1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 78 #endif 79 80 /* 81 * For mount options 82 */ 83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 84 #define F2FS_MOUNT_DISCARD 0x00000004 85 #define F2FS_MOUNT_NOHEAP 0x00000008 86 #define F2FS_MOUNT_XATTR_USER 0x00000010 87 #define F2FS_MOUNT_POSIX_ACL 0x00000020 88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 89 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 90 #define F2FS_MOUNT_INLINE_DATA 0x00000100 91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 93 #define F2FS_MOUNT_NOBARRIER 0x00000800 94 #define F2FS_MOUNT_FASTBOOT 0x00001000 95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00002000 96 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 97 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 98 #define F2FS_MOUNT_USRQUOTA 0x00080000 99 #define F2FS_MOUNT_GRPQUOTA 0x00100000 100 #define F2FS_MOUNT_PRJQUOTA 0x00200000 101 #define F2FS_MOUNT_QUOTA 0x00400000 102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 103 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 105 #define F2FS_MOUNT_NORECOVERY 0x04000000 106 #define F2FS_MOUNT_ATGC 0x08000000 107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 108 #define F2FS_MOUNT_GC_MERGE 0x20000000 109 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x80000000 111 112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 116 117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 118 typecheck(unsigned long long, b) && \ 119 ((long long)((a) - (b)) > 0)) 120 121 typedef u32 block_t; /* 122 * should not change u32, since it is the on-disk block 123 * address format, __le32. 124 */ 125 typedef u32 nid_t; 126 127 #define COMPRESS_EXT_NUM 16 128 129 /* 130 * An implementation of an rwsem that is explicitly unfair to readers. This 131 * prevents priority inversion when a low-priority reader acquires the read lock 132 * while sleeping on the write lock but the write lock is needed by 133 * higher-priority clients. 134 */ 135 136 struct f2fs_rwsem { 137 struct rw_semaphore internal_rwsem; 138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 139 wait_queue_head_t read_waiters; 140 #endif 141 }; 142 143 struct f2fs_mount_info { 144 unsigned int opt; 145 int write_io_size_bits; /* Write IO size bits */ 146 block_t root_reserved_blocks; /* root reserved blocks */ 147 kuid_t s_resuid; /* reserved blocks for uid */ 148 kgid_t s_resgid; /* reserved blocks for gid */ 149 int active_logs; /* # of active logs */ 150 int inline_xattr_size; /* inline xattr size */ 151 #ifdef CONFIG_F2FS_FAULT_INJECTION 152 struct f2fs_fault_info fault_info; /* For fault injection */ 153 #endif 154 #ifdef CONFIG_QUOTA 155 /* Names of quota files with journalled quota */ 156 char *s_qf_names[MAXQUOTAS]; 157 int s_jquota_fmt; /* Format of quota to use */ 158 #endif 159 /* For which write hints are passed down to block layer */ 160 int alloc_mode; /* segment allocation policy */ 161 int fsync_mode; /* fsync policy */ 162 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 163 int bggc_mode; /* bggc mode: off, on or sync */ 164 int memory_mode; /* memory mode */ 165 int discard_unit; /* 166 * discard command's offset/size should 167 * be aligned to this unit: block, 168 * segment or section 169 */ 170 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 171 block_t unusable_cap_perc; /* percentage for cap */ 172 block_t unusable_cap; /* Amount of space allowed to be 173 * unusable when disabling checkpoint 174 */ 175 176 /* For compression */ 177 unsigned char compress_algorithm; /* algorithm type */ 178 unsigned char compress_log_size; /* cluster log size */ 179 unsigned char compress_level; /* compress level */ 180 bool compress_chksum; /* compressed data chksum */ 181 unsigned char compress_ext_cnt; /* extension count */ 182 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 183 int compress_mode; /* compression mode */ 184 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 185 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 186 }; 187 188 #define F2FS_FEATURE_ENCRYPT 0x0001 189 #define F2FS_FEATURE_BLKZONED 0x0002 190 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 191 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 192 #define F2FS_FEATURE_PRJQUOTA 0x0010 193 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 195 #define F2FS_FEATURE_QUOTA_INO 0x0080 196 #define F2FS_FEATURE_INODE_CRTIME 0x0100 197 #define F2FS_FEATURE_LOST_FOUND 0x0200 198 #define F2FS_FEATURE_VERITY 0x0400 199 #define F2FS_FEATURE_SB_CHKSUM 0x0800 200 #define F2FS_FEATURE_CASEFOLD 0x1000 201 #define F2FS_FEATURE_COMPRESSION 0x2000 202 #define F2FS_FEATURE_RO 0x4000 203 204 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 205 ((raw_super->feature & cpu_to_le32(mask)) != 0) 206 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 207 208 /* 209 * Default values for user and/or group using reserved blocks 210 */ 211 #define F2FS_DEF_RESUID 0 212 #define F2FS_DEF_RESGID 0 213 214 /* 215 * For checkpoint manager 216 */ 217 enum { 218 NAT_BITMAP, 219 SIT_BITMAP 220 }; 221 222 #define CP_UMOUNT 0x00000001 223 #define CP_FASTBOOT 0x00000002 224 #define CP_SYNC 0x00000004 225 #define CP_RECOVERY 0x00000008 226 #define CP_DISCARD 0x00000010 227 #define CP_TRIMMED 0x00000020 228 #define CP_PAUSE 0x00000040 229 #define CP_RESIZE 0x00000080 230 231 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 232 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 233 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 234 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 235 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 236 #define DEF_CP_INTERVAL 60 /* 60 secs */ 237 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 238 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 239 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 240 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 241 242 struct cp_control { 243 int reason; 244 __u64 trim_start; 245 __u64 trim_end; 246 __u64 trim_minlen; 247 }; 248 249 /* 250 * indicate meta/data type 251 */ 252 enum { 253 META_CP, 254 META_NAT, 255 META_SIT, 256 META_SSA, 257 META_MAX, 258 META_POR, 259 DATA_GENERIC, /* check range only */ 260 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 261 DATA_GENERIC_ENHANCE_READ, /* 262 * strong check on range and segment 263 * bitmap but no warning due to race 264 * condition of read on truncated area 265 * by extent_cache 266 */ 267 DATA_GENERIC_ENHANCE_UPDATE, /* 268 * strong check on range and segment 269 * bitmap for update case 270 */ 271 META_GENERIC, 272 }; 273 274 /* for the list of ino */ 275 enum { 276 ORPHAN_INO, /* for orphan ino list */ 277 APPEND_INO, /* for append ino list */ 278 UPDATE_INO, /* for update ino list */ 279 TRANS_DIR_INO, /* for transactions dir ino list */ 280 FLUSH_INO, /* for multiple device flushing */ 281 MAX_INO_ENTRY, /* max. list */ 282 }; 283 284 struct ino_entry { 285 struct list_head list; /* list head */ 286 nid_t ino; /* inode number */ 287 unsigned int dirty_device; /* dirty device bitmap */ 288 }; 289 290 /* for the list of inodes to be GCed */ 291 struct inode_entry { 292 struct list_head list; /* list head */ 293 struct inode *inode; /* vfs inode pointer */ 294 }; 295 296 struct fsync_node_entry { 297 struct list_head list; /* list head */ 298 struct page *page; /* warm node page pointer */ 299 unsigned int seq_id; /* sequence id */ 300 }; 301 302 struct ckpt_req { 303 struct completion wait; /* completion for checkpoint done */ 304 struct llist_node llnode; /* llist_node to be linked in wait queue */ 305 int ret; /* return code of checkpoint */ 306 ktime_t queue_time; /* request queued time */ 307 }; 308 309 struct ckpt_req_control { 310 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 311 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 312 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 313 atomic_t issued_ckpt; /* # of actually issued ckpts */ 314 atomic_t total_ckpt; /* # of total ckpts */ 315 atomic_t queued_ckpt; /* # of queued ckpts */ 316 struct llist_head issue_list; /* list for command issue */ 317 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 318 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 319 unsigned int peak_time; /* peak wait time in msec until now */ 320 }; 321 322 /* for the bitmap indicate blocks to be discarded */ 323 struct discard_entry { 324 struct list_head list; /* list head */ 325 block_t start_blkaddr; /* start blockaddr of current segment */ 326 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 327 }; 328 329 /* minimum discard granularity, unit: block count */ 330 #define MIN_DISCARD_GRANULARITY 1 331 /* default discard granularity of inner discard thread, unit: block count */ 332 #define DEFAULT_DISCARD_GRANULARITY 16 333 /* default maximum discard granularity of ordered discard, unit: block count */ 334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 335 336 /* max discard pend list number */ 337 #define MAX_PLIST_NUM 512 338 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 339 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 340 341 enum { 342 D_PREP, /* initial */ 343 D_PARTIAL, /* partially submitted */ 344 D_SUBMIT, /* all submitted */ 345 D_DONE, /* finished */ 346 }; 347 348 struct discard_info { 349 block_t lstart; /* logical start address */ 350 block_t len; /* length */ 351 block_t start; /* actual start address in dev */ 352 }; 353 354 struct discard_cmd { 355 struct rb_node rb_node; /* rb node located in rb-tree */ 356 union { 357 struct { 358 block_t lstart; /* logical start address */ 359 block_t len; /* length */ 360 block_t start; /* actual start address in dev */ 361 }; 362 struct discard_info di; /* discard info */ 363 364 }; 365 struct list_head list; /* command list */ 366 struct completion wait; /* compleation */ 367 struct block_device *bdev; /* bdev */ 368 unsigned short ref; /* reference count */ 369 unsigned char state; /* state */ 370 unsigned char queued; /* queued discard */ 371 int error; /* bio error */ 372 spinlock_t lock; /* for state/bio_ref updating */ 373 unsigned short bio_ref; /* bio reference count */ 374 }; 375 376 enum { 377 DPOLICY_BG, 378 DPOLICY_FORCE, 379 DPOLICY_FSTRIM, 380 DPOLICY_UMOUNT, 381 MAX_DPOLICY, 382 }; 383 384 struct discard_policy { 385 int type; /* type of discard */ 386 unsigned int min_interval; /* used for candidates exist */ 387 unsigned int mid_interval; /* used for device busy */ 388 unsigned int max_interval; /* used for candidates not exist */ 389 unsigned int max_requests; /* # of discards issued per round */ 390 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 391 bool io_aware; /* issue discard in idle time */ 392 bool sync; /* submit discard with REQ_SYNC flag */ 393 bool ordered; /* issue discard by lba order */ 394 bool timeout; /* discard timeout for put_super */ 395 unsigned int granularity; /* discard granularity */ 396 }; 397 398 struct discard_cmd_control { 399 struct task_struct *f2fs_issue_discard; /* discard thread */ 400 struct list_head entry_list; /* 4KB discard entry list */ 401 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 402 struct list_head wait_list; /* store on-flushing entries */ 403 struct list_head fstrim_list; /* in-flight discard from fstrim */ 404 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 405 unsigned int discard_wake; /* to wake up discard thread */ 406 struct mutex cmd_lock; 407 unsigned int nr_discards; /* # of discards in the list */ 408 unsigned int max_discards; /* max. discards to be issued */ 409 unsigned int max_discard_request; /* max. discard request per round */ 410 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 411 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 412 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 413 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 414 unsigned int discard_granularity; /* discard granularity */ 415 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 416 unsigned int undiscard_blks; /* # of undiscard blocks */ 417 unsigned int next_pos; /* next discard position */ 418 atomic_t issued_discard; /* # of issued discard */ 419 atomic_t queued_discard; /* # of queued discard */ 420 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 421 struct rb_root_cached root; /* root of discard rb-tree */ 422 bool rbtree_check; /* config for consistence check */ 423 }; 424 425 /* for the list of fsync inodes, used only during recovery */ 426 struct fsync_inode_entry { 427 struct list_head list; /* list head */ 428 struct inode *inode; /* vfs inode pointer */ 429 block_t blkaddr; /* block address locating the last fsync */ 430 block_t last_dentry; /* block address locating the last dentry */ 431 }; 432 433 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 434 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 435 436 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 437 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 438 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 439 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 440 441 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 442 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 443 444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 445 { 446 int before = nats_in_cursum(journal); 447 448 journal->n_nats = cpu_to_le16(before + i); 449 return before; 450 } 451 452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 453 { 454 int before = sits_in_cursum(journal); 455 456 journal->n_sits = cpu_to_le16(before + i); 457 return before; 458 } 459 460 static inline bool __has_cursum_space(struct f2fs_journal *journal, 461 int size, int type) 462 { 463 if (type == NAT_JOURNAL) 464 return size <= MAX_NAT_JENTRIES(journal); 465 return size <= MAX_SIT_JENTRIES(journal); 466 } 467 468 /* for inline stuff */ 469 #define DEF_INLINE_RESERVED_SIZE 1 470 static inline int get_extra_isize(struct inode *inode); 471 static inline int get_inline_xattr_addrs(struct inode *inode); 472 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 473 (CUR_ADDRS_PER_INODE(inode) - \ 474 get_inline_xattr_addrs(inode) - \ 475 DEF_INLINE_RESERVED_SIZE)) 476 477 /* for inline dir */ 478 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 479 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 480 BITS_PER_BYTE + 1)) 481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 482 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 483 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 484 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 485 NR_INLINE_DENTRY(inode) + \ 486 INLINE_DENTRY_BITMAP_SIZE(inode))) 487 488 /* 489 * For INODE and NODE manager 490 */ 491 /* for directory operations */ 492 493 struct f2fs_filename { 494 /* 495 * The filename the user specified. This is NULL for some 496 * filesystem-internal operations, e.g. converting an inline directory 497 * to a non-inline one, or roll-forward recovering an encrypted dentry. 498 */ 499 const struct qstr *usr_fname; 500 501 /* 502 * The on-disk filename. For encrypted directories, this is encrypted. 503 * This may be NULL for lookups in an encrypted dir without the key. 504 */ 505 struct fscrypt_str disk_name; 506 507 /* The dirhash of this filename */ 508 f2fs_hash_t hash; 509 510 #ifdef CONFIG_FS_ENCRYPTION 511 /* 512 * For lookups in encrypted directories: either the buffer backing 513 * disk_name, or a buffer that holds the decoded no-key name. 514 */ 515 struct fscrypt_str crypto_buf; 516 #endif 517 #if IS_ENABLED(CONFIG_UNICODE) 518 /* 519 * For casefolded directories: the casefolded name, but it's left NULL 520 * if the original name is not valid Unicode, if the original name is 521 * "." or "..", if the directory is both casefolded and encrypted and 522 * its encryption key is unavailable, or if the filesystem is doing an 523 * internal operation where usr_fname is also NULL. In all these cases 524 * we fall back to treating the name as an opaque byte sequence. 525 */ 526 struct fscrypt_str cf_name; 527 #endif 528 }; 529 530 struct f2fs_dentry_ptr { 531 struct inode *inode; 532 void *bitmap; 533 struct f2fs_dir_entry *dentry; 534 __u8 (*filename)[F2FS_SLOT_LEN]; 535 int max; 536 int nr_bitmap; 537 }; 538 539 static inline void make_dentry_ptr_block(struct inode *inode, 540 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 541 { 542 d->inode = inode; 543 d->max = NR_DENTRY_IN_BLOCK; 544 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 545 d->bitmap = t->dentry_bitmap; 546 d->dentry = t->dentry; 547 d->filename = t->filename; 548 } 549 550 static inline void make_dentry_ptr_inline(struct inode *inode, 551 struct f2fs_dentry_ptr *d, void *t) 552 { 553 int entry_cnt = NR_INLINE_DENTRY(inode); 554 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 555 int reserved_size = INLINE_RESERVED_SIZE(inode); 556 557 d->inode = inode; 558 d->max = entry_cnt; 559 d->nr_bitmap = bitmap_size; 560 d->bitmap = t; 561 d->dentry = t + bitmap_size + reserved_size; 562 d->filename = t + bitmap_size + reserved_size + 563 SIZE_OF_DIR_ENTRY * entry_cnt; 564 } 565 566 /* 567 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 568 * as its node offset to distinguish from index node blocks. 569 * But some bits are used to mark the node block. 570 */ 571 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 572 >> OFFSET_BIT_SHIFT) 573 enum { 574 ALLOC_NODE, /* allocate a new node page if needed */ 575 LOOKUP_NODE, /* look up a node without readahead */ 576 LOOKUP_NODE_RA, /* 577 * look up a node with readahead called 578 * by get_data_block. 579 */ 580 }; 581 582 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 583 584 /* congestion wait timeout value, default: 20ms */ 585 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 586 587 /* maximum retry quota flush count */ 588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 589 590 /* maximum retry of EIO'ed page */ 591 #define MAX_RETRY_PAGE_EIO 100 592 593 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 594 595 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 596 597 /* dirty segments threshold for triggering CP */ 598 #define DEFAULT_DIRTY_THRESHOLD 4 599 600 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 601 #define RECOVERY_MIN_RA_BLOCKS 1 602 603 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 604 605 /* for in-memory extent cache entry */ 606 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 607 608 /* number of extent info in extent cache we try to shrink */ 609 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 610 611 /* number of age extent info in extent cache we try to shrink */ 612 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 613 #define LAST_AGE_WEIGHT 30 614 #define SAME_AGE_REGION 1024 615 616 /* 617 * Define data block with age less than 1GB as hot data 618 * define data block with age less than 10GB but more than 1GB as warm data 619 */ 620 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 621 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 622 623 /* extent cache type */ 624 enum extent_type { 625 EX_READ, 626 EX_BLOCK_AGE, 627 NR_EXTENT_CACHES, 628 }; 629 630 struct rb_entry { 631 struct rb_node rb_node; /* rb node located in rb-tree */ 632 union { 633 struct { 634 unsigned int ofs; /* start offset of the entry */ 635 unsigned int len; /* length of the entry */ 636 }; 637 unsigned long long key; /* 64-bits key */ 638 } __packed; 639 }; 640 641 struct extent_info { 642 unsigned int fofs; /* start offset in a file */ 643 unsigned int len; /* length of the extent */ 644 union { 645 /* read extent_cache */ 646 struct { 647 /* start block address of the extent */ 648 block_t blk; 649 #ifdef CONFIG_F2FS_FS_COMPRESSION 650 /* physical extent length of compressed blocks */ 651 unsigned int c_len; 652 #endif 653 }; 654 /* block age extent_cache */ 655 struct { 656 /* block age of the extent */ 657 unsigned long long age; 658 /* last total blocks allocated */ 659 unsigned long long last_blocks; 660 }; 661 }; 662 }; 663 664 struct extent_node { 665 struct rb_node rb_node; /* rb node located in rb-tree */ 666 struct extent_info ei; /* extent info */ 667 struct list_head list; /* node in global extent list of sbi */ 668 struct extent_tree *et; /* extent tree pointer */ 669 }; 670 671 struct extent_tree { 672 nid_t ino; /* inode number */ 673 enum extent_type type; /* keep the extent tree type */ 674 struct rb_root_cached root; /* root of extent info rb-tree */ 675 struct extent_node *cached_en; /* recently accessed extent node */ 676 struct list_head list; /* to be used by sbi->zombie_list */ 677 rwlock_t lock; /* protect extent info rb-tree */ 678 atomic_t node_cnt; /* # of extent node in rb-tree*/ 679 bool largest_updated; /* largest extent updated */ 680 struct extent_info largest; /* largest cached extent for EX_READ */ 681 }; 682 683 struct extent_tree_info { 684 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 685 struct mutex extent_tree_lock; /* locking extent radix tree */ 686 struct list_head extent_list; /* lru list for shrinker */ 687 spinlock_t extent_lock; /* locking extent lru list */ 688 atomic_t total_ext_tree; /* extent tree count */ 689 struct list_head zombie_list; /* extent zombie tree list */ 690 atomic_t total_zombie_tree; /* extent zombie tree count */ 691 atomic_t total_ext_node; /* extent info count */ 692 }; 693 694 /* 695 * This structure is taken from ext4_map_blocks. 696 * 697 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 698 */ 699 #define F2FS_MAP_NEW (1 << BH_New) 700 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 701 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 702 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 703 F2FS_MAP_UNWRITTEN) 704 705 struct f2fs_map_blocks { 706 struct block_device *m_bdev; /* for multi-device dio */ 707 block_t m_pblk; 708 block_t m_lblk; 709 unsigned int m_len; 710 unsigned int m_flags; 711 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 712 pgoff_t *m_next_extent; /* point to next possible extent */ 713 int m_seg_type; 714 bool m_may_create; /* indicate it is from write path */ 715 bool m_multidev_dio; /* indicate it allows multi-device dio */ 716 }; 717 718 /* for flag in get_data_block */ 719 enum { 720 F2FS_GET_BLOCK_DEFAULT, 721 F2FS_GET_BLOCK_FIEMAP, 722 F2FS_GET_BLOCK_BMAP, 723 F2FS_GET_BLOCK_DIO, 724 F2FS_GET_BLOCK_PRE_DIO, 725 F2FS_GET_BLOCK_PRE_AIO, 726 F2FS_GET_BLOCK_PRECACHE, 727 }; 728 729 /* 730 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 731 */ 732 #define FADVISE_COLD_BIT 0x01 733 #define FADVISE_LOST_PINO_BIT 0x02 734 #define FADVISE_ENCRYPT_BIT 0x04 735 #define FADVISE_ENC_NAME_BIT 0x08 736 #define FADVISE_KEEP_SIZE_BIT 0x10 737 #define FADVISE_HOT_BIT 0x20 738 #define FADVISE_VERITY_BIT 0x40 739 #define FADVISE_TRUNC_BIT 0x80 740 741 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 742 743 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 744 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 745 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 746 747 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 748 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 749 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 750 751 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 752 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 753 754 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 755 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 756 757 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 758 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 759 760 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 761 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 762 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 763 764 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 765 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 766 767 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 768 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 769 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 770 771 #define DEF_DIR_LEVEL 0 772 773 enum { 774 GC_FAILURE_PIN, 775 MAX_GC_FAILURE 776 }; 777 778 /* used for f2fs_inode_info->flags */ 779 enum { 780 FI_NEW_INODE, /* indicate newly allocated inode */ 781 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 782 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 783 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 784 FI_INC_LINK, /* need to increment i_nlink */ 785 FI_ACL_MODE, /* indicate acl mode */ 786 FI_NO_ALLOC, /* should not allocate any blocks */ 787 FI_FREE_NID, /* free allocated nide */ 788 FI_NO_EXTENT, /* not to use the extent cache */ 789 FI_INLINE_XATTR, /* used for inline xattr */ 790 FI_INLINE_DATA, /* used for inline data*/ 791 FI_INLINE_DENTRY, /* used for inline dentry */ 792 FI_APPEND_WRITE, /* inode has appended data */ 793 FI_UPDATE_WRITE, /* inode has in-place-update data */ 794 FI_NEED_IPU, /* used for ipu per file */ 795 FI_ATOMIC_FILE, /* indicate atomic file */ 796 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 797 FI_DROP_CACHE, /* drop dirty page cache */ 798 FI_DATA_EXIST, /* indicate data exists */ 799 FI_INLINE_DOTS, /* indicate inline dot dentries */ 800 FI_SKIP_WRITES, /* should skip data page writeback */ 801 FI_OPU_WRITE, /* used for opu per file */ 802 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 803 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 804 FI_HOT_DATA, /* indicate file is hot */ 805 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 806 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 807 FI_PIN_FILE, /* indicate file should not be gced */ 808 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 809 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 810 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 811 FI_MMAP_FILE, /* indicate file was mmapped */ 812 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 813 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 814 FI_ALIGNED_WRITE, /* enable aligned write */ 815 FI_COW_FILE, /* indicate COW file */ 816 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 817 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 818 FI_MAX, /* max flag, never be used */ 819 }; 820 821 struct f2fs_inode_info { 822 struct inode vfs_inode; /* serve a vfs inode */ 823 unsigned long i_flags; /* keep an inode flags for ioctl */ 824 unsigned char i_advise; /* use to give file attribute hints */ 825 unsigned char i_dir_level; /* use for dentry level for large dir */ 826 unsigned int i_current_depth; /* only for directory depth */ 827 /* for gc failure statistic */ 828 unsigned int i_gc_failures[MAX_GC_FAILURE]; 829 unsigned int i_pino; /* parent inode number */ 830 umode_t i_acl_mode; /* keep file acl mode temporarily */ 831 832 /* Use below internally in f2fs*/ 833 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 834 struct f2fs_rwsem i_sem; /* protect fi info */ 835 atomic_t dirty_pages; /* # of dirty pages */ 836 f2fs_hash_t chash; /* hash value of given file name */ 837 unsigned int clevel; /* maximum level of given file name */ 838 struct task_struct *task; /* lookup and create consistency */ 839 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 840 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 841 nid_t i_xattr_nid; /* node id that contains xattrs */ 842 loff_t last_disk_size; /* lastly written file size */ 843 spinlock_t i_size_lock; /* protect last_disk_size */ 844 845 #ifdef CONFIG_QUOTA 846 struct dquot *i_dquot[MAXQUOTAS]; 847 848 /* quota space reservation, managed internally by quota code */ 849 qsize_t i_reserved_quota; 850 #endif 851 struct list_head dirty_list; /* dirty list for dirs and files */ 852 struct list_head gdirty_list; /* linked in global dirty list */ 853 struct task_struct *atomic_write_task; /* store atomic write task */ 854 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 855 /* cached extent_tree entry */ 856 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 857 858 /* avoid racing between foreground op and gc */ 859 struct f2fs_rwsem i_gc_rwsem[2]; 860 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 861 862 int i_extra_isize; /* size of extra space located in i_addr */ 863 kprojid_t i_projid; /* id for project quota */ 864 int i_inline_xattr_size; /* inline xattr size */ 865 struct timespec64 i_crtime; /* inode creation time */ 866 struct timespec64 i_disk_time[4];/* inode disk times */ 867 868 /* for file compress */ 869 atomic_t i_compr_blocks; /* # of compressed blocks */ 870 unsigned char i_compress_algorithm; /* algorithm type */ 871 unsigned char i_log_cluster_size; /* log of cluster size */ 872 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 873 unsigned short i_compress_flag; /* compress flag */ 874 unsigned int i_cluster_size; /* cluster size */ 875 876 unsigned int atomic_write_cnt; 877 loff_t original_i_size; /* original i_size before atomic write */ 878 }; 879 880 static inline void get_read_extent_info(struct extent_info *ext, 881 struct f2fs_extent *i_ext) 882 { 883 ext->fofs = le32_to_cpu(i_ext->fofs); 884 ext->blk = le32_to_cpu(i_ext->blk); 885 ext->len = le32_to_cpu(i_ext->len); 886 } 887 888 static inline void set_raw_read_extent(struct extent_info *ext, 889 struct f2fs_extent *i_ext) 890 { 891 i_ext->fofs = cpu_to_le32(ext->fofs); 892 i_ext->blk = cpu_to_le32(ext->blk); 893 i_ext->len = cpu_to_le32(ext->len); 894 } 895 896 static inline bool __is_discard_mergeable(struct discard_info *back, 897 struct discard_info *front, unsigned int max_len) 898 { 899 return (back->lstart + back->len == front->lstart) && 900 (back->len + front->len <= max_len); 901 } 902 903 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 904 struct discard_info *back, unsigned int max_len) 905 { 906 return __is_discard_mergeable(back, cur, max_len); 907 } 908 909 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 910 struct discard_info *front, unsigned int max_len) 911 { 912 return __is_discard_mergeable(cur, front, max_len); 913 } 914 915 /* 916 * For free nid management 917 */ 918 enum nid_state { 919 FREE_NID, /* newly added to free nid list */ 920 PREALLOC_NID, /* it is preallocated */ 921 MAX_NID_STATE, 922 }; 923 924 enum nat_state { 925 TOTAL_NAT, 926 DIRTY_NAT, 927 RECLAIMABLE_NAT, 928 MAX_NAT_STATE, 929 }; 930 931 struct f2fs_nm_info { 932 block_t nat_blkaddr; /* base disk address of NAT */ 933 nid_t max_nid; /* maximum possible node ids */ 934 nid_t available_nids; /* # of available node ids */ 935 nid_t next_scan_nid; /* the next nid to be scanned */ 936 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 937 unsigned int ram_thresh; /* control the memory footprint */ 938 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 939 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 940 941 /* NAT cache management */ 942 struct radix_tree_root nat_root;/* root of the nat entry cache */ 943 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 944 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 945 struct list_head nat_entries; /* cached nat entry list (clean) */ 946 spinlock_t nat_list_lock; /* protect clean nat entry list */ 947 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 948 unsigned int nat_blocks; /* # of nat blocks */ 949 950 /* free node ids management */ 951 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 952 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 953 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 954 spinlock_t nid_list_lock; /* protect nid lists ops */ 955 struct mutex build_lock; /* lock for build free nids */ 956 unsigned char **free_nid_bitmap; 957 unsigned char *nat_block_bitmap; 958 unsigned short *free_nid_count; /* free nid count of NAT block */ 959 960 /* for checkpoint */ 961 char *nat_bitmap; /* NAT bitmap pointer */ 962 963 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 964 unsigned char *nat_bits; /* NAT bits blocks */ 965 unsigned char *full_nat_bits; /* full NAT pages */ 966 unsigned char *empty_nat_bits; /* empty NAT pages */ 967 #ifdef CONFIG_F2FS_CHECK_FS 968 char *nat_bitmap_mir; /* NAT bitmap mirror */ 969 #endif 970 int bitmap_size; /* bitmap size */ 971 }; 972 973 /* 974 * this structure is used as one of function parameters. 975 * all the information are dedicated to a given direct node block determined 976 * by the data offset in a file. 977 */ 978 struct dnode_of_data { 979 struct inode *inode; /* vfs inode pointer */ 980 struct page *inode_page; /* its inode page, NULL is possible */ 981 struct page *node_page; /* cached direct node page */ 982 nid_t nid; /* node id of the direct node block */ 983 unsigned int ofs_in_node; /* data offset in the node page */ 984 bool inode_page_locked; /* inode page is locked or not */ 985 bool node_changed; /* is node block changed */ 986 char cur_level; /* level of hole node page */ 987 char max_level; /* level of current page located */ 988 block_t data_blkaddr; /* block address of the node block */ 989 }; 990 991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 992 struct page *ipage, struct page *npage, nid_t nid) 993 { 994 memset(dn, 0, sizeof(*dn)); 995 dn->inode = inode; 996 dn->inode_page = ipage; 997 dn->node_page = npage; 998 dn->nid = nid; 999 } 1000 1001 /* 1002 * For SIT manager 1003 * 1004 * By default, there are 6 active log areas across the whole main area. 1005 * When considering hot and cold data separation to reduce cleaning overhead, 1006 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 1007 * respectively. 1008 * In the current design, you should not change the numbers intentionally. 1009 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1010 * logs individually according to the underlying devices. (default: 6) 1011 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1012 * data and 8 for node logs. 1013 */ 1014 #define NR_CURSEG_DATA_TYPE (3) 1015 #define NR_CURSEG_NODE_TYPE (3) 1016 #define NR_CURSEG_INMEM_TYPE (2) 1017 #define NR_CURSEG_RO_TYPE (2) 1018 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1019 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1020 1021 enum { 1022 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1023 CURSEG_WARM_DATA, /* data blocks */ 1024 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1025 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1026 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1027 CURSEG_COLD_NODE, /* indirect node blocks */ 1028 NR_PERSISTENT_LOG, /* number of persistent log */ 1029 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1030 /* pinned file that needs consecutive block address */ 1031 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1032 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1033 }; 1034 1035 struct flush_cmd { 1036 struct completion wait; 1037 struct llist_node llnode; 1038 nid_t ino; 1039 int ret; 1040 }; 1041 1042 struct flush_cmd_control { 1043 struct task_struct *f2fs_issue_flush; /* flush thread */ 1044 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1045 atomic_t issued_flush; /* # of issued flushes */ 1046 atomic_t queued_flush; /* # of queued flushes */ 1047 struct llist_head issue_list; /* list for command issue */ 1048 struct llist_node *dispatch_list; /* list for command dispatch */ 1049 }; 1050 1051 struct f2fs_sm_info { 1052 struct sit_info *sit_info; /* whole segment information */ 1053 struct free_segmap_info *free_info; /* free segment information */ 1054 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1055 struct curseg_info *curseg_array; /* active segment information */ 1056 1057 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1058 1059 block_t seg0_blkaddr; /* block address of 0'th segment */ 1060 block_t main_blkaddr; /* start block address of main area */ 1061 block_t ssa_blkaddr; /* start block address of SSA area */ 1062 1063 unsigned int segment_count; /* total # of segments */ 1064 unsigned int main_segments; /* # of segments in main area */ 1065 unsigned int reserved_segments; /* # of reserved segments */ 1066 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1067 unsigned int ovp_segments; /* # of overprovision segments */ 1068 1069 /* a threshold to reclaim prefree segments */ 1070 unsigned int rec_prefree_segments; 1071 1072 struct list_head sit_entry_set; /* sit entry set list */ 1073 1074 unsigned int ipu_policy; /* in-place-update policy */ 1075 unsigned int min_ipu_util; /* in-place-update threshold */ 1076 unsigned int min_fsync_blocks; /* threshold for fsync */ 1077 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1078 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1079 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1080 1081 /* for flush command control */ 1082 struct flush_cmd_control *fcc_info; 1083 1084 /* for discard command control */ 1085 struct discard_cmd_control *dcc_info; 1086 }; 1087 1088 /* 1089 * For superblock 1090 */ 1091 /* 1092 * COUNT_TYPE for monitoring 1093 * 1094 * f2fs monitors the number of several block types such as on-writeback, 1095 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1096 */ 1097 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1098 enum count_type { 1099 F2FS_DIRTY_DENTS, 1100 F2FS_DIRTY_DATA, 1101 F2FS_DIRTY_QDATA, 1102 F2FS_DIRTY_NODES, 1103 F2FS_DIRTY_META, 1104 F2FS_DIRTY_IMETA, 1105 F2FS_WB_CP_DATA, 1106 F2FS_WB_DATA, 1107 F2FS_RD_DATA, 1108 F2FS_RD_NODE, 1109 F2FS_RD_META, 1110 F2FS_DIO_WRITE, 1111 F2FS_DIO_READ, 1112 NR_COUNT_TYPE, 1113 }; 1114 1115 /* 1116 * The below are the page types of bios used in submit_bio(). 1117 * The available types are: 1118 * DATA User data pages. It operates as async mode. 1119 * NODE Node pages. It operates as async mode. 1120 * META FS metadata pages such as SIT, NAT, CP. 1121 * NR_PAGE_TYPE The number of page types. 1122 * META_FLUSH Make sure the previous pages are written 1123 * with waiting the bio's completion 1124 * ... Only can be used with META. 1125 */ 1126 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1127 enum page_type { 1128 DATA = 0, 1129 NODE = 1, /* should not change this */ 1130 META, 1131 NR_PAGE_TYPE, 1132 META_FLUSH, 1133 IPU, /* the below types are used by tracepoints only. */ 1134 OPU, 1135 }; 1136 1137 enum temp_type { 1138 HOT = 0, /* must be zero for meta bio */ 1139 WARM, 1140 COLD, 1141 NR_TEMP_TYPE, 1142 }; 1143 1144 enum need_lock_type { 1145 LOCK_REQ = 0, 1146 LOCK_DONE, 1147 LOCK_RETRY, 1148 }; 1149 1150 enum cp_reason_type { 1151 CP_NO_NEEDED, 1152 CP_NON_REGULAR, 1153 CP_COMPRESSED, 1154 CP_HARDLINK, 1155 CP_SB_NEED_CP, 1156 CP_WRONG_PINO, 1157 CP_NO_SPC_ROLL, 1158 CP_NODE_NEED_CP, 1159 CP_FASTBOOT_MODE, 1160 CP_SPEC_LOG_NUM, 1161 CP_RECOVER_DIR, 1162 }; 1163 1164 enum iostat_type { 1165 /* WRITE IO */ 1166 APP_DIRECT_IO, /* app direct write IOs */ 1167 APP_BUFFERED_IO, /* app buffered write IOs */ 1168 APP_WRITE_IO, /* app write IOs */ 1169 APP_MAPPED_IO, /* app mapped IOs */ 1170 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1171 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1172 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1173 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1174 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1175 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1176 FS_GC_DATA_IO, /* data IOs from forground gc */ 1177 FS_GC_NODE_IO, /* node IOs from forground gc */ 1178 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1179 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1180 FS_CP_META_IO, /* meta IOs from checkpoint */ 1181 1182 /* READ IO */ 1183 APP_DIRECT_READ_IO, /* app direct read IOs */ 1184 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1185 APP_READ_IO, /* app read IOs */ 1186 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1187 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1188 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1189 FS_DATA_READ_IO, /* data read IOs */ 1190 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1191 FS_CDATA_READ_IO, /* compressed data read IOs */ 1192 FS_NODE_READ_IO, /* node read IOs */ 1193 FS_META_READ_IO, /* meta read IOs */ 1194 1195 /* other */ 1196 FS_DISCARD, /* discard */ 1197 NR_IO_TYPE, 1198 }; 1199 1200 struct f2fs_io_info { 1201 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1202 nid_t ino; /* inode number */ 1203 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1204 enum temp_type temp; /* contains HOT/WARM/COLD */ 1205 enum req_op op; /* contains REQ_OP_ */ 1206 blk_opf_t op_flags; /* req_flag_bits */ 1207 block_t new_blkaddr; /* new block address to be written */ 1208 block_t old_blkaddr; /* old block address before Cow */ 1209 struct page *page; /* page to be written */ 1210 struct page *encrypted_page; /* encrypted page */ 1211 struct page *compressed_page; /* compressed page */ 1212 struct list_head list; /* serialize IOs */ 1213 bool submitted; /* indicate IO submission */ 1214 int need_lock; /* indicate we need to lock cp_rwsem */ 1215 bool in_list; /* indicate fio is in io_list */ 1216 bool is_por; /* indicate IO is from recovery or not */ 1217 bool retry; /* need to reallocate block address */ 1218 int compr_blocks; /* # of compressed block addresses */ 1219 bool encrypted; /* indicate file is encrypted */ 1220 bool post_read; /* require post read */ 1221 enum iostat_type io_type; /* io type */ 1222 struct writeback_control *io_wbc; /* writeback control */ 1223 struct bio **bio; /* bio for ipu */ 1224 sector_t *last_block; /* last block number in bio */ 1225 unsigned char version; /* version of the node */ 1226 }; 1227 1228 struct bio_entry { 1229 struct bio *bio; 1230 struct list_head list; 1231 }; 1232 1233 #define is_read_io(rw) ((rw) == READ) 1234 struct f2fs_bio_info { 1235 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1236 struct bio *bio; /* bios to merge */ 1237 sector_t last_block_in_bio; /* last block number */ 1238 struct f2fs_io_info fio; /* store buffered io info. */ 1239 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1240 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1241 struct list_head io_list; /* track fios */ 1242 struct list_head bio_list; /* bio entry list head */ 1243 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1244 }; 1245 1246 #define FDEV(i) (sbi->devs[i]) 1247 #define RDEV(i) (raw_super->devs[i]) 1248 struct f2fs_dev_info { 1249 struct block_device *bdev; 1250 char path[MAX_PATH_LEN]; 1251 unsigned int total_segments; 1252 block_t start_blk; 1253 block_t end_blk; 1254 #ifdef CONFIG_BLK_DEV_ZONED 1255 unsigned int nr_blkz; /* Total number of zones */ 1256 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1257 #endif 1258 }; 1259 1260 enum inode_type { 1261 DIR_INODE, /* for dirty dir inode */ 1262 FILE_INODE, /* for dirty regular/symlink inode */ 1263 DIRTY_META, /* for all dirtied inode metadata */ 1264 NR_INODE_TYPE, 1265 }; 1266 1267 /* for inner inode cache management */ 1268 struct inode_management { 1269 struct radix_tree_root ino_root; /* ino entry array */ 1270 spinlock_t ino_lock; /* for ino entry lock */ 1271 struct list_head ino_list; /* inode list head */ 1272 unsigned long ino_num; /* number of entries */ 1273 }; 1274 1275 /* for GC_AT */ 1276 struct atgc_management { 1277 bool atgc_enabled; /* ATGC is enabled or not */ 1278 struct rb_root_cached root; /* root of victim rb-tree */ 1279 struct list_head victim_list; /* linked with all victim entries */ 1280 unsigned int victim_count; /* victim count in rb-tree */ 1281 unsigned int candidate_ratio; /* candidate ratio */ 1282 unsigned int max_candidate_count; /* max candidate count */ 1283 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1284 unsigned long long age_threshold; /* age threshold */ 1285 }; 1286 1287 struct f2fs_gc_control { 1288 unsigned int victim_segno; /* target victim segment number */ 1289 int init_gc_type; /* FG_GC or BG_GC */ 1290 bool no_bg_gc; /* check the space and stop bg_gc */ 1291 bool should_migrate_blocks; /* should migrate blocks */ 1292 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1293 unsigned int nr_free_secs; /* # of free sections to do GC */ 1294 }; 1295 1296 /* For s_flag in struct f2fs_sb_info */ 1297 enum { 1298 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1299 SBI_IS_CLOSE, /* specify unmounting */ 1300 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1301 SBI_POR_DOING, /* recovery is doing or not */ 1302 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1303 SBI_NEED_CP, /* need to checkpoint */ 1304 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1305 SBI_IS_RECOVERED, /* recovered orphan/data */ 1306 SBI_CP_DISABLED, /* CP was disabled last mount */ 1307 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1308 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1309 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1310 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1311 SBI_IS_RESIZEFS, /* resizefs is in process */ 1312 SBI_IS_FREEZING, /* freezefs is in process */ 1313 }; 1314 1315 enum { 1316 CP_TIME, 1317 REQ_TIME, 1318 DISCARD_TIME, 1319 GC_TIME, 1320 DISABLE_TIME, 1321 UMOUNT_DISCARD_TIMEOUT, 1322 MAX_TIME, 1323 }; 1324 1325 /* Note that you need to keep synchronization with this gc_mode_names array */ 1326 enum { 1327 GC_NORMAL, 1328 GC_IDLE_CB, 1329 GC_IDLE_GREEDY, 1330 GC_IDLE_AT, 1331 GC_URGENT_HIGH, 1332 GC_URGENT_LOW, 1333 GC_URGENT_MID, 1334 MAX_GC_MODE, 1335 }; 1336 1337 enum { 1338 BGGC_MODE_ON, /* background gc is on */ 1339 BGGC_MODE_OFF, /* background gc is off */ 1340 BGGC_MODE_SYNC, /* 1341 * background gc is on, migrating blocks 1342 * like foreground gc 1343 */ 1344 }; 1345 1346 enum { 1347 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1348 FS_MODE_LFS, /* use lfs allocation only */ 1349 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1350 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1351 }; 1352 1353 enum { 1354 ALLOC_MODE_DEFAULT, /* stay default */ 1355 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1356 }; 1357 1358 enum fsync_mode { 1359 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1360 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1361 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1362 }; 1363 1364 enum { 1365 COMPR_MODE_FS, /* 1366 * automatically compress compression 1367 * enabled files 1368 */ 1369 COMPR_MODE_USER, /* 1370 * automatical compression is disabled. 1371 * user can control the file compression 1372 * using ioctls 1373 */ 1374 }; 1375 1376 enum { 1377 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1378 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1379 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1380 }; 1381 1382 enum { 1383 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1384 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1385 }; 1386 1387 1388 1389 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1390 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1391 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1392 1393 /* 1394 * Layout of f2fs page.private: 1395 * 1396 * Layout A: lowest bit should be 1 1397 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1398 * bit 0 PAGE_PRIVATE_NOT_POINTER 1399 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1400 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1401 * bit 3 PAGE_PRIVATE_INLINE_INODE 1402 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1403 * bit 5- f2fs private data 1404 * 1405 * Layout B: lowest bit should be 0 1406 * page.private is a wrapped pointer. 1407 */ 1408 enum { 1409 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1410 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1411 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1412 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1413 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1414 PAGE_PRIVATE_MAX 1415 }; 1416 1417 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1418 static inline bool page_private_##name(struct page *page) \ 1419 { \ 1420 return PagePrivate(page) && \ 1421 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1422 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1423 } 1424 1425 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1426 static inline void set_page_private_##name(struct page *page) \ 1427 { \ 1428 if (!PagePrivate(page)) { \ 1429 get_page(page); \ 1430 SetPagePrivate(page); \ 1431 set_page_private(page, 0); \ 1432 } \ 1433 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1434 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1435 } 1436 1437 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1438 static inline void clear_page_private_##name(struct page *page) \ 1439 { \ 1440 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1441 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \ 1442 set_page_private(page, 0); \ 1443 if (PagePrivate(page)) { \ 1444 ClearPagePrivate(page); \ 1445 put_page(page); \ 1446 }\ 1447 } \ 1448 } 1449 1450 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1451 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1452 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1453 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1454 1455 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1456 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1457 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1458 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1459 1460 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1461 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1462 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1463 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1464 1465 static inline unsigned long get_page_private_data(struct page *page) 1466 { 1467 unsigned long data = page_private(page); 1468 1469 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1470 return 0; 1471 return data >> PAGE_PRIVATE_MAX; 1472 } 1473 1474 static inline void set_page_private_data(struct page *page, unsigned long data) 1475 { 1476 if (!PagePrivate(page)) { 1477 get_page(page); 1478 SetPagePrivate(page); 1479 set_page_private(page, 0); 1480 } 1481 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1482 page_private(page) |= data << PAGE_PRIVATE_MAX; 1483 } 1484 1485 static inline void clear_page_private_data(struct page *page) 1486 { 1487 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1; 1488 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { 1489 set_page_private(page, 0); 1490 if (PagePrivate(page)) { 1491 ClearPagePrivate(page); 1492 put_page(page); 1493 } 1494 } 1495 } 1496 1497 /* For compression */ 1498 enum compress_algorithm_type { 1499 COMPRESS_LZO, 1500 COMPRESS_LZ4, 1501 COMPRESS_ZSTD, 1502 COMPRESS_LZORLE, 1503 COMPRESS_MAX, 1504 }; 1505 1506 enum compress_flag { 1507 COMPRESS_CHKSUM, 1508 COMPRESS_MAX_FLAG, 1509 }; 1510 1511 #define COMPRESS_WATERMARK 20 1512 #define COMPRESS_PERCENT 20 1513 1514 #define COMPRESS_DATA_RESERVED_SIZE 4 1515 struct compress_data { 1516 __le32 clen; /* compressed data size */ 1517 __le32 chksum; /* compressed data chksum */ 1518 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1519 u8 cdata[]; /* compressed data */ 1520 }; 1521 1522 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1523 1524 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1525 1526 #define COMPRESS_LEVEL_OFFSET 8 1527 1528 /* compress context */ 1529 struct compress_ctx { 1530 struct inode *inode; /* inode the context belong to */ 1531 pgoff_t cluster_idx; /* cluster index number */ 1532 unsigned int cluster_size; /* page count in cluster */ 1533 unsigned int log_cluster_size; /* log of cluster size */ 1534 struct page **rpages; /* pages store raw data in cluster */ 1535 unsigned int nr_rpages; /* total page number in rpages */ 1536 struct page **cpages; /* pages store compressed data in cluster */ 1537 unsigned int nr_cpages; /* total page number in cpages */ 1538 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1539 void *rbuf; /* virtual mapped address on rpages */ 1540 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1541 size_t rlen; /* valid data length in rbuf */ 1542 size_t clen; /* valid data length in cbuf */ 1543 void *private; /* payload buffer for specified compression algorithm */ 1544 void *private2; /* extra payload buffer */ 1545 }; 1546 1547 /* compress context for write IO path */ 1548 struct compress_io_ctx { 1549 u32 magic; /* magic number to indicate page is compressed */ 1550 struct inode *inode; /* inode the context belong to */ 1551 struct page **rpages; /* pages store raw data in cluster */ 1552 unsigned int nr_rpages; /* total page number in rpages */ 1553 atomic_t pending_pages; /* in-flight compressed page count */ 1554 }; 1555 1556 /* Context for decompressing one cluster on the read IO path */ 1557 struct decompress_io_ctx { 1558 u32 magic; /* magic number to indicate page is compressed */ 1559 struct inode *inode; /* inode the context belong to */ 1560 pgoff_t cluster_idx; /* cluster index number */ 1561 unsigned int cluster_size; /* page count in cluster */ 1562 unsigned int log_cluster_size; /* log of cluster size */ 1563 struct page **rpages; /* pages store raw data in cluster */ 1564 unsigned int nr_rpages; /* total page number in rpages */ 1565 struct page **cpages; /* pages store compressed data in cluster */ 1566 unsigned int nr_cpages; /* total page number in cpages */ 1567 struct page **tpages; /* temp pages to pad holes in cluster */ 1568 void *rbuf; /* virtual mapped address on rpages */ 1569 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1570 size_t rlen; /* valid data length in rbuf */ 1571 size_t clen; /* valid data length in cbuf */ 1572 1573 /* 1574 * The number of compressed pages remaining to be read in this cluster. 1575 * This is initially nr_cpages. It is decremented by 1 each time a page 1576 * has been read (or failed to be read). When it reaches 0, the cluster 1577 * is decompressed (or an error is reported). 1578 * 1579 * If an error occurs before all the pages have been submitted for I/O, 1580 * then this will never reach 0. In this case the I/O submitter is 1581 * responsible for calling f2fs_decompress_end_io() instead. 1582 */ 1583 atomic_t remaining_pages; 1584 1585 /* 1586 * Number of references to this decompress_io_ctx. 1587 * 1588 * One reference is held for I/O completion. This reference is dropped 1589 * after the pagecache pages are updated and unlocked -- either after 1590 * decompression (and verity if enabled), or after an error. 1591 * 1592 * In addition, each compressed page holds a reference while it is in a 1593 * bio. These references are necessary prevent compressed pages from 1594 * being freed while they are still in a bio. 1595 */ 1596 refcount_t refcnt; 1597 1598 bool failed; /* IO error occurred before decompression? */ 1599 bool need_verity; /* need fs-verity verification after decompression? */ 1600 void *private; /* payload buffer for specified decompression algorithm */ 1601 void *private2; /* extra payload buffer */ 1602 struct work_struct verity_work; /* work to verify the decompressed pages */ 1603 struct work_struct free_work; /* work for late free this structure itself */ 1604 }; 1605 1606 #define NULL_CLUSTER ((unsigned int)(~0)) 1607 #define MIN_COMPRESS_LOG_SIZE 2 1608 #define MAX_COMPRESS_LOG_SIZE 8 1609 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1610 1611 struct f2fs_sb_info { 1612 struct super_block *sb; /* pointer to VFS super block */ 1613 struct proc_dir_entry *s_proc; /* proc entry */ 1614 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1615 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1616 int valid_super_block; /* valid super block no */ 1617 unsigned long s_flag; /* flags for sbi */ 1618 struct mutex writepages; /* mutex for writepages() */ 1619 1620 #ifdef CONFIG_BLK_DEV_ZONED 1621 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1622 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1623 #endif 1624 1625 /* for node-related operations */ 1626 struct f2fs_nm_info *nm_info; /* node manager */ 1627 struct inode *node_inode; /* cache node blocks */ 1628 1629 /* for segment-related operations */ 1630 struct f2fs_sm_info *sm_info; /* segment manager */ 1631 1632 /* for bio operations */ 1633 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1634 /* keep migration IO order for LFS mode */ 1635 struct f2fs_rwsem io_order_lock; 1636 mempool_t *write_io_dummy; /* Dummy pages */ 1637 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1638 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1639 1640 /* for checkpoint */ 1641 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1642 int cur_cp_pack; /* remain current cp pack */ 1643 spinlock_t cp_lock; /* for flag in ckpt */ 1644 struct inode *meta_inode; /* cache meta blocks */ 1645 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1646 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1647 struct f2fs_rwsem node_write; /* locking node writes */ 1648 struct f2fs_rwsem node_change; /* locking node change */ 1649 wait_queue_head_t cp_wait; 1650 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1651 long interval_time[MAX_TIME]; /* to store thresholds */ 1652 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1653 1654 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1655 1656 spinlock_t fsync_node_lock; /* for node entry lock */ 1657 struct list_head fsync_node_list; /* node list head */ 1658 unsigned int fsync_seg_id; /* sequence id */ 1659 unsigned int fsync_node_num; /* number of node entries */ 1660 1661 /* for orphan inode, use 0'th array */ 1662 unsigned int max_orphans; /* max orphan inodes */ 1663 1664 /* for inode management */ 1665 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1666 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1667 struct mutex flush_lock; /* for flush exclusion */ 1668 1669 /* for extent tree cache */ 1670 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1671 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1672 1673 /* The threshold used for hot and warm data seperation*/ 1674 unsigned int hot_data_age_threshold; 1675 unsigned int warm_data_age_threshold; 1676 1677 /* basic filesystem units */ 1678 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1679 unsigned int log_blocksize; /* log2 block size */ 1680 unsigned int blocksize; /* block size */ 1681 unsigned int root_ino_num; /* root inode number*/ 1682 unsigned int node_ino_num; /* node inode number*/ 1683 unsigned int meta_ino_num; /* meta inode number*/ 1684 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1685 unsigned int blocks_per_seg; /* blocks per segment */ 1686 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1687 unsigned int segs_per_sec; /* segments per section */ 1688 unsigned int secs_per_zone; /* sections per zone */ 1689 unsigned int total_sections; /* total section count */ 1690 unsigned int total_node_count; /* total node block count */ 1691 unsigned int total_valid_node_count; /* valid node block count */ 1692 int dir_level; /* directory level */ 1693 bool readdir_ra; /* readahead inode in readdir */ 1694 u64 max_io_bytes; /* max io bytes to merge IOs */ 1695 1696 block_t user_block_count; /* # of user blocks */ 1697 block_t total_valid_block_count; /* # of valid blocks */ 1698 block_t discard_blks; /* discard command candidats */ 1699 block_t last_valid_block_count; /* for recovery */ 1700 block_t reserved_blocks; /* configurable reserved blocks */ 1701 block_t current_reserved_blocks; /* current reserved blocks */ 1702 1703 /* Additional tracking for no checkpoint mode */ 1704 block_t unusable_block_count; /* # of blocks saved by last cp */ 1705 1706 unsigned int nquota_files; /* # of quota sysfile */ 1707 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1708 1709 /* # of pages, see count_type */ 1710 atomic_t nr_pages[NR_COUNT_TYPE]; 1711 /* # of allocated blocks */ 1712 struct percpu_counter alloc_valid_block_count; 1713 /* # of node block writes as roll forward recovery */ 1714 struct percpu_counter rf_node_block_count; 1715 1716 /* writeback control */ 1717 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1718 1719 /* valid inode count */ 1720 struct percpu_counter total_valid_inode_count; 1721 1722 struct f2fs_mount_info mount_opt; /* mount options */ 1723 1724 /* for cleaning operations */ 1725 struct f2fs_rwsem gc_lock; /* 1726 * semaphore for GC, avoid 1727 * race between GC and GC or CP 1728 */ 1729 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1730 struct atgc_management am; /* atgc management */ 1731 unsigned int cur_victim_sec; /* current victim section num */ 1732 unsigned int gc_mode; /* current GC state */ 1733 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1734 spinlock_t gc_remaining_trials_lock; 1735 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1736 unsigned int gc_remaining_trials; 1737 1738 /* for skip statistic */ 1739 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1740 1741 /* threshold for gc trials on pinned files */ 1742 u64 gc_pin_file_threshold; 1743 struct f2fs_rwsem pin_sem; 1744 1745 /* maximum # of trials to find a victim segment for SSR and GC */ 1746 unsigned int max_victim_search; 1747 /* migration granularity of garbage collection, unit: segment */ 1748 unsigned int migration_granularity; 1749 1750 /* 1751 * for stat information. 1752 * one is for the LFS mode, and the other is for the SSR mode. 1753 */ 1754 #ifdef CONFIG_F2FS_STAT_FS 1755 struct f2fs_stat_info *stat_info; /* FS status information */ 1756 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1757 unsigned int segment_count[2]; /* # of allocated segments */ 1758 unsigned int block_count[2]; /* # of allocated blocks */ 1759 atomic_t inplace_count; /* # of inplace update */ 1760 /* # of lookup extent cache */ 1761 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1762 /* # of hit rbtree extent node */ 1763 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1764 /* # of hit cached extent node */ 1765 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1766 /* # of hit largest extent node in read extent cache */ 1767 atomic64_t read_hit_largest; 1768 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1769 atomic_t inline_inode; /* # of inline_data inodes */ 1770 atomic_t inline_dir; /* # of inline_dentry inodes */ 1771 atomic_t compr_inode; /* # of compressed inodes */ 1772 atomic64_t compr_blocks; /* # of compressed blocks */ 1773 atomic_t swapfile_inode; /* # of swapfile inodes */ 1774 atomic_t atomic_files; /* # of opened atomic file */ 1775 atomic_t max_aw_cnt; /* max # of atomic writes */ 1776 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1777 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1778 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1779 #endif 1780 spinlock_t stat_lock; /* lock for stat operations */ 1781 1782 /* to attach REQ_META|REQ_FUA flags */ 1783 unsigned int data_io_flag; 1784 unsigned int node_io_flag; 1785 1786 /* For sysfs support */ 1787 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1788 struct completion s_kobj_unregister; 1789 1790 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1791 struct completion s_stat_kobj_unregister; 1792 1793 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1794 struct completion s_feature_list_kobj_unregister; 1795 1796 /* For shrinker support */ 1797 struct list_head s_list; 1798 struct mutex umount_mutex; 1799 unsigned int shrinker_run_no; 1800 1801 /* For multi devices */ 1802 int s_ndevs; /* number of devices */ 1803 struct f2fs_dev_info *devs; /* for device list */ 1804 unsigned int dirty_device; /* for checkpoint data flush */ 1805 spinlock_t dev_lock; /* protect dirty_device */ 1806 bool aligned_blksize; /* all devices has the same logical blksize */ 1807 1808 /* For write statistics */ 1809 u64 sectors_written_start; 1810 u64 kbytes_written; 1811 1812 /* Reference to checksum algorithm driver via cryptoapi */ 1813 struct crypto_shash *s_chksum_driver; 1814 1815 /* Precomputed FS UUID checksum for seeding other checksums */ 1816 __u32 s_chksum_seed; 1817 1818 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1819 1820 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1821 spinlock_t error_lock; /* protect errors array */ 1822 bool error_dirty; /* errors of sb is dirty */ 1823 1824 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1825 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1826 1827 /* For reclaimed segs statistics per each GC mode */ 1828 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1829 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1830 1831 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1832 1833 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1834 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1835 1836 /* For atomic write statistics */ 1837 atomic64_t current_atomic_write; 1838 s64 peak_atomic_write; 1839 u64 committed_atomic_block; 1840 u64 revoked_atomic_block; 1841 1842 #ifdef CONFIG_F2FS_FS_COMPRESSION 1843 struct kmem_cache *page_array_slab; /* page array entry */ 1844 unsigned int page_array_slab_size; /* default page array slab size */ 1845 1846 /* For runtime compression statistics */ 1847 u64 compr_written_block; 1848 u64 compr_saved_block; 1849 u32 compr_new_inode; 1850 1851 /* For compressed block cache */ 1852 struct inode *compress_inode; /* cache compressed blocks */ 1853 unsigned int compress_percent; /* cache page percentage */ 1854 unsigned int compress_watermark; /* cache page watermark */ 1855 atomic_t compress_page_hit; /* cache hit count */ 1856 #endif 1857 1858 #ifdef CONFIG_F2FS_IOSTAT 1859 /* For app/fs IO statistics */ 1860 spinlock_t iostat_lock; 1861 unsigned long long rw_iostat[NR_IO_TYPE]; 1862 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1863 bool iostat_enable; 1864 unsigned long iostat_next_period; 1865 unsigned int iostat_period_ms; 1866 1867 /* For io latency related statistics info in one iostat period */ 1868 spinlock_t iostat_lat_lock; 1869 struct iostat_lat_info *iostat_io_lat; 1870 #endif 1871 }; 1872 1873 #ifdef CONFIG_F2FS_FAULT_INJECTION 1874 #define f2fs_show_injection_info(sbi, type) \ 1875 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1876 KERN_INFO, sbi->sb->s_id, \ 1877 f2fs_fault_name[type], \ 1878 __func__, __builtin_return_address(0)) 1879 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1880 { 1881 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1882 1883 if (!ffi->inject_rate) 1884 return false; 1885 1886 if (!IS_FAULT_SET(ffi, type)) 1887 return false; 1888 1889 atomic_inc(&ffi->inject_ops); 1890 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1891 atomic_set(&ffi->inject_ops, 0); 1892 return true; 1893 } 1894 return false; 1895 } 1896 #else 1897 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1898 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1899 { 1900 return false; 1901 } 1902 #endif 1903 1904 /* 1905 * Test if the mounted volume is a multi-device volume. 1906 * - For a single regular disk volume, sbi->s_ndevs is 0. 1907 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1908 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1909 */ 1910 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1911 { 1912 return sbi->s_ndevs > 1; 1913 } 1914 1915 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1916 { 1917 unsigned long now = jiffies; 1918 1919 sbi->last_time[type] = now; 1920 1921 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1922 if (type == REQ_TIME) { 1923 sbi->last_time[DISCARD_TIME] = now; 1924 sbi->last_time[GC_TIME] = now; 1925 } 1926 } 1927 1928 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1929 { 1930 unsigned long interval = sbi->interval_time[type] * HZ; 1931 1932 return time_after(jiffies, sbi->last_time[type] + interval); 1933 } 1934 1935 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1936 int type) 1937 { 1938 unsigned long interval = sbi->interval_time[type] * HZ; 1939 unsigned int wait_ms = 0; 1940 long delta; 1941 1942 delta = (sbi->last_time[type] + interval) - jiffies; 1943 if (delta > 0) 1944 wait_ms = jiffies_to_msecs(delta); 1945 1946 return wait_ms; 1947 } 1948 1949 /* 1950 * Inline functions 1951 */ 1952 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1953 const void *address, unsigned int length) 1954 { 1955 struct { 1956 struct shash_desc shash; 1957 char ctx[4]; 1958 } desc; 1959 int err; 1960 1961 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1962 1963 desc.shash.tfm = sbi->s_chksum_driver; 1964 *(u32 *)desc.ctx = crc; 1965 1966 err = crypto_shash_update(&desc.shash, address, length); 1967 BUG_ON(err); 1968 1969 return *(u32 *)desc.ctx; 1970 } 1971 1972 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1973 unsigned int length) 1974 { 1975 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1976 } 1977 1978 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1979 void *buf, size_t buf_size) 1980 { 1981 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1982 } 1983 1984 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1985 const void *address, unsigned int length) 1986 { 1987 return __f2fs_crc32(sbi, crc, address, length); 1988 } 1989 1990 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1991 { 1992 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1993 } 1994 1995 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1996 { 1997 return sb->s_fs_info; 1998 } 1999 2000 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 2001 { 2002 return F2FS_SB(inode->i_sb); 2003 } 2004 2005 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 2006 { 2007 return F2FS_I_SB(mapping->host); 2008 } 2009 2010 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 2011 { 2012 return F2FS_M_SB(page_file_mapping(page)); 2013 } 2014 2015 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 2016 { 2017 return (struct f2fs_super_block *)(sbi->raw_super); 2018 } 2019 2020 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 2021 { 2022 return (struct f2fs_checkpoint *)(sbi->ckpt); 2023 } 2024 2025 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2026 { 2027 return (struct f2fs_node *)page_address(page); 2028 } 2029 2030 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2031 { 2032 return &((struct f2fs_node *)page_address(page))->i; 2033 } 2034 2035 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2036 { 2037 return (struct f2fs_nm_info *)(sbi->nm_info); 2038 } 2039 2040 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2041 { 2042 return (struct f2fs_sm_info *)(sbi->sm_info); 2043 } 2044 2045 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2046 { 2047 return (struct sit_info *)(SM_I(sbi)->sit_info); 2048 } 2049 2050 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2051 { 2052 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2053 } 2054 2055 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2056 { 2057 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2058 } 2059 2060 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2061 { 2062 return sbi->meta_inode->i_mapping; 2063 } 2064 2065 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2066 { 2067 return sbi->node_inode->i_mapping; 2068 } 2069 2070 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2071 { 2072 return test_bit(type, &sbi->s_flag); 2073 } 2074 2075 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2076 { 2077 set_bit(type, &sbi->s_flag); 2078 } 2079 2080 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2081 { 2082 clear_bit(type, &sbi->s_flag); 2083 } 2084 2085 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2086 { 2087 return le64_to_cpu(cp->checkpoint_ver); 2088 } 2089 2090 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2091 { 2092 if (type < F2FS_MAX_QUOTAS) 2093 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2094 return 0; 2095 } 2096 2097 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2098 { 2099 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2100 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2101 } 2102 2103 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2104 { 2105 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2106 2107 return ckpt_flags & f; 2108 } 2109 2110 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2111 { 2112 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2113 } 2114 2115 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2116 { 2117 unsigned int ckpt_flags; 2118 2119 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2120 ckpt_flags |= f; 2121 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2122 } 2123 2124 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2125 { 2126 unsigned long flags; 2127 2128 spin_lock_irqsave(&sbi->cp_lock, flags); 2129 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2130 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2131 } 2132 2133 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2134 { 2135 unsigned int ckpt_flags; 2136 2137 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2138 ckpt_flags &= (~f); 2139 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2140 } 2141 2142 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2143 { 2144 unsigned long flags; 2145 2146 spin_lock_irqsave(&sbi->cp_lock, flags); 2147 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2148 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2149 } 2150 2151 #define init_f2fs_rwsem(sem) \ 2152 do { \ 2153 static struct lock_class_key __key; \ 2154 \ 2155 __init_f2fs_rwsem((sem), #sem, &__key); \ 2156 } while (0) 2157 2158 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2159 const char *sem_name, struct lock_class_key *key) 2160 { 2161 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2162 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2163 init_waitqueue_head(&sem->read_waiters); 2164 #endif 2165 } 2166 2167 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2168 { 2169 return rwsem_is_locked(&sem->internal_rwsem); 2170 } 2171 2172 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2173 { 2174 return rwsem_is_contended(&sem->internal_rwsem); 2175 } 2176 2177 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2178 { 2179 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2180 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2181 #else 2182 down_read(&sem->internal_rwsem); 2183 #endif 2184 } 2185 2186 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2187 { 2188 return down_read_trylock(&sem->internal_rwsem); 2189 } 2190 2191 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2192 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2193 { 2194 down_read_nested(&sem->internal_rwsem, subclass); 2195 } 2196 #else 2197 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2198 #endif 2199 2200 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2201 { 2202 up_read(&sem->internal_rwsem); 2203 } 2204 2205 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2206 { 2207 down_write(&sem->internal_rwsem); 2208 } 2209 2210 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2211 { 2212 return down_write_trylock(&sem->internal_rwsem); 2213 } 2214 2215 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2216 { 2217 up_write(&sem->internal_rwsem); 2218 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2219 wake_up_all(&sem->read_waiters); 2220 #endif 2221 } 2222 2223 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2224 { 2225 f2fs_down_read(&sbi->cp_rwsem); 2226 } 2227 2228 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2229 { 2230 if (time_to_inject(sbi, FAULT_LOCK_OP)) { 2231 f2fs_show_injection_info(sbi, FAULT_LOCK_OP); 2232 return 0; 2233 } 2234 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2235 } 2236 2237 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2238 { 2239 f2fs_up_read(&sbi->cp_rwsem); 2240 } 2241 2242 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2243 { 2244 f2fs_down_write(&sbi->cp_rwsem); 2245 } 2246 2247 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2248 { 2249 f2fs_up_write(&sbi->cp_rwsem); 2250 } 2251 2252 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2253 { 2254 int reason = CP_SYNC; 2255 2256 if (test_opt(sbi, FASTBOOT)) 2257 reason = CP_FASTBOOT; 2258 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2259 reason = CP_UMOUNT; 2260 return reason; 2261 } 2262 2263 static inline bool __remain_node_summaries(int reason) 2264 { 2265 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2266 } 2267 2268 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2269 { 2270 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2271 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2272 } 2273 2274 /* 2275 * Check whether the inode has blocks or not 2276 */ 2277 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2278 { 2279 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2280 2281 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2282 } 2283 2284 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2285 { 2286 return ofs == XATTR_NODE_OFFSET; 2287 } 2288 2289 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2290 struct inode *inode, bool cap) 2291 { 2292 if (!inode) 2293 return true; 2294 if (!test_opt(sbi, RESERVE_ROOT)) 2295 return false; 2296 if (IS_NOQUOTA(inode)) 2297 return true; 2298 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2299 return true; 2300 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2301 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2302 return true; 2303 if (cap && capable(CAP_SYS_RESOURCE)) 2304 return true; 2305 return false; 2306 } 2307 2308 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2309 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2310 struct inode *inode, blkcnt_t *count) 2311 { 2312 blkcnt_t diff = 0, release = 0; 2313 block_t avail_user_block_count; 2314 int ret; 2315 2316 ret = dquot_reserve_block(inode, *count); 2317 if (ret) 2318 return ret; 2319 2320 if (time_to_inject(sbi, FAULT_BLOCK)) { 2321 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2322 release = *count; 2323 goto release_quota; 2324 } 2325 2326 /* 2327 * let's increase this in prior to actual block count change in order 2328 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2329 */ 2330 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2331 2332 spin_lock(&sbi->stat_lock); 2333 sbi->total_valid_block_count += (block_t)(*count); 2334 avail_user_block_count = sbi->user_block_count - 2335 sbi->current_reserved_blocks; 2336 2337 if (!__allow_reserved_blocks(sbi, inode, true)) 2338 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2339 2340 if (F2FS_IO_ALIGNED(sbi)) 2341 avail_user_block_count -= sbi->blocks_per_seg * 2342 SM_I(sbi)->additional_reserved_segments; 2343 2344 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2345 if (avail_user_block_count > sbi->unusable_block_count) 2346 avail_user_block_count -= sbi->unusable_block_count; 2347 else 2348 avail_user_block_count = 0; 2349 } 2350 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2351 diff = sbi->total_valid_block_count - avail_user_block_count; 2352 if (diff > *count) 2353 diff = *count; 2354 *count -= diff; 2355 release = diff; 2356 sbi->total_valid_block_count -= diff; 2357 if (!*count) { 2358 spin_unlock(&sbi->stat_lock); 2359 goto enospc; 2360 } 2361 } 2362 spin_unlock(&sbi->stat_lock); 2363 2364 if (unlikely(release)) { 2365 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2366 dquot_release_reservation_block(inode, release); 2367 } 2368 f2fs_i_blocks_write(inode, *count, true, true); 2369 return 0; 2370 2371 enospc: 2372 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2373 release_quota: 2374 dquot_release_reservation_block(inode, release); 2375 return -ENOSPC; 2376 } 2377 2378 __printf(2, 3) 2379 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2380 2381 #define f2fs_err(sbi, fmt, ...) \ 2382 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2383 #define f2fs_warn(sbi, fmt, ...) \ 2384 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2385 #define f2fs_notice(sbi, fmt, ...) \ 2386 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2387 #define f2fs_info(sbi, fmt, ...) \ 2388 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2389 #define f2fs_debug(sbi, fmt, ...) \ 2390 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2391 2392 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2393 struct inode *inode, 2394 block_t count) 2395 { 2396 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2397 2398 spin_lock(&sbi->stat_lock); 2399 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2400 sbi->total_valid_block_count -= (block_t)count; 2401 if (sbi->reserved_blocks && 2402 sbi->current_reserved_blocks < sbi->reserved_blocks) 2403 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2404 sbi->current_reserved_blocks + count); 2405 spin_unlock(&sbi->stat_lock); 2406 if (unlikely(inode->i_blocks < sectors)) { 2407 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2408 inode->i_ino, 2409 (unsigned long long)inode->i_blocks, 2410 (unsigned long long)sectors); 2411 set_sbi_flag(sbi, SBI_NEED_FSCK); 2412 return; 2413 } 2414 f2fs_i_blocks_write(inode, count, false, true); 2415 } 2416 2417 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2418 { 2419 atomic_inc(&sbi->nr_pages[count_type]); 2420 2421 if (count_type == F2FS_DIRTY_DENTS || 2422 count_type == F2FS_DIRTY_NODES || 2423 count_type == F2FS_DIRTY_META || 2424 count_type == F2FS_DIRTY_QDATA || 2425 count_type == F2FS_DIRTY_IMETA) 2426 set_sbi_flag(sbi, SBI_IS_DIRTY); 2427 } 2428 2429 static inline void inode_inc_dirty_pages(struct inode *inode) 2430 { 2431 atomic_inc(&F2FS_I(inode)->dirty_pages); 2432 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2433 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2434 if (IS_NOQUOTA(inode)) 2435 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2436 } 2437 2438 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2439 { 2440 atomic_dec(&sbi->nr_pages[count_type]); 2441 } 2442 2443 static inline void inode_dec_dirty_pages(struct inode *inode) 2444 { 2445 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2446 !S_ISLNK(inode->i_mode)) 2447 return; 2448 2449 atomic_dec(&F2FS_I(inode)->dirty_pages); 2450 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2451 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2452 if (IS_NOQUOTA(inode)) 2453 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2454 } 2455 2456 static inline void inc_atomic_write_cnt(struct inode *inode) 2457 { 2458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2459 struct f2fs_inode_info *fi = F2FS_I(inode); 2460 u64 current_write; 2461 2462 fi->atomic_write_cnt++; 2463 atomic64_inc(&sbi->current_atomic_write); 2464 current_write = atomic64_read(&sbi->current_atomic_write); 2465 if (current_write > sbi->peak_atomic_write) 2466 sbi->peak_atomic_write = current_write; 2467 } 2468 2469 static inline void release_atomic_write_cnt(struct inode *inode) 2470 { 2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2472 struct f2fs_inode_info *fi = F2FS_I(inode); 2473 2474 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2475 fi->atomic_write_cnt = 0; 2476 } 2477 2478 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2479 { 2480 return atomic_read(&sbi->nr_pages[count_type]); 2481 } 2482 2483 static inline int get_dirty_pages(struct inode *inode) 2484 { 2485 return atomic_read(&F2FS_I(inode)->dirty_pages); 2486 } 2487 2488 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2489 { 2490 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2491 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2492 sbi->log_blocks_per_seg; 2493 2494 return segs / sbi->segs_per_sec; 2495 } 2496 2497 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2498 { 2499 return sbi->total_valid_block_count; 2500 } 2501 2502 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2503 { 2504 return sbi->discard_blks; 2505 } 2506 2507 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2508 { 2509 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2510 2511 /* return NAT or SIT bitmap */ 2512 if (flag == NAT_BITMAP) 2513 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2514 else if (flag == SIT_BITMAP) 2515 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2516 2517 return 0; 2518 } 2519 2520 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2521 { 2522 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2523 } 2524 2525 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2526 { 2527 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2528 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2529 int offset; 2530 2531 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2532 offset = (flag == SIT_BITMAP) ? 2533 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2534 /* 2535 * if large_nat_bitmap feature is enabled, leave checksum 2536 * protection for all nat/sit bitmaps. 2537 */ 2538 return tmp_ptr + offset + sizeof(__le32); 2539 } 2540 2541 if (__cp_payload(sbi) > 0) { 2542 if (flag == NAT_BITMAP) 2543 return tmp_ptr; 2544 else 2545 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2546 } else { 2547 offset = (flag == NAT_BITMAP) ? 2548 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2549 return tmp_ptr + offset; 2550 } 2551 } 2552 2553 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2554 { 2555 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2556 2557 if (sbi->cur_cp_pack == 2) 2558 start_addr += sbi->blocks_per_seg; 2559 return start_addr; 2560 } 2561 2562 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2563 { 2564 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2565 2566 if (sbi->cur_cp_pack == 1) 2567 start_addr += sbi->blocks_per_seg; 2568 return start_addr; 2569 } 2570 2571 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2572 { 2573 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2574 } 2575 2576 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2577 { 2578 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2579 } 2580 2581 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2582 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2583 struct inode *inode, bool is_inode) 2584 { 2585 block_t valid_block_count; 2586 unsigned int valid_node_count, user_block_count; 2587 int err; 2588 2589 if (is_inode) { 2590 if (inode) { 2591 err = dquot_alloc_inode(inode); 2592 if (err) 2593 return err; 2594 } 2595 } else { 2596 err = dquot_reserve_block(inode, 1); 2597 if (err) 2598 return err; 2599 } 2600 2601 if (time_to_inject(sbi, FAULT_BLOCK)) { 2602 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2603 goto enospc; 2604 } 2605 2606 spin_lock(&sbi->stat_lock); 2607 2608 valid_block_count = sbi->total_valid_block_count + 2609 sbi->current_reserved_blocks + 1; 2610 2611 if (!__allow_reserved_blocks(sbi, inode, false)) 2612 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2613 2614 if (F2FS_IO_ALIGNED(sbi)) 2615 valid_block_count += sbi->blocks_per_seg * 2616 SM_I(sbi)->additional_reserved_segments; 2617 2618 user_block_count = sbi->user_block_count; 2619 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2620 user_block_count -= sbi->unusable_block_count; 2621 2622 if (unlikely(valid_block_count > user_block_count)) { 2623 spin_unlock(&sbi->stat_lock); 2624 goto enospc; 2625 } 2626 2627 valid_node_count = sbi->total_valid_node_count + 1; 2628 if (unlikely(valid_node_count > sbi->total_node_count)) { 2629 spin_unlock(&sbi->stat_lock); 2630 goto enospc; 2631 } 2632 2633 sbi->total_valid_node_count++; 2634 sbi->total_valid_block_count++; 2635 spin_unlock(&sbi->stat_lock); 2636 2637 if (inode) { 2638 if (is_inode) 2639 f2fs_mark_inode_dirty_sync(inode, true); 2640 else 2641 f2fs_i_blocks_write(inode, 1, true, true); 2642 } 2643 2644 percpu_counter_inc(&sbi->alloc_valid_block_count); 2645 return 0; 2646 2647 enospc: 2648 if (is_inode) { 2649 if (inode) 2650 dquot_free_inode(inode); 2651 } else { 2652 dquot_release_reservation_block(inode, 1); 2653 } 2654 return -ENOSPC; 2655 } 2656 2657 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2658 struct inode *inode, bool is_inode) 2659 { 2660 spin_lock(&sbi->stat_lock); 2661 2662 if (unlikely(!sbi->total_valid_block_count || 2663 !sbi->total_valid_node_count)) { 2664 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2665 sbi->total_valid_block_count, 2666 sbi->total_valid_node_count); 2667 set_sbi_flag(sbi, SBI_NEED_FSCK); 2668 } else { 2669 sbi->total_valid_block_count--; 2670 sbi->total_valid_node_count--; 2671 } 2672 2673 if (sbi->reserved_blocks && 2674 sbi->current_reserved_blocks < sbi->reserved_blocks) 2675 sbi->current_reserved_blocks++; 2676 2677 spin_unlock(&sbi->stat_lock); 2678 2679 if (is_inode) { 2680 dquot_free_inode(inode); 2681 } else { 2682 if (unlikely(inode->i_blocks == 0)) { 2683 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2684 inode->i_ino, 2685 (unsigned long long)inode->i_blocks); 2686 set_sbi_flag(sbi, SBI_NEED_FSCK); 2687 return; 2688 } 2689 f2fs_i_blocks_write(inode, 1, false, true); 2690 } 2691 } 2692 2693 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2694 { 2695 return sbi->total_valid_node_count; 2696 } 2697 2698 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2699 { 2700 percpu_counter_inc(&sbi->total_valid_inode_count); 2701 } 2702 2703 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2704 { 2705 percpu_counter_dec(&sbi->total_valid_inode_count); 2706 } 2707 2708 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2709 { 2710 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2711 } 2712 2713 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2714 pgoff_t index, bool for_write) 2715 { 2716 struct page *page; 2717 unsigned int flags; 2718 2719 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2720 if (!for_write) 2721 page = find_get_page_flags(mapping, index, 2722 FGP_LOCK | FGP_ACCESSED); 2723 else 2724 page = find_lock_page(mapping, index); 2725 if (page) 2726 return page; 2727 2728 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2729 f2fs_show_injection_info(F2FS_M_SB(mapping), 2730 FAULT_PAGE_ALLOC); 2731 return NULL; 2732 } 2733 } 2734 2735 if (!for_write) 2736 return grab_cache_page(mapping, index); 2737 2738 flags = memalloc_nofs_save(); 2739 page = grab_cache_page_write_begin(mapping, index); 2740 memalloc_nofs_restore(flags); 2741 2742 return page; 2743 } 2744 2745 static inline struct page *f2fs_pagecache_get_page( 2746 struct address_space *mapping, pgoff_t index, 2747 int fgp_flags, gfp_t gfp_mask) 2748 { 2749 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2750 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2751 return NULL; 2752 } 2753 2754 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2755 } 2756 2757 static inline void f2fs_put_page(struct page *page, int unlock) 2758 { 2759 if (!page) 2760 return; 2761 2762 if (unlock) { 2763 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2764 unlock_page(page); 2765 } 2766 put_page(page); 2767 } 2768 2769 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2770 { 2771 if (dn->node_page) 2772 f2fs_put_page(dn->node_page, 1); 2773 if (dn->inode_page && dn->node_page != dn->inode_page) 2774 f2fs_put_page(dn->inode_page, 0); 2775 dn->node_page = NULL; 2776 dn->inode_page = NULL; 2777 } 2778 2779 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2780 size_t size) 2781 { 2782 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2783 } 2784 2785 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2786 gfp_t flags) 2787 { 2788 void *entry; 2789 2790 entry = kmem_cache_alloc(cachep, flags); 2791 if (!entry) 2792 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2793 return entry; 2794 } 2795 2796 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2797 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2798 { 2799 if (nofail) 2800 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2801 2802 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) { 2803 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC); 2804 return NULL; 2805 } 2806 2807 return kmem_cache_alloc(cachep, flags); 2808 } 2809 2810 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2811 { 2812 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2813 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2814 get_pages(sbi, F2FS_WB_CP_DATA) || 2815 get_pages(sbi, F2FS_DIO_READ) || 2816 get_pages(sbi, F2FS_DIO_WRITE)) 2817 return true; 2818 2819 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2820 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2821 return true; 2822 2823 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2824 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2825 return true; 2826 return false; 2827 } 2828 2829 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2830 { 2831 if (sbi->gc_mode == GC_URGENT_HIGH) 2832 return true; 2833 2834 if (is_inflight_io(sbi, type)) 2835 return false; 2836 2837 if (sbi->gc_mode == GC_URGENT_MID) 2838 return true; 2839 2840 if (sbi->gc_mode == GC_URGENT_LOW && 2841 (type == DISCARD_TIME || type == GC_TIME)) 2842 return true; 2843 2844 return f2fs_time_over(sbi, type); 2845 } 2846 2847 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2848 unsigned long index, void *item) 2849 { 2850 while (radix_tree_insert(root, index, item)) 2851 cond_resched(); 2852 } 2853 2854 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2855 2856 static inline bool IS_INODE(struct page *page) 2857 { 2858 struct f2fs_node *p = F2FS_NODE(page); 2859 2860 return RAW_IS_INODE(p); 2861 } 2862 2863 static inline int offset_in_addr(struct f2fs_inode *i) 2864 { 2865 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2866 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2867 } 2868 2869 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2870 { 2871 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2872 } 2873 2874 static inline int f2fs_has_extra_attr(struct inode *inode); 2875 static inline block_t data_blkaddr(struct inode *inode, 2876 struct page *node_page, unsigned int offset) 2877 { 2878 struct f2fs_node *raw_node; 2879 __le32 *addr_array; 2880 int base = 0; 2881 bool is_inode = IS_INODE(node_page); 2882 2883 raw_node = F2FS_NODE(node_page); 2884 2885 if (is_inode) { 2886 if (!inode) 2887 /* from GC path only */ 2888 base = offset_in_addr(&raw_node->i); 2889 else if (f2fs_has_extra_attr(inode)) 2890 base = get_extra_isize(inode); 2891 } 2892 2893 addr_array = blkaddr_in_node(raw_node); 2894 return le32_to_cpu(addr_array[base + offset]); 2895 } 2896 2897 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2898 { 2899 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2900 } 2901 2902 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2903 { 2904 int mask; 2905 2906 addr += (nr >> 3); 2907 mask = 1 << (7 - (nr & 0x07)); 2908 return mask & *addr; 2909 } 2910 2911 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2912 { 2913 int mask; 2914 2915 addr += (nr >> 3); 2916 mask = 1 << (7 - (nr & 0x07)); 2917 *addr |= mask; 2918 } 2919 2920 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2921 { 2922 int mask; 2923 2924 addr += (nr >> 3); 2925 mask = 1 << (7 - (nr & 0x07)); 2926 *addr &= ~mask; 2927 } 2928 2929 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2930 { 2931 int mask; 2932 int ret; 2933 2934 addr += (nr >> 3); 2935 mask = 1 << (7 - (nr & 0x07)); 2936 ret = mask & *addr; 2937 *addr |= mask; 2938 return ret; 2939 } 2940 2941 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2942 { 2943 int mask; 2944 int ret; 2945 2946 addr += (nr >> 3); 2947 mask = 1 << (7 - (nr & 0x07)); 2948 ret = mask & *addr; 2949 *addr &= ~mask; 2950 return ret; 2951 } 2952 2953 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2954 { 2955 int mask; 2956 2957 addr += (nr >> 3); 2958 mask = 1 << (7 - (nr & 0x07)); 2959 *addr ^= mask; 2960 } 2961 2962 /* 2963 * On-disk inode flags (f2fs_inode::i_flags) 2964 */ 2965 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2966 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2967 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2968 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2969 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2970 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2971 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2972 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2973 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2974 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2975 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2976 2977 /* Flags that should be inherited by new inodes from their parent. */ 2978 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2979 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2980 F2FS_CASEFOLD_FL) 2981 2982 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2983 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2984 F2FS_CASEFOLD_FL)) 2985 2986 /* Flags that are appropriate for non-directories/regular files. */ 2987 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2988 2989 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2990 { 2991 if (S_ISDIR(mode)) 2992 return flags; 2993 else if (S_ISREG(mode)) 2994 return flags & F2FS_REG_FLMASK; 2995 else 2996 return flags & F2FS_OTHER_FLMASK; 2997 } 2998 2999 static inline void __mark_inode_dirty_flag(struct inode *inode, 3000 int flag, bool set) 3001 { 3002 switch (flag) { 3003 case FI_INLINE_XATTR: 3004 case FI_INLINE_DATA: 3005 case FI_INLINE_DENTRY: 3006 case FI_NEW_INODE: 3007 if (set) 3008 return; 3009 fallthrough; 3010 case FI_DATA_EXIST: 3011 case FI_INLINE_DOTS: 3012 case FI_PIN_FILE: 3013 case FI_COMPRESS_RELEASED: 3014 f2fs_mark_inode_dirty_sync(inode, true); 3015 } 3016 } 3017 3018 static inline void set_inode_flag(struct inode *inode, int flag) 3019 { 3020 set_bit(flag, F2FS_I(inode)->flags); 3021 __mark_inode_dirty_flag(inode, flag, true); 3022 } 3023 3024 static inline int is_inode_flag_set(struct inode *inode, int flag) 3025 { 3026 return test_bit(flag, F2FS_I(inode)->flags); 3027 } 3028 3029 static inline void clear_inode_flag(struct inode *inode, int flag) 3030 { 3031 clear_bit(flag, F2FS_I(inode)->flags); 3032 __mark_inode_dirty_flag(inode, flag, false); 3033 } 3034 3035 static inline bool f2fs_verity_in_progress(struct inode *inode) 3036 { 3037 return IS_ENABLED(CONFIG_FS_VERITY) && 3038 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3039 } 3040 3041 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3042 { 3043 F2FS_I(inode)->i_acl_mode = mode; 3044 set_inode_flag(inode, FI_ACL_MODE); 3045 f2fs_mark_inode_dirty_sync(inode, false); 3046 } 3047 3048 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3049 { 3050 if (inc) 3051 inc_nlink(inode); 3052 else 3053 drop_nlink(inode); 3054 f2fs_mark_inode_dirty_sync(inode, true); 3055 } 3056 3057 static inline void f2fs_i_blocks_write(struct inode *inode, 3058 block_t diff, bool add, bool claim) 3059 { 3060 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3061 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3062 3063 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3064 if (add) { 3065 if (claim) 3066 dquot_claim_block(inode, diff); 3067 else 3068 dquot_alloc_block_nofail(inode, diff); 3069 } else { 3070 dquot_free_block(inode, diff); 3071 } 3072 3073 f2fs_mark_inode_dirty_sync(inode, true); 3074 if (clean || recover) 3075 set_inode_flag(inode, FI_AUTO_RECOVER); 3076 } 3077 3078 static inline bool f2fs_is_atomic_file(struct inode *inode); 3079 3080 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3081 { 3082 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3083 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3084 3085 if (i_size_read(inode) == i_size) 3086 return; 3087 3088 i_size_write(inode, i_size); 3089 3090 if (f2fs_is_atomic_file(inode)) 3091 return; 3092 3093 f2fs_mark_inode_dirty_sync(inode, true); 3094 if (clean || recover) 3095 set_inode_flag(inode, FI_AUTO_RECOVER); 3096 } 3097 3098 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3099 { 3100 F2FS_I(inode)->i_current_depth = depth; 3101 f2fs_mark_inode_dirty_sync(inode, true); 3102 } 3103 3104 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3105 unsigned int count) 3106 { 3107 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3108 f2fs_mark_inode_dirty_sync(inode, true); 3109 } 3110 3111 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3112 { 3113 F2FS_I(inode)->i_xattr_nid = xnid; 3114 f2fs_mark_inode_dirty_sync(inode, true); 3115 } 3116 3117 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3118 { 3119 F2FS_I(inode)->i_pino = pino; 3120 f2fs_mark_inode_dirty_sync(inode, true); 3121 } 3122 3123 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3124 { 3125 struct f2fs_inode_info *fi = F2FS_I(inode); 3126 3127 if (ri->i_inline & F2FS_INLINE_XATTR) 3128 set_bit(FI_INLINE_XATTR, fi->flags); 3129 if (ri->i_inline & F2FS_INLINE_DATA) 3130 set_bit(FI_INLINE_DATA, fi->flags); 3131 if (ri->i_inline & F2FS_INLINE_DENTRY) 3132 set_bit(FI_INLINE_DENTRY, fi->flags); 3133 if (ri->i_inline & F2FS_DATA_EXIST) 3134 set_bit(FI_DATA_EXIST, fi->flags); 3135 if (ri->i_inline & F2FS_INLINE_DOTS) 3136 set_bit(FI_INLINE_DOTS, fi->flags); 3137 if (ri->i_inline & F2FS_EXTRA_ATTR) 3138 set_bit(FI_EXTRA_ATTR, fi->flags); 3139 if (ri->i_inline & F2FS_PIN_FILE) 3140 set_bit(FI_PIN_FILE, fi->flags); 3141 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3142 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3143 } 3144 3145 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3146 { 3147 ri->i_inline = 0; 3148 3149 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3150 ri->i_inline |= F2FS_INLINE_XATTR; 3151 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3152 ri->i_inline |= F2FS_INLINE_DATA; 3153 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3154 ri->i_inline |= F2FS_INLINE_DENTRY; 3155 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3156 ri->i_inline |= F2FS_DATA_EXIST; 3157 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3158 ri->i_inline |= F2FS_INLINE_DOTS; 3159 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3160 ri->i_inline |= F2FS_EXTRA_ATTR; 3161 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3162 ri->i_inline |= F2FS_PIN_FILE; 3163 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3164 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3165 } 3166 3167 static inline int f2fs_has_extra_attr(struct inode *inode) 3168 { 3169 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3170 } 3171 3172 static inline int f2fs_has_inline_xattr(struct inode *inode) 3173 { 3174 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3175 } 3176 3177 static inline int f2fs_compressed_file(struct inode *inode) 3178 { 3179 return S_ISREG(inode->i_mode) && 3180 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3181 } 3182 3183 static inline bool f2fs_need_compress_data(struct inode *inode) 3184 { 3185 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3186 3187 if (!f2fs_compressed_file(inode)) 3188 return false; 3189 3190 if (compress_mode == COMPR_MODE_FS) 3191 return true; 3192 else if (compress_mode == COMPR_MODE_USER && 3193 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3194 return true; 3195 3196 return false; 3197 } 3198 3199 static inline unsigned int addrs_per_inode(struct inode *inode) 3200 { 3201 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3202 get_inline_xattr_addrs(inode); 3203 3204 if (!f2fs_compressed_file(inode)) 3205 return addrs; 3206 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3207 } 3208 3209 static inline unsigned int addrs_per_block(struct inode *inode) 3210 { 3211 if (!f2fs_compressed_file(inode)) 3212 return DEF_ADDRS_PER_BLOCK; 3213 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3214 } 3215 3216 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3217 { 3218 struct f2fs_inode *ri = F2FS_INODE(page); 3219 3220 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3221 get_inline_xattr_addrs(inode)]); 3222 } 3223 3224 static inline int inline_xattr_size(struct inode *inode) 3225 { 3226 if (f2fs_has_inline_xattr(inode)) 3227 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3228 return 0; 3229 } 3230 3231 /* 3232 * Notice: check inline_data flag without inode page lock is unsafe. 3233 * It could change at any time by f2fs_convert_inline_page(). 3234 */ 3235 static inline int f2fs_has_inline_data(struct inode *inode) 3236 { 3237 return is_inode_flag_set(inode, FI_INLINE_DATA); 3238 } 3239 3240 static inline int f2fs_exist_data(struct inode *inode) 3241 { 3242 return is_inode_flag_set(inode, FI_DATA_EXIST); 3243 } 3244 3245 static inline int f2fs_has_inline_dots(struct inode *inode) 3246 { 3247 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3248 } 3249 3250 static inline int f2fs_is_mmap_file(struct inode *inode) 3251 { 3252 return is_inode_flag_set(inode, FI_MMAP_FILE); 3253 } 3254 3255 static inline bool f2fs_is_pinned_file(struct inode *inode) 3256 { 3257 return is_inode_flag_set(inode, FI_PIN_FILE); 3258 } 3259 3260 static inline bool f2fs_is_atomic_file(struct inode *inode) 3261 { 3262 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3263 } 3264 3265 static inline bool f2fs_is_cow_file(struct inode *inode) 3266 { 3267 return is_inode_flag_set(inode, FI_COW_FILE); 3268 } 3269 3270 static inline bool f2fs_is_first_block_written(struct inode *inode) 3271 { 3272 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3273 } 3274 3275 static inline bool f2fs_is_drop_cache(struct inode *inode) 3276 { 3277 return is_inode_flag_set(inode, FI_DROP_CACHE); 3278 } 3279 3280 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3281 { 3282 struct f2fs_inode *ri = F2FS_INODE(page); 3283 int extra_size = get_extra_isize(inode); 3284 3285 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3286 } 3287 3288 static inline int f2fs_has_inline_dentry(struct inode *inode) 3289 { 3290 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3291 } 3292 3293 static inline int is_file(struct inode *inode, int type) 3294 { 3295 return F2FS_I(inode)->i_advise & type; 3296 } 3297 3298 static inline void set_file(struct inode *inode, int type) 3299 { 3300 if (is_file(inode, type)) 3301 return; 3302 F2FS_I(inode)->i_advise |= type; 3303 f2fs_mark_inode_dirty_sync(inode, true); 3304 } 3305 3306 static inline void clear_file(struct inode *inode, int type) 3307 { 3308 if (!is_file(inode, type)) 3309 return; 3310 F2FS_I(inode)->i_advise &= ~type; 3311 f2fs_mark_inode_dirty_sync(inode, true); 3312 } 3313 3314 static inline bool f2fs_is_time_consistent(struct inode *inode) 3315 { 3316 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3317 return false; 3318 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3319 return false; 3320 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3321 return false; 3322 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3323 &F2FS_I(inode)->i_crtime)) 3324 return false; 3325 return true; 3326 } 3327 3328 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3329 { 3330 bool ret; 3331 3332 if (dsync) { 3333 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3334 3335 spin_lock(&sbi->inode_lock[DIRTY_META]); 3336 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3337 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3338 return ret; 3339 } 3340 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3341 file_keep_isize(inode) || 3342 i_size_read(inode) & ~PAGE_MASK) 3343 return false; 3344 3345 if (!f2fs_is_time_consistent(inode)) 3346 return false; 3347 3348 spin_lock(&F2FS_I(inode)->i_size_lock); 3349 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3350 spin_unlock(&F2FS_I(inode)->i_size_lock); 3351 3352 return ret; 3353 } 3354 3355 static inline bool f2fs_readonly(struct super_block *sb) 3356 { 3357 return sb_rdonly(sb); 3358 } 3359 3360 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3361 { 3362 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3363 } 3364 3365 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3366 { 3367 if (len == 1 && name[0] == '.') 3368 return true; 3369 3370 if (len == 2 && name[0] == '.' && name[1] == '.') 3371 return true; 3372 3373 return false; 3374 } 3375 3376 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3377 size_t size, gfp_t flags) 3378 { 3379 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3380 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3381 return NULL; 3382 } 3383 3384 return kmalloc(size, flags); 3385 } 3386 3387 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3388 size_t size, gfp_t flags) 3389 { 3390 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3391 } 3392 3393 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3394 size_t size, gfp_t flags) 3395 { 3396 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3397 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3398 return NULL; 3399 } 3400 3401 return kvmalloc(size, flags); 3402 } 3403 3404 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3405 size_t size, gfp_t flags) 3406 { 3407 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3408 } 3409 3410 static inline int get_extra_isize(struct inode *inode) 3411 { 3412 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3413 } 3414 3415 static inline int get_inline_xattr_addrs(struct inode *inode) 3416 { 3417 return F2FS_I(inode)->i_inline_xattr_size; 3418 } 3419 3420 #define f2fs_get_inode_mode(i) \ 3421 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3422 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3423 3424 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3425 (offsetof(struct f2fs_inode, i_extra_end) - \ 3426 offsetof(struct f2fs_inode, i_extra_isize)) \ 3427 3428 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3429 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3430 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3431 sizeof((f2fs_inode)->field)) \ 3432 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3433 3434 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3435 3436 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3437 3438 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3439 block_t blkaddr, int type); 3440 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3441 block_t blkaddr, int type) 3442 { 3443 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3444 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3445 blkaddr, type); 3446 f2fs_bug_on(sbi, 1); 3447 } 3448 } 3449 3450 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3451 { 3452 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3453 blkaddr == COMPRESS_ADDR) 3454 return false; 3455 return true; 3456 } 3457 3458 /* 3459 * file.c 3460 */ 3461 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3462 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3463 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3464 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3465 int f2fs_truncate(struct inode *inode); 3466 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3467 struct kstat *stat, u32 request_mask, unsigned int flags); 3468 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3469 struct iattr *attr); 3470 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3471 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3472 int f2fs_precache_extents(struct inode *inode); 3473 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3474 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3475 struct dentry *dentry, struct fileattr *fa); 3476 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3477 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3478 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3479 int f2fs_pin_file_control(struct inode *inode, bool inc); 3480 3481 /* 3482 * inode.c 3483 */ 3484 void f2fs_set_inode_flags(struct inode *inode); 3485 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3486 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3487 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3488 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3489 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3490 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3491 void f2fs_update_inode_page(struct inode *inode); 3492 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3493 void f2fs_evict_inode(struct inode *inode); 3494 void f2fs_handle_failed_inode(struct inode *inode); 3495 3496 /* 3497 * namei.c 3498 */ 3499 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3500 bool hot, bool set); 3501 struct dentry *f2fs_get_parent(struct dentry *child); 3502 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 3503 struct inode **new_inode); 3504 3505 /* 3506 * dir.c 3507 */ 3508 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3509 int f2fs_init_casefolded_name(const struct inode *dir, 3510 struct f2fs_filename *fname); 3511 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3512 int lookup, struct f2fs_filename *fname); 3513 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3514 struct f2fs_filename *fname); 3515 void f2fs_free_filename(struct f2fs_filename *fname); 3516 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3517 const struct f2fs_filename *fname, int *max_slots); 3518 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3519 unsigned int start_pos, struct fscrypt_str *fstr); 3520 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3521 struct f2fs_dentry_ptr *d); 3522 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3523 const struct f2fs_filename *fname, struct page *dpage); 3524 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3525 unsigned int current_depth); 3526 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3527 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3528 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3529 const struct f2fs_filename *fname, 3530 struct page **res_page); 3531 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3532 const struct qstr *child, struct page **res_page); 3533 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3534 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3535 struct page **page); 3536 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3537 struct page *page, struct inode *inode); 3538 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3539 const struct f2fs_filename *fname); 3540 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3541 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3542 unsigned int bit_pos); 3543 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3544 struct inode *inode, nid_t ino, umode_t mode); 3545 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3546 struct inode *inode, nid_t ino, umode_t mode); 3547 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3548 struct inode *inode, nid_t ino, umode_t mode); 3549 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3550 struct inode *dir, struct inode *inode); 3551 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3552 bool f2fs_empty_dir(struct inode *dir); 3553 3554 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3555 { 3556 if (fscrypt_is_nokey_name(dentry)) 3557 return -ENOKEY; 3558 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3559 inode, inode->i_ino, inode->i_mode); 3560 } 3561 3562 /* 3563 * super.c 3564 */ 3565 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3566 void f2fs_inode_synced(struct inode *inode); 3567 int f2fs_dquot_initialize(struct inode *inode); 3568 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3569 int f2fs_quota_sync(struct super_block *sb, int type); 3570 loff_t max_file_blocks(struct inode *inode); 3571 void f2fs_quota_off_umount(struct super_block *sb); 3572 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason); 3573 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3574 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3575 int f2fs_sync_fs(struct super_block *sb, int sync); 3576 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3577 3578 /* 3579 * hash.c 3580 */ 3581 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3582 3583 /* 3584 * node.c 3585 */ 3586 struct node_info; 3587 3588 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3589 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3590 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3591 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3592 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3593 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3594 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3595 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3596 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3597 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3598 struct node_info *ni, bool checkpoint_context); 3599 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3600 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3601 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3602 int f2fs_truncate_xattr_node(struct inode *inode); 3603 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3604 unsigned int seq_id); 3605 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3606 int f2fs_remove_inode_page(struct inode *inode); 3607 struct page *f2fs_new_inode_page(struct inode *inode); 3608 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3609 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3610 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3611 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3612 int f2fs_move_node_page(struct page *node_page, int gc_type); 3613 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3614 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3615 struct writeback_control *wbc, bool atomic, 3616 unsigned int *seq_id); 3617 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3618 struct writeback_control *wbc, 3619 bool do_balance, enum iostat_type io_type); 3620 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3621 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3622 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3623 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3624 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3625 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3626 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3627 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3628 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3629 unsigned int segno, struct f2fs_summary_block *sum); 3630 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3631 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3632 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3633 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3634 int __init f2fs_create_node_manager_caches(void); 3635 void f2fs_destroy_node_manager_caches(void); 3636 3637 /* 3638 * segment.c 3639 */ 3640 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3641 int f2fs_commit_atomic_write(struct inode *inode); 3642 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3643 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3644 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3645 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3646 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3647 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3648 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3649 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3650 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3651 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3652 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3653 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3654 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3655 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3656 struct cp_control *cpc); 3657 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3658 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3659 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3660 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3661 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3662 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3663 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3664 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3665 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3666 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3667 unsigned int *newseg, bool new_sec, int dir); 3668 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3669 unsigned int start, unsigned int end); 3670 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3671 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3672 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3673 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3674 struct cp_control *cpc); 3675 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3676 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3677 block_t blk_addr); 3678 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3679 enum iostat_type io_type); 3680 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3681 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3682 struct f2fs_io_info *fio); 3683 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3684 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3685 block_t old_blkaddr, block_t new_blkaddr, 3686 bool recover_curseg, bool recover_newaddr, 3687 bool from_gc); 3688 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3689 block_t old_addr, block_t new_addr, 3690 unsigned char version, bool recover_curseg, 3691 bool recover_newaddr); 3692 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3693 block_t old_blkaddr, block_t *new_blkaddr, 3694 struct f2fs_summary *sum, int type, 3695 struct f2fs_io_info *fio); 3696 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3697 block_t blkaddr, unsigned int blkcnt); 3698 void f2fs_wait_on_page_writeback(struct page *page, 3699 enum page_type type, bool ordered, bool locked); 3700 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3701 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3702 block_t len); 3703 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3704 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3705 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3706 unsigned int val, int alloc); 3707 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3708 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3709 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3710 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3711 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3712 int __init f2fs_create_segment_manager_caches(void); 3713 void f2fs_destroy_segment_manager_caches(void); 3714 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3715 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3716 unsigned int segno); 3717 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3718 unsigned int segno); 3719 3720 #define DEF_FRAGMENT_SIZE 4 3721 #define MIN_FRAGMENT_SIZE 1 3722 #define MAX_FRAGMENT_SIZE 512 3723 3724 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3725 { 3726 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3727 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3728 } 3729 3730 /* 3731 * checkpoint.c 3732 */ 3733 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3734 unsigned char reason); 3735 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3736 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3737 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3738 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3739 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3740 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3741 block_t blkaddr, int type); 3742 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3743 int type, bool sync); 3744 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3745 unsigned int ra_blocks); 3746 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3747 long nr_to_write, enum iostat_type io_type); 3748 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3749 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3750 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3751 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3752 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3753 unsigned int devidx, int type); 3754 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3755 unsigned int devidx, int type); 3756 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3757 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3758 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3759 void f2fs_add_orphan_inode(struct inode *inode); 3760 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3761 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3762 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3763 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3764 void f2fs_remove_dirty_inode(struct inode *inode); 3765 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3766 bool from_cp); 3767 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3768 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3769 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3770 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3771 int __init f2fs_create_checkpoint_caches(void); 3772 void f2fs_destroy_checkpoint_caches(void); 3773 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3774 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3775 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3776 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3777 3778 /* 3779 * data.c 3780 */ 3781 int __init f2fs_init_bioset(void); 3782 void f2fs_destroy_bioset(void); 3783 int f2fs_init_bio_entry_cache(void); 3784 void f2fs_destroy_bio_entry_cache(void); 3785 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3786 struct bio *bio, enum page_type type); 3787 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3788 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3789 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3790 struct inode *inode, struct page *page, 3791 nid_t ino, enum page_type type); 3792 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3793 struct bio **bio, struct page *page); 3794 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3795 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3796 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3797 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3798 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3799 block_t blk_addr, sector_t *sector); 3800 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3801 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3802 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3803 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3804 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3805 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3806 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3807 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3808 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3809 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3810 pgoff_t *next_pgofs); 3811 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3812 bool for_write); 3813 struct page *f2fs_get_new_data_page(struct inode *inode, 3814 struct page *ipage, pgoff_t index, bool new_i_size); 3815 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3816 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3817 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3818 int create, int flag); 3819 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3820 u64 start, u64 len); 3821 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3822 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3823 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3824 int f2fs_write_single_data_page(struct page *page, int *submitted, 3825 struct bio **bio, sector_t *last_block, 3826 struct writeback_control *wbc, 3827 enum iostat_type io_type, 3828 int compr_blocks, bool allow_balance); 3829 void f2fs_write_failed(struct inode *inode, loff_t to); 3830 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3831 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3832 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3833 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3834 int f2fs_init_post_read_processing(void); 3835 void f2fs_destroy_post_read_processing(void); 3836 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3837 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3838 extern const struct iomap_ops f2fs_iomap_ops; 3839 3840 /* 3841 * gc.c 3842 */ 3843 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3844 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3845 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3846 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3847 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3848 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3849 int __init f2fs_create_garbage_collection_cache(void); 3850 void f2fs_destroy_garbage_collection_cache(void); 3851 3852 /* 3853 * recovery.c 3854 */ 3855 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3856 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3857 int __init f2fs_create_recovery_cache(void); 3858 void f2fs_destroy_recovery_cache(void); 3859 3860 /* 3861 * debug.c 3862 */ 3863 #ifdef CONFIG_F2FS_STAT_FS 3864 struct f2fs_stat_info { 3865 struct list_head stat_list; 3866 struct f2fs_sb_info *sbi; 3867 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3868 int main_area_segs, main_area_sections, main_area_zones; 3869 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3870 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3871 unsigned long long total_ext[NR_EXTENT_CACHES]; 3872 unsigned long long hit_total[NR_EXTENT_CACHES]; 3873 int ext_tree[NR_EXTENT_CACHES]; 3874 int zombie_tree[NR_EXTENT_CACHES]; 3875 int ext_node[NR_EXTENT_CACHES]; 3876 /* to count memory footprint */ 3877 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3878 /* for read extent cache */ 3879 unsigned long long hit_largest; 3880 /* for block age extent cache */ 3881 unsigned long long allocated_data_blocks; 3882 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3883 int ndirty_data, ndirty_qdata; 3884 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3885 int nats, dirty_nats, sits, dirty_sits; 3886 int free_nids, avail_nids, alloc_nids; 3887 int total_count, utilization; 3888 int bg_gc, nr_wb_cp_data, nr_wb_data; 3889 int nr_rd_data, nr_rd_node, nr_rd_meta; 3890 int nr_dio_read, nr_dio_write; 3891 unsigned int io_skip_bggc, other_skip_bggc; 3892 int nr_flushing, nr_flushed, flush_list_empty; 3893 int nr_discarding, nr_discarded; 3894 int nr_discard_cmd; 3895 unsigned int undiscard_blks; 3896 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3897 unsigned int cur_ckpt_time, peak_ckpt_time; 3898 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3899 int compr_inode, swapfile_inode; 3900 unsigned long long compr_blocks; 3901 int aw_cnt, max_aw_cnt; 3902 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3903 unsigned int bimodal, avg_vblocks; 3904 int util_free, util_valid, util_invalid; 3905 int rsvd_segs, overp_segs; 3906 int dirty_count, node_pages, meta_pages, compress_pages; 3907 int compress_page_hit; 3908 int prefree_count, call_count, cp_count, bg_cp_count; 3909 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3910 int bg_node_segs, bg_data_segs; 3911 int tot_blks, data_blks, node_blks; 3912 int bg_data_blks, bg_node_blks; 3913 int curseg[NR_CURSEG_TYPE]; 3914 int cursec[NR_CURSEG_TYPE]; 3915 int curzone[NR_CURSEG_TYPE]; 3916 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3917 unsigned int full_seg[NR_CURSEG_TYPE]; 3918 unsigned int valid_blks[NR_CURSEG_TYPE]; 3919 3920 unsigned int meta_count[META_MAX]; 3921 unsigned int segment_count[2]; 3922 unsigned int block_count[2]; 3923 unsigned int inplace_count; 3924 unsigned long long base_mem, cache_mem, page_mem; 3925 }; 3926 3927 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3928 { 3929 return (struct f2fs_stat_info *)sbi->stat_info; 3930 } 3931 3932 #define stat_inc_cp_count(si) ((si)->cp_count++) 3933 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3934 #define stat_inc_call_count(si) ((si)->call_count++) 3935 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3936 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3937 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3938 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3939 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3940 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3941 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3942 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3943 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3944 #define stat_inc_inline_xattr(inode) \ 3945 do { \ 3946 if (f2fs_has_inline_xattr(inode)) \ 3947 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3948 } while (0) 3949 #define stat_dec_inline_xattr(inode) \ 3950 do { \ 3951 if (f2fs_has_inline_xattr(inode)) \ 3952 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3953 } while (0) 3954 #define stat_inc_inline_inode(inode) \ 3955 do { \ 3956 if (f2fs_has_inline_data(inode)) \ 3957 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3958 } while (0) 3959 #define stat_dec_inline_inode(inode) \ 3960 do { \ 3961 if (f2fs_has_inline_data(inode)) \ 3962 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3963 } while (0) 3964 #define stat_inc_inline_dir(inode) \ 3965 do { \ 3966 if (f2fs_has_inline_dentry(inode)) \ 3967 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3968 } while (0) 3969 #define stat_dec_inline_dir(inode) \ 3970 do { \ 3971 if (f2fs_has_inline_dentry(inode)) \ 3972 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3973 } while (0) 3974 #define stat_inc_compr_inode(inode) \ 3975 do { \ 3976 if (f2fs_compressed_file(inode)) \ 3977 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3978 } while (0) 3979 #define stat_dec_compr_inode(inode) \ 3980 do { \ 3981 if (f2fs_compressed_file(inode)) \ 3982 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3983 } while (0) 3984 #define stat_add_compr_blocks(inode, blocks) \ 3985 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3986 #define stat_sub_compr_blocks(inode, blocks) \ 3987 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3988 #define stat_inc_swapfile_inode(inode) \ 3989 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 3990 #define stat_dec_swapfile_inode(inode) \ 3991 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 3992 #define stat_inc_atomic_inode(inode) \ 3993 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 3994 #define stat_dec_atomic_inode(inode) \ 3995 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 3996 #define stat_inc_meta_count(sbi, blkaddr) \ 3997 do { \ 3998 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3999 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4000 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4001 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4002 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4003 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4004 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4005 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4006 } while (0) 4007 #define stat_inc_seg_type(sbi, curseg) \ 4008 ((sbi)->segment_count[(curseg)->alloc_type]++) 4009 #define stat_inc_block_count(sbi, curseg) \ 4010 ((sbi)->block_count[(curseg)->alloc_type]++) 4011 #define stat_inc_inplace_blocks(sbi) \ 4012 (atomic_inc(&(sbi)->inplace_count)) 4013 #define stat_update_max_atomic_write(inode) \ 4014 do { \ 4015 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4016 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4017 if (cur > max) \ 4018 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4019 } while (0) 4020 #define stat_inc_seg_count(sbi, type, gc_type) \ 4021 do { \ 4022 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4023 si->tot_segs++; \ 4024 if ((type) == SUM_TYPE_DATA) { \ 4025 si->data_segs++; \ 4026 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 4027 } else { \ 4028 si->node_segs++; \ 4029 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 4030 } \ 4031 } while (0) 4032 4033 #define stat_inc_tot_blk_count(si, blks) \ 4034 ((si)->tot_blks += (blks)) 4035 4036 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4037 do { \ 4038 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4039 stat_inc_tot_blk_count(si, blks); \ 4040 si->data_blks += (blks); \ 4041 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4042 } while (0) 4043 4044 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4045 do { \ 4046 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4047 stat_inc_tot_blk_count(si, blks); \ 4048 si->node_blks += (blks); \ 4049 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4050 } while (0) 4051 4052 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4053 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4054 void __init f2fs_create_root_stats(void); 4055 void f2fs_destroy_root_stats(void); 4056 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4057 #else 4058 #define stat_inc_cp_count(si) do { } while (0) 4059 #define stat_inc_bg_cp_count(si) do { } while (0) 4060 #define stat_inc_call_count(si) do { } while (0) 4061 #define stat_inc_bggc_count(si) do { } while (0) 4062 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4063 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4064 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4065 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4066 #define stat_inc_total_hit(sbi, type) do { } while (0) 4067 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4068 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4069 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4070 #define stat_inc_inline_xattr(inode) do { } while (0) 4071 #define stat_dec_inline_xattr(inode) do { } while (0) 4072 #define stat_inc_inline_inode(inode) do { } while (0) 4073 #define stat_dec_inline_inode(inode) do { } while (0) 4074 #define stat_inc_inline_dir(inode) do { } while (0) 4075 #define stat_dec_inline_dir(inode) do { } while (0) 4076 #define stat_inc_compr_inode(inode) do { } while (0) 4077 #define stat_dec_compr_inode(inode) do { } while (0) 4078 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4079 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4080 #define stat_inc_swapfile_inode(inode) do { } while (0) 4081 #define stat_dec_swapfile_inode(inode) do { } while (0) 4082 #define stat_inc_atomic_inode(inode) do { } while (0) 4083 #define stat_dec_atomic_inode(inode) do { } while (0) 4084 #define stat_update_max_atomic_write(inode) do { } while (0) 4085 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4086 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4087 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4088 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4089 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 4090 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4091 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4092 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4093 4094 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4095 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4096 static inline void __init f2fs_create_root_stats(void) { } 4097 static inline void f2fs_destroy_root_stats(void) { } 4098 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4099 #endif 4100 4101 extern const struct file_operations f2fs_dir_operations; 4102 extern const struct file_operations f2fs_file_operations; 4103 extern const struct inode_operations f2fs_file_inode_operations; 4104 extern const struct address_space_operations f2fs_dblock_aops; 4105 extern const struct address_space_operations f2fs_node_aops; 4106 extern const struct address_space_operations f2fs_meta_aops; 4107 extern const struct inode_operations f2fs_dir_inode_operations; 4108 extern const struct inode_operations f2fs_symlink_inode_operations; 4109 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4110 extern const struct inode_operations f2fs_special_inode_operations; 4111 extern struct kmem_cache *f2fs_inode_entry_slab; 4112 4113 /* 4114 * inline.c 4115 */ 4116 bool f2fs_may_inline_data(struct inode *inode); 4117 bool f2fs_sanity_check_inline_data(struct inode *inode); 4118 bool f2fs_may_inline_dentry(struct inode *inode); 4119 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4120 void f2fs_truncate_inline_inode(struct inode *inode, 4121 struct page *ipage, u64 from); 4122 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4123 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4124 int f2fs_convert_inline_inode(struct inode *inode); 4125 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4126 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4127 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4128 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4129 const struct f2fs_filename *fname, 4130 struct page **res_page); 4131 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4132 struct page *ipage); 4133 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4134 struct inode *inode, nid_t ino, umode_t mode); 4135 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4136 struct page *page, struct inode *dir, 4137 struct inode *inode); 4138 bool f2fs_empty_inline_dir(struct inode *dir); 4139 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4140 struct fscrypt_str *fstr); 4141 int f2fs_inline_data_fiemap(struct inode *inode, 4142 struct fiemap_extent_info *fieinfo, 4143 __u64 start, __u64 len); 4144 4145 /* 4146 * shrinker.c 4147 */ 4148 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4149 struct shrink_control *sc); 4150 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4151 struct shrink_control *sc); 4152 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4153 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4154 4155 /* 4156 * extent_cache.c 4157 */ 4158 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 4159 struct rb_entry *cached_re, unsigned int ofs); 4160 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 4161 struct rb_root_cached *root, 4162 struct rb_node **parent, 4163 unsigned long long key, bool *left_most); 4164 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 4165 struct rb_root_cached *root, 4166 struct rb_node **parent, 4167 unsigned int ofs, bool *leftmost); 4168 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 4169 struct rb_entry *cached_re, unsigned int ofs, 4170 struct rb_entry **prev_entry, struct rb_entry **next_entry, 4171 struct rb_node ***insert_p, struct rb_node **insert_parent, 4172 bool force, bool *leftmost); 4173 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 4174 struct rb_root_cached *root, bool check_key); 4175 void f2fs_init_extent_tree(struct inode *inode); 4176 void f2fs_drop_extent_tree(struct inode *inode); 4177 void f2fs_destroy_extent_node(struct inode *inode); 4178 void f2fs_destroy_extent_tree(struct inode *inode); 4179 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4180 int __init f2fs_create_extent_cache(void); 4181 void f2fs_destroy_extent_cache(void); 4182 4183 /* read extent cache ops */ 4184 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4185 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4186 struct extent_info *ei); 4187 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4188 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4189 pgoff_t fofs, block_t blkaddr, unsigned int len); 4190 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4191 int nr_shrink); 4192 4193 /* block age extent cache ops */ 4194 void f2fs_init_age_extent_tree(struct inode *inode); 4195 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4196 struct extent_info *ei); 4197 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4198 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4199 pgoff_t fofs, unsigned int len); 4200 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4201 int nr_shrink); 4202 4203 /* 4204 * sysfs.c 4205 */ 4206 #define MIN_RA_MUL 2 4207 #define MAX_RA_MUL 256 4208 4209 int __init f2fs_init_sysfs(void); 4210 void f2fs_exit_sysfs(void); 4211 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4212 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4213 4214 /* verity.c */ 4215 extern const struct fsverity_operations f2fs_verityops; 4216 4217 /* 4218 * crypto support 4219 */ 4220 static inline bool f2fs_encrypted_file(struct inode *inode) 4221 { 4222 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4223 } 4224 4225 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4226 { 4227 #ifdef CONFIG_FS_ENCRYPTION 4228 file_set_encrypt(inode); 4229 f2fs_set_inode_flags(inode); 4230 #endif 4231 } 4232 4233 /* 4234 * Returns true if the reads of the inode's data need to undergo some 4235 * postprocessing step, like decryption or authenticity verification. 4236 */ 4237 static inline bool f2fs_post_read_required(struct inode *inode) 4238 { 4239 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4240 f2fs_compressed_file(inode); 4241 } 4242 4243 /* 4244 * compress.c 4245 */ 4246 #ifdef CONFIG_F2FS_FS_COMPRESSION 4247 bool f2fs_is_compressed_page(struct page *page); 4248 struct page *f2fs_compress_control_page(struct page *page); 4249 int f2fs_prepare_compress_overwrite(struct inode *inode, 4250 struct page **pagep, pgoff_t index, void **fsdata); 4251 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4252 pgoff_t index, unsigned copied); 4253 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4254 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4255 bool f2fs_is_compress_backend_ready(struct inode *inode); 4256 int f2fs_init_compress_mempool(void); 4257 void f2fs_destroy_compress_mempool(void); 4258 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4259 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4260 block_t blkaddr, bool in_task); 4261 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4262 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4263 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4264 int index, int nr_pages, bool uptodate); 4265 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4266 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4267 int f2fs_write_multi_pages(struct compress_ctx *cc, 4268 int *submitted, 4269 struct writeback_control *wbc, 4270 enum iostat_type io_type); 4271 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4272 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4273 pgoff_t fofs, block_t blkaddr, 4274 unsigned int llen, unsigned int c_len); 4275 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4276 unsigned nr_pages, sector_t *last_block_in_bio, 4277 bool is_readahead, bool for_write); 4278 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4279 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4280 bool in_task); 4281 void f2fs_put_page_dic(struct page *page, bool in_task); 4282 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4283 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4284 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4285 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4286 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4287 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4288 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4289 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4290 int __init f2fs_init_compress_cache(void); 4291 void f2fs_destroy_compress_cache(void); 4292 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4293 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4294 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4295 nid_t ino, block_t blkaddr); 4296 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4297 block_t blkaddr); 4298 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4299 #define inc_compr_inode_stat(inode) \ 4300 do { \ 4301 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4302 sbi->compr_new_inode++; \ 4303 } while (0) 4304 #define add_compr_block_stat(inode, blocks) \ 4305 do { \ 4306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4307 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4308 sbi->compr_written_block += blocks; \ 4309 sbi->compr_saved_block += diff; \ 4310 } while (0) 4311 #else 4312 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4313 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4314 { 4315 if (!f2fs_compressed_file(inode)) 4316 return true; 4317 /* not support compression */ 4318 return false; 4319 } 4320 static inline struct page *f2fs_compress_control_page(struct page *page) 4321 { 4322 WARN_ON_ONCE(1); 4323 return ERR_PTR(-EINVAL); 4324 } 4325 static inline int f2fs_init_compress_mempool(void) { return 0; } 4326 static inline void f2fs_destroy_compress_mempool(void) { } 4327 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4328 bool in_task) { } 4329 static inline void f2fs_end_read_compressed_page(struct page *page, 4330 bool failed, block_t blkaddr, bool in_task) 4331 { 4332 WARN_ON_ONCE(1); 4333 } 4334 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4335 { 4336 WARN_ON_ONCE(1); 4337 } 4338 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4339 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4340 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4341 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4342 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4343 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4344 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4345 static inline void f2fs_destroy_compress_cache(void) { } 4346 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4347 block_t blkaddr) { } 4348 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4349 struct page *page, nid_t ino, block_t blkaddr) { } 4350 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4351 struct page *page, block_t blkaddr) { return false; } 4352 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4353 nid_t ino) { } 4354 #define inc_compr_inode_stat(inode) do { } while (0) 4355 static inline void f2fs_update_read_extent_tree_range_compressed( 4356 struct inode *inode, 4357 pgoff_t fofs, block_t blkaddr, 4358 unsigned int llen, unsigned int c_len) { } 4359 #endif 4360 4361 static inline int set_compress_context(struct inode *inode) 4362 { 4363 #ifdef CONFIG_F2FS_FS_COMPRESSION 4364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4365 4366 F2FS_I(inode)->i_compress_algorithm = 4367 F2FS_OPTION(sbi).compress_algorithm; 4368 F2FS_I(inode)->i_log_cluster_size = 4369 F2FS_OPTION(sbi).compress_log_size; 4370 F2FS_I(inode)->i_compress_flag = 4371 F2FS_OPTION(sbi).compress_chksum ? 4372 1 << COMPRESS_CHKSUM : 0; 4373 F2FS_I(inode)->i_cluster_size = 4374 1 << F2FS_I(inode)->i_log_cluster_size; 4375 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4376 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4377 F2FS_OPTION(sbi).compress_level) 4378 F2FS_I(inode)->i_compress_flag |= 4379 F2FS_OPTION(sbi).compress_level << 4380 COMPRESS_LEVEL_OFFSET; 4381 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4382 set_inode_flag(inode, FI_COMPRESSED_FILE); 4383 stat_inc_compr_inode(inode); 4384 inc_compr_inode_stat(inode); 4385 f2fs_mark_inode_dirty_sync(inode, true); 4386 return 0; 4387 #else 4388 return -EOPNOTSUPP; 4389 #endif 4390 } 4391 4392 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4393 { 4394 struct f2fs_inode_info *fi = F2FS_I(inode); 4395 4396 if (!f2fs_compressed_file(inode)) 4397 return true; 4398 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4399 return false; 4400 4401 fi->i_flags &= ~F2FS_COMPR_FL; 4402 stat_dec_compr_inode(inode); 4403 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4404 f2fs_mark_inode_dirty_sync(inode, true); 4405 return true; 4406 } 4407 4408 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4409 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4410 { \ 4411 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4412 } 4413 4414 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4415 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4416 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4417 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4418 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4419 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4420 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4421 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4422 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4423 F2FS_FEATURE_FUNCS(verity, VERITY); 4424 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4425 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4426 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4427 F2FS_FEATURE_FUNCS(readonly, RO); 4428 4429 #ifdef CONFIG_BLK_DEV_ZONED 4430 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4431 block_t blkaddr) 4432 { 4433 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4434 4435 return test_bit(zno, FDEV(devi).blkz_seq); 4436 } 4437 #endif 4438 4439 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4440 { 4441 return f2fs_sb_has_blkzoned(sbi); 4442 } 4443 4444 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4445 { 4446 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4447 } 4448 4449 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4450 { 4451 int i; 4452 4453 if (!f2fs_is_multi_device(sbi)) 4454 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4455 4456 for (i = 0; i < sbi->s_ndevs; i++) 4457 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4458 return true; 4459 return false; 4460 } 4461 4462 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4463 { 4464 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4465 f2fs_hw_should_discard(sbi); 4466 } 4467 4468 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4469 { 4470 int i; 4471 4472 if (!f2fs_is_multi_device(sbi)) 4473 return bdev_read_only(sbi->sb->s_bdev); 4474 4475 for (i = 0; i < sbi->s_ndevs; i++) 4476 if (bdev_read_only(FDEV(i).bdev)) 4477 return true; 4478 return false; 4479 } 4480 4481 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4482 { 4483 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4484 } 4485 4486 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4487 { 4488 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4489 } 4490 4491 static inline bool f2fs_may_compress(struct inode *inode) 4492 { 4493 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4494 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode)) 4495 return false; 4496 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4497 } 4498 4499 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4500 u64 blocks, bool add) 4501 { 4502 struct f2fs_inode_info *fi = F2FS_I(inode); 4503 int diff = fi->i_cluster_size - blocks; 4504 4505 /* don't update i_compr_blocks if saved blocks were released */ 4506 if (!add && !atomic_read(&fi->i_compr_blocks)) 4507 return; 4508 4509 if (add) { 4510 atomic_add(diff, &fi->i_compr_blocks); 4511 stat_add_compr_blocks(inode, diff); 4512 } else { 4513 atomic_sub(diff, &fi->i_compr_blocks); 4514 stat_sub_compr_blocks(inode, diff); 4515 } 4516 f2fs_mark_inode_dirty_sync(inode, true); 4517 } 4518 4519 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4520 int flag) 4521 { 4522 if (!f2fs_is_multi_device(sbi)) 4523 return false; 4524 if (flag != F2FS_GET_BLOCK_DIO) 4525 return false; 4526 return sbi->aligned_blksize; 4527 } 4528 4529 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4530 { 4531 return fsverity_active(inode) && 4532 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4533 } 4534 4535 #ifdef CONFIG_F2FS_FAULT_INJECTION 4536 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4537 unsigned int type); 4538 #else 4539 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4540 #endif 4541 4542 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4543 { 4544 #ifdef CONFIG_QUOTA 4545 if (f2fs_sb_has_quota_ino(sbi)) 4546 return true; 4547 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4548 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4549 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4550 return true; 4551 #endif 4552 return false; 4553 } 4554 4555 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4556 { 4557 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4558 } 4559 4560 static inline void f2fs_io_schedule_timeout(long timeout) 4561 { 4562 set_current_state(TASK_UNINTERRUPTIBLE); 4563 io_schedule_timeout(timeout); 4564 } 4565 4566 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4567 enum page_type type) 4568 { 4569 if (unlikely(f2fs_cp_error(sbi))) 4570 return; 4571 4572 if (ofs == sbi->page_eio_ofs[type]) { 4573 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4574 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4575 } else { 4576 sbi->page_eio_ofs[type] = ofs; 4577 sbi->page_eio_cnt[type] = 0; 4578 } 4579 } 4580 4581 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4582 { 4583 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4584 } 4585 4586 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4587 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4588 4589 #endif /* _LINUX_F2FS_H */ 4590