xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 5c57132eaf5265937e46340bfbfb97ffb078c423)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (unlikely(condition)) {				\
39 			WARN_ON(1);					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 		}							\
42 	} while (0)
43 #endif
44 
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 	FAULT_KMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_MAX,
58 };
59 
60 struct f2fs_fault_info {
61 	atomic_t inject_ops;
62 	unsigned int inject_rate;
63 	unsigned int inject_type;
64 };
65 
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69 
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC		0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
75 #define F2FS_MOUNT_DISCARD		0x00000004
76 #define F2FS_MOUNT_NOHEAP		0x00000008
77 #define F2FS_MOUNT_XATTR_USER		0x00000010
78 #define F2FS_MOUNT_POSIX_ACL		0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
81 #define F2FS_MOUNT_INLINE_DATA		0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
84 #define F2FS_MOUNT_NOBARRIER		0x00000800
85 #define F2FS_MOUNT_FASTBOOT		0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_ADAPTIVE		0x00020000
91 #define F2FS_MOUNT_LFS			0x00040000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 
96 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
97 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
98 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
99 
100 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
101 		typecheck(unsigned long long, b) &&			\
102 		((long long)((a) - (b)) > 0))
103 
104 typedef u32 block_t;	/*
105 			 * should not change u32, since it is the on-disk block
106 			 * address format, __le32.
107 			 */
108 typedef u32 nid_t;
109 
110 struct f2fs_mount_info {
111 	unsigned int	opt;
112 };
113 
114 #define F2FS_FEATURE_ENCRYPT		0x0001
115 #define F2FS_FEATURE_BLKZONED		0x0002
116 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
117 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
118 #define F2FS_FEATURE_PRJQUOTA		0x0010
119 
120 #define F2FS_HAS_FEATURE(sb, mask)					\
121 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
122 #define F2FS_SET_FEATURE(sb, mask)					\
123 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
124 #define F2FS_CLEAR_FEATURE(sb, mask)					\
125 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
126 
127 /*
128  * For checkpoint manager
129  */
130 enum {
131 	NAT_BITMAP,
132 	SIT_BITMAP
133 };
134 
135 #define	CP_UMOUNT	0x00000001
136 #define	CP_FASTBOOT	0x00000002
137 #define	CP_SYNC		0x00000004
138 #define	CP_RECOVERY	0x00000008
139 #define	CP_DISCARD	0x00000010
140 #define CP_TRIMMED	0x00000020
141 
142 #define DEF_BATCHED_TRIM_SECTIONS	2048
143 #define BATCHED_TRIM_SEGMENTS(sbi)	\
144 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
145 #define BATCHED_TRIM_BLOCKS(sbi)	\
146 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
147 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
148 #define DISCARD_ISSUE_RATE		8
149 #define DEF_CP_INTERVAL			60	/* 60 secs */
150 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
151 
152 struct cp_control {
153 	int reason;
154 	__u64 trim_start;
155 	__u64 trim_end;
156 	__u64 trim_minlen;
157 	__u64 trimmed;
158 };
159 
160 /*
161  * For CP/NAT/SIT/SSA readahead
162  */
163 enum {
164 	META_CP,
165 	META_NAT,
166 	META_SIT,
167 	META_SSA,
168 	META_POR,
169 };
170 
171 /* for the list of ino */
172 enum {
173 	ORPHAN_INO,		/* for orphan ino list */
174 	APPEND_INO,		/* for append ino list */
175 	UPDATE_INO,		/* for update ino list */
176 	MAX_INO_ENTRY,		/* max. list */
177 };
178 
179 struct ino_entry {
180 	struct list_head list;	/* list head */
181 	nid_t ino;		/* inode number */
182 };
183 
184 /* for the list of inodes to be GCed */
185 struct inode_entry {
186 	struct list_head list;	/* list head */
187 	struct inode *inode;	/* vfs inode pointer */
188 };
189 
190 /* for the bitmap indicate blocks to be discarded */
191 struct discard_entry {
192 	struct list_head list;	/* list head */
193 	block_t start_blkaddr;	/* start blockaddr of current segment */
194 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
195 };
196 
197 /* max discard pend list number */
198 #define MAX_PLIST_NUM		512
199 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
200 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
201 
202 enum {
203 	D_PREP,
204 	D_SUBMIT,
205 	D_DONE,
206 };
207 
208 struct discard_info {
209 	block_t lstart;			/* logical start address */
210 	block_t len;			/* length */
211 	block_t start;			/* actual start address in dev */
212 };
213 
214 struct discard_cmd {
215 	struct rb_node rb_node;		/* rb node located in rb-tree */
216 	union {
217 		struct {
218 			block_t lstart;	/* logical start address */
219 			block_t len;	/* length */
220 			block_t start;	/* actual start address in dev */
221 		};
222 		struct discard_info di;	/* discard info */
223 
224 	};
225 	struct list_head list;		/* command list */
226 	struct completion wait;		/* compleation */
227 	struct block_device *bdev;	/* bdev */
228 	unsigned short ref;		/* reference count */
229 	unsigned char state;		/* state */
230 	int error;			/* bio error */
231 };
232 
233 struct discard_cmd_control {
234 	struct task_struct *f2fs_issue_discard;	/* discard thread */
235 	struct list_head entry_list;		/* 4KB discard entry list */
236 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
237 	struct list_head wait_list;		/* store on-flushing entries */
238 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
239 	struct mutex cmd_lock;
240 	unsigned int nr_discards;		/* # of discards in the list */
241 	unsigned int max_discards;		/* max. discards to be issued */
242 	unsigned int undiscard_blks;		/* # of undiscard blocks */
243 	atomic_t issued_discard;		/* # of issued discard */
244 	atomic_t issing_discard;		/* # of issing discard */
245 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
246 	struct rb_root root;			/* root of discard rb-tree */
247 };
248 
249 /* for the list of fsync inodes, used only during recovery */
250 struct fsync_inode_entry {
251 	struct list_head list;	/* list head */
252 	struct inode *inode;	/* vfs inode pointer */
253 	block_t blkaddr;	/* block address locating the last fsync */
254 	block_t last_dentry;	/* block address locating the last dentry */
255 };
256 
257 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
258 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
259 
260 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
261 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
262 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
263 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
264 
265 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
266 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
267 
268 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
269 {
270 	int before = nats_in_cursum(journal);
271 
272 	journal->n_nats = cpu_to_le16(before + i);
273 	return before;
274 }
275 
276 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
277 {
278 	int before = sits_in_cursum(journal);
279 
280 	journal->n_sits = cpu_to_le16(before + i);
281 	return before;
282 }
283 
284 static inline bool __has_cursum_space(struct f2fs_journal *journal,
285 							int size, int type)
286 {
287 	if (type == NAT_JOURNAL)
288 		return size <= MAX_NAT_JENTRIES(journal);
289 	return size <= MAX_SIT_JENTRIES(journal);
290 }
291 
292 /*
293  * ioctl commands
294  */
295 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
296 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
297 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
298 
299 #define F2FS_IOCTL_MAGIC		0xf5
300 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
301 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
302 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
303 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
304 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
305 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
306 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
307 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
308 						struct f2fs_defragment)
309 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
310 						struct f2fs_move_range)
311 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
312 						struct f2fs_flush_device)
313 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
314 						struct f2fs_gc_range)
315 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
316 
317 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
318 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
319 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
320 
321 /*
322  * should be same as XFS_IOC_GOINGDOWN.
323  * Flags for going down operation used by FS_IOC_GOINGDOWN
324  */
325 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
326 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
327 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
328 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
329 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
330 
331 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
332 /*
333  * ioctl commands in 32 bit emulation
334  */
335 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
336 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
337 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
338 #endif
339 
340 struct f2fs_gc_range {
341 	u32 sync;
342 	u64 start;
343 	u64 len;
344 };
345 
346 struct f2fs_defragment {
347 	u64 start;
348 	u64 len;
349 };
350 
351 struct f2fs_move_range {
352 	u32 dst_fd;		/* destination fd */
353 	u64 pos_in;		/* start position in src_fd */
354 	u64 pos_out;		/* start position in dst_fd */
355 	u64 len;		/* size to move */
356 };
357 
358 struct f2fs_flush_device {
359 	u32 dev_num;		/* device number to flush */
360 	u32 segments;		/* # of segments to flush */
361 };
362 
363 /* for inline stuff */
364 #define DEF_INLINE_RESERVED_SIZE	1
365 static inline int get_extra_isize(struct inode *inode);
366 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) * \
367 				(CUR_ADDRS_PER_INODE(inode) - \
368 				DEF_INLINE_RESERVED_SIZE - \
369 				F2FS_INLINE_XATTR_ADDRS))
370 
371 /* for inline dir */
372 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
373 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
374 				BITS_PER_BYTE + 1))
375 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
376 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
377 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
378 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
379 				NR_INLINE_DENTRY(inode) + \
380 				INLINE_DENTRY_BITMAP_SIZE(inode)))
381 
382 /*
383  * For INODE and NODE manager
384  */
385 /* for directory operations */
386 struct f2fs_dentry_ptr {
387 	struct inode *inode;
388 	void *bitmap;
389 	struct f2fs_dir_entry *dentry;
390 	__u8 (*filename)[F2FS_SLOT_LEN];
391 	int max;
392 	int nr_bitmap;
393 };
394 
395 static inline void make_dentry_ptr_block(struct inode *inode,
396 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
397 {
398 	d->inode = inode;
399 	d->max = NR_DENTRY_IN_BLOCK;
400 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
401 	d->bitmap = &t->dentry_bitmap;
402 	d->dentry = t->dentry;
403 	d->filename = t->filename;
404 }
405 
406 static inline void make_dentry_ptr_inline(struct inode *inode,
407 					struct f2fs_dentry_ptr *d, void *t)
408 {
409 	int entry_cnt = NR_INLINE_DENTRY(inode);
410 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
411 	int reserved_size = INLINE_RESERVED_SIZE(inode);
412 
413 	d->inode = inode;
414 	d->max = entry_cnt;
415 	d->nr_bitmap = bitmap_size;
416 	d->bitmap = t;
417 	d->dentry = t + bitmap_size + reserved_size;
418 	d->filename = t + bitmap_size + reserved_size +
419 					SIZE_OF_DIR_ENTRY * entry_cnt;
420 }
421 
422 /*
423  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
424  * as its node offset to distinguish from index node blocks.
425  * But some bits are used to mark the node block.
426  */
427 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
428 				>> OFFSET_BIT_SHIFT)
429 enum {
430 	ALLOC_NODE,			/* allocate a new node page if needed */
431 	LOOKUP_NODE,			/* look up a node without readahead */
432 	LOOKUP_NODE_RA,			/*
433 					 * look up a node with readahead called
434 					 * by get_data_block.
435 					 */
436 };
437 
438 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
439 
440 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
441 
442 /* vector size for gang look-up from extent cache that consists of radix tree */
443 #define EXT_TREE_VEC_SIZE	64
444 
445 /* for in-memory extent cache entry */
446 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
447 
448 /* number of extent info in extent cache we try to shrink */
449 #define EXTENT_CACHE_SHRINK_NUMBER	128
450 
451 struct rb_entry {
452 	struct rb_node rb_node;		/* rb node located in rb-tree */
453 	unsigned int ofs;		/* start offset of the entry */
454 	unsigned int len;		/* length of the entry */
455 };
456 
457 struct extent_info {
458 	unsigned int fofs;		/* start offset in a file */
459 	unsigned int len;		/* length of the extent */
460 	u32 blk;			/* start block address of the extent */
461 };
462 
463 struct extent_node {
464 	struct rb_node rb_node;
465 	union {
466 		struct {
467 			unsigned int fofs;
468 			unsigned int len;
469 			u32 blk;
470 		};
471 		struct extent_info ei;	/* extent info */
472 
473 	};
474 	struct list_head list;		/* node in global extent list of sbi */
475 	struct extent_tree *et;		/* extent tree pointer */
476 };
477 
478 struct extent_tree {
479 	nid_t ino;			/* inode number */
480 	struct rb_root root;		/* root of extent info rb-tree */
481 	struct extent_node *cached_en;	/* recently accessed extent node */
482 	struct extent_info largest;	/* largested extent info */
483 	struct list_head list;		/* to be used by sbi->zombie_list */
484 	rwlock_t lock;			/* protect extent info rb-tree */
485 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
486 };
487 
488 /*
489  * This structure is taken from ext4_map_blocks.
490  *
491  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
492  */
493 #define F2FS_MAP_NEW		(1 << BH_New)
494 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
495 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
496 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
497 				F2FS_MAP_UNWRITTEN)
498 
499 struct f2fs_map_blocks {
500 	block_t m_pblk;
501 	block_t m_lblk;
502 	unsigned int m_len;
503 	unsigned int m_flags;
504 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
505 };
506 
507 /* for flag in get_data_block */
508 #define F2FS_GET_BLOCK_READ		0
509 #define F2FS_GET_BLOCK_DIO		1
510 #define F2FS_GET_BLOCK_FIEMAP		2
511 #define F2FS_GET_BLOCK_BMAP		3
512 #define F2FS_GET_BLOCK_PRE_DIO		4
513 #define F2FS_GET_BLOCK_PRE_AIO		5
514 
515 /*
516  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
517  */
518 #define FADVISE_COLD_BIT	0x01
519 #define FADVISE_LOST_PINO_BIT	0x02
520 #define FADVISE_ENCRYPT_BIT	0x04
521 #define FADVISE_ENC_NAME_BIT	0x08
522 #define FADVISE_KEEP_SIZE_BIT	0x10
523 
524 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
525 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
526 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
527 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
528 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
529 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
530 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
531 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
532 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
533 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
534 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
535 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
536 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
537 
538 #define DEF_DIR_LEVEL		0
539 
540 struct f2fs_inode_info {
541 	struct inode vfs_inode;		/* serve a vfs inode */
542 	unsigned long i_flags;		/* keep an inode flags for ioctl */
543 	unsigned char i_advise;		/* use to give file attribute hints */
544 	unsigned char i_dir_level;	/* use for dentry level for large dir */
545 	unsigned int i_current_depth;	/* use only in directory structure */
546 	unsigned int i_pino;		/* parent inode number */
547 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
548 
549 	/* Use below internally in f2fs*/
550 	unsigned long flags;		/* use to pass per-file flags */
551 	struct rw_semaphore i_sem;	/* protect fi info */
552 	atomic_t dirty_pages;		/* # of dirty pages */
553 	f2fs_hash_t chash;		/* hash value of given file name */
554 	unsigned int clevel;		/* maximum level of given file name */
555 	struct task_struct *task;	/* lookup and create consistency */
556 	nid_t i_xattr_nid;		/* node id that contains xattrs */
557 	loff_t	last_disk_size;		/* lastly written file size */
558 
559 #ifdef CONFIG_QUOTA
560 	struct dquot *i_dquot[MAXQUOTAS];
561 
562 	/* quota space reservation, managed internally by quota code */
563 	qsize_t i_reserved_quota;
564 #endif
565 	struct list_head dirty_list;	/* dirty list for dirs and files */
566 	struct list_head gdirty_list;	/* linked in global dirty list */
567 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
568 	struct task_struct *inmem_task;	/* store inmemory task */
569 	struct mutex inmem_lock;	/* lock for inmemory pages */
570 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
571 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
572 	struct rw_semaphore i_mmap_sem;
573 
574 	int i_extra_isize;		/* size of extra space located in i_addr */
575 	kprojid_t i_projid;		/* id for project quota */
576 };
577 
578 static inline void get_extent_info(struct extent_info *ext,
579 					struct f2fs_extent *i_ext)
580 {
581 	ext->fofs = le32_to_cpu(i_ext->fofs);
582 	ext->blk = le32_to_cpu(i_ext->blk);
583 	ext->len = le32_to_cpu(i_ext->len);
584 }
585 
586 static inline void set_raw_extent(struct extent_info *ext,
587 					struct f2fs_extent *i_ext)
588 {
589 	i_ext->fofs = cpu_to_le32(ext->fofs);
590 	i_ext->blk = cpu_to_le32(ext->blk);
591 	i_ext->len = cpu_to_le32(ext->len);
592 }
593 
594 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
595 						u32 blk, unsigned int len)
596 {
597 	ei->fofs = fofs;
598 	ei->blk = blk;
599 	ei->len = len;
600 }
601 
602 static inline bool __is_discard_mergeable(struct discard_info *back,
603 						struct discard_info *front)
604 {
605 	return back->lstart + back->len == front->lstart;
606 }
607 
608 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
609 						struct discard_info *back)
610 {
611 	return __is_discard_mergeable(back, cur);
612 }
613 
614 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
615 						struct discard_info *front)
616 {
617 	return __is_discard_mergeable(cur, front);
618 }
619 
620 static inline bool __is_extent_mergeable(struct extent_info *back,
621 						struct extent_info *front)
622 {
623 	return (back->fofs + back->len == front->fofs &&
624 			back->blk + back->len == front->blk);
625 }
626 
627 static inline bool __is_back_mergeable(struct extent_info *cur,
628 						struct extent_info *back)
629 {
630 	return __is_extent_mergeable(back, cur);
631 }
632 
633 static inline bool __is_front_mergeable(struct extent_info *cur,
634 						struct extent_info *front)
635 {
636 	return __is_extent_mergeable(cur, front);
637 }
638 
639 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
640 static inline void __try_update_largest_extent(struct inode *inode,
641 			struct extent_tree *et, struct extent_node *en)
642 {
643 	if (en->ei.len > et->largest.len) {
644 		et->largest = en->ei;
645 		f2fs_mark_inode_dirty_sync(inode, true);
646 	}
647 }
648 
649 enum nid_list {
650 	FREE_NID_LIST,
651 	ALLOC_NID_LIST,
652 	MAX_NID_LIST,
653 };
654 
655 struct f2fs_nm_info {
656 	block_t nat_blkaddr;		/* base disk address of NAT */
657 	nid_t max_nid;			/* maximum possible node ids */
658 	nid_t available_nids;		/* # of available node ids */
659 	nid_t next_scan_nid;		/* the next nid to be scanned */
660 	unsigned int ram_thresh;	/* control the memory footprint */
661 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
662 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
663 
664 	/* NAT cache management */
665 	struct radix_tree_root nat_root;/* root of the nat entry cache */
666 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
667 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
668 	struct list_head nat_entries;	/* cached nat entry list (clean) */
669 	unsigned int nat_cnt;		/* the # of cached nat entries */
670 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
671 	unsigned int nat_blocks;	/* # of nat blocks */
672 
673 	/* free node ids management */
674 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
675 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
676 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
677 	spinlock_t nid_list_lock;	/* protect nid lists ops */
678 	struct mutex build_lock;	/* lock for build free nids */
679 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
680 	unsigned char *nat_block_bitmap;
681 	unsigned short *free_nid_count;	/* free nid count of NAT block */
682 
683 	/* for checkpoint */
684 	char *nat_bitmap;		/* NAT bitmap pointer */
685 
686 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
687 	unsigned char *nat_bits;	/* NAT bits blocks */
688 	unsigned char *full_nat_bits;	/* full NAT pages */
689 	unsigned char *empty_nat_bits;	/* empty NAT pages */
690 #ifdef CONFIG_F2FS_CHECK_FS
691 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
692 #endif
693 	int bitmap_size;		/* bitmap size */
694 };
695 
696 /*
697  * this structure is used as one of function parameters.
698  * all the information are dedicated to a given direct node block determined
699  * by the data offset in a file.
700  */
701 struct dnode_of_data {
702 	struct inode *inode;		/* vfs inode pointer */
703 	struct page *inode_page;	/* its inode page, NULL is possible */
704 	struct page *node_page;		/* cached direct node page */
705 	nid_t nid;			/* node id of the direct node block */
706 	unsigned int ofs_in_node;	/* data offset in the node page */
707 	bool inode_page_locked;		/* inode page is locked or not */
708 	bool node_changed;		/* is node block changed */
709 	char cur_level;			/* level of hole node page */
710 	char max_level;			/* level of current page located */
711 	block_t	data_blkaddr;		/* block address of the node block */
712 };
713 
714 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
715 		struct page *ipage, struct page *npage, nid_t nid)
716 {
717 	memset(dn, 0, sizeof(*dn));
718 	dn->inode = inode;
719 	dn->inode_page = ipage;
720 	dn->node_page = npage;
721 	dn->nid = nid;
722 }
723 
724 /*
725  * For SIT manager
726  *
727  * By default, there are 6 active log areas across the whole main area.
728  * When considering hot and cold data separation to reduce cleaning overhead,
729  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
730  * respectively.
731  * In the current design, you should not change the numbers intentionally.
732  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
733  * logs individually according to the underlying devices. (default: 6)
734  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
735  * data and 8 for node logs.
736  */
737 #define	NR_CURSEG_DATA_TYPE	(3)
738 #define NR_CURSEG_NODE_TYPE	(3)
739 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
740 
741 enum {
742 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
743 	CURSEG_WARM_DATA,	/* data blocks */
744 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
745 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
746 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
747 	CURSEG_COLD_NODE,	/* indirect node blocks */
748 	NO_CHECK_TYPE,
749 };
750 
751 struct flush_cmd {
752 	struct completion wait;
753 	struct llist_node llnode;
754 	int ret;
755 };
756 
757 struct flush_cmd_control {
758 	struct task_struct *f2fs_issue_flush;	/* flush thread */
759 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
760 	atomic_t issued_flush;			/* # of issued flushes */
761 	atomic_t issing_flush;			/* # of issing flushes */
762 	struct llist_head issue_list;		/* list for command issue */
763 	struct llist_node *dispatch_list;	/* list for command dispatch */
764 };
765 
766 struct f2fs_sm_info {
767 	struct sit_info *sit_info;		/* whole segment information */
768 	struct free_segmap_info *free_info;	/* free segment information */
769 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
770 	struct curseg_info *curseg_array;	/* active segment information */
771 
772 	block_t seg0_blkaddr;		/* block address of 0'th segment */
773 	block_t main_blkaddr;		/* start block address of main area */
774 	block_t ssa_blkaddr;		/* start block address of SSA area */
775 
776 	unsigned int segment_count;	/* total # of segments */
777 	unsigned int main_segments;	/* # of segments in main area */
778 	unsigned int reserved_segments;	/* # of reserved segments */
779 	unsigned int ovp_segments;	/* # of overprovision segments */
780 
781 	/* a threshold to reclaim prefree segments */
782 	unsigned int rec_prefree_segments;
783 
784 	/* for batched trimming */
785 	unsigned int trim_sections;		/* # of sections to trim */
786 
787 	struct list_head sit_entry_set;	/* sit entry set list */
788 
789 	unsigned int ipu_policy;	/* in-place-update policy */
790 	unsigned int min_ipu_util;	/* in-place-update threshold */
791 	unsigned int min_fsync_blocks;	/* threshold for fsync */
792 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
793 
794 	/* for flush command control */
795 	struct flush_cmd_control *fcc_info;
796 
797 	/* for discard command control */
798 	struct discard_cmd_control *dcc_info;
799 };
800 
801 /*
802  * For superblock
803  */
804 /*
805  * COUNT_TYPE for monitoring
806  *
807  * f2fs monitors the number of several block types such as on-writeback,
808  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
809  */
810 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
811 enum count_type {
812 	F2FS_DIRTY_DENTS,
813 	F2FS_DIRTY_DATA,
814 	F2FS_DIRTY_NODES,
815 	F2FS_DIRTY_META,
816 	F2FS_INMEM_PAGES,
817 	F2FS_DIRTY_IMETA,
818 	F2FS_WB_CP_DATA,
819 	F2FS_WB_DATA,
820 	NR_COUNT_TYPE,
821 };
822 
823 /*
824  * The below are the page types of bios used in submit_bio().
825  * The available types are:
826  * DATA			User data pages. It operates as async mode.
827  * NODE			Node pages. It operates as async mode.
828  * META			FS metadata pages such as SIT, NAT, CP.
829  * NR_PAGE_TYPE		The number of page types.
830  * META_FLUSH		Make sure the previous pages are written
831  *			with waiting the bio's completion
832  * ...			Only can be used with META.
833  */
834 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
835 enum page_type {
836 	DATA,
837 	NODE,
838 	META,
839 	NR_PAGE_TYPE,
840 	META_FLUSH,
841 	INMEM,		/* the below types are used by tracepoints only. */
842 	INMEM_DROP,
843 	INMEM_INVALIDATE,
844 	INMEM_REVOKE,
845 	IPU,
846 	OPU,
847 };
848 
849 enum temp_type {
850 	HOT = 0,	/* must be zero for meta bio */
851 	WARM,
852 	COLD,
853 	NR_TEMP_TYPE,
854 };
855 
856 enum need_lock_type {
857 	LOCK_REQ = 0,
858 	LOCK_DONE,
859 	LOCK_RETRY,
860 };
861 
862 struct f2fs_io_info {
863 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
864 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
865 	enum temp_type temp;	/* contains HOT/WARM/COLD */
866 	int op;			/* contains REQ_OP_ */
867 	int op_flags;		/* req_flag_bits */
868 	block_t new_blkaddr;	/* new block address to be written */
869 	block_t old_blkaddr;	/* old block address before Cow */
870 	struct page *page;	/* page to be written */
871 	struct page *encrypted_page;	/* encrypted page */
872 	struct list_head list;		/* serialize IOs */
873 	bool submitted;		/* indicate IO submission */
874 	int need_lock;		/* indicate we need to lock cp_rwsem */
875 	bool in_list;		/* indicate fio is in io_list */
876 };
877 
878 #define is_read_io(rw) ((rw) == READ)
879 struct f2fs_bio_info {
880 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
881 	struct bio *bio;		/* bios to merge */
882 	sector_t last_block_in_bio;	/* last block number */
883 	struct f2fs_io_info fio;	/* store buffered io info. */
884 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
885 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
886 	struct list_head io_list;	/* track fios */
887 };
888 
889 #define FDEV(i)				(sbi->devs[i])
890 #define RDEV(i)				(raw_super->devs[i])
891 struct f2fs_dev_info {
892 	struct block_device *bdev;
893 	char path[MAX_PATH_LEN];
894 	unsigned int total_segments;
895 	block_t start_blk;
896 	block_t end_blk;
897 #ifdef CONFIG_BLK_DEV_ZONED
898 	unsigned int nr_blkz;			/* Total number of zones */
899 	u8 *blkz_type;				/* Array of zones type */
900 #endif
901 };
902 
903 enum inode_type {
904 	DIR_INODE,			/* for dirty dir inode */
905 	FILE_INODE,			/* for dirty regular/symlink inode */
906 	DIRTY_META,			/* for all dirtied inode metadata */
907 	NR_INODE_TYPE,
908 };
909 
910 /* for inner inode cache management */
911 struct inode_management {
912 	struct radix_tree_root ino_root;	/* ino entry array */
913 	spinlock_t ino_lock;			/* for ino entry lock */
914 	struct list_head ino_list;		/* inode list head */
915 	unsigned long ino_num;			/* number of entries */
916 };
917 
918 /* For s_flag in struct f2fs_sb_info */
919 enum {
920 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
921 	SBI_IS_CLOSE,				/* specify unmounting */
922 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
923 	SBI_POR_DOING,				/* recovery is doing or not */
924 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
925 	SBI_NEED_CP,				/* need to checkpoint */
926 };
927 
928 enum {
929 	CP_TIME,
930 	REQ_TIME,
931 	MAX_TIME,
932 };
933 
934 struct f2fs_sb_info {
935 	struct super_block *sb;			/* pointer to VFS super block */
936 	struct proc_dir_entry *s_proc;		/* proc entry */
937 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
938 	int valid_super_block;			/* valid super block no */
939 	unsigned long s_flag;				/* flags for sbi */
940 
941 #ifdef CONFIG_BLK_DEV_ZONED
942 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
943 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
944 #endif
945 
946 	/* for node-related operations */
947 	struct f2fs_nm_info *nm_info;		/* node manager */
948 	struct inode *node_inode;		/* cache node blocks */
949 
950 	/* for segment-related operations */
951 	struct f2fs_sm_info *sm_info;		/* segment manager */
952 
953 	/* for bio operations */
954 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
955 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
956 						/* bio ordering for NODE/DATA */
957 	int write_io_size_bits;			/* Write IO size bits */
958 	mempool_t *write_io_dummy;		/* Dummy pages */
959 
960 	/* for checkpoint */
961 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
962 	int cur_cp_pack;			/* remain current cp pack */
963 	spinlock_t cp_lock;			/* for flag in ckpt */
964 	struct inode *meta_inode;		/* cache meta blocks */
965 	struct mutex cp_mutex;			/* checkpoint procedure lock */
966 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
967 	struct rw_semaphore node_write;		/* locking node writes */
968 	struct rw_semaphore node_change;	/* locking node change */
969 	wait_queue_head_t cp_wait;
970 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
971 	long interval_time[MAX_TIME];		/* to store thresholds */
972 
973 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
974 
975 	/* for orphan inode, use 0'th array */
976 	unsigned int max_orphans;		/* max orphan inodes */
977 
978 	/* for inode management */
979 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
980 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
981 
982 	/* for extent tree cache */
983 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
984 	struct mutex extent_tree_lock;	/* locking extent radix tree */
985 	struct list_head extent_list;		/* lru list for shrinker */
986 	spinlock_t extent_lock;			/* locking extent lru list */
987 	atomic_t total_ext_tree;		/* extent tree count */
988 	struct list_head zombie_list;		/* extent zombie tree list */
989 	atomic_t total_zombie_tree;		/* extent zombie tree count */
990 	atomic_t total_ext_node;		/* extent info count */
991 
992 	/* basic filesystem units */
993 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
994 	unsigned int log_blocksize;		/* log2 block size */
995 	unsigned int blocksize;			/* block size */
996 	unsigned int root_ino_num;		/* root inode number*/
997 	unsigned int node_ino_num;		/* node inode number*/
998 	unsigned int meta_ino_num;		/* meta inode number*/
999 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1000 	unsigned int blocks_per_seg;		/* blocks per segment */
1001 	unsigned int segs_per_sec;		/* segments per section */
1002 	unsigned int secs_per_zone;		/* sections per zone */
1003 	unsigned int total_sections;		/* total section count */
1004 	unsigned int total_node_count;		/* total node block count */
1005 	unsigned int total_valid_node_count;	/* valid node block count */
1006 	loff_t max_file_blocks;			/* max block index of file */
1007 	int active_logs;			/* # of active logs */
1008 	int dir_level;				/* directory level */
1009 
1010 	block_t user_block_count;		/* # of user blocks */
1011 	block_t total_valid_block_count;	/* # of valid blocks */
1012 	block_t discard_blks;			/* discard command candidats */
1013 	block_t last_valid_block_count;		/* for recovery */
1014 	block_t reserved_blocks;		/* configurable reserved blocks */
1015 
1016 	u32 s_next_generation;			/* for NFS support */
1017 
1018 	/* # of pages, see count_type */
1019 	atomic_t nr_pages[NR_COUNT_TYPE];
1020 	/* # of allocated blocks */
1021 	struct percpu_counter alloc_valid_block_count;
1022 
1023 	/* writeback control */
1024 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1025 
1026 	/* valid inode count */
1027 	struct percpu_counter total_valid_inode_count;
1028 
1029 	struct f2fs_mount_info mount_opt;	/* mount options */
1030 
1031 	/* for cleaning operations */
1032 	struct mutex gc_mutex;			/* mutex for GC */
1033 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1034 	unsigned int cur_victim_sec;		/* current victim section num */
1035 
1036 	/* threshold for converting bg victims for fg */
1037 	u64 fggc_threshold;
1038 
1039 	/* maximum # of trials to find a victim segment for SSR and GC */
1040 	unsigned int max_victim_search;
1041 
1042 	/*
1043 	 * for stat information.
1044 	 * one is for the LFS mode, and the other is for the SSR mode.
1045 	 */
1046 #ifdef CONFIG_F2FS_STAT_FS
1047 	struct f2fs_stat_info *stat_info;	/* FS status information */
1048 	unsigned int segment_count[2];		/* # of allocated segments */
1049 	unsigned int block_count[2];		/* # of allocated blocks */
1050 	atomic_t inplace_count;		/* # of inplace update */
1051 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1052 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1053 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1054 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1055 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1056 	atomic_t inline_inode;			/* # of inline_data inodes */
1057 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1058 	atomic_t aw_cnt;			/* # of atomic writes */
1059 	atomic_t vw_cnt;			/* # of volatile writes */
1060 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1061 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1062 	int bg_gc;				/* background gc calls */
1063 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1064 #endif
1065 	spinlock_t stat_lock;			/* lock for stat operations */
1066 
1067 	/* For sysfs suppport */
1068 	struct kobject s_kobj;
1069 	struct completion s_kobj_unregister;
1070 
1071 	/* For shrinker support */
1072 	struct list_head s_list;
1073 	int s_ndevs;				/* number of devices */
1074 	struct f2fs_dev_info *devs;		/* for device list */
1075 	struct mutex umount_mutex;
1076 	unsigned int shrinker_run_no;
1077 
1078 	/* For write statistics */
1079 	u64 sectors_written_start;
1080 	u64 kbytes_written;
1081 
1082 	/* Reference to checksum algorithm driver via cryptoapi */
1083 	struct crypto_shash *s_chksum_driver;
1084 
1085 	/* For fault injection */
1086 #ifdef CONFIG_F2FS_FAULT_INJECTION
1087 	struct f2fs_fault_info fault_info;
1088 #endif
1089 };
1090 
1091 #ifdef CONFIG_F2FS_FAULT_INJECTION
1092 #define f2fs_show_injection_info(type)				\
1093 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1094 		KERN_INFO, fault_name[type],			\
1095 		__func__, __builtin_return_address(0))
1096 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1097 {
1098 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1099 
1100 	if (!ffi->inject_rate)
1101 		return false;
1102 
1103 	if (!IS_FAULT_SET(ffi, type))
1104 		return false;
1105 
1106 	atomic_inc(&ffi->inject_ops);
1107 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1108 		atomic_set(&ffi->inject_ops, 0);
1109 		return true;
1110 	}
1111 	return false;
1112 }
1113 #endif
1114 
1115 /* For write statistics. Suppose sector size is 512 bytes,
1116  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1117  */
1118 #define BD_PART_WRITTEN(s)						 \
1119 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1120 		(s)->sectors_written_start) >> 1)
1121 
1122 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1123 {
1124 	sbi->last_time[type] = jiffies;
1125 }
1126 
1127 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1128 {
1129 	struct timespec ts = {sbi->interval_time[type], 0};
1130 	unsigned long interval = timespec_to_jiffies(&ts);
1131 
1132 	return time_after(jiffies, sbi->last_time[type] + interval);
1133 }
1134 
1135 static inline bool is_idle(struct f2fs_sb_info *sbi)
1136 {
1137 	struct block_device *bdev = sbi->sb->s_bdev;
1138 	struct request_queue *q = bdev_get_queue(bdev);
1139 	struct request_list *rl = &q->root_rl;
1140 
1141 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1142 		return 0;
1143 
1144 	return f2fs_time_over(sbi, REQ_TIME);
1145 }
1146 
1147 /*
1148  * Inline functions
1149  */
1150 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1151 			   unsigned int length)
1152 {
1153 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1154 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1155 	u32 retval;
1156 	int err;
1157 
1158 	shash->tfm = sbi->s_chksum_driver;
1159 	shash->flags = 0;
1160 	*ctx = F2FS_SUPER_MAGIC;
1161 
1162 	err = crypto_shash_update(shash, address, length);
1163 	BUG_ON(err);
1164 
1165 	retval = *ctx;
1166 	barrier_data(ctx);
1167 	return retval;
1168 }
1169 
1170 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1171 				  void *buf, size_t buf_size)
1172 {
1173 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1174 }
1175 
1176 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1177 {
1178 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1179 }
1180 
1181 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1182 {
1183 	return sb->s_fs_info;
1184 }
1185 
1186 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1187 {
1188 	return F2FS_SB(inode->i_sb);
1189 }
1190 
1191 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1192 {
1193 	return F2FS_I_SB(mapping->host);
1194 }
1195 
1196 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1197 {
1198 	return F2FS_M_SB(page->mapping);
1199 }
1200 
1201 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1202 {
1203 	return (struct f2fs_super_block *)(sbi->raw_super);
1204 }
1205 
1206 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1207 {
1208 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1209 }
1210 
1211 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1212 {
1213 	return (struct f2fs_node *)page_address(page);
1214 }
1215 
1216 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1217 {
1218 	return &((struct f2fs_node *)page_address(page))->i;
1219 }
1220 
1221 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1222 {
1223 	return (struct f2fs_nm_info *)(sbi->nm_info);
1224 }
1225 
1226 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1227 {
1228 	return (struct f2fs_sm_info *)(sbi->sm_info);
1229 }
1230 
1231 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1232 {
1233 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1234 }
1235 
1236 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1237 {
1238 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1239 }
1240 
1241 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1242 {
1243 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1244 }
1245 
1246 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1247 {
1248 	return sbi->meta_inode->i_mapping;
1249 }
1250 
1251 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1252 {
1253 	return sbi->node_inode->i_mapping;
1254 }
1255 
1256 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1257 {
1258 	return test_bit(type, &sbi->s_flag);
1259 }
1260 
1261 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1262 {
1263 	set_bit(type, &sbi->s_flag);
1264 }
1265 
1266 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1267 {
1268 	clear_bit(type, &sbi->s_flag);
1269 }
1270 
1271 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1272 {
1273 	return le64_to_cpu(cp->checkpoint_ver);
1274 }
1275 
1276 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1277 {
1278 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1279 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1280 }
1281 
1282 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1283 {
1284 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1285 
1286 	return ckpt_flags & f;
1287 }
1288 
1289 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1290 {
1291 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1292 }
1293 
1294 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1295 {
1296 	unsigned int ckpt_flags;
1297 
1298 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1299 	ckpt_flags |= f;
1300 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1301 }
1302 
1303 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1304 {
1305 	unsigned long flags;
1306 
1307 	spin_lock_irqsave(&sbi->cp_lock, flags);
1308 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1309 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1310 }
1311 
1312 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1313 {
1314 	unsigned int ckpt_flags;
1315 
1316 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1317 	ckpt_flags &= (~f);
1318 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1319 }
1320 
1321 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1322 {
1323 	unsigned long flags;
1324 
1325 	spin_lock_irqsave(&sbi->cp_lock, flags);
1326 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1327 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1328 }
1329 
1330 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1331 {
1332 	unsigned long flags;
1333 
1334 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1335 
1336 	if (lock)
1337 		spin_lock_irqsave(&sbi->cp_lock, flags);
1338 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1339 	kfree(NM_I(sbi)->nat_bits);
1340 	NM_I(sbi)->nat_bits = NULL;
1341 	if (lock)
1342 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1343 }
1344 
1345 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1346 					struct cp_control *cpc)
1347 {
1348 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1349 
1350 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1351 }
1352 
1353 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1354 {
1355 	down_read(&sbi->cp_rwsem);
1356 }
1357 
1358 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1359 {
1360 	return down_read_trylock(&sbi->cp_rwsem);
1361 }
1362 
1363 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1364 {
1365 	up_read(&sbi->cp_rwsem);
1366 }
1367 
1368 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1369 {
1370 	down_write(&sbi->cp_rwsem);
1371 }
1372 
1373 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1374 {
1375 	up_write(&sbi->cp_rwsem);
1376 }
1377 
1378 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1379 {
1380 	int reason = CP_SYNC;
1381 
1382 	if (test_opt(sbi, FASTBOOT))
1383 		reason = CP_FASTBOOT;
1384 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1385 		reason = CP_UMOUNT;
1386 	return reason;
1387 }
1388 
1389 static inline bool __remain_node_summaries(int reason)
1390 {
1391 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1392 }
1393 
1394 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1395 {
1396 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1397 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1398 }
1399 
1400 /*
1401  * Check whether the given nid is within node id range.
1402  */
1403 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1404 {
1405 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1406 		return -EINVAL;
1407 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1408 		return -EINVAL;
1409 	return 0;
1410 }
1411 
1412 /*
1413  * Check whether the inode has blocks or not
1414  */
1415 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1416 {
1417 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1418 
1419 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1420 }
1421 
1422 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1423 {
1424 	return ofs == XATTR_NODE_OFFSET;
1425 }
1426 
1427 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1428 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1429 				 struct inode *inode, blkcnt_t *count)
1430 {
1431 	blkcnt_t diff = 0, release = 0;
1432 	block_t avail_user_block_count;
1433 	int ret;
1434 
1435 	ret = dquot_reserve_block(inode, *count);
1436 	if (ret)
1437 		return ret;
1438 
1439 #ifdef CONFIG_F2FS_FAULT_INJECTION
1440 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1441 		f2fs_show_injection_info(FAULT_BLOCK);
1442 		release = *count;
1443 		goto enospc;
1444 	}
1445 #endif
1446 	/*
1447 	 * let's increase this in prior to actual block count change in order
1448 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1449 	 */
1450 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1451 
1452 	spin_lock(&sbi->stat_lock);
1453 	sbi->total_valid_block_count += (block_t)(*count);
1454 	avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1455 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1456 		diff = sbi->total_valid_block_count - avail_user_block_count;
1457 		*count -= diff;
1458 		release = diff;
1459 		sbi->total_valid_block_count = avail_user_block_count;
1460 		if (!*count) {
1461 			spin_unlock(&sbi->stat_lock);
1462 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1463 			goto enospc;
1464 		}
1465 	}
1466 	spin_unlock(&sbi->stat_lock);
1467 
1468 	if (release)
1469 		dquot_release_reservation_block(inode, release);
1470 	f2fs_i_blocks_write(inode, *count, true, true);
1471 	return 0;
1472 
1473 enospc:
1474 	dquot_release_reservation_block(inode, release);
1475 	return -ENOSPC;
1476 }
1477 
1478 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1479 						struct inode *inode,
1480 						block_t count)
1481 {
1482 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1483 
1484 	spin_lock(&sbi->stat_lock);
1485 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1486 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1487 	sbi->total_valid_block_count -= (block_t)count;
1488 	spin_unlock(&sbi->stat_lock);
1489 	f2fs_i_blocks_write(inode, count, false, true);
1490 }
1491 
1492 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1493 {
1494 	atomic_inc(&sbi->nr_pages[count_type]);
1495 
1496 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1497 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1498 		return;
1499 
1500 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1501 }
1502 
1503 static inline void inode_inc_dirty_pages(struct inode *inode)
1504 {
1505 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1506 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1507 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1508 }
1509 
1510 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1511 {
1512 	atomic_dec(&sbi->nr_pages[count_type]);
1513 }
1514 
1515 static inline void inode_dec_dirty_pages(struct inode *inode)
1516 {
1517 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1518 			!S_ISLNK(inode->i_mode))
1519 		return;
1520 
1521 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1522 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1523 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1524 }
1525 
1526 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1527 {
1528 	return atomic_read(&sbi->nr_pages[count_type]);
1529 }
1530 
1531 static inline int get_dirty_pages(struct inode *inode)
1532 {
1533 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1534 }
1535 
1536 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1537 {
1538 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1539 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1540 						sbi->log_blocks_per_seg;
1541 
1542 	return segs / sbi->segs_per_sec;
1543 }
1544 
1545 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1546 {
1547 	return sbi->total_valid_block_count;
1548 }
1549 
1550 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1551 {
1552 	return sbi->discard_blks;
1553 }
1554 
1555 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1556 {
1557 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558 
1559 	/* return NAT or SIT bitmap */
1560 	if (flag == NAT_BITMAP)
1561 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1562 	else if (flag == SIT_BITMAP)
1563 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1564 
1565 	return 0;
1566 }
1567 
1568 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1569 {
1570 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1571 }
1572 
1573 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1574 {
1575 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1576 	int offset;
1577 
1578 	if (__cp_payload(sbi) > 0) {
1579 		if (flag == NAT_BITMAP)
1580 			return &ckpt->sit_nat_version_bitmap;
1581 		else
1582 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1583 	} else {
1584 		offset = (flag == NAT_BITMAP) ?
1585 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1586 		return &ckpt->sit_nat_version_bitmap + offset;
1587 	}
1588 }
1589 
1590 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1591 {
1592 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1593 
1594 	if (sbi->cur_cp_pack == 2)
1595 		start_addr += sbi->blocks_per_seg;
1596 	return start_addr;
1597 }
1598 
1599 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1600 {
1601 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1602 
1603 	if (sbi->cur_cp_pack == 1)
1604 		start_addr += sbi->blocks_per_seg;
1605 	return start_addr;
1606 }
1607 
1608 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1609 {
1610 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1611 }
1612 
1613 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1614 {
1615 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1616 }
1617 
1618 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1619 					struct inode *inode, bool is_inode)
1620 {
1621 	block_t	valid_block_count;
1622 	unsigned int valid_node_count;
1623 	bool quota = inode && !is_inode;
1624 
1625 	if (quota) {
1626 		int ret = dquot_reserve_block(inode, 1);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	spin_lock(&sbi->stat_lock);
1632 
1633 	valid_block_count = sbi->total_valid_block_count + 1;
1634 	if (unlikely(valid_block_count + sbi->reserved_blocks >
1635 						sbi->user_block_count)) {
1636 		spin_unlock(&sbi->stat_lock);
1637 		goto enospc;
1638 	}
1639 
1640 	valid_node_count = sbi->total_valid_node_count + 1;
1641 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1642 		spin_unlock(&sbi->stat_lock);
1643 		goto enospc;
1644 	}
1645 
1646 	sbi->total_valid_node_count++;
1647 	sbi->total_valid_block_count++;
1648 	spin_unlock(&sbi->stat_lock);
1649 
1650 	if (inode) {
1651 		if (is_inode)
1652 			f2fs_mark_inode_dirty_sync(inode, true);
1653 		else
1654 			f2fs_i_blocks_write(inode, 1, true, true);
1655 	}
1656 
1657 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1658 	return 0;
1659 
1660 enospc:
1661 	if (quota)
1662 		dquot_release_reservation_block(inode, 1);
1663 	return -ENOSPC;
1664 }
1665 
1666 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1667 					struct inode *inode, bool is_inode)
1668 {
1669 	spin_lock(&sbi->stat_lock);
1670 
1671 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1672 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1673 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1674 
1675 	sbi->total_valid_node_count--;
1676 	sbi->total_valid_block_count--;
1677 
1678 	spin_unlock(&sbi->stat_lock);
1679 
1680 	if (!is_inode)
1681 		f2fs_i_blocks_write(inode, 1, false, true);
1682 }
1683 
1684 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1685 {
1686 	return sbi->total_valid_node_count;
1687 }
1688 
1689 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1690 {
1691 	percpu_counter_inc(&sbi->total_valid_inode_count);
1692 }
1693 
1694 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1695 {
1696 	percpu_counter_dec(&sbi->total_valid_inode_count);
1697 }
1698 
1699 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1700 {
1701 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1702 }
1703 
1704 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1705 						pgoff_t index, bool for_write)
1706 {
1707 #ifdef CONFIG_F2FS_FAULT_INJECTION
1708 	struct page *page = find_lock_page(mapping, index);
1709 
1710 	if (page)
1711 		return page;
1712 
1713 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1714 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1715 		return NULL;
1716 	}
1717 #endif
1718 	if (!for_write)
1719 		return grab_cache_page(mapping, index);
1720 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1721 }
1722 
1723 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1724 {
1725 	char *src_kaddr = kmap(src);
1726 	char *dst_kaddr = kmap(dst);
1727 
1728 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1729 	kunmap(dst);
1730 	kunmap(src);
1731 }
1732 
1733 static inline void f2fs_put_page(struct page *page, int unlock)
1734 {
1735 	if (!page)
1736 		return;
1737 
1738 	if (unlock) {
1739 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1740 		unlock_page(page);
1741 	}
1742 	put_page(page);
1743 }
1744 
1745 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1746 {
1747 	if (dn->node_page)
1748 		f2fs_put_page(dn->node_page, 1);
1749 	if (dn->inode_page && dn->node_page != dn->inode_page)
1750 		f2fs_put_page(dn->inode_page, 0);
1751 	dn->node_page = NULL;
1752 	dn->inode_page = NULL;
1753 }
1754 
1755 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1756 					size_t size)
1757 {
1758 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1759 }
1760 
1761 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1762 						gfp_t flags)
1763 {
1764 	void *entry;
1765 
1766 	entry = kmem_cache_alloc(cachep, flags);
1767 	if (!entry)
1768 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1769 	return entry;
1770 }
1771 
1772 static inline struct bio *f2fs_bio_alloc(int npages)
1773 {
1774 	struct bio *bio;
1775 
1776 	/* No failure on bio allocation */
1777 	bio = bio_alloc(GFP_NOIO, npages);
1778 	if (!bio)
1779 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1780 	return bio;
1781 }
1782 
1783 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1784 				unsigned long index, void *item)
1785 {
1786 	while (radix_tree_insert(root, index, item))
1787 		cond_resched();
1788 }
1789 
1790 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1791 
1792 static inline bool IS_INODE(struct page *page)
1793 {
1794 	struct f2fs_node *p = F2FS_NODE(page);
1795 
1796 	return RAW_IS_INODE(p);
1797 }
1798 
1799 static inline int offset_in_addr(struct f2fs_inode *i)
1800 {
1801 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
1802 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1803 }
1804 
1805 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1806 {
1807 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1808 }
1809 
1810 static inline int f2fs_has_extra_attr(struct inode *inode);
1811 static inline block_t datablock_addr(struct inode *inode,
1812 			struct page *node_page, unsigned int offset)
1813 {
1814 	struct f2fs_node *raw_node;
1815 	__le32 *addr_array;
1816 	int base = 0;
1817 	bool is_inode = IS_INODE(node_page);
1818 
1819 	raw_node = F2FS_NODE(node_page);
1820 
1821 	/* from GC path only */
1822 	if (!inode) {
1823 		if (is_inode)
1824 			base = offset_in_addr(&raw_node->i);
1825 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
1826 		base = get_extra_isize(inode);
1827 	}
1828 
1829 	addr_array = blkaddr_in_node(raw_node);
1830 	return le32_to_cpu(addr_array[base + offset]);
1831 }
1832 
1833 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1834 {
1835 	int mask;
1836 
1837 	addr += (nr >> 3);
1838 	mask = 1 << (7 - (nr & 0x07));
1839 	return mask & *addr;
1840 }
1841 
1842 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1843 {
1844 	int mask;
1845 
1846 	addr += (nr >> 3);
1847 	mask = 1 << (7 - (nr & 0x07));
1848 	*addr |= mask;
1849 }
1850 
1851 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1852 {
1853 	int mask;
1854 
1855 	addr += (nr >> 3);
1856 	mask = 1 << (7 - (nr & 0x07));
1857 	*addr &= ~mask;
1858 }
1859 
1860 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1861 {
1862 	int mask;
1863 	int ret;
1864 
1865 	addr += (nr >> 3);
1866 	mask = 1 << (7 - (nr & 0x07));
1867 	ret = mask & *addr;
1868 	*addr |= mask;
1869 	return ret;
1870 }
1871 
1872 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1873 {
1874 	int mask;
1875 	int ret;
1876 
1877 	addr += (nr >> 3);
1878 	mask = 1 << (7 - (nr & 0x07));
1879 	ret = mask & *addr;
1880 	*addr &= ~mask;
1881 	return ret;
1882 }
1883 
1884 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1885 {
1886 	int mask;
1887 
1888 	addr += (nr >> 3);
1889 	mask = 1 << (7 - (nr & 0x07));
1890 	*addr ^= mask;
1891 }
1892 
1893 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1894 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1895 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
1896 
1897 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1898 {
1899 	if (S_ISDIR(mode))
1900 		return flags;
1901 	else if (S_ISREG(mode))
1902 		return flags & F2FS_REG_FLMASK;
1903 	else
1904 		return flags & F2FS_OTHER_FLMASK;
1905 }
1906 
1907 /* used for f2fs_inode_info->flags */
1908 enum {
1909 	FI_NEW_INODE,		/* indicate newly allocated inode */
1910 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1911 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1912 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1913 	FI_INC_LINK,		/* need to increment i_nlink */
1914 	FI_ACL_MODE,		/* indicate acl mode */
1915 	FI_NO_ALLOC,		/* should not allocate any blocks */
1916 	FI_FREE_NID,		/* free allocated nide */
1917 	FI_NO_EXTENT,		/* not to use the extent cache */
1918 	FI_INLINE_XATTR,	/* used for inline xattr */
1919 	FI_INLINE_DATA,		/* used for inline data*/
1920 	FI_INLINE_DENTRY,	/* used for inline dentry */
1921 	FI_APPEND_WRITE,	/* inode has appended data */
1922 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1923 	FI_NEED_IPU,		/* used for ipu per file */
1924 	FI_ATOMIC_FILE,		/* indicate atomic file */
1925 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1926 	FI_VOLATILE_FILE,	/* indicate volatile file */
1927 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1928 	FI_DROP_CACHE,		/* drop dirty page cache */
1929 	FI_DATA_EXIST,		/* indicate data exists */
1930 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1931 	FI_DO_DEFRAG,		/* indicate defragment is running */
1932 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1933 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1934 	FI_HOT_DATA,		/* indicate file is hot */
1935 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
1936 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
1937 };
1938 
1939 static inline void __mark_inode_dirty_flag(struct inode *inode,
1940 						int flag, bool set)
1941 {
1942 	switch (flag) {
1943 	case FI_INLINE_XATTR:
1944 	case FI_INLINE_DATA:
1945 	case FI_INLINE_DENTRY:
1946 		if (set)
1947 			return;
1948 	case FI_DATA_EXIST:
1949 	case FI_INLINE_DOTS:
1950 		f2fs_mark_inode_dirty_sync(inode, true);
1951 	}
1952 }
1953 
1954 static inline void set_inode_flag(struct inode *inode, int flag)
1955 {
1956 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1957 		set_bit(flag, &F2FS_I(inode)->flags);
1958 	__mark_inode_dirty_flag(inode, flag, true);
1959 }
1960 
1961 static inline int is_inode_flag_set(struct inode *inode, int flag)
1962 {
1963 	return test_bit(flag, &F2FS_I(inode)->flags);
1964 }
1965 
1966 static inline void clear_inode_flag(struct inode *inode, int flag)
1967 {
1968 	if (test_bit(flag, &F2FS_I(inode)->flags))
1969 		clear_bit(flag, &F2FS_I(inode)->flags);
1970 	__mark_inode_dirty_flag(inode, flag, false);
1971 }
1972 
1973 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1974 {
1975 	F2FS_I(inode)->i_acl_mode = mode;
1976 	set_inode_flag(inode, FI_ACL_MODE);
1977 	f2fs_mark_inode_dirty_sync(inode, false);
1978 }
1979 
1980 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1981 {
1982 	if (inc)
1983 		inc_nlink(inode);
1984 	else
1985 		drop_nlink(inode);
1986 	f2fs_mark_inode_dirty_sync(inode, true);
1987 }
1988 
1989 static inline void f2fs_i_blocks_write(struct inode *inode,
1990 					block_t diff, bool add, bool claim)
1991 {
1992 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1993 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1994 
1995 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
1996 	if (add) {
1997 		if (claim)
1998 			dquot_claim_block(inode, diff);
1999 		else
2000 			dquot_alloc_block_nofail(inode, diff);
2001 	} else {
2002 		dquot_free_block(inode, diff);
2003 	}
2004 
2005 	f2fs_mark_inode_dirty_sync(inode, true);
2006 	if (clean || recover)
2007 		set_inode_flag(inode, FI_AUTO_RECOVER);
2008 }
2009 
2010 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2011 {
2012 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2013 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2014 
2015 	if (i_size_read(inode) == i_size)
2016 		return;
2017 
2018 	i_size_write(inode, i_size);
2019 	f2fs_mark_inode_dirty_sync(inode, true);
2020 	if (clean || recover)
2021 		set_inode_flag(inode, FI_AUTO_RECOVER);
2022 }
2023 
2024 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2025 {
2026 	F2FS_I(inode)->i_current_depth = depth;
2027 	f2fs_mark_inode_dirty_sync(inode, true);
2028 }
2029 
2030 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2031 {
2032 	F2FS_I(inode)->i_xattr_nid = xnid;
2033 	f2fs_mark_inode_dirty_sync(inode, true);
2034 }
2035 
2036 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2037 {
2038 	F2FS_I(inode)->i_pino = pino;
2039 	f2fs_mark_inode_dirty_sync(inode, true);
2040 }
2041 
2042 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2043 {
2044 	struct f2fs_inode_info *fi = F2FS_I(inode);
2045 
2046 	if (ri->i_inline & F2FS_INLINE_XATTR)
2047 		set_bit(FI_INLINE_XATTR, &fi->flags);
2048 	if (ri->i_inline & F2FS_INLINE_DATA)
2049 		set_bit(FI_INLINE_DATA, &fi->flags);
2050 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2051 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2052 	if (ri->i_inline & F2FS_DATA_EXIST)
2053 		set_bit(FI_DATA_EXIST, &fi->flags);
2054 	if (ri->i_inline & F2FS_INLINE_DOTS)
2055 		set_bit(FI_INLINE_DOTS, &fi->flags);
2056 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2057 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2058 }
2059 
2060 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2061 {
2062 	ri->i_inline = 0;
2063 
2064 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2065 		ri->i_inline |= F2FS_INLINE_XATTR;
2066 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2067 		ri->i_inline |= F2FS_INLINE_DATA;
2068 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2069 		ri->i_inline |= F2FS_INLINE_DENTRY;
2070 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2071 		ri->i_inline |= F2FS_DATA_EXIST;
2072 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2073 		ri->i_inline |= F2FS_INLINE_DOTS;
2074 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2075 		ri->i_inline |= F2FS_EXTRA_ATTR;
2076 }
2077 
2078 static inline int f2fs_has_extra_attr(struct inode *inode)
2079 {
2080 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2081 }
2082 
2083 static inline int f2fs_has_inline_xattr(struct inode *inode)
2084 {
2085 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2086 }
2087 
2088 static inline unsigned int addrs_per_inode(struct inode *inode)
2089 {
2090 	if (f2fs_has_inline_xattr(inode))
2091 		return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2092 	return CUR_ADDRS_PER_INODE(inode);
2093 }
2094 
2095 static inline void *inline_xattr_addr(struct page *page)
2096 {
2097 	struct f2fs_inode *ri = F2FS_INODE(page);
2098 
2099 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2100 					F2FS_INLINE_XATTR_ADDRS]);
2101 }
2102 
2103 static inline int inline_xattr_size(struct inode *inode)
2104 {
2105 	if (f2fs_has_inline_xattr(inode))
2106 		return F2FS_INLINE_XATTR_ADDRS << 2;
2107 	else
2108 		return 0;
2109 }
2110 
2111 static inline int f2fs_has_inline_data(struct inode *inode)
2112 {
2113 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2114 }
2115 
2116 static inline int f2fs_exist_data(struct inode *inode)
2117 {
2118 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2119 }
2120 
2121 static inline int f2fs_has_inline_dots(struct inode *inode)
2122 {
2123 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2124 }
2125 
2126 static inline bool f2fs_is_atomic_file(struct inode *inode)
2127 {
2128 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2129 }
2130 
2131 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2132 {
2133 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2134 }
2135 
2136 static inline bool f2fs_is_volatile_file(struct inode *inode)
2137 {
2138 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2139 }
2140 
2141 static inline bool f2fs_is_first_block_written(struct inode *inode)
2142 {
2143 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2144 }
2145 
2146 static inline bool f2fs_is_drop_cache(struct inode *inode)
2147 {
2148 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2149 }
2150 
2151 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2152 {
2153 	struct f2fs_inode *ri = F2FS_INODE(page);
2154 	int extra_size = get_extra_isize(inode);
2155 
2156 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2157 }
2158 
2159 static inline int f2fs_has_inline_dentry(struct inode *inode)
2160 {
2161 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2162 }
2163 
2164 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2165 {
2166 	if (!f2fs_has_inline_dentry(dir))
2167 		kunmap(page);
2168 }
2169 
2170 static inline int is_file(struct inode *inode, int type)
2171 {
2172 	return F2FS_I(inode)->i_advise & type;
2173 }
2174 
2175 static inline void set_file(struct inode *inode, int type)
2176 {
2177 	F2FS_I(inode)->i_advise |= type;
2178 	f2fs_mark_inode_dirty_sync(inode, true);
2179 }
2180 
2181 static inline void clear_file(struct inode *inode, int type)
2182 {
2183 	F2FS_I(inode)->i_advise &= ~type;
2184 	f2fs_mark_inode_dirty_sync(inode, true);
2185 }
2186 
2187 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2188 {
2189 	if (dsync) {
2190 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2191 		bool ret;
2192 
2193 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2194 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2195 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2196 		return ret;
2197 	}
2198 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2199 			file_keep_isize(inode) ||
2200 			i_size_read(inode) & PAGE_MASK)
2201 		return false;
2202 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2203 }
2204 
2205 static inline int f2fs_readonly(struct super_block *sb)
2206 {
2207 	return sb->s_flags & MS_RDONLY;
2208 }
2209 
2210 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2211 {
2212 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2213 }
2214 
2215 static inline bool is_dot_dotdot(const struct qstr *str)
2216 {
2217 	if (str->len == 1 && str->name[0] == '.')
2218 		return true;
2219 
2220 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2221 		return true;
2222 
2223 	return false;
2224 }
2225 
2226 static inline bool f2fs_may_extent_tree(struct inode *inode)
2227 {
2228 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2229 			is_inode_flag_set(inode, FI_NO_EXTENT))
2230 		return false;
2231 
2232 	return S_ISREG(inode->i_mode);
2233 }
2234 
2235 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2236 					size_t size, gfp_t flags)
2237 {
2238 #ifdef CONFIG_F2FS_FAULT_INJECTION
2239 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2240 		f2fs_show_injection_info(FAULT_KMALLOC);
2241 		return NULL;
2242 	}
2243 #endif
2244 	return kmalloc(size, flags);
2245 }
2246 
2247 static inline int get_extra_isize(struct inode *inode)
2248 {
2249 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2250 }
2251 
2252 #define get_inode_mode(i) \
2253 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2254 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2255 
2256 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2257 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2258 	offsetof(struct f2fs_inode, i_extra_isize))	\
2259 
2260 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2261 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2262 		((offsetof(typeof(*f2fs_inode), field) +	\
2263 		sizeof((f2fs_inode)->field))			\
2264 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2265 
2266 /*
2267  * file.c
2268  */
2269 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2270 void truncate_data_blocks(struct dnode_of_data *dn);
2271 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2272 int f2fs_truncate(struct inode *inode);
2273 int f2fs_getattr(const struct path *path, struct kstat *stat,
2274 			u32 request_mask, unsigned int flags);
2275 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2276 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2277 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2278 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2279 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2280 
2281 /*
2282  * inode.c
2283  */
2284 void f2fs_set_inode_flags(struct inode *inode);
2285 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2286 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2287 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2288 int update_inode(struct inode *inode, struct page *node_page);
2289 int update_inode_page(struct inode *inode);
2290 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2291 void f2fs_evict_inode(struct inode *inode);
2292 void handle_failed_inode(struct inode *inode);
2293 
2294 /*
2295  * namei.c
2296  */
2297 struct dentry *f2fs_get_parent(struct dentry *child);
2298 
2299 /*
2300  * dir.c
2301  */
2302 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2303 unsigned char get_de_type(struct f2fs_dir_entry *de);
2304 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2305 			f2fs_hash_t namehash, int *max_slots,
2306 			struct f2fs_dentry_ptr *d);
2307 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2308 			unsigned int start_pos, struct fscrypt_str *fstr);
2309 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2310 			struct f2fs_dentry_ptr *d);
2311 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2312 			const struct qstr *new_name,
2313 			const struct qstr *orig_name, struct page *dpage);
2314 void update_parent_metadata(struct inode *dir, struct inode *inode,
2315 			unsigned int current_depth);
2316 int room_for_filename(const void *bitmap, int slots, int max_slots);
2317 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2318 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2319 			struct fscrypt_name *fname, struct page **res_page);
2320 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2321 			const struct qstr *child, struct page **res_page);
2322 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2323 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2324 			struct page **page);
2325 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2326 			struct page *page, struct inode *inode);
2327 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2328 			const struct qstr *name, f2fs_hash_t name_hash,
2329 			unsigned int bit_pos);
2330 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2331 			const struct qstr *orig_name,
2332 			struct inode *inode, nid_t ino, umode_t mode);
2333 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2334 			struct inode *inode, nid_t ino, umode_t mode);
2335 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2336 			struct inode *inode, nid_t ino, umode_t mode);
2337 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2338 			struct inode *dir, struct inode *inode);
2339 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2340 bool f2fs_empty_dir(struct inode *dir);
2341 
2342 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2343 {
2344 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2345 				inode, inode->i_ino, inode->i_mode);
2346 }
2347 
2348 /*
2349  * super.c
2350  */
2351 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2352 void f2fs_inode_synced(struct inode *inode);
2353 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2354 int f2fs_sync_fs(struct super_block *sb, int sync);
2355 extern __printf(3, 4)
2356 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2357 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2358 
2359 /*
2360  * hash.c
2361  */
2362 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2363 				struct fscrypt_name *fname);
2364 
2365 /*
2366  * node.c
2367  */
2368 struct dnode_of_data;
2369 struct node_info;
2370 
2371 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2372 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2373 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2374 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2375 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2376 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2377 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2378 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2379 int truncate_xattr_node(struct inode *inode, struct page *page);
2380 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2381 int remove_inode_page(struct inode *inode);
2382 struct page *new_inode_page(struct inode *inode);
2383 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2384 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2385 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2386 struct page *get_node_page_ra(struct page *parent, int start);
2387 void move_node_page(struct page *node_page, int gc_type);
2388 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2389 			struct writeback_control *wbc, bool atomic);
2390 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2391 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2392 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2393 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2394 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2395 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2396 void recover_inline_xattr(struct inode *inode, struct page *page);
2397 int recover_xattr_data(struct inode *inode, struct page *page,
2398 			block_t blkaddr);
2399 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2400 int restore_node_summary(struct f2fs_sb_info *sbi,
2401 			unsigned int segno, struct f2fs_summary_block *sum);
2402 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2403 int build_node_manager(struct f2fs_sb_info *sbi);
2404 void destroy_node_manager(struct f2fs_sb_info *sbi);
2405 int __init create_node_manager_caches(void);
2406 void destroy_node_manager_caches(void);
2407 
2408 /*
2409  * segment.c
2410  */
2411 void register_inmem_page(struct inode *inode, struct page *page);
2412 void drop_inmem_pages(struct inode *inode);
2413 void drop_inmem_page(struct inode *inode, struct page *page);
2414 int commit_inmem_pages(struct inode *inode);
2415 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2416 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2417 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2418 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2419 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2420 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2421 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2422 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2423 void stop_discard_thread(struct f2fs_sb_info *sbi);
2424 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2425 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2426 void release_discard_addrs(struct f2fs_sb_info *sbi);
2427 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2428 void allocate_new_segments(struct f2fs_sb_info *sbi);
2429 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2430 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2431 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2432 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2433 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2434 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2435 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2436 int rewrite_data_page(struct f2fs_io_info *fio);
2437 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2438 			block_t old_blkaddr, block_t new_blkaddr,
2439 			bool recover_curseg, bool recover_newaddr);
2440 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2441 			block_t old_addr, block_t new_addr,
2442 			unsigned char version, bool recover_curseg,
2443 			bool recover_newaddr);
2444 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2445 			block_t old_blkaddr, block_t *new_blkaddr,
2446 			struct f2fs_summary *sum, int type,
2447 			struct f2fs_io_info *fio, bool add_list);
2448 void f2fs_wait_on_page_writeback(struct page *page,
2449 			enum page_type type, bool ordered);
2450 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2451 			block_t blkaddr);
2452 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2453 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2454 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2455 			unsigned int val, int alloc);
2456 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2457 int build_segment_manager(struct f2fs_sb_info *sbi);
2458 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2459 int __init create_segment_manager_caches(void);
2460 void destroy_segment_manager_caches(void);
2461 
2462 /*
2463  * checkpoint.c
2464  */
2465 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2466 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2467 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2468 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2469 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2470 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2471 			int type, bool sync);
2472 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2473 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2474 			long nr_to_write);
2475 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2476 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2478 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2479 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2480 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2481 void release_orphan_inode(struct f2fs_sb_info *sbi);
2482 void add_orphan_inode(struct inode *inode);
2483 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2484 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2485 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2486 void update_dirty_page(struct inode *inode, struct page *page);
2487 void remove_dirty_inode(struct inode *inode);
2488 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2489 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2490 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2491 int __init create_checkpoint_caches(void);
2492 void destroy_checkpoint_caches(void);
2493 
2494 /*
2495  * data.c
2496  */
2497 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2498 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2499 				struct inode *inode, nid_t ino, pgoff_t idx,
2500 				enum page_type type);
2501 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2502 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2503 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2504 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2505 			block_t blk_addr, struct bio *bio);
2506 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2507 void set_data_blkaddr(struct dnode_of_data *dn);
2508 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2509 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2510 int reserve_new_block(struct dnode_of_data *dn);
2511 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2512 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2513 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2514 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2515 			int op_flags, bool for_write);
2516 struct page *find_data_page(struct inode *inode, pgoff_t index);
2517 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2518 			bool for_write);
2519 struct page *get_new_data_page(struct inode *inode,
2520 			struct page *ipage, pgoff_t index, bool new_i_size);
2521 int do_write_data_page(struct f2fs_io_info *fio);
2522 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2523 			int create, int flag);
2524 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2525 			u64 start, u64 len);
2526 void f2fs_set_page_dirty_nobuffers(struct page *page);
2527 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2528 			unsigned int length);
2529 int f2fs_release_page(struct page *page, gfp_t wait);
2530 #ifdef CONFIG_MIGRATION
2531 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2532 			struct page *page, enum migrate_mode mode);
2533 #endif
2534 
2535 /*
2536  * gc.c
2537  */
2538 int start_gc_thread(struct f2fs_sb_info *sbi);
2539 void stop_gc_thread(struct f2fs_sb_info *sbi);
2540 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2541 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2542 			unsigned int segno);
2543 void build_gc_manager(struct f2fs_sb_info *sbi);
2544 
2545 /*
2546  * recovery.c
2547  */
2548 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2549 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2550 
2551 /*
2552  * debug.c
2553  */
2554 #ifdef CONFIG_F2FS_STAT_FS
2555 struct f2fs_stat_info {
2556 	struct list_head stat_list;
2557 	struct f2fs_sb_info *sbi;
2558 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2559 	int main_area_segs, main_area_sections, main_area_zones;
2560 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2561 	unsigned long long hit_total, total_ext;
2562 	int ext_tree, zombie_tree, ext_node;
2563 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2564 	int inmem_pages;
2565 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2566 	int nats, dirty_nats, sits, dirty_sits;
2567 	int free_nids, avail_nids, alloc_nids;
2568 	int total_count, utilization;
2569 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2570 	int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2571 	int nr_discard_cmd;
2572 	unsigned int undiscard_blks;
2573 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2574 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2575 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2576 	unsigned int bimodal, avg_vblocks;
2577 	int util_free, util_valid, util_invalid;
2578 	int rsvd_segs, overp_segs;
2579 	int dirty_count, node_pages, meta_pages;
2580 	int prefree_count, call_count, cp_count, bg_cp_count;
2581 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2582 	int bg_node_segs, bg_data_segs;
2583 	int tot_blks, data_blks, node_blks;
2584 	int bg_data_blks, bg_node_blks;
2585 	int curseg[NR_CURSEG_TYPE];
2586 	int cursec[NR_CURSEG_TYPE];
2587 	int curzone[NR_CURSEG_TYPE];
2588 
2589 	unsigned int segment_count[2];
2590 	unsigned int block_count[2];
2591 	unsigned int inplace_count;
2592 	unsigned long long base_mem, cache_mem, page_mem;
2593 };
2594 
2595 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2596 {
2597 	return (struct f2fs_stat_info *)sbi->stat_info;
2598 }
2599 
2600 #define stat_inc_cp_count(si)		((si)->cp_count++)
2601 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2602 #define stat_inc_call_count(si)		((si)->call_count++)
2603 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2604 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2605 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2606 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2607 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2608 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2609 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2610 #define stat_inc_inline_xattr(inode)					\
2611 	do {								\
2612 		if (f2fs_has_inline_xattr(inode))			\
2613 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2614 	} while (0)
2615 #define stat_dec_inline_xattr(inode)					\
2616 	do {								\
2617 		if (f2fs_has_inline_xattr(inode))			\
2618 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2619 	} while (0)
2620 #define stat_inc_inline_inode(inode)					\
2621 	do {								\
2622 		if (f2fs_has_inline_data(inode))			\
2623 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2624 	} while (0)
2625 #define stat_dec_inline_inode(inode)					\
2626 	do {								\
2627 		if (f2fs_has_inline_data(inode))			\
2628 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2629 	} while (0)
2630 #define stat_inc_inline_dir(inode)					\
2631 	do {								\
2632 		if (f2fs_has_inline_dentry(inode))			\
2633 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2634 	} while (0)
2635 #define stat_dec_inline_dir(inode)					\
2636 	do {								\
2637 		if (f2fs_has_inline_dentry(inode))			\
2638 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2639 	} while (0)
2640 #define stat_inc_seg_type(sbi, curseg)					\
2641 		((sbi)->segment_count[(curseg)->alloc_type]++)
2642 #define stat_inc_block_count(sbi, curseg)				\
2643 		((sbi)->block_count[(curseg)->alloc_type]++)
2644 #define stat_inc_inplace_blocks(sbi)					\
2645 		(atomic_inc(&(sbi)->inplace_count))
2646 #define stat_inc_atomic_write(inode)					\
2647 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2648 #define stat_dec_atomic_write(inode)					\
2649 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2650 #define stat_update_max_atomic_write(inode)				\
2651 	do {								\
2652 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2653 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2654 		if (cur > max)						\
2655 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2656 	} while (0)
2657 #define stat_inc_volatile_write(inode)					\
2658 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2659 #define stat_dec_volatile_write(inode)					\
2660 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2661 #define stat_update_max_volatile_write(inode)				\
2662 	do {								\
2663 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2664 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2665 		if (cur > max)						\
2666 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2667 	} while (0)
2668 #define stat_inc_seg_count(sbi, type, gc_type)				\
2669 	do {								\
2670 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2671 		si->tot_segs++;						\
2672 		if ((type) == SUM_TYPE_DATA) {				\
2673 			si->data_segs++;				\
2674 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2675 		} else {						\
2676 			si->node_segs++;				\
2677 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2678 		}							\
2679 	} while (0)
2680 
2681 #define stat_inc_tot_blk_count(si, blks)				\
2682 	((si)->tot_blks += (blks))
2683 
2684 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2685 	do {								\
2686 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2687 		stat_inc_tot_blk_count(si, blks);			\
2688 		si->data_blks += (blks);				\
2689 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2690 	} while (0)
2691 
2692 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2693 	do {								\
2694 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2695 		stat_inc_tot_blk_count(si, blks);			\
2696 		si->node_blks += (blks);				\
2697 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2698 	} while (0)
2699 
2700 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2701 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2702 int __init f2fs_create_root_stats(void);
2703 void f2fs_destroy_root_stats(void);
2704 #else
2705 #define stat_inc_cp_count(si)				do { } while (0)
2706 #define stat_inc_bg_cp_count(si)			do { } while (0)
2707 #define stat_inc_call_count(si)				do { } while (0)
2708 #define stat_inc_bggc_count(si)				do { } while (0)
2709 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2710 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2711 #define stat_inc_total_hit(sb)				do { } while (0)
2712 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2713 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2714 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2715 #define stat_inc_inline_xattr(inode)			do { } while (0)
2716 #define stat_dec_inline_xattr(inode)			do { } while (0)
2717 #define stat_inc_inline_inode(inode)			do { } while (0)
2718 #define stat_dec_inline_inode(inode)			do { } while (0)
2719 #define stat_inc_inline_dir(inode)			do { } while (0)
2720 #define stat_dec_inline_dir(inode)			do { } while (0)
2721 #define stat_inc_atomic_write(inode)			do { } while (0)
2722 #define stat_dec_atomic_write(inode)			do { } while (0)
2723 #define stat_update_max_atomic_write(inode)		do { } while (0)
2724 #define stat_inc_volatile_write(inode)			do { } while (0)
2725 #define stat_dec_volatile_write(inode)			do { } while (0)
2726 #define stat_update_max_volatile_write(inode)		do { } while (0)
2727 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2728 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2729 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2730 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2731 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2732 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2733 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2734 
2735 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2736 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2737 static inline int __init f2fs_create_root_stats(void) { return 0; }
2738 static inline void f2fs_destroy_root_stats(void) { }
2739 #endif
2740 
2741 extern const struct file_operations f2fs_dir_operations;
2742 extern const struct file_operations f2fs_file_operations;
2743 extern const struct inode_operations f2fs_file_inode_operations;
2744 extern const struct address_space_operations f2fs_dblock_aops;
2745 extern const struct address_space_operations f2fs_node_aops;
2746 extern const struct address_space_operations f2fs_meta_aops;
2747 extern const struct inode_operations f2fs_dir_inode_operations;
2748 extern const struct inode_operations f2fs_symlink_inode_operations;
2749 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2750 extern const struct inode_operations f2fs_special_inode_operations;
2751 extern struct kmem_cache *inode_entry_slab;
2752 
2753 /*
2754  * inline.c
2755  */
2756 bool f2fs_may_inline_data(struct inode *inode);
2757 bool f2fs_may_inline_dentry(struct inode *inode);
2758 void read_inline_data(struct page *page, struct page *ipage);
2759 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2760 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2761 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2762 int f2fs_convert_inline_inode(struct inode *inode);
2763 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2764 bool recover_inline_data(struct inode *inode, struct page *npage);
2765 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2766 			struct fscrypt_name *fname, struct page **res_page);
2767 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2768 			struct page *ipage);
2769 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2770 			const struct qstr *orig_name,
2771 			struct inode *inode, nid_t ino, umode_t mode);
2772 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2773 			struct inode *dir, struct inode *inode);
2774 bool f2fs_empty_inline_dir(struct inode *dir);
2775 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2776 			struct fscrypt_str *fstr);
2777 int f2fs_inline_data_fiemap(struct inode *inode,
2778 			struct fiemap_extent_info *fieinfo,
2779 			__u64 start, __u64 len);
2780 
2781 /*
2782  * shrinker.c
2783  */
2784 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2785 			struct shrink_control *sc);
2786 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2787 			struct shrink_control *sc);
2788 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2789 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2790 
2791 /*
2792  * extent_cache.c
2793  */
2794 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2795 				struct rb_entry *cached_re, unsigned int ofs);
2796 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2797 				struct rb_root *root, struct rb_node **parent,
2798 				unsigned int ofs);
2799 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2800 		struct rb_entry *cached_re, unsigned int ofs,
2801 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
2802 		struct rb_node ***insert_p, struct rb_node **insert_parent,
2803 		bool force);
2804 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2805 						struct rb_root *root);
2806 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2807 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2808 void f2fs_drop_extent_tree(struct inode *inode);
2809 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2810 void f2fs_destroy_extent_tree(struct inode *inode);
2811 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2812 			struct extent_info *ei);
2813 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2814 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2815 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2816 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2817 int __init create_extent_cache(void);
2818 void destroy_extent_cache(void);
2819 
2820 /*
2821  * sysfs.c
2822  */
2823 int __init f2fs_register_sysfs(void);
2824 void f2fs_unregister_sysfs(void);
2825 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2826 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2827 
2828 /*
2829  * crypto support
2830  */
2831 static inline bool f2fs_encrypted_inode(struct inode *inode)
2832 {
2833 	return file_is_encrypt(inode);
2834 }
2835 
2836 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2837 {
2838 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2839 	file_set_encrypt(inode);
2840 #endif
2841 }
2842 
2843 static inline bool f2fs_bio_encrypted(struct bio *bio)
2844 {
2845 	return bio->bi_private != NULL;
2846 }
2847 
2848 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2849 {
2850 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2851 }
2852 
2853 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2854 {
2855 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2856 }
2857 
2858 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
2859 {
2860 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
2861 }
2862 
2863 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
2864 {
2865 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
2866 }
2867 
2868 #ifdef CONFIG_BLK_DEV_ZONED
2869 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2870 			struct block_device *bdev, block_t blkaddr)
2871 {
2872 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2873 	int i;
2874 
2875 	for (i = 0; i < sbi->s_ndevs; i++)
2876 		if (FDEV(i).bdev == bdev)
2877 			return FDEV(i).blkz_type[zno];
2878 	return -EINVAL;
2879 }
2880 #endif
2881 
2882 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2883 {
2884 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2885 
2886 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2887 }
2888 
2889 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2890 {
2891 	clear_opt(sbi, ADAPTIVE);
2892 	clear_opt(sbi, LFS);
2893 
2894 	switch (mt) {
2895 	case F2FS_MOUNT_ADAPTIVE:
2896 		set_opt(sbi, ADAPTIVE);
2897 		break;
2898 	case F2FS_MOUNT_LFS:
2899 		set_opt(sbi, LFS);
2900 		break;
2901 	}
2902 }
2903 
2904 static inline bool f2fs_may_encrypt(struct inode *inode)
2905 {
2906 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2907 	umode_t mode = inode->i_mode;
2908 
2909 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2910 #else
2911 	return 0;
2912 #endif
2913 }
2914 
2915 #endif
2916