xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 635a52da8605e5d300ec8c18fdba8d6f8491755d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int discard_unit;		/*
166 					 * discard command's offset/size should
167 					 * be aligned to this unit: block,
168 					 * segment or section
169 					 */
170 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
171 	block_t unusable_cap_perc;	/* percentage for cap */
172 	block_t unusable_cap;		/* Amount of space allowed to be
173 					 * unusable when disabling checkpoint
174 					 */
175 
176 	/* For compression */
177 	unsigned char compress_algorithm;	/* algorithm type */
178 	unsigned char compress_log_size;	/* cluster log size */
179 	unsigned char compress_level;		/* compress level */
180 	bool compress_chksum;			/* compressed data chksum */
181 	unsigned char compress_ext_cnt;		/* extension count */
182 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
183 	int compress_mode;			/* compression mode */
184 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
185 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 };
187 
188 #define F2FS_FEATURE_ENCRYPT		0x0001
189 #define F2FS_FEATURE_BLKZONED		0x0002
190 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
191 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
192 #define F2FS_FEATURE_PRJQUOTA		0x0010
193 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
195 #define F2FS_FEATURE_QUOTA_INO		0x0080
196 #define F2FS_FEATURE_INODE_CRTIME	0x0100
197 #define F2FS_FEATURE_LOST_FOUND		0x0200
198 #define F2FS_FEATURE_VERITY		0x0400
199 #define F2FS_FEATURE_SB_CHKSUM		0x0800
200 #define F2FS_FEATURE_CASEFOLD		0x1000
201 #define F2FS_FEATURE_COMPRESSION	0x2000
202 #define F2FS_FEATURE_RO			0x4000
203 
204 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
205 	((raw_super->feature & cpu_to_le32(mask)) != 0)
206 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	DATA_GENERIC_ENHANCE_UPDATE,	/*
268 					 * strong check on range and segment
269 					 * bitmap for update case
270 					 */
271 	META_GENERIC,
272 };
273 
274 /* for the list of ino */
275 enum {
276 	ORPHAN_INO,		/* for orphan ino list */
277 	APPEND_INO,		/* for append ino list */
278 	UPDATE_INO,		/* for update ino list */
279 	TRANS_DIR_INO,		/* for transactions dir ino list */
280 	FLUSH_INO,		/* for multiple device flushing */
281 	MAX_INO_ENTRY,		/* max. list */
282 };
283 
284 struct ino_entry {
285 	struct list_head list;		/* list head */
286 	nid_t ino;			/* inode number */
287 	unsigned int dirty_device;	/* dirty device bitmap */
288 };
289 
290 /* for the list of inodes to be GCed */
291 struct inode_entry {
292 	struct list_head list;	/* list head */
293 	struct inode *inode;	/* vfs inode pointer */
294 };
295 
296 struct fsync_node_entry {
297 	struct list_head list;	/* list head */
298 	struct page *page;	/* warm node page pointer */
299 	unsigned int seq_id;	/* sequence id */
300 };
301 
302 struct ckpt_req {
303 	struct completion wait;		/* completion for checkpoint done */
304 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
305 	int ret;			/* return code of checkpoint */
306 	ktime_t queue_time;		/* request queued time */
307 };
308 
309 struct ckpt_req_control {
310 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
311 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
312 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
313 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
314 	atomic_t total_ckpt;		/* # of total ckpts */
315 	atomic_t queued_ckpt;		/* # of queued ckpts */
316 	struct llist_head issue_list;	/* list for command issue */
317 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
318 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
319 	unsigned int peak_time;		/* peak wait time in msec until now */
320 };
321 
322 /* for the bitmap indicate blocks to be discarded */
323 struct discard_entry {
324 	struct list_head list;	/* list head */
325 	block_t start_blkaddr;	/* start blockaddr of current segment */
326 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
327 };
328 
329 /* minimum discard granularity, unit: block count */
330 #define MIN_DISCARD_GRANULARITY		1
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 /* default maximum discard granularity of ordered discard, unit: block count */
334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
335 
336 /* max discard pend list number */
337 #define MAX_PLIST_NUM		512
338 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
339 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
340 
341 enum {
342 	D_PREP,			/* initial */
343 	D_PARTIAL,		/* partially submitted */
344 	D_SUBMIT,		/* all submitted */
345 	D_DONE,			/* finished */
346 };
347 
348 struct discard_info {
349 	block_t lstart;			/* logical start address */
350 	block_t len;			/* length */
351 	block_t start;			/* actual start address in dev */
352 };
353 
354 struct discard_cmd {
355 	struct rb_node rb_node;		/* rb node located in rb-tree */
356 	struct discard_info di;		/* discard info */
357 	struct list_head list;		/* command list */
358 	struct completion wait;		/* compleation */
359 	struct block_device *bdev;	/* bdev */
360 	unsigned short ref;		/* reference count */
361 	unsigned char state;		/* state */
362 	unsigned char queued;		/* queued discard */
363 	int error;			/* bio error */
364 	spinlock_t lock;		/* for state/bio_ref updating */
365 	unsigned short bio_ref;		/* bio reference count */
366 };
367 
368 enum {
369 	DPOLICY_BG,
370 	DPOLICY_FORCE,
371 	DPOLICY_FSTRIM,
372 	DPOLICY_UMOUNT,
373 	MAX_DPOLICY,
374 };
375 
376 struct discard_policy {
377 	int type;			/* type of discard */
378 	unsigned int min_interval;	/* used for candidates exist */
379 	unsigned int mid_interval;	/* used for device busy */
380 	unsigned int max_interval;	/* used for candidates not exist */
381 	unsigned int max_requests;	/* # of discards issued per round */
382 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
383 	bool io_aware;			/* issue discard in idle time */
384 	bool sync;			/* submit discard with REQ_SYNC flag */
385 	bool ordered;			/* issue discard by lba order */
386 	bool timeout;			/* discard timeout for put_super */
387 	unsigned int granularity;	/* discard granularity */
388 };
389 
390 struct discard_cmd_control {
391 	struct task_struct *f2fs_issue_discard;	/* discard thread */
392 	struct list_head entry_list;		/* 4KB discard entry list */
393 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
394 	struct list_head wait_list;		/* store on-flushing entries */
395 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
396 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
397 	struct mutex cmd_lock;
398 	unsigned int nr_discards;		/* # of discards in the list */
399 	unsigned int max_discards;		/* max. discards to be issued */
400 	unsigned int max_discard_request;	/* max. discard request per round */
401 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
402 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
403 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
404 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
405 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
406 	unsigned int discard_granularity;	/* discard granularity */
407 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 	bool discard_wake;			/* to wake up discard thread */
416 };
417 
418 /* for the list of fsync inodes, used only during recovery */
419 struct fsync_inode_entry {
420 	struct list_head list;	/* list head */
421 	struct inode *inode;	/* vfs inode pointer */
422 	block_t blkaddr;	/* block address locating the last fsync */
423 	block_t last_dentry;	/* block address locating the last dentry */
424 };
425 
426 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
427 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
428 
429 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
430 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
431 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
432 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
433 
434 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
435 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
436 
437 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
438 {
439 	int before = nats_in_cursum(journal);
440 
441 	journal->n_nats = cpu_to_le16(before + i);
442 	return before;
443 }
444 
445 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
446 {
447 	int before = sits_in_cursum(journal);
448 
449 	journal->n_sits = cpu_to_le16(before + i);
450 	return before;
451 }
452 
453 static inline bool __has_cursum_space(struct f2fs_journal *journal,
454 							int size, int type)
455 {
456 	if (type == NAT_JOURNAL)
457 		return size <= MAX_NAT_JENTRIES(journal);
458 	return size <= MAX_SIT_JENTRIES(journal);
459 }
460 
461 /* for inline stuff */
462 #define DEF_INLINE_RESERVED_SIZE	1
463 static inline int get_extra_isize(struct inode *inode);
464 static inline int get_inline_xattr_addrs(struct inode *inode);
465 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
466 				(CUR_ADDRS_PER_INODE(inode) -		\
467 				get_inline_xattr_addrs(inode) -	\
468 				DEF_INLINE_RESERVED_SIZE))
469 
470 /* for inline dir */
471 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
472 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 				BITS_PER_BYTE + 1))
474 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
475 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
476 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				NR_INLINE_DENTRY(inode) + \
479 				INLINE_DENTRY_BITMAP_SIZE(inode)))
480 
481 /*
482  * For INODE and NODE manager
483  */
484 /* for directory operations */
485 
486 struct f2fs_filename {
487 	/*
488 	 * The filename the user specified.  This is NULL for some
489 	 * filesystem-internal operations, e.g. converting an inline directory
490 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
491 	 */
492 	const struct qstr *usr_fname;
493 
494 	/*
495 	 * The on-disk filename.  For encrypted directories, this is encrypted.
496 	 * This may be NULL for lookups in an encrypted dir without the key.
497 	 */
498 	struct fscrypt_str disk_name;
499 
500 	/* The dirhash of this filename */
501 	f2fs_hash_t hash;
502 
503 #ifdef CONFIG_FS_ENCRYPTION
504 	/*
505 	 * For lookups in encrypted directories: either the buffer backing
506 	 * disk_name, or a buffer that holds the decoded no-key name.
507 	 */
508 	struct fscrypt_str crypto_buf;
509 #endif
510 #if IS_ENABLED(CONFIG_UNICODE)
511 	/*
512 	 * For casefolded directories: the casefolded name, but it's left NULL
513 	 * if the original name is not valid Unicode, if the original name is
514 	 * "." or "..", if the directory is both casefolded and encrypted and
515 	 * its encryption key is unavailable, or if the filesystem is doing an
516 	 * internal operation where usr_fname is also NULL.  In all these cases
517 	 * we fall back to treating the name as an opaque byte sequence.
518 	 */
519 	struct fscrypt_str cf_name;
520 #endif
521 };
522 
523 struct f2fs_dentry_ptr {
524 	struct inode *inode;
525 	void *bitmap;
526 	struct f2fs_dir_entry *dentry;
527 	__u8 (*filename)[F2FS_SLOT_LEN];
528 	int max;
529 	int nr_bitmap;
530 };
531 
532 static inline void make_dentry_ptr_block(struct inode *inode,
533 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
534 {
535 	d->inode = inode;
536 	d->max = NR_DENTRY_IN_BLOCK;
537 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
538 	d->bitmap = t->dentry_bitmap;
539 	d->dentry = t->dentry;
540 	d->filename = t->filename;
541 }
542 
543 static inline void make_dentry_ptr_inline(struct inode *inode,
544 					struct f2fs_dentry_ptr *d, void *t)
545 {
546 	int entry_cnt = NR_INLINE_DENTRY(inode);
547 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
548 	int reserved_size = INLINE_RESERVED_SIZE(inode);
549 
550 	d->inode = inode;
551 	d->max = entry_cnt;
552 	d->nr_bitmap = bitmap_size;
553 	d->bitmap = t;
554 	d->dentry = t + bitmap_size + reserved_size;
555 	d->filename = t + bitmap_size + reserved_size +
556 					SIZE_OF_DIR_ENTRY * entry_cnt;
557 }
558 
559 /*
560  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
561  * as its node offset to distinguish from index node blocks.
562  * But some bits are used to mark the node block.
563  */
564 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
565 				>> OFFSET_BIT_SHIFT)
566 enum {
567 	ALLOC_NODE,			/* allocate a new node page if needed */
568 	LOOKUP_NODE,			/* look up a node without readahead */
569 	LOOKUP_NODE_RA,			/*
570 					 * look up a node with readahead called
571 					 * by get_data_block.
572 					 */
573 };
574 
575 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
576 
577 /* congestion wait timeout value, default: 20ms */
578 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
579 
580 /* maximum retry quota flush count */
581 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
582 
583 /* maximum retry of EIO'ed page */
584 #define MAX_RETRY_PAGE_EIO			100
585 
586 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
587 
588 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
589 
590 /* dirty segments threshold for triggering CP */
591 #define DEFAULT_DIRTY_THRESHOLD		4
592 
593 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
594 #define RECOVERY_MIN_RA_BLOCKS		1
595 
596 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
597 
598 /* for in-memory extent cache entry */
599 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
600 
601 /* number of extent info in extent cache we try to shrink */
602 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
603 
604 /* number of age extent info in extent cache we try to shrink */
605 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
606 #define LAST_AGE_WEIGHT			30
607 #define SAME_AGE_REGION			1024
608 
609 /*
610  * Define data block with age less than 1GB as hot data
611  * define data block with age less than 10GB but more than 1GB as warm data
612  */
613 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
614 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
615 
616 /* extent cache type */
617 enum extent_type {
618 	EX_READ,
619 	EX_BLOCK_AGE,
620 	NR_EXTENT_CACHES,
621 };
622 
623 struct extent_info {
624 	unsigned int fofs;		/* start offset in a file */
625 	unsigned int len;		/* length of the extent */
626 	union {
627 		/* read extent_cache */
628 		struct {
629 			/* start block address of the extent */
630 			block_t blk;
631 #ifdef CONFIG_F2FS_FS_COMPRESSION
632 			/* physical extent length of compressed blocks */
633 			unsigned int c_len;
634 #endif
635 		};
636 		/* block age extent_cache */
637 		struct {
638 			/* block age of the extent */
639 			unsigned long long age;
640 			/* last total blocks allocated */
641 			unsigned long long last_blocks;
642 		};
643 	};
644 };
645 
646 struct extent_node {
647 	struct rb_node rb_node;		/* rb node located in rb-tree */
648 	struct extent_info ei;		/* extent info */
649 	struct list_head list;		/* node in global extent list of sbi */
650 	struct extent_tree *et;		/* extent tree pointer */
651 };
652 
653 struct extent_tree {
654 	nid_t ino;			/* inode number */
655 	enum extent_type type;		/* keep the extent tree type */
656 	struct rb_root_cached root;	/* root of extent info rb-tree */
657 	struct extent_node *cached_en;	/* recently accessed extent node */
658 	struct list_head list;		/* to be used by sbi->zombie_list */
659 	rwlock_t lock;			/* protect extent info rb-tree */
660 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
661 	bool largest_updated;		/* largest extent updated */
662 	struct extent_info largest;	/* largest cached extent for EX_READ */
663 };
664 
665 struct extent_tree_info {
666 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
667 	struct mutex extent_tree_lock;	/* locking extent radix tree */
668 	struct list_head extent_list;		/* lru list for shrinker */
669 	spinlock_t extent_lock;			/* locking extent lru list */
670 	atomic_t total_ext_tree;		/* extent tree count */
671 	struct list_head zombie_list;		/* extent zombie tree list */
672 	atomic_t total_zombie_tree;		/* extent zombie tree count */
673 	atomic_t total_ext_node;		/* extent info count */
674 };
675 
676 /*
677  * State of block returned by f2fs_map_blocks.
678  */
679 #define F2FS_MAP_NEW		(1U << 0)
680 #define F2FS_MAP_MAPPED		(1U << 1)
681 #define F2FS_MAP_DELALLOC	(1U << 2)
682 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
683 				F2FS_MAP_DELALLOC)
684 
685 struct f2fs_map_blocks {
686 	struct block_device *m_bdev;	/* for multi-device dio */
687 	block_t m_pblk;
688 	block_t m_lblk;
689 	unsigned int m_len;
690 	unsigned int m_flags;
691 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
692 	pgoff_t *m_next_extent;		/* point to next possible extent */
693 	int m_seg_type;
694 	bool m_may_create;		/* indicate it is from write path */
695 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
696 };
697 
698 /* for flag in get_data_block */
699 enum {
700 	F2FS_GET_BLOCK_DEFAULT,
701 	F2FS_GET_BLOCK_FIEMAP,
702 	F2FS_GET_BLOCK_BMAP,
703 	F2FS_GET_BLOCK_DIO,
704 	F2FS_GET_BLOCK_PRE_DIO,
705 	F2FS_GET_BLOCK_PRE_AIO,
706 	F2FS_GET_BLOCK_PRECACHE,
707 };
708 
709 /*
710  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
711  */
712 #define FADVISE_COLD_BIT	0x01
713 #define FADVISE_LOST_PINO_BIT	0x02
714 #define FADVISE_ENCRYPT_BIT	0x04
715 #define FADVISE_ENC_NAME_BIT	0x08
716 #define FADVISE_KEEP_SIZE_BIT	0x10
717 #define FADVISE_HOT_BIT		0x20
718 #define FADVISE_VERITY_BIT	0x40
719 #define FADVISE_TRUNC_BIT	0x80
720 
721 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
722 
723 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
724 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
725 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
726 
727 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
728 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
729 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
730 
731 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
732 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
733 
734 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
735 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
736 
737 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
738 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
739 
740 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
741 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
742 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
743 
744 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
745 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
746 
747 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
748 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
749 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
750 
751 #define DEF_DIR_LEVEL		0
752 
753 enum {
754 	GC_FAILURE_PIN,
755 	MAX_GC_FAILURE
756 };
757 
758 /* used for f2fs_inode_info->flags */
759 enum {
760 	FI_NEW_INODE,		/* indicate newly allocated inode */
761 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
762 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
763 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
764 	FI_INC_LINK,		/* need to increment i_nlink */
765 	FI_ACL_MODE,		/* indicate acl mode */
766 	FI_NO_ALLOC,		/* should not allocate any blocks */
767 	FI_FREE_NID,		/* free allocated nide */
768 	FI_NO_EXTENT,		/* not to use the extent cache */
769 	FI_INLINE_XATTR,	/* used for inline xattr */
770 	FI_INLINE_DATA,		/* used for inline data*/
771 	FI_INLINE_DENTRY,	/* used for inline dentry */
772 	FI_APPEND_WRITE,	/* inode has appended data */
773 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
774 	FI_NEED_IPU,		/* used for ipu per file */
775 	FI_ATOMIC_FILE,		/* indicate atomic file */
776 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
777 	FI_DROP_CACHE,		/* drop dirty page cache */
778 	FI_DATA_EXIST,		/* indicate data exists */
779 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
780 	FI_SKIP_WRITES,		/* should skip data page writeback */
781 	FI_OPU_WRITE,		/* used for opu per file */
782 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
783 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
784 	FI_HOT_DATA,		/* indicate file is hot */
785 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
786 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
787 	FI_PIN_FILE,		/* indicate file should not be gced */
788 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
789 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
790 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
791 	FI_MMAP_FILE,		/* indicate file was mmapped */
792 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
793 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
794 	FI_ALIGNED_WRITE,	/* enable aligned write */
795 	FI_COW_FILE,		/* indicate COW file */
796 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
797 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
798 	FI_MAX,			/* max flag, never be used */
799 };
800 
801 struct f2fs_inode_info {
802 	struct inode vfs_inode;		/* serve a vfs inode */
803 	unsigned long i_flags;		/* keep an inode flags for ioctl */
804 	unsigned char i_advise;		/* use to give file attribute hints */
805 	unsigned char i_dir_level;	/* use for dentry level for large dir */
806 	unsigned int i_current_depth;	/* only for directory depth */
807 	/* for gc failure statistic */
808 	unsigned int i_gc_failures[MAX_GC_FAILURE];
809 	unsigned int i_pino;		/* parent inode number */
810 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
811 
812 	/* Use below internally in f2fs*/
813 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
814 	struct f2fs_rwsem i_sem;	/* protect fi info */
815 	atomic_t dirty_pages;		/* # of dirty pages */
816 	f2fs_hash_t chash;		/* hash value of given file name */
817 	unsigned int clevel;		/* maximum level of given file name */
818 	struct task_struct *task;	/* lookup and create consistency */
819 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
820 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
821 	nid_t i_xattr_nid;		/* node id that contains xattrs */
822 	loff_t	last_disk_size;		/* lastly written file size */
823 	spinlock_t i_size_lock;		/* protect last_disk_size */
824 
825 #ifdef CONFIG_QUOTA
826 	struct dquot *i_dquot[MAXQUOTAS];
827 
828 	/* quota space reservation, managed internally by quota code */
829 	qsize_t i_reserved_quota;
830 #endif
831 	struct list_head dirty_list;	/* dirty list for dirs and files */
832 	struct list_head gdirty_list;	/* linked in global dirty list */
833 	struct task_struct *atomic_write_task;	/* store atomic write task */
834 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
835 					/* cached extent_tree entry */
836 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
837 
838 	/* avoid racing between foreground op and gc */
839 	struct f2fs_rwsem i_gc_rwsem[2];
840 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
841 
842 	int i_extra_isize;		/* size of extra space located in i_addr */
843 	kprojid_t i_projid;		/* id for project quota */
844 	int i_inline_xattr_size;	/* inline xattr size */
845 	struct timespec64 i_crtime;	/* inode creation time */
846 	struct timespec64 i_disk_time[3];/* inode disk times */
847 
848 	/* for file compress */
849 	atomic_t i_compr_blocks;		/* # of compressed blocks */
850 	unsigned char i_compress_algorithm;	/* algorithm type */
851 	unsigned char i_log_cluster_size;	/* log of cluster size */
852 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
853 	unsigned char i_compress_flag;		/* compress flag */
854 	unsigned int i_cluster_size;		/* cluster size */
855 
856 	unsigned int atomic_write_cnt;
857 	loff_t original_i_size;		/* original i_size before atomic write */
858 };
859 
860 static inline void get_read_extent_info(struct extent_info *ext,
861 					struct f2fs_extent *i_ext)
862 {
863 	ext->fofs = le32_to_cpu(i_ext->fofs);
864 	ext->blk = le32_to_cpu(i_ext->blk);
865 	ext->len = le32_to_cpu(i_ext->len);
866 }
867 
868 static inline void set_raw_read_extent(struct extent_info *ext,
869 					struct f2fs_extent *i_ext)
870 {
871 	i_ext->fofs = cpu_to_le32(ext->fofs);
872 	i_ext->blk = cpu_to_le32(ext->blk);
873 	i_ext->len = cpu_to_le32(ext->len);
874 }
875 
876 static inline bool __is_discard_mergeable(struct discard_info *back,
877 			struct discard_info *front, unsigned int max_len)
878 {
879 	return (back->lstart + back->len == front->lstart) &&
880 		(back->len + front->len <= max_len);
881 }
882 
883 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
884 			struct discard_info *back, unsigned int max_len)
885 {
886 	return __is_discard_mergeable(back, cur, max_len);
887 }
888 
889 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
890 			struct discard_info *front, unsigned int max_len)
891 {
892 	return __is_discard_mergeable(cur, front, max_len);
893 }
894 
895 /*
896  * For free nid management
897  */
898 enum nid_state {
899 	FREE_NID,		/* newly added to free nid list */
900 	PREALLOC_NID,		/* it is preallocated */
901 	MAX_NID_STATE,
902 };
903 
904 enum nat_state {
905 	TOTAL_NAT,
906 	DIRTY_NAT,
907 	RECLAIMABLE_NAT,
908 	MAX_NAT_STATE,
909 };
910 
911 struct f2fs_nm_info {
912 	block_t nat_blkaddr;		/* base disk address of NAT */
913 	nid_t max_nid;			/* maximum possible node ids */
914 	nid_t available_nids;		/* # of available node ids */
915 	nid_t next_scan_nid;		/* the next nid to be scanned */
916 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
917 	unsigned int ram_thresh;	/* control the memory footprint */
918 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
919 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
920 
921 	/* NAT cache management */
922 	struct radix_tree_root nat_root;/* root of the nat entry cache */
923 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
924 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
925 	struct list_head nat_entries;	/* cached nat entry list (clean) */
926 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
927 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
928 	unsigned int nat_blocks;	/* # of nat blocks */
929 
930 	/* free node ids management */
931 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
932 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
933 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
934 	spinlock_t nid_list_lock;	/* protect nid lists ops */
935 	struct mutex build_lock;	/* lock for build free nids */
936 	unsigned char **free_nid_bitmap;
937 	unsigned char *nat_block_bitmap;
938 	unsigned short *free_nid_count;	/* free nid count of NAT block */
939 
940 	/* for checkpoint */
941 	char *nat_bitmap;		/* NAT bitmap pointer */
942 
943 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
944 	unsigned char *nat_bits;	/* NAT bits blocks */
945 	unsigned char *full_nat_bits;	/* full NAT pages */
946 	unsigned char *empty_nat_bits;	/* empty NAT pages */
947 #ifdef CONFIG_F2FS_CHECK_FS
948 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
949 #endif
950 	int bitmap_size;		/* bitmap size */
951 };
952 
953 /*
954  * this structure is used as one of function parameters.
955  * all the information are dedicated to a given direct node block determined
956  * by the data offset in a file.
957  */
958 struct dnode_of_data {
959 	struct inode *inode;		/* vfs inode pointer */
960 	struct page *inode_page;	/* its inode page, NULL is possible */
961 	struct page *node_page;		/* cached direct node page */
962 	nid_t nid;			/* node id of the direct node block */
963 	unsigned int ofs_in_node;	/* data offset in the node page */
964 	bool inode_page_locked;		/* inode page is locked or not */
965 	bool node_changed;		/* is node block changed */
966 	char cur_level;			/* level of hole node page */
967 	char max_level;			/* level of current page located */
968 	block_t	data_blkaddr;		/* block address of the node block */
969 };
970 
971 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
972 		struct page *ipage, struct page *npage, nid_t nid)
973 {
974 	memset(dn, 0, sizeof(*dn));
975 	dn->inode = inode;
976 	dn->inode_page = ipage;
977 	dn->node_page = npage;
978 	dn->nid = nid;
979 }
980 
981 /*
982  * For SIT manager
983  *
984  * By default, there are 6 active log areas across the whole main area.
985  * When considering hot and cold data separation to reduce cleaning overhead,
986  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
987  * respectively.
988  * In the current design, you should not change the numbers intentionally.
989  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
990  * logs individually according to the underlying devices. (default: 6)
991  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
992  * data and 8 for node logs.
993  */
994 #define	NR_CURSEG_DATA_TYPE	(3)
995 #define NR_CURSEG_NODE_TYPE	(3)
996 #define NR_CURSEG_INMEM_TYPE	(2)
997 #define NR_CURSEG_RO_TYPE	(2)
998 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
999 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1000 
1001 enum {
1002 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1003 	CURSEG_WARM_DATA,	/* data blocks */
1004 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1005 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1006 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1007 	CURSEG_COLD_NODE,	/* indirect node blocks */
1008 	NR_PERSISTENT_LOG,	/* number of persistent log */
1009 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1010 				/* pinned file that needs consecutive block address */
1011 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1012 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1013 };
1014 
1015 struct flush_cmd {
1016 	struct completion wait;
1017 	struct llist_node llnode;
1018 	nid_t ino;
1019 	int ret;
1020 };
1021 
1022 struct flush_cmd_control {
1023 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1024 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1025 	atomic_t issued_flush;			/* # of issued flushes */
1026 	atomic_t queued_flush;			/* # of queued flushes */
1027 	struct llist_head issue_list;		/* list for command issue */
1028 	struct llist_node *dispatch_list;	/* list for command dispatch */
1029 };
1030 
1031 struct f2fs_sm_info {
1032 	struct sit_info *sit_info;		/* whole segment information */
1033 	struct free_segmap_info *free_info;	/* free segment information */
1034 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1035 	struct curseg_info *curseg_array;	/* active segment information */
1036 
1037 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1038 
1039 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1040 	block_t main_blkaddr;		/* start block address of main area */
1041 	block_t ssa_blkaddr;		/* start block address of SSA area */
1042 
1043 	unsigned int segment_count;	/* total # of segments */
1044 	unsigned int main_segments;	/* # of segments in main area */
1045 	unsigned int reserved_segments;	/* # of reserved segments */
1046 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1047 	unsigned int ovp_segments;	/* # of overprovision segments */
1048 
1049 	/* a threshold to reclaim prefree segments */
1050 	unsigned int rec_prefree_segments;
1051 
1052 	struct list_head sit_entry_set;	/* sit entry set list */
1053 
1054 	unsigned int ipu_policy;	/* in-place-update policy */
1055 	unsigned int min_ipu_util;	/* in-place-update threshold */
1056 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1057 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1058 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1059 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1060 
1061 	/* for flush command control */
1062 	struct flush_cmd_control *fcc_info;
1063 
1064 	/* for discard command control */
1065 	struct discard_cmd_control *dcc_info;
1066 };
1067 
1068 /*
1069  * For superblock
1070  */
1071 /*
1072  * COUNT_TYPE for monitoring
1073  *
1074  * f2fs monitors the number of several block types such as on-writeback,
1075  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1076  */
1077 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1078 enum count_type {
1079 	F2FS_DIRTY_DENTS,
1080 	F2FS_DIRTY_DATA,
1081 	F2FS_DIRTY_QDATA,
1082 	F2FS_DIRTY_NODES,
1083 	F2FS_DIRTY_META,
1084 	F2FS_DIRTY_IMETA,
1085 	F2FS_WB_CP_DATA,
1086 	F2FS_WB_DATA,
1087 	F2FS_RD_DATA,
1088 	F2FS_RD_NODE,
1089 	F2FS_RD_META,
1090 	F2FS_DIO_WRITE,
1091 	F2FS_DIO_READ,
1092 	NR_COUNT_TYPE,
1093 };
1094 
1095 /*
1096  * The below are the page types of bios used in submit_bio().
1097  * The available types are:
1098  * DATA			User data pages. It operates as async mode.
1099  * NODE			Node pages. It operates as async mode.
1100  * META			FS metadata pages such as SIT, NAT, CP.
1101  * NR_PAGE_TYPE		The number of page types.
1102  * META_FLUSH		Make sure the previous pages are written
1103  *			with waiting the bio's completion
1104  * ...			Only can be used with META.
1105  */
1106 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1107 enum page_type {
1108 	DATA = 0,
1109 	NODE = 1,	/* should not change this */
1110 	META,
1111 	NR_PAGE_TYPE,
1112 	META_FLUSH,
1113 	IPU,		/* the below types are used by tracepoints only. */
1114 	OPU,
1115 };
1116 
1117 enum temp_type {
1118 	HOT = 0,	/* must be zero for meta bio */
1119 	WARM,
1120 	COLD,
1121 	NR_TEMP_TYPE,
1122 };
1123 
1124 enum need_lock_type {
1125 	LOCK_REQ = 0,
1126 	LOCK_DONE,
1127 	LOCK_RETRY,
1128 };
1129 
1130 enum cp_reason_type {
1131 	CP_NO_NEEDED,
1132 	CP_NON_REGULAR,
1133 	CP_COMPRESSED,
1134 	CP_HARDLINK,
1135 	CP_SB_NEED_CP,
1136 	CP_WRONG_PINO,
1137 	CP_NO_SPC_ROLL,
1138 	CP_NODE_NEED_CP,
1139 	CP_FASTBOOT_MODE,
1140 	CP_SPEC_LOG_NUM,
1141 	CP_RECOVER_DIR,
1142 };
1143 
1144 enum iostat_type {
1145 	/* WRITE IO */
1146 	APP_DIRECT_IO,			/* app direct write IOs */
1147 	APP_BUFFERED_IO,		/* app buffered write IOs */
1148 	APP_WRITE_IO,			/* app write IOs */
1149 	APP_MAPPED_IO,			/* app mapped IOs */
1150 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1151 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1152 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1153 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1154 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1155 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1156 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1157 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1158 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1159 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1160 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1161 
1162 	/* READ IO */
1163 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1164 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1165 	APP_READ_IO,			/* app read IOs */
1166 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1167 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1168 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1169 	FS_DATA_READ_IO,		/* data read IOs */
1170 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1171 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1172 	FS_NODE_READ_IO,		/* node read IOs */
1173 	FS_META_READ_IO,		/* meta read IOs */
1174 
1175 	/* other */
1176 	FS_DISCARD_IO,			/* discard */
1177 	FS_FLUSH_IO,			/* flush */
1178 	NR_IO_TYPE,
1179 };
1180 
1181 struct f2fs_io_info {
1182 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1183 	nid_t ino;		/* inode number */
1184 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1185 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1186 	enum req_op op;		/* contains REQ_OP_ */
1187 	blk_opf_t op_flags;	/* req_flag_bits */
1188 	block_t new_blkaddr;	/* new block address to be written */
1189 	block_t old_blkaddr;	/* old block address before Cow */
1190 	struct page *page;	/* page to be written */
1191 	struct page *encrypted_page;	/* encrypted page */
1192 	struct page *compressed_page;	/* compressed page */
1193 	struct list_head list;		/* serialize IOs */
1194 	unsigned int compr_blocks;	/* # of compressed block addresses */
1195 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1196 	unsigned int version:8;		/* version of the node */
1197 	unsigned int submitted:1;	/* indicate IO submission */
1198 	unsigned int in_list:1;		/* indicate fio is in io_list */
1199 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1200 	unsigned int retry:1;		/* need to reallocate block address */
1201 	unsigned int encrypted:1;	/* indicate file is encrypted */
1202 	unsigned int post_read:1;	/* require post read */
1203 	enum iostat_type io_type;	/* io type */
1204 	struct writeback_control *io_wbc; /* writeback control */
1205 	struct bio **bio;		/* bio for ipu */
1206 	sector_t *last_block;		/* last block number in bio */
1207 };
1208 
1209 struct bio_entry {
1210 	struct bio *bio;
1211 	struct list_head list;
1212 };
1213 
1214 #define is_read_io(rw) ((rw) == READ)
1215 struct f2fs_bio_info {
1216 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1217 	struct bio *bio;		/* bios to merge */
1218 	sector_t last_block_in_bio;	/* last block number */
1219 	struct f2fs_io_info fio;	/* store buffered io info. */
1220 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1221 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1222 	struct list_head io_list;	/* track fios */
1223 	struct list_head bio_list;	/* bio entry list head */
1224 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1225 };
1226 
1227 #define FDEV(i)				(sbi->devs[i])
1228 #define RDEV(i)				(raw_super->devs[i])
1229 struct f2fs_dev_info {
1230 	struct block_device *bdev;
1231 	char path[MAX_PATH_LEN];
1232 	unsigned int total_segments;
1233 	block_t start_blk;
1234 	block_t end_blk;
1235 #ifdef CONFIG_BLK_DEV_ZONED
1236 	unsigned int nr_blkz;		/* Total number of zones */
1237 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1238 #endif
1239 };
1240 
1241 enum inode_type {
1242 	DIR_INODE,			/* for dirty dir inode */
1243 	FILE_INODE,			/* for dirty regular/symlink inode */
1244 	DIRTY_META,			/* for all dirtied inode metadata */
1245 	NR_INODE_TYPE,
1246 };
1247 
1248 /* for inner inode cache management */
1249 struct inode_management {
1250 	struct radix_tree_root ino_root;	/* ino entry array */
1251 	spinlock_t ino_lock;			/* for ino entry lock */
1252 	struct list_head ino_list;		/* inode list head */
1253 	unsigned long ino_num;			/* number of entries */
1254 };
1255 
1256 /* for GC_AT */
1257 struct atgc_management {
1258 	bool atgc_enabled;			/* ATGC is enabled or not */
1259 	struct rb_root_cached root;		/* root of victim rb-tree */
1260 	struct list_head victim_list;		/* linked with all victim entries */
1261 	unsigned int victim_count;		/* victim count in rb-tree */
1262 	unsigned int candidate_ratio;		/* candidate ratio */
1263 	unsigned int max_candidate_count;	/* max candidate count */
1264 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1265 	unsigned long long age_threshold;	/* age threshold */
1266 };
1267 
1268 struct f2fs_gc_control {
1269 	unsigned int victim_segno;	/* target victim segment number */
1270 	int init_gc_type;		/* FG_GC or BG_GC */
1271 	bool no_bg_gc;			/* check the space and stop bg_gc */
1272 	bool should_migrate_blocks;	/* should migrate blocks */
1273 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1274 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1275 };
1276 
1277 /*
1278  * For s_flag in struct f2fs_sb_info
1279  * Modification on enum should be synchronized with s_flag array
1280  */
1281 enum {
1282 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1283 	SBI_IS_CLOSE,				/* specify unmounting */
1284 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1285 	SBI_POR_DOING,				/* recovery is doing or not */
1286 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1287 	SBI_NEED_CP,				/* need to checkpoint */
1288 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1289 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1290 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1291 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1292 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1293 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1294 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1295 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1296 	SBI_IS_FREEZING,			/* freezefs is in process */
1297 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1298 	MAX_SBI_FLAG,
1299 };
1300 
1301 enum {
1302 	CP_TIME,
1303 	REQ_TIME,
1304 	DISCARD_TIME,
1305 	GC_TIME,
1306 	DISABLE_TIME,
1307 	UMOUNT_DISCARD_TIMEOUT,
1308 	MAX_TIME,
1309 };
1310 
1311 /* Note that you need to keep synchronization with this gc_mode_names array */
1312 enum {
1313 	GC_NORMAL,
1314 	GC_IDLE_CB,
1315 	GC_IDLE_GREEDY,
1316 	GC_IDLE_AT,
1317 	GC_URGENT_HIGH,
1318 	GC_URGENT_LOW,
1319 	GC_URGENT_MID,
1320 	MAX_GC_MODE,
1321 };
1322 
1323 enum {
1324 	BGGC_MODE_ON,		/* background gc is on */
1325 	BGGC_MODE_OFF,		/* background gc is off */
1326 	BGGC_MODE_SYNC,		/*
1327 				 * background gc is on, migrating blocks
1328 				 * like foreground gc
1329 				 */
1330 };
1331 
1332 enum {
1333 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1334 	FS_MODE_LFS,			/* use lfs allocation only */
1335 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1336 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1337 };
1338 
1339 enum {
1340 	ALLOC_MODE_DEFAULT,	/* stay default */
1341 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1342 };
1343 
1344 enum fsync_mode {
1345 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1346 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1347 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1348 };
1349 
1350 enum {
1351 	COMPR_MODE_FS,		/*
1352 				 * automatically compress compression
1353 				 * enabled files
1354 				 */
1355 	COMPR_MODE_USER,	/*
1356 				 * automatical compression is disabled.
1357 				 * user can control the file compression
1358 				 * using ioctls
1359 				 */
1360 };
1361 
1362 enum {
1363 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1364 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1365 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1366 };
1367 
1368 enum {
1369 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1370 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1371 };
1372 
1373 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1374 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1375 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1376 
1377 /*
1378  * Layout of f2fs page.private:
1379  *
1380  * Layout A: lowest bit should be 1
1381  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1382  * bit 0	PAGE_PRIVATE_NOT_POINTER
1383  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1384  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1385  * bit 3	PAGE_PRIVATE_INLINE_INODE
1386  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1387  * bit 5-	f2fs private data
1388  *
1389  * Layout B: lowest bit should be 0
1390  * page.private is a wrapped pointer.
1391  */
1392 enum {
1393 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1394 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1395 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1396 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1397 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1398 	PAGE_PRIVATE_MAX
1399 };
1400 
1401 /* For compression */
1402 enum compress_algorithm_type {
1403 	COMPRESS_LZO,
1404 	COMPRESS_LZ4,
1405 	COMPRESS_ZSTD,
1406 	COMPRESS_LZORLE,
1407 	COMPRESS_MAX,
1408 };
1409 
1410 enum compress_flag {
1411 	COMPRESS_CHKSUM,
1412 	COMPRESS_MAX_FLAG,
1413 };
1414 
1415 #define	COMPRESS_WATERMARK			20
1416 #define	COMPRESS_PERCENT			20
1417 
1418 #define COMPRESS_DATA_RESERVED_SIZE		4
1419 struct compress_data {
1420 	__le32 clen;			/* compressed data size */
1421 	__le32 chksum;			/* compressed data chksum */
1422 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1423 	u8 cdata[];			/* compressed data */
1424 };
1425 
1426 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1427 
1428 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1429 
1430 #define	COMPRESS_LEVEL_OFFSET	8
1431 
1432 /* compress context */
1433 struct compress_ctx {
1434 	struct inode *inode;		/* inode the context belong to */
1435 	pgoff_t cluster_idx;		/* cluster index number */
1436 	unsigned int cluster_size;	/* page count in cluster */
1437 	unsigned int log_cluster_size;	/* log of cluster size */
1438 	struct page **rpages;		/* pages store raw data in cluster */
1439 	unsigned int nr_rpages;		/* total page number in rpages */
1440 	struct page **cpages;		/* pages store compressed data in cluster */
1441 	unsigned int nr_cpages;		/* total page number in cpages */
1442 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1443 	void *rbuf;			/* virtual mapped address on rpages */
1444 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1445 	size_t rlen;			/* valid data length in rbuf */
1446 	size_t clen;			/* valid data length in cbuf */
1447 	void *private;			/* payload buffer for specified compression algorithm */
1448 	void *private2;			/* extra payload buffer */
1449 };
1450 
1451 /* compress context for write IO path */
1452 struct compress_io_ctx {
1453 	u32 magic;			/* magic number to indicate page is compressed */
1454 	struct inode *inode;		/* inode the context belong to */
1455 	struct page **rpages;		/* pages store raw data in cluster */
1456 	unsigned int nr_rpages;		/* total page number in rpages */
1457 	atomic_t pending_pages;		/* in-flight compressed page count */
1458 };
1459 
1460 /* Context for decompressing one cluster on the read IO path */
1461 struct decompress_io_ctx {
1462 	u32 magic;			/* magic number to indicate page is compressed */
1463 	struct inode *inode;		/* inode the context belong to */
1464 	pgoff_t cluster_idx;		/* cluster index number */
1465 	unsigned int cluster_size;	/* page count in cluster */
1466 	unsigned int log_cluster_size;	/* log of cluster size */
1467 	struct page **rpages;		/* pages store raw data in cluster */
1468 	unsigned int nr_rpages;		/* total page number in rpages */
1469 	struct page **cpages;		/* pages store compressed data in cluster */
1470 	unsigned int nr_cpages;		/* total page number in cpages */
1471 	struct page **tpages;		/* temp pages to pad holes in cluster */
1472 	void *rbuf;			/* virtual mapped address on rpages */
1473 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1474 	size_t rlen;			/* valid data length in rbuf */
1475 	size_t clen;			/* valid data length in cbuf */
1476 
1477 	/*
1478 	 * The number of compressed pages remaining to be read in this cluster.
1479 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1480 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1481 	 * is decompressed (or an error is reported).
1482 	 *
1483 	 * If an error occurs before all the pages have been submitted for I/O,
1484 	 * then this will never reach 0.  In this case the I/O submitter is
1485 	 * responsible for calling f2fs_decompress_end_io() instead.
1486 	 */
1487 	atomic_t remaining_pages;
1488 
1489 	/*
1490 	 * Number of references to this decompress_io_ctx.
1491 	 *
1492 	 * One reference is held for I/O completion.  This reference is dropped
1493 	 * after the pagecache pages are updated and unlocked -- either after
1494 	 * decompression (and verity if enabled), or after an error.
1495 	 *
1496 	 * In addition, each compressed page holds a reference while it is in a
1497 	 * bio.  These references are necessary prevent compressed pages from
1498 	 * being freed while they are still in a bio.
1499 	 */
1500 	refcount_t refcnt;
1501 
1502 	bool failed;			/* IO error occurred before decompression? */
1503 	bool need_verity;		/* need fs-verity verification after decompression? */
1504 	void *private;			/* payload buffer for specified decompression algorithm */
1505 	void *private2;			/* extra payload buffer */
1506 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1507 	struct work_struct free_work;	/* work for late free this structure itself */
1508 };
1509 
1510 #define NULL_CLUSTER			((unsigned int)(~0))
1511 #define MIN_COMPRESS_LOG_SIZE		2
1512 #define MAX_COMPRESS_LOG_SIZE		8
1513 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1514 
1515 struct f2fs_sb_info {
1516 	struct super_block *sb;			/* pointer to VFS super block */
1517 	struct proc_dir_entry *s_proc;		/* proc entry */
1518 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1519 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1520 	int valid_super_block;			/* valid super block no */
1521 	unsigned long s_flag;				/* flags for sbi */
1522 	struct mutex writepages;		/* mutex for writepages() */
1523 
1524 #ifdef CONFIG_BLK_DEV_ZONED
1525 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1526 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1527 #endif
1528 
1529 	/* for node-related operations */
1530 	struct f2fs_nm_info *nm_info;		/* node manager */
1531 	struct inode *node_inode;		/* cache node blocks */
1532 
1533 	/* for segment-related operations */
1534 	struct f2fs_sm_info *sm_info;		/* segment manager */
1535 
1536 	/* for bio operations */
1537 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1538 	/* keep migration IO order for LFS mode */
1539 	struct f2fs_rwsem io_order_lock;
1540 	mempool_t *write_io_dummy;		/* Dummy pages */
1541 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1542 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1543 
1544 	/* for checkpoint */
1545 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1546 	int cur_cp_pack;			/* remain current cp pack */
1547 	spinlock_t cp_lock;			/* for flag in ckpt */
1548 	struct inode *meta_inode;		/* cache meta blocks */
1549 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1550 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1551 	struct f2fs_rwsem node_write;		/* locking node writes */
1552 	struct f2fs_rwsem node_change;	/* locking node change */
1553 	wait_queue_head_t cp_wait;
1554 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1555 	long interval_time[MAX_TIME];		/* to store thresholds */
1556 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1557 
1558 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1559 
1560 	spinlock_t fsync_node_lock;		/* for node entry lock */
1561 	struct list_head fsync_node_list;	/* node list head */
1562 	unsigned int fsync_seg_id;		/* sequence id */
1563 	unsigned int fsync_node_num;		/* number of node entries */
1564 
1565 	/* for orphan inode, use 0'th array */
1566 	unsigned int max_orphans;		/* max orphan inodes */
1567 
1568 	/* for inode management */
1569 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1570 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1571 	struct mutex flush_lock;		/* for flush exclusion */
1572 
1573 	/* for extent tree cache */
1574 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1575 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1576 
1577 	/* The threshold used for hot and warm data seperation*/
1578 	unsigned int hot_data_age_threshold;
1579 	unsigned int warm_data_age_threshold;
1580 	unsigned int last_age_weight;
1581 
1582 	/* basic filesystem units */
1583 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1584 	unsigned int log_blocksize;		/* log2 block size */
1585 	unsigned int blocksize;			/* block size */
1586 	unsigned int root_ino_num;		/* root inode number*/
1587 	unsigned int node_ino_num;		/* node inode number*/
1588 	unsigned int meta_ino_num;		/* meta inode number*/
1589 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1590 	unsigned int blocks_per_seg;		/* blocks per segment */
1591 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1592 	unsigned int segs_per_sec;		/* segments per section */
1593 	unsigned int secs_per_zone;		/* sections per zone */
1594 	unsigned int total_sections;		/* total section count */
1595 	unsigned int total_node_count;		/* total node block count */
1596 	unsigned int total_valid_node_count;	/* valid node block count */
1597 	int dir_level;				/* directory level */
1598 	bool readdir_ra;			/* readahead inode in readdir */
1599 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1600 
1601 	block_t user_block_count;		/* # of user blocks */
1602 	block_t total_valid_block_count;	/* # of valid blocks */
1603 	block_t discard_blks;			/* discard command candidats */
1604 	block_t last_valid_block_count;		/* for recovery */
1605 	block_t reserved_blocks;		/* configurable reserved blocks */
1606 	block_t current_reserved_blocks;	/* current reserved blocks */
1607 
1608 	/* Additional tracking for no checkpoint mode */
1609 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1610 
1611 	unsigned int nquota_files;		/* # of quota sysfile */
1612 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1613 
1614 	/* # of pages, see count_type */
1615 	atomic_t nr_pages[NR_COUNT_TYPE];
1616 	/* # of allocated blocks */
1617 	struct percpu_counter alloc_valid_block_count;
1618 	/* # of node block writes as roll forward recovery */
1619 	struct percpu_counter rf_node_block_count;
1620 
1621 	/* writeback control */
1622 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1623 
1624 	/* valid inode count */
1625 	struct percpu_counter total_valid_inode_count;
1626 
1627 	struct f2fs_mount_info mount_opt;	/* mount options */
1628 
1629 	/* for cleaning operations */
1630 	struct f2fs_rwsem gc_lock;		/*
1631 						 * semaphore for GC, avoid
1632 						 * race between GC and GC or CP
1633 						 */
1634 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1635 	struct atgc_management am;		/* atgc management */
1636 	unsigned int cur_victim_sec;		/* current victim section num */
1637 	unsigned int gc_mode;			/* current GC state */
1638 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1639 	spinlock_t gc_remaining_trials_lock;
1640 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1641 	unsigned int gc_remaining_trials;
1642 
1643 	/* for skip statistic */
1644 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1645 
1646 	/* threshold for gc trials on pinned files */
1647 	u64 gc_pin_file_threshold;
1648 	struct f2fs_rwsem pin_sem;
1649 
1650 	/* maximum # of trials to find a victim segment for SSR and GC */
1651 	unsigned int max_victim_search;
1652 	/* migration granularity of garbage collection, unit: segment */
1653 	unsigned int migration_granularity;
1654 
1655 	/*
1656 	 * for stat information.
1657 	 * one is for the LFS mode, and the other is for the SSR mode.
1658 	 */
1659 #ifdef CONFIG_F2FS_STAT_FS
1660 	struct f2fs_stat_info *stat_info;	/* FS status information */
1661 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1662 	unsigned int segment_count[2];		/* # of allocated segments */
1663 	unsigned int block_count[2];		/* # of allocated blocks */
1664 	atomic_t inplace_count;		/* # of inplace update */
1665 	/* # of lookup extent cache */
1666 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1667 	/* # of hit rbtree extent node */
1668 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1669 	/* # of hit cached extent node */
1670 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1671 	/* # of hit largest extent node in read extent cache */
1672 	atomic64_t read_hit_largest;
1673 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1674 	atomic_t inline_inode;			/* # of inline_data inodes */
1675 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1676 	atomic_t compr_inode;			/* # of compressed inodes */
1677 	atomic64_t compr_blocks;		/* # of compressed blocks */
1678 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1679 	atomic_t atomic_files;			/* # of opened atomic file */
1680 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1681 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1682 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1683 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1684 #endif
1685 	spinlock_t stat_lock;			/* lock for stat operations */
1686 
1687 	/* to attach REQ_META|REQ_FUA flags */
1688 	unsigned int data_io_flag;
1689 	unsigned int node_io_flag;
1690 
1691 	/* For sysfs support */
1692 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1693 	struct completion s_kobj_unregister;
1694 
1695 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1696 	struct completion s_stat_kobj_unregister;
1697 
1698 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1699 	struct completion s_feature_list_kobj_unregister;
1700 
1701 	/* For shrinker support */
1702 	struct list_head s_list;
1703 	struct mutex umount_mutex;
1704 	unsigned int shrinker_run_no;
1705 
1706 	/* For multi devices */
1707 	int s_ndevs;				/* number of devices */
1708 	struct f2fs_dev_info *devs;		/* for device list */
1709 	unsigned int dirty_device;		/* for checkpoint data flush */
1710 	spinlock_t dev_lock;			/* protect dirty_device */
1711 	bool aligned_blksize;			/* all devices has the same logical blksize */
1712 
1713 	/* For write statistics */
1714 	u64 sectors_written_start;
1715 	u64 kbytes_written;
1716 
1717 	/* Reference to checksum algorithm driver via cryptoapi */
1718 	struct crypto_shash *s_chksum_driver;
1719 
1720 	/* Precomputed FS UUID checksum for seeding other checksums */
1721 	__u32 s_chksum_seed;
1722 
1723 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1724 
1725 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1726 	spinlock_t error_lock;			/* protect errors array */
1727 	bool error_dirty;			/* errors of sb is dirty */
1728 
1729 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1730 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1731 
1732 	/* For reclaimed segs statistics per each GC mode */
1733 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1734 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1735 
1736 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1737 
1738 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1739 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1740 
1741 	/* For atomic write statistics */
1742 	atomic64_t current_atomic_write;
1743 	s64 peak_atomic_write;
1744 	u64 committed_atomic_block;
1745 	u64 revoked_atomic_block;
1746 
1747 #ifdef CONFIG_F2FS_FS_COMPRESSION
1748 	struct kmem_cache *page_array_slab;	/* page array entry */
1749 	unsigned int page_array_slab_size;	/* default page array slab size */
1750 
1751 	/* For runtime compression statistics */
1752 	u64 compr_written_block;
1753 	u64 compr_saved_block;
1754 	u32 compr_new_inode;
1755 
1756 	/* For compressed block cache */
1757 	struct inode *compress_inode;		/* cache compressed blocks */
1758 	unsigned int compress_percent;		/* cache page percentage */
1759 	unsigned int compress_watermark;	/* cache page watermark */
1760 	atomic_t compress_page_hit;		/* cache hit count */
1761 #endif
1762 
1763 #ifdef CONFIG_F2FS_IOSTAT
1764 	/* For app/fs IO statistics */
1765 	spinlock_t iostat_lock;
1766 	unsigned long long iostat_count[NR_IO_TYPE];
1767 	unsigned long long iostat_bytes[NR_IO_TYPE];
1768 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1769 	bool iostat_enable;
1770 	unsigned long iostat_next_period;
1771 	unsigned int iostat_period_ms;
1772 
1773 	/* For io latency related statistics info in one iostat period */
1774 	spinlock_t iostat_lat_lock;
1775 	struct iostat_lat_info *iostat_io_lat;
1776 #endif
1777 };
1778 
1779 #ifdef CONFIG_F2FS_FAULT_INJECTION
1780 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1781 									__builtin_return_address(0))
1782 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1783 				const char *func, const char *parent_func)
1784 {
1785 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1786 
1787 	if (!ffi->inject_rate)
1788 		return false;
1789 
1790 	if (!IS_FAULT_SET(ffi, type))
1791 		return false;
1792 
1793 	atomic_inc(&ffi->inject_ops);
1794 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1795 		atomic_set(&ffi->inject_ops, 0);
1796 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1797 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1798 			func, parent_func);
1799 		return true;
1800 	}
1801 	return false;
1802 }
1803 #else
1804 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1805 {
1806 	return false;
1807 }
1808 #endif
1809 
1810 /*
1811  * Test if the mounted volume is a multi-device volume.
1812  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1813  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1814  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1815  */
1816 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1817 {
1818 	return sbi->s_ndevs > 1;
1819 }
1820 
1821 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1822 {
1823 	unsigned long now = jiffies;
1824 
1825 	sbi->last_time[type] = now;
1826 
1827 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1828 	if (type == REQ_TIME) {
1829 		sbi->last_time[DISCARD_TIME] = now;
1830 		sbi->last_time[GC_TIME] = now;
1831 	}
1832 }
1833 
1834 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1835 {
1836 	unsigned long interval = sbi->interval_time[type] * HZ;
1837 
1838 	return time_after(jiffies, sbi->last_time[type] + interval);
1839 }
1840 
1841 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1842 						int type)
1843 {
1844 	unsigned long interval = sbi->interval_time[type] * HZ;
1845 	unsigned int wait_ms = 0;
1846 	long delta;
1847 
1848 	delta = (sbi->last_time[type] + interval) - jiffies;
1849 	if (delta > 0)
1850 		wait_ms = jiffies_to_msecs(delta);
1851 
1852 	return wait_ms;
1853 }
1854 
1855 /*
1856  * Inline functions
1857  */
1858 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1859 			      const void *address, unsigned int length)
1860 {
1861 	struct {
1862 		struct shash_desc shash;
1863 		char ctx[4];
1864 	} desc;
1865 	int err;
1866 
1867 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1868 
1869 	desc.shash.tfm = sbi->s_chksum_driver;
1870 	*(u32 *)desc.ctx = crc;
1871 
1872 	err = crypto_shash_update(&desc.shash, address, length);
1873 	BUG_ON(err);
1874 
1875 	return *(u32 *)desc.ctx;
1876 }
1877 
1878 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1879 			   unsigned int length)
1880 {
1881 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1882 }
1883 
1884 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1885 				  void *buf, size_t buf_size)
1886 {
1887 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1888 }
1889 
1890 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1891 			      const void *address, unsigned int length)
1892 {
1893 	return __f2fs_crc32(sbi, crc, address, length);
1894 }
1895 
1896 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1897 {
1898 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1899 }
1900 
1901 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1902 {
1903 	return sb->s_fs_info;
1904 }
1905 
1906 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1907 {
1908 	return F2FS_SB(inode->i_sb);
1909 }
1910 
1911 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1912 {
1913 	return F2FS_I_SB(mapping->host);
1914 }
1915 
1916 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1917 {
1918 	return F2FS_M_SB(page_file_mapping(page));
1919 }
1920 
1921 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1922 {
1923 	return (struct f2fs_super_block *)(sbi->raw_super);
1924 }
1925 
1926 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1927 {
1928 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1929 }
1930 
1931 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1932 {
1933 	return (struct f2fs_node *)page_address(page);
1934 }
1935 
1936 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1937 {
1938 	return &((struct f2fs_node *)page_address(page))->i;
1939 }
1940 
1941 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1942 {
1943 	return (struct f2fs_nm_info *)(sbi->nm_info);
1944 }
1945 
1946 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1947 {
1948 	return (struct f2fs_sm_info *)(sbi->sm_info);
1949 }
1950 
1951 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1952 {
1953 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1954 }
1955 
1956 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1957 {
1958 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1959 }
1960 
1961 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1962 {
1963 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1964 }
1965 
1966 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1967 {
1968 	return sbi->meta_inode->i_mapping;
1969 }
1970 
1971 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1972 {
1973 	return sbi->node_inode->i_mapping;
1974 }
1975 
1976 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1977 {
1978 	return test_bit(type, &sbi->s_flag);
1979 }
1980 
1981 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1982 {
1983 	set_bit(type, &sbi->s_flag);
1984 }
1985 
1986 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1987 {
1988 	clear_bit(type, &sbi->s_flag);
1989 }
1990 
1991 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1992 {
1993 	return le64_to_cpu(cp->checkpoint_ver);
1994 }
1995 
1996 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1997 {
1998 	if (type < F2FS_MAX_QUOTAS)
1999 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2000 	return 0;
2001 }
2002 
2003 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2004 {
2005 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2006 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2007 }
2008 
2009 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2010 {
2011 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2012 
2013 	return ckpt_flags & f;
2014 }
2015 
2016 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2017 {
2018 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2019 }
2020 
2021 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2022 {
2023 	unsigned int ckpt_flags;
2024 
2025 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2026 	ckpt_flags |= f;
2027 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2028 }
2029 
2030 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2031 {
2032 	unsigned long flags;
2033 
2034 	spin_lock_irqsave(&sbi->cp_lock, flags);
2035 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2036 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2037 }
2038 
2039 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2040 {
2041 	unsigned int ckpt_flags;
2042 
2043 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2044 	ckpt_flags &= (~f);
2045 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2046 }
2047 
2048 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2049 {
2050 	unsigned long flags;
2051 
2052 	spin_lock_irqsave(&sbi->cp_lock, flags);
2053 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2054 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2055 }
2056 
2057 #define init_f2fs_rwsem(sem)					\
2058 do {								\
2059 	static struct lock_class_key __key;			\
2060 								\
2061 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2062 } while (0)
2063 
2064 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2065 		const char *sem_name, struct lock_class_key *key)
2066 {
2067 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2068 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2069 	init_waitqueue_head(&sem->read_waiters);
2070 #endif
2071 }
2072 
2073 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2074 {
2075 	return rwsem_is_locked(&sem->internal_rwsem);
2076 }
2077 
2078 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2079 {
2080 	return rwsem_is_contended(&sem->internal_rwsem);
2081 }
2082 
2083 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2084 {
2085 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2086 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2087 #else
2088 	down_read(&sem->internal_rwsem);
2089 #endif
2090 }
2091 
2092 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2093 {
2094 	return down_read_trylock(&sem->internal_rwsem);
2095 }
2096 
2097 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2098 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2099 {
2100 	down_read_nested(&sem->internal_rwsem, subclass);
2101 }
2102 #else
2103 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2104 #endif
2105 
2106 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2107 {
2108 	up_read(&sem->internal_rwsem);
2109 }
2110 
2111 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2112 {
2113 	down_write(&sem->internal_rwsem);
2114 }
2115 
2116 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2117 {
2118 	return down_write_trylock(&sem->internal_rwsem);
2119 }
2120 
2121 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2122 {
2123 	up_write(&sem->internal_rwsem);
2124 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2125 	wake_up_all(&sem->read_waiters);
2126 #endif
2127 }
2128 
2129 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2130 {
2131 	f2fs_down_read(&sbi->cp_rwsem);
2132 }
2133 
2134 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2135 {
2136 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2137 		return 0;
2138 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2139 }
2140 
2141 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2142 {
2143 	f2fs_up_read(&sbi->cp_rwsem);
2144 }
2145 
2146 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2147 {
2148 	f2fs_down_write(&sbi->cp_rwsem);
2149 }
2150 
2151 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2152 {
2153 	f2fs_up_write(&sbi->cp_rwsem);
2154 }
2155 
2156 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2157 {
2158 	int reason = CP_SYNC;
2159 
2160 	if (test_opt(sbi, FASTBOOT))
2161 		reason = CP_FASTBOOT;
2162 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2163 		reason = CP_UMOUNT;
2164 	return reason;
2165 }
2166 
2167 static inline bool __remain_node_summaries(int reason)
2168 {
2169 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2170 }
2171 
2172 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2173 {
2174 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2175 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2176 }
2177 
2178 /*
2179  * Check whether the inode has blocks or not
2180  */
2181 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2182 {
2183 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2184 
2185 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2186 }
2187 
2188 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2189 {
2190 	return ofs == XATTR_NODE_OFFSET;
2191 }
2192 
2193 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2194 					struct inode *inode, bool cap)
2195 {
2196 	if (!inode)
2197 		return true;
2198 	if (!test_opt(sbi, RESERVE_ROOT))
2199 		return false;
2200 	if (IS_NOQUOTA(inode))
2201 		return true;
2202 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2203 		return true;
2204 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2205 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2206 		return true;
2207 	if (cap && capable(CAP_SYS_RESOURCE))
2208 		return true;
2209 	return false;
2210 }
2211 
2212 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2213 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2214 				 struct inode *inode, blkcnt_t *count)
2215 {
2216 	blkcnt_t diff = 0, release = 0;
2217 	block_t avail_user_block_count;
2218 	int ret;
2219 
2220 	ret = dquot_reserve_block(inode, *count);
2221 	if (ret)
2222 		return ret;
2223 
2224 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2225 		release = *count;
2226 		goto release_quota;
2227 	}
2228 
2229 	/*
2230 	 * let's increase this in prior to actual block count change in order
2231 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2232 	 */
2233 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2234 
2235 	spin_lock(&sbi->stat_lock);
2236 	sbi->total_valid_block_count += (block_t)(*count);
2237 	avail_user_block_count = sbi->user_block_count -
2238 					sbi->current_reserved_blocks;
2239 
2240 	if (!__allow_reserved_blocks(sbi, inode, true))
2241 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2242 
2243 	if (F2FS_IO_ALIGNED(sbi))
2244 		avail_user_block_count -= sbi->blocks_per_seg *
2245 				SM_I(sbi)->additional_reserved_segments;
2246 
2247 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2248 		if (avail_user_block_count > sbi->unusable_block_count)
2249 			avail_user_block_count -= sbi->unusable_block_count;
2250 		else
2251 			avail_user_block_count = 0;
2252 	}
2253 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2254 		diff = sbi->total_valid_block_count - avail_user_block_count;
2255 		if (diff > *count)
2256 			diff = *count;
2257 		*count -= diff;
2258 		release = diff;
2259 		sbi->total_valid_block_count -= diff;
2260 		if (!*count) {
2261 			spin_unlock(&sbi->stat_lock);
2262 			goto enospc;
2263 		}
2264 	}
2265 	spin_unlock(&sbi->stat_lock);
2266 
2267 	if (unlikely(release)) {
2268 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2269 		dquot_release_reservation_block(inode, release);
2270 	}
2271 	f2fs_i_blocks_write(inode, *count, true, true);
2272 	return 0;
2273 
2274 enospc:
2275 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2276 release_quota:
2277 	dquot_release_reservation_block(inode, release);
2278 	return -ENOSPC;
2279 }
2280 
2281 __printf(2, 3)
2282 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2283 
2284 #define f2fs_err(sbi, fmt, ...)						\
2285 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2286 #define f2fs_warn(sbi, fmt, ...)					\
2287 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2288 #define f2fs_notice(sbi, fmt, ...)					\
2289 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2290 #define f2fs_info(sbi, fmt, ...)					\
2291 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2292 #define f2fs_debug(sbi, fmt, ...)					\
2293 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2294 
2295 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2296 static inline bool page_private_##name(struct page *page) \
2297 { \
2298 	return PagePrivate(page) && \
2299 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2300 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2301 }
2302 
2303 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2304 static inline void set_page_private_##name(struct page *page) \
2305 { \
2306 	if (!PagePrivate(page)) \
2307 		attach_page_private(page, (void *)0); \
2308 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2309 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2310 }
2311 
2312 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2313 static inline void clear_page_private_##name(struct page *page) \
2314 { \
2315 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2316 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2317 		detach_page_private(page); \
2318 }
2319 
2320 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2321 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2322 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2323 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2324 
2325 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2326 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2327 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2328 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2329 
2330 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2331 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2332 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2333 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2334 
2335 static inline unsigned long get_page_private_data(struct page *page)
2336 {
2337 	unsigned long data = page_private(page);
2338 
2339 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2340 		return 0;
2341 	return data >> PAGE_PRIVATE_MAX;
2342 }
2343 
2344 static inline void set_page_private_data(struct page *page, unsigned long data)
2345 {
2346 	if (!PagePrivate(page))
2347 		attach_page_private(page, (void *)0);
2348 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2349 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2350 }
2351 
2352 static inline void clear_page_private_data(struct page *page)
2353 {
2354 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2355 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2356 		detach_page_private(page);
2357 }
2358 
2359 static inline void clear_page_private_all(struct page *page)
2360 {
2361 	clear_page_private_data(page);
2362 	clear_page_private_reference(page);
2363 	clear_page_private_gcing(page);
2364 	clear_page_private_inline(page);
2365 
2366 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2367 }
2368 
2369 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2370 						struct inode *inode,
2371 						block_t count)
2372 {
2373 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2374 
2375 	spin_lock(&sbi->stat_lock);
2376 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2377 	sbi->total_valid_block_count -= (block_t)count;
2378 	if (sbi->reserved_blocks &&
2379 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2380 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2381 					sbi->current_reserved_blocks + count);
2382 	spin_unlock(&sbi->stat_lock);
2383 	if (unlikely(inode->i_blocks < sectors)) {
2384 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2385 			  inode->i_ino,
2386 			  (unsigned long long)inode->i_blocks,
2387 			  (unsigned long long)sectors);
2388 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2389 		return;
2390 	}
2391 	f2fs_i_blocks_write(inode, count, false, true);
2392 }
2393 
2394 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2395 {
2396 	atomic_inc(&sbi->nr_pages[count_type]);
2397 
2398 	if (count_type == F2FS_DIRTY_DENTS ||
2399 			count_type == F2FS_DIRTY_NODES ||
2400 			count_type == F2FS_DIRTY_META ||
2401 			count_type == F2FS_DIRTY_QDATA ||
2402 			count_type == F2FS_DIRTY_IMETA)
2403 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2404 }
2405 
2406 static inline void inode_inc_dirty_pages(struct inode *inode)
2407 {
2408 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2409 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2410 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2411 	if (IS_NOQUOTA(inode))
2412 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2413 }
2414 
2415 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2416 {
2417 	atomic_dec(&sbi->nr_pages[count_type]);
2418 }
2419 
2420 static inline void inode_dec_dirty_pages(struct inode *inode)
2421 {
2422 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2423 			!S_ISLNK(inode->i_mode))
2424 		return;
2425 
2426 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2427 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2428 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2429 	if (IS_NOQUOTA(inode))
2430 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2431 }
2432 
2433 static inline void inc_atomic_write_cnt(struct inode *inode)
2434 {
2435 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2436 	struct f2fs_inode_info *fi = F2FS_I(inode);
2437 	u64 current_write;
2438 
2439 	fi->atomic_write_cnt++;
2440 	atomic64_inc(&sbi->current_atomic_write);
2441 	current_write = atomic64_read(&sbi->current_atomic_write);
2442 	if (current_write > sbi->peak_atomic_write)
2443 		sbi->peak_atomic_write = current_write;
2444 }
2445 
2446 static inline void release_atomic_write_cnt(struct inode *inode)
2447 {
2448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2449 	struct f2fs_inode_info *fi = F2FS_I(inode);
2450 
2451 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2452 	fi->atomic_write_cnt = 0;
2453 }
2454 
2455 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2456 {
2457 	return atomic_read(&sbi->nr_pages[count_type]);
2458 }
2459 
2460 static inline int get_dirty_pages(struct inode *inode)
2461 {
2462 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2463 }
2464 
2465 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2466 {
2467 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2468 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2469 						sbi->log_blocks_per_seg;
2470 
2471 	return segs / sbi->segs_per_sec;
2472 }
2473 
2474 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2475 {
2476 	return sbi->total_valid_block_count;
2477 }
2478 
2479 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2480 {
2481 	return sbi->discard_blks;
2482 }
2483 
2484 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2485 {
2486 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2487 
2488 	/* return NAT or SIT bitmap */
2489 	if (flag == NAT_BITMAP)
2490 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2491 	else if (flag == SIT_BITMAP)
2492 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2493 
2494 	return 0;
2495 }
2496 
2497 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2498 {
2499 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2500 }
2501 
2502 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2503 {
2504 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2505 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2506 	int offset;
2507 
2508 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2509 		offset = (flag == SIT_BITMAP) ?
2510 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2511 		/*
2512 		 * if large_nat_bitmap feature is enabled, leave checksum
2513 		 * protection for all nat/sit bitmaps.
2514 		 */
2515 		return tmp_ptr + offset + sizeof(__le32);
2516 	}
2517 
2518 	if (__cp_payload(sbi) > 0) {
2519 		if (flag == NAT_BITMAP)
2520 			return tmp_ptr;
2521 		else
2522 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2523 	} else {
2524 		offset = (flag == NAT_BITMAP) ?
2525 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2526 		return tmp_ptr + offset;
2527 	}
2528 }
2529 
2530 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2531 {
2532 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2533 
2534 	if (sbi->cur_cp_pack == 2)
2535 		start_addr += sbi->blocks_per_seg;
2536 	return start_addr;
2537 }
2538 
2539 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2540 {
2541 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2542 
2543 	if (sbi->cur_cp_pack == 1)
2544 		start_addr += sbi->blocks_per_seg;
2545 	return start_addr;
2546 }
2547 
2548 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2549 {
2550 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2551 }
2552 
2553 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2554 {
2555 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2556 }
2557 
2558 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2559 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2560 					struct inode *inode, bool is_inode)
2561 {
2562 	block_t	valid_block_count;
2563 	unsigned int valid_node_count, user_block_count;
2564 	int err;
2565 
2566 	if (is_inode) {
2567 		if (inode) {
2568 			err = dquot_alloc_inode(inode);
2569 			if (err)
2570 				return err;
2571 		}
2572 	} else {
2573 		err = dquot_reserve_block(inode, 1);
2574 		if (err)
2575 			return err;
2576 	}
2577 
2578 	if (time_to_inject(sbi, FAULT_BLOCK))
2579 		goto enospc;
2580 
2581 	spin_lock(&sbi->stat_lock);
2582 
2583 	valid_block_count = sbi->total_valid_block_count +
2584 					sbi->current_reserved_blocks + 1;
2585 
2586 	if (!__allow_reserved_blocks(sbi, inode, false))
2587 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2588 
2589 	if (F2FS_IO_ALIGNED(sbi))
2590 		valid_block_count += sbi->blocks_per_seg *
2591 				SM_I(sbi)->additional_reserved_segments;
2592 
2593 	user_block_count = sbi->user_block_count;
2594 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2595 		user_block_count -= sbi->unusable_block_count;
2596 
2597 	if (unlikely(valid_block_count > user_block_count)) {
2598 		spin_unlock(&sbi->stat_lock);
2599 		goto enospc;
2600 	}
2601 
2602 	valid_node_count = sbi->total_valid_node_count + 1;
2603 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2604 		spin_unlock(&sbi->stat_lock);
2605 		goto enospc;
2606 	}
2607 
2608 	sbi->total_valid_node_count++;
2609 	sbi->total_valid_block_count++;
2610 	spin_unlock(&sbi->stat_lock);
2611 
2612 	if (inode) {
2613 		if (is_inode)
2614 			f2fs_mark_inode_dirty_sync(inode, true);
2615 		else
2616 			f2fs_i_blocks_write(inode, 1, true, true);
2617 	}
2618 
2619 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2620 	return 0;
2621 
2622 enospc:
2623 	if (is_inode) {
2624 		if (inode)
2625 			dquot_free_inode(inode);
2626 	} else {
2627 		dquot_release_reservation_block(inode, 1);
2628 	}
2629 	return -ENOSPC;
2630 }
2631 
2632 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2633 					struct inode *inode, bool is_inode)
2634 {
2635 	spin_lock(&sbi->stat_lock);
2636 
2637 	if (unlikely(!sbi->total_valid_block_count ||
2638 			!sbi->total_valid_node_count)) {
2639 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2640 			  sbi->total_valid_block_count,
2641 			  sbi->total_valid_node_count);
2642 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2643 	} else {
2644 		sbi->total_valid_block_count--;
2645 		sbi->total_valid_node_count--;
2646 	}
2647 
2648 	if (sbi->reserved_blocks &&
2649 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2650 		sbi->current_reserved_blocks++;
2651 
2652 	spin_unlock(&sbi->stat_lock);
2653 
2654 	if (is_inode) {
2655 		dquot_free_inode(inode);
2656 	} else {
2657 		if (unlikely(inode->i_blocks == 0)) {
2658 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2659 				  inode->i_ino,
2660 				  (unsigned long long)inode->i_blocks);
2661 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2662 			return;
2663 		}
2664 		f2fs_i_blocks_write(inode, 1, false, true);
2665 	}
2666 }
2667 
2668 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2669 {
2670 	return sbi->total_valid_node_count;
2671 }
2672 
2673 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2674 {
2675 	percpu_counter_inc(&sbi->total_valid_inode_count);
2676 }
2677 
2678 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2679 {
2680 	percpu_counter_dec(&sbi->total_valid_inode_count);
2681 }
2682 
2683 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2684 {
2685 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2686 }
2687 
2688 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2689 						pgoff_t index, bool for_write)
2690 {
2691 	struct page *page;
2692 	unsigned int flags;
2693 
2694 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2695 		if (!for_write)
2696 			page = find_get_page_flags(mapping, index,
2697 							FGP_LOCK | FGP_ACCESSED);
2698 		else
2699 			page = find_lock_page(mapping, index);
2700 		if (page)
2701 			return page;
2702 
2703 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2704 			return NULL;
2705 	}
2706 
2707 	if (!for_write)
2708 		return grab_cache_page(mapping, index);
2709 
2710 	flags = memalloc_nofs_save();
2711 	page = grab_cache_page_write_begin(mapping, index);
2712 	memalloc_nofs_restore(flags);
2713 
2714 	return page;
2715 }
2716 
2717 static inline struct page *f2fs_pagecache_get_page(
2718 				struct address_space *mapping, pgoff_t index,
2719 				int fgp_flags, gfp_t gfp_mask)
2720 {
2721 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2722 		return NULL;
2723 
2724 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2725 }
2726 
2727 static inline void f2fs_put_page(struct page *page, int unlock)
2728 {
2729 	if (!page)
2730 		return;
2731 
2732 	if (unlock) {
2733 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2734 		unlock_page(page);
2735 	}
2736 	put_page(page);
2737 }
2738 
2739 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2740 {
2741 	if (dn->node_page)
2742 		f2fs_put_page(dn->node_page, 1);
2743 	if (dn->inode_page && dn->node_page != dn->inode_page)
2744 		f2fs_put_page(dn->inode_page, 0);
2745 	dn->node_page = NULL;
2746 	dn->inode_page = NULL;
2747 }
2748 
2749 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2750 					size_t size)
2751 {
2752 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2753 }
2754 
2755 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2756 						gfp_t flags)
2757 {
2758 	void *entry;
2759 
2760 	entry = kmem_cache_alloc(cachep, flags);
2761 	if (!entry)
2762 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2763 	return entry;
2764 }
2765 
2766 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2767 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2768 {
2769 	if (nofail)
2770 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2771 
2772 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2773 		return NULL;
2774 
2775 	return kmem_cache_alloc(cachep, flags);
2776 }
2777 
2778 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2779 {
2780 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2781 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2782 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2783 		get_pages(sbi, F2FS_DIO_READ) ||
2784 		get_pages(sbi, F2FS_DIO_WRITE))
2785 		return true;
2786 
2787 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2788 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2789 		return true;
2790 
2791 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2792 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2793 		return true;
2794 	return false;
2795 }
2796 
2797 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2798 {
2799 	if (sbi->gc_mode == GC_URGENT_HIGH)
2800 		return true;
2801 
2802 	if (is_inflight_io(sbi, type))
2803 		return false;
2804 
2805 	if (sbi->gc_mode == GC_URGENT_MID)
2806 		return true;
2807 
2808 	if (sbi->gc_mode == GC_URGENT_LOW &&
2809 			(type == DISCARD_TIME || type == GC_TIME))
2810 		return true;
2811 
2812 	return f2fs_time_over(sbi, type);
2813 }
2814 
2815 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2816 				unsigned long index, void *item)
2817 {
2818 	while (radix_tree_insert(root, index, item))
2819 		cond_resched();
2820 }
2821 
2822 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2823 
2824 static inline bool IS_INODE(struct page *page)
2825 {
2826 	struct f2fs_node *p = F2FS_NODE(page);
2827 
2828 	return RAW_IS_INODE(p);
2829 }
2830 
2831 static inline int offset_in_addr(struct f2fs_inode *i)
2832 {
2833 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2834 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2835 }
2836 
2837 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2838 {
2839 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2840 }
2841 
2842 static inline int f2fs_has_extra_attr(struct inode *inode);
2843 static inline block_t data_blkaddr(struct inode *inode,
2844 			struct page *node_page, unsigned int offset)
2845 {
2846 	struct f2fs_node *raw_node;
2847 	__le32 *addr_array;
2848 	int base = 0;
2849 	bool is_inode = IS_INODE(node_page);
2850 
2851 	raw_node = F2FS_NODE(node_page);
2852 
2853 	if (is_inode) {
2854 		if (!inode)
2855 			/* from GC path only */
2856 			base = offset_in_addr(&raw_node->i);
2857 		else if (f2fs_has_extra_attr(inode))
2858 			base = get_extra_isize(inode);
2859 	}
2860 
2861 	addr_array = blkaddr_in_node(raw_node);
2862 	return le32_to_cpu(addr_array[base + offset]);
2863 }
2864 
2865 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2866 {
2867 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2868 }
2869 
2870 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2871 {
2872 	int mask;
2873 
2874 	addr += (nr >> 3);
2875 	mask = BIT(7 - (nr & 0x07));
2876 	return mask & *addr;
2877 }
2878 
2879 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2880 {
2881 	int mask;
2882 
2883 	addr += (nr >> 3);
2884 	mask = BIT(7 - (nr & 0x07));
2885 	*addr |= mask;
2886 }
2887 
2888 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2889 {
2890 	int mask;
2891 
2892 	addr += (nr >> 3);
2893 	mask = BIT(7 - (nr & 0x07));
2894 	*addr &= ~mask;
2895 }
2896 
2897 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2898 {
2899 	int mask;
2900 	int ret;
2901 
2902 	addr += (nr >> 3);
2903 	mask = BIT(7 - (nr & 0x07));
2904 	ret = mask & *addr;
2905 	*addr |= mask;
2906 	return ret;
2907 }
2908 
2909 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2910 {
2911 	int mask;
2912 	int ret;
2913 
2914 	addr += (nr >> 3);
2915 	mask = BIT(7 - (nr & 0x07));
2916 	ret = mask & *addr;
2917 	*addr &= ~mask;
2918 	return ret;
2919 }
2920 
2921 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2922 {
2923 	int mask;
2924 
2925 	addr += (nr >> 3);
2926 	mask = BIT(7 - (nr & 0x07));
2927 	*addr ^= mask;
2928 }
2929 
2930 /*
2931  * On-disk inode flags (f2fs_inode::i_flags)
2932  */
2933 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2934 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2935 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2936 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2937 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2938 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2939 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2940 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2941 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2942 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2943 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2944 
2945 /* Flags that should be inherited by new inodes from their parent. */
2946 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2947 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2948 			   F2FS_CASEFOLD_FL)
2949 
2950 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2951 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2952 				F2FS_CASEFOLD_FL))
2953 
2954 /* Flags that are appropriate for non-directories/regular files. */
2955 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2956 
2957 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2958 {
2959 	if (S_ISDIR(mode))
2960 		return flags;
2961 	else if (S_ISREG(mode))
2962 		return flags & F2FS_REG_FLMASK;
2963 	else
2964 		return flags & F2FS_OTHER_FLMASK;
2965 }
2966 
2967 static inline void __mark_inode_dirty_flag(struct inode *inode,
2968 						int flag, bool set)
2969 {
2970 	switch (flag) {
2971 	case FI_INLINE_XATTR:
2972 	case FI_INLINE_DATA:
2973 	case FI_INLINE_DENTRY:
2974 	case FI_NEW_INODE:
2975 		if (set)
2976 			return;
2977 		fallthrough;
2978 	case FI_DATA_EXIST:
2979 	case FI_INLINE_DOTS:
2980 	case FI_PIN_FILE:
2981 	case FI_COMPRESS_RELEASED:
2982 		f2fs_mark_inode_dirty_sync(inode, true);
2983 	}
2984 }
2985 
2986 static inline void set_inode_flag(struct inode *inode, int flag)
2987 {
2988 	set_bit(flag, F2FS_I(inode)->flags);
2989 	__mark_inode_dirty_flag(inode, flag, true);
2990 }
2991 
2992 static inline int is_inode_flag_set(struct inode *inode, int flag)
2993 {
2994 	return test_bit(flag, F2FS_I(inode)->flags);
2995 }
2996 
2997 static inline void clear_inode_flag(struct inode *inode, int flag)
2998 {
2999 	clear_bit(flag, F2FS_I(inode)->flags);
3000 	__mark_inode_dirty_flag(inode, flag, false);
3001 }
3002 
3003 static inline bool f2fs_verity_in_progress(struct inode *inode)
3004 {
3005 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3006 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3007 }
3008 
3009 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3010 {
3011 	F2FS_I(inode)->i_acl_mode = mode;
3012 	set_inode_flag(inode, FI_ACL_MODE);
3013 	f2fs_mark_inode_dirty_sync(inode, false);
3014 }
3015 
3016 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3017 {
3018 	if (inc)
3019 		inc_nlink(inode);
3020 	else
3021 		drop_nlink(inode);
3022 	f2fs_mark_inode_dirty_sync(inode, true);
3023 }
3024 
3025 static inline void f2fs_i_blocks_write(struct inode *inode,
3026 					block_t diff, bool add, bool claim)
3027 {
3028 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3029 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3030 
3031 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3032 	if (add) {
3033 		if (claim)
3034 			dquot_claim_block(inode, diff);
3035 		else
3036 			dquot_alloc_block_nofail(inode, diff);
3037 	} else {
3038 		dquot_free_block(inode, diff);
3039 	}
3040 
3041 	f2fs_mark_inode_dirty_sync(inode, true);
3042 	if (clean || recover)
3043 		set_inode_flag(inode, FI_AUTO_RECOVER);
3044 }
3045 
3046 static inline bool f2fs_is_atomic_file(struct inode *inode);
3047 
3048 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3049 {
3050 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3051 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3052 
3053 	if (i_size_read(inode) == i_size)
3054 		return;
3055 
3056 	i_size_write(inode, i_size);
3057 
3058 	if (f2fs_is_atomic_file(inode))
3059 		return;
3060 
3061 	f2fs_mark_inode_dirty_sync(inode, true);
3062 	if (clean || recover)
3063 		set_inode_flag(inode, FI_AUTO_RECOVER);
3064 }
3065 
3066 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3067 {
3068 	F2FS_I(inode)->i_current_depth = depth;
3069 	f2fs_mark_inode_dirty_sync(inode, true);
3070 }
3071 
3072 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3073 					unsigned int count)
3074 {
3075 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3076 	f2fs_mark_inode_dirty_sync(inode, true);
3077 }
3078 
3079 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3080 {
3081 	F2FS_I(inode)->i_xattr_nid = xnid;
3082 	f2fs_mark_inode_dirty_sync(inode, true);
3083 }
3084 
3085 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3086 {
3087 	F2FS_I(inode)->i_pino = pino;
3088 	f2fs_mark_inode_dirty_sync(inode, true);
3089 }
3090 
3091 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3092 {
3093 	struct f2fs_inode_info *fi = F2FS_I(inode);
3094 
3095 	if (ri->i_inline & F2FS_INLINE_XATTR)
3096 		set_bit(FI_INLINE_XATTR, fi->flags);
3097 	if (ri->i_inline & F2FS_INLINE_DATA)
3098 		set_bit(FI_INLINE_DATA, fi->flags);
3099 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3100 		set_bit(FI_INLINE_DENTRY, fi->flags);
3101 	if (ri->i_inline & F2FS_DATA_EXIST)
3102 		set_bit(FI_DATA_EXIST, fi->flags);
3103 	if (ri->i_inline & F2FS_INLINE_DOTS)
3104 		set_bit(FI_INLINE_DOTS, fi->flags);
3105 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3106 		set_bit(FI_EXTRA_ATTR, fi->flags);
3107 	if (ri->i_inline & F2FS_PIN_FILE)
3108 		set_bit(FI_PIN_FILE, fi->flags);
3109 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3110 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3111 }
3112 
3113 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3114 {
3115 	ri->i_inline = 0;
3116 
3117 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3118 		ri->i_inline |= F2FS_INLINE_XATTR;
3119 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3120 		ri->i_inline |= F2FS_INLINE_DATA;
3121 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3122 		ri->i_inline |= F2FS_INLINE_DENTRY;
3123 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3124 		ri->i_inline |= F2FS_DATA_EXIST;
3125 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3126 		ri->i_inline |= F2FS_INLINE_DOTS;
3127 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3128 		ri->i_inline |= F2FS_EXTRA_ATTR;
3129 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3130 		ri->i_inline |= F2FS_PIN_FILE;
3131 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3132 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3133 }
3134 
3135 static inline int f2fs_has_extra_attr(struct inode *inode)
3136 {
3137 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3138 }
3139 
3140 static inline int f2fs_has_inline_xattr(struct inode *inode)
3141 {
3142 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3143 }
3144 
3145 static inline int f2fs_compressed_file(struct inode *inode)
3146 {
3147 	return S_ISREG(inode->i_mode) &&
3148 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3149 }
3150 
3151 static inline bool f2fs_need_compress_data(struct inode *inode)
3152 {
3153 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3154 
3155 	if (!f2fs_compressed_file(inode))
3156 		return false;
3157 
3158 	if (compress_mode == COMPR_MODE_FS)
3159 		return true;
3160 	else if (compress_mode == COMPR_MODE_USER &&
3161 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3162 		return true;
3163 
3164 	return false;
3165 }
3166 
3167 static inline unsigned int addrs_per_inode(struct inode *inode)
3168 {
3169 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3170 				get_inline_xattr_addrs(inode);
3171 
3172 	if (!f2fs_compressed_file(inode))
3173 		return addrs;
3174 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3175 }
3176 
3177 static inline unsigned int addrs_per_block(struct inode *inode)
3178 {
3179 	if (!f2fs_compressed_file(inode))
3180 		return DEF_ADDRS_PER_BLOCK;
3181 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3182 }
3183 
3184 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3185 {
3186 	struct f2fs_inode *ri = F2FS_INODE(page);
3187 
3188 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3189 					get_inline_xattr_addrs(inode)]);
3190 }
3191 
3192 static inline int inline_xattr_size(struct inode *inode)
3193 {
3194 	if (f2fs_has_inline_xattr(inode))
3195 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3196 	return 0;
3197 }
3198 
3199 /*
3200  * Notice: check inline_data flag without inode page lock is unsafe.
3201  * It could change at any time by f2fs_convert_inline_page().
3202  */
3203 static inline int f2fs_has_inline_data(struct inode *inode)
3204 {
3205 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3206 }
3207 
3208 static inline int f2fs_exist_data(struct inode *inode)
3209 {
3210 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3211 }
3212 
3213 static inline int f2fs_has_inline_dots(struct inode *inode)
3214 {
3215 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3216 }
3217 
3218 static inline int f2fs_is_mmap_file(struct inode *inode)
3219 {
3220 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3221 }
3222 
3223 static inline bool f2fs_is_pinned_file(struct inode *inode)
3224 {
3225 	return is_inode_flag_set(inode, FI_PIN_FILE);
3226 }
3227 
3228 static inline bool f2fs_is_atomic_file(struct inode *inode)
3229 {
3230 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3231 }
3232 
3233 static inline bool f2fs_is_cow_file(struct inode *inode)
3234 {
3235 	return is_inode_flag_set(inode, FI_COW_FILE);
3236 }
3237 
3238 static inline bool f2fs_is_first_block_written(struct inode *inode)
3239 {
3240 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3241 }
3242 
3243 static inline bool f2fs_is_drop_cache(struct inode *inode)
3244 {
3245 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3246 }
3247 
3248 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3249 {
3250 	struct f2fs_inode *ri = F2FS_INODE(page);
3251 	int extra_size = get_extra_isize(inode);
3252 
3253 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3254 }
3255 
3256 static inline int f2fs_has_inline_dentry(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3259 }
3260 
3261 static inline int is_file(struct inode *inode, int type)
3262 {
3263 	return F2FS_I(inode)->i_advise & type;
3264 }
3265 
3266 static inline void set_file(struct inode *inode, int type)
3267 {
3268 	if (is_file(inode, type))
3269 		return;
3270 	F2FS_I(inode)->i_advise |= type;
3271 	f2fs_mark_inode_dirty_sync(inode, true);
3272 }
3273 
3274 static inline void clear_file(struct inode *inode, int type)
3275 {
3276 	if (!is_file(inode, type))
3277 		return;
3278 	F2FS_I(inode)->i_advise &= ~type;
3279 	f2fs_mark_inode_dirty_sync(inode, true);
3280 }
3281 
3282 static inline bool f2fs_is_time_consistent(struct inode *inode)
3283 {
3284 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3285 		return false;
3286 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3287 		return false;
3288 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3289 		return false;
3290 	return true;
3291 }
3292 
3293 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3294 {
3295 	bool ret;
3296 
3297 	if (dsync) {
3298 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3299 
3300 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3301 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3302 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3303 		return ret;
3304 	}
3305 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3306 			file_keep_isize(inode) ||
3307 			i_size_read(inode) & ~PAGE_MASK)
3308 		return false;
3309 
3310 	if (!f2fs_is_time_consistent(inode))
3311 		return false;
3312 
3313 	spin_lock(&F2FS_I(inode)->i_size_lock);
3314 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3315 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3316 
3317 	return ret;
3318 }
3319 
3320 static inline bool f2fs_readonly(struct super_block *sb)
3321 {
3322 	return sb_rdonly(sb);
3323 }
3324 
3325 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3326 {
3327 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3328 }
3329 
3330 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3331 {
3332 	if (len == 1 && name[0] == '.')
3333 		return true;
3334 
3335 	if (len == 2 && name[0] == '.' && name[1] == '.')
3336 		return true;
3337 
3338 	return false;
3339 }
3340 
3341 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3342 					size_t size, gfp_t flags)
3343 {
3344 	if (time_to_inject(sbi, FAULT_KMALLOC))
3345 		return NULL;
3346 
3347 	return kmalloc(size, flags);
3348 }
3349 
3350 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3351 					size_t size, gfp_t flags)
3352 {
3353 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3354 }
3355 
3356 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3357 					size_t size, gfp_t flags)
3358 {
3359 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3360 		return NULL;
3361 
3362 	return kvmalloc(size, flags);
3363 }
3364 
3365 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3366 					size_t size, gfp_t flags)
3367 {
3368 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3369 }
3370 
3371 static inline int get_extra_isize(struct inode *inode)
3372 {
3373 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3374 }
3375 
3376 static inline int get_inline_xattr_addrs(struct inode *inode)
3377 {
3378 	return F2FS_I(inode)->i_inline_xattr_size;
3379 }
3380 
3381 #define f2fs_get_inode_mode(i) \
3382 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3383 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3384 
3385 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3386 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3387 	offsetof(struct f2fs_inode, i_extra_isize))	\
3388 
3389 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3390 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3391 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3392 		sizeof((f2fs_inode)->field))			\
3393 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3394 
3395 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3396 
3397 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3398 
3399 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3400 					block_t blkaddr, int type);
3401 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3402 					block_t blkaddr, int type)
3403 {
3404 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3405 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3406 			 blkaddr, type);
3407 		f2fs_bug_on(sbi, 1);
3408 	}
3409 }
3410 
3411 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3412 {
3413 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3414 			blkaddr == COMPRESS_ADDR)
3415 		return false;
3416 	return true;
3417 }
3418 
3419 /*
3420  * file.c
3421  */
3422 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3423 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3424 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3425 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3426 int f2fs_truncate(struct inode *inode);
3427 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3428 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3429 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3430 		 struct iattr *attr);
3431 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3432 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3433 int f2fs_precache_extents(struct inode *inode);
3434 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3435 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3436 		      struct dentry *dentry, struct fileattr *fa);
3437 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3438 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3439 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3440 int f2fs_pin_file_control(struct inode *inode, bool inc);
3441 
3442 /*
3443  * inode.c
3444  */
3445 void f2fs_set_inode_flags(struct inode *inode);
3446 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3447 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3448 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3449 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3450 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3451 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3452 void f2fs_update_inode_page(struct inode *inode);
3453 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3454 void f2fs_evict_inode(struct inode *inode);
3455 void f2fs_handle_failed_inode(struct inode *inode);
3456 
3457 /*
3458  * namei.c
3459  */
3460 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3461 							bool hot, bool set);
3462 struct dentry *f2fs_get_parent(struct dentry *child);
3463 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3464 		     struct inode **new_inode);
3465 
3466 /*
3467  * dir.c
3468  */
3469 int f2fs_init_casefolded_name(const struct inode *dir,
3470 			      struct f2fs_filename *fname);
3471 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3472 			int lookup, struct f2fs_filename *fname);
3473 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3474 			struct f2fs_filename *fname);
3475 void f2fs_free_filename(struct f2fs_filename *fname);
3476 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3477 			const struct f2fs_filename *fname, int *max_slots);
3478 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3479 			unsigned int start_pos, struct fscrypt_str *fstr);
3480 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3481 			struct f2fs_dentry_ptr *d);
3482 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3483 			const struct f2fs_filename *fname, struct page *dpage);
3484 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3485 			unsigned int current_depth);
3486 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3487 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3488 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3489 					 const struct f2fs_filename *fname,
3490 					 struct page **res_page);
3491 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3492 			const struct qstr *child, struct page **res_page);
3493 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3494 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3495 			struct page **page);
3496 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3497 			struct page *page, struct inode *inode);
3498 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3499 			  const struct f2fs_filename *fname);
3500 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3501 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3502 			unsigned int bit_pos);
3503 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3504 			struct inode *inode, nid_t ino, umode_t mode);
3505 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3506 			struct inode *inode, nid_t ino, umode_t mode);
3507 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3508 			struct inode *inode, nid_t ino, umode_t mode);
3509 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3510 			struct inode *dir, struct inode *inode);
3511 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3512 bool f2fs_empty_dir(struct inode *dir);
3513 
3514 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3515 {
3516 	if (fscrypt_is_nokey_name(dentry))
3517 		return -ENOKEY;
3518 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3519 				inode, inode->i_ino, inode->i_mode);
3520 }
3521 
3522 /*
3523  * super.c
3524  */
3525 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3526 void f2fs_inode_synced(struct inode *inode);
3527 int f2fs_dquot_initialize(struct inode *inode);
3528 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3529 int f2fs_quota_sync(struct super_block *sb, int type);
3530 loff_t max_file_blocks(struct inode *inode);
3531 void f2fs_quota_off_umount(struct super_block *sb);
3532 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3533 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3534 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3535 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3536 int f2fs_sync_fs(struct super_block *sb, int sync);
3537 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3538 
3539 /*
3540  * hash.c
3541  */
3542 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3543 
3544 /*
3545  * node.c
3546  */
3547 struct node_info;
3548 
3549 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3550 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3551 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3552 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3553 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3554 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3555 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3556 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3557 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3558 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3559 				struct node_info *ni, bool checkpoint_context);
3560 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3561 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3562 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3563 int f2fs_truncate_xattr_node(struct inode *inode);
3564 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3565 					unsigned int seq_id);
3566 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3567 int f2fs_remove_inode_page(struct inode *inode);
3568 struct page *f2fs_new_inode_page(struct inode *inode);
3569 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3570 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3571 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3572 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3573 int f2fs_move_node_page(struct page *node_page, int gc_type);
3574 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3575 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3576 			struct writeback_control *wbc, bool atomic,
3577 			unsigned int *seq_id);
3578 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3579 			struct writeback_control *wbc,
3580 			bool do_balance, enum iostat_type io_type);
3581 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3582 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3583 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3584 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3585 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3586 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3587 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3588 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3589 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3590 			unsigned int segno, struct f2fs_summary_block *sum);
3591 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3592 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3593 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3594 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3595 int __init f2fs_create_node_manager_caches(void);
3596 void f2fs_destroy_node_manager_caches(void);
3597 
3598 /*
3599  * segment.c
3600  */
3601 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3602 int f2fs_commit_atomic_write(struct inode *inode);
3603 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3604 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3605 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3606 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3607 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3608 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3609 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3610 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3611 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3612 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3613 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3614 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3615 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3616 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3617 					struct cp_control *cpc);
3618 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3619 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3620 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3621 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3622 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3623 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3624 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3625 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3626 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3627 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3628 			unsigned int *newseg, bool new_sec, int dir);
3629 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3630 					unsigned int start, unsigned int end);
3631 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3632 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3633 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3634 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3635 					struct cp_control *cpc);
3636 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3637 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3638 					block_t blk_addr);
3639 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3640 						enum iostat_type io_type);
3641 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3642 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3643 			struct f2fs_io_info *fio);
3644 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3645 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3646 			block_t old_blkaddr, block_t new_blkaddr,
3647 			bool recover_curseg, bool recover_newaddr,
3648 			bool from_gc);
3649 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3650 			block_t old_addr, block_t new_addr,
3651 			unsigned char version, bool recover_curseg,
3652 			bool recover_newaddr);
3653 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3654 			block_t old_blkaddr, block_t *new_blkaddr,
3655 			struct f2fs_summary *sum, int type,
3656 			struct f2fs_io_info *fio);
3657 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3658 					block_t blkaddr, unsigned int blkcnt);
3659 void f2fs_wait_on_page_writeback(struct page *page,
3660 			enum page_type type, bool ordered, bool locked);
3661 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3662 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3663 								block_t len);
3664 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3665 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3666 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3667 			unsigned int val, int alloc);
3668 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3669 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3670 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3671 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3672 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3673 int __init f2fs_create_segment_manager_caches(void);
3674 void f2fs_destroy_segment_manager_caches(void);
3675 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3676 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3677 			unsigned int segno);
3678 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3679 			unsigned int segno);
3680 
3681 #define DEF_FRAGMENT_SIZE	4
3682 #define MIN_FRAGMENT_SIZE	1
3683 #define MAX_FRAGMENT_SIZE	512
3684 
3685 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3686 {
3687 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3688 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3689 }
3690 
3691 /*
3692  * checkpoint.c
3693  */
3694 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3695 							unsigned char reason);
3696 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3697 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3698 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3699 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3700 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3701 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3702 					block_t blkaddr, int type);
3703 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3704 			int type, bool sync);
3705 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3706 							unsigned int ra_blocks);
3707 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3708 			long nr_to_write, enum iostat_type io_type);
3709 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3710 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3711 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3712 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3713 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3714 					unsigned int devidx, int type);
3715 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3716 					unsigned int devidx, int type);
3717 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3718 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3719 void f2fs_add_orphan_inode(struct inode *inode);
3720 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3721 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3722 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3723 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3724 void f2fs_remove_dirty_inode(struct inode *inode);
3725 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3726 								bool from_cp);
3727 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3728 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3729 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3730 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3731 int __init f2fs_create_checkpoint_caches(void);
3732 void f2fs_destroy_checkpoint_caches(void);
3733 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3734 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3735 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3736 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3737 
3738 /*
3739  * data.c
3740  */
3741 int __init f2fs_init_bioset(void);
3742 void f2fs_destroy_bioset(void);
3743 int f2fs_init_bio_entry_cache(void);
3744 void f2fs_destroy_bio_entry_cache(void);
3745 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3746 			  enum page_type type);
3747 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3748 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3749 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3750 				struct inode *inode, struct page *page,
3751 				nid_t ino, enum page_type type);
3752 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3753 					struct bio **bio, struct page *page);
3754 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3755 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3756 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3757 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3758 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3759 		block_t blk_addr, sector_t *sector);
3760 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3761 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3762 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3763 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3764 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3765 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3766 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3767 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3768 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3769 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3770 							pgoff_t *next_pgofs);
3771 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3772 			bool for_write);
3773 struct page *f2fs_get_new_data_page(struct inode *inode,
3774 			struct page *ipage, pgoff_t index, bool new_i_size);
3775 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3776 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3777 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3778 			u64 start, u64 len);
3779 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3780 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3781 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3782 int f2fs_write_single_data_page(struct page *page, int *submitted,
3783 				struct bio **bio, sector_t *last_block,
3784 				struct writeback_control *wbc,
3785 				enum iostat_type io_type,
3786 				int compr_blocks, bool allow_balance);
3787 void f2fs_write_failed(struct inode *inode, loff_t to);
3788 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3789 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3790 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3791 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3792 int f2fs_init_post_read_processing(void);
3793 void f2fs_destroy_post_read_processing(void);
3794 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3795 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3796 extern const struct iomap_ops f2fs_iomap_ops;
3797 
3798 /*
3799  * gc.c
3800  */
3801 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3802 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3803 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3804 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3805 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3806 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3807 int __init f2fs_create_garbage_collection_cache(void);
3808 void f2fs_destroy_garbage_collection_cache(void);
3809 /* victim selection function for cleaning and SSR */
3810 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3811 			int gc_type, int type, char alloc_mode,
3812 			unsigned long long age);
3813 
3814 /*
3815  * recovery.c
3816  */
3817 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3818 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3819 int __init f2fs_create_recovery_cache(void);
3820 void f2fs_destroy_recovery_cache(void);
3821 
3822 /*
3823  * debug.c
3824  */
3825 #ifdef CONFIG_F2FS_STAT_FS
3826 struct f2fs_stat_info {
3827 	struct list_head stat_list;
3828 	struct f2fs_sb_info *sbi;
3829 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3830 	int main_area_segs, main_area_sections, main_area_zones;
3831 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3832 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3833 	unsigned long long total_ext[NR_EXTENT_CACHES];
3834 	unsigned long long hit_total[NR_EXTENT_CACHES];
3835 	int ext_tree[NR_EXTENT_CACHES];
3836 	int zombie_tree[NR_EXTENT_CACHES];
3837 	int ext_node[NR_EXTENT_CACHES];
3838 	/* to count memory footprint */
3839 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3840 	/* for read extent cache */
3841 	unsigned long long hit_largest;
3842 	/* for block age extent cache */
3843 	unsigned long long allocated_data_blocks;
3844 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3845 	int ndirty_data, ndirty_qdata;
3846 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3847 	int nats, dirty_nats, sits, dirty_sits;
3848 	int free_nids, avail_nids, alloc_nids;
3849 	int total_count, utilization;
3850 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3851 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3852 	int nr_dio_read, nr_dio_write;
3853 	unsigned int io_skip_bggc, other_skip_bggc;
3854 	int nr_flushing, nr_flushed, flush_list_empty;
3855 	int nr_discarding, nr_discarded;
3856 	int nr_discard_cmd;
3857 	unsigned int undiscard_blks;
3858 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3859 	unsigned int cur_ckpt_time, peak_ckpt_time;
3860 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3861 	int compr_inode, swapfile_inode;
3862 	unsigned long long compr_blocks;
3863 	int aw_cnt, max_aw_cnt;
3864 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3865 	unsigned int bimodal, avg_vblocks;
3866 	int util_free, util_valid, util_invalid;
3867 	int rsvd_segs, overp_segs;
3868 	int dirty_count, node_pages, meta_pages, compress_pages;
3869 	int compress_page_hit;
3870 	int prefree_count, call_count, cp_count, bg_cp_count;
3871 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3872 	int bg_node_segs, bg_data_segs;
3873 	int tot_blks, data_blks, node_blks;
3874 	int bg_data_blks, bg_node_blks;
3875 	int curseg[NR_CURSEG_TYPE];
3876 	int cursec[NR_CURSEG_TYPE];
3877 	int curzone[NR_CURSEG_TYPE];
3878 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3879 	unsigned int full_seg[NR_CURSEG_TYPE];
3880 	unsigned int valid_blks[NR_CURSEG_TYPE];
3881 
3882 	unsigned int meta_count[META_MAX];
3883 	unsigned int segment_count[2];
3884 	unsigned int block_count[2];
3885 	unsigned int inplace_count;
3886 	unsigned long long base_mem, cache_mem, page_mem;
3887 };
3888 
3889 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3890 {
3891 	return (struct f2fs_stat_info *)sbi->stat_info;
3892 }
3893 
3894 #define stat_inc_cp_count(si)		((si)->cp_count++)
3895 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3896 #define stat_inc_call_count(si)		((si)->call_count++)
3897 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3898 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3899 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3900 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3901 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3902 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3903 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3904 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3905 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3906 #define stat_inc_inline_xattr(inode)					\
3907 	do {								\
3908 		if (f2fs_has_inline_xattr(inode))			\
3909 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3910 	} while (0)
3911 #define stat_dec_inline_xattr(inode)					\
3912 	do {								\
3913 		if (f2fs_has_inline_xattr(inode))			\
3914 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3915 	} while (0)
3916 #define stat_inc_inline_inode(inode)					\
3917 	do {								\
3918 		if (f2fs_has_inline_data(inode))			\
3919 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3920 	} while (0)
3921 #define stat_dec_inline_inode(inode)					\
3922 	do {								\
3923 		if (f2fs_has_inline_data(inode))			\
3924 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3925 	} while (0)
3926 #define stat_inc_inline_dir(inode)					\
3927 	do {								\
3928 		if (f2fs_has_inline_dentry(inode))			\
3929 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3930 	} while (0)
3931 #define stat_dec_inline_dir(inode)					\
3932 	do {								\
3933 		if (f2fs_has_inline_dentry(inode))			\
3934 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3935 	} while (0)
3936 #define stat_inc_compr_inode(inode)					\
3937 	do {								\
3938 		if (f2fs_compressed_file(inode))			\
3939 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3940 	} while (0)
3941 #define stat_dec_compr_inode(inode)					\
3942 	do {								\
3943 		if (f2fs_compressed_file(inode))			\
3944 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3945 	} while (0)
3946 #define stat_add_compr_blocks(inode, blocks)				\
3947 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3948 #define stat_sub_compr_blocks(inode, blocks)				\
3949 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3950 #define stat_inc_swapfile_inode(inode)					\
3951 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3952 #define stat_dec_swapfile_inode(inode)					\
3953 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3954 #define stat_inc_atomic_inode(inode)					\
3955 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3956 #define stat_dec_atomic_inode(inode)					\
3957 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3958 #define stat_inc_meta_count(sbi, blkaddr)				\
3959 	do {								\
3960 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3961 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3962 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3963 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3964 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3965 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3966 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3967 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3968 	} while (0)
3969 #define stat_inc_seg_type(sbi, curseg)					\
3970 		((sbi)->segment_count[(curseg)->alloc_type]++)
3971 #define stat_inc_block_count(sbi, curseg)				\
3972 		((sbi)->block_count[(curseg)->alloc_type]++)
3973 #define stat_inc_inplace_blocks(sbi)					\
3974 		(atomic_inc(&(sbi)->inplace_count))
3975 #define stat_update_max_atomic_write(inode)				\
3976 	do {								\
3977 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3978 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3979 		if (cur > max)						\
3980 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3981 	} while (0)
3982 #define stat_inc_seg_count(sbi, type, gc_type)				\
3983 	do {								\
3984 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3985 		si->tot_segs++;						\
3986 		if ((type) == SUM_TYPE_DATA) {				\
3987 			si->data_segs++;				\
3988 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3989 		} else {						\
3990 			si->node_segs++;				\
3991 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3992 		}							\
3993 	} while (0)
3994 
3995 #define stat_inc_tot_blk_count(si, blks)				\
3996 	((si)->tot_blks += (blks))
3997 
3998 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3999 	do {								\
4000 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4001 		stat_inc_tot_blk_count(si, blks);			\
4002 		si->data_blks += (blks);				\
4003 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4004 	} while (0)
4005 
4006 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4007 	do {								\
4008 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4009 		stat_inc_tot_blk_count(si, blks);			\
4010 		si->node_blks += (blks);				\
4011 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4012 	} while (0)
4013 
4014 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4015 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4016 void __init f2fs_create_root_stats(void);
4017 void f2fs_destroy_root_stats(void);
4018 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4019 #else
4020 #define stat_inc_cp_count(si)				do { } while (0)
4021 #define stat_inc_bg_cp_count(si)			do { } while (0)
4022 #define stat_inc_call_count(si)				do { } while (0)
4023 #define stat_inc_bggc_count(si)				do { } while (0)
4024 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4025 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4026 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4027 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4028 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4029 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4030 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4031 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4032 #define stat_inc_inline_xattr(inode)			do { } while (0)
4033 #define stat_dec_inline_xattr(inode)			do { } while (0)
4034 #define stat_inc_inline_inode(inode)			do { } while (0)
4035 #define stat_dec_inline_inode(inode)			do { } while (0)
4036 #define stat_inc_inline_dir(inode)			do { } while (0)
4037 #define stat_dec_inline_dir(inode)			do { } while (0)
4038 #define stat_inc_compr_inode(inode)			do { } while (0)
4039 #define stat_dec_compr_inode(inode)			do { } while (0)
4040 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4041 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4042 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4043 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4044 #define stat_inc_atomic_inode(inode)			do { } while (0)
4045 #define stat_dec_atomic_inode(inode)			do { } while (0)
4046 #define stat_update_max_atomic_write(inode)		do { } while (0)
4047 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4048 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4049 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4050 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4051 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4052 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4053 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4054 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4055 
4056 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4057 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4058 static inline void __init f2fs_create_root_stats(void) { }
4059 static inline void f2fs_destroy_root_stats(void) { }
4060 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4061 #endif
4062 
4063 extern const struct file_operations f2fs_dir_operations;
4064 extern const struct file_operations f2fs_file_operations;
4065 extern const struct inode_operations f2fs_file_inode_operations;
4066 extern const struct address_space_operations f2fs_dblock_aops;
4067 extern const struct address_space_operations f2fs_node_aops;
4068 extern const struct address_space_operations f2fs_meta_aops;
4069 extern const struct inode_operations f2fs_dir_inode_operations;
4070 extern const struct inode_operations f2fs_symlink_inode_operations;
4071 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4072 extern const struct inode_operations f2fs_special_inode_operations;
4073 extern struct kmem_cache *f2fs_inode_entry_slab;
4074 
4075 /*
4076  * inline.c
4077  */
4078 bool f2fs_may_inline_data(struct inode *inode);
4079 bool f2fs_sanity_check_inline_data(struct inode *inode);
4080 bool f2fs_may_inline_dentry(struct inode *inode);
4081 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4082 void f2fs_truncate_inline_inode(struct inode *inode,
4083 						struct page *ipage, u64 from);
4084 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4085 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4086 int f2fs_convert_inline_inode(struct inode *inode);
4087 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4088 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4089 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4090 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4091 					const struct f2fs_filename *fname,
4092 					struct page **res_page);
4093 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4094 			struct page *ipage);
4095 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4096 			struct inode *inode, nid_t ino, umode_t mode);
4097 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4098 				struct page *page, struct inode *dir,
4099 				struct inode *inode);
4100 bool f2fs_empty_inline_dir(struct inode *dir);
4101 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4102 			struct fscrypt_str *fstr);
4103 int f2fs_inline_data_fiemap(struct inode *inode,
4104 			struct fiemap_extent_info *fieinfo,
4105 			__u64 start, __u64 len);
4106 
4107 /*
4108  * shrinker.c
4109  */
4110 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4111 			struct shrink_control *sc);
4112 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4113 			struct shrink_control *sc);
4114 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4115 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4116 
4117 /*
4118  * extent_cache.c
4119  */
4120 bool sanity_check_extent_cache(struct inode *inode);
4121 void f2fs_init_extent_tree(struct inode *inode);
4122 void f2fs_drop_extent_tree(struct inode *inode);
4123 void f2fs_destroy_extent_node(struct inode *inode);
4124 void f2fs_destroy_extent_tree(struct inode *inode);
4125 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4126 int __init f2fs_create_extent_cache(void);
4127 void f2fs_destroy_extent_cache(void);
4128 
4129 /* read extent cache ops */
4130 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4131 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4132 			struct extent_info *ei);
4133 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4134 			block_t *blkaddr);
4135 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4136 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4137 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4138 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4139 			int nr_shrink);
4140 
4141 /* block age extent cache ops */
4142 void f2fs_init_age_extent_tree(struct inode *inode);
4143 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4144 			struct extent_info *ei);
4145 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4146 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4147 			pgoff_t fofs, unsigned int len);
4148 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4149 			int nr_shrink);
4150 
4151 /*
4152  * sysfs.c
4153  */
4154 #define MIN_RA_MUL	2
4155 #define MAX_RA_MUL	256
4156 
4157 int __init f2fs_init_sysfs(void);
4158 void f2fs_exit_sysfs(void);
4159 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4160 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4161 
4162 /* verity.c */
4163 extern const struct fsverity_operations f2fs_verityops;
4164 
4165 /*
4166  * crypto support
4167  */
4168 static inline bool f2fs_encrypted_file(struct inode *inode)
4169 {
4170 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4171 }
4172 
4173 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4174 {
4175 #ifdef CONFIG_FS_ENCRYPTION
4176 	file_set_encrypt(inode);
4177 	f2fs_set_inode_flags(inode);
4178 #endif
4179 }
4180 
4181 /*
4182  * Returns true if the reads of the inode's data need to undergo some
4183  * postprocessing step, like decryption or authenticity verification.
4184  */
4185 static inline bool f2fs_post_read_required(struct inode *inode)
4186 {
4187 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4188 		f2fs_compressed_file(inode);
4189 }
4190 
4191 /*
4192  * compress.c
4193  */
4194 #ifdef CONFIG_F2FS_FS_COMPRESSION
4195 bool f2fs_is_compressed_page(struct page *page);
4196 struct page *f2fs_compress_control_page(struct page *page);
4197 int f2fs_prepare_compress_overwrite(struct inode *inode,
4198 			struct page **pagep, pgoff_t index, void **fsdata);
4199 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4200 					pgoff_t index, unsigned copied);
4201 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4202 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4203 bool f2fs_is_compress_backend_ready(struct inode *inode);
4204 int __init f2fs_init_compress_mempool(void);
4205 void f2fs_destroy_compress_mempool(void);
4206 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4207 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4208 				block_t blkaddr, bool in_task);
4209 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4210 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4211 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4212 				int index, int nr_pages, bool uptodate);
4213 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4214 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4215 int f2fs_write_multi_pages(struct compress_ctx *cc,
4216 						int *submitted,
4217 						struct writeback_control *wbc,
4218 						enum iostat_type io_type);
4219 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4220 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4221 				pgoff_t fofs, block_t blkaddr,
4222 				unsigned int llen, unsigned int c_len);
4223 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4224 				unsigned nr_pages, sector_t *last_block_in_bio,
4225 				bool is_readahead, bool for_write);
4226 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4227 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4228 				bool in_task);
4229 void f2fs_put_page_dic(struct page *page, bool in_task);
4230 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4231 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4232 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4233 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4234 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4235 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4236 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4237 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4238 int __init f2fs_init_compress_cache(void);
4239 void f2fs_destroy_compress_cache(void);
4240 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4241 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4242 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4243 						nid_t ino, block_t blkaddr);
4244 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4245 								block_t blkaddr);
4246 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4247 #define inc_compr_inode_stat(inode)					\
4248 	do {								\
4249 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4250 		sbi->compr_new_inode++;					\
4251 	} while (0)
4252 #define add_compr_block_stat(inode, blocks)				\
4253 	do {								\
4254 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4255 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4256 		sbi->compr_written_block += blocks;			\
4257 		sbi->compr_saved_block += diff;				\
4258 	} while (0)
4259 #else
4260 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4261 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4262 {
4263 	if (!f2fs_compressed_file(inode))
4264 		return true;
4265 	/* not support compression */
4266 	return false;
4267 }
4268 static inline struct page *f2fs_compress_control_page(struct page *page)
4269 {
4270 	WARN_ON_ONCE(1);
4271 	return ERR_PTR(-EINVAL);
4272 }
4273 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4274 static inline void f2fs_destroy_compress_mempool(void) { }
4275 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4276 				bool in_task) { }
4277 static inline void f2fs_end_read_compressed_page(struct page *page,
4278 				bool failed, block_t blkaddr, bool in_task)
4279 {
4280 	WARN_ON_ONCE(1);
4281 }
4282 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4283 {
4284 	WARN_ON_ONCE(1);
4285 }
4286 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4287 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4288 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4289 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4290 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4291 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4292 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4293 static inline void f2fs_destroy_compress_cache(void) { }
4294 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4295 				block_t blkaddr) { }
4296 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4297 				struct page *page, nid_t ino, block_t blkaddr) { }
4298 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4299 				struct page *page, block_t blkaddr) { return false; }
4300 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4301 							nid_t ino) { }
4302 #define inc_compr_inode_stat(inode)		do { } while (0)
4303 static inline void f2fs_update_read_extent_tree_range_compressed(
4304 				struct inode *inode,
4305 				pgoff_t fofs, block_t blkaddr,
4306 				unsigned int llen, unsigned int c_len) { }
4307 #endif
4308 
4309 static inline int set_compress_context(struct inode *inode)
4310 {
4311 #ifdef CONFIG_F2FS_FS_COMPRESSION
4312 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4313 
4314 	F2FS_I(inode)->i_compress_algorithm =
4315 			F2FS_OPTION(sbi).compress_algorithm;
4316 	F2FS_I(inode)->i_log_cluster_size =
4317 			F2FS_OPTION(sbi).compress_log_size;
4318 	F2FS_I(inode)->i_compress_flag =
4319 			F2FS_OPTION(sbi).compress_chksum ?
4320 				BIT(COMPRESS_CHKSUM) : 0;
4321 	F2FS_I(inode)->i_cluster_size =
4322 			BIT(F2FS_I(inode)->i_log_cluster_size);
4323 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4324 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4325 			F2FS_OPTION(sbi).compress_level)
4326 		F2FS_I(inode)->i_compress_level =
4327 				F2FS_OPTION(sbi).compress_level;
4328 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4329 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4330 	stat_inc_compr_inode(inode);
4331 	inc_compr_inode_stat(inode);
4332 	f2fs_mark_inode_dirty_sync(inode, true);
4333 	return 0;
4334 #else
4335 	return -EOPNOTSUPP;
4336 #endif
4337 }
4338 
4339 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4340 {
4341 	struct f2fs_inode_info *fi = F2FS_I(inode);
4342 
4343 	if (!f2fs_compressed_file(inode))
4344 		return true;
4345 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4346 		return false;
4347 
4348 	fi->i_flags &= ~F2FS_COMPR_FL;
4349 	stat_dec_compr_inode(inode);
4350 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4351 	f2fs_mark_inode_dirty_sync(inode, true);
4352 	return true;
4353 }
4354 
4355 #define F2FS_FEATURE_FUNCS(name, flagname) \
4356 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4357 { \
4358 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4359 }
4360 
4361 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4362 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4363 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4364 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4365 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4366 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4367 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4368 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4369 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4370 F2FS_FEATURE_FUNCS(verity, VERITY);
4371 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4372 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4373 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4374 F2FS_FEATURE_FUNCS(readonly, RO);
4375 
4376 #ifdef CONFIG_BLK_DEV_ZONED
4377 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4378 				    block_t blkaddr)
4379 {
4380 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4381 
4382 	return test_bit(zno, FDEV(devi).blkz_seq);
4383 }
4384 #endif
4385 
4386 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4387 {
4388 	return f2fs_sb_has_blkzoned(sbi);
4389 }
4390 
4391 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4392 {
4393 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4394 }
4395 
4396 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4397 {
4398 	int i;
4399 
4400 	if (!f2fs_is_multi_device(sbi))
4401 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4402 
4403 	for (i = 0; i < sbi->s_ndevs; i++)
4404 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4405 			return true;
4406 	return false;
4407 }
4408 
4409 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4410 {
4411 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4412 					f2fs_hw_should_discard(sbi);
4413 }
4414 
4415 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4416 {
4417 	int i;
4418 
4419 	if (!f2fs_is_multi_device(sbi))
4420 		return bdev_read_only(sbi->sb->s_bdev);
4421 
4422 	for (i = 0; i < sbi->s_ndevs; i++)
4423 		if (bdev_read_only(FDEV(i).bdev))
4424 			return true;
4425 	return false;
4426 }
4427 
4428 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4429 {
4430 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4431 }
4432 
4433 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4434 {
4435 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4436 }
4437 
4438 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4439 {
4440 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4441 }
4442 
4443 static inline bool f2fs_may_compress(struct inode *inode)
4444 {
4445 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4446 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4447 		return false;
4448 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4449 }
4450 
4451 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4452 						u64 blocks, bool add)
4453 {
4454 	struct f2fs_inode_info *fi = F2FS_I(inode);
4455 	int diff = fi->i_cluster_size - blocks;
4456 
4457 	/* don't update i_compr_blocks if saved blocks were released */
4458 	if (!add && !atomic_read(&fi->i_compr_blocks))
4459 		return;
4460 
4461 	if (add) {
4462 		atomic_add(diff, &fi->i_compr_blocks);
4463 		stat_add_compr_blocks(inode, diff);
4464 	} else {
4465 		atomic_sub(diff, &fi->i_compr_blocks);
4466 		stat_sub_compr_blocks(inode, diff);
4467 	}
4468 	f2fs_mark_inode_dirty_sync(inode, true);
4469 }
4470 
4471 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4472 								int flag)
4473 {
4474 	if (!f2fs_is_multi_device(sbi))
4475 		return false;
4476 	if (flag != F2FS_GET_BLOCK_DIO)
4477 		return false;
4478 	return sbi->aligned_blksize;
4479 }
4480 
4481 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4482 {
4483 	return fsverity_active(inode) &&
4484 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4485 }
4486 
4487 #ifdef CONFIG_F2FS_FAULT_INJECTION
4488 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4489 							unsigned int type);
4490 #else
4491 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4492 #endif
4493 
4494 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4495 {
4496 #ifdef CONFIG_QUOTA
4497 	if (f2fs_sb_has_quota_ino(sbi))
4498 		return true;
4499 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4500 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4501 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4502 		return true;
4503 #endif
4504 	return false;
4505 }
4506 
4507 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4508 {
4509 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4510 }
4511 
4512 static inline void f2fs_io_schedule_timeout(long timeout)
4513 {
4514 	set_current_state(TASK_UNINTERRUPTIBLE);
4515 	io_schedule_timeout(timeout);
4516 }
4517 
4518 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4519 					enum page_type type)
4520 {
4521 	if (unlikely(f2fs_cp_error(sbi)))
4522 		return;
4523 
4524 	if (ofs == sbi->page_eio_ofs[type]) {
4525 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4526 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4527 	} else {
4528 		sbi->page_eio_ofs[type] = ofs;
4529 		sbi->page_eio_cnt[type] = 0;
4530 	}
4531 }
4532 
4533 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4534 {
4535 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4536 }
4537 
4538 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4539 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4540 
4541 #endif /* _LINUX_F2FS_H */
4542