xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 6691d940b0e09dd1564130e7a354d6deaf05d009)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
97 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
98 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
99 #define F2FS_MOUNT_NORECOVERY		0x04000000
100 #define F2FS_MOUNT_ATGC			0x08000000
101 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
102 #define	F2FS_MOUNT_GC_MERGE		0x20000000
103 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
104 
105 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
106 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109 
110 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
111 		typecheck(unsigned long long, b) &&			\
112 		((long long)((a) - (b)) > 0))
113 
114 typedef u32 block_t;	/*
115 			 * should not change u32, since it is the on-disk block
116 			 * address format, __le32.
117 			 */
118 typedef u32 nid_t;
119 
120 #define COMPRESS_EXT_NUM		16
121 
122 struct f2fs_mount_info {
123 	unsigned int opt;
124 	int write_io_size_bits;		/* Write IO size bits */
125 	block_t root_reserved_blocks;	/* root reserved blocks */
126 	kuid_t s_resuid;		/* reserved blocks for uid */
127 	kgid_t s_resgid;		/* reserved blocks for gid */
128 	int active_logs;		/* # of active logs */
129 	int inline_xattr_size;		/* inline xattr size */
130 #ifdef CONFIG_F2FS_FAULT_INJECTION
131 	struct f2fs_fault_info fault_info;	/* For fault injection */
132 #endif
133 #ifdef CONFIG_QUOTA
134 	/* Names of quota files with journalled quota */
135 	char *s_qf_names[MAXQUOTAS];
136 	int s_jquota_fmt;			/* Format of quota to use */
137 #endif
138 	/* For which write hints are passed down to block layer */
139 	int whint_mode;
140 	int alloc_mode;			/* segment allocation policy */
141 	int fsync_mode;			/* fsync policy */
142 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
143 	int bggc_mode;			/* bggc mode: off, on or sync */
144 	int discard_unit;		/*
145 					 * discard command's offset/size should
146 					 * be aligned to this unit: block,
147 					 * segment or section
148 					 */
149 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
150 	block_t unusable_cap_perc;	/* percentage for cap */
151 	block_t unusable_cap;		/* Amount of space allowed to be
152 					 * unusable when disabling checkpoint
153 					 */
154 
155 	/* For compression */
156 	unsigned char compress_algorithm;	/* algorithm type */
157 	unsigned char compress_log_size;	/* cluster log size */
158 	unsigned char compress_level;		/* compress level */
159 	bool compress_chksum;			/* compressed data chksum */
160 	unsigned char compress_ext_cnt;		/* extension count */
161 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
162 	int compress_mode;			/* compression mode */
163 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
164 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
165 };
166 
167 #define F2FS_FEATURE_ENCRYPT		0x0001
168 #define F2FS_FEATURE_BLKZONED		0x0002
169 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
170 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
171 #define F2FS_FEATURE_PRJQUOTA		0x0010
172 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
173 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
174 #define F2FS_FEATURE_QUOTA_INO		0x0080
175 #define F2FS_FEATURE_INODE_CRTIME	0x0100
176 #define F2FS_FEATURE_LOST_FOUND		0x0200
177 #define F2FS_FEATURE_VERITY		0x0400
178 #define F2FS_FEATURE_SB_CHKSUM		0x0800
179 #define F2FS_FEATURE_CASEFOLD		0x1000
180 #define F2FS_FEATURE_COMPRESSION	0x2000
181 #define F2FS_FEATURE_RO			0x4000
182 
183 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
184 	((raw_super->feature & cpu_to_le32(mask)) != 0)
185 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
186 #define F2FS_SET_FEATURE(sbi, mask)					\
187 	(sbi->raw_super->feature |= cpu_to_le32(mask))
188 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
189 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
190 
191 /*
192  * Default values for user and/or group using reserved blocks
193  */
194 #define	F2FS_DEF_RESUID		0
195 #define	F2FS_DEF_RESGID		0
196 
197 /*
198  * For checkpoint manager
199  */
200 enum {
201 	NAT_BITMAP,
202 	SIT_BITMAP
203 };
204 
205 #define	CP_UMOUNT	0x00000001
206 #define	CP_FASTBOOT	0x00000002
207 #define	CP_SYNC		0x00000004
208 #define	CP_RECOVERY	0x00000008
209 #define	CP_DISCARD	0x00000010
210 #define CP_TRIMMED	0x00000020
211 #define CP_PAUSE	0x00000040
212 #define CP_RESIZE 	0x00000080
213 
214 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
215 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
216 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
217 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
218 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
219 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
220 #define DEF_CP_INTERVAL			60	/* 60 secs */
221 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
222 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
223 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
224 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
225 
226 struct cp_control {
227 	int reason;
228 	__u64 trim_start;
229 	__u64 trim_end;
230 	__u64 trim_minlen;
231 };
232 
233 /*
234  * indicate meta/data type
235  */
236 enum {
237 	META_CP,
238 	META_NAT,
239 	META_SIT,
240 	META_SSA,
241 	META_MAX,
242 	META_POR,
243 	DATA_GENERIC,		/* check range only */
244 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
245 	DATA_GENERIC_ENHANCE_READ,	/*
246 					 * strong check on range and segment
247 					 * bitmap but no warning due to race
248 					 * condition of read on truncated area
249 					 * by extent_cache
250 					 */
251 	META_GENERIC,
252 };
253 
254 /* for the list of ino */
255 enum {
256 	ORPHAN_INO,		/* for orphan ino list */
257 	APPEND_INO,		/* for append ino list */
258 	UPDATE_INO,		/* for update ino list */
259 	TRANS_DIR_INO,		/* for trasactions dir ino list */
260 	FLUSH_INO,		/* for multiple device flushing */
261 	MAX_INO_ENTRY,		/* max. list */
262 };
263 
264 struct ino_entry {
265 	struct list_head list;		/* list head */
266 	nid_t ino;			/* inode number */
267 	unsigned int dirty_device;	/* dirty device bitmap */
268 };
269 
270 /* for the list of inodes to be GCed */
271 struct inode_entry {
272 	struct list_head list;	/* list head */
273 	struct inode *inode;	/* vfs inode pointer */
274 };
275 
276 struct fsync_node_entry {
277 	struct list_head list;	/* list head */
278 	struct page *page;	/* warm node page pointer */
279 	unsigned int seq_id;	/* sequence id */
280 };
281 
282 struct ckpt_req {
283 	struct completion wait;		/* completion for checkpoint done */
284 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
285 	int ret;			/* return code of checkpoint */
286 	ktime_t queue_time;		/* request queued time */
287 };
288 
289 struct ckpt_req_control {
290 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
291 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
292 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
293 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
294 	atomic_t total_ckpt;		/* # of total ckpts */
295 	atomic_t queued_ckpt;		/* # of queued ckpts */
296 	struct llist_head issue_list;	/* list for command issue */
297 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
298 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
299 	unsigned int peak_time;		/* peak wait time in msec until now */
300 };
301 
302 /* for the bitmap indicate blocks to be discarded */
303 struct discard_entry {
304 	struct list_head list;	/* list head */
305 	block_t start_blkaddr;	/* start blockaddr of current segment */
306 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
307 };
308 
309 /* default discard granularity of inner discard thread, unit: block count */
310 #define DEFAULT_DISCARD_GRANULARITY		16
311 
312 /* max discard pend list number */
313 #define MAX_PLIST_NUM		512
314 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
315 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
316 
317 enum {
318 	D_PREP,			/* initial */
319 	D_PARTIAL,		/* partially submitted */
320 	D_SUBMIT,		/* all submitted */
321 	D_DONE,			/* finished */
322 };
323 
324 struct discard_info {
325 	block_t lstart;			/* logical start address */
326 	block_t len;			/* length */
327 	block_t start;			/* actual start address in dev */
328 };
329 
330 struct discard_cmd {
331 	struct rb_node rb_node;		/* rb node located in rb-tree */
332 	union {
333 		struct {
334 			block_t lstart;	/* logical start address */
335 			block_t len;	/* length */
336 			block_t start;	/* actual start address in dev */
337 		};
338 		struct discard_info di;	/* discard info */
339 
340 	};
341 	struct list_head list;		/* command list */
342 	struct completion wait;		/* compleation */
343 	struct block_device *bdev;	/* bdev */
344 	unsigned short ref;		/* reference count */
345 	unsigned char state;		/* state */
346 	unsigned char queued;		/* queued discard */
347 	int error;			/* bio error */
348 	spinlock_t lock;		/* for state/bio_ref updating */
349 	unsigned short bio_ref;		/* bio reference count */
350 };
351 
352 enum {
353 	DPOLICY_BG,
354 	DPOLICY_FORCE,
355 	DPOLICY_FSTRIM,
356 	DPOLICY_UMOUNT,
357 	MAX_DPOLICY,
358 };
359 
360 struct discard_policy {
361 	int type;			/* type of discard */
362 	unsigned int min_interval;	/* used for candidates exist */
363 	unsigned int mid_interval;	/* used for device busy */
364 	unsigned int max_interval;	/* used for candidates not exist */
365 	unsigned int max_requests;	/* # of discards issued per round */
366 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
367 	bool io_aware;			/* issue discard in idle time */
368 	bool sync;			/* submit discard with REQ_SYNC flag */
369 	bool ordered;			/* issue discard by lba order */
370 	bool timeout;			/* discard timeout for put_super */
371 	unsigned int granularity;	/* discard granularity */
372 };
373 
374 struct discard_cmd_control {
375 	struct task_struct *f2fs_issue_discard;	/* discard thread */
376 	struct list_head entry_list;		/* 4KB discard entry list */
377 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
378 	struct list_head wait_list;		/* store on-flushing entries */
379 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
380 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
381 	unsigned int discard_wake;		/* to wake up discard thread */
382 	struct mutex cmd_lock;
383 	unsigned int nr_discards;		/* # of discards in the list */
384 	unsigned int max_discards;		/* max. discards to be issued */
385 	unsigned int discard_granularity;	/* discard granularity */
386 	unsigned int undiscard_blks;		/* # of undiscard blocks */
387 	unsigned int next_pos;			/* next discard position */
388 	atomic_t issued_discard;		/* # of issued discard */
389 	atomic_t queued_discard;		/* # of queued discard */
390 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
391 	struct rb_root_cached root;		/* root of discard rb-tree */
392 	bool rbtree_check;			/* config for consistence check */
393 };
394 
395 /* for the list of fsync inodes, used only during recovery */
396 struct fsync_inode_entry {
397 	struct list_head list;	/* list head */
398 	struct inode *inode;	/* vfs inode pointer */
399 	block_t blkaddr;	/* block address locating the last fsync */
400 	block_t last_dentry;	/* block address locating the last dentry */
401 };
402 
403 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
404 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
405 
406 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
407 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
408 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
409 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
410 
411 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
412 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
413 
414 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
415 {
416 	int before = nats_in_cursum(journal);
417 
418 	journal->n_nats = cpu_to_le16(before + i);
419 	return before;
420 }
421 
422 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
423 {
424 	int before = sits_in_cursum(journal);
425 
426 	journal->n_sits = cpu_to_le16(before + i);
427 	return before;
428 }
429 
430 static inline bool __has_cursum_space(struct f2fs_journal *journal,
431 							int size, int type)
432 {
433 	if (type == NAT_JOURNAL)
434 		return size <= MAX_NAT_JENTRIES(journal);
435 	return size <= MAX_SIT_JENTRIES(journal);
436 }
437 
438 /* for inline stuff */
439 #define DEF_INLINE_RESERVED_SIZE	1
440 static inline int get_extra_isize(struct inode *inode);
441 static inline int get_inline_xattr_addrs(struct inode *inode);
442 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
443 				(CUR_ADDRS_PER_INODE(inode) -		\
444 				get_inline_xattr_addrs(inode) -	\
445 				DEF_INLINE_RESERVED_SIZE))
446 
447 /* for inline dir */
448 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
449 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 				BITS_PER_BYTE + 1))
451 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
452 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
453 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
454 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
455 				NR_INLINE_DENTRY(inode) + \
456 				INLINE_DENTRY_BITMAP_SIZE(inode)))
457 
458 /*
459  * For INODE and NODE manager
460  */
461 /* for directory operations */
462 
463 struct f2fs_filename {
464 	/*
465 	 * The filename the user specified.  This is NULL for some
466 	 * filesystem-internal operations, e.g. converting an inline directory
467 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
468 	 */
469 	const struct qstr *usr_fname;
470 
471 	/*
472 	 * The on-disk filename.  For encrypted directories, this is encrypted.
473 	 * This may be NULL for lookups in an encrypted dir without the key.
474 	 */
475 	struct fscrypt_str disk_name;
476 
477 	/* The dirhash of this filename */
478 	f2fs_hash_t hash;
479 
480 #ifdef CONFIG_FS_ENCRYPTION
481 	/*
482 	 * For lookups in encrypted directories: either the buffer backing
483 	 * disk_name, or a buffer that holds the decoded no-key name.
484 	 */
485 	struct fscrypt_str crypto_buf;
486 #endif
487 #ifdef CONFIG_UNICODE
488 	/*
489 	 * For casefolded directories: the casefolded name, but it's left NULL
490 	 * if the original name is not valid Unicode, if the directory is both
491 	 * casefolded and encrypted and its encryption key is unavailable, or if
492 	 * the filesystem is doing an internal operation where usr_fname is also
493 	 * NULL.  In all these cases we fall back to treating the name as an
494 	 * opaque byte sequence.
495 	 */
496 	struct fscrypt_str cf_name;
497 #endif
498 };
499 
500 struct f2fs_dentry_ptr {
501 	struct inode *inode;
502 	void *bitmap;
503 	struct f2fs_dir_entry *dentry;
504 	__u8 (*filename)[F2FS_SLOT_LEN];
505 	int max;
506 	int nr_bitmap;
507 };
508 
509 static inline void make_dentry_ptr_block(struct inode *inode,
510 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
511 {
512 	d->inode = inode;
513 	d->max = NR_DENTRY_IN_BLOCK;
514 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
515 	d->bitmap = t->dentry_bitmap;
516 	d->dentry = t->dentry;
517 	d->filename = t->filename;
518 }
519 
520 static inline void make_dentry_ptr_inline(struct inode *inode,
521 					struct f2fs_dentry_ptr *d, void *t)
522 {
523 	int entry_cnt = NR_INLINE_DENTRY(inode);
524 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
525 	int reserved_size = INLINE_RESERVED_SIZE(inode);
526 
527 	d->inode = inode;
528 	d->max = entry_cnt;
529 	d->nr_bitmap = bitmap_size;
530 	d->bitmap = t;
531 	d->dentry = t + bitmap_size + reserved_size;
532 	d->filename = t + bitmap_size + reserved_size +
533 					SIZE_OF_DIR_ENTRY * entry_cnt;
534 }
535 
536 /*
537  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
538  * as its node offset to distinguish from index node blocks.
539  * But some bits are used to mark the node block.
540  */
541 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
542 				>> OFFSET_BIT_SHIFT)
543 enum {
544 	ALLOC_NODE,			/* allocate a new node page if needed */
545 	LOOKUP_NODE,			/* look up a node without readahead */
546 	LOOKUP_NODE_RA,			/*
547 					 * look up a node with readahead called
548 					 * by get_data_block.
549 					 */
550 };
551 
552 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
553 
554 /* congestion wait timeout value, default: 20ms */
555 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
556 
557 /* maximum retry quota flush count */
558 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
559 
560 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
561 
562 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
563 
564 /* dirty segments threshold for triggering CP */
565 #define DEFAULT_DIRTY_THRESHOLD		4
566 
567 /* for in-memory extent cache entry */
568 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
569 
570 /* number of extent info in extent cache we try to shrink */
571 #define EXTENT_CACHE_SHRINK_NUMBER	128
572 
573 struct rb_entry {
574 	struct rb_node rb_node;		/* rb node located in rb-tree */
575 	union {
576 		struct {
577 			unsigned int ofs;	/* start offset of the entry */
578 			unsigned int len;	/* length of the entry */
579 		};
580 		unsigned long long key;		/* 64-bits key */
581 	} __packed;
582 };
583 
584 struct extent_info {
585 	unsigned int fofs;		/* start offset in a file */
586 	unsigned int len;		/* length of the extent */
587 	u32 blk;			/* start block address of the extent */
588 #ifdef CONFIG_F2FS_FS_COMPRESSION
589 	unsigned int c_len;		/* physical extent length of compressed blocks */
590 #endif
591 };
592 
593 struct extent_node {
594 	struct rb_node rb_node;		/* rb node located in rb-tree */
595 	struct extent_info ei;		/* extent info */
596 	struct list_head list;		/* node in global extent list of sbi */
597 	struct extent_tree *et;		/* extent tree pointer */
598 };
599 
600 struct extent_tree {
601 	nid_t ino;			/* inode number */
602 	struct rb_root_cached root;	/* root of extent info rb-tree */
603 	struct extent_node *cached_en;	/* recently accessed extent node */
604 	struct extent_info largest;	/* largested extent info */
605 	struct list_head list;		/* to be used by sbi->zombie_list */
606 	rwlock_t lock;			/* protect extent info rb-tree */
607 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
608 	bool largest_updated;		/* largest extent updated */
609 };
610 
611 /*
612  * This structure is taken from ext4_map_blocks.
613  *
614  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
615  */
616 #define F2FS_MAP_NEW		(1 << BH_New)
617 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
618 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
619 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
620 				F2FS_MAP_UNWRITTEN)
621 
622 struct f2fs_map_blocks {
623 	block_t m_pblk;
624 	block_t m_lblk;
625 	unsigned int m_len;
626 	unsigned int m_flags;
627 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
628 	pgoff_t *m_next_extent;		/* point to next possible extent */
629 	int m_seg_type;
630 	bool m_may_create;		/* indicate it is from write path */
631 };
632 
633 /* for flag in get_data_block */
634 enum {
635 	F2FS_GET_BLOCK_DEFAULT,
636 	F2FS_GET_BLOCK_FIEMAP,
637 	F2FS_GET_BLOCK_BMAP,
638 	F2FS_GET_BLOCK_DIO,
639 	F2FS_GET_BLOCK_PRE_DIO,
640 	F2FS_GET_BLOCK_PRE_AIO,
641 	F2FS_GET_BLOCK_PRECACHE,
642 };
643 
644 /*
645  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
646  */
647 #define FADVISE_COLD_BIT	0x01
648 #define FADVISE_LOST_PINO_BIT	0x02
649 #define FADVISE_ENCRYPT_BIT	0x04
650 #define FADVISE_ENC_NAME_BIT	0x08
651 #define FADVISE_KEEP_SIZE_BIT	0x10
652 #define FADVISE_HOT_BIT		0x20
653 #define FADVISE_VERITY_BIT	0x40
654 
655 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
656 
657 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
658 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
659 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
660 
661 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
662 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
663 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
664 
665 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
666 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
667 
668 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
669 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
670 
671 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
672 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
673 
674 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
675 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
676 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
677 
678 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
679 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
680 
681 #define DEF_DIR_LEVEL		0
682 
683 enum {
684 	GC_FAILURE_PIN,
685 	GC_FAILURE_ATOMIC,
686 	MAX_GC_FAILURE
687 };
688 
689 /* used for f2fs_inode_info->flags */
690 enum {
691 	FI_NEW_INODE,		/* indicate newly allocated inode */
692 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
693 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
694 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
695 	FI_INC_LINK,		/* need to increment i_nlink */
696 	FI_ACL_MODE,		/* indicate acl mode */
697 	FI_NO_ALLOC,		/* should not allocate any blocks */
698 	FI_FREE_NID,		/* free allocated nide */
699 	FI_NO_EXTENT,		/* not to use the extent cache */
700 	FI_INLINE_XATTR,	/* used for inline xattr */
701 	FI_INLINE_DATA,		/* used for inline data*/
702 	FI_INLINE_DENTRY,	/* used for inline dentry */
703 	FI_APPEND_WRITE,	/* inode has appended data */
704 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
705 	FI_NEED_IPU,		/* used for ipu per file */
706 	FI_ATOMIC_FILE,		/* indicate atomic file */
707 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
708 	FI_VOLATILE_FILE,	/* indicate volatile file */
709 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
710 	FI_DROP_CACHE,		/* drop dirty page cache */
711 	FI_DATA_EXIST,		/* indicate data exists */
712 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
713 	FI_DO_DEFRAG,		/* indicate defragment is running */
714 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
715 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
716 	FI_HOT_DATA,		/* indicate file is hot */
717 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
718 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
719 	FI_PIN_FILE,		/* indicate file should not be gced */
720 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
721 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
722 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
723 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
724 	FI_MMAP_FILE,		/* indicate file was mmapped */
725 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
726 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
727 	FI_ALIGNED_WRITE,	/* enable aligned write */
728 	FI_MAX,			/* max flag, never be used */
729 };
730 
731 struct f2fs_inode_info {
732 	struct inode vfs_inode;		/* serve a vfs inode */
733 	unsigned long i_flags;		/* keep an inode flags for ioctl */
734 	unsigned char i_advise;		/* use to give file attribute hints */
735 	unsigned char i_dir_level;	/* use for dentry level for large dir */
736 	unsigned int i_current_depth;	/* only for directory depth */
737 	/* for gc failure statistic */
738 	unsigned int i_gc_failures[MAX_GC_FAILURE];
739 	unsigned int i_pino;		/* parent inode number */
740 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
741 
742 	/* Use below internally in f2fs*/
743 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
744 	struct rw_semaphore i_sem;	/* protect fi info */
745 	atomic_t dirty_pages;		/* # of dirty pages */
746 	f2fs_hash_t chash;		/* hash value of given file name */
747 	unsigned int clevel;		/* maximum level of given file name */
748 	struct task_struct *task;	/* lookup and create consistency */
749 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
750 	nid_t i_xattr_nid;		/* node id that contains xattrs */
751 	loff_t	last_disk_size;		/* lastly written file size */
752 	spinlock_t i_size_lock;		/* protect last_disk_size */
753 
754 #ifdef CONFIG_QUOTA
755 	struct dquot *i_dquot[MAXQUOTAS];
756 
757 	/* quota space reservation, managed internally by quota code */
758 	qsize_t i_reserved_quota;
759 #endif
760 	struct list_head dirty_list;	/* dirty list for dirs and files */
761 	struct list_head gdirty_list;	/* linked in global dirty list */
762 	struct list_head inmem_ilist;	/* list for inmem inodes */
763 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
764 	struct task_struct *inmem_task;	/* store inmemory task */
765 	struct mutex inmem_lock;	/* lock for inmemory pages */
766 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
767 
768 	/* avoid racing between foreground op and gc */
769 	struct rw_semaphore i_gc_rwsem[2];
770 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
771 
772 	int i_extra_isize;		/* size of extra space located in i_addr */
773 	kprojid_t i_projid;		/* id for project quota */
774 	int i_inline_xattr_size;	/* inline xattr size */
775 	struct timespec64 i_crtime;	/* inode creation time */
776 	struct timespec64 i_disk_time[4];/* inode disk times */
777 
778 	/* for file compress */
779 	atomic_t i_compr_blocks;		/* # of compressed blocks */
780 	unsigned char i_compress_algorithm;	/* algorithm type */
781 	unsigned char i_log_cluster_size;	/* log of cluster size */
782 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
783 	unsigned short i_compress_flag;		/* compress flag */
784 	unsigned int i_cluster_size;		/* cluster size */
785 };
786 
787 static inline void get_extent_info(struct extent_info *ext,
788 					struct f2fs_extent *i_ext)
789 {
790 	ext->fofs = le32_to_cpu(i_ext->fofs);
791 	ext->blk = le32_to_cpu(i_ext->blk);
792 	ext->len = le32_to_cpu(i_ext->len);
793 }
794 
795 static inline void set_raw_extent(struct extent_info *ext,
796 					struct f2fs_extent *i_ext)
797 {
798 	i_ext->fofs = cpu_to_le32(ext->fofs);
799 	i_ext->blk = cpu_to_le32(ext->blk);
800 	i_ext->len = cpu_to_le32(ext->len);
801 }
802 
803 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
804 						u32 blk, unsigned int len)
805 {
806 	ei->fofs = fofs;
807 	ei->blk = blk;
808 	ei->len = len;
809 #ifdef CONFIG_F2FS_FS_COMPRESSION
810 	ei->c_len = 0;
811 #endif
812 }
813 
814 static inline bool __is_discard_mergeable(struct discard_info *back,
815 			struct discard_info *front, unsigned int max_len)
816 {
817 	return (back->lstart + back->len == front->lstart) &&
818 		(back->len + front->len <= max_len);
819 }
820 
821 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
822 			struct discard_info *back, unsigned int max_len)
823 {
824 	return __is_discard_mergeable(back, cur, max_len);
825 }
826 
827 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
828 			struct discard_info *front, unsigned int max_len)
829 {
830 	return __is_discard_mergeable(cur, front, max_len);
831 }
832 
833 static inline bool __is_extent_mergeable(struct extent_info *back,
834 						struct extent_info *front)
835 {
836 #ifdef CONFIG_F2FS_FS_COMPRESSION
837 	if (back->c_len && back->len != back->c_len)
838 		return false;
839 	if (front->c_len && front->len != front->c_len)
840 		return false;
841 #endif
842 	return (back->fofs + back->len == front->fofs &&
843 			back->blk + back->len == front->blk);
844 }
845 
846 static inline bool __is_back_mergeable(struct extent_info *cur,
847 						struct extent_info *back)
848 {
849 	return __is_extent_mergeable(back, cur);
850 }
851 
852 static inline bool __is_front_mergeable(struct extent_info *cur,
853 						struct extent_info *front)
854 {
855 	return __is_extent_mergeable(cur, front);
856 }
857 
858 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
859 static inline void __try_update_largest_extent(struct extent_tree *et,
860 						struct extent_node *en)
861 {
862 	if (en->ei.len > et->largest.len) {
863 		et->largest = en->ei;
864 		et->largest_updated = true;
865 	}
866 }
867 
868 /*
869  * For free nid management
870  */
871 enum nid_state {
872 	FREE_NID,		/* newly added to free nid list */
873 	PREALLOC_NID,		/* it is preallocated */
874 	MAX_NID_STATE,
875 };
876 
877 enum nat_state {
878 	TOTAL_NAT,
879 	DIRTY_NAT,
880 	RECLAIMABLE_NAT,
881 	MAX_NAT_STATE,
882 };
883 
884 struct f2fs_nm_info {
885 	block_t nat_blkaddr;		/* base disk address of NAT */
886 	nid_t max_nid;			/* maximum possible node ids */
887 	nid_t available_nids;		/* # of available node ids */
888 	nid_t next_scan_nid;		/* the next nid to be scanned */
889 	unsigned int ram_thresh;	/* control the memory footprint */
890 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
891 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
892 
893 	/* NAT cache management */
894 	struct radix_tree_root nat_root;/* root of the nat entry cache */
895 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
896 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
897 	struct list_head nat_entries;	/* cached nat entry list (clean) */
898 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
899 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
900 	unsigned int nat_blocks;	/* # of nat blocks */
901 
902 	/* free node ids management */
903 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
904 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
905 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
906 	spinlock_t nid_list_lock;	/* protect nid lists ops */
907 	struct mutex build_lock;	/* lock for build free nids */
908 	unsigned char **free_nid_bitmap;
909 	unsigned char *nat_block_bitmap;
910 	unsigned short *free_nid_count;	/* free nid count of NAT block */
911 
912 	/* for checkpoint */
913 	char *nat_bitmap;		/* NAT bitmap pointer */
914 
915 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
916 	unsigned char *nat_bits;	/* NAT bits blocks */
917 	unsigned char *full_nat_bits;	/* full NAT pages */
918 	unsigned char *empty_nat_bits;	/* empty NAT pages */
919 #ifdef CONFIG_F2FS_CHECK_FS
920 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
921 #endif
922 	int bitmap_size;		/* bitmap size */
923 };
924 
925 /*
926  * this structure is used as one of function parameters.
927  * all the information are dedicated to a given direct node block determined
928  * by the data offset in a file.
929  */
930 struct dnode_of_data {
931 	struct inode *inode;		/* vfs inode pointer */
932 	struct page *inode_page;	/* its inode page, NULL is possible */
933 	struct page *node_page;		/* cached direct node page */
934 	nid_t nid;			/* node id of the direct node block */
935 	unsigned int ofs_in_node;	/* data offset in the node page */
936 	bool inode_page_locked;		/* inode page is locked or not */
937 	bool node_changed;		/* is node block changed */
938 	char cur_level;			/* level of hole node page */
939 	char max_level;			/* level of current page located */
940 	block_t	data_blkaddr;		/* block address of the node block */
941 };
942 
943 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
944 		struct page *ipage, struct page *npage, nid_t nid)
945 {
946 	memset(dn, 0, sizeof(*dn));
947 	dn->inode = inode;
948 	dn->inode_page = ipage;
949 	dn->node_page = npage;
950 	dn->nid = nid;
951 }
952 
953 /*
954  * For SIT manager
955  *
956  * By default, there are 6 active log areas across the whole main area.
957  * When considering hot and cold data separation to reduce cleaning overhead,
958  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
959  * respectively.
960  * In the current design, you should not change the numbers intentionally.
961  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
962  * logs individually according to the underlying devices. (default: 6)
963  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
964  * data and 8 for node logs.
965  */
966 #define	NR_CURSEG_DATA_TYPE	(3)
967 #define NR_CURSEG_NODE_TYPE	(3)
968 #define NR_CURSEG_INMEM_TYPE	(2)
969 #define NR_CURSEG_RO_TYPE	(2)
970 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
971 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
972 
973 enum {
974 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
975 	CURSEG_WARM_DATA,	/* data blocks */
976 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
977 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
978 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
979 	CURSEG_COLD_NODE,	/* indirect node blocks */
980 	NR_PERSISTENT_LOG,	/* number of persistent log */
981 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
982 				/* pinned file that needs consecutive block address */
983 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
984 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
985 };
986 
987 struct flush_cmd {
988 	struct completion wait;
989 	struct llist_node llnode;
990 	nid_t ino;
991 	int ret;
992 };
993 
994 struct flush_cmd_control {
995 	struct task_struct *f2fs_issue_flush;	/* flush thread */
996 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
997 	atomic_t issued_flush;			/* # of issued flushes */
998 	atomic_t queued_flush;			/* # of queued flushes */
999 	struct llist_head issue_list;		/* list for command issue */
1000 	struct llist_node *dispatch_list;	/* list for command dispatch */
1001 };
1002 
1003 struct f2fs_sm_info {
1004 	struct sit_info *sit_info;		/* whole segment information */
1005 	struct free_segmap_info *free_info;	/* free segment information */
1006 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1007 	struct curseg_info *curseg_array;	/* active segment information */
1008 
1009 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1010 
1011 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1012 	block_t main_blkaddr;		/* start block address of main area */
1013 	block_t ssa_blkaddr;		/* start block address of SSA area */
1014 
1015 	unsigned int segment_count;	/* total # of segments */
1016 	unsigned int main_segments;	/* # of segments in main area */
1017 	unsigned int reserved_segments;	/* # of reserved segments */
1018 	unsigned int ovp_segments;	/* # of overprovision segments */
1019 
1020 	/* a threshold to reclaim prefree segments */
1021 	unsigned int rec_prefree_segments;
1022 
1023 	/* for batched trimming */
1024 	unsigned int trim_sections;		/* # of sections to trim */
1025 
1026 	struct list_head sit_entry_set;	/* sit entry set list */
1027 
1028 	unsigned int ipu_policy;	/* in-place-update policy */
1029 	unsigned int min_ipu_util;	/* in-place-update threshold */
1030 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1031 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1032 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1033 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1034 
1035 	/* for flush command control */
1036 	struct flush_cmd_control *fcc_info;
1037 
1038 	/* for discard command control */
1039 	struct discard_cmd_control *dcc_info;
1040 };
1041 
1042 /*
1043  * For superblock
1044  */
1045 /*
1046  * COUNT_TYPE for monitoring
1047  *
1048  * f2fs monitors the number of several block types such as on-writeback,
1049  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1050  */
1051 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1052 enum count_type {
1053 	F2FS_DIRTY_DENTS,
1054 	F2FS_DIRTY_DATA,
1055 	F2FS_DIRTY_QDATA,
1056 	F2FS_DIRTY_NODES,
1057 	F2FS_DIRTY_META,
1058 	F2FS_INMEM_PAGES,
1059 	F2FS_DIRTY_IMETA,
1060 	F2FS_WB_CP_DATA,
1061 	F2FS_WB_DATA,
1062 	F2FS_RD_DATA,
1063 	F2FS_RD_NODE,
1064 	F2FS_RD_META,
1065 	F2FS_DIO_WRITE,
1066 	F2FS_DIO_READ,
1067 	NR_COUNT_TYPE,
1068 };
1069 
1070 /*
1071  * The below are the page types of bios used in submit_bio().
1072  * The available types are:
1073  * DATA			User data pages. It operates as async mode.
1074  * NODE			Node pages. It operates as async mode.
1075  * META			FS metadata pages such as SIT, NAT, CP.
1076  * NR_PAGE_TYPE		The number of page types.
1077  * META_FLUSH		Make sure the previous pages are written
1078  *			with waiting the bio's completion
1079  * ...			Only can be used with META.
1080  */
1081 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1082 enum page_type {
1083 	DATA,
1084 	NODE,
1085 	META,
1086 	NR_PAGE_TYPE,
1087 	META_FLUSH,
1088 	INMEM,		/* the below types are used by tracepoints only. */
1089 	INMEM_DROP,
1090 	INMEM_INVALIDATE,
1091 	INMEM_REVOKE,
1092 	IPU,
1093 	OPU,
1094 };
1095 
1096 enum temp_type {
1097 	HOT = 0,	/* must be zero for meta bio */
1098 	WARM,
1099 	COLD,
1100 	NR_TEMP_TYPE,
1101 };
1102 
1103 enum need_lock_type {
1104 	LOCK_REQ = 0,
1105 	LOCK_DONE,
1106 	LOCK_RETRY,
1107 };
1108 
1109 enum cp_reason_type {
1110 	CP_NO_NEEDED,
1111 	CP_NON_REGULAR,
1112 	CP_COMPRESSED,
1113 	CP_HARDLINK,
1114 	CP_SB_NEED_CP,
1115 	CP_WRONG_PINO,
1116 	CP_NO_SPC_ROLL,
1117 	CP_NODE_NEED_CP,
1118 	CP_FASTBOOT_MODE,
1119 	CP_SPEC_LOG_NUM,
1120 	CP_RECOVER_DIR,
1121 };
1122 
1123 enum iostat_type {
1124 	/* WRITE IO */
1125 	APP_DIRECT_IO,			/* app direct write IOs */
1126 	APP_BUFFERED_IO,		/* app buffered write IOs */
1127 	APP_WRITE_IO,			/* app write IOs */
1128 	APP_MAPPED_IO,			/* app mapped IOs */
1129 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1130 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1131 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1132 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1133 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1134 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1135 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1136 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1137 
1138 	/* READ IO */
1139 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1140 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1141 	APP_READ_IO,			/* app read IOs */
1142 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1143 	FS_DATA_READ_IO,		/* data read IOs */
1144 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1145 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1146 	FS_NODE_READ_IO,		/* node read IOs */
1147 	FS_META_READ_IO,		/* meta read IOs */
1148 
1149 	/* other */
1150 	FS_DISCARD,			/* discard */
1151 	NR_IO_TYPE,
1152 };
1153 
1154 struct f2fs_io_info {
1155 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1156 	nid_t ino;		/* inode number */
1157 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1158 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1159 	int op;			/* contains REQ_OP_ */
1160 	int op_flags;		/* req_flag_bits */
1161 	block_t new_blkaddr;	/* new block address to be written */
1162 	block_t old_blkaddr;	/* old block address before Cow */
1163 	struct page *page;	/* page to be written */
1164 	struct page *encrypted_page;	/* encrypted page */
1165 	struct page *compressed_page;	/* compressed page */
1166 	struct list_head list;		/* serialize IOs */
1167 	bool submitted;		/* indicate IO submission */
1168 	int need_lock;		/* indicate we need to lock cp_rwsem */
1169 	bool in_list;		/* indicate fio is in io_list */
1170 	bool is_por;		/* indicate IO is from recovery or not */
1171 	bool retry;		/* need to reallocate block address */
1172 	int compr_blocks;	/* # of compressed block addresses */
1173 	bool encrypted;		/* indicate file is encrypted */
1174 	enum iostat_type io_type;	/* io type */
1175 	struct writeback_control *io_wbc; /* writeback control */
1176 	struct bio **bio;		/* bio for ipu */
1177 	sector_t *last_block;		/* last block number in bio */
1178 	unsigned char version;		/* version of the node */
1179 };
1180 
1181 struct bio_entry {
1182 	struct bio *bio;
1183 	struct list_head list;
1184 };
1185 
1186 #define is_read_io(rw) ((rw) == READ)
1187 struct f2fs_bio_info {
1188 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1189 	struct bio *bio;		/* bios to merge */
1190 	sector_t last_block_in_bio;	/* last block number */
1191 	struct f2fs_io_info fio;	/* store buffered io info. */
1192 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1193 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1194 	struct list_head io_list;	/* track fios */
1195 	struct list_head bio_list;	/* bio entry list head */
1196 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1197 };
1198 
1199 #define FDEV(i)				(sbi->devs[i])
1200 #define RDEV(i)				(raw_super->devs[i])
1201 struct f2fs_dev_info {
1202 	struct block_device *bdev;
1203 	char path[MAX_PATH_LEN];
1204 	unsigned int total_segments;
1205 	block_t start_blk;
1206 	block_t end_blk;
1207 #ifdef CONFIG_BLK_DEV_ZONED
1208 	unsigned int nr_blkz;		/* Total number of zones */
1209 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1210 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1211 #endif
1212 };
1213 
1214 enum inode_type {
1215 	DIR_INODE,			/* for dirty dir inode */
1216 	FILE_INODE,			/* for dirty regular/symlink inode */
1217 	DIRTY_META,			/* for all dirtied inode metadata */
1218 	ATOMIC_FILE,			/* for all atomic files */
1219 	NR_INODE_TYPE,
1220 };
1221 
1222 /* for inner inode cache management */
1223 struct inode_management {
1224 	struct radix_tree_root ino_root;	/* ino entry array */
1225 	spinlock_t ino_lock;			/* for ino entry lock */
1226 	struct list_head ino_list;		/* inode list head */
1227 	unsigned long ino_num;			/* number of entries */
1228 };
1229 
1230 /* for GC_AT */
1231 struct atgc_management {
1232 	bool atgc_enabled;			/* ATGC is enabled or not */
1233 	struct rb_root_cached root;		/* root of victim rb-tree */
1234 	struct list_head victim_list;		/* linked with all victim entries */
1235 	unsigned int victim_count;		/* victim count in rb-tree */
1236 	unsigned int candidate_ratio;		/* candidate ratio */
1237 	unsigned int max_candidate_count;	/* max candidate count */
1238 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1239 	unsigned long long age_threshold;	/* age threshold */
1240 };
1241 
1242 /* For s_flag in struct f2fs_sb_info */
1243 enum {
1244 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1245 	SBI_IS_CLOSE,				/* specify unmounting */
1246 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1247 	SBI_POR_DOING,				/* recovery is doing or not */
1248 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1249 	SBI_NEED_CP,				/* need to checkpoint */
1250 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1251 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1252 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1253 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1254 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1255 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1256 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1257 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1258 };
1259 
1260 enum {
1261 	CP_TIME,
1262 	REQ_TIME,
1263 	DISCARD_TIME,
1264 	GC_TIME,
1265 	DISABLE_TIME,
1266 	UMOUNT_DISCARD_TIMEOUT,
1267 	MAX_TIME,
1268 };
1269 
1270 enum {
1271 	GC_NORMAL,
1272 	GC_IDLE_CB,
1273 	GC_IDLE_GREEDY,
1274 	GC_IDLE_AT,
1275 	GC_URGENT_HIGH,
1276 	GC_URGENT_LOW,
1277 	MAX_GC_MODE,
1278 };
1279 
1280 enum {
1281 	BGGC_MODE_ON,		/* background gc is on */
1282 	BGGC_MODE_OFF,		/* background gc is off */
1283 	BGGC_MODE_SYNC,		/*
1284 				 * background gc is on, migrating blocks
1285 				 * like foreground gc
1286 				 */
1287 };
1288 
1289 enum {
1290 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1291 	FS_MODE_LFS,			/* use lfs allocation only */
1292 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1293 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1294 };
1295 
1296 enum {
1297 	WHINT_MODE_OFF,		/* not pass down write hints */
1298 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1299 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1300 };
1301 
1302 enum {
1303 	ALLOC_MODE_DEFAULT,	/* stay default */
1304 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1305 };
1306 
1307 enum fsync_mode {
1308 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1309 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1310 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1311 };
1312 
1313 enum {
1314 	COMPR_MODE_FS,		/*
1315 				 * automatically compress compression
1316 				 * enabled files
1317 				 */
1318 	COMPR_MODE_USER,	/*
1319 				 * automatical compression is disabled.
1320 				 * user can control the file compression
1321 				 * using ioctls
1322 				 */
1323 };
1324 
1325 enum {
1326 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1327 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1328 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1329 };
1330 
1331 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1332 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1333 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1334 
1335 /*
1336  * Layout of f2fs page.private:
1337  *
1338  * Layout A: lowest bit should be 1
1339  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1340  * bit 0	PAGE_PRIVATE_NOT_POINTER
1341  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1342  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1343  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1344  * bit 4	PAGE_PRIVATE_INLINE_INODE
1345  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1346  * bit 6-	f2fs private data
1347  *
1348  * Layout B: lowest bit should be 0
1349  * page.private is a wrapped pointer.
1350  */
1351 enum {
1352 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1353 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1354 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1355 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1356 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1357 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1358 	PAGE_PRIVATE_MAX
1359 };
1360 
1361 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1362 static inline bool page_private_##name(struct page *page) \
1363 { \
1364 	return PagePrivate(page) && \
1365 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1366 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1367 }
1368 
1369 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1370 static inline void set_page_private_##name(struct page *page) \
1371 { \
1372 	if (!PagePrivate(page)) { \
1373 		get_page(page); \
1374 		SetPagePrivate(page); \
1375 		set_page_private(page, 0); \
1376 	} \
1377 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1378 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1379 }
1380 
1381 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1382 static inline void clear_page_private_##name(struct page *page) \
1383 { \
1384 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1385 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1386 		set_page_private(page, 0); \
1387 		if (PagePrivate(page)) { \
1388 			ClearPagePrivate(page); \
1389 			put_page(page); \
1390 		}\
1391 	} \
1392 }
1393 
1394 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1395 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1396 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1397 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1398 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1399 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1400 
1401 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1402 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1403 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1404 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1405 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1406 
1407 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1408 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1409 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1410 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1411 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1412 
1413 static inline unsigned long get_page_private_data(struct page *page)
1414 {
1415 	unsigned long data = page_private(page);
1416 
1417 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1418 		return 0;
1419 	return data >> PAGE_PRIVATE_MAX;
1420 }
1421 
1422 static inline void set_page_private_data(struct page *page, unsigned long data)
1423 {
1424 	if (!PagePrivate(page)) {
1425 		get_page(page);
1426 		SetPagePrivate(page);
1427 		set_page_private(page, 0);
1428 	}
1429 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1430 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1431 }
1432 
1433 static inline void clear_page_private_data(struct page *page)
1434 {
1435 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1436 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1437 		set_page_private(page, 0);
1438 		if (PagePrivate(page)) {
1439 			ClearPagePrivate(page);
1440 			put_page(page);
1441 		}
1442 	}
1443 }
1444 
1445 /* For compression */
1446 enum compress_algorithm_type {
1447 	COMPRESS_LZO,
1448 	COMPRESS_LZ4,
1449 	COMPRESS_ZSTD,
1450 	COMPRESS_LZORLE,
1451 	COMPRESS_MAX,
1452 };
1453 
1454 enum compress_flag {
1455 	COMPRESS_CHKSUM,
1456 	COMPRESS_MAX_FLAG,
1457 };
1458 
1459 #define	COMPRESS_WATERMARK			20
1460 #define	COMPRESS_PERCENT			20
1461 
1462 #define COMPRESS_DATA_RESERVED_SIZE		4
1463 struct compress_data {
1464 	__le32 clen;			/* compressed data size */
1465 	__le32 chksum;			/* compressed data chksum */
1466 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1467 	u8 cdata[];			/* compressed data */
1468 };
1469 
1470 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1471 
1472 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1473 
1474 #define	COMPRESS_LEVEL_OFFSET	8
1475 
1476 /* compress context */
1477 struct compress_ctx {
1478 	struct inode *inode;		/* inode the context belong to */
1479 	pgoff_t cluster_idx;		/* cluster index number */
1480 	unsigned int cluster_size;	/* page count in cluster */
1481 	unsigned int log_cluster_size;	/* log of cluster size */
1482 	struct page **rpages;		/* pages store raw data in cluster */
1483 	unsigned int nr_rpages;		/* total page number in rpages */
1484 	struct page **cpages;		/* pages store compressed data in cluster */
1485 	unsigned int nr_cpages;		/* total page number in cpages */
1486 	void *rbuf;			/* virtual mapped address on rpages */
1487 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1488 	size_t rlen;			/* valid data length in rbuf */
1489 	size_t clen;			/* valid data length in cbuf */
1490 	void *private;			/* payload buffer for specified compression algorithm */
1491 	void *private2;			/* extra payload buffer */
1492 };
1493 
1494 /* compress context for write IO path */
1495 struct compress_io_ctx {
1496 	u32 magic;			/* magic number to indicate page is compressed */
1497 	struct inode *inode;		/* inode the context belong to */
1498 	struct page **rpages;		/* pages store raw data in cluster */
1499 	unsigned int nr_rpages;		/* total page number in rpages */
1500 	atomic_t pending_pages;		/* in-flight compressed page count */
1501 };
1502 
1503 /* Context for decompressing one cluster on the read IO path */
1504 struct decompress_io_ctx {
1505 	u32 magic;			/* magic number to indicate page is compressed */
1506 	struct inode *inode;		/* inode the context belong to */
1507 	pgoff_t cluster_idx;		/* cluster index number */
1508 	unsigned int cluster_size;	/* page count in cluster */
1509 	unsigned int log_cluster_size;	/* log of cluster size */
1510 	struct page **rpages;		/* pages store raw data in cluster */
1511 	unsigned int nr_rpages;		/* total page number in rpages */
1512 	struct page **cpages;		/* pages store compressed data in cluster */
1513 	unsigned int nr_cpages;		/* total page number in cpages */
1514 	struct page **tpages;		/* temp pages to pad holes in cluster */
1515 	void *rbuf;			/* virtual mapped address on rpages */
1516 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1517 	size_t rlen;			/* valid data length in rbuf */
1518 	size_t clen;			/* valid data length in cbuf */
1519 
1520 	/*
1521 	 * The number of compressed pages remaining to be read in this cluster.
1522 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1523 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1524 	 * is decompressed (or an error is reported).
1525 	 *
1526 	 * If an error occurs before all the pages have been submitted for I/O,
1527 	 * then this will never reach 0.  In this case the I/O submitter is
1528 	 * responsible for calling f2fs_decompress_end_io() instead.
1529 	 */
1530 	atomic_t remaining_pages;
1531 
1532 	/*
1533 	 * Number of references to this decompress_io_ctx.
1534 	 *
1535 	 * One reference is held for I/O completion.  This reference is dropped
1536 	 * after the pagecache pages are updated and unlocked -- either after
1537 	 * decompression (and verity if enabled), or after an error.
1538 	 *
1539 	 * In addition, each compressed page holds a reference while it is in a
1540 	 * bio.  These references are necessary prevent compressed pages from
1541 	 * being freed while they are still in a bio.
1542 	 */
1543 	refcount_t refcnt;
1544 
1545 	bool failed;			/* IO error occurred before decompression? */
1546 	bool need_verity;		/* need fs-verity verification after decompression? */
1547 	void *private;			/* payload buffer for specified decompression algorithm */
1548 	void *private2;			/* extra payload buffer */
1549 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1550 };
1551 
1552 #define NULL_CLUSTER			((unsigned int)(~0))
1553 #define MIN_COMPRESS_LOG_SIZE		2
1554 #define MAX_COMPRESS_LOG_SIZE		8
1555 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1556 
1557 struct f2fs_sb_info {
1558 	struct super_block *sb;			/* pointer to VFS super block */
1559 	struct proc_dir_entry *s_proc;		/* proc entry */
1560 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1561 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1562 	int valid_super_block;			/* valid super block no */
1563 	unsigned long s_flag;				/* flags for sbi */
1564 	struct mutex writepages;		/* mutex for writepages() */
1565 
1566 #ifdef CONFIG_BLK_DEV_ZONED
1567 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1568 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1569 #endif
1570 
1571 	/* for node-related operations */
1572 	struct f2fs_nm_info *nm_info;		/* node manager */
1573 	struct inode *node_inode;		/* cache node blocks */
1574 
1575 	/* for segment-related operations */
1576 	struct f2fs_sm_info *sm_info;		/* segment manager */
1577 
1578 	/* for bio operations */
1579 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1580 	/* keep migration IO order for LFS mode */
1581 	struct rw_semaphore io_order_lock;
1582 	mempool_t *write_io_dummy;		/* Dummy pages */
1583 
1584 	/* for checkpoint */
1585 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1586 	int cur_cp_pack;			/* remain current cp pack */
1587 	spinlock_t cp_lock;			/* for flag in ckpt */
1588 	struct inode *meta_inode;		/* cache meta blocks */
1589 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1590 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1591 	struct rw_semaphore node_write;		/* locking node writes */
1592 	struct rw_semaphore node_change;	/* locking node change */
1593 	wait_queue_head_t cp_wait;
1594 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1595 	long interval_time[MAX_TIME];		/* to store thresholds */
1596 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1597 
1598 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1599 
1600 	spinlock_t fsync_node_lock;		/* for node entry lock */
1601 	struct list_head fsync_node_list;	/* node list head */
1602 	unsigned int fsync_seg_id;		/* sequence id */
1603 	unsigned int fsync_node_num;		/* number of node entries */
1604 
1605 	/* for orphan inode, use 0'th array */
1606 	unsigned int max_orphans;		/* max orphan inodes */
1607 
1608 	/* for inode management */
1609 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1610 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1611 	struct mutex flush_lock;		/* for flush exclusion */
1612 
1613 	/* for extent tree cache */
1614 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1615 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1616 	struct list_head extent_list;		/* lru list for shrinker */
1617 	spinlock_t extent_lock;			/* locking extent lru list */
1618 	atomic_t total_ext_tree;		/* extent tree count */
1619 	struct list_head zombie_list;		/* extent zombie tree list */
1620 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1621 	atomic_t total_ext_node;		/* extent info count */
1622 
1623 	/* basic filesystem units */
1624 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1625 	unsigned int log_blocksize;		/* log2 block size */
1626 	unsigned int blocksize;			/* block size */
1627 	unsigned int root_ino_num;		/* root inode number*/
1628 	unsigned int node_ino_num;		/* node inode number*/
1629 	unsigned int meta_ino_num;		/* meta inode number*/
1630 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1631 	unsigned int blocks_per_seg;		/* blocks per segment */
1632 	unsigned int segs_per_sec;		/* segments per section */
1633 	unsigned int secs_per_zone;		/* sections per zone */
1634 	unsigned int total_sections;		/* total section count */
1635 	unsigned int total_node_count;		/* total node block count */
1636 	unsigned int total_valid_node_count;	/* valid node block count */
1637 	int dir_level;				/* directory level */
1638 	int readdir_ra;				/* readahead inode in readdir */
1639 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1640 
1641 	block_t user_block_count;		/* # of user blocks */
1642 	block_t total_valid_block_count;	/* # of valid blocks */
1643 	block_t discard_blks;			/* discard command candidats */
1644 	block_t last_valid_block_count;		/* for recovery */
1645 	block_t reserved_blocks;		/* configurable reserved blocks */
1646 	block_t current_reserved_blocks;	/* current reserved blocks */
1647 
1648 	/* Additional tracking for no checkpoint mode */
1649 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1650 
1651 	unsigned int nquota_files;		/* # of quota sysfile */
1652 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1653 
1654 	/* # of pages, see count_type */
1655 	atomic_t nr_pages[NR_COUNT_TYPE];
1656 	/* # of allocated blocks */
1657 	struct percpu_counter alloc_valid_block_count;
1658 
1659 	/* writeback control */
1660 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1661 
1662 	/* valid inode count */
1663 	struct percpu_counter total_valid_inode_count;
1664 
1665 	struct f2fs_mount_info mount_opt;	/* mount options */
1666 
1667 	/* for cleaning operations */
1668 	struct rw_semaphore gc_lock;		/*
1669 						 * semaphore for GC, avoid
1670 						 * race between GC and GC or CP
1671 						 */
1672 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1673 	struct atgc_management am;		/* atgc management */
1674 	unsigned int cur_victim_sec;		/* current victim section num */
1675 	unsigned int gc_mode;			/* current GC state */
1676 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1677 
1678 	/* for skip statistic */
1679 	unsigned int atomic_files;		/* # of opened atomic file */
1680 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1681 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1682 
1683 	/* threshold for gc trials on pinned files */
1684 	u64 gc_pin_file_threshold;
1685 	struct rw_semaphore pin_sem;
1686 
1687 	/* maximum # of trials to find a victim segment for SSR and GC */
1688 	unsigned int max_victim_search;
1689 	/* migration granularity of garbage collection, unit: segment */
1690 	unsigned int migration_granularity;
1691 
1692 	/*
1693 	 * for stat information.
1694 	 * one is for the LFS mode, and the other is for the SSR mode.
1695 	 */
1696 #ifdef CONFIG_F2FS_STAT_FS
1697 	struct f2fs_stat_info *stat_info;	/* FS status information */
1698 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1699 	unsigned int segment_count[2];		/* # of allocated segments */
1700 	unsigned int block_count[2];		/* # of allocated blocks */
1701 	atomic_t inplace_count;		/* # of inplace update */
1702 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1703 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1704 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1705 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1706 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1707 	atomic_t inline_inode;			/* # of inline_data inodes */
1708 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1709 	atomic_t compr_inode;			/* # of compressed inodes */
1710 	atomic64_t compr_blocks;		/* # of compressed blocks */
1711 	atomic_t vw_cnt;			/* # of volatile writes */
1712 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1713 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1714 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1715 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1716 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1717 #endif
1718 	spinlock_t stat_lock;			/* lock for stat operations */
1719 
1720 	/* to attach REQ_META|REQ_FUA flags */
1721 	unsigned int data_io_flag;
1722 	unsigned int node_io_flag;
1723 
1724 	/* For sysfs suppport */
1725 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1726 	struct completion s_kobj_unregister;
1727 
1728 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1729 	struct completion s_stat_kobj_unregister;
1730 
1731 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1732 	struct completion s_feature_list_kobj_unregister;
1733 
1734 	/* For shrinker support */
1735 	struct list_head s_list;
1736 	int s_ndevs;				/* number of devices */
1737 	struct f2fs_dev_info *devs;		/* for device list */
1738 	unsigned int dirty_device;		/* for checkpoint data flush */
1739 	spinlock_t dev_lock;			/* protect dirty_device */
1740 	struct mutex umount_mutex;
1741 	unsigned int shrinker_run_no;
1742 
1743 	/* For write statistics */
1744 	u64 sectors_written_start;
1745 	u64 kbytes_written;
1746 
1747 	/* Reference to checksum algorithm driver via cryptoapi */
1748 	struct crypto_shash *s_chksum_driver;
1749 
1750 	/* Precomputed FS UUID checksum for seeding other checksums */
1751 	__u32 s_chksum_seed;
1752 
1753 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1754 
1755 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1756 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1757 
1758 	/* For reclaimed segs statistics per each GC mode */
1759 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1760 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1761 
1762 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1763 
1764 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1765 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1766 
1767 #ifdef CONFIG_F2FS_FS_COMPRESSION
1768 	struct kmem_cache *page_array_slab;	/* page array entry */
1769 	unsigned int page_array_slab_size;	/* default page array slab size */
1770 
1771 	/* For runtime compression statistics */
1772 	u64 compr_written_block;
1773 	u64 compr_saved_block;
1774 	u32 compr_new_inode;
1775 
1776 	/* For compressed block cache */
1777 	struct inode *compress_inode;		/* cache compressed blocks */
1778 	unsigned int compress_percent;		/* cache page percentage */
1779 	unsigned int compress_watermark;	/* cache page watermark */
1780 	atomic_t compress_page_hit;		/* cache hit count */
1781 #endif
1782 
1783 #ifdef CONFIG_F2FS_IOSTAT
1784 	/* For app/fs IO statistics */
1785 	spinlock_t iostat_lock;
1786 	unsigned long long rw_iostat[NR_IO_TYPE];
1787 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1788 	bool iostat_enable;
1789 	unsigned long iostat_next_period;
1790 	unsigned int iostat_period_ms;
1791 
1792 	/* For io latency related statistics info in one iostat period */
1793 	spinlock_t iostat_lat_lock;
1794 	struct iostat_lat_info *iostat_io_lat;
1795 #endif
1796 };
1797 
1798 struct f2fs_private_dio {
1799 	struct inode *inode;
1800 	void *orig_private;
1801 	bio_end_io_t *orig_end_io;
1802 	bool write;
1803 };
1804 
1805 #ifdef CONFIG_F2FS_FAULT_INJECTION
1806 #define f2fs_show_injection_info(sbi, type)					\
1807 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1808 		KERN_INFO, sbi->sb->s_id,				\
1809 		f2fs_fault_name[type],					\
1810 		__func__, __builtin_return_address(0))
1811 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1812 {
1813 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1814 
1815 	if (!ffi->inject_rate)
1816 		return false;
1817 
1818 	if (!IS_FAULT_SET(ffi, type))
1819 		return false;
1820 
1821 	atomic_inc(&ffi->inject_ops);
1822 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1823 		atomic_set(&ffi->inject_ops, 0);
1824 		return true;
1825 	}
1826 	return false;
1827 }
1828 #else
1829 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1830 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1831 {
1832 	return false;
1833 }
1834 #endif
1835 
1836 /*
1837  * Test if the mounted volume is a multi-device volume.
1838  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1839  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1840  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1841  */
1842 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1843 {
1844 	return sbi->s_ndevs > 1;
1845 }
1846 
1847 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1848 {
1849 	unsigned long now = jiffies;
1850 
1851 	sbi->last_time[type] = now;
1852 
1853 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1854 	if (type == REQ_TIME) {
1855 		sbi->last_time[DISCARD_TIME] = now;
1856 		sbi->last_time[GC_TIME] = now;
1857 	}
1858 }
1859 
1860 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1861 {
1862 	unsigned long interval = sbi->interval_time[type] * HZ;
1863 
1864 	return time_after(jiffies, sbi->last_time[type] + interval);
1865 }
1866 
1867 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1868 						int type)
1869 {
1870 	unsigned long interval = sbi->interval_time[type] * HZ;
1871 	unsigned int wait_ms = 0;
1872 	long delta;
1873 
1874 	delta = (sbi->last_time[type] + interval) - jiffies;
1875 	if (delta > 0)
1876 		wait_ms = jiffies_to_msecs(delta);
1877 
1878 	return wait_ms;
1879 }
1880 
1881 /*
1882  * Inline functions
1883  */
1884 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1885 			      const void *address, unsigned int length)
1886 {
1887 	struct {
1888 		struct shash_desc shash;
1889 		char ctx[4];
1890 	} desc;
1891 	int err;
1892 
1893 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1894 
1895 	desc.shash.tfm = sbi->s_chksum_driver;
1896 	*(u32 *)desc.ctx = crc;
1897 
1898 	err = crypto_shash_update(&desc.shash, address, length);
1899 	BUG_ON(err);
1900 
1901 	return *(u32 *)desc.ctx;
1902 }
1903 
1904 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1905 			   unsigned int length)
1906 {
1907 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1908 }
1909 
1910 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1911 				  void *buf, size_t buf_size)
1912 {
1913 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1914 }
1915 
1916 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1917 			      const void *address, unsigned int length)
1918 {
1919 	return __f2fs_crc32(sbi, crc, address, length);
1920 }
1921 
1922 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1923 {
1924 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1925 }
1926 
1927 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1928 {
1929 	return sb->s_fs_info;
1930 }
1931 
1932 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1933 {
1934 	return F2FS_SB(inode->i_sb);
1935 }
1936 
1937 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1938 {
1939 	return F2FS_I_SB(mapping->host);
1940 }
1941 
1942 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1943 {
1944 	return F2FS_M_SB(page_file_mapping(page));
1945 }
1946 
1947 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1948 {
1949 	return (struct f2fs_super_block *)(sbi->raw_super);
1950 }
1951 
1952 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1953 {
1954 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1955 }
1956 
1957 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1958 {
1959 	return (struct f2fs_node *)page_address(page);
1960 }
1961 
1962 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1963 {
1964 	return &((struct f2fs_node *)page_address(page))->i;
1965 }
1966 
1967 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1968 {
1969 	return (struct f2fs_nm_info *)(sbi->nm_info);
1970 }
1971 
1972 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1973 {
1974 	return (struct f2fs_sm_info *)(sbi->sm_info);
1975 }
1976 
1977 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1978 {
1979 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1980 }
1981 
1982 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1983 {
1984 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1985 }
1986 
1987 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1988 {
1989 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1990 }
1991 
1992 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1993 {
1994 	return sbi->meta_inode->i_mapping;
1995 }
1996 
1997 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1998 {
1999 	return sbi->node_inode->i_mapping;
2000 }
2001 
2002 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2003 {
2004 	return test_bit(type, &sbi->s_flag);
2005 }
2006 
2007 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2008 {
2009 	set_bit(type, &sbi->s_flag);
2010 }
2011 
2012 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2013 {
2014 	clear_bit(type, &sbi->s_flag);
2015 }
2016 
2017 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2018 {
2019 	return le64_to_cpu(cp->checkpoint_ver);
2020 }
2021 
2022 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2023 {
2024 	if (type < F2FS_MAX_QUOTAS)
2025 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2026 	return 0;
2027 }
2028 
2029 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2030 {
2031 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2032 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2033 }
2034 
2035 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2036 {
2037 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2038 
2039 	return ckpt_flags & f;
2040 }
2041 
2042 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2043 {
2044 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2045 }
2046 
2047 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2048 {
2049 	unsigned int ckpt_flags;
2050 
2051 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2052 	ckpt_flags |= f;
2053 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2054 }
2055 
2056 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2057 {
2058 	unsigned long flags;
2059 
2060 	spin_lock_irqsave(&sbi->cp_lock, flags);
2061 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2062 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2063 }
2064 
2065 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2066 {
2067 	unsigned int ckpt_flags;
2068 
2069 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2070 	ckpt_flags &= (~f);
2071 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2072 }
2073 
2074 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2075 {
2076 	unsigned long flags;
2077 
2078 	spin_lock_irqsave(&sbi->cp_lock, flags);
2079 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2080 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2081 }
2082 
2083 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2084 {
2085 	down_read(&sbi->cp_rwsem);
2086 }
2087 
2088 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2089 {
2090 	return down_read_trylock(&sbi->cp_rwsem);
2091 }
2092 
2093 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2094 {
2095 	up_read(&sbi->cp_rwsem);
2096 }
2097 
2098 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2099 {
2100 	down_write(&sbi->cp_rwsem);
2101 }
2102 
2103 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2104 {
2105 	up_write(&sbi->cp_rwsem);
2106 }
2107 
2108 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2109 {
2110 	int reason = CP_SYNC;
2111 
2112 	if (test_opt(sbi, FASTBOOT))
2113 		reason = CP_FASTBOOT;
2114 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2115 		reason = CP_UMOUNT;
2116 	return reason;
2117 }
2118 
2119 static inline bool __remain_node_summaries(int reason)
2120 {
2121 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2122 }
2123 
2124 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2125 {
2126 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2127 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2128 }
2129 
2130 /*
2131  * Check whether the inode has blocks or not
2132  */
2133 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2134 {
2135 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2136 
2137 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2138 }
2139 
2140 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2141 {
2142 	return ofs == XATTR_NODE_OFFSET;
2143 }
2144 
2145 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2146 					struct inode *inode, bool cap)
2147 {
2148 	if (!inode)
2149 		return true;
2150 	if (!test_opt(sbi, RESERVE_ROOT))
2151 		return false;
2152 	if (IS_NOQUOTA(inode))
2153 		return true;
2154 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2155 		return true;
2156 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2157 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2158 		return true;
2159 	if (cap && capable(CAP_SYS_RESOURCE))
2160 		return true;
2161 	return false;
2162 }
2163 
2164 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2165 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2166 				 struct inode *inode, blkcnt_t *count)
2167 {
2168 	blkcnt_t diff = 0, release = 0;
2169 	block_t avail_user_block_count;
2170 	int ret;
2171 
2172 	ret = dquot_reserve_block(inode, *count);
2173 	if (ret)
2174 		return ret;
2175 
2176 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2177 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2178 		release = *count;
2179 		goto release_quota;
2180 	}
2181 
2182 	/*
2183 	 * let's increase this in prior to actual block count change in order
2184 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2185 	 */
2186 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2187 
2188 	spin_lock(&sbi->stat_lock);
2189 	sbi->total_valid_block_count += (block_t)(*count);
2190 	avail_user_block_count = sbi->user_block_count -
2191 					sbi->current_reserved_blocks;
2192 
2193 	if (!__allow_reserved_blocks(sbi, inode, true))
2194 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2195 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2196 		if (avail_user_block_count > sbi->unusable_block_count)
2197 			avail_user_block_count -= sbi->unusable_block_count;
2198 		else
2199 			avail_user_block_count = 0;
2200 	}
2201 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2202 		diff = sbi->total_valid_block_count - avail_user_block_count;
2203 		if (diff > *count)
2204 			diff = *count;
2205 		*count -= diff;
2206 		release = diff;
2207 		sbi->total_valid_block_count -= diff;
2208 		if (!*count) {
2209 			spin_unlock(&sbi->stat_lock);
2210 			goto enospc;
2211 		}
2212 	}
2213 	spin_unlock(&sbi->stat_lock);
2214 
2215 	if (unlikely(release)) {
2216 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2217 		dquot_release_reservation_block(inode, release);
2218 	}
2219 	f2fs_i_blocks_write(inode, *count, true, true);
2220 	return 0;
2221 
2222 enospc:
2223 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2224 release_quota:
2225 	dquot_release_reservation_block(inode, release);
2226 	return -ENOSPC;
2227 }
2228 
2229 __printf(2, 3)
2230 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2231 
2232 #define f2fs_err(sbi, fmt, ...)						\
2233 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2234 #define f2fs_warn(sbi, fmt, ...)					\
2235 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2236 #define f2fs_notice(sbi, fmt, ...)					\
2237 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2238 #define f2fs_info(sbi, fmt, ...)					\
2239 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2240 #define f2fs_debug(sbi, fmt, ...)					\
2241 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2242 
2243 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2244 						struct inode *inode,
2245 						block_t count)
2246 {
2247 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2248 
2249 	spin_lock(&sbi->stat_lock);
2250 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2251 	sbi->total_valid_block_count -= (block_t)count;
2252 	if (sbi->reserved_blocks &&
2253 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2254 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2255 					sbi->current_reserved_blocks + count);
2256 	spin_unlock(&sbi->stat_lock);
2257 	if (unlikely(inode->i_blocks < sectors)) {
2258 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2259 			  inode->i_ino,
2260 			  (unsigned long long)inode->i_blocks,
2261 			  (unsigned long long)sectors);
2262 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2263 		return;
2264 	}
2265 	f2fs_i_blocks_write(inode, count, false, true);
2266 }
2267 
2268 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2269 {
2270 	atomic_inc(&sbi->nr_pages[count_type]);
2271 
2272 	if (count_type == F2FS_DIRTY_DENTS ||
2273 			count_type == F2FS_DIRTY_NODES ||
2274 			count_type == F2FS_DIRTY_META ||
2275 			count_type == F2FS_DIRTY_QDATA ||
2276 			count_type == F2FS_DIRTY_IMETA)
2277 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2278 }
2279 
2280 static inline void inode_inc_dirty_pages(struct inode *inode)
2281 {
2282 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2283 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2284 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2285 	if (IS_NOQUOTA(inode))
2286 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2287 }
2288 
2289 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2290 {
2291 	atomic_dec(&sbi->nr_pages[count_type]);
2292 }
2293 
2294 static inline void inode_dec_dirty_pages(struct inode *inode)
2295 {
2296 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2297 			!S_ISLNK(inode->i_mode))
2298 		return;
2299 
2300 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2301 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2302 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2303 	if (IS_NOQUOTA(inode))
2304 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2305 }
2306 
2307 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2308 {
2309 	return atomic_read(&sbi->nr_pages[count_type]);
2310 }
2311 
2312 static inline int get_dirty_pages(struct inode *inode)
2313 {
2314 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2315 }
2316 
2317 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2318 {
2319 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2320 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2321 						sbi->log_blocks_per_seg;
2322 
2323 	return segs / sbi->segs_per_sec;
2324 }
2325 
2326 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2327 {
2328 	return sbi->total_valid_block_count;
2329 }
2330 
2331 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2332 {
2333 	return sbi->discard_blks;
2334 }
2335 
2336 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2337 {
2338 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2339 
2340 	/* return NAT or SIT bitmap */
2341 	if (flag == NAT_BITMAP)
2342 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2343 	else if (flag == SIT_BITMAP)
2344 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2345 
2346 	return 0;
2347 }
2348 
2349 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2350 {
2351 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2352 }
2353 
2354 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2355 {
2356 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2357 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2358 	int offset;
2359 
2360 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2361 		offset = (flag == SIT_BITMAP) ?
2362 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2363 		/*
2364 		 * if large_nat_bitmap feature is enabled, leave checksum
2365 		 * protection for all nat/sit bitmaps.
2366 		 */
2367 		return tmp_ptr + offset + sizeof(__le32);
2368 	}
2369 
2370 	if (__cp_payload(sbi) > 0) {
2371 		if (flag == NAT_BITMAP)
2372 			return &ckpt->sit_nat_version_bitmap;
2373 		else
2374 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2375 	} else {
2376 		offset = (flag == NAT_BITMAP) ?
2377 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2378 		return tmp_ptr + offset;
2379 	}
2380 }
2381 
2382 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2383 {
2384 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2385 
2386 	if (sbi->cur_cp_pack == 2)
2387 		start_addr += sbi->blocks_per_seg;
2388 	return start_addr;
2389 }
2390 
2391 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2392 {
2393 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2394 
2395 	if (sbi->cur_cp_pack == 1)
2396 		start_addr += sbi->blocks_per_seg;
2397 	return start_addr;
2398 }
2399 
2400 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2401 {
2402 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2403 }
2404 
2405 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2406 {
2407 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2408 }
2409 
2410 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2411 					struct inode *inode, bool is_inode)
2412 {
2413 	block_t	valid_block_count;
2414 	unsigned int valid_node_count, user_block_count;
2415 	int err;
2416 
2417 	if (is_inode) {
2418 		if (inode) {
2419 			err = dquot_alloc_inode(inode);
2420 			if (err)
2421 				return err;
2422 		}
2423 	} else {
2424 		err = dquot_reserve_block(inode, 1);
2425 		if (err)
2426 			return err;
2427 	}
2428 
2429 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2430 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2431 		goto enospc;
2432 	}
2433 
2434 	spin_lock(&sbi->stat_lock);
2435 
2436 	valid_block_count = sbi->total_valid_block_count +
2437 					sbi->current_reserved_blocks + 1;
2438 
2439 	if (!__allow_reserved_blocks(sbi, inode, false))
2440 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2441 	user_block_count = sbi->user_block_count;
2442 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2443 		user_block_count -= sbi->unusable_block_count;
2444 
2445 	if (unlikely(valid_block_count > user_block_count)) {
2446 		spin_unlock(&sbi->stat_lock);
2447 		goto enospc;
2448 	}
2449 
2450 	valid_node_count = sbi->total_valid_node_count + 1;
2451 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2452 		spin_unlock(&sbi->stat_lock);
2453 		goto enospc;
2454 	}
2455 
2456 	sbi->total_valid_node_count++;
2457 	sbi->total_valid_block_count++;
2458 	spin_unlock(&sbi->stat_lock);
2459 
2460 	if (inode) {
2461 		if (is_inode)
2462 			f2fs_mark_inode_dirty_sync(inode, true);
2463 		else
2464 			f2fs_i_blocks_write(inode, 1, true, true);
2465 	}
2466 
2467 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2468 	return 0;
2469 
2470 enospc:
2471 	if (is_inode) {
2472 		if (inode)
2473 			dquot_free_inode(inode);
2474 	} else {
2475 		dquot_release_reservation_block(inode, 1);
2476 	}
2477 	return -ENOSPC;
2478 }
2479 
2480 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2481 					struct inode *inode, bool is_inode)
2482 {
2483 	spin_lock(&sbi->stat_lock);
2484 
2485 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2486 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2487 
2488 	sbi->total_valid_node_count--;
2489 	sbi->total_valid_block_count--;
2490 	if (sbi->reserved_blocks &&
2491 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2492 		sbi->current_reserved_blocks++;
2493 
2494 	spin_unlock(&sbi->stat_lock);
2495 
2496 	if (is_inode) {
2497 		dquot_free_inode(inode);
2498 	} else {
2499 		if (unlikely(inode->i_blocks == 0)) {
2500 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2501 				  inode->i_ino,
2502 				  (unsigned long long)inode->i_blocks);
2503 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2504 			return;
2505 		}
2506 		f2fs_i_blocks_write(inode, 1, false, true);
2507 	}
2508 }
2509 
2510 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2511 {
2512 	return sbi->total_valid_node_count;
2513 }
2514 
2515 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2516 {
2517 	percpu_counter_inc(&sbi->total_valid_inode_count);
2518 }
2519 
2520 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2521 {
2522 	percpu_counter_dec(&sbi->total_valid_inode_count);
2523 }
2524 
2525 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2526 {
2527 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2528 }
2529 
2530 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2531 						pgoff_t index, bool for_write)
2532 {
2533 	struct page *page;
2534 
2535 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2536 		if (!for_write)
2537 			page = find_get_page_flags(mapping, index,
2538 							FGP_LOCK | FGP_ACCESSED);
2539 		else
2540 			page = find_lock_page(mapping, index);
2541 		if (page)
2542 			return page;
2543 
2544 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2545 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2546 							FAULT_PAGE_ALLOC);
2547 			return NULL;
2548 		}
2549 	}
2550 
2551 	if (!for_write)
2552 		return grab_cache_page(mapping, index);
2553 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2554 }
2555 
2556 static inline struct page *f2fs_pagecache_get_page(
2557 				struct address_space *mapping, pgoff_t index,
2558 				int fgp_flags, gfp_t gfp_mask)
2559 {
2560 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2561 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2562 		return NULL;
2563 	}
2564 
2565 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2566 }
2567 
2568 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2569 {
2570 	char *src_kaddr = kmap(src);
2571 	char *dst_kaddr = kmap(dst);
2572 
2573 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2574 	kunmap(dst);
2575 	kunmap(src);
2576 }
2577 
2578 static inline void f2fs_put_page(struct page *page, int unlock)
2579 {
2580 	if (!page)
2581 		return;
2582 
2583 	if (unlock) {
2584 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2585 		unlock_page(page);
2586 	}
2587 	put_page(page);
2588 }
2589 
2590 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2591 {
2592 	if (dn->node_page)
2593 		f2fs_put_page(dn->node_page, 1);
2594 	if (dn->inode_page && dn->node_page != dn->inode_page)
2595 		f2fs_put_page(dn->inode_page, 0);
2596 	dn->node_page = NULL;
2597 	dn->inode_page = NULL;
2598 }
2599 
2600 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2601 					size_t size)
2602 {
2603 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2604 }
2605 
2606 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2607 						gfp_t flags)
2608 {
2609 	void *entry;
2610 
2611 	entry = kmem_cache_alloc(cachep, flags);
2612 	if (!entry)
2613 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2614 	return entry;
2615 }
2616 
2617 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2618 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2619 {
2620 	if (nofail)
2621 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2622 
2623 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2624 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2625 		return NULL;
2626 	}
2627 
2628 	return kmem_cache_alloc(cachep, flags);
2629 }
2630 
2631 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2632 {
2633 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2634 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2635 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2636 		get_pages(sbi, F2FS_DIO_READ) ||
2637 		get_pages(sbi, F2FS_DIO_WRITE))
2638 		return true;
2639 
2640 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2641 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2642 		return true;
2643 
2644 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2645 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2646 		return true;
2647 	return false;
2648 }
2649 
2650 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2651 {
2652 	if (sbi->gc_mode == GC_URGENT_HIGH)
2653 		return true;
2654 
2655 	if (is_inflight_io(sbi, type))
2656 		return false;
2657 
2658 	if (sbi->gc_mode == GC_URGENT_LOW &&
2659 			(type == DISCARD_TIME || type == GC_TIME))
2660 		return true;
2661 
2662 	return f2fs_time_over(sbi, type);
2663 }
2664 
2665 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2666 				unsigned long index, void *item)
2667 {
2668 	while (radix_tree_insert(root, index, item))
2669 		cond_resched();
2670 }
2671 
2672 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2673 
2674 static inline bool IS_INODE(struct page *page)
2675 {
2676 	struct f2fs_node *p = F2FS_NODE(page);
2677 
2678 	return RAW_IS_INODE(p);
2679 }
2680 
2681 static inline int offset_in_addr(struct f2fs_inode *i)
2682 {
2683 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2684 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2685 }
2686 
2687 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2688 {
2689 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2690 }
2691 
2692 static inline int f2fs_has_extra_attr(struct inode *inode);
2693 static inline block_t data_blkaddr(struct inode *inode,
2694 			struct page *node_page, unsigned int offset)
2695 {
2696 	struct f2fs_node *raw_node;
2697 	__le32 *addr_array;
2698 	int base = 0;
2699 	bool is_inode = IS_INODE(node_page);
2700 
2701 	raw_node = F2FS_NODE(node_page);
2702 
2703 	if (is_inode) {
2704 		if (!inode)
2705 			/* from GC path only */
2706 			base = offset_in_addr(&raw_node->i);
2707 		else if (f2fs_has_extra_attr(inode))
2708 			base = get_extra_isize(inode);
2709 	}
2710 
2711 	addr_array = blkaddr_in_node(raw_node);
2712 	return le32_to_cpu(addr_array[base + offset]);
2713 }
2714 
2715 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2716 {
2717 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2718 }
2719 
2720 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2721 {
2722 	int mask;
2723 
2724 	addr += (nr >> 3);
2725 	mask = 1 << (7 - (nr & 0x07));
2726 	return mask & *addr;
2727 }
2728 
2729 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2730 {
2731 	int mask;
2732 
2733 	addr += (nr >> 3);
2734 	mask = 1 << (7 - (nr & 0x07));
2735 	*addr |= mask;
2736 }
2737 
2738 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2739 {
2740 	int mask;
2741 
2742 	addr += (nr >> 3);
2743 	mask = 1 << (7 - (nr & 0x07));
2744 	*addr &= ~mask;
2745 }
2746 
2747 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2748 {
2749 	int mask;
2750 	int ret;
2751 
2752 	addr += (nr >> 3);
2753 	mask = 1 << (7 - (nr & 0x07));
2754 	ret = mask & *addr;
2755 	*addr |= mask;
2756 	return ret;
2757 }
2758 
2759 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2760 {
2761 	int mask;
2762 	int ret;
2763 
2764 	addr += (nr >> 3);
2765 	mask = 1 << (7 - (nr & 0x07));
2766 	ret = mask & *addr;
2767 	*addr &= ~mask;
2768 	return ret;
2769 }
2770 
2771 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2772 {
2773 	int mask;
2774 
2775 	addr += (nr >> 3);
2776 	mask = 1 << (7 - (nr & 0x07));
2777 	*addr ^= mask;
2778 }
2779 
2780 /*
2781  * On-disk inode flags (f2fs_inode::i_flags)
2782  */
2783 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2784 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2785 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2786 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2787 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2788 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2789 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2790 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2791 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2792 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2793 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2794 
2795 /* Flags that should be inherited by new inodes from their parent. */
2796 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2797 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2798 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2799 
2800 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2801 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2802 				F2FS_CASEFOLD_FL))
2803 
2804 /* Flags that are appropriate for non-directories/regular files. */
2805 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2806 
2807 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2808 {
2809 	if (S_ISDIR(mode))
2810 		return flags;
2811 	else if (S_ISREG(mode))
2812 		return flags & F2FS_REG_FLMASK;
2813 	else
2814 		return flags & F2FS_OTHER_FLMASK;
2815 }
2816 
2817 static inline void __mark_inode_dirty_flag(struct inode *inode,
2818 						int flag, bool set)
2819 {
2820 	switch (flag) {
2821 	case FI_INLINE_XATTR:
2822 	case FI_INLINE_DATA:
2823 	case FI_INLINE_DENTRY:
2824 	case FI_NEW_INODE:
2825 		if (set)
2826 			return;
2827 		fallthrough;
2828 	case FI_DATA_EXIST:
2829 	case FI_INLINE_DOTS:
2830 	case FI_PIN_FILE:
2831 	case FI_COMPRESS_RELEASED:
2832 		f2fs_mark_inode_dirty_sync(inode, true);
2833 	}
2834 }
2835 
2836 static inline void set_inode_flag(struct inode *inode, int flag)
2837 {
2838 	set_bit(flag, F2FS_I(inode)->flags);
2839 	__mark_inode_dirty_flag(inode, flag, true);
2840 }
2841 
2842 static inline int is_inode_flag_set(struct inode *inode, int flag)
2843 {
2844 	return test_bit(flag, F2FS_I(inode)->flags);
2845 }
2846 
2847 static inline void clear_inode_flag(struct inode *inode, int flag)
2848 {
2849 	clear_bit(flag, F2FS_I(inode)->flags);
2850 	__mark_inode_dirty_flag(inode, flag, false);
2851 }
2852 
2853 static inline bool f2fs_verity_in_progress(struct inode *inode)
2854 {
2855 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2856 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2857 }
2858 
2859 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2860 {
2861 	F2FS_I(inode)->i_acl_mode = mode;
2862 	set_inode_flag(inode, FI_ACL_MODE);
2863 	f2fs_mark_inode_dirty_sync(inode, false);
2864 }
2865 
2866 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2867 {
2868 	if (inc)
2869 		inc_nlink(inode);
2870 	else
2871 		drop_nlink(inode);
2872 	f2fs_mark_inode_dirty_sync(inode, true);
2873 }
2874 
2875 static inline void f2fs_i_blocks_write(struct inode *inode,
2876 					block_t diff, bool add, bool claim)
2877 {
2878 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2879 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2880 
2881 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2882 	if (add) {
2883 		if (claim)
2884 			dquot_claim_block(inode, diff);
2885 		else
2886 			dquot_alloc_block_nofail(inode, diff);
2887 	} else {
2888 		dquot_free_block(inode, diff);
2889 	}
2890 
2891 	f2fs_mark_inode_dirty_sync(inode, true);
2892 	if (clean || recover)
2893 		set_inode_flag(inode, FI_AUTO_RECOVER);
2894 }
2895 
2896 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2897 {
2898 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2899 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2900 
2901 	if (i_size_read(inode) == i_size)
2902 		return;
2903 
2904 	i_size_write(inode, i_size);
2905 	f2fs_mark_inode_dirty_sync(inode, true);
2906 	if (clean || recover)
2907 		set_inode_flag(inode, FI_AUTO_RECOVER);
2908 }
2909 
2910 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2911 {
2912 	F2FS_I(inode)->i_current_depth = depth;
2913 	f2fs_mark_inode_dirty_sync(inode, true);
2914 }
2915 
2916 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2917 					unsigned int count)
2918 {
2919 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2920 	f2fs_mark_inode_dirty_sync(inode, true);
2921 }
2922 
2923 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2924 {
2925 	F2FS_I(inode)->i_xattr_nid = xnid;
2926 	f2fs_mark_inode_dirty_sync(inode, true);
2927 }
2928 
2929 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2930 {
2931 	F2FS_I(inode)->i_pino = pino;
2932 	f2fs_mark_inode_dirty_sync(inode, true);
2933 }
2934 
2935 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2936 {
2937 	struct f2fs_inode_info *fi = F2FS_I(inode);
2938 
2939 	if (ri->i_inline & F2FS_INLINE_XATTR)
2940 		set_bit(FI_INLINE_XATTR, fi->flags);
2941 	if (ri->i_inline & F2FS_INLINE_DATA)
2942 		set_bit(FI_INLINE_DATA, fi->flags);
2943 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2944 		set_bit(FI_INLINE_DENTRY, fi->flags);
2945 	if (ri->i_inline & F2FS_DATA_EXIST)
2946 		set_bit(FI_DATA_EXIST, fi->flags);
2947 	if (ri->i_inline & F2FS_INLINE_DOTS)
2948 		set_bit(FI_INLINE_DOTS, fi->flags);
2949 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2950 		set_bit(FI_EXTRA_ATTR, fi->flags);
2951 	if (ri->i_inline & F2FS_PIN_FILE)
2952 		set_bit(FI_PIN_FILE, fi->flags);
2953 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2954 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2955 }
2956 
2957 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2958 {
2959 	ri->i_inline = 0;
2960 
2961 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2962 		ri->i_inline |= F2FS_INLINE_XATTR;
2963 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2964 		ri->i_inline |= F2FS_INLINE_DATA;
2965 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2966 		ri->i_inline |= F2FS_INLINE_DENTRY;
2967 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2968 		ri->i_inline |= F2FS_DATA_EXIST;
2969 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2970 		ri->i_inline |= F2FS_INLINE_DOTS;
2971 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2972 		ri->i_inline |= F2FS_EXTRA_ATTR;
2973 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2974 		ri->i_inline |= F2FS_PIN_FILE;
2975 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2976 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2977 }
2978 
2979 static inline int f2fs_has_extra_attr(struct inode *inode)
2980 {
2981 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2982 }
2983 
2984 static inline int f2fs_has_inline_xattr(struct inode *inode)
2985 {
2986 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2987 }
2988 
2989 static inline int f2fs_compressed_file(struct inode *inode)
2990 {
2991 	return S_ISREG(inode->i_mode) &&
2992 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2993 }
2994 
2995 static inline bool f2fs_need_compress_data(struct inode *inode)
2996 {
2997 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2998 
2999 	if (!f2fs_compressed_file(inode))
3000 		return false;
3001 
3002 	if (compress_mode == COMPR_MODE_FS)
3003 		return true;
3004 	else if (compress_mode == COMPR_MODE_USER &&
3005 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3006 		return true;
3007 
3008 	return false;
3009 }
3010 
3011 static inline unsigned int addrs_per_inode(struct inode *inode)
3012 {
3013 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3014 				get_inline_xattr_addrs(inode);
3015 
3016 	if (!f2fs_compressed_file(inode))
3017 		return addrs;
3018 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3019 }
3020 
3021 static inline unsigned int addrs_per_block(struct inode *inode)
3022 {
3023 	if (!f2fs_compressed_file(inode))
3024 		return DEF_ADDRS_PER_BLOCK;
3025 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3026 }
3027 
3028 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3029 {
3030 	struct f2fs_inode *ri = F2FS_INODE(page);
3031 
3032 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3033 					get_inline_xattr_addrs(inode)]);
3034 }
3035 
3036 static inline int inline_xattr_size(struct inode *inode)
3037 {
3038 	if (f2fs_has_inline_xattr(inode))
3039 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3040 	return 0;
3041 }
3042 
3043 static inline int f2fs_has_inline_data(struct inode *inode)
3044 {
3045 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3046 }
3047 
3048 static inline int f2fs_exist_data(struct inode *inode)
3049 {
3050 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3051 }
3052 
3053 static inline int f2fs_has_inline_dots(struct inode *inode)
3054 {
3055 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3056 }
3057 
3058 static inline int f2fs_is_mmap_file(struct inode *inode)
3059 {
3060 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3061 }
3062 
3063 static inline bool f2fs_is_pinned_file(struct inode *inode)
3064 {
3065 	return is_inode_flag_set(inode, FI_PIN_FILE);
3066 }
3067 
3068 static inline bool f2fs_is_atomic_file(struct inode *inode)
3069 {
3070 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3071 }
3072 
3073 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3074 {
3075 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3076 }
3077 
3078 static inline bool f2fs_is_volatile_file(struct inode *inode)
3079 {
3080 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3081 }
3082 
3083 static inline bool f2fs_is_first_block_written(struct inode *inode)
3084 {
3085 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3086 }
3087 
3088 static inline bool f2fs_is_drop_cache(struct inode *inode)
3089 {
3090 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3091 }
3092 
3093 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3094 {
3095 	struct f2fs_inode *ri = F2FS_INODE(page);
3096 	int extra_size = get_extra_isize(inode);
3097 
3098 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3099 }
3100 
3101 static inline int f2fs_has_inline_dentry(struct inode *inode)
3102 {
3103 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3104 }
3105 
3106 static inline int is_file(struct inode *inode, int type)
3107 {
3108 	return F2FS_I(inode)->i_advise & type;
3109 }
3110 
3111 static inline void set_file(struct inode *inode, int type)
3112 {
3113 	F2FS_I(inode)->i_advise |= type;
3114 	f2fs_mark_inode_dirty_sync(inode, true);
3115 }
3116 
3117 static inline void clear_file(struct inode *inode, int type)
3118 {
3119 	F2FS_I(inode)->i_advise &= ~type;
3120 	f2fs_mark_inode_dirty_sync(inode, true);
3121 }
3122 
3123 static inline bool f2fs_is_time_consistent(struct inode *inode)
3124 {
3125 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3126 		return false;
3127 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3128 		return false;
3129 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3130 		return false;
3131 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3132 						&F2FS_I(inode)->i_crtime))
3133 		return false;
3134 	return true;
3135 }
3136 
3137 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3138 {
3139 	bool ret;
3140 
3141 	if (dsync) {
3142 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3143 
3144 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3145 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3146 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3147 		return ret;
3148 	}
3149 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3150 			file_keep_isize(inode) ||
3151 			i_size_read(inode) & ~PAGE_MASK)
3152 		return false;
3153 
3154 	if (!f2fs_is_time_consistent(inode))
3155 		return false;
3156 
3157 	spin_lock(&F2FS_I(inode)->i_size_lock);
3158 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3159 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3160 
3161 	return ret;
3162 }
3163 
3164 static inline bool f2fs_readonly(struct super_block *sb)
3165 {
3166 	return sb_rdonly(sb);
3167 }
3168 
3169 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3170 {
3171 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3172 }
3173 
3174 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3175 {
3176 	if (len == 1 && name[0] == '.')
3177 		return true;
3178 
3179 	if (len == 2 && name[0] == '.' && name[1] == '.')
3180 		return true;
3181 
3182 	return false;
3183 }
3184 
3185 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3186 					size_t size, gfp_t flags)
3187 {
3188 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3189 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3190 		return NULL;
3191 	}
3192 
3193 	return kmalloc(size, flags);
3194 }
3195 
3196 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3197 					size_t size, gfp_t flags)
3198 {
3199 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3200 }
3201 
3202 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3203 					size_t size, gfp_t flags)
3204 {
3205 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3206 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3207 		return NULL;
3208 	}
3209 
3210 	return kvmalloc(size, flags);
3211 }
3212 
3213 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3214 					size_t size, gfp_t flags)
3215 {
3216 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3217 }
3218 
3219 static inline int get_extra_isize(struct inode *inode)
3220 {
3221 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3222 }
3223 
3224 static inline int get_inline_xattr_addrs(struct inode *inode)
3225 {
3226 	return F2FS_I(inode)->i_inline_xattr_size;
3227 }
3228 
3229 #define f2fs_get_inode_mode(i) \
3230 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3231 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3232 
3233 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3234 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3235 	offsetof(struct f2fs_inode, i_extra_isize))	\
3236 
3237 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3238 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3239 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3240 		sizeof((f2fs_inode)->field))			\
3241 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3242 
3243 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3244 
3245 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3246 
3247 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3248 					block_t blkaddr, int type);
3249 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3250 					block_t blkaddr, int type)
3251 {
3252 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3253 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3254 			 blkaddr, type);
3255 		f2fs_bug_on(sbi, 1);
3256 	}
3257 }
3258 
3259 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3260 {
3261 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3262 			blkaddr == COMPRESS_ADDR)
3263 		return false;
3264 	return true;
3265 }
3266 
3267 /*
3268  * file.c
3269  */
3270 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3271 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3272 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3273 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3274 int f2fs_truncate(struct inode *inode);
3275 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3276 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3277 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3278 		 struct iattr *attr);
3279 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3280 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3281 int f2fs_precache_extents(struct inode *inode);
3282 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3283 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3284 		      struct dentry *dentry, struct fileattr *fa);
3285 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3286 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3287 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3288 int f2fs_pin_file_control(struct inode *inode, bool inc);
3289 
3290 /*
3291  * inode.c
3292  */
3293 void f2fs_set_inode_flags(struct inode *inode);
3294 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3295 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3296 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3297 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3298 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3299 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3300 void f2fs_update_inode_page(struct inode *inode);
3301 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3302 void f2fs_evict_inode(struct inode *inode);
3303 void f2fs_handle_failed_inode(struct inode *inode);
3304 
3305 /*
3306  * namei.c
3307  */
3308 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3309 							bool hot, bool set);
3310 struct dentry *f2fs_get_parent(struct dentry *child);
3311 
3312 /*
3313  * dir.c
3314  */
3315 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3316 int f2fs_init_casefolded_name(const struct inode *dir,
3317 			      struct f2fs_filename *fname);
3318 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3319 			int lookup, struct f2fs_filename *fname);
3320 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3321 			struct f2fs_filename *fname);
3322 void f2fs_free_filename(struct f2fs_filename *fname);
3323 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3324 			const struct f2fs_filename *fname, int *max_slots);
3325 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3326 			unsigned int start_pos, struct fscrypt_str *fstr);
3327 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3328 			struct f2fs_dentry_ptr *d);
3329 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3330 			const struct f2fs_filename *fname, struct page *dpage);
3331 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3332 			unsigned int current_depth);
3333 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3334 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3335 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3336 					 const struct f2fs_filename *fname,
3337 					 struct page **res_page);
3338 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3339 			const struct qstr *child, struct page **res_page);
3340 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3341 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3342 			struct page **page);
3343 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3344 			struct page *page, struct inode *inode);
3345 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3346 			  const struct f2fs_filename *fname);
3347 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3348 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3349 			unsigned int bit_pos);
3350 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3351 			struct inode *inode, nid_t ino, umode_t mode);
3352 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3353 			struct inode *inode, nid_t ino, umode_t mode);
3354 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3355 			struct inode *inode, nid_t ino, umode_t mode);
3356 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3357 			struct inode *dir, struct inode *inode);
3358 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3359 bool f2fs_empty_dir(struct inode *dir);
3360 
3361 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3362 {
3363 	if (fscrypt_is_nokey_name(dentry))
3364 		return -ENOKEY;
3365 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3366 				inode, inode->i_ino, inode->i_mode);
3367 }
3368 
3369 /*
3370  * super.c
3371  */
3372 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3373 void f2fs_inode_synced(struct inode *inode);
3374 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3375 int f2fs_quota_sync(struct super_block *sb, int type);
3376 loff_t max_file_blocks(struct inode *inode);
3377 void f2fs_quota_off_umount(struct super_block *sb);
3378 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3379 int f2fs_sync_fs(struct super_block *sb, int sync);
3380 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3381 
3382 /*
3383  * hash.c
3384  */
3385 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3386 
3387 /*
3388  * node.c
3389  */
3390 struct node_info;
3391 
3392 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3393 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3394 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3395 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3396 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3397 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3398 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3399 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3400 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3401 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3402 						struct node_info *ni);
3403 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3404 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3405 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3406 int f2fs_truncate_xattr_node(struct inode *inode);
3407 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3408 					unsigned int seq_id);
3409 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3410 int f2fs_remove_inode_page(struct inode *inode);
3411 struct page *f2fs_new_inode_page(struct inode *inode);
3412 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3413 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3414 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3415 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3416 int f2fs_move_node_page(struct page *node_page, int gc_type);
3417 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3418 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3419 			struct writeback_control *wbc, bool atomic,
3420 			unsigned int *seq_id);
3421 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3422 			struct writeback_control *wbc,
3423 			bool do_balance, enum iostat_type io_type);
3424 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3425 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3426 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3427 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3428 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3429 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3430 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3431 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3432 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3433 			unsigned int segno, struct f2fs_summary_block *sum);
3434 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3435 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3436 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3437 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3438 int __init f2fs_create_node_manager_caches(void);
3439 void f2fs_destroy_node_manager_caches(void);
3440 
3441 /*
3442  * segment.c
3443  */
3444 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3445 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3446 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3447 void f2fs_drop_inmem_pages(struct inode *inode);
3448 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3449 int f2fs_commit_inmem_pages(struct inode *inode);
3450 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3451 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3452 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3453 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3454 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3455 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3456 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3457 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3458 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3459 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3460 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3461 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3462 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3463 					struct cp_control *cpc);
3464 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3465 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3466 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3467 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3468 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3469 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3470 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3471 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3472 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3473 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3474 			unsigned int *newseg, bool new_sec, int dir);
3475 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3476 					unsigned int start, unsigned int end);
3477 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3478 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3479 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3480 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3481 					struct cp_control *cpc);
3482 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3483 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3484 					block_t blk_addr);
3485 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3486 						enum iostat_type io_type);
3487 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3488 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3489 			struct f2fs_io_info *fio);
3490 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3491 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3492 			block_t old_blkaddr, block_t new_blkaddr,
3493 			bool recover_curseg, bool recover_newaddr,
3494 			bool from_gc);
3495 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3496 			block_t old_addr, block_t new_addr,
3497 			unsigned char version, bool recover_curseg,
3498 			bool recover_newaddr);
3499 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3500 			block_t old_blkaddr, block_t *new_blkaddr,
3501 			struct f2fs_summary *sum, int type,
3502 			struct f2fs_io_info *fio);
3503 void f2fs_wait_on_page_writeback(struct page *page,
3504 			enum page_type type, bool ordered, bool locked);
3505 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3506 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3507 								block_t len);
3508 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3509 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3510 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3511 			unsigned int val, int alloc);
3512 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3513 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3514 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3515 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3516 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3517 int __init f2fs_create_segment_manager_caches(void);
3518 void f2fs_destroy_segment_manager_caches(void);
3519 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3520 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3521 			enum page_type type, enum temp_type temp);
3522 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3523 			unsigned int segno);
3524 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3525 			unsigned int segno);
3526 
3527 #define DEF_FRAGMENT_SIZE	4
3528 #define MIN_FRAGMENT_SIZE	1
3529 #define MAX_FRAGMENT_SIZE	512
3530 
3531 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3532 {
3533 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3534 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3535 }
3536 
3537 /*
3538  * checkpoint.c
3539  */
3540 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3541 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3542 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3543 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3544 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3545 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3546 					block_t blkaddr, int type);
3547 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3548 			int type, bool sync);
3549 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3550 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3551 			long nr_to_write, enum iostat_type io_type);
3552 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3553 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3554 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3555 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3556 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3557 					unsigned int devidx, int type);
3558 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3559 					unsigned int devidx, int type);
3560 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3561 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3562 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3563 void f2fs_add_orphan_inode(struct inode *inode);
3564 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3565 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3566 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3567 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3568 void f2fs_remove_dirty_inode(struct inode *inode);
3569 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3570 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3571 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3572 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3573 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3574 int __init f2fs_create_checkpoint_caches(void);
3575 void f2fs_destroy_checkpoint_caches(void);
3576 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3577 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3578 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3579 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3580 
3581 /*
3582  * data.c
3583  */
3584 int __init f2fs_init_bioset(void);
3585 void f2fs_destroy_bioset(void);
3586 int f2fs_init_bio_entry_cache(void);
3587 void f2fs_destroy_bio_entry_cache(void);
3588 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3589 				struct bio *bio, enum page_type type);
3590 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3591 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3592 				struct inode *inode, struct page *page,
3593 				nid_t ino, enum page_type type);
3594 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3595 					struct bio **bio, struct page *page);
3596 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3597 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3598 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3599 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3600 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3601 			block_t blk_addr, struct bio *bio);
3602 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3603 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3604 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3605 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3606 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3607 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3608 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3609 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3610 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3611 			int op_flags, bool for_write);
3612 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3613 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3614 			bool for_write);
3615 struct page *f2fs_get_new_data_page(struct inode *inode,
3616 			struct page *ipage, pgoff_t index, bool new_i_size);
3617 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3618 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3619 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3620 			int create, int flag);
3621 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3622 			u64 start, u64 len);
3623 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3624 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3625 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3626 int f2fs_write_single_data_page(struct page *page, int *submitted,
3627 				struct bio **bio, sector_t *last_block,
3628 				struct writeback_control *wbc,
3629 				enum iostat_type io_type,
3630 				int compr_blocks, bool allow_balance);
3631 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3632 			unsigned int length);
3633 int f2fs_release_page(struct page *page, gfp_t wait);
3634 #ifdef CONFIG_MIGRATION
3635 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3636 			struct page *page, enum migrate_mode mode);
3637 #endif
3638 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3639 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3640 int f2fs_init_post_read_processing(void);
3641 void f2fs_destroy_post_read_processing(void);
3642 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3643 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3644 
3645 /*
3646  * gc.c
3647  */
3648 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3649 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3650 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3651 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3652 			unsigned int segno);
3653 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3654 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3655 int __init f2fs_create_garbage_collection_cache(void);
3656 void f2fs_destroy_garbage_collection_cache(void);
3657 
3658 /*
3659  * recovery.c
3660  */
3661 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3662 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3663 int __init f2fs_create_recovery_cache(void);
3664 void f2fs_destroy_recovery_cache(void);
3665 
3666 /*
3667  * debug.c
3668  */
3669 #ifdef CONFIG_F2FS_STAT_FS
3670 struct f2fs_stat_info {
3671 	struct list_head stat_list;
3672 	struct f2fs_sb_info *sbi;
3673 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3674 	int main_area_segs, main_area_sections, main_area_zones;
3675 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3676 	unsigned long long hit_total, total_ext;
3677 	int ext_tree, zombie_tree, ext_node;
3678 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3679 	int ndirty_data, ndirty_qdata;
3680 	int inmem_pages;
3681 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3682 	int nats, dirty_nats, sits, dirty_sits;
3683 	int free_nids, avail_nids, alloc_nids;
3684 	int total_count, utilization;
3685 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3686 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3687 	int nr_dio_read, nr_dio_write;
3688 	unsigned int io_skip_bggc, other_skip_bggc;
3689 	int nr_flushing, nr_flushed, flush_list_empty;
3690 	int nr_discarding, nr_discarded;
3691 	int nr_discard_cmd;
3692 	unsigned int undiscard_blks;
3693 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3694 	unsigned int cur_ckpt_time, peak_ckpt_time;
3695 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3696 	int compr_inode;
3697 	unsigned long long compr_blocks;
3698 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3699 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3700 	unsigned int bimodal, avg_vblocks;
3701 	int util_free, util_valid, util_invalid;
3702 	int rsvd_segs, overp_segs;
3703 	int dirty_count, node_pages, meta_pages, compress_pages;
3704 	int compress_page_hit;
3705 	int prefree_count, call_count, cp_count, bg_cp_count;
3706 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3707 	int bg_node_segs, bg_data_segs;
3708 	int tot_blks, data_blks, node_blks;
3709 	int bg_data_blks, bg_node_blks;
3710 	unsigned long long skipped_atomic_files[2];
3711 	int curseg[NR_CURSEG_TYPE];
3712 	int cursec[NR_CURSEG_TYPE];
3713 	int curzone[NR_CURSEG_TYPE];
3714 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3715 	unsigned int full_seg[NR_CURSEG_TYPE];
3716 	unsigned int valid_blks[NR_CURSEG_TYPE];
3717 
3718 	unsigned int meta_count[META_MAX];
3719 	unsigned int segment_count[2];
3720 	unsigned int block_count[2];
3721 	unsigned int inplace_count;
3722 	unsigned long long base_mem, cache_mem, page_mem;
3723 };
3724 
3725 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3726 {
3727 	return (struct f2fs_stat_info *)sbi->stat_info;
3728 }
3729 
3730 #define stat_inc_cp_count(si)		((si)->cp_count++)
3731 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3732 #define stat_inc_call_count(si)		((si)->call_count++)
3733 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3734 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3735 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3736 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3737 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3738 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3739 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3740 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3741 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3742 #define stat_inc_inline_xattr(inode)					\
3743 	do {								\
3744 		if (f2fs_has_inline_xattr(inode))			\
3745 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3746 	} while (0)
3747 #define stat_dec_inline_xattr(inode)					\
3748 	do {								\
3749 		if (f2fs_has_inline_xattr(inode))			\
3750 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3751 	} while (0)
3752 #define stat_inc_inline_inode(inode)					\
3753 	do {								\
3754 		if (f2fs_has_inline_data(inode))			\
3755 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3756 	} while (0)
3757 #define stat_dec_inline_inode(inode)					\
3758 	do {								\
3759 		if (f2fs_has_inline_data(inode))			\
3760 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3761 	} while (0)
3762 #define stat_inc_inline_dir(inode)					\
3763 	do {								\
3764 		if (f2fs_has_inline_dentry(inode))			\
3765 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3766 	} while (0)
3767 #define stat_dec_inline_dir(inode)					\
3768 	do {								\
3769 		if (f2fs_has_inline_dentry(inode))			\
3770 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3771 	} while (0)
3772 #define stat_inc_compr_inode(inode)					\
3773 	do {								\
3774 		if (f2fs_compressed_file(inode))			\
3775 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3776 	} while (0)
3777 #define stat_dec_compr_inode(inode)					\
3778 	do {								\
3779 		if (f2fs_compressed_file(inode))			\
3780 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3781 	} while (0)
3782 #define stat_add_compr_blocks(inode, blocks)				\
3783 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3784 #define stat_sub_compr_blocks(inode, blocks)				\
3785 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3786 #define stat_inc_meta_count(sbi, blkaddr)				\
3787 	do {								\
3788 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3789 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3790 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3791 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3792 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3793 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3794 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3795 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3796 	} while (0)
3797 #define stat_inc_seg_type(sbi, curseg)					\
3798 		((sbi)->segment_count[(curseg)->alloc_type]++)
3799 #define stat_inc_block_count(sbi, curseg)				\
3800 		((sbi)->block_count[(curseg)->alloc_type]++)
3801 #define stat_inc_inplace_blocks(sbi)					\
3802 		(atomic_inc(&(sbi)->inplace_count))
3803 #define stat_update_max_atomic_write(inode)				\
3804 	do {								\
3805 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3806 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3807 		if (cur > max)						\
3808 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3809 	} while (0)
3810 #define stat_inc_volatile_write(inode)					\
3811 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3812 #define stat_dec_volatile_write(inode)					\
3813 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3814 #define stat_update_max_volatile_write(inode)				\
3815 	do {								\
3816 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3817 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3818 		if (cur > max)						\
3819 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3820 	} while (0)
3821 #define stat_inc_seg_count(sbi, type, gc_type)				\
3822 	do {								\
3823 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3824 		si->tot_segs++;						\
3825 		if ((type) == SUM_TYPE_DATA) {				\
3826 			si->data_segs++;				\
3827 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3828 		} else {						\
3829 			si->node_segs++;				\
3830 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3831 		}							\
3832 	} while (0)
3833 
3834 #define stat_inc_tot_blk_count(si, blks)				\
3835 	((si)->tot_blks += (blks))
3836 
3837 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3838 	do {								\
3839 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3840 		stat_inc_tot_blk_count(si, blks);			\
3841 		si->data_blks += (blks);				\
3842 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3843 	} while (0)
3844 
3845 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3846 	do {								\
3847 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3848 		stat_inc_tot_blk_count(si, blks);			\
3849 		si->node_blks += (blks);				\
3850 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3851 	} while (0)
3852 
3853 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3854 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3855 void __init f2fs_create_root_stats(void);
3856 void f2fs_destroy_root_stats(void);
3857 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3858 #else
3859 #define stat_inc_cp_count(si)				do { } while (0)
3860 #define stat_inc_bg_cp_count(si)			do { } while (0)
3861 #define stat_inc_call_count(si)				do { } while (0)
3862 #define stat_inc_bggc_count(si)				do { } while (0)
3863 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3864 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3865 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3866 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3867 #define stat_inc_total_hit(sbi)				do { } while (0)
3868 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3869 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3870 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3871 #define stat_inc_inline_xattr(inode)			do { } while (0)
3872 #define stat_dec_inline_xattr(inode)			do { } while (0)
3873 #define stat_inc_inline_inode(inode)			do { } while (0)
3874 #define stat_dec_inline_inode(inode)			do { } while (0)
3875 #define stat_inc_inline_dir(inode)			do { } while (0)
3876 #define stat_dec_inline_dir(inode)			do { } while (0)
3877 #define stat_inc_compr_inode(inode)			do { } while (0)
3878 #define stat_dec_compr_inode(inode)			do { } while (0)
3879 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3880 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3881 #define stat_update_max_atomic_write(inode)		do { } while (0)
3882 #define stat_inc_volatile_write(inode)			do { } while (0)
3883 #define stat_dec_volatile_write(inode)			do { } while (0)
3884 #define stat_update_max_volatile_write(inode)		do { } while (0)
3885 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3886 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3887 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3888 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3889 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3890 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3891 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3892 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3893 
3894 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3895 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3896 static inline void __init f2fs_create_root_stats(void) { }
3897 static inline void f2fs_destroy_root_stats(void) { }
3898 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3899 #endif
3900 
3901 extern const struct file_operations f2fs_dir_operations;
3902 extern const struct file_operations f2fs_file_operations;
3903 extern const struct inode_operations f2fs_file_inode_operations;
3904 extern const struct address_space_operations f2fs_dblock_aops;
3905 extern const struct address_space_operations f2fs_node_aops;
3906 extern const struct address_space_operations f2fs_meta_aops;
3907 extern const struct inode_operations f2fs_dir_inode_operations;
3908 extern const struct inode_operations f2fs_symlink_inode_operations;
3909 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3910 extern const struct inode_operations f2fs_special_inode_operations;
3911 extern struct kmem_cache *f2fs_inode_entry_slab;
3912 
3913 /*
3914  * inline.c
3915  */
3916 bool f2fs_may_inline_data(struct inode *inode);
3917 bool f2fs_may_inline_dentry(struct inode *inode);
3918 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3919 void f2fs_truncate_inline_inode(struct inode *inode,
3920 						struct page *ipage, u64 from);
3921 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3922 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3923 int f2fs_convert_inline_inode(struct inode *inode);
3924 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3925 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3926 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3927 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3928 					const struct f2fs_filename *fname,
3929 					struct page **res_page);
3930 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3931 			struct page *ipage);
3932 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3933 			struct inode *inode, nid_t ino, umode_t mode);
3934 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3935 				struct page *page, struct inode *dir,
3936 				struct inode *inode);
3937 bool f2fs_empty_inline_dir(struct inode *dir);
3938 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3939 			struct fscrypt_str *fstr);
3940 int f2fs_inline_data_fiemap(struct inode *inode,
3941 			struct fiemap_extent_info *fieinfo,
3942 			__u64 start, __u64 len);
3943 
3944 /*
3945  * shrinker.c
3946  */
3947 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3948 			struct shrink_control *sc);
3949 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3950 			struct shrink_control *sc);
3951 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3952 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3953 
3954 /*
3955  * extent_cache.c
3956  */
3957 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3958 				struct rb_entry *cached_re, unsigned int ofs);
3959 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3960 				struct rb_root_cached *root,
3961 				struct rb_node **parent,
3962 				unsigned long long key, bool *left_most);
3963 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3964 				struct rb_root_cached *root,
3965 				struct rb_node **parent,
3966 				unsigned int ofs, bool *leftmost);
3967 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3968 		struct rb_entry *cached_re, unsigned int ofs,
3969 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3970 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3971 		bool force, bool *leftmost);
3972 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3973 				struct rb_root_cached *root, bool check_key);
3974 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3975 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3976 void f2fs_drop_extent_tree(struct inode *inode);
3977 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3978 void f2fs_destroy_extent_tree(struct inode *inode);
3979 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3980 			struct extent_info *ei);
3981 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3982 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3983 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3984 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3985 int __init f2fs_create_extent_cache(void);
3986 void f2fs_destroy_extent_cache(void);
3987 
3988 /*
3989  * sysfs.c
3990  */
3991 #define MIN_RA_MUL	2
3992 #define MAX_RA_MUL	256
3993 
3994 int __init f2fs_init_sysfs(void);
3995 void f2fs_exit_sysfs(void);
3996 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3997 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3998 
3999 /* verity.c */
4000 extern const struct fsverity_operations f2fs_verityops;
4001 
4002 /*
4003  * crypto support
4004  */
4005 static inline bool f2fs_encrypted_file(struct inode *inode)
4006 {
4007 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4008 }
4009 
4010 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4011 {
4012 #ifdef CONFIG_FS_ENCRYPTION
4013 	file_set_encrypt(inode);
4014 	f2fs_set_inode_flags(inode);
4015 #endif
4016 }
4017 
4018 /*
4019  * Returns true if the reads of the inode's data need to undergo some
4020  * postprocessing step, like decryption or authenticity verification.
4021  */
4022 static inline bool f2fs_post_read_required(struct inode *inode)
4023 {
4024 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4025 		f2fs_compressed_file(inode);
4026 }
4027 
4028 /*
4029  * compress.c
4030  */
4031 #ifdef CONFIG_F2FS_FS_COMPRESSION
4032 bool f2fs_is_compressed_page(struct page *page);
4033 struct page *f2fs_compress_control_page(struct page *page);
4034 int f2fs_prepare_compress_overwrite(struct inode *inode,
4035 			struct page **pagep, pgoff_t index, void **fsdata);
4036 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4037 					pgoff_t index, unsigned copied);
4038 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4039 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4040 bool f2fs_is_compress_backend_ready(struct inode *inode);
4041 int f2fs_init_compress_mempool(void);
4042 void f2fs_destroy_compress_mempool(void);
4043 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4044 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4045 							block_t blkaddr);
4046 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4047 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4048 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4049 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4050 int f2fs_write_multi_pages(struct compress_ctx *cc,
4051 						int *submitted,
4052 						struct writeback_control *wbc,
4053 						enum iostat_type io_type);
4054 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4055 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4056 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4057 				unsigned int c_len);
4058 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4059 				unsigned nr_pages, sector_t *last_block_in_bio,
4060 				bool is_readahead, bool for_write);
4061 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4062 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4063 void f2fs_put_page_dic(struct page *page);
4064 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4065 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4066 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4067 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4068 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4069 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4070 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4071 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4072 int __init f2fs_init_compress_cache(void);
4073 void f2fs_destroy_compress_cache(void);
4074 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4075 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4076 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4077 						nid_t ino, block_t blkaddr);
4078 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4079 								block_t blkaddr);
4080 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4081 #define inc_compr_inode_stat(inode)					\
4082 	do {								\
4083 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4084 		sbi->compr_new_inode++;					\
4085 	} while (0)
4086 #define add_compr_block_stat(inode, blocks)				\
4087 	do {								\
4088 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4089 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4090 		sbi->compr_written_block += blocks;			\
4091 		sbi->compr_saved_block += diff;				\
4092 	} while (0)
4093 #else
4094 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4095 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4096 {
4097 	if (!f2fs_compressed_file(inode))
4098 		return true;
4099 	/* not support compression */
4100 	return false;
4101 }
4102 static inline struct page *f2fs_compress_control_page(struct page *page)
4103 {
4104 	WARN_ON_ONCE(1);
4105 	return ERR_PTR(-EINVAL);
4106 }
4107 static inline int f2fs_init_compress_mempool(void) { return 0; }
4108 static inline void f2fs_destroy_compress_mempool(void) { }
4109 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4110 static inline void f2fs_end_read_compressed_page(struct page *page,
4111 						bool failed, block_t blkaddr)
4112 {
4113 	WARN_ON_ONCE(1);
4114 }
4115 static inline void f2fs_put_page_dic(struct page *page)
4116 {
4117 	WARN_ON_ONCE(1);
4118 }
4119 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4120 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4121 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4122 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4123 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4124 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4125 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4126 static inline void f2fs_destroy_compress_cache(void) { }
4127 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4128 				block_t blkaddr) { }
4129 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4130 				struct page *page, nid_t ino, block_t blkaddr) { }
4131 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4132 				struct page *page, block_t blkaddr) { return false; }
4133 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4134 							nid_t ino) { }
4135 #define inc_compr_inode_stat(inode)		do { } while (0)
4136 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4137 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4138 				unsigned int c_len) { }
4139 #endif
4140 
4141 static inline void set_compress_context(struct inode *inode)
4142 {
4143 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4144 
4145 	F2FS_I(inode)->i_compress_algorithm =
4146 			F2FS_OPTION(sbi).compress_algorithm;
4147 	F2FS_I(inode)->i_log_cluster_size =
4148 			F2FS_OPTION(sbi).compress_log_size;
4149 	F2FS_I(inode)->i_compress_flag =
4150 			F2FS_OPTION(sbi).compress_chksum ?
4151 				1 << COMPRESS_CHKSUM : 0;
4152 	F2FS_I(inode)->i_cluster_size =
4153 			1 << F2FS_I(inode)->i_log_cluster_size;
4154 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4155 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4156 			F2FS_OPTION(sbi).compress_level)
4157 		F2FS_I(inode)->i_compress_flag |=
4158 				F2FS_OPTION(sbi).compress_level <<
4159 				COMPRESS_LEVEL_OFFSET;
4160 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4161 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4162 	stat_inc_compr_inode(inode);
4163 	inc_compr_inode_stat(inode);
4164 	f2fs_mark_inode_dirty_sync(inode, true);
4165 }
4166 
4167 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4168 {
4169 	struct f2fs_inode_info *fi = F2FS_I(inode);
4170 
4171 	if (!f2fs_compressed_file(inode))
4172 		return true;
4173 	if (S_ISREG(inode->i_mode) &&
4174 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4175 		return false;
4176 
4177 	fi->i_flags &= ~F2FS_COMPR_FL;
4178 	stat_dec_compr_inode(inode);
4179 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4180 	f2fs_mark_inode_dirty_sync(inode, true);
4181 	return true;
4182 }
4183 
4184 #define F2FS_FEATURE_FUNCS(name, flagname) \
4185 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4186 { \
4187 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4188 }
4189 
4190 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4191 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4192 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4193 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4194 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4195 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4196 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4197 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4198 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4199 F2FS_FEATURE_FUNCS(verity, VERITY);
4200 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4201 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4202 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4203 F2FS_FEATURE_FUNCS(readonly, RO);
4204 
4205 static inline bool f2fs_may_extent_tree(struct inode *inode)
4206 {
4207 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4208 
4209 	if (!test_opt(sbi, EXTENT_CACHE) ||
4210 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4211 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4212 			 !f2fs_sb_has_readonly(sbi)))
4213 		return false;
4214 
4215 	/*
4216 	 * for recovered files during mount do not create extents
4217 	 * if shrinker is not registered.
4218 	 */
4219 	if (list_empty(&sbi->s_list))
4220 		return false;
4221 
4222 	return S_ISREG(inode->i_mode);
4223 }
4224 
4225 #ifdef CONFIG_BLK_DEV_ZONED
4226 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4227 				    block_t blkaddr)
4228 {
4229 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4230 
4231 	return test_bit(zno, FDEV(devi).blkz_seq);
4232 }
4233 #endif
4234 
4235 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4236 {
4237 	return f2fs_sb_has_blkzoned(sbi);
4238 }
4239 
4240 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4241 {
4242 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4243 	       bdev_is_zoned(bdev);
4244 }
4245 
4246 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4247 {
4248 	int i;
4249 
4250 	if (!f2fs_is_multi_device(sbi))
4251 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4252 
4253 	for (i = 0; i < sbi->s_ndevs; i++)
4254 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4255 			return true;
4256 	return false;
4257 }
4258 
4259 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4260 {
4261 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4262 					f2fs_hw_should_discard(sbi);
4263 }
4264 
4265 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4266 {
4267 	int i;
4268 
4269 	if (!f2fs_is_multi_device(sbi))
4270 		return bdev_read_only(sbi->sb->s_bdev);
4271 
4272 	for (i = 0; i < sbi->s_ndevs; i++)
4273 		if (bdev_read_only(FDEV(i).bdev))
4274 			return true;
4275 	return false;
4276 }
4277 
4278 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4279 {
4280 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4281 }
4282 
4283 static inline bool f2fs_may_compress(struct inode *inode)
4284 {
4285 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4286 				f2fs_is_atomic_file(inode) ||
4287 				f2fs_is_volatile_file(inode))
4288 		return false;
4289 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4290 }
4291 
4292 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4293 						u64 blocks, bool add)
4294 {
4295 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4296 	struct f2fs_inode_info *fi = F2FS_I(inode);
4297 
4298 	/* don't update i_compr_blocks if saved blocks were released */
4299 	if (!add && !atomic_read(&fi->i_compr_blocks))
4300 		return;
4301 
4302 	if (add) {
4303 		atomic_add(diff, &fi->i_compr_blocks);
4304 		stat_add_compr_blocks(inode, diff);
4305 	} else {
4306 		atomic_sub(diff, &fi->i_compr_blocks);
4307 		stat_sub_compr_blocks(inode, diff);
4308 	}
4309 	f2fs_mark_inode_dirty_sync(inode, true);
4310 }
4311 
4312 static inline int block_unaligned_IO(struct inode *inode,
4313 				struct kiocb *iocb, struct iov_iter *iter)
4314 {
4315 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4316 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4317 	loff_t offset = iocb->ki_pos;
4318 	unsigned long align = offset | iov_iter_alignment(iter);
4319 
4320 	return align & blocksize_mask;
4321 }
4322 
4323 static inline bool f2fs_force_buffered_io(struct inode *inode,
4324 				struct kiocb *iocb, struct iov_iter *iter)
4325 {
4326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4327 	int rw = iov_iter_rw(iter);
4328 
4329 	if (f2fs_post_read_required(inode))
4330 		return true;
4331 	if (f2fs_is_multi_device(sbi))
4332 		return true;
4333 	/*
4334 	 * for blkzoned device, fallback direct IO to buffered IO, so
4335 	 * all IOs can be serialized by log-structured write.
4336 	 */
4337 	if (f2fs_sb_has_blkzoned(sbi))
4338 		return true;
4339 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4340 		if (block_unaligned_IO(inode, iocb, iter))
4341 			return true;
4342 		if (F2FS_IO_ALIGNED(sbi))
4343 			return true;
4344 	}
4345 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4346 		return true;
4347 
4348 	return false;
4349 }
4350 
4351 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4352 {
4353 	return fsverity_active(inode) &&
4354 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4355 }
4356 
4357 #ifdef CONFIG_F2FS_FAULT_INJECTION
4358 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4359 							unsigned int type);
4360 #else
4361 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4362 #endif
4363 
4364 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4365 {
4366 #ifdef CONFIG_QUOTA
4367 	if (f2fs_sb_has_quota_ino(sbi))
4368 		return true;
4369 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4370 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4371 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4372 		return true;
4373 #endif
4374 	return false;
4375 }
4376 
4377 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4378 {
4379 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4380 }
4381 
4382 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4383 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4384 
4385 #endif /* _LINUX_F2FS_H */
4386