1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 105 106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 107 typecheck(unsigned long long, b) && \ 108 ((long long)((a) - (b)) > 0)) 109 110 typedef u32 block_t; /* 111 * should not change u32, since it is the on-disk block 112 * address format, __le32. 113 */ 114 typedef u32 nid_t; 115 116 struct f2fs_mount_info { 117 unsigned int opt; 118 int write_io_size_bits; /* Write IO size bits */ 119 block_t root_reserved_blocks; /* root reserved blocks */ 120 kuid_t s_resuid; /* reserved blocks for uid */ 121 kgid_t s_resgid; /* reserved blocks for gid */ 122 int active_logs; /* # of active logs */ 123 int inline_xattr_size; /* inline xattr size */ 124 #ifdef CONFIG_F2FS_FAULT_INJECTION 125 struct f2fs_fault_info fault_info; /* For fault injection */ 126 #endif 127 #ifdef CONFIG_QUOTA 128 /* Names of quota files with journalled quota */ 129 char *s_qf_names[MAXQUOTAS]; 130 int s_jquota_fmt; /* Format of quota to use */ 131 #endif 132 /* For which write hints are passed down to block layer */ 133 int whint_mode; 134 int alloc_mode; /* segment allocation policy */ 135 int fsync_mode; /* fsync policy */ 136 bool test_dummy_encryption; /* test dummy encryption */ 137 }; 138 139 #define F2FS_FEATURE_ENCRYPT 0x0001 140 #define F2FS_FEATURE_BLKZONED 0x0002 141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 143 #define F2FS_FEATURE_PRJQUOTA 0x0010 144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 146 #define F2FS_FEATURE_QUOTA_INO 0x0080 147 #define F2FS_FEATURE_INODE_CRTIME 0x0100 148 #define F2FS_FEATURE_LOST_FOUND 0x0200 149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 150 151 #define F2FS_HAS_FEATURE(sb, mask) \ 152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 153 #define F2FS_SET_FEATURE(sb, mask) \ 154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 155 #define F2FS_CLEAR_FEATURE(sb, mask) \ 156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 157 158 /* 159 * Default values for user and/or group using reserved blocks 160 */ 161 #define F2FS_DEF_RESUID 0 162 #define F2FS_DEF_RESGID 0 163 164 /* 165 * For checkpoint manager 166 */ 167 enum { 168 NAT_BITMAP, 169 SIT_BITMAP 170 }; 171 172 #define CP_UMOUNT 0x00000001 173 #define CP_FASTBOOT 0x00000002 174 #define CP_SYNC 0x00000004 175 #define CP_RECOVERY 0x00000008 176 #define CP_DISCARD 0x00000010 177 #define CP_TRIMMED 0x00000020 178 179 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 180 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 181 #define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */ 182 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 183 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 184 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 185 #define DEF_CP_INTERVAL 60 /* 60 secs */ 186 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 187 188 struct cp_control { 189 int reason; 190 __u64 trim_start; 191 __u64 trim_end; 192 __u64 trim_minlen; 193 }; 194 195 /* 196 * For CP/NAT/SIT/SSA readahead 197 */ 198 enum { 199 META_CP, 200 META_NAT, 201 META_SIT, 202 META_SSA, 203 META_POR, 204 }; 205 206 /* for the list of ino */ 207 enum { 208 ORPHAN_INO, /* for orphan ino list */ 209 APPEND_INO, /* for append ino list */ 210 UPDATE_INO, /* for update ino list */ 211 TRANS_DIR_INO, /* for trasactions dir ino list */ 212 FLUSH_INO, /* for multiple device flushing */ 213 MAX_INO_ENTRY, /* max. list */ 214 }; 215 216 struct ino_entry { 217 struct list_head list; /* list head */ 218 nid_t ino; /* inode number */ 219 unsigned int dirty_device; /* dirty device bitmap */ 220 }; 221 222 /* for the list of inodes to be GCed */ 223 struct inode_entry { 224 struct list_head list; /* list head */ 225 struct inode *inode; /* vfs inode pointer */ 226 }; 227 228 /* for the bitmap indicate blocks to be discarded */ 229 struct discard_entry { 230 struct list_head list; /* list head */ 231 block_t start_blkaddr; /* start blockaddr of current segment */ 232 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 233 }; 234 235 /* default discard granularity of inner discard thread, unit: block count */ 236 #define DEFAULT_DISCARD_GRANULARITY 16 237 238 /* max discard pend list number */ 239 #define MAX_PLIST_NUM 512 240 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 241 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 242 243 enum { 244 D_PREP, 245 D_SUBMIT, 246 D_DONE, 247 }; 248 249 struct discard_info { 250 block_t lstart; /* logical start address */ 251 block_t len; /* length */ 252 block_t start; /* actual start address in dev */ 253 }; 254 255 struct discard_cmd { 256 struct rb_node rb_node; /* rb node located in rb-tree */ 257 union { 258 struct { 259 block_t lstart; /* logical start address */ 260 block_t len; /* length */ 261 block_t start; /* actual start address in dev */ 262 }; 263 struct discard_info di; /* discard info */ 264 265 }; 266 struct list_head list; /* command list */ 267 struct completion wait; /* compleation */ 268 struct block_device *bdev; /* bdev */ 269 unsigned short ref; /* reference count */ 270 unsigned char state; /* state */ 271 int error; /* bio error */ 272 }; 273 274 enum { 275 DPOLICY_BG, 276 DPOLICY_FORCE, 277 DPOLICY_FSTRIM, 278 DPOLICY_UMOUNT, 279 MAX_DPOLICY, 280 }; 281 282 struct discard_policy { 283 int type; /* type of discard */ 284 unsigned int min_interval; /* used for candidates exist */ 285 unsigned int max_interval; /* used for candidates not exist */ 286 unsigned int max_requests; /* # of discards issued per round */ 287 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 288 bool io_aware; /* issue discard in idle time */ 289 bool sync; /* submit discard with REQ_SYNC flag */ 290 unsigned int granularity; /* discard granularity */ 291 }; 292 293 struct discard_cmd_control { 294 struct task_struct *f2fs_issue_discard; /* discard thread */ 295 struct list_head entry_list; /* 4KB discard entry list */ 296 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 297 struct list_head wait_list; /* store on-flushing entries */ 298 struct list_head fstrim_list; /* in-flight discard from fstrim */ 299 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 300 unsigned int discard_wake; /* to wake up discard thread */ 301 struct mutex cmd_lock; 302 unsigned int nr_discards; /* # of discards in the list */ 303 unsigned int max_discards; /* max. discards to be issued */ 304 unsigned int discard_granularity; /* discard granularity */ 305 unsigned int undiscard_blks; /* # of undiscard blocks */ 306 atomic_t issued_discard; /* # of issued discard */ 307 atomic_t issing_discard; /* # of issing discard */ 308 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 309 struct rb_root root; /* root of discard rb-tree */ 310 }; 311 312 /* for the list of fsync inodes, used only during recovery */ 313 struct fsync_inode_entry { 314 struct list_head list; /* list head */ 315 struct inode *inode; /* vfs inode pointer */ 316 block_t blkaddr; /* block address locating the last fsync */ 317 block_t last_dentry; /* block address locating the last dentry */ 318 }; 319 320 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 321 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 322 323 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 324 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 325 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 326 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 327 328 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 329 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 330 331 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 332 { 333 int before = nats_in_cursum(journal); 334 335 journal->n_nats = cpu_to_le16(before + i); 336 return before; 337 } 338 339 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 340 { 341 int before = sits_in_cursum(journal); 342 343 journal->n_sits = cpu_to_le16(before + i); 344 return before; 345 } 346 347 static inline bool __has_cursum_space(struct f2fs_journal *journal, 348 int size, int type) 349 { 350 if (type == NAT_JOURNAL) 351 return size <= MAX_NAT_JENTRIES(journal); 352 return size <= MAX_SIT_JENTRIES(journal); 353 } 354 355 /* 356 * ioctl commands 357 */ 358 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 359 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 360 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 361 362 #define F2FS_IOCTL_MAGIC 0xf5 363 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 364 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 365 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 366 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 367 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 368 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 369 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 370 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 371 struct f2fs_defragment) 372 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 373 struct f2fs_move_range) 374 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 375 struct f2fs_flush_device) 376 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 377 struct f2fs_gc_range) 378 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 379 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 380 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 381 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 382 383 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 384 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 385 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 386 387 /* 388 * should be same as XFS_IOC_GOINGDOWN. 389 * Flags for going down operation used by FS_IOC_GOINGDOWN 390 */ 391 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 392 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 393 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 394 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 395 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 396 397 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 398 /* 399 * ioctl commands in 32 bit emulation 400 */ 401 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 402 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 403 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 404 #endif 405 406 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 407 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 408 409 struct f2fs_gc_range { 410 u32 sync; 411 u64 start; 412 u64 len; 413 }; 414 415 struct f2fs_defragment { 416 u64 start; 417 u64 len; 418 }; 419 420 struct f2fs_move_range { 421 u32 dst_fd; /* destination fd */ 422 u64 pos_in; /* start position in src_fd */ 423 u64 pos_out; /* start position in dst_fd */ 424 u64 len; /* size to move */ 425 }; 426 427 struct f2fs_flush_device { 428 u32 dev_num; /* device number to flush */ 429 u32 segments; /* # of segments to flush */ 430 }; 431 432 /* for inline stuff */ 433 #define DEF_INLINE_RESERVED_SIZE 1 434 #define DEF_MIN_INLINE_SIZE 1 435 static inline int get_extra_isize(struct inode *inode); 436 static inline int get_inline_xattr_addrs(struct inode *inode); 437 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 438 (CUR_ADDRS_PER_INODE(inode) - \ 439 get_inline_xattr_addrs(inode) - \ 440 DEF_INLINE_RESERVED_SIZE)) 441 442 /* for inline dir */ 443 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 444 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 445 BITS_PER_BYTE + 1)) 446 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 447 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 448 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 450 NR_INLINE_DENTRY(inode) + \ 451 INLINE_DENTRY_BITMAP_SIZE(inode))) 452 453 /* 454 * For INODE and NODE manager 455 */ 456 /* for directory operations */ 457 struct f2fs_dentry_ptr { 458 struct inode *inode; 459 void *bitmap; 460 struct f2fs_dir_entry *dentry; 461 __u8 (*filename)[F2FS_SLOT_LEN]; 462 int max; 463 int nr_bitmap; 464 }; 465 466 static inline void make_dentry_ptr_block(struct inode *inode, 467 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 468 { 469 d->inode = inode; 470 d->max = NR_DENTRY_IN_BLOCK; 471 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 472 d->bitmap = t->dentry_bitmap; 473 d->dentry = t->dentry; 474 d->filename = t->filename; 475 } 476 477 static inline void make_dentry_ptr_inline(struct inode *inode, 478 struct f2fs_dentry_ptr *d, void *t) 479 { 480 int entry_cnt = NR_INLINE_DENTRY(inode); 481 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 482 int reserved_size = INLINE_RESERVED_SIZE(inode); 483 484 d->inode = inode; 485 d->max = entry_cnt; 486 d->nr_bitmap = bitmap_size; 487 d->bitmap = t; 488 d->dentry = t + bitmap_size + reserved_size; 489 d->filename = t + bitmap_size + reserved_size + 490 SIZE_OF_DIR_ENTRY * entry_cnt; 491 } 492 493 /* 494 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 495 * as its node offset to distinguish from index node blocks. 496 * But some bits are used to mark the node block. 497 */ 498 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 499 >> OFFSET_BIT_SHIFT) 500 enum { 501 ALLOC_NODE, /* allocate a new node page if needed */ 502 LOOKUP_NODE, /* look up a node without readahead */ 503 LOOKUP_NODE_RA, /* 504 * look up a node with readahead called 505 * by get_data_block. 506 */ 507 }; 508 509 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 510 511 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 512 513 /* vector size for gang look-up from extent cache that consists of radix tree */ 514 #define EXT_TREE_VEC_SIZE 64 515 516 /* for in-memory extent cache entry */ 517 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 518 519 /* number of extent info in extent cache we try to shrink */ 520 #define EXTENT_CACHE_SHRINK_NUMBER 128 521 522 struct rb_entry { 523 struct rb_node rb_node; /* rb node located in rb-tree */ 524 unsigned int ofs; /* start offset of the entry */ 525 unsigned int len; /* length of the entry */ 526 }; 527 528 struct extent_info { 529 unsigned int fofs; /* start offset in a file */ 530 unsigned int len; /* length of the extent */ 531 u32 blk; /* start block address of the extent */ 532 }; 533 534 struct extent_node { 535 struct rb_node rb_node; 536 union { 537 struct { 538 unsigned int fofs; 539 unsigned int len; 540 u32 blk; 541 }; 542 struct extent_info ei; /* extent info */ 543 544 }; 545 struct list_head list; /* node in global extent list of sbi */ 546 struct extent_tree *et; /* extent tree pointer */ 547 }; 548 549 struct extent_tree { 550 nid_t ino; /* inode number */ 551 struct rb_root root; /* root of extent info rb-tree */ 552 struct extent_node *cached_en; /* recently accessed extent node */ 553 struct extent_info largest; /* largested extent info */ 554 struct list_head list; /* to be used by sbi->zombie_list */ 555 rwlock_t lock; /* protect extent info rb-tree */ 556 atomic_t node_cnt; /* # of extent node in rb-tree*/ 557 }; 558 559 /* 560 * This structure is taken from ext4_map_blocks. 561 * 562 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 563 */ 564 #define F2FS_MAP_NEW (1 << BH_New) 565 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 566 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 567 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 568 F2FS_MAP_UNWRITTEN) 569 570 struct f2fs_map_blocks { 571 block_t m_pblk; 572 block_t m_lblk; 573 unsigned int m_len; 574 unsigned int m_flags; 575 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 576 pgoff_t *m_next_extent; /* point to next possible extent */ 577 int m_seg_type; 578 }; 579 580 /* for flag in get_data_block */ 581 enum { 582 F2FS_GET_BLOCK_DEFAULT, 583 F2FS_GET_BLOCK_FIEMAP, 584 F2FS_GET_BLOCK_BMAP, 585 F2FS_GET_BLOCK_PRE_DIO, 586 F2FS_GET_BLOCK_PRE_AIO, 587 F2FS_GET_BLOCK_PRECACHE, 588 }; 589 590 /* 591 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 592 */ 593 #define FADVISE_COLD_BIT 0x01 594 #define FADVISE_LOST_PINO_BIT 0x02 595 #define FADVISE_ENCRYPT_BIT 0x04 596 #define FADVISE_ENC_NAME_BIT 0x08 597 #define FADVISE_KEEP_SIZE_BIT 0x10 598 #define FADVISE_HOT_BIT 0x20 599 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 600 601 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 602 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 603 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 604 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 605 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 606 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 607 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 608 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 609 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 610 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 611 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 612 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 613 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 614 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 615 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 616 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 617 618 #define DEF_DIR_LEVEL 0 619 620 struct f2fs_inode_info { 621 struct inode vfs_inode; /* serve a vfs inode */ 622 unsigned long i_flags; /* keep an inode flags for ioctl */ 623 unsigned char i_advise; /* use to give file attribute hints */ 624 unsigned char i_dir_level; /* use for dentry level for large dir */ 625 union { 626 unsigned int i_current_depth; /* only for directory depth */ 627 unsigned short i_gc_failures; /* only for regular file */ 628 }; 629 unsigned int i_pino; /* parent inode number */ 630 umode_t i_acl_mode; /* keep file acl mode temporarily */ 631 632 /* Use below internally in f2fs*/ 633 unsigned long flags; /* use to pass per-file flags */ 634 struct rw_semaphore i_sem; /* protect fi info */ 635 atomic_t dirty_pages; /* # of dirty pages */ 636 f2fs_hash_t chash; /* hash value of given file name */ 637 unsigned int clevel; /* maximum level of given file name */ 638 struct task_struct *task; /* lookup and create consistency */ 639 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 640 nid_t i_xattr_nid; /* node id that contains xattrs */ 641 loff_t last_disk_size; /* lastly written file size */ 642 643 #ifdef CONFIG_QUOTA 644 struct dquot *i_dquot[MAXQUOTAS]; 645 646 /* quota space reservation, managed internally by quota code */ 647 qsize_t i_reserved_quota; 648 #endif 649 struct list_head dirty_list; /* dirty list for dirs and files */ 650 struct list_head gdirty_list; /* linked in global dirty list */ 651 struct list_head inmem_ilist; /* list for inmem inodes */ 652 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 653 struct task_struct *inmem_task; /* store inmemory task */ 654 struct mutex inmem_lock; /* lock for inmemory pages */ 655 struct extent_tree *extent_tree; /* cached extent_tree entry */ 656 657 /* avoid racing between foreground op and gc */ 658 struct rw_semaphore i_gc_rwsem[2]; 659 struct rw_semaphore i_mmap_sem; 660 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 661 662 int i_extra_isize; /* size of extra space located in i_addr */ 663 kprojid_t i_projid; /* id for project quota */ 664 int i_inline_xattr_size; /* inline xattr size */ 665 struct timespec i_crtime; /* inode creation time */ 666 struct timespec i_disk_time[4]; /* inode disk times */ 667 }; 668 669 static inline void get_extent_info(struct extent_info *ext, 670 struct f2fs_extent *i_ext) 671 { 672 ext->fofs = le32_to_cpu(i_ext->fofs); 673 ext->blk = le32_to_cpu(i_ext->blk); 674 ext->len = le32_to_cpu(i_ext->len); 675 } 676 677 static inline void set_raw_extent(struct extent_info *ext, 678 struct f2fs_extent *i_ext) 679 { 680 i_ext->fofs = cpu_to_le32(ext->fofs); 681 i_ext->blk = cpu_to_le32(ext->blk); 682 i_ext->len = cpu_to_le32(ext->len); 683 } 684 685 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 686 u32 blk, unsigned int len) 687 { 688 ei->fofs = fofs; 689 ei->blk = blk; 690 ei->len = len; 691 } 692 693 static inline bool __is_discard_mergeable(struct discard_info *back, 694 struct discard_info *front) 695 { 696 return (back->lstart + back->len == front->lstart) && 697 (back->len + front->len < DEF_MAX_DISCARD_LEN); 698 } 699 700 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 701 struct discard_info *back) 702 { 703 return __is_discard_mergeable(back, cur); 704 } 705 706 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 707 struct discard_info *front) 708 { 709 return __is_discard_mergeable(cur, front); 710 } 711 712 static inline bool __is_extent_mergeable(struct extent_info *back, 713 struct extent_info *front) 714 { 715 return (back->fofs + back->len == front->fofs && 716 back->blk + back->len == front->blk); 717 } 718 719 static inline bool __is_back_mergeable(struct extent_info *cur, 720 struct extent_info *back) 721 { 722 return __is_extent_mergeable(back, cur); 723 } 724 725 static inline bool __is_front_mergeable(struct extent_info *cur, 726 struct extent_info *front) 727 { 728 return __is_extent_mergeable(cur, front); 729 } 730 731 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 732 static inline void __try_update_largest_extent(struct inode *inode, 733 struct extent_tree *et, struct extent_node *en) 734 { 735 if (en->ei.len > et->largest.len) { 736 et->largest = en->ei; 737 f2fs_mark_inode_dirty_sync(inode, true); 738 } 739 } 740 741 /* 742 * For free nid management 743 */ 744 enum nid_state { 745 FREE_NID, /* newly added to free nid list */ 746 PREALLOC_NID, /* it is preallocated */ 747 MAX_NID_STATE, 748 }; 749 750 struct f2fs_nm_info { 751 block_t nat_blkaddr; /* base disk address of NAT */ 752 nid_t max_nid; /* maximum possible node ids */ 753 nid_t available_nids; /* # of available node ids */ 754 nid_t next_scan_nid; /* the next nid to be scanned */ 755 unsigned int ram_thresh; /* control the memory footprint */ 756 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 757 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 758 759 /* NAT cache management */ 760 struct radix_tree_root nat_root;/* root of the nat entry cache */ 761 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 762 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 763 struct list_head nat_entries; /* cached nat entry list (clean) */ 764 unsigned int nat_cnt; /* the # of cached nat entries */ 765 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 766 unsigned int nat_blocks; /* # of nat blocks */ 767 768 /* free node ids management */ 769 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 770 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 771 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 772 spinlock_t nid_list_lock; /* protect nid lists ops */ 773 struct mutex build_lock; /* lock for build free nids */ 774 unsigned char **free_nid_bitmap; 775 unsigned char *nat_block_bitmap; 776 unsigned short *free_nid_count; /* free nid count of NAT block */ 777 778 /* for checkpoint */ 779 char *nat_bitmap; /* NAT bitmap pointer */ 780 781 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 782 unsigned char *nat_bits; /* NAT bits blocks */ 783 unsigned char *full_nat_bits; /* full NAT pages */ 784 unsigned char *empty_nat_bits; /* empty NAT pages */ 785 #ifdef CONFIG_F2FS_CHECK_FS 786 char *nat_bitmap_mir; /* NAT bitmap mirror */ 787 #endif 788 int bitmap_size; /* bitmap size */ 789 }; 790 791 /* 792 * this structure is used as one of function parameters. 793 * all the information are dedicated to a given direct node block determined 794 * by the data offset in a file. 795 */ 796 struct dnode_of_data { 797 struct inode *inode; /* vfs inode pointer */ 798 struct page *inode_page; /* its inode page, NULL is possible */ 799 struct page *node_page; /* cached direct node page */ 800 nid_t nid; /* node id of the direct node block */ 801 unsigned int ofs_in_node; /* data offset in the node page */ 802 bool inode_page_locked; /* inode page is locked or not */ 803 bool node_changed; /* is node block changed */ 804 char cur_level; /* level of hole node page */ 805 char max_level; /* level of current page located */ 806 block_t data_blkaddr; /* block address of the node block */ 807 }; 808 809 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 810 struct page *ipage, struct page *npage, nid_t nid) 811 { 812 memset(dn, 0, sizeof(*dn)); 813 dn->inode = inode; 814 dn->inode_page = ipage; 815 dn->node_page = npage; 816 dn->nid = nid; 817 } 818 819 /* 820 * For SIT manager 821 * 822 * By default, there are 6 active log areas across the whole main area. 823 * When considering hot and cold data separation to reduce cleaning overhead, 824 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 825 * respectively. 826 * In the current design, you should not change the numbers intentionally. 827 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 828 * logs individually according to the underlying devices. (default: 6) 829 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 830 * data and 8 for node logs. 831 */ 832 #define NR_CURSEG_DATA_TYPE (3) 833 #define NR_CURSEG_NODE_TYPE (3) 834 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 835 836 enum { 837 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 838 CURSEG_WARM_DATA, /* data blocks */ 839 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 840 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 841 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 842 CURSEG_COLD_NODE, /* indirect node blocks */ 843 NO_CHECK_TYPE, 844 }; 845 846 struct flush_cmd { 847 struct completion wait; 848 struct llist_node llnode; 849 nid_t ino; 850 int ret; 851 }; 852 853 struct flush_cmd_control { 854 struct task_struct *f2fs_issue_flush; /* flush thread */ 855 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 856 atomic_t issued_flush; /* # of issued flushes */ 857 atomic_t issing_flush; /* # of issing flushes */ 858 struct llist_head issue_list; /* list for command issue */ 859 struct llist_node *dispatch_list; /* list for command dispatch */ 860 }; 861 862 struct f2fs_sm_info { 863 struct sit_info *sit_info; /* whole segment information */ 864 struct free_segmap_info *free_info; /* free segment information */ 865 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 866 struct curseg_info *curseg_array; /* active segment information */ 867 868 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 869 870 block_t seg0_blkaddr; /* block address of 0'th segment */ 871 block_t main_blkaddr; /* start block address of main area */ 872 block_t ssa_blkaddr; /* start block address of SSA area */ 873 874 unsigned int segment_count; /* total # of segments */ 875 unsigned int main_segments; /* # of segments in main area */ 876 unsigned int reserved_segments; /* # of reserved segments */ 877 unsigned int ovp_segments; /* # of overprovision segments */ 878 879 /* a threshold to reclaim prefree segments */ 880 unsigned int rec_prefree_segments; 881 882 /* for batched trimming */ 883 unsigned int trim_sections; /* # of sections to trim */ 884 885 struct list_head sit_entry_set; /* sit entry set list */ 886 887 unsigned int ipu_policy; /* in-place-update policy */ 888 unsigned int min_ipu_util; /* in-place-update threshold */ 889 unsigned int min_fsync_blocks; /* threshold for fsync */ 890 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 891 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 892 893 /* for flush command control */ 894 struct flush_cmd_control *fcc_info; 895 896 /* for discard command control */ 897 struct discard_cmd_control *dcc_info; 898 }; 899 900 /* 901 * For superblock 902 */ 903 /* 904 * COUNT_TYPE for monitoring 905 * 906 * f2fs monitors the number of several block types such as on-writeback, 907 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 908 */ 909 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 910 enum count_type { 911 F2FS_DIRTY_DENTS, 912 F2FS_DIRTY_DATA, 913 F2FS_DIRTY_QDATA, 914 F2FS_DIRTY_NODES, 915 F2FS_DIRTY_META, 916 F2FS_INMEM_PAGES, 917 F2FS_DIRTY_IMETA, 918 F2FS_WB_CP_DATA, 919 F2FS_WB_DATA, 920 NR_COUNT_TYPE, 921 }; 922 923 /* 924 * The below are the page types of bios used in submit_bio(). 925 * The available types are: 926 * DATA User data pages. It operates as async mode. 927 * NODE Node pages. It operates as async mode. 928 * META FS metadata pages such as SIT, NAT, CP. 929 * NR_PAGE_TYPE The number of page types. 930 * META_FLUSH Make sure the previous pages are written 931 * with waiting the bio's completion 932 * ... Only can be used with META. 933 */ 934 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 935 enum page_type { 936 DATA, 937 NODE, 938 META, 939 NR_PAGE_TYPE, 940 META_FLUSH, 941 INMEM, /* the below types are used by tracepoints only. */ 942 INMEM_DROP, 943 INMEM_INVALIDATE, 944 INMEM_REVOKE, 945 IPU, 946 OPU, 947 }; 948 949 enum temp_type { 950 HOT = 0, /* must be zero for meta bio */ 951 WARM, 952 COLD, 953 NR_TEMP_TYPE, 954 }; 955 956 enum need_lock_type { 957 LOCK_REQ = 0, 958 LOCK_DONE, 959 LOCK_RETRY, 960 }; 961 962 enum cp_reason_type { 963 CP_NO_NEEDED, 964 CP_NON_REGULAR, 965 CP_HARDLINK, 966 CP_SB_NEED_CP, 967 CP_WRONG_PINO, 968 CP_NO_SPC_ROLL, 969 CP_NODE_NEED_CP, 970 CP_FASTBOOT_MODE, 971 CP_SPEC_LOG_NUM, 972 CP_RECOVER_DIR, 973 }; 974 975 enum iostat_type { 976 APP_DIRECT_IO, /* app direct IOs */ 977 APP_BUFFERED_IO, /* app buffered IOs */ 978 APP_WRITE_IO, /* app write IOs */ 979 APP_MAPPED_IO, /* app mapped IOs */ 980 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 981 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 982 FS_META_IO, /* meta IOs from kworker/reclaimer */ 983 FS_GC_DATA_IO, /* data IOs from forground gc */ 984 FS_GC_NODE_IO, /* node IOs from forground gc */ 985 FS_CP_DATA_IO, /* data IOs from checkpoint */ 986 FS_CP_NODE_IO, /* node IOs from checkpoint */ 987 FS_CP_META_IO, /* meta IOs from checkpoint */ 988 FS_DISCARD, /* discard */ 989 NR_IO_TYPE, 990 }; 991 992 struct f2fs_io_info { 993 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 994 nid_t ino; /* inode number */ 995 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 996 enum temp_type temp; /* contains HOT/WARM/COLD */ 997 int op; /* contains REQ_OP_ */ 998 int op_flags; /* req_flag_bits */ 999 block_t new_blkaddr; /* new block address to be written */ 1000 block_t old_blkaddr; /* old block address before Cow */ 1001 struct page *page; /* page to be written */ 1002 struct page *encrypted_page; /* encrypted page */ 1003 struct list_head list; /* serialize IOs */ 1004 bool submitted; /* indicate IO submission */ 1005 int need_lock; /* indicate we need to lock cp_rwsem */ 1006 bool in_list; /* indicate fio is in io_list */ 1007 bool is_meta; /* indicate borrow meta inode mapping or not */ 1008 enum iostat_type io_type; /* io type */ 1009 struct writeback_control *io_wbc; /* writeback control */ 1010 }; 1011 1012 #define is_read_io(rw) ((rw) == READ) 1013 struct f2fs_bio_info { 1014 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1015 struct bio *bio; /* bios to merge */ 1016 sector_t last_block_in_bio; /* last block number */ 1017 struct f2fs_io_info fio; /* store buffered io info. */ 1018 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1019 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1020 struct list_head io_list; /* track fios */ 1021 }; 1022 1023 #define FDEV(i) (sbi->devs[i]) 1024 #define RDEV(i) (raw_super->devs[i]) 1025 struct f2fs_dev_info { 1026 struct block_device *bdev; 1027 char path[MAX_PATH_LEN]; 1028 unsigned int total_segments; 1029 block_t start_blk; 1030 block_t end_blk; 1031 #ifdef CONFIG_BLK_DEV_ZONED 1032 unsigned int nr_blkz; /* Total number of zones */ 1033 u8 *blkz_type; /* Array of zones type */ 1034 #endif 1035 }; 1036 1037 enum inode_type { 1038 DIR_INODE, /* for dirty dir inode */ 1039 FILE_INODE, /* for dirty regular/symlink inode */ 1040 DIRTY_META, /* for all dirtied inode metadata */ 1041 ATOMIC_FILE, /* for all atomic files */ 1042 NR_INODE_TYPE, 1043 }; 1044 1045 /* for inner inode cache management */ 1046 struct inode_management { 1047 struct radix_tree_root ino_root; /* ino entry array */ 1048 spinlock_t ino_lock; /* for ino entry lock */ 1049 struct list_head ino_list; /* inode list head */ 1050 unsigned long ino_num; /* number of entries */ 1051 }; 1052 1053 /* For s_flag in struct f2fs_sb_info */ 1054 enum { 1055 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1056 SBI_IS_CLOSE, /* specify unmounting */ 1057 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1058 SBI_POR_DOING, /* recovery is doing or not */ 1059 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1060 SBI_NEED_CP, /* need to checkpoint */ 1061 }; 1062 1063 enum { 1064 CP_TIME, 1065 REQ_TIME, 1066 MAX_TIME, 1067 }; 1068 1069 enum { 1070 GC_NORMAL, 1071 GC_IDLE_CB, 1072 GC_IDLE_GREEDY, 1073 GC_URGENT, 1074 }; 1075 1076 enum { 1077 WHINT_MODE_OFF, /* not pass down write hints */ 1078 WHINT_MODE_USER, /* try to pass down hints given by users */ 1079 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1080 }; 1081 1082 enum { 1083 ALLOC_MODE_DEFAULT, /* stay default */ 1084 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1085 }; 1086 1087 enum fsync_mode { 1088 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1089 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1090 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1091 }; 1092 1093 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1094 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1095 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1096 #else 1097 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1098 #endif 1099 1100 struct f2fs_sb_info { 1101 struct super_block *sb; /* pointer to VFS super block */ 1102 struct proc_dir_entry *s_proc; /* proc entry */ 1103 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1104 struct rw_semaphore sb_lock; /* lock for raw super block */ 1105 int valid_super_block; /* valid super block no */ 1106 unsigned long s_flag; /* flags for sbi */ 1107 1108 #ifdef CONFIG_BLK_DEV_ZONED 1109 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1110 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1111 #endif 1112 1113 /* for node-related operations */ 1114 struct f2fs_nm_info *nm_info; /* node manager */ 1115 struct inode *node_inode; /* cache node blocks */ 1116 1117 /* for segment-related operations */ 1118 struct f2fs_sm_info *sm_info; /* segment manager */ 1119 1120 /* for bio operations */ 1121 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1122 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1123 /* bio ordering for NODE/DATA */ 1124 /* keep migration IO order for LFS mode */ 1125 struct rw_semaphore io_order_lock; 1126 mempool_t *write_io_dummy; /* Dummy pages */ 1127 1128 /* for checkpoint */ 1129 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1130 int cur_cp_pack; /* remain current cp pack */ 1131 spinlock_t cp_lock; /* for flag in ckpt */ 1132 struct inode *meta_inode; /* cache meta blocks */ 1133 struct mutex cp_mutex; /* checkpoint procedure lock */ 1134 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1135 struct rw_semaphore node_write; /* locking node writes */ 1136 struct rw_semaphore node_change; /* locking node change */ 1137 wait_queue_head_t cp_wait; 1138 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1139 long interval_time[MAX_TIME]; /* to store thresholds */ 1140 1141 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1142 1143 /* for orphan inode, use 0'th array */ 1144 unsigned int max_orphans; /* max orphan inodes */ 1145 1146 /* for inode management */ 1147 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1148 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1149 1150 /* for extent tree cache */ 1151 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1152 struct mutex extent_tree_lock; /* locking extent radix tree */ 1153 struct list_head extent_list; /* lru list for shrinker */ 1154 spinlock_t extent_lock; /* locking extent lru list */ 1155 atomic_t total_ext_tree; /* extent tree count */ 1156 struct list_head zombie_list; /* extent zombie tree list */ 1157 atomic_t total_zombie_tree; /* extent zombie tree count */ 1158 atomic_t total_ext_node; /* extent info count */ 1159 1160 /* basic filesystem units */ 1161 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1162 unsigned int log_blocksize; /* log2 block size */ 1163 unsigned int blocksize; /* block size */ 1164 unsigned int root_ino_num; /* root inode number*/ 1165 unsigned int node_ino_num; /* node inode number*/ 1166 unsigned int meta_ino_num; /* meta inode number*/ 1167 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1168 unsigned int blocks_per_seg; /* blocks per segment */ 1169 unsigned int segs_per_sec; /* segments per section */ 1170 unsigned int secs_per_zone; /* sections per zone */ 1171 unsigned int total_sections; /* total section count */ 1172 unsigned int total_node_count; /* total node block count */ 1173 unsigned int total_valid_node_count; /* valid node block count */ 1174 loff_t max_file_blocks; /* max block index of file */ 1175 int dir_level; /* directory level */ 1176 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1177 int readdir_ra; /* readahead inode in readdir */ 1178 1179 block_t user_block_count; /* # of user blocks */ 1180 block_t total_valid_block_count; /* # of valid blocks */ 1181 block_t discard_blks; /* discard command candidats */ 1182 block_t last_valid_block_count; /* for recovery */ 1183 block_t reserved_blocks; /* configurable reserved blocks */ 1184 block_t current_reserved_blocks; /* current reserved blocks */ 1185 1186 unsigned int nquota_files; /* # of quota sysfile */ 1187 1188 u32 s_next_generation; /* for NFS support */ 1189 1190 /* # of pages, see count_type */ 1191 atomic_t nr_pages[NR_COUNT_TYPE]; 1192 /* # of allocated blocks */ 1193 struct percpu_counter alloc_valid_block_count; 1194 1195 /* writeback control */ 1196 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1197 1198 /* valid inode count */ 1199 struct percpu_counter total_valid_inode_count; 1200 1201 struct f2fs_mount_info mount_opt; /* mount options */ 1202 1203 /* for cleaning operations */ 1204 struct mutex gc_mutex; /* mutex for GC */ 1205 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1206 unsigned int cur_victim_sec; /* current victim section num */ 1207 unsigned int gc_mode; /* current GC state */ 1208 1209 /* threshold for gc trials on pinned files */ 1210 u64 gc_pin_file_threshold; 1211 1212 /* maximum # of trials to find a victim segment for SSR and GC */ 1213 unsigned int max_victim_search; 1214 1215 /* 1216 * for stat information. 1217 * one is for the LFS mode, and the other is for the SSR mode. 1218 */ 1219 #ifdef CONFIG_F2FS_STAT_FS 1220 struct f2fs_stat_info *stat_info; /* FS status information */ 1221 unsigned int segment_count[2]; /* # of allocated segments */ 1222 unsigned int block_count[2]; /* # of allocated blocks */ 1223 atomic_t inplace_count; /* # of inplace update */ 1224 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1225 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1226 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1227 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1228 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1229 atomic_t inline_inode; /* # of inline_data inodes */ 1230 atomic_t inline_dir; /* # of inline_dentry inodes */ 1231 atomic_t aw_cnt; /* # of atomic writes */ 1232 atomic_t vw_cnt; /* # of volatile writes */ 1233 atomic_t max_aw_cnt; /* max # of atomic writes */ 1234 atomic_t max_vw_cnt; /* max # of volatile writes */ 1235 int bg_gc; /* background gc calls */ 1236 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1237 #endif 1238 spinlock_t stat_lock; /* lock for stat operations */ 1239 1240 /* For app/fs IO statistics */ 1241 spinlock_t iostat_lock; 1242 unsigned long long write_iostat[NR_IO_TYPE]; 1243 bool iostat_enable; 1244 1245 /* For sysfs suppport */ 1246 struct kobject s_kobj; 1247 struct completion s_kobj_unregister; 1248 1249 /* For shrinker support */ 1250 struct list_head s_list; 1251 int s_ndevs; /* number of devices */ 1252 struct f2fs_dev_info *devs; /* for device list */ 1253 unsigned int dirty_device; /* for checkpoint data flush */ 1254 spinlock_t dev_lock; /* protect dirty_device */ 1255 struct mutex umount_mutex; 1256 unsigned int shrinker_run_no; 1257 1258 /* For write statistics */ 1259 u64 sectors_written_start; 1260 u64 kbytes_written; 1261 1262 /* Reference to checksum algorithm driver via cryptoapi */ 1263 struct crypto_shash *s_chksum_driver; 1264 1265 /* Precomputed FS UUID checksum for seeding other checksums */ 1266 __u32 s_chksum_seed; 1267 }; 1268 1269 #ifdef CONFIG_F2FS_FAULT_INJECTION 1270 #define f2fs_show_injection_info(type) \ 1271 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1272 KERN_INFO, fault_name[type], \ 1273 __func__, __builtin_return_address(0)) 1274 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1275 { 1276 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1277 1278 if (!ffi->inject_rate) 1279 return false; 1280 1281 if (!IS_FAULT_SET(ffi, type)) 1282 return false; 1283 1284 atomic_inc(&ffi->inject_ops); 1285 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1286 atomic_set(&ffi->inject_ops, 0); 1287 return true; 1288 } 1289 return false; 1290 } 1291 #endif 1292 1293 /* For write statistics. Suppose sector size is 512 bytes, 1294 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1295 */ 1296 #define BD_PART_WRITTEN(s) \ 1297 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1298 (s)->sectors_written_start) >> 1) 1299 1300 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1301 { 1302 sbi->last_time[type] = jiffies; 1303 } 1304 1305 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1306 { 1307 unsigned long interval = sbi->interval_time[type] * HZ; 1308 1309 return time_after(jiffies, sbi->last_time[type] + interval); 1310 } 1311 1312 static inline bool is_idle(struct f2fs_sb_info *sbi) 1313 { 1314 struct block_device *bdev = sbi->sb->s_bdev; 1315 struct request_queue *q = bdev_get_queue(bdev); 1316 struct request_list *rl = &q->root_rl; 1317 1318 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1319 return 0; 1320 1321 return f2fs_time_over(sbi, REQ_TIME); 1322 } 1323 1324 /* 1325 * Inline functions 1326 */ 1327 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1328 const void *address, unsigned int length) 1329 { 1330 struct { 1331 struct shash_desc shash; 1332 char ctx[4]; 1333 } desc; 1334 int err; 1335 1336 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1337 1338 desc.shash.tfm = sbi->s_chksum_driver; 1339 desc.shash.flags = 0; 1340 *(u32 *)desc.ctx = crc; 1341 1342 err = crypto_shash_update(&desc.shash, address, length); 1343 BUG_ON(err); 1344 1345 return *(u32 *)desc.ctx; 1346 } 1347 1348 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1349 unsigned int length) 1350 { 1351 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1352 } 1353 1354 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1355 void *buf, size_t buf_size) 1356 { 1357 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1358 } 1359 1360 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1361 const void *address, unsigned int length) 1362 { 1363 return __f2fs_crc32(sbi, crc, address, length); 1364 } 1365 1366 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1367 { 1368 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1369 } 1370 1371 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1372 { 1373 return sb->s_fs_info; 1374 } 1375 1376 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1377 { 1378 return F2FS_SB(inode->i_sb); 1379 } 1380 1381 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1382 { 1383 return F2FS_I_SB(mapping->host); 1384 } 1385 1386 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1387 { 1388 return F2FS_M_SB(page->mapping); 1389 } 1390 1391 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1392 { 1393 return (struct f2fs_super_block *)(sbi->raw_super); 1394 } 1395 1396 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1397 { 1398 return (struct f2fs_checkpoint *)(sbi->ckpt); 1399 } 1400 1401 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1402 { 1403 return (struct f2fs_node *)page_address(page); 1404 } 1405 1406 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1407 { 1408 return &((struct f2fs_node *)page_address(page))->i; 1409 } 1410 1411 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1412 { 1413 return (struct f2fs_nm_info *)(sbi->nm_info); 1414 } 1415 1416 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1417 { 1418 return (struct f2fs_sm_info *)(sbi->sm_info); 1419 } 1420 1421 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1422 { 1423 return (struct sit_info *)(SM_I(sbi)->sit_info); 1424 } 1425 1426 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1427 { 1428 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1429 } 1430 1431 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1432 { 1433 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1434 } 1435 1436 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1437 { 1438 return sbi->meta_inode->i_mapping; 1439 } 1440 1441 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1442 { 1443 return sbi->node_inode->i_mapping; 1444 } 1445 1446 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1447 { 1448 return test_bit(type, &sbi->s_flag); 1449 } 1450 1451 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1452 { 1453 set_bit(type, &sbi->s_flag); 1454 } 1455 1456 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1457 { 1458 clear_bit(type, &sbi->s_flag); 1459 } 1460 1461 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1462 { 1463 return le64_to_cpu(cp->checkpoint_ver); 1464 } 1465 1466 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1467 { 1468 if (type < F2FS_MAX_QUOTAS) 1469 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1470 return 0; 1471 } 1472 1473 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1474 { 1475 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1476 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1477 } 1478 1479 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1480 { 1481 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1482 1483 return ckpt_flags & f; 1484 } 1485 1486 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1487 { 1488 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1489 } 1490 1491 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1492 { 1493 unsigned int ckpt_flags; 1494 1495 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1496 ckpt_flags |= f; 1497 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1498 } 1499 1500 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1501 { 1502 unsigned long flags; 1503 1504 spin_lock_irqsave(&sbi->cp_lock, flags); 1505 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1506 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1507 } 1508 1509 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1510 { 1511 unsigned int ckpt_flags; 1512 1513 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1514 ckpt_flags &= (~f); 1515 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1516 } 1517 1518 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1519 { 1520 unsigned long flags; 1521 1522 spin_lock_irqsave(&sbi->cp_lock, flags); 1523 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1524 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1525 } 1526 1527 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1528 { 1529 unsigned long flags; 1530 1531 set_sbi_flag(sbi, SBI_NEED_FSCK); 1532 1533 if (lock) 1534 spin_lock_irqsave(&sbi->cp_lock, flags); 1535 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1536 kfree(NM_I(sbi)->nat_bits); 1537 NM_I(sbi)->nat_bits = NULL; 1538 if (lock) 1539 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1540 } 1541 1542 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1543 struct cp_control *cpc) 1544 { 1545 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1546 1547 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1548 } 1549 1550 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1551 { 1552 down_read(&sbi->cp_rwsem); 1553 } 1554 1555 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1556 { 1557 return down_read_trylock(&sbi->cp_rwsem); 1558 } 1559 1560 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1561 { 1562 up_read(&sbi->cp_rwsem); 1563 } 1564 1565 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1566 { 1567 down_write(&sbi->cp_rwsem); 1568 } 1569 1570 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1571 { 1572 up_write(&sbi->cp_rwsem); 1573 } 1574 1575 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1576 { 1577 int reason = CP_SYNC; 1578 1579 if (test_opt(sbi, FASTBOOT)) 1580 reason = CP_FASTBOOT; 1581 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1582 reason = CP_UMOUNT; 1583 return reason; 1584 } 1585 1586 static inline bool __remain_node_summaries(int reason) 1587 { 1588 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1589 } 1590 1591 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1592 { 1593 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1594 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1595 } 1596 1597 /* 1598 * Check whether the inode has blocks or not 1599 */ 1600 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1601 { 1602 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1603 1604 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1605 } 1606 1607 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1608 { 1609 return ofs == XATTR_NODE_OFFSET; 1610 } 1611 1612 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1613 struct inode *inode, bool cap) 1614 { 1615 if (!inode) 1616 return true; 1617 if (!test_opt(sbi, RESERVE_ROOT)) 1618 return false; 1619 if (IS_NOQUOTA(inode)) 1620 return true; 1621 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1622 return true; 1623 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1624 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1625 return true; 1626 if (cap && capable(CAP_SYS_RESOURCE)) 1627 return true; 1628 return false; 1629 } 1630 1631 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1632 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1633 struct inode *inode, blkcnt_t *count) 1634 { 1635 blkcnt_t diff = 0, release = 0; 1636 block_t avail_user_block_count; 1637 int ret; 1638 1639 ret = dquot_reserve_block(inode, *count); 1640 if (ret) 1641 return ret; 1642 1643 #ifdef CONFIG_F2FS_FAULT_INJECTION 1644 if (time_to_inject(sbi, FAULT_BLOCK)) { 1645 f2fs_show_injection_info(FAULT_BLOCK); 1646 release = *count; 1647 goto enospc; 1648 } 1649 #endif 1650 /* 1651 * let's increase this in prior to actual block count change in order 1652 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1653 */ 1654 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1655 1656 spin_lock(&sbi->stat_lock); 1657 sbi->total_valid_block_count += (block_t)(*count); 1658 avail_user_block_count = sbi->user_block_count - 1659 sbi->current_reserved_blocks; 1660 1661 if (!__allow_reserved_blocks(sbi, inode, true)) 1662 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1663 1664 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1665 diff = sbi->total_valid_block_count - avail_user_block_count; 1666 if (diff > *count) 1667 diff = *count; 1668 *count -= diff; 1669 release = diff; 1670 sbi->total_valid_block_count -= diff; 1671 if (!*count) { 1672 spin_unlock(&sbi->stat_lock); 1673 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1674 goto enospc; 1675 } 1676 } 1677 spin_unlock(&sbi->stat_lock); 1678 1679 if (unlikely(release)) 1680 dquot_release_reservation_block(inode, release); 1681 f2fs_i_blocks_write(inode, *count, true, true); 1682 return 0; 1683 1684 enospc: 1685 dquot_release_reservation_block(inode, release); 1686 return -ENOSPC; 1687 } 1688 1689 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1690 struct inode *inode, 1691 block_t count) 1692 { 1693 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1694 1695 spin_lock(&sbi->stat_lock); 1696 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1697 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1698 sbi->total_valid_block_count -= (block_t)count; 1699 if (sbi->reserved_blocks && 1700 sbi->current_reserved_blocks < sbi->reserved_blocks) 1701 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1702 sbi->current_reserved_blocks + count); 1703 spin_unlock(&sbi->stat_lock); 1704 f2fs_i_blocks_write(inode, count, false, true); 1705 } 1706 1707 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1708 { 1709 atomic_inc(&sbi->nr_pages[count_type]); 1710 1711 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1712 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1713 return; 1714 1715 set_sbi_flag(sbi, SBI_IS_DIRTY); 1716 } 1717 1718 static inline void inode_inc_dirty_pages(struct inode *inode) 1719 { 1720 atomic_inc(&F2FS_I(inode)->dirty_pages); 1721 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1722 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1723 if (IS_NOQUOTA(inode)) 1724 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1725 } 1726 1727 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1728 { 1729 atomic_dec(&sbi->nr_pages[count_type]); 1730 } 1731 1732 static inline void inode_dec_dirty_pages(struct inode *inode) 1733 { 1734 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1735 !S_ISLNK(inode->i_mode)) 1736 return; 1737 1738 atomic_dec(&F2FS_I(inode)->dirty_pages); 1739 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1740 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1741 if (IS_NOQUOTA(inode)) 1742 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1743 } 1744 1745 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1746 { 1747 return atomic_read(&sbi->nr_pages[count_type]); 1748 } 1749 1750 static inline int get_dirty_pages(struct inode *inode) 1751 { 1752 return atomic_read(&F2FS_I(inode)->dirty_pages); 1753 } 1754 1755 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1756 { 1757 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1758 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1759 sbi->log_blocks_per_seg; 1760 1761 return segs / sbi->segs_per_sec; 1762 } 1763 1764 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1765 { 1766 return sbi->total_valid_block_count; 1767 } 1768 1769 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1770 { 1771 return sbi->discard_blks; 1772 } 1773 1774 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1775 { 1776 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1777 1778 /* return NAT or SIT bitmap */ 1779 if (flag == NAT_BITMAP) 1780 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1781 else if (flag == SIT_BITMAP) 1782 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1783 1784 return 0; 1785 } 1786 1787 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1788 { 1789 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1790 } 1791 1792 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1793 { 1794 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1795 int offset; 1796 1797 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1798 offset = (flag == SIT_BITMAP) ? 1799 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1800 return &ckpt->sit_nat_version_bitmap + offset; 1801 } 1802 1803 if (__cp_payload(sbi) > 0) { 1804 if (flag == NAT_BITMAP) 1805 return &ckpt->sit_nat_version_bitmap; 1806 else 1807 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1808 } else { 1809 offset = (flag == NAT_BITMAP) ? 1810 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1811 return &ckpt->sit_nat_version_bitmap + offset; 1812 } 1813 } 1814 1815 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1816 { 1817 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1818 1819 if (sbi->cur_cp_pack == 2) 1820 start_addr += sbi->blocks_per_seg; 1821 return start_addr; 1822 } 1823 1824 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1825 { 1826 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1827 1828 if (sbi->cur_cp_pack == 1) 1829 start_addr += sbi->blocks_per_seg; 1830 return start_addr; 1831 } 1832 1833 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1834 { 1835 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1836 } 1837 1838 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1839 { 1840 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1841 } 1842 1843 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1844 struct inode *inode, bool is_inode) 1845 { 1846 block_t valid_block_count; 1847 unsigned int valid_node_count; 1848 bool quota = inode && !is_inode; 1849 1850 if (quota) { 1851 int ret = dquot_reserve_block(inode, 1); 1852 if (ret) 1853 return ret; 1854 } 1855 1856 #ifdef CONFIG_F2FS_FAULT_INJECTION 1857 if (time_to_inject(sbi, FAULT_BLOCK)) { 1858 f2fs_show_injection_info(FAULT_BLOCK); 1859 goto enospc; 1860 } 1861 #endif 1862 1863 spin_lock(&sbi->stat_lock); 1864 1865 valid_block_count = sbi->total_valid_block_count + 1866 sbi->current_reserved_blocks + 1; 1867 1868 if (!__allow_reserved_blocks(sbi, inode, false)) 1869 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1870 1871 if (unlikely(valid_block_count > sbi->user_block_count)) { 1872 spin_unlock(&sbi->stat_lock); 1873 goto enospc; 1874 } 1875 1876 valid_node_count = sbi->total_valid_node_count + 1; 1877 if (unlikely(valid_node_count > sbi->total_node_count)) { 1878 spin_unlock(&sbi->stat_lock); 1879 goto enospc; 1880 } 1881 1882 sbi->total_valid_node_count++; 1883 sbi->total_valid_block_count++; 1884 spin_unlock(&sbi->stat_lock); 1885 1886 if (inode) { 1887 if (is_inode) 1888 f2fs_mark_inode_dirty_sync(inode, true); 1889 else 1890 f2fs_i_blocks_write(inode, 1, true, true); 1891 } 1892 1893 percpu_counter_inc(&sbi->alloc_valid_block_count); 1894 return 0; 1895 1896 enospc: 1897 if (quota) 1898 dquot_release_reservation_block(inode, 1); 1899 return -ENOSPC; 1900 } 1901 1902 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1903 struct inode *inode, bool is_inode) 1904 { 1905 spin_lock(&sbi->stat_lock); 1906 1907 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1908 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1909 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1910 1911 sbi->total_valid_node_count--; 1912 sbi->total_valid_block_count--; 1913 if (sbi->reserved_blocks && 1914 sbi->current_reserved_blocks < sbi->reserved_blocks) 1915 sbi->current_reserved_blocks++; 1916 1917 spin_unlock(&sbi->stat_lock); 1918 1919 if (!is_inode) 1920 f2fs_i_blocks_write(inode, 1, false, true); 1921 } 1922 1923 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1924 { 1925 return sbi->total_valid_node_count; 1926 } 1927 1928 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1929 { 1930 percpu_counter_inc(&sbi->total_valid_inode_count); 1931 } 1932 1933 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1934 { 1935 percpu_counter_dec(&sbi->total_valid_inode_count); 1936 } 1937 1938 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1939 { 1940 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1941 } 1942 1943 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1944 pgoff_t index, bool for_write) 1945 { 1946 #ifdef CONFIG_F2FS_FAULT_INJECTION 1947 struct page *page = find_lock_page(mapping, index); 1948 1949 if (page) 1950 return page; 1951 1952 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1953 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1954 return NULL; 1955 } 1956 #endif 1957 if (!for_write) 1958 return grab_cache_page(mapping, index); 1959 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1960 } 1961 1962 static inline struct page *f2fs_pagecache_get_page( 1963 struct address_space *mapping, pgoff_t index, 1964 int fgp_flags, gfp_t gfp_mask) 1965 { 1966 #ifdef CONFIG_F2FS_FAULT_INJECTION 1967 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1968 f2fs_show_injection_info(FAULT_PAGE_GET); 1969 return NULL; 1970 } 1971 #endif 1972 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1973 } 1974 1975 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1976 { 1977 char *src_kaddr = kmap(src); 1978 char *dst_kaddr = kmap(dst); 1979 1980 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1981 kunmap(dst); 1982 kunmap(src); 1983 } 1984 1985 static inline void f2fs_put_page(struct page *page, int unlock) 1986 { 1987 if (!page) 1988 return; 1989 1990 if (unlock) { 1991 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1992 unlock_page(page); 1993 } 1994 put_page(page); 1995 } 1996 1997 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1998 { 1999 if (dn->node_page) 2000 f2fs_put_page(dn->node_page, 1); 2001 if (dn->inode_page && dn->node_page != dn->inode_page) 2002 f2fs_put_page(dn->inode_page, 0); 2003 dn->node_page = NULL; 2004 dn->inode_page = NULL; 2005 } 2006 2007 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2008 size_t size) 2009 { 2010 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2011 } 2012 2013 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2014 gfp_t flags) 2015 { 2016 void *entry; 2017 2018 entry = kmem_cache_alloc(cachep, flags); 2019 if (!entry) 2020 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2021 return entry; 2022 } 2023 2024 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2025 int npages, bool no_fail) 2026 { 2027 struct bio *bio; 2028 2029 if (no_fail) { 2030 /* No failure on bio allocation */ 2031 bio = bio_alloc(GFP_NOIO, npages); 2032 if (!bio) 2033 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2034 return bio; 2035 } 2036 #ifdef CONFIG_F2FS_FAULT_INJECTION 2037 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2038 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2039 return NULL; 2040 } 2041 #endif 2042 return bio_alloc(GFP_KERNEL, npages); 2043 } 2044 2045 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2046 unsigned long index, void *item) 2047 { 2048 while (radix_tree_insert(root, index, item)) 2049 cond_resched(); 2050 } 2051 2052 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2053 2054 static inline bool IS_INODE(struct page *page) 2055 { 2056 struct f2fs_node *p = F2FS_NODE(page); 2057 2058 return RAW_IS_INODE(p); 2059 } 2060 2061 static inline int offset_in_addr(struct f2fs_inode *i) 2062 { 2063 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2064 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2065 } 2066 2067 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2068 { 2069 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2070 } 2071 2072 static inline int f2fs_has_extra_attr(struct inode *inode); 2073 static inline block_t datablock_addr(struct inode *inode, 2074 struct page *node_page, unsigned int offset) 2075 { 2076 struct f2fs_node *raw_node; 2077 __le32 *addr_array; 2078 int base = 0; 2079 bool is_inode = IS_INODE(node_page); 2080 2081 raw_node = F2FS_NODE(node_page); 2082 2083 /* from GC path only */ 2084 if (is_inode) { 2085 if (!inode) 2086 base = offset_in_addr(&raw_node->i); 2087 else if (f2fs_has_extra_attr(inode)) 2088 base = get_extra_isize(inode); 2089 } 2090 2091 addr_array = blkaddr_in_node(raw_node); 2092 return le32_to_cpu(addr_array[base + offset]); 2093 } 2094 2095 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2096 { 2097 int mask; 2098 2099 addr += (nr >> 3); 2100 mask = 1 << (7 - (nr & 0x07)); 2101 return mask & *addr; 2102 } 2103 2104 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2105 { 2106 int mask; 2107 2108 addr += (nr >> 3); 2109 mask = 1 << (7 - (nr & 0x07)); 2110 *addr |= mask; 2111 } 2112 2113 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2114 { 2115 int mask; 2116 2117 addr += (nr >> 3); 2118 mask = 1 << (7 - (nr & 0x07)); 2119 *addr &= ~mask; 2120 } 2121 2122 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2123 { 2124 int mask; 2125 int ret; 2126 2127 addr += (nr >> 3); 2128 mask = 1 << (7 - (nr & 0x07)); 2129 ret = mask & *addr; 2130 *addr |= mask; 2131 return ret; 2132 } 2133 2134 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2135 { 2136 int mask; 2137 int ret; 2138 2139 addr += (nr >> 3); 2140 mask = 1 << (7 - (nr & 0x07)); 2141 ret = mask & *addr; 2142 *addr &= ~mask; 2143 return ret; 2144 } 2145 2146 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2147 { 2148 int mask; 2149 2150 addr += (nr >> 3); 2151 mask = 1 << (7 - (nr & 0x07)); 2152 *addr ^= mask; 2153 } 2154 2155 /* 2156 * Inode flags 2157 */ 2158 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */ 2159 #define F2FS_UNRM_FL 0x00000002 /* Undelete */ 2160 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2161 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2162 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2163 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2164 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2165 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2166 /* Reserved for compression usage... */ 2167 #define F2FS_DIRTY_FL 0x00000100 2168 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ 2169 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */ 2170 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */ 2171 /* End compression flags --- maybe not all used */ 2172 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2173 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */ 2174 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ 2175 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */ 2176 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2177 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ 2178 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ 2179 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */ 2180 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */ 2181 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */ 2182 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ 2183 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2184 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ 2185 2186 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */ 2187 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */ 2188 2189 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */ 2190 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \ 2191 F2FS_IMMUTABLE_FL | \ 2192 F2FS_APPEND_FL | \ 2193 F2FS_NODUMP_FL | \ 2194 F2FS_NOATIME_FL | \ 2195 F2FS_PROJINHERIT_FL) 2196 2197 /* Flags that should be inherited by new inodes from their parent. */ 2198 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\ 2199 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\ 2200 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\ 2201 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\ 2202 F2FS_PROJINHERIT_FL) 2203 2204 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2205 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL)) 2206 2207 /* Flags that are appropriate for non-directories/regular files. */ 2208 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2209 2210 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2211 { 2212 if (S_ISDIR(mode)) 2213 return flags; 2214 else if (S_ISREG(mode)) 2215 return flags & F2FS_REG_FLMASK; 2216 else 2217 return flags & F2FS_OTHER_FLMASK; 2218 } 2219 2220 /* used for f2fs_inode_info->flags */ 2221 enum { 2222 FI_NEW_INODE, /* indicate newly allocated inode */ 2223 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2224 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2225 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2226 FI_INC_LINK, /* need to increment i_nlink */ 2227 FI_ACL_MODE, /* indicate acl mode */ 2228 FI_NO_ALLOC, /* should not allocate any blocks */ 2229 FI_FREE_NID, /* free allocated nide */ 2230 FI_NO_EXTENT, /* not to use the extent cache */ 2231 FI_INLINE_XATTR, /* used for inline xattr */ 2232 FI_INLINE_DATA, /* used for inline data*/ 2233 FI_INLINE_DENTRY, /* used for inline dentry */ 2234 FI_APPEND_WRITE, /* inode has appended data */ 2235 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2236 FI_NEED_IPU, /* used for ipu per file */ 2237 FI_ATOMIC_FILE, /* indicate atomic file */ 2238 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2239 FI_VOLATILE_FILE, /* indicate volatile file */ 2240 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2241 FI_DROP_CACHE, /* drop dirty page cache */ 2242 FI_DATA_EXIST, /* indicate data exists */ 2243 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2244 FI_DO_DEFRAG, /* indicate defragment is running */ 2245 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2246 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2247 FI_HOT_DATA, /* indicate file is hot */ 2248 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2249 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2250 FI_PIN_FILE, /* indicate file should not be gced */ 2251 }; 2252 2253 static inline void __mark_inode_dirty_flag(struct inode *inode, 2254 int flag, bool set) 2255 { 2256 switch (flag) { 2257 case FI_INLINE_XATTR: 2258 case FI_INLINE_DATA: 2259 case FI_INLINE_DENTRY: 2260 case FI_NEW_INODE: 2261 if (set) 2262 return; 2263 case FI_DATA_EXIST: 2264 case FI_INLINE_DOTS: 2265 case FI_PIN_FILE: 2266 f2fs_mark_inode_dirty_sync(inode, true); 2267 } 2268 } 2269 2270 static inline void set_inode_flag(struct inode *inode, int flag) 2271 { 2272 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2273 set_bit(flag, &F2FS_I(inode)->flags); 2274 __mark_inode_dirty_flag(inode, flag, true); 2275 } 2276 2277 static inline int is_inode_flag_set(struct inode *inode, int flag) 2278 { 2279 return test_bit(flag, &F2FS_I(inode)->flags); 2280 } 2281 2282 static inline void clear_inode_flag(struct inode *inode, int flag) 2283 { 2284 if (test_bit(flag, &F2FS_I(inode)->flags)) 2285 clear_bit(flag, &F2FS_I(inode)->flags); 2286 __mark_inode_dirty_flag(inode, flag, false); 2287 } 2288 2289 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2290 { 2291 F2FS_I(inode)->i_acl_mode = mode; 2292 set_inode_flag(inode, FI_ACL_MODE); 2293 f2fs_mark_inode_dirty_sync(inode, false); 2294 } 2295 2296 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2297 { 2298 if (inc) 2299 inc_nlink(inode); 2300 else 2301 drop_nlink(inode); 2302 f2fs_mark_inode_dirty_sync(inode, true); 2303 } 2304 2305 static inline void f2fs_i_blocks_write(struct inode *inode, 2306 block_t diff, bool add, bool claim) 2307 { 2308 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2309 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2310 2311 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2312 if (add) { 2313 if (claim) 2314 dquot_claim_block(inode, diff); 2315 else 2316 dquot_alloc_block_nofail(inode, diff); 2317 } else { 2318 dquot_free_block(inode, diff); 2319 } 2320 2321 f2fs_mark_inode_dirty_sync(inode, true); 2322 if (clean || recover) 2323 set_inode_flag(inode, FI_AUTO_RECOVER); 2324 } 2325 2326 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2327 { 2328 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2329 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2330 2331 if (i_size_read(inode) == i_size) 2332 return; 2333 2334 i_size_write(inode, i_size); 2335 f2fs_mark_inode_dirty_sync(inode, true); 2336 if (clean || recover) 2337 set_inode_flag(inode, FI_AUTO_RECOVER); 2338 } 2339 2340 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2341 { 2342 F2FS_I(inode)->i_current_depth = depth; 2343 f2fs_mark_inode_dirty_sync(inode, true); 2344 } 2345 2346 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2347 unsigned int count) 2348 { 2349 F2FS_I(inode)->i_gc_failures = count; 2350 f2fs_mark_inode_dirty_sync(inode, true); 2351 } 2352 2353 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2354 { 2355 F2FS_I(inode)->i_xattr_nid = xnid; 2356 f2fs_mark_inode_dirty_sync(inode, true); 2357 } 2358 2359 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2360 { 2361 F2FS_I(inode)->i_pino = pino; 2362 f2fs_mark_inode_dirty_sync(inode, true); 2363 } 2364 2365 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2366 { 2367 struct f2fs_inode_info *fi = F2FS_I(inode); 2368 2369 if (ri->i_inline & F2FS_INLINE_XATTR) 2370 set_bit(FI_INLINE_XATTR, &fi->flags); 2371 if (ri->i_inline & F2FS_INLINE_DATA) 2372 set_bit(FI_INLINE_DATA, &fi->flags); 2373 if (ri->i_inline & F2FS_INLINE_DENTRY) 2374 set_bit(FI_INLINE_DENTRY, &fi->flags); 2375 if (ri->i_inline & F2FS_DATA_EXIST) 2376 set_bit(FI_DATA_EXIST, &fi->flags); 2377 if (ri->i_inline & F2FS_INLINE_DOTS) 2378 set_bit(FI_INLINE_DOTS, &fi->flags); 2379 if (ri->i_inline & F2FS_EXTRA_ATTR) 2380 set_bit(FI_EXTRA_ATTR, &fi->flags); 2381 if (ri->i_inline & F2FS_PIN_FILE) 2382 set_bit(FI_PIN_FILE, &fi->flags); 2383 } 2384 2385 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2386 { 2387 ri->i_inline = 0; 2388 2389 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2390 ri->i_inline |= F2FS_INLINE_XATTR; 2391 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2392 ri->i_inline |= F2FS_INLINE_DATA; 2393 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2394 ri->i_inline |= F2FS_INLINE_DENTRY; 2395 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2396 ri->i_inline |= F2FS_DATA_EXIST; 2397 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2398 ri->i_inline |= F2FS_INLINE_DOTS; 2399 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2400 ri->i_inline |= F2FS_EXTRA_ATTR; 2401 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2402 ri->i_inline |= F2FS_PIN_FILE; 2403 } 2404 2405 static inline int f2fs_has_extra_attr(struct inode *inode) 2406 { 2407 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2408 } 2409 2410 static inline int f2fs_has_inline_xattr(struct inode *inode) 2411 { 2412 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2413 } 2414 2415 static inline unsigned int addrs_per_inode(struct inode *inode) 2416 { 2417 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2418 } 2419 2420 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2421 { 2422 struct f2fs_inode *ri = F2FS_INODE(page); 2423 2424 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2425 get_inline_xattr_addrs(inode)]); 2426 } 2427 2428 static inline int inline_xattr_size(struct inode *inode) 2429 { 2430 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2431 } 2432 2433 static inline int f2fs_has_inline_data(struct inode *inode) 2434 { 2435 return is_inode_flag_set(inode, FI_INLINE_DATA); 2436 } 2437 2438 static inline int f2fs_exist_data(struct inode *inode) 2439 { 2440 return is_inode_flag_set(inode, FI_DATA_EXIST); 2441 } 2442 2443 static inline int f2fs_has_inline_dots(struct inode *inode) 2444 { 2445 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2446 } 2447 2448 static inline bool f2fs_is_pinned_file(struct inode *inode) 2449 { 2450 return is_inode_flag_set(inode, FI_PIN_FILE); 2451 } 2452 2453 static inline bool f2fs_is_atomic_file(struct inode *inode) 2454 { 2455 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2456 } 2457 2458 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2459 { 2460 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2461 } 2462 2463 static inline bool f2fs_is_volatile_file(struct inode *inode) 2464 { 2465 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2466 } 2467 2468 static inline bool f2fs_is_first_block_written(struct inode *inode) 2469 { 2470 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2471 } 2472 2473 static inline bool f2fs_is_drop_cache(struct inode *inode) 2474 { 2475 return is_inode_flag_set(inode, FI_DROP_CACHE); 2476 } 2477 2478 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2479 { 2480 struct f2fs_inode *ri = F2FS_INODE(page); 2481 int extra_size = get_extra_isize(inode); 2482 2483 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2484 } 2485 2486 static inline int f2fs_has_inline_dentry(struct inode *inode) 2487 { 2488 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2489 } 2490 2491 static inline int is_file(struct inode *inode, int type) 2492 { 2493 return F2FS_I(inode)->i_advise & type; 2494 } 2495 2496 static inline void set_file(struct inode *inode, int type) 2497 { 2498 F2FS_I(inode)->i_advise |= type; 2499 f2fs_mark_inode_dirty_sync(inode, true); 2500 } 2501 2502 static inline void clear_file(struct inode *inode, int type) 2503 { 2504 F2FS_I(inode)->i_advise &= ~type; 2505 f2fs_mark_inode_dirty_sync(inode, true); 2506 } 2507 2508 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2509 { 2510 bool ret; 2511 2512 if (dsync) { 2513 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2514 2515 spin_lock(&sbi->inode_lock[DIRTY_META]); 2516 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2517 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2518 return ret; 2519 } 2520 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2521 file_keep_isize(inode) || 2522 i_size_read(inode) & ~PAGE_MASK) 2523 return false; 2524 2525 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2526 return false; 2527 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2528 return false; 2529 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2530 return false; 2531 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3, 2532 &F2FS_I(inode)->i_crtime)) 2533 return false; 2534 2535 down_read(&F2FS_I(inode)->i_sem); 2536 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2537 up_read(&F2FS_I(inode)->i_sem); 2538 2539 return ret; 2540 } 2541 2542 static inline bool f2fs_readonly(struct super_block *sb) 2543 { 2544 return sb_rdonly(sb); 2545 } 2546 2547 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2548 { 2549 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2550 } 2551 2552 static inline bool is_dot_dotdot(const struct qstr *str) 2553 { 2554 if (str->len == 1 && str->name[0] == '.') 2555 return true; 2556 2557 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2558 return true; 2559 2560 return false; 2561 } 2562 2563 static inline bool f2fs_may_extent_tree(struct inode *inode) 2564 { 2565 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2566 is_inode_flag_set(inode, FI_NO_EXTENT)) 2567 return false; 2568 2569 return S_ISREG(inode->i_mode); 2570 } 2571 2572 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2573 size_t size, gfp_t flags) 2574 { 2575 #ifdef CONFIG_F2FS_FAULT_INJECTION 2576 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2577 f2fs_show_injection_info(FAULT_KMALLOC); 2578 return NULL; 2579 } 2580 #endif 2581 return kmalloc(size, flags); 2582 } 2583 2584 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2585 size_t size, gfp_t flags) 2586 { 2587 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2588 } 2589 2590 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2591 size_t size, gfp_t flags) 2592 { 2593 #ifdef CONFIG_F2FS_FAULT_INJECTION 2594 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2595 f2fs_show_injection_info(FAULT_KVMALLOC); 2596 return NULL; 2597 } 2598 #endif 2599 return kvmalloc(size, flags); 2600 } 2601 2602 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2603 size_t size, gfp_t flags) 2604 { 2605 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2606 } 2607 2608 static inline int get_extra_isize(struct inode *inode) 2609 { 2610 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2611 } 2612 2613 static inline int get_inline_xattr_addrs(struct inode *inode) 2614 { 2615 return F2FS_I(inode)->i_inline_xattr_size; 2616 } 2617 2618 #define get_inode_mode(i) \ 2619 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2620 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2621 2622 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2623 (offsetof(struct f2fs_inode, i_extra_end) - \ 2624 offsetof(struct f2fs_inode, i_extra_isize)) \ 2625 2626 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2627 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2628 ((offsetof(typeof(*f2fs_inode), field) + \ 2629 sizeof((f2fs_inode)->field)) \ 2630 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2631 2632 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2633 { 2634 int i; 2635 2636 spin_lock(&sbi->iostat_lock); 2637 for (i = 0; i < NR_IO_TYPE; i++) 2638 sbi->write_iostat[i] = 0; 2639 spin_unlock(&sbi->iostat_lock); 2640 } 2641 2642 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2643 enum iostat_type type, unsigned long long io_bytes) 2644 { 2645 if (!sbi->iostat_enable) 2646 return; 2647 spin_lock(&sbi->iostat_lock); 2648 sbi->write_iostat[type] += io_bytes; 2649 2650 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2651 sbi->write_iostat[APP_BUFFERED_IO] = 2652 sbi->write_iostat[APP_WRITE_IO] - 2653 sbi->write_iostat[APP_DIRECT_IO]; 2654 spin_unlock(&sbi->iostat_lock); 2655 } 2656 2657 static inline bool is_valid_blkaddr(block_t blkaddr) 2658 { 2659 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2660 return false; 2661 return true; 2662 } 2663 2664 /* 2665 * file.c 2666 */ 2667 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2668 void truncate_data_blocks(struct dnode_of_data *dn); 2669 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2670 int f2fs_truncate(struct inode *inode); 2671 int f2fs_getattr(const struct path *path, struct kstat *stat, 2672 u32 request_mask, unsigned int flags); 2673 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2674 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2675 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2676 int f2fs_precache_extents(struct inode *inode); 2677 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2678 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2679 int f2fs_pin_file_control(struct inode *inode, bool inc); 2680 2681 /* 2682 * inode.c 2683 */ 2684 void f2fs_set_inode_flags(struct inode *inode); 2685 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2686 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2687 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2688 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2689 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2690 void update_inode(struct inode *inode, struct page *node_page); 2691 void update_inode_page(struct inode *inode); 2692 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2693 void f2fs_evict_inode(struct inode *inode); 2694 void handle_failed_inode(struct inode *inode); 2695 2696 /* 2697 * namei.c 2698 */ 2699 int update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2700 bool hot, bool set); 2701 struct dentry *f2fs_get_parent(struct dentry *child); 2702 2703 /* 2704 * dir.c 2705 */ 2706 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2707 unsigned char get_de_type(struct f2fs_dir_entry *de); 2708 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2709 f2fs_hash_t namehash, int *max_slots, 2710 struct f2fs_dentry_ptr *d); 2711 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2712 unsigned int start_pos, struct fscrypt_str *fstr); 2713 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2714 struct f2fs_dentry_ptr *d); 2715 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2716 const struct qstr *new_name, 2717 const struct qstr *orig_name, struct page *dpage); 2718 void update_parent_metadata(struct inode *dir, struct inode *inode, 2719 unsigned int current_depth); 2720 int room_for_filename(const void *bitmap, int slots, int max_slots); 2721 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2722 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2723 struct fscrypt_name *fname, struct page **res_page); 2724 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2725 const struct qstr *child, struct page **res_page); 2726 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2727 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2728 struct page **page); 2729 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2730 struct page *page, struct inode *inode); 2731 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2732 const struct qstr *name, f2fs_hash_t name_hash, 2733 unsigned int bit_pos); 2734 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2735 const struct qstr *orig_name, 2736 struct inode *inode, nid_t ino, umode_t mode); 2737 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2738 struct inode *inode, nid_t ino, umode_t mode); 2739 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2740 struct inode *inode, nid_t ino, umode_t mode); 2741 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2742 struct inode *dir, struct inode *inode); 2743 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2744 bool f2fs_empty_dir(struct inode *dir); 2745 2746 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2747 { 2748 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2749 inode, inode->i_ino, inode->i_mode); 2750 } 2751 2752 /* 2753 * super.c 2754 */ 2755 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2756 void f2fs_inode_synced(struct inode *inode); 2757 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2758 void f2fs_quota_off_umount(struct super_block *sb); 2759 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2760 int f2fs_sync_fs(struct super_block *sb, int sync); 2761 extern __printf(3, 4) 2762 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2763 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2764 2765 /* 2766 * hash.c 2767 */ 2768 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2769 struct fscrypt_name *fname); 2770 2771 /* 2772 * node.c 2773 */ 2774 struct dnode_of_data; 2775 struct node_info; 2776 2777 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 2778 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2779 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2780 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2781 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2782 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2783 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2784 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2785 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2786 int truncate_xattr_node(struct inode *inode); 2787 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2788 int remove_inode_page(struct inode *inode); 2789 struct page *new_inode_page(struct inode *inode); 2790 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2791 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2792 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2793 struct page *get_node_page_ra(struct page *parent, int start); 2794 void move_node_page(struct page *node_page, int gc_type); 2795 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2796 struct writeback_control *wbc, bool atomic); 2797 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2798 bool do_balance, enum iostat_type io_type); 2799 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2800 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2801 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2802 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2803 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2804 void recover_inline_xattr(struct inode *inode, struct page *page); 2805 int recover_xattr_data(struct inode *inode, struct page *page); 2806 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2807 void restore_node_summary(struct f2fs_sb_info *sbi, 2808 unsigned int segno, struct f2fs_summary_block *sum); 2809 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2810 int build_node_manager(struct f2fs_sb_info *sbi); 2811 void destroy_node_manager(struct f2fs_sb_info *sbi); 2812 int __init create_node_manager_caches(void); 2813 void destroy_node_manager_caches(void); 2814 2815 /* 2816 * segment.c 2817 */ 2818 bool need_SSR(struct f2fs_sb_info *sbi); 2819 void register_inmem_page(struct inode *inode, struct page *page); 2820 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2821 void drop_inmem_pages(struct inode *inode); 2822 void drop_inmem_page(struct inode *inode, struct page *page); 2823 int commit_inmem_pages(struct inode *inode); 2824 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2825 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2826 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2827 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2828 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2829 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2830 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2831 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2832 void drop_discard_cmd(struct f2fs_sb_info *sbi); 2833 void stop_discard_thread(struct f2fs_sb_info *sbi); 2834 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2835 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2836 void release_discard_addrs(struct f2fs_sb_info *sbi); 2837 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2838 void allocate_new_segments(struct f2fs_sb_info *sbi); 2839 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2840 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2841 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2842 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2843 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2844 enum iostat_type io_type); 2845 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2846 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2847 int rewrite_data_page(struct f2fs_io_info *fio); 2848 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2849 block_t old_blkaddr, block_t new_blkaddr, 2850 bool recover_curseg, bool recover_newaddr); 2851 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2852 block_t old_addr, block_t new_addr, 2853 unsigned char version, bool recover_curseg, 2854 bool recover_newaddr); 2855 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2856 block_t old_blkaddr, block_t *new_blkaddr, 2857 struct f2fs_summary *sum, int type, 2858 struct f2fs_io_info *fio, bool add_list); 2859 void f2fs_wait_on_page_writeback(struct page *page, 2860 enum page_type type, bool ordered); 2861 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2862 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2863 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2864 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2865 unsigned int val, int alloc); 2866 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2867 int build_segment_manager(struct f2fs_sb_info *sbi); 2868 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2869 int __init create_segment_manager_caches(void); 2870 void destroy_segment_manager_caches(void); 2871 int rw_hint_to_seg_type(enum rw_hint hint); 2872 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type, 2873 enum temp_type temp); 2874 2875 /* 2876 * checkpoint.c 2877 */ 2878 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2879 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2880 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2881 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2882 bool is_valid_meta_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2883 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2884 int type, bool sync); 2885 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2886 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2887 long nr_to_write, enum iostat_type io_type); 2888 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2889 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2890 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2891 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2892 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2893 unsigned int devidx, int type); 2894 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2895 unsigned int devidx, int type); 2896 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2897 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2898 void release_orphan_inode(struct f2fs_sb_info *sbi); 2899 void add_orphan_inode(struct inode *inode); 2900 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2901 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2902 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2903 void update_dirty_page(struct inode *inode, struct page *page); 2904 void remove_dirty_inode(struct inode *inode); 2905 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2906 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2907 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2908 int __init create_checkpoint_caches(void); 2909 void destroy_checkpoint_caches(void); 2910 2911 /* 2912 * data.c 2913 */ 2914 int f2fs_init_post_read_processing(void); 2915 void f2fs_destroy_post_read_processing(void); 2916 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2917 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2918 struct inode *inode, nid_t ino, pgoff_t idx, 2919 enum page_type type); 2920 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2921 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2922 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2923 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2924 block_t blk_addr, struct bio *bio); 2925 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2926 void set_data_blkaddr(struct dnode_of_data *dn); 2927 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2928 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2929 int reserve_new_block(struct dnode_of_data *dn); 2930 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2931 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2932 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2933 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2934 int op_flags, bool for_write); 2935 struct page *find_data_page(struct inode *inode, pgoff_t index); 2936 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2937 bool for_write); 2938 struct page *get_new_data_page(struct inode *inode, 2939 struct page *ipage, pgoff_t index, bool new_i_size); 2940 int do_write_data_page(struct f2fs_io_info *fio); 2941 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2942 int create, int flag); 2943 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2944 u64 start, u64 len); 2945 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2946 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2947 int __f2fs_write_data_pages(struct address_space *mapping, 2948 struct writeback_control *wbc, 2949 enum iostat_type io_type); 2950 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2951 unsigned int length); 2952 int f2fs_release_page(struct page *page, gfp_t wait); 2953 #ifdef CONFIG_MIGRATION 2954 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2955 struct page *page, enum migrate_mode mode); 2956 #endif 2957 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 2958 2959 /* 2960 * gc.c 2961 */ 2962 int start_gc_thread(struct f2fs_sb_info *sbi); 2963 void stop_gc_thread(struct f2fs_sb_info *sbi); 2964 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2965 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2966 unsigned int segno); 2967 void build_gc_manager(struct f2fs_sb_info *sbi); 2968 2969 /* 2970 * recovery.c 2971 */ 2972 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2973 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2974 2975 /* 2976 * debug.c 2977 */ 2978 #ifdef CONFIG_F2FS_STAT_FS 2979 struct f2fs_stat_info { 2980 struct list_head stat_list; 2981 struct f2fs_sb_info *sbi; 2982 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2983 int main_area_segs, main_area_sections, main_area_zones; 2984 unsigned long long hit_largest, hit_cached, hit_rbtree; 2985 unsigned long long hit_total, total_ext; 2986 int ext_tree, zombie_tree, ext_node; 2987 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2988 int ndirty_data, ndirty_qdata; 2989 int inmem_pages; 2990 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2991 int nats, dirty_nats, sits, dirty_sits; 2992 int free_nids, avail_nids, alloc_nids; 2993 int total_count, utilization; 2994 int bg_gc, nr_wb_cp_data, nr_wb_data; 2995 int nr_flushing, nr_flushed, flush_list_empty; 2996 int nr_discarding, nr_discarded; 2997 int nr_discard_cmd; 2998 unsigned int undiscard_blks; 2999 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3000 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3001 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3002 unsigned int bimodal, avg_vblocks; 3003 int util_free, util_valid, util_invalid; 3004 int rsvd_segs, overp_segs; 3005 int dirty_count, node_pages, meta_pages; 3006 int prefree_count, call_count, cp_count, bg_cp_count; 3007 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3008 int bg_node_segs, bg_data_segs; 3009 int tot_blks, data_blks, node_blks; 3010 int bg_data_blks, bg_node_blks; 3011 int curseg[NR_CURSEG_TYPE]; 3012 int cursec[NR_CURSEG_TYPE]; 3013 int curzone[NR_CURSEG_TYPE]; 3014 3015 unsigned int segment_count[2]; 3016 unsigned int block_count[2]; 3017 unsigned int inplace_count; 3018 unsigned long long base_mem, cache_mem, page_mem; 3019 }; 3020 3021 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3022 { 3023 return (struct f2fs_stat_info *)sbi->stat_info; 3024 } 3025 3026 #define stat_inc_cp_count(si) ((si)->cp_count++) 3027 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3028 #define stat_inc_call_count(si) ((si)->call_count++) 3029 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3030 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3031 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3032 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3033 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3034 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3035 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3036 #define stat_inc_inline_xattr(inode) \ 3037 do { \ 3038 if (f2fs_has_inline_xattr(inode)) \ 3039 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3040 } while (0) 3041 #define stat_dec_inline_xattr(inode) \ 3042 do { \ 3043 if (f2fs_has_inline_xattr(inode)) \ 3044 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3045 } while (0) 3046 #define stat_inc_inline_inode(inode) \ 3047 do { \ 3048 if (f2fs_has_inline_data(inode)) \ 3049 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3050 } while (0) 3051 #define stat_dec_inline_inode(inode) \ 3052 do { \ 3053 if (f2fs_has_inline_data(inode)) \ 3054 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3055 } while (0) 3056 #define stat_inc_inline_dir(inode) \ 3057 do { \ 3058 if (f2fs_has_inline_dentry(inode)) \ 3059 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3060 } while (0) 3061 #define stat_dec_inline_dir(inode) \ 3062 do { \ 3063 if (f2fs_has_inline_dentry(inode)) \ 3064 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3065 } while (0) 3066 #define stat_inc_seg_type(sbi, curseg) \ 3067 ((sbi)->segment_count[(curseg)->alloc_type]++) 3068 #define stat_inc_block_count(sbi, curseg) \ 3069 ((sbi)->block_count[(curseg)->alloc_type]++) 3070 #define stat_inc_inplace_blocks(sbi) \ 3071 (atomic_inc(&(sbi)->inplace_count)) 3072 #define stat_inc_atomic_write(inode) \ 3073 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3074 #define stat_dec_atomic_write(inode) \ 3075 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3076 #define stat_update_max_atomic_write(inode) \ 3077 do { \ 3078 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3079 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3080 if (cur > max) \ 3081 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3082 } while (0) 3083 #define stat_inc_volatile_write(inode) \ 3084 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3085 #define stat_dec_volatile_write(inode) \ 3086 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3087 #define stat_update_max_volatile_write(inode) \ 3088 do { \ 3089 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3090 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3091 if (cur > max) \ 3092 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3093 } while (0) 3094 #define stat_inc_seg_count(sbi, type, gc_type) \ 3095 do { \ 3096 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3097 si->tot_segs++; \ 3098 if ((type) == SUM_TYPE_DATA) { \ 3099 si->data_segs++; \ 3100 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3101 } else { \ 3102 si->node_segs++; \ 3103 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3104 } \ 3105 } while (0) 3106 3107 #define stat_inc_tot_blk_count(si, blks) \ 3108 ((si)->tot_blks += (blks)) 3109 3110 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3111 do { \ 3112 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3113 stat_inc_tot_blk_count(si, blks); \ 3114 si->data_blks += (blks); \ 3115 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3116 } while (0) 3117 3118 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3119 do { \ 3120 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3121 stat_inc_tot_blk_count(si, blks); \ 3122 si->node_blks += (blks); \ 3123 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3124 } while (0) 3125 3126 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3127 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3128 int __init f2fs_create_root_stats(void); 3129 void f2fs_destroy_root_stats(void); 3130 #else 3131 #define stat_inc_cp_count(si) do { } while (0) 3132 #define stat_inc_bg_cp_count(si) do { } while (0) 3133 #define stat_inc_call_count(si) do { } while (0) 3134 #define stat_inc_bggc_count(si) do { } while (0) 3135 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3136 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3137 #define stat_inc_total_hit(sb) do { } while (0) 3138 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3139 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3140 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3141 #define stat_inc_inline_xattr(inode) do { } while (0) 3142 #define stat_dec_inline_xattr(inode) do { } while (0) 3143 #define stat_inc_inline_inode(inode) do { } while (0) 3144 #define stat_dec_inline_inode(inode) do { } while (0) 3145 #define stat_inc_inline_dir(inode) do { } while (0) 3146 #define stat_dec_inline_dir(inode) do { } while (0) 3147 #define stat_inc_atomic_write(inode) do { } while (0) 3148 #define stat_dec_atomic_write(inode) do { } while (0) 3149 #define stat_update_max_atomic_write(inode) do { } while (0) 3150 #define stat_inc_volatile_write(inode) do { } while (0) 3151 #define stat_dec_volatile_write(inode) do { } while (0) 3152 #define stat_update_max_volatile_write(inode) do { } while (0) 3153 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3154 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3155 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3156 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3157 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3158 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3159 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3160 3161 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3162 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3163 static inline int __init f2fs_create_root_stats(void) { return 0; } 3164 static inline void f2fs_destroy_root_stats(void) { } 3165 #endif 3166 3167 extern const struct file_operations f2fs_dir_operations; 3168 extern const struct file_operations f2fs_file_operations; 3169 extern const struct inode_operations f2fs_file_inode_operations; 3170 extern const struct address_space_operations f2fs_dblock_aops; 3171 extern const struct address_space_operations f2fs_node_aops; 3172 extern const struct address_space_operations f2fs_meta_aops; 3173 extern const struct inode_operations f2fs_dir_inode_operations; 3174 extern const struct inode_operations f2fs_symlink_inode_operations; 3175 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3176 extern const struct inode_operations f2fs_special_inode_operations; 3177 extern struct kmem_cache *inode_entry_slab; 3178 3179 /* 3180 * inline.c 3181 */ 3182 bool f2fs_may_inline_data(struct inode *inode); 3183 bool f2fs_may_inline_dentry(struct inode *inode); 3184 void read_inline_data(struct page *page, struct page *ipage); 3185 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3186 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3187 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3188 int f2fs_convert_inline_inode(struct inode *inode); 3189 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3190 bool recover_inline_data(struct inode *inode, struct page *npage); 3191 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3192 struct fscrypt_name *fname, struct page **res_page); 3193 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3194 struct page *ipage); 3195 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3196 const struct qstr *orig_name, 3197 struct inode *inode, nid_t ino, umode_t mode); 3198 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3199 struct inode *dir, struct inode *inode); 3200 bool f2fs_empty_inline_dir(struct inode *dir); 3201 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3202 struct fscrypt_str *fstr); 3203 int f2fs_inline_data_fiemap(struct inode *inode, 3204 struct fiemap_extent_info *fieinfo, 3205 __u64 start, __u64 len); 3206 3207 /* 3208 * shrinker.c 3209 */ 3210 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3211 struct shrink_control *sc); 3212 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3213 struct shrink_control *sc); 3214 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3215 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3216 3217 /* 3218 * extent_cache.c 3219 */ 3220 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3221 struct rb_entry *cached_re, unsigned int ofs); 3222 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3223 struct rb_root *root, struct rb_node **parent, 3224 unsigned int ofs); 3225 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3226 struct rb_entry *cached_re, unsigned int ofs, 3227 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3228 struct rb_node ***insert_p, struct rb_node **insert_parent, 3229 bool force); 3230 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3231 struct rb_root *root); 3232 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3233 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3234 void f2fs_drop_extent_tree(struct inode *inode); 3235 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3236 void f2fs_destroy_extent_tree(struct inode *inode); 3237 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3238 struct extent_info *ei); 3239 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3240 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3241 pgoff_t fofs, block_t blkaddr, unsigned int len); 3242 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3243 int __init create_extent_cache(void); 3244 void destroy_extent_cache(void); 3245 3246 /* 3247 * sysfs.c 3248 */ 3249 int __init f2fs_init_sysfs(void); 3250 void f2fs_exit_sysfs(void); 3251 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3252 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3253 3254 /* 3255 * crypto support 3256 */ 3257 static inline bool f2fs_encrypted_inode(struct inode *inode) 3258 { 3259 return file_is_encrypt(inode); 3260 } 3261 3262 static inline bool f2fs_encrypted_file(struct inode *inode) 3263 { 3264 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3265 } 3266 3267 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3268 { 3269 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3270 file_set_encrypt(inode); 3271 inode->i_flags |= S_ENCRYPTED; 3272 #endif 3273 } 3274 3275 /* 3276 * Returns true if the reads of the inode's data need to undergo some 3277 * postprocessing step, like decryption or authenticity verification. 3278 */ 3279 static inline bool f2fs_post_read_required(struct inode *inode) 3280 { 3281 return f2fs_encrypted_file(inode); 3282 } 3283 3284 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3285 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3286 { \ 3287 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3288 } 3289 3290 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3291 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3292 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3293 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3294 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3295 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3296 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3297 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3298 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3299 3300 #ifdef CONFIG_BLK_DEV_ZONED 3301 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3302 struct block_device *bdev, block_t blkaddr) 3303 { 3304 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3305 int i; 3306 3307 for (i = 0; i < sbi->s_ndevs; i++) 3308 if (FDEV(i).bdev == bdev) 3309 return FDEV(i).blkz_type[zno]; 3310 return -EINVAL; 3311 } 3312 #endif 3313 3314 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3315 { 3316 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3317 3318 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3319 } 3320 3321 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3322 { 3323 clear_opt(sbi, ADAPTIVE); 3324 clear_opt(sbi, LFS); 3325 3326 switch (mt) { 3327 case F2FS_MOUNT_ADAPTIVE: 3328 set_opt(sbi, ADAPTIVE); 3329 break; 3330 case F2FS_MOUNT_LFS: 3331 set_opt(sbi, LFS); 3332 break; 3333 } 3334 } 3335 3336 static inline bool f2fs_may_encrypt(struct inode *inode) 3337 { 3338 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3339 umode_t mode = inode->i_mode; 3340 3341 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3342 #else 3343 return 0; 3344 #endif 3345 } 3346 3347 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3348 { 3349 return (f2fs_post_read_required(inode) || 3350 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3351 F2FS_I_SB(inode)->s_ndevs); 3352 } 3353 3354 #endif 3355