDEV(devi).blkz_seq); 4239 } 4240 #endif 4241 4242 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4243 { 4244 return f2fs_sb_has_blkzoned(sbi); 4245 } 4246 4247 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4248 { 4249 return blk_queue_discard(bdev_get_queue(bdev)) || 4250 bdev_is_zoned(bdev); 4251 } 4252 4253 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4254 { 4255 int i; 4256 4257 if (!f2fs_is_multi_device(sbi)) 4258 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4259 4260 for (i = 0; i < sbi->s_ndevs; i++) 4261 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4262 return true; 4263 return false; 4264 } 4265 4266 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4267 { 4268 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4269 f2fs_hw_should_discard(sbi); 4270 } 4271 4272 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4273 { 4274 int i; 4275 4276 if (!f2fs_is_multi_device(sbi)) 4277 return bdev_read_only(sbi->sb->s_bdev); 4278 4279 for (i = 0; i < sbi->s_ndevs; i++) 4280 if (bdev_read_only(FDEV(i).bdev)) 4281 return true; 4282 return false; 4283 } 4284 4285 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4286 { 4287 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4288 } 4289 4290 static inline bool f2fs_may_compress(struct inode *inode) 4291 { 4292 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4293 f2fs_is_atomic_file(inode) || 4294 f2fs_is_volatile_file(inode)) 4295 return false; 4296 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4297 } 4298 4299 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4300 u64 blocks, bool add) 4301 { 4302 int diff = F2FS_I(inode)->i_cluster_size - blocks; 4303 struct f2fs_inode_info *fi = F2FS_I(inode); 4304 4305 /* don't update i_compr_blocks if saved blocks were released */ 4306 if (!add && !atomic_read(&fi->i_compr_blocks)) 4307 return; 4308 4309 if (add) { 4310 atomic_add(diff, &fi->i_compr_blocks); 4311 stat_add_compr_blocks(inode, diff); 4312 } else { 4313 atomic_sub(diff, &fi->i_compr_blocks); 4314 stat_sub_compr_blocks(inode, diff); 4315 } 4316 f2fs_mark_inode_dirty_sync(inode, true); 4317 } 4318 4319 static inline int block_unaligned_IO(struct inode *inode, 4320 struct kiocb *iocb, struct iov_iter *iter) 4321 { 4322 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 4323 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 4324 loff_t offset = iocb->ki_pos; 4325 unsigned long align = offset | iov_iter_alignment(iter); 4326 4327 return align & blocksize_mask; 4328 } 4329 4330 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4331 int flag) 4332 { 4333 if (!f2fs_is_multi_device(sbi)) 4334 return false; 4335 if (flag != F2FS_GET_BLOCK_DIO) 4336 return false; 4337 return sbi->aligned_blksize; 4338 } 4339 4340 static inline bool f2fs_force_buffered_io(struct inode *inode, 4341 struct kiocb *iocb, struct iov_iter *iter) 4342 { 4343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4344 int rw = iov_iter_rw(iter); 4345 4346 if (f2fs_post_read_required(inode)) 4347 return true; 4348 4349 /* disallow direct IO if any of devices has unaligned blksize */ 4350 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 4351 return true; 4352 /* 4353 * for blkzoned device, fallback direct IO to buffered IO, so 4354 * all IOs can be serialized by log-structured write. 4355 */ 4356 if (f2fs_sb_has_blkzoned(sbi)) 4357 return true; 4358 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) { 4359 if (block_unaligned_IO(inode, iocb, iter)) 4360 return true; 4361 if (F2FS_IO_ALIGNED(sbi)) 4362 return true; 4363 } 4364 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 4365 return true; 4366 4367 return false; 4368 } 4369 4370 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4371 { 4372 return fsverity_active(inode) && 4373 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4374 } 4375 4376 #ifdef CONFIG_F2FS_FAULT_INJECTION 4377 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4378 unsigned int type); 4379 #else 4380 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4381 #endif 4382 4383 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4384 { 4385 #ifdef CONFIG_QUOTA 4386 if (f2fs_sb_has_quota_ino(sbi)) 4387 return true; 4388 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4389 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4390 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4391 return true; 4392 #endif 4393 return false; 4394 } 4395 4396 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4397 { 4398 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4399 } 4400 4401 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4402 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4403 4404 #endif /* _LINUX_F2FS_H */ 4405