xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 5b0e95398e2bcc18e871758221cc712be4a0a39a)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 struct f2fs_mount_info {
117 	unsigned int opt;
118 	int write_io_size_bits;		/* Write IO size bits */
119 	block_t root_reserved_blocks;	/* root reserved blocks */
120 	kuid_t s_resuid;		/* reserved blocks for uid */
121 	kgid_t s_resgid;		/* reserved blocks for gid */
122 	int active_logs;		/* # of active logs */
123 	int inline_xattr_size;		/* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 	struct f2fs_fault_info fault_info;	/* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 	/* Names of quota files with journalled quota */
129 	char *s_qf_names[MAXQUOTAS];
130 	int s_jquota_fmt;			/* Format of quota to use */
131 #endif
132 	/* For which write hints are passed down to block layer */
133 	int whint_mode;
134 	int alloc_mode;			/* segment allocation policy */
135 	int fsync_mode;			/* fsync policy */
136 	bool test_dummy_encryption;	/* test dummy encryption */
137 };
138 
139 #define F2FS_FEATURE_ENCRYPT		0x0001
140 #define F2FS_FEATURE_BLKZONED		0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
143 #define F2FS_FEATURE_PRJQUOTA		0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
146 #define F2FS_FEATURE_QUOTA_INO		0x0080
147 #define F2FS_FEATURE_INODE_CRTIME	0x0100
148 #define F2FS_FEATURE_LOST_FOUND		0x0200
149 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
150 
151 #define F2FS_HAS_FEATURE(sb, mask)					\
152 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask)					\
154 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask)					\
156 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157 
158 /*
159  * Default values for user and/or group using reserved blocks
160  */
161 #define	F2FS_DEF_RESUID		0
162 #define	F2FS_DEF_RESGID		0
163 
164 /*
165  * For checkpoint manager
166  */
167 enum {
168 	NAT_BITMAP,
169 	SIT_BITMAP
170 };
171 
172 #define	CP_UMOUNT	0x00000001
173 #define	CP_FASTBOOT	0x00000002
174 #define	CP_SYNC		0x00000004
175 #define	CP_RECOVERY	0x00000008
176 #define	CP_DISCARD	0x00000010
177 #define CP_TRIMMED	0x00000020
178 
179 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
180 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
181 #define DEF_MAX_DISCARD_LEN		512	/* Max. 2MB per discard */
182 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
183 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
184 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
185 #define DEF_CP_INTERVAL			60	/* 60 secs */
186 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
187 
188 struct cp_control {
189 	int reason;
190 	__u64 trim_start;
191 	__u64 trim_end;
192 	__u64 trim_minlen;
193 };
194 
195 /*
196  * For CP/NAT/SIT/SSA readahead
197  */
198 enum {
199 	META_CP,
200 	META_NAT,
201 	META_SIT,
202 	META_SSA,
203 	META_POR,
204 };
205 
206 /* for the list of ino */
207 enum {
208 	ORPHAN_INO,		/* for orphan ino list */
209 	APPEND_INO,		/* for append ino list */
210 	UPDATE_INO,		/* for update ino list */
211 	TRANS_DIR_INO,		/* for trasactions dir ino list */
212 	FLUSH_INO,		/* for multiple device flushing */
213 	MAX_INO_ENTRY,		/* max. list */
214 };
215 
216 struct ino_entry {
217 	struct list_head list;		/* list head */
218 	nid_t ino;			/* inode number */
219 	unsigned int dirty_device;	/* dirty device bitmap */
220 };
221 
222 /* for the list of inodes to be GCed */
223 struct inode_entry {
224 	struct list_head list;	/* list head */
225 	struct inode *inode;	/* vfs inode pointer */
226 };
227 
228 /* for the bitmap indicate blocks to be discarded */
229 struct discard_entry {
230 	struct list_head list;	/* list head */
231 	block_t start_blkaddr;	/* start blockaddr of current segment */
232 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
233 };
234 
235 /* default discard granularity of inner discard thread, unit: block count */
236 #define DEFAULT_DISCARD_GRANULARITY		16
237 
238 /* max discard pend list number */
239 #define MAX_PLIST_NUM		512
240 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
241 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
242 
243 enum {
244 	D_PREP,
245 	D_SUBMIT,
246 	D_DONE,
247 };
248 
249 struct discard_info {
250 	block_t lstart;			/* logical start address */
251 	block_t len;			/* length */
252 	block_t start;			/* actual start address in dev */
253 };
254 
255 struct discard_cmd {
256 	struct rb_node rb_node;		/* rb node located in rb-tree */
257 	union {
258 		struct {
259 			block_t lstart;	/* logical start address */
260 			block_t len;	/* length */
261 			block_t start;	/* actual start address in dev */
262 		};
263 		struct discard_info di;	/* discard info */
264 
265 	};
266 	struct list_head list;		/* command list */
267 	struct completion wait;		/* compleation */
268 	struct block_device *bdev;	/* bdev */
269 	unsigned short ref;		/* reference count */
270 	unsigned char state;		/* state */
271 	int error;			/* bio error */
272 };
273 
274 enum {
275 	DPOLICY_BG,
276 	DPOLICY_FORCE,
277 	DPOLICY_FSTRIM,
278 	DPOLICY_UMOUNT,
279 	MAX_DPOLICY,
280 };
281 
282 struct discard_policy {
283 	int type;			/* type of discard */
284 	unsigned int min_interval;	/* used for candidates exist */
285 	unsigned int max_interval;	/* used for candidates not exist */
286 	unsigned int max_requests;	/* # of discards issued per round */
287 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
288 	bool io_aware;			/* issue discard in idle time */
289 	bool sync;			/* submit discard with REQ_SYNC flag */
290 	unsigned int granularity;	/* discard granularity */
291 };
292 
293 struct discard_cmd_control {
294 	struct task_struct *f2fs_issue_discard;	/* discard thread */
295 	struct list_head entry_list;		/* 4KB discard entry list */
296 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
297 	struct list_head wait_list;		/* store on-flushing entries */
298 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
299 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
300 	unsigned int discard_wake;		/* to wake up discard thread */
301 	struct mutex cmd_lock;
302 	unsigned int nr_discards;		/* # of discards in the list */
303 	unsigned int max_discards;		/* max. discards to be issued */
304 	unsigned int discard_granularity;	/* discard granularity */
305 	unsigned int undiscard_blks;		/* # of undiscard blocks */
306 	atomic_t issued_discard;		/* # of issued discard */
307 	atomic_t issing_discard;		/* # of issing discard */
308 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
309 	struct rb_root root;			/* root of discard rb-tree */
310 };
311 
312 /* for the list of fsync inodes, used only during recovery */
313 struct fsync_inode_entry {
314 	struct list_head list;	/* list head */
315 	struct inode *inode;	/* vfs inode pointer */
316 	block_t blkaddr;	/* block address locating the last fsync */
317 	block_t last_dentry;	/* block address locating the last dentry */
318 };
319 
320 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
321 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
322 
323 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
324 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
325 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
326 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
327 
328 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
329 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
330 
331 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
332 {
333 	int before = nats_in_cursum(journal);
334 
335 	journal->n_nats = cpu_to_le16(before + i);
336 	return before;
337 }
338 
339 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
340 {
341 	int before = sits_in_cursum(journal);
342 
343 	journal->n_sits = cpu_to_le16(before + i);
344 	return before;
345 }
346 
347 static inline bool __has_cursum_space(struct f2fs_journal *journal,
348 							int size, int type)
349 {
350 	if (type == NAT_JOURNAL)
351 		return size <= MAX_NAT_JENTRIES(journal);
352 	return size <= MAX_SIT_JENTRIES(journal);
353 }
354 
355 /*
356  * ioctl commands
357  */
358 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
359 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
360 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
361 
362 #define F2FS_IOCTL_MAGIC		0xf5
363 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
364 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
365 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
366 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
367 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
368 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
369 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
370 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
371 						struct f2fs_defragment)
372 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
373 						struct f2fs_move_range)
374 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
375 						struct f2fs_flush_device)
376 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
377 						struct f2fs_gc_range)
378 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
379 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
380 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
381 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
382 
383 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
384 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
385 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
386 
387 /*
388  * should be same as XFS_IOC_GOINGDOWN.
389  * Flags for going down operation used by FS_IOC_GOINGDOWN
390  */
391 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
392 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
393 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
394 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
395 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
396 
397 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
398 /*
399  * ioctl commands in 32 bit emulation
400  */
401 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
402 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
403 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
404 #endif
405 
406 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
407 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
408 
409 struct f2fs_gc_range {
410 	u32 sync;
411 	u64 start;
412 	u64 len;
413 };
414 
415 struct f2fs_defragment {
416 	u64 start;
417 	u64 len;
418 };
419 
420 struct f2fs_move_range {
421 	u32 dst_fd;		/* destination fd */
422 	u64 pos_in;		/* start position in src_fd */
423 	u64 pos_out;		/* start position in dst_fd */
424 	u64 len;		/* size to move */
425 };
426 
427 struct f2fs_flush_device {
428 	u32 dev_num;		/* device number to flush */
429 	u32 segments;		/* # of segments to flush */
430 };
431 
432 /* for inline stuff */
433 #define DEF_INLINE_RESERVED_SIZE	1
434 #define DEF_MIN_INLINE_SIZE		1
435 static inline int get_extra_isize(struct inode *inode);
436 static inline int get_inline_xattr_addrs(struct inode *inode);
437 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
438 				(CUR_ADDRS_PER_INODE(inode) -		\
439 				get_inline_xattr_addrs(inode) -	\
440 				DEF_INLINE_RESERVED_SIZE))
441 
442 /* for inline dir */
443 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
444 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
445 				BITS_PER_BYTE + 1))
446 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
447 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
448 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
449 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 				NR_INLINE_DENTRY(inode) + \
451 				INLINE_DENTRY_BITMAP_SIZE(inode)))
452 
453 /*
454  * For INODE and NODE manager
455  */
456 /* for directory operations */
457 struct f2fs_dentry_ptr {
458 	struct inode *inode;
459 	void *bitmap;
460 	struct f2fs_dir_entry *dentry;
461 	__u8 (*filename)[F2FS_SLOT_LEN];
462 	int max;
463 	int nr_bitmap;
464 };
465 
466 static inline void make_dentry_ptr_block(struct inode *inode,
467 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
468 {
469 	d->inode = inode;
470 	d->max = NR_DENTRY_IN_BLOCK;
471 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
472 	d->bitmap = t->dentry_bitmap;
473 	d->dentry = t->dentry;
474 	d->filename = t->filename;
475 }
476 
477 static inline void make_dentry_ptr_inline(struct inode *inode,
478 					struct f2fs_dentry_ptr *d, void *t)
479 {
480 	int entry_cnt = NR_INLINE_DENTRY(inode);
481 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
482 	int reserved_size = INLINE_RESERVED_SIZE(inode);
483 
484 	d->inode = inode;
485 	d->max = entry_cnt;
486 	d->nr_bitmap = bitmap_size;
487 	d->bitmap = t;
488 	d->dentry = t + bitmap_size + reserved_size;
489 	d->filename = t + bitmap_size + reserved_size +
490 					SIZE_OF_DIR_ENTRY * entry_cnt;
491 }
492 
493 /*
494  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
495  * as its node offset to distinguish from index node blocks.
496  * But some bits are used to mark the node block.
497  */
498 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
499 				>> OFFSET_BIT_SHIFT)
500 enum {
501 	ALLOC_NODE,			/* allocate a new node page if needed */
502 	LOOKUP_NODE,			/* look up a node without readahead */
503 	LOOKUP_NODE_RA,			/*
504 					 * look up a node with readahead called
505 					 * by get_data_block.
506 					 */
507 };
508 
509 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
510 
511 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
512 
513 /* vector size for gang look-up from extent cache that consists of radix tree */
514 #define EXT_TREE_VEC_SIZE	64
515 
516 /* for in-memory extent cache entry */
517 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
518 
519 /* number of extent info in extent cache we try to shrink */
520 #define EXTENT_CACHE_SHRINK_NUMBER	128
521 
522 struct rb_entry {
523 	struct rb_node rb_node;		/* rb node located in rb-tree */
524 	unsigned int ofs;		/* start offset of the entry */
525 	unsigned int len;		/* length of the entry */
526 };
527 
528 struct extent_info {
529 	unsigned int fofs;		/* start offset in a file */
530 	unsigned int len;		/* length of the extent */
531 	u32 blk;			/* start block address of the extent */
532 };
533 
534 struct extent_node {
535 	struct rb_node rb_node;
536 	union {
537 		struct {
538 			unsigned int fofs;
539 			unsigned int len;
540 			u32 blk;
541 		};
542 		struct extent_info ei;	/* extent info */
543 
544 	};
545 	struct list_head list;		/* node in global extent list of sbi */
546 	struct extent_tree *et;		/* extent tree pointer */
547 };
548 
549 struct extent_tree {
550 	nid_t ino;			/* inode number */
551 	struct rb_root root;		/* root of extent info rb-tree */
552 	struct extent_node *cached_en;	/* recently accessed extent node */
553 	struct extent_info largest;	/* largested extent info */
554 	struct list_head list;		/* to be used by sbi->zombie_list */
555 	rwlock_t lock;			/* protect extent info rb-tree */
556 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
557 };
558 
559 /*
560  * This structure is taken from ext4_map_blocks.
561  *
562  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
563  */
564 #define F2FS_MAP_NEW		(1 << BH_New)
565 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
566 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
567 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
568 				F2FS_MAP_UNWRITTEN)
569 
570 struct f2fs_map_blocks {
571 	block_t m_pblk;
572 	block_t m_lblk;
573 	unsigned int m_len;
574 	unsigned int m_flags;
575 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
576 	pgoff_t *m_next_extent;		/* point to next possible extent */
577 	int m_seg_type;
578 };
579 
580 /* for flag in get_data_block */
581 enum {
582 	F2FS_GET_BLOCK_DEFAULT,
583 	F2FS_GET_BLOCK_FIEMAP,
584 	F2FS_GET_BLOCK_BMAP,
585 	F2FS_GET_BLOCK_PRE_DIO,
586 	F2FS_GET_BLOCK_PRE_AIO,
587 	F2FS_GET_BLOCK_PRECACHE,
588 };
589 
590 /*
591  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
592  */
593 #define FADVISE_COLD_BIT	0x01
594 #define FADVISE_LOST_PINO_BIT	0x02
595 #define FADVISE_ENCRYPT_BIT	0x04
596 #define FADVISE_ENC_NAME_BIT	0x08
597 #define FADVISE_KEEP_SIZE_BIT	0x10
598 #define FADVISE_HOT_BIT		0x20
599 #define FADVISE_VERITY_BIT	0x40	/* reserved */
600 
601 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
602 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
603 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
604 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
605 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
606 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
607 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
608 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
609 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
610 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
611 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
612 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
613 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
614 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
615 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
616 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
617 
618 #define DEF_DIR_LEVEL		0
619 
620 struct f2fs_inode_info {
621 	struct inode vfs_inode;		/* serve a vfs inode */
622 	unsigned long i_flags;		/* keep an inode flags for ioctl */
623 	unsigned char i_advise;		/* use to give file attribute hints */
624 	unsigned char i_dir_level;	/* use for dentry level for large dir */
625 	union {
626 		unsigned int i_current_depth;	/* only for directory depth */
627 		unsigned short i_gc_failures;	/* only for regular file */
628 	};
629 	unsigned int i_pino;		/* parent inode number */
630 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
631 
632 	/* Use below internally in f2fs*/
633 	unsigned long flags;		/* use to pass per-file flags */
634 	struct rw_semaphore i_sem;	/* protect fi info */
635 	atomic_t dirty_pages;		/* # of dirty pages */
636 	f2fs_hash_t chash;		/* hash value of given file name */
637 	unsigned int clevel;		/* maximum level of given file name */
638 	struct task_struct *task;	/* lookup and create consistency */
639 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
640 	nid_t i_xattr_nid;		/* node id that contains xattrs */
641 	loff_t	last_disk_size;		/* lastly written file size */
642 
643 #ifdef CONFIG_QUOTA
644 	struct dquot *i_dquot[MAXQUOTAS];
645 
646 	/* quota space reservation, managed internally by quota code */
647 	qsize_t i_reserved_quota;
648 #endif
649 	struct list_head dirty_list;	/* dirty list for dirs and files */
650 	struct list_head gdirty_list;	/* linked in global dirty list */
651 	struct list_head inmem_ilist;	/* list for inmem inodes */
652 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
653 	struct task_struct *inmem_task;	/* store inmemory task */
654 	struct mutex inmem_lock;	/* lock for inmemory pages */
655 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
656 
657 	/* avoid racing between foreground op and gc */
658 	struct rw_semaphore i_gc_rwsem[2];
659 	struct rw_semaphore i_mmap_sem;
660 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
661 
662 	int i_extra_isize;		/* size of extra space located in i_addr */
663 	kprojid_t i_projid;		/* id for project quota */
664 	int i_inline_xattr_size;	/* inline xattr size */
665 	struct timespec i_crtime;	/* inode creation time */
666 	struct timespec i_disk_time[4];	/* inode disk times */
667 };
668 
669 static inline void get_extent_info(struct extent_info *ext,
670 					struct f2fs_extent *i_ext)
671 {
672 	ext->fofs = le32_to_cpu(i_ext->fofs);
673 	ext->blk = le32_to_cpu(i_ext->blk);
674 	ext->len = le32_to_cpu(i_ext->len);
675 }
676 
677 static inline void set_raw_extent(struct extent_info *ext,
678 					struct f2fs_extent *i_ext)
679 {
680 	i_ext->fofs = cpu_to_le32(ext->fofs);
681 	i_ext->blk = cpu_to_le32(ext->blk);
682 	i_ext->len = cpu_to_le32(ext->len);
683 }
684 
685 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
686 						u32 blk, unsigned int len)
687 {
688 	ei->fofs = fofs;
689 	ei->blk = blk;
690 	ei->len = len;
691 }
692 
693 static inline bool __is_discard_mergeable(struct discard_info *back,
694 						struct discard_info *front)
695 {
696 	return (back->lstart + back->len == front->lstart) &&
697 		(back->len + front->len < DEF_MAX_DISCARD_LEN);
698 }
699 
700 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
701 						struct discard_info *back)
702 {
703 	return __is_discard_mergeable(back, cur);
704 }
705 
706 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
707 						struct discard_info *front)
708 {
709 	return __is_discard_mergeable(cur, front);
710 }
711 
712 static inline bool __is_extent_mergeable(struct extent_info *back,
713 						struct extent_info *front)
714 {
715 	return (back->fofs + back->len == front->fofs &&
716 			back->blk + back->len == front->blk);
717 }
718 
719 static inline bool __is_back_mergeable(struct extent_info *cur,
720 						struct extent_info *back)
721 {
722 	return __is_extent_mergeable(back, cur);
723 }
724 
725 static inline bool __is_front_mergeable(struct extent_info *cur,
726 						struct extent_info *front)
727 {
728 	return __is_extent_mergeable(cur, front);
729 }
730 
731 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
732 static inline void __try_update_largest_extent(struct inode *inode,
733 			struct extent_tree *et, struct extent_node *en)
734 {
735 	if (en->ei.len > et->largest.len) {
736 		et->largest = en->ei;
737 		f2fs_mark_inode_dirty_sync(inode, true);
738 	}
739 }
740 
741 /*
742  * For free nid management
743  */
744 enum nid_state {
745 	FREE_NID,		/* newly added to free nid list */
746 	PREALLOC_NID,		/* it is preallocated */
747 	MAX_NID_STATE,
748 };
749 
750 struct f2fs_nm_info {
751 	block_t nat_blkaddr;		/* base disk address of NAT */
752 	nid_t max_nid;			/* maximum possible node ids */
753 	nid_t available_nids;		/* # of available node ids */
754 	nid_t next_scan_nid;		/* the next nid to be scanned */
755 	unsigned int ram_thresh;	/* control the memory footprint */
756 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
757 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
758 
759 	/* NAT cache management */
760 	struct radix_tree_root nat_root;/* root of the nat entry cache */
761 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
762 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
763 	struct list_head nat_entries;	/* cached nat entry list (clean) */
764 	unsigned int nat_cnt;		/* the # of cached nat entries */
765 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
766 	unsigned int nat_blocks;	/* # of nat blocks */
767 
768 	/* free node ids management */
769 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
770 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
771 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
772 	spinlock_t nid_list_lock;	/* protect nid lists ops */
773 	struct mutex build_lock;	/* lock for build free nids */
774 	unsigned char **free_nid_bitmap;
775 	unsigned char *nat_block_bitmap;
776 	unsigned short *free_nid_count;	/* free nid count of NAT block */
777 
778 	/* for checkpoint */
779 	char *nat_bitmap;		/* NAT bitmap pointer */
780 
781 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
782 	unsigned char *nat_bits;	/* NAT bits blocks */
783 	unsigned char *full_nat_bits;	/* full NAT pages */
784 	unsigned char *empty_nat_bits;	/* empty NAT pages */
785 #ifdef CONFIG_F2FS_CHECK_FS
786 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
787 #endif
788 	int bitmap_size;		/* bitmap size */
789 };
790 
791 /*
792  * this structure is used as one of function parameters.
793  * all the information are dedicated to a given direct node block determined
794  * by the data offset in a file.
795  */
796 struct dnode_of_data {
797 	struct inode *inode;		/* vfs inode pointer */
798 	struct page *inode_page;	/* its inode page, NULL is possible */
799 	struct page *node_page;		/* cached direct node page */
800 	nid_t nid;			/* node id of the direct node block */
801 	unsigned int ofs_in_node;	/* data offset in the node page */
802 	bool inode_page_locked;		/* inode page is locked or not */
803 	bool node_changed;		/* is node block changed */
804 	char cur_level;			/* level of hole node page */
805 	char max_level;			/* level of current page located */
806 	block_t	data_blkaddr;		/* block address of the node block */
807 };
808 
809 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
810 		struct page *ipage, struct page *npage, nid_t nid)
811 {
812 	memset(dn, 0, sizeof(*dn));
813 	dn->inode = inode;
814 	dn->inode_page = ipage;
815 	dn->node_page = npage;
816 	dn->nid = nid;
817 }
818 
819 /*
820  * For SIT manager
821  *
822  * By default, there are 6 active log areas across the whole main area.
823  * When considering hot and cold data separation to reduce cleaning overhead,
824  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
825  * respectively.
826  * In the current design, you should not change the numbers intentionally.
827  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
828  * logs individually according to the underlying devices. (default: 6)
829  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
830  * data and 8 for node logs.
831  */
832 #define	NR_CURSEG_DATA_TYPE	(3)
833 #define NR_CURSEG_NODE_TYPE	(3)
834 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
835 
836 enum {
837 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
838 	CURSEG_WARM_DATA,	/* data blocks */
839 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
840 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
841 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
842 	CURSEG_COLD_NODE,	/* indirect node blocks */
843 	NO_CHECK_TYPE,
844 };
845 
846 struct flush_cmd {
847 	struct completion wait;
848 	struct llist_node llnode;
849 	nid_t ino;
850 	int ret;
851 };
852 
853 struct flush_cmd_control {
854 	struct task_struct *f2fs_issue_flush;	/* flush thread */
855 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
856 	atomic_t issued_flush;			/* # of issued flushes */
857 	atomic_t issing_flush;			/* # of issing flushes */
858 	struct llist_head issue_list;		/* list for command issue */
859 	struct llist_node *dispatch_list;	/* list for command dispatch */
860 };
861 
862 struct f2fs_sm_info {
863 	struct sit_info *sit_info;		/* whole segment information */
864 	struct free_segmap_info *free_info;	/* free segment information */
865 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
866 	struct curseg_info *curseg_array;	/* active segment information */
867 
868 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
869 
870 	block_t seg0_blkaddr;		/* block address of 0'th segment */
871 	block_t main_blkaddr;		/* start block address of main area */
872 	block_t ssa_blkaddr;		/* start block address of SSA area */
873 
874 	unsigned int segment_count;	/* total # of segments */
875 	unsigned int main_segments;	/* # of segments in main area */
876 	unsigned int reserved_segments;	/* # of reserved segments */
877 	unsigned int ovp_segments;	/* # of overprovision segments */
878 
879 	/* a threshold to reclaim prefree segments */
880 	unsigned int rec_prefree_segments;
881 
882 	/* for batched trimming */
883 	unsigned int trim_sections;		/* # of sections to trim */
884 
885 	struct list_head sit_entry_set;	/* sit entry set list */
886 
887 	unsigned int ipu_policy;	/* in-place-update policy */
888 	unsigned int min_ipu_util;	/* in-place-update threshold */
889 	unsigned int min_fsync_blocks;	/* threshold for fsync */
890 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
891 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
892 
893 	/* for flush command control */
894 	struct flush_cmd_control *fcc_info;
895 
896 	/* for discard command control */
897 	struct discard_cmd_control *dcc_info;
898 };
899 
900 /*
901  * For superblock
902  */
903 /*
904  * COUNT_TYPE for monitoring
905  *
906  * f2fs monitors the number of several block types such as on-writeback,
907  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
908  */
909 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
910 enum count_type {
911 	F2FS_DIRTY_DENTS,
912 	F2FS_DIRTY_DATA,
913 	F2FS_DIRTY_QDATA,
914 	F2FS_DIRTY_NODES,
915 	F2FS_DIRTY_META,
916 	F2FS_INMEM_PAGES,
917 	F2FS_DIRTY_IMETA,
918 	F2FS_WB_CP_DATA,
919 	F2FS_WB_DATA,
920 	NR_COUNT_TYPE,
921 };
922 
923 /*
924  * The below are the page types of bios used in submit_bio().
925  * The available types are:
926  * DATA			User data pages. It operates as async mode.
927  * NODE			Node pages. It operates as async mode.
928  * META			FS metadata pages such as SIT, NAT, CP.
929  * NR_PAGE_TYPE		The number of page types.
930  * META_FLUSH		Make sure the previous pages are written
931  *			with waiting the bio's completion
932  * ...			Only can be used with META.
933  */
934 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
935 enum page_type {
936 	DATA,
937 	NODE,
938 	META,
939 	NR_PAGE_TYPE,
940 	META_FLUSH,
941 	INMEM,		/* the below types are used by tracepoints only. */
942 	INMEM_DROP,
943 	INMEM_INVALIDATE,
944 	INMEM_REVOKE,
945 	IPU,
946 	OPU,
947 };
948 
949 enum temp_type {
950 	HOT = 0,	/* must be zero for meta bio */
951 	WARM,
952 	COLD,
953 	NR_TEMP_TYPE,
954 };
955 
956 enum need_lock_type {
957 	LOCK_REQ = 0,
958 	LOCK_DONE,
959 	LOCK_RETRY,
960 };
961 
962 enum cp_reason_type {
963 	CP_NO_NEEDED,
964 	CP_NON_REGULAR,
965 	CP_HARDLINK,
966 	CP_SB_NEED_CP,
967 	CP_WRONG_PINO,
968 	CP_NO_SPC_ROLL,
969 	CP_NODE_NEED_CP,
970 	CP_FASTBOOT_MODE,
971 	CP_SPEC_LOG_NUM,
972 	CP_RECOVER_DIR,
973 };
974 
975 enum iostat_type {
976 	APP_DIRECT_IO,			/* app direct IOs */
977 	APP_BUFFERED_IO,		/* app buffered IOs */
978 	APP_WRITE_IO,			/* app write IOs */
979 	APP_MAPPED_IO,			/* app mapped IOs */
980 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
981 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
982 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
983 	FS_GC_DATA_IO,			/* data IOs from forground gc */
984 	FS_GC_NODE_IO,			/* node IOs from forground gc */
985 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
986 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
987 	FS_CP_META_IO,			/* meta IOs from checkpoint */
988 	FS_DISCARD,			/* discard */
989 	NR_IO_TYPE,
990 };
991 
992 struct f2fs_io_info {
993 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
994 	nid_t ino;		/* inode number */
995 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
996 	enum temp_type temp;	/* contains HOT/WARM/COLD */
997 	int op;			/* contains REQ_OP_ */
998 	int op_flags;		/* req_flag_bits */
999 	block_t new_blkaddr;	/* new block address to be written */
1000 	block_t old_blkaddr;	/* old block address before Cow */
1001 	struct page *page;	/* page to be written */
1002 	struct page *encrypted_page;	/* encrypted page */
1003 	struct list_head list;		/* serialize IOs */
1004 	bool submitted;		/* indicate IO submission */
1005 	int need_lock;		/* indicate we need to lock cp_rwsem */
1006 	bool in_list;		/* indicate fio is in io_list */
1007 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1008 	enum iostat_type io_type;	/* io type */
1009 	struct writeback_control *io_wbc; /* writeback control */
1010 };
1011 
1012 #define is_read_io(rw) ((rw) == READ)
1013 struct f2fs_bio_info {
1014 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1015 	struct bio *bio;		/* bios to merge */
1016 	sector_t last_block_in_bio;	/* last block number */
1017 	struct f2fs_io_info fio;	/* store buffered io info. */
1018 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1019 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1020 	struct list_head io_list;	/* track fios */
1021 };
1022 
1023 #define FDEV(i)				(sbi->devs[i])
1024 #define RDEV(i)				(raw_super->devs[i])
1025 struct f2fs_dev_info {
1026 	struct block_device *bdev;
1027 	char path[MAX_PATH_LEN];
1028 	unsigned int total_segments;
1029 	block_t start_blk;
1030 	block_t end_blk;
1031 #ifdef CONFIG_BLK_DEV_ZONED
1032 	unsigned int nr_blkz;			/* Total number of zones */
1033 	u8 *blkz_type;				/* Array of zones type */
1034 #endif
1035 };
1036 
1037 enum inode_type {
1038 	DIR_INODE,			/* for dirty dir inode */
1039 	FILE_INODE,			/* for dirty regular/symlink inode */
1040 	DIRTY_META,			/* for all dirtied inode metadata */
1041 	ATOMIC_FILE,			/* for all atomic files */
1042 	NR_INODE_TYPE,
1043 };
1044 
1045 /* for inner inode cache management */
1046 struct inode_management {
1047 	struct radix_tree_root ino_root;	/* ino entry array */
1048 	spinlock_t ino_lock;			/* for ino entry lock */
1049 	struct list_head ino_list;		/* inode list head */
1050 	unsigned long ino_num;			/* number of entries */
1051 };
1052 
1053 /* For s_flag in struct f2fs_sb_info */
1054 enum {
1055 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1056 	SBI_IS_CLOSE,				/* specify unmounting */
1057 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1058 	SBI_POR_DOING,				/* recovery is doing or not */
1059 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1060 	SBI_NEED_CP,				/* need to checkpoint */
1061 };
1062 
1063 enum {
1064 	CP_TIME,
1065 	REQ_TIME,
1066 	MAX_TIME,
1067 };
1068 
1069 enum {
1070 	GC_NORMAL,
1071 	GC_IDLE_CB,
1072 	GC_IDLE_GREEDY,
1073 	GC_URGENT,
1074 };
1075 
1076 enum {
1077 	WHINT_MODE_OFF,		/* not pass down write hints */
1078 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1079 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1080 };
1081 
1082 enum {
1083 	ALLOC_MODE_DEFAULT,	/* stay default */
1084 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1085 };
1086 
1087 enum fsync_mode {
1088 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1089 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1090 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1091 };
1092 
1093 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1094 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1095 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1096 #else
1097 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1098 #endif
1099 
1100 struct f2fs_sb_info {
1101 	struct super_block *sb;			/* pointer to VFS super block */
1102 	struct proc_dir_entry *s_proc;		/* proc entry */
1103 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1104 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1105 	int valid_super_block;			/* valid super block no */
1106 	unsigned long s_flag;				/* flags for sbi */
1107 
1108 #ifdef CONFIG_BLK_DEV_ZONED
1109 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1110 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1111 #endif
1112 
1113 	/* for node-related operations */
1114 	struct f2fs_nm_info *nm_info;		/* node manager */
1115 	struct inode *node_inode;		/* cache node blocks */
1116 
1117 	/* for segment-related operations */
1118 	struct f2fs_sm_info *sm_info;		/* segment manager */
1119 
1120 	/* for bio operations */
1121 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1122 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1123 						/* bio ordering for NODE/DATA */
1124 	/* keep migration IO order for LFS mode */
1125 	struct rw_semaphore io_order_lock;
1126 	mempool_t *write_io_dummy;		/* Dummy pages */
1127 
1128 	/* for checkpoint */
1129 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1130 	int cur_cp_pack;			/* remain current cp pack */
1131 	spinlock_t cp_lock;			/* for flag in ckpt */
1132 	struct inode *meta_inode;		/* cache meta blocks */
1133 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1134 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1135 	struct rw_semaphore node_write;		/* locking node writes */
1136 	struct rw_semaphore node_change;	/* locking node change */
1137 	wait_queue_head_t cp_wait;
1138 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1139 	long interval_time[MAX_TIME];		/* to store thresholds */
1140 
1141 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1142 
1143 	/* for orphan inode, use 0'th array */
1144 	unsigned int max_orphans;		/* max orphan inodes */
1145 
1146 	/* for inode management */
1147 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1148 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1149 
1150 	/* for extent tree cache */
1151 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1152 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1153 	struct list_head extent_list;		/* lru list for shrinker */
1154 	spinlock_t extent_lock;			/* locking extent lru list */
1155 	atomic_t total_ext_tree;		/* extent tree count */
1156 	struct list_head zombie_list;		/* extent zombie tree list */
1157 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1158 	atomic_t total_ext_node;		/* extent info count */
1159 
1160 	/* basic filesystem units */
1161 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1162 	unsigned int log_blocksize;		/* log2 block size */
1163 	unsigned int blocksize;			/* block size */
1164 	unsigned int root_ino_num;		/* root inode number*/
1165 	unsigned int node_ino_num;		/* node inode number*/
1166 	unsigned int meta_ino_num;		/* meta inode number*/
1167 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1168 	unsigned int blocks_per_seg;		/* blocks per segment */
1169 	unsigned int segs_per_sec;		/* segments per section */
1170 	unsigned int secs_per_zone;		/* sections per zone */
1171 	unsigned int total_sections;		/* total section count */
1172 	unsigned int total_node_count;		/* total node block count */
1173 	unsigned int total_valid_node_count;	/* valid node block count */
1174 	loff_t max_file_blocks;			/* max block index of file */
1175 	int dir_level;				/* directory level */
1176 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1177 	int readdir_ra;				/* readahead inode in readdir */
1178 
1179 	block_t user_block_count;		/* # of user blocks */
1180 	block_t total_valid_block_count;	/* # of valid blocks */
1181 	block_t discard_blks;			/* discard command candidats */
1182 	block_t last_valid_block_count;		/* for recovery */
1183 	block_t reserved_blocks;		/* configurable reserved blocks */
1184 	block_t current_reserved_blocks;	/* current reserved blocks */
1185 
1186 	unsigned int nquota_files;		/* # of quota sysfile */
1187 
1188 	u32 s_next_generation;			/* for NFS support */
1189 
1190 	/* # of pages, see count_type */
1191 	atomic_t nr_pages[NR_COUNT_TYPE];
1192 	/* # of allocated blocks */
1193 	struct percpu_counter alloc_valid_block_count;
1194 
1195 	/* writeback control */
1196 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1197 
1198 	/* valid inode count */
1199 	struct percpu_counter total_valid_inode_count;
1200 
1201 	struct f2fs_mount_info mount_opt;	/* mount options */
1202 
1203 	/* for cleaning operations */
1204 	struct mutex gc_mutex;			/* mutex for GC */
1205 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1206 	unsigned int cur_victim_sec;		/* current victim section num */
1207 	unsigned int gc_mode;			/* current GC state */
1208 
1209 	/* threshold for gc trials on pinned files */
1210 	u64 gc_pin_file_threshold;
1211 
1212 	/* maximum # of trials to find a victim segment for SSR and GC */
1213 	unsigned int max_victim_search;
1214 
1215 	/*
1216 	 * for stat information.
1217 	 * one is for the LFS mode, and the other is for the SSR mode.
1218 	 */
1219 #ifdef CONFIG_F2FS_STAT_FS
1220 	struct f2fs_stat_info *stat_info;	/* FS status information */
1221 	unsigned int segment_count[2];		/* # of allocated segments */
1222 	unsigned int block_count[2];		/* # of allocated blocks */
1223 	atomic_t inplace_count;		/* # of inplace update */
1224 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1225 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1226 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1227 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1228 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1229 	atomic_t inline_inode;			/* # of inline_data inodes */
1230 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1231 	atomic_t aw_cnt;			/* # of atomic writes */
1232 	atomic_t vw_cnt;			/* # of volatile writes */
1233 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1234 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1235 	int bg_gc;				/* background gc calls */
1236 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1237 #endif
1238 	spinlock_t stat_lock;			/* lock for stat operations */
1239 
1240 	/* For app/fs IO statistics */
1241 	spinlock_t iostat_lock;
1242 	unsigned long long write_iostat[NR_IO_TYPE];
1243 	bool iostat_enable;
1244 
1245 	/* For sysfs suppport */
1246 	struct kobject s_kobj;
1247 	struct completion s_kobj_unregister;
1248 
1249 	/* For shrinker support */
1250 	struct list_head s_list;
1251 	int s_ndevs;				/* number of devices */
1252 	struct f2fs_dev_info *devs;		/* for device list */
1253 	unsigned int dirty_device;		/* for checkpoint data flush */
1254 	spinlock_t dev_lock;			/* protect dirty_device */
1255 	struct mutex umount_mutex;
1256 	unsigned int shrinker_run_no;
1257 
1258 	/* For write statistics */
1259 	u64 sectors_written_start;
1260 	u64 kbytes_written;
1261 
1262 	/* Reference to checksum algorithm driver via cryptoapi */
1263 	struct crypto_shash *s_chksum_driver;
1264 
1265 	/* Precomputed FS UUID checksum for seeding other checksums */
1266 	__u32 s_chksum_seed;
1267 };
1268 
1269 #ifdef CONFIG_F2FS_FAULT_INJECTION
1270 #define f2fs_show_injection_info(type)				\
1271 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1272 		KERN_INFO, fault_name[type],			\
1273 		__func__, __builtin_return_address(0))
1274 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1275 {
1276 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1277 
1278 	if (!ffi->inject_rate)
1279 		return false;
1280 
1281 	if (!IS_FAULT_SET(ffi, type))
1282 		return false;
1283 
1284 	atomic_inc(&ffi->inject_ops);
1285 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1286 		atomic_set(&ffi->inject_ops, 0);
1287 		return true;
1288 	}
1289 	return false;
1290 }
1291 #endif
1292 
1293 /* For write statistics. Suppose sector size is 512 bytes,
1294  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1295  */
1296 #define BD_PART_WRITTEN(s)						 \
1297 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1298 		(s)->sectors_written_start) >> 1)
1299 
1300 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1301 {
1302 	sbi->last_time[type] = jiffies;
1303 }
1304 
1305 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1306 {
1307 	unsigned long interval = sbi->interval_time[type] * HZ;
1308 
1309 	return time_after(jiffies, sbi->last_time[type] + interval);
1310 }
1311 
1312 static inline bool is_idle(struct f2fs_sb_info *sbi)
1313 {
1314 	struct block_device *bdev = sbi->sb->s_bdev;
1315 	struct request_queue *q = bdev_get_queue(bdev);
1316 	struct request_list *rl = &q->root_rl;
1317 
1318 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1319 		return 0;
1320 
1321 	return f2fs_time_over(sbi, REQ_TIME);
1322 }
1323 
1324 /*
1325  * Inline functions
1326  */
1327 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1328 			      const void *address, unsigned int length)
1329 {
1330 	struct {
1331 		struct shash_desc shash;
1332 		char ctx[4];
1333 	} desc;
1334 	int err;
1335 
1336 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1337 
1338 	desc.shash.tfm = sbi->s_chksum_driver;
1339 	desc.shash.flags = 0;
1340 	*(u32 *)desc.ctx = crc;
1341 
1342 	err = crypto_shash_update(&desc.shash, address, length);
1343 	BUG_ON(err);
1344 
1345 	return *(u32 *)desc.ctx;
1346 }
1347 
1348 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1349 			   unsigned int length)
1350 {
1351 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1352 }
1353 
1354 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1355 				  void *buf, size_t buf_size)
1356 {
1357 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1358 }
1359 
1360 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1361 			      const void *address, unsigned int length)
1362 {
1363 	return __f2fs_crc32(sbi, crc, address, length);
1364 }
1365 
1366 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1367 {
1368 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1369 }
1370 
1371 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1372 {
1373 	return sb->s_fs_info;
1374 }
1375 
1376 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1377 {
1378 	return F2FS_SB(inode->i_sb);
1379 }
1380 
1381 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1382 {
1383 	return F2FS_I_SB(mapping->host);
1384 }
1385 
1386 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1387 {
1388 	return F2FS_M_SB(page->mapping);
1389 }
1390 
1391 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1392 {
1393 	return (struct f2fs_super_block *)(sbi->raw_super);
1394 }
1395 
1396 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1397 {
1398 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1399 }
1400 
1401 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1402 {
1403 	return (struct f2fs_node *)page_address(page);
1404 }
1405 
1406 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1407 {
1408 	return &((struct f2fs_node *)page_address(page))->i;
1409 }
1410 
1411 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1412 {
1413 	return (struct f2fs_nm_info *)(sbi->nm_info);
1414 }
1415 
1416 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1417 {
1418 	return (struct f2fs_sm_info *)(sbi->sm_info);
1419 }
1420 
1421 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1422 {
1423 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1424 }
1425 
1426 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1427 {
1428 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1429 }
1430 
1431 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1432 {
1433 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1434 }
1435 
1436 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1437 {
1438 	return sbi->meta_inode->i_mapping;
1439 }
1440 
1441 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1442 {
1443 	return sbi->node_inode->i_mapping;
1444 }
1445 
1446 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1447 {
1448 	return test_bit(type, &sbi->s_flag);
1449 }
1450 
1451 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1452 {
1453 	set_bit(type, &sbi->s_flag);
1454 }
1455 
1456 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1457 {
1458 	clear_bit(type, &sbi->s_flag);
1459 }
1460 
1461 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1462 {
1463 	return le64_to_cpu(cp->checkpoint_ver);
1464 }
1465 
1466 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1467 {
1468 	if (type < F2FS_MAX_QUOTAS)
1469 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1470 	return 0;
1471 }
1472 
1473 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1474 {
1475 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1476 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1477 }
1478 
1479 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1480 {
1481 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1482 
1483 	return ckpt_flags & f;
1484 }
1485 
1486 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1487 {
1488 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1489 }
1490 
1491 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1492 {
1493 	unsigned int ckpt_flags;
1494 
1495 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1496 	ckpt_flags |= f;
1497 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1498 }
1499 
1500 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1501 {
1502 	unsigned long flags;
1503 
1504 	spin_lock_irqsave(&sbi->cp_lock, flags);
1505 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1506 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1507 }
1508 
1509 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1510 {
1511 	unsigned int ckpt_flags;
1512 
1513 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1514 	ckpt_flags &= (~f);
1515 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1516 }
1517 
1518 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1519 {
1520 	unsigned long flags;
1521 
1522 	spin_lock_irqsave(&sbi->cp_lock, flags);
1523 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1524 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1525 }
1526 
1527 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1528 {
1529 	unsigned long flags;
1530 
1531 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1532 
1533 	if (lock)
1534 		spin_lock_irqsave(&sbi->cp_lock, flags);
1535 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1536 	kfree(NM_I(sbi)->nat_bits);
1537 	NM_I(sbi)->nat_bits = NULL;
1538 	if (lock)
1539 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1540 }
1541 
1542 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1543 					struct cp_control *cpc)
1544 {
1545 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1546 
1547 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1548 }
1549 
1550 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1551 {
1552 	down_read(&sbi->cp_rwsem);
1553 }
1554 
1555 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1556 {
1557 	return down_read_trylock(&sbi->cp_rwsem);
1558 }
1559 
1560 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1561 {
1562 	up_read(&sbi->cp_rwsem);
1563 }
1564 
1565 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1566 {
1567 	down_write(&sbi->cp_rwsem);
1568 }
1569 
1570 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1571 {
1572 	up_write(&sbi->cp_rwsem);
1573 }
1574 
1575 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1576 {
1577 	int reason = CP_SYNC;
1578 
1579 	if (test_opt(sbi, FASTBOOT))
1580 		reason = CP_FASTBOOT;
1581 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1582 		reason = CP_UMOUNT;
1583 	return reason;
1584 }
1585 
1586 static inline bool __remain_node_summaries(int reason)
1587 {
1588 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1589 }
1590 
1591 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1592 {
1593 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1594 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1595 }
1596 
1597 /*
1598  * Check whether the inode has blocks or not
1599  */
1600 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1601 {
1602 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1603 
1604 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1605 }
1606 
1607 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1608 {
1609 	return ofs == XATTR_NODE_OFFSET;
1610 }
1611 
1612 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1613 					struct inode *inode, bool cap)
1614 {
1615 	if (!inode)
1616 		return true;
1617 	if (!test_opt(sbi, RESERVE_ROOT))
1618 		return false;
1619 	if (IS_NOQUOTA(inode))
1620 		return true;
1621 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1622 		return true;
1623 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1624 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1625 		return true;
1626 	if (cap && capable(CAP_SYS_RESOURCE))
1627 		return true;
1628 	return false;
1629 }
1630 
1631 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1632 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1633 				 struct inode *inode, blkcnt_t *count)
1634 {
1635 	blkcnt_t diff = 0, release = 0;
1636 	block_t avail_user_block_count;
1637 	int ret;
1638 
1639 	ret = dquot_reserve_block(inode, *count);
1640 	if (ret)
1641 		return ret;
1642 
1643 #ifdef CONFIG_F2FS_FAULT_INJECTION
1644 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1645 		f2fs_show_injection_info(FAULT_BLOCK);
1646 		release = *count;
1647 		goto enospc;
1648 	}
1649 #endif
1650 	/*
1651 	 * let's increase this in prior to actual block count change in order
1652 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1653 	 */
1654 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1655 
1656 	spin_lock(&sbi->stat_lock);
1657 	sbi->total_valid_block_count += (block_t)(*count);
1658 	avail_user_block_count = sbi->user_block_count -
1659 					sbi->current_reserved_blocks;
1660 
1661 	if (!__allow_reserved_blocks(sbi, inode, true))
1662 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1663 
1664 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1665 		diff = sbi->total_valid_block_count - avail_user_block_count;
1666 		if (diff > *count)
1667 			diff = *count;
1668 		*count -= diff;
1669 		release = diff;
1670 		sbi->total_valid_block_count -= diff;
1671 		if (!*count) {
1672 			spin_unlock(&sbi->stat_lock);
1673 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1674 			goto enospc;
1675 		}
1676 	}
1677 	spin_unlock(&sbi->stat_lock);
1678 
1679 	if (unlikely(release))
1680 		dquot_release_reservation_block(inode, release);
1681 	f2fs_i_blocks_write(inode, *count, true, true);
1682 	return 0;
1683 
1684 enospc:
1685 	dquot_release_reservation_block(inode, release);
1686 	return -ENOSPC;
1687 }
1688 
1689 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1690 						struct inode *inode,
1691 						block_t count)
1692 {
1693 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1694 
1695 	spin_lock(&sbi->stat_lock);
1696 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1697 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1698 	sbi->total_valid_block_count -= (block_t)count;
1699 	if (sbi->reserved_blocks &&
1700 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1701 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1702 					sbi->current_reserved_blocks + count);
1703 	spin_unlock(&sbi->stat_lock);
1704 	f2fs_i_blocks_write(inode, count, false, true);
1705 }
1706 
1707 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1708 {
1709 	atomic_inc(&sbi->nr_pages[count_type]);
1710 
1711 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1712 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1713 		return;
1714 
1715 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1716 }
1717 
1718 static inline void inode_inc_dirty_pages(struct inode *inode)
1719 {
1720 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1721 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1722 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1723 	if (IS_NOQUOTA(inode))
1724 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1725 }
1726 
1727 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1728 {
1729 	atomic_dec(&sbi->nr_pages[count_type]);
1730 }
1731 
1732 static inline void inode_dec_dirty_pages(struct inode *inode)
1733 {
1734 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1735 			!S_ISLNK(inode->i_mode))
1736 		return;
1737 
1738 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1739 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1740 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1741 	if (IS_NOQUOTA(inode))
1742 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1743 }
1744 
1745 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1746 {
1747 	return atomic_read(&sbi->nr_pages[count_type]);
1748 }
1749 
1750 static inline int get_dirty_pages(struct inode *inode)
1751 {
1752 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1753 }
1754 
1755 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1756 {
1757 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1758 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1759 						sbi->log_blocks_per_seg;
1760 
1761 	return segs / sbi->segs_per_sec;
1762 }
1763 
1764 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1765 {
1766 	return sbi->total_valid_block_count;
1767 }
1768 
1769 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1770 {
1771 	return sbi->discard_blks;
1772 }
1773 
1774 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1775 {
1776 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1777 
1778 	/* return NAT or SIT bitmap */
1779 	if (flag == NAT_BITMAP)
1780 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1781 	else if (flag == SIT_BITMAP)
1782 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1783 
1784 	return 0;
1785 }
1786 
1787 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1788 {
1789 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1790 }
1791 
1792 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1793 {
1794 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1795 	int offset;
1796 
1797 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1798 		offset = (flag == SIT_BITMAP) ?
1799 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1800 		return &ckpt->sit_nat_version_bitmap + offset;
1801 	}
1802 
1803 	if (__cp_payload(sbi) > 0) {
1804 		if (flag == NAT_BITMAP)
1805 			return &ckpt->sit_nat_version_bitmap;
1806 		else
1807 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1808 	} else {
1809 		offset = (flag == NAT_BITMAP) ?
1810 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1811 		return &ckpt->sit_nat_version_bitmap + offset;
1812 	}
1813 }
1814 
1815 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1816 {
1817 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1818 
1819 	if (sbi->cur_cp_pack == 2)
1820 		start_addr += sbi->blocks_per_seg;
1821 	return start_addr;
1822 }
1823 
1824 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1825 {
1826 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1827 
1828 	if (sbi->cur_cp_pack == 1)
1829 		start_addr += sbi->blocks_per_seg;
1830 	return start_addr;
1831 }
1832 
1833 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1834 {
1835 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1836 }
1837 
1838 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1839 {
1840 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1841 }
1842 
1843 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1844 					struct inode *inode, bool is_inode)
1845 {
1846 	block_t	valid_block_count;
1847 	unsigned int valid_node_count;
1848 	bool quota = inode && !is_inode;
1849 
1850 	if (quota) {
1851 		int ret = dquot_reserve_block(inode, 1);
1852 		if (ret)
1853 			return ret;
1854 	}
1855 
1856 #ifdef CONFIG_F2FS_FAULT_INJECTION
1857 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1858 		f2fs_show_injection_info(FAULT_BLOCK);
1859 		goto enospc;
1860 	}
1861 #endif
1862 
1863 	spin_lock(&sbi->stat_lock);
1864 
1865 	valid_block_count = sbi->total_valid_block_count +
1866 					sbi->current_reserved_blocks + 1;
1867 
1868 	if (!__allow_reserved_blocks(sbi, inode, false))
1869 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1870 
1871 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1872 		spin_unlock(&sbi->stat_lock);
1873 		goto enospc;
1874 	}
1875 
1876 	valid_node_count = sbi->total_valid_node_count + 1;
1877 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1878 		spin_unlock(&sbi->stat_lock);
1879 		goto enospc;
1880 	}
1881 
1882 	sbi->total_valid_node_count++;
1883 	sbi->total_valid_block_count++;
1884 	spin_unlock(&sbi->stat_lock);
1885 
1886 	if (inode) {
1887 		if (is_inode)
1888 			f2fs_mark_inode_dirty_sync(inode, true);
1889 		else
1890 			f2fs_i_blocks_write(inode, 1, true, true);
1891 	}
1892 
1893 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1894 	return 0;
1895 
1896 enospc:
1897 	if (quota)
1898 		dquot_release_reservation_block(inode, 1);
1899 	return -ENOSPC;
1900 }
1901 
1902 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1903 					struct inode *inode, bool is_inode)
1904 {
1905 	spin_lock(&sbi->stat_lock);
1906 
1907 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1908 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1909 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1910 
1911 	sbi->total_valid_node_count--;
1912 	sbi->total_valid_block_count--;
1913 	if (sbi->reserved_blocks &&
1914 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1915 		sbi->current_reserved_blocks++;
1916 
1917 	spin_unlock(&sbi->stat_lock);
1918 
1919 	if (!is_inode)
1920 		f2fs_i_blocks_write(inode, 1, false, true);
1921 }
1922 
1923 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1924 {
1925 	return sbi->total_valid_node_count;
1926 }
1927 
1928 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1929 {
1930 	percpu_counter_inc(&sbi->total_valid_inode_count);
1931 }
1932 
1933 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1934 {
1935 	percpu_counter_dec(&sbi->total_valid_inode_count);
1936 }
1937 
1938 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1939 {
1940 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1941 }
1942 
1943 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1944 						pgoff_t index, bool for_write)
1945 {
1946 #ifdef CONFIG_F2FS_FAULT_INJECTION
1947 	struct page *page = find_lock_page(mapping, index);
1948 
1949 	if (page)
1950 		return page;
1951 
1952 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1953 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1954 		return NULL;
1955 	}
1956 #endif
1957 	if (!for_write)
1958 		return grab_cache_page(mapping, index);
1959 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1960 }
1961 
1962 static inline struct page *f2fs_pagecache_get_page(
1963 				struct address_space *mapping, pgoff_t index,
1964 				int fgp_flags, gfp_t gfp_mask)
1965 {
1966 #ifdef CONFIG_F2FS_FAULT_INJECTION
1967 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1968 		f2fs_show_injection_info(FAULT_PAGE_GET);
1969 		return NULL;
1970 	}
1971 #endif
1972 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1973 }
1974 
1975 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1976 {
1977 	char *src_kaddr = kmap(src);
1978 	char *dst_kaddr = kmap(dst);
1979 
1980 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1981 	kunmap(dst);
1982 	kunmap(src);
1983 }
1984 
1985 static inline void f2fs_put_page(struct page *page, int unlock)
1986 {
1987 	if (!page)
1988 		return;
1989 
1990 	if (unlock) {
1991 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1992 		unlock_page(page);
1993 	}
1994 	put_page(page);
1995 }
1996 
1997 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1998 {
1999 	if (dn->node_page)
2000 		f2fs_put_page(dn->node_page, 1);
2001 	if (dn->inode_page && dn->node_page != dn->inode_page)
2002 		f2fs_put_page(dn->inode_page, 0);
2003 	dn->node_page = NULL;
2004 	dn->inode_page = NULL;
2005 }
2006 
2007 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2008 					size_t size)
2009 {
2010 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2011 }
2012 
2013 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2014 						gfp_t flags)
2015 {
2016 	void *entry;
2017 
2018 	entry = kmem_cache_alloc(cachep, flags);
2019 	if (!entry)
2020 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2021 	return entry;
2022 }
2023 
2024 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2025 						int npages, bool no_fail)
2026 {
2027 	struct bio *bio;
2028 
2029 	if (no_fail) {
2030 		/* No failure on bio allocation */
2031 		bio = bio_alloc(GFP_NOIO, npages);
2032 		if (!bio)
2033 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2034 		return bio;
2035 	}
2036 #ifdef CONFIG_F2FS_FAULT_INJECTION
2037 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2038 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2039 		return NULL;
2040 	}
2041 #endif
2042 	return bio_alloc(GFP_KERNEL, npages);
2043 }
2044 
2045 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2046 				unsigned long index, void *item)
2047 {
2048 	while (radix_tree_insert(root, index, item))
2049 		cond_resched();
2050 }
2051 
2052 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2053 
2054 static inline bool IS_INODE(struct page *page)
2055 {
2056 	struct f2fs_node *p = F2FS_NODE(page);
2057 
2058 	return RAW_IS_INODE(p);
2059 }
2060 
2061 static inline int offset_in_addr(struct f2fs_inode *i)
2062 {
2063 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2064 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2065 }
2066 
2067 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2068 {
2069 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2070 }
2071 
2072 static inline int f2fs_has_extra_attr(struct inode *inode);
2073 static inline block_t datablock_addr(struct inode *inode,
2074 			struct page *node_page, unsigned int offset)
2075 {
2076 	struct f2fs_node *raw_node;
2077 	__le32 *addr_array;
2078 	int base = 0;
2079 	bool is_inode = IS_INODE(node_page);
2080 
2081 	raw_node = F2FS_NODE(node_page);
2082 
2083 	/* from GC path only */
2084 	if (is_inode) {
2085 		if (!inode)
2086 			base = offset_in_addr(&raw_node->i);
2087 		else if (f2fs_has_extra_attr(inode))
2088 			base = get_extra_isize(inode);
2089 	}
2090 
2091 	addr_array = blkaddr_in_node(raw_node);
2092 	return le32_to_cpu(addr_array[base + offset]);
2093 }
2094 
2095 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2096 {
2097 	int mask;
2098 
2099 	addr += (nr >> 3);
2100 	mask = 1 << (7 - (nr & 0x07));
2101 	return mask & *addr;
2102 }
2103 
2104 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2105 {
2106 	int mask;
2107 
2108 	addr += (nr >> 3);
2109 	mask = 1 << (7 - (nr & 0x07));
2110 	*addr |= mask;
2111 }
2112 
2113 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2114 {
2115 	int mask;
2116 
2117 	addr += (nr >> 3);
2118 	mask = 1 << (7 - (nr & 0x07));
2119 	*addr &= ~mask;
2120 }
2121 
2122 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2123 {
2124 	int mask;
2125 	int ret;
2126 
2127 	addr += (nr >> 3);
2128 	mask = 1 << (7 - (nr & 0x07));
2129 	ret = mask & *addr;
2130 	*addr |= mask;
2131 	return ret;
2132 }
2133 
2134 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2135 {
2136 	int mask;
2137 	int ret;
2138 
2139 	addr += (nr >> 3);
2140 	mask = 1 << (7 - (nr & 0x07));
2141 	ret = mask & *addr;
2142 	*addr &= ~mask;
2143 	return ret;
2144 }
2145 
2146 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2147 {
2148 	int mask;
2149 
2150 	addr += (nr >> 3);
2151 	mask = 1 << (7 - (nr & 0x07));
2152 	*addr ^= mask;
2153 }
2154 
2155 /*
2156  * Inode flags
2157  */
2158 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2159 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2160 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2161 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2162 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2163 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2164 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2165 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2166 /* Reserved for compression usage... */
2167 #define F2FS_DIRTY_FL			0x00000100
2168 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2169 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2170 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2171 /* End compression flags --- maybe not all used */
2172 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2173 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2174 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2175 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2176 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2177 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2178 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2179 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2180 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2181 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2182 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2183 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2184 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2185 
2186 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2187 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2188 
2189 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2190 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2191 					 F2FS_IMMUTABLE_FL | \
2192 					 F2FS_APPEND_FL | \
2193 					 F2FS_NODUMP_FL | \
2194 					 F2FS_NOATIME_FL | \
2195 					 F2FS_PROJINHERIT_FL)
2196 
2197 /* Flags that should be inherited by new inodes from their parent. */
2198 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2199 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2200 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2201 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2202 			   F2FS_PROJINHERIT_FL)
2203 
2204 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2205 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2206 
2207 /* Flags that are appropriate for non-directories/regular files. */
2208 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2209 
2210 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2211 {
2212 	if (S_ISDIR(mode))
2213 		return flags;
2214 	else if (S_ISREG(mode))
2215 		return flags & F2FS_REG_FLMASK;
2216 	else
2217 		return flags & F2FS_OTHER_FLMASK;
2218 }
2219 
2220 /* used for f2fs_inode_info->flags */
2221 enum {
2222 	FI_NEW_INODE,		/* indicate newly allocated inode */
2223 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2224 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2225 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2226 	FI_INC_LINK,		/* need to increment i_nlink */
2227 	FI_ACL_MODE,		/* indicate acl mode */
2228 	FI_NO_ALLOC,		/* should not allocate any blocks */
2229 	FI_FREE_NID,		/* free allocated nide */
2230 	FI_NO_EXTENT,		/* not to use the extent cache */
2231 	FI_INLINE_XATTR,	/* used for inline xattr */
2232 	FI_INLINE_DATA,		/* used for inline data*/
2233 	FI_INLINE_DENTRY,	/* used for inline dentry */
2234 	FI_APPEND_WRITE,	/* inode has appended data */
2235 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2236 	FI_NEED_IPU,		/* used for ipu per file */
2237 	FI_ATOMIC_FILE,		/* indicate atomic file */
2238 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2239 	FI_VOLATILE_FILE,	/* indicate volatile file */
2240 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2241 	FI_DROP_CACHE,		/* drop dirty page cache */
2242 	FI_DATA_EXIST,		/* indicate data exists */
2243 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2244 	FI_DO_DEFRAG,		/* indicate defragment is running */
2245 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2246 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2247 	FI_HOT_DATA,		/* indicate file is hot */
2248 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2249 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2250 	FI_PIN_FILE,		/* indicate file should not be gced */
2251 };
2252 
2253 static inline void __mark_inode_dirty_flag(struct inode *inode,
2254 						int flag, bool set)
2255 {
2256 	switch (flag) {
2257 	case FI_INLINE_XATTR:
2258 	case FI_INLINE_DATA:
2259 	case FI_INLINE_DENTRY:
2260 	case FI_NEW_INODE:
2261 		if (set)
2262 			return;
2263 	case FI_DATA_EXIST:
2264 	case FI_INLINE_DOTS:
2265 	case FI_PIN_FILE:
2266 		f2fs_mark_inode_dirty_sync(inode, true);
2267 	}
2268 }
2269 
2270 static inline void set_inode_flag(struct inode *inode, int flag)
2271 {
2272 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2273 		set_bit(flag, &F2FS_I(inode)->flags);
2274 	__mark_inode_dirty_flag(inode, flag, true);
2275 }
2276 
2277 static inline int is_inode_flag_set(struct inode *inode, int flag)
2278 {
2279 	return test_bit(flag, &F2FS_I(inode)->flags);
2280 }
2281 
2282 static inline void clear_inode_flag(struct inode *inode, int flag)
2283 {
2284 	if (test_bit(flag, &F2FS_I(inode)->flags))
2285 		clear_bit(flag, &F2FS_I(inode)->flags);
2286 	__mark_inode_dirty_flag(inode, flag, false);
2287 }
2288 
2289 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2290 {
2291 	F2FS_I(inode)->i_acl_mode = mode;
2292 	set_inode_flag(inode, FI_ACL_MODE);
2293 	f2fs_mark_inode_dirty_sync(inode, false);
2294 }
2295 
2296 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2297 {
2298 	if (inc)
2299 		inc_nlink(inode);
2300 	else
2301 		drop_nlink(inode);
2302 	f2fs_mark_inode_dirty_sync(inode, true);
2303 }
2304 
2305 static inline void f2fs_i_blocks_write(struct inode *inode,
2306 					block_t diff, bool add, bool claim)
2307 {
2308 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2309 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2310 
2311 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2312 	if (add) {
2313 		if (claim)
2314 			dquot_claim_block(inode, diff);
2315 		else
2316 			dquot_alloc_block_nofail(inode, diff);
2317 	} else {
2318 		dquot_free_block(inode, diff);
2319 	}
2320 
2321 	f2fs_mark_inode_dirty_sync(inode, true);
2322 	if (clean || recover)
2323 		set_inode_flag(inode, FI_AUTO_RECOVER);
2324 }
2325 
2326 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2327 {
2328 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2329 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2330 
2331 	if (i_size_read(inode) == i_size)
2332 		return;
2333 
2334 	i_size_write(inode, i_size);
2335 	f2fs_mark_inode_dirty_sync(inode, true);
2336 	if (clean || recover)
2337 		set_inode_flag(inode, FI_AUTO_RECOVER);
2338 }
2339 
2340 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2341 {
2342 	F2FS_I(inode)->i_current_depth = depth;
2343 	f2fs_mark_inode_dirty_sync(inode, true);
2344 }
2345 
2346 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2347 					unsigned int count)
2348 {
2349 	F2FS_I(inode)->i_gc_failures = count;
2350 	f2fs_mark_inode_dirty_sync(inode, true);
2351 }
2352 
2353 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2354 {
2355 	F2FS_I(inode)->i_xattr_nid = xnid;
2356 	f2fs_mark_inode_dirty_sync(inode, true);
2357 }
2358 
2359 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2360 {
2361 	F2FS_I(inode)->i_pino = pino;
2362 	f2fs_mark_inode_dirty_sync(inode, true);
2363 }
2364 
2365 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2366 {
2367 	struct f2fs_inode_info *fi = F2FS_I(inode);
2368 
2369 	if (ri->i_inline & F2FS_INLINE_XATTR)
2370 		set_bit(FI_INLINE_XATTR, &fi->flags);
2371 	if (ri->i_inline & F2FS_INLINE_DATA)
2372 		set_bit(FI_INLINE_DATA, &fi->flags);
2373 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2374 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2375 	if (ri->i_inline & F2FS_DATA_EXIST)
2376 		set_bit(FI_DATA_EXIST, &fi->flags);
2377 	if (ri->i_inline & F2FS_INLINE_DOTS)
2378 		set_bit(FI_INLINE_DOTS, &fi->flags);
2379 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2380 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2381 	if (ri->i_inline & F2FS_PIN_FILE)
2382 		set_bit(FI_PIN_FILE, &fi->flags);
2383 }
2384 
2385 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2386 {
2387 	ri->i_inline = 0;
2388 
2389 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2390 		ri->i_inline |= F2FS_INLINE_XATTR;
2391 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2392 		ri->i_inline |= F2FS_INLINE_DATA;
2393 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2394 		ri->i_inline |= F2FS_INLINE_DENTRY;
2395 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2396 		ri->i_inline |= F2FS_DATA_EXIST;
2397 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2398 		ri->i_inline |= F2FS_INLINE_DOTS;
2399 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2400 		ri->i_inline |= F2FS_EXTRA_ATTR;
2401 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2402 		ri->i_inline |= F2FS_PIN_FILE;
2403 }
2404 
2405 static inline int f2fs_has_extra_attr(struct inode *inode)
2406 {
2407 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2408 }
2409 
2410 static inline int f2fs_has_inline_xattr(struct inode *inode)
2411 {
2412 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2413 }
2414 
2415 static inline unsigned int addrs_per_inode(struct inode *inode)
2416 {
2417 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2418 }
2419 
2420 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2421 {
2422 	struct f2fs_inode *ri = F2FS_INODE(page);
2423 
2424 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2425 					get_inline_xattr_addrs(inode)]);
2426 }
2427 
2428 static inline int inline_xattr_size(struct inode *inode)
2429 {
2430 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2431 }
2432 
2433 static inline int f2fs_has_inline_data(struct inode *inode)
2434 {
2435 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2436 }
2437 
2438 static inline int f2fs_exist_data(struct inode *inode)
2439 {
2440 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2441 }
2442 
2443 static inline int f2fs_has_inline_dots(struct inode *inode)
2444 {
2445 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2446 }
2447 
2448 static inline bool f2fs_is_pinned_file(struct inode *inode)
2449 {
2450 	return is_inode_flag_set(inode, FI_PIN_FILE);
2451 }
2452 
2453 static inline bool f2fs_is_atomic_file(struct inode *inode)
2454 {
2455 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2456 }
2457 
2458 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2459 {
2460 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2461 }
2462 
2463 static inline bool f2fs_is_volatile_file(struct inode *inode)
2464 {
2465 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2466 }
2467 
2468 static inline bool f2fs_is_first_block_written(struct inode *inode)
2469 {
2470 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2471 }
2472 
2473 static inline bool f2fs_is_drop_cache(struct inode *inode)
2474 {
2475 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2476 }
2477 
2478 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2479 {
2480 	struct f2fs_inode *ri = F2FS_INODE(page);
2481 	int extra_size = get_extra_isize(inode);
2482 
2483 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2484 }
2485 
2486 static inline int f2fs_has_inline_dentry(struct inode *inode)
2487 {
2488 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2489 }
2490 
2491 static inline int is_file(struct inode *inode, int type)
2492 {
2493 	return F2FS_I(inode)->i_advise & type;
2494 }
2495 
2496 static inline void set_file(struct inode *inode, int type)
2497 {
2498 	F2FS_I(inode)->i_advise |= type;
2499 	f2fs_mark_inode_dirty_sync(inode, true);
2500 }
2501 
2502 static inline void clear_file(struct inode *inode, int type)
2503 {
2504 	F2FS_I(inode)->i_advise &= ~type;
2505 	f2fs_mark_inode_dirty_sync(inode, true);
2506 }
2507 
2508 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2509 {
2510 	bool ret;
2511 
2512 	if (dsync) {
2513 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2514 
2515 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2516 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2517 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2518 		return ret;
2519 	}
2520 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2521 			file_keep_isize(inode) ||
2522 			i_size_read(inode) & ~PAGE_MASK)
2523 		return false;
2524 
2525 	if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2526 		return false;
2527 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2528 		return false;
2529 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2530 		return false;
2531 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2532 						&F2FS_I(inode)->i_crtime))
2533 		return false;
2534 
2535 	down_read(&F2FS_I(inode)->i_sem);
2536 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2537 	up_read(&F2FS_I(inode)->i_sem);
2538 
2539 	return ret;
2540 }
2541 
2542 static inline bool f2fs_readonly(struct super_block *sb)
2543 {
2544 	return sb_rdonly(sb);
2545 }
2546 
2547 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2548 {
2549 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2550 }
2551 
2552 static inline bool is_dot_dotdot(const struct qstr *str)
2553 {
2554 	if (str->len == 1 && str->name[0] == '.')
2555 		return true;
2556 
2557 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2558 		return true;
2559 
2560 	return false;
2561 }
2562 
2563 static inline bool f2fs_may_extent_tree(struct inode *inode)
2564 {
2565 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2566 			is_inode_flag_set(inode, FI_NO_EXTENT))
2567 		return false;
2568 
2569 	return S_ISREG(inode->i_mode);
2570 }
2571 
2572 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2573 					size_t size, gfp_t flags)
2574 {
2575 #ifdef CONFIG_F2FS_FAULT_INJECTION
2576 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2577 		f2fs_show_injection_info(FAULT_KMALLOC);
2578 		return NULL;
2579 	}
2580 #endif
2581 	return kmalloc(size, flags);
2582 }
2583 
2584 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2585 					size_t size, gfp_t flags)
2586 {
2587 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2588 }
2589 
2590 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2591 					size_t size, gfp_t flags)
2592 {
2593 #ifdef CONFIG_F2FS_FAULT_INJECTION
2594 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2595 		f2fs_show_injection_info(FAULT_KVMALLOC);
2596 		return NULL;
2597 	}
2598 #endif
2599 	return kvmalloc(size, flags);
2600 }
2601 
2602 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2603 					size_t size, gfp_t flags)
2604 {
2605 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2606 }
2607 
2608 static inline int get_extra_isize(struct inode *inode)
2609 {
2610 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2611 }
2612 
2613 static inline int get_inline_xattr_addrs(struct inode *inode)
2614 {
2615 	return F2FS_I(inode)->i_inline_xattr_size;
2616 }
2617 
2618 #define get_inode_mode(i) \
2619 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2620 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2621 
2622 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2623 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2624 	offsetof(struct f2fs_inode, i_extra_isize))	\
2625 
2626 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2627 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2628 		((offsetof(typeof(*f2fs_inode), field) +	\
2629 		sizeof((f2fs_inode)->field))			\
2630 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2631 
2632 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2633 {
2634 	int i;
2635 
2636 	spin_lock(&sbi->iostat_lock);
2637 	for (i = 0; i < NR_IO_TYPE; i++)
2638 		sbi->write_iostat[i] = 0;
2639 	spin_unlock(&sbi->iostat_lock);
2640 }
2641 
2642 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2643 			enum iostat_type type, unsigned long long io_bytes)
2644 {
2645 	if (!sbi->iostat_enable)
2646 		return;
2647 	spin_lock(&sbi->iostat_lock);
2648 	sbi->write_iostat[type] += io_bytes;
2649 
2650 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2651 		sbi->write_iostat[APP_BUFFERED_IO] =
2652 			sbi->write_iostat[APP_WRITE_IO] -
2653 			sbi->write_iostat[APP_DIRECT_IO];
2654 	spin_unlock(&sbi->iostat_lock);
2655 }
2656 
2657 static inline bool is_valid_blkaddr(block_t blkaddr)
2658 {
2659 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2660 		return false;
2661 	return true;
2662 }
2663 
2664 /*
2665  * file.c
2666  */
2667 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2668 void truncate_data_blocks(struct dnode_of_data *dn);
2669 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2670 int f2fs_truncate(struct inode *inode);
2671 int f2fs_getattr(const struct path *path, struct kstat *stat,
2672 			u32 request_mask, unsigned int flags);
2673 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2674 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2675 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2676 int f2fs_precache_extents(struct inode *inode);
2677 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2678 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2679 int f2fs_pin_file_control(struct inode *inode, bool inc);
2680 
2681 /*
2682  * inode.c
2683  */
2684 void f2fs_set_inode_flags(struct inode *inode);
2685 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2686 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2687 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2688 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2689 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2690 void update_inode(struct inode *inode, struct page *node_page);
2691 void update_inode_page(struct inode *inode);
2692 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2693 void f2fs_evict_inode(struct inode *inode);
2694 void handle_failed_inode(struct inode *inode);
2695 
2696 /*
2697  * namei.c
2698  */
2699 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2700 							bool hot, bool set);
2701 struct dentry *f2fs_get_parent(struct dentry *child);
2702 
2703 /*
2704  * dir.c
2705  */
2706 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2707 unsigned char get_de_type(struct f2fs_dir_entry *de);
2708 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2709 			f2fs_hash_t namehash, int *max_slots,
2710 			struct f2fs_dentry_ptr *d);
2711 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2712 			unsigned int start_pos, struct fscrypt_str *fstr);
2713 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2714 			struct f2fs_dentry_ptr *d);
2715 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2716 			const struct qstr *new_name,
2717 			const struct qstr *orig_name, struct page *dpage);
2718 void update_parent_metadata(struct inode *dir, struct inode *inode,
2719 			unsigned int current_depth);
2720 int room_for_filename(const void *bitmap, int slots, int max_slots);
2721 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2722 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2723 			struct fscrypt_name *fname, struct page **res_page);
2724 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2725 			const struct qstr *child, struct page **res_page);
2726 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2727 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2728 			struct page **page);
2729 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2730 			struct page *page, struct inode *inode);
2731 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2732 			const struct qstr *name, f2fs_hash_t name_hash,
2733 			unsigned int bit_pos);
2734 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2735 			const struct qstr *orig_name,
2736 			struct inode *inode, nid_t ino, umode_t mode);
2737 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2738 			struct inode *inode, nid_t ino, umode_t mode);
2739 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2740 			struct inode *inode, nid_t ino, umode_t mode);
2741 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2742 			struct inode *dir, struct inode *inode);
2743 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2744 bool f2fs_empty_dir(struct inode *dir);
2745 
2746 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2747 {
2748 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2749 				inode, inode->i_ino, inode->i_mode);
2750 }
2751 
2752 /*
2753  * super.c
2754  */
2755 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2756 void f2fs_inode_synced(struct inode *inode);
2757 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2758 void f2fs_quota_off_umount(struct super_block *sb);
2759 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2760 int f2fs_sync_fs(struct super_block *sb, int sync);
2761 extern __printf(3, 4)
2762 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2763 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2764 
2765 /*
2766  * hash.c
2767  */
2768 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2769 				struct fscrypt_name *fname);
2770 
2771 /*
2772  * node.c
2773  */
2774 struct dnode_of_data;
2775 struct node_info;
2776 
2777 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2778 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2779 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2780 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2781 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2782 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2783 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2784 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2785 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2786 int truncate_xattr_node(struct inode *inode);
2787 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2788 int remove_inode_page(struct inode *inode);
2789 struct page *new_inode_page(struct inode *inode);
2790 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2791 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2792 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2793 struct page *get_node_page_ra(struct page *parent, int start);
2794 void move_node_page(struct page *node_page, int gc_type);
2795 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2796 			struct writeback_control *wbc, bool atomic);
2797 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2798 			bool do_balance, enum iostat_type io_type);
2799 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2800 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2801 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2802 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2803 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2804 void recover_inline_xattr(struct inode *inode, struct page *page);
2805 int recover_xattr_data(struct inode *inode, struct page *page);
2806 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2807 void restore_node_summary(struct f2fs_sb_info *sbi,
2808 			unsigned int segno, struct f2fs_summary_block *sum);
2809 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2810 int build_node_manager(struct f2fs_sb_info *sbi);
2811 void destroy_node_manager(struct f2fs_sb_info *sbi);
2812 int __init create_node_manager_caches(void);
2813 void destroy_node_manager_caches(void);
2814 
2815 /*
2816  * segment.c
2817  */
2818 bool need_SSR(struct f2fs_sb_info *sbi);
2819 void register_inmem_page(struct inode *inode, struct page *page);
2820 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2821 void drop_inmem_pages(struct inode *inode);
2822 void drop_inmem_page(struct inode *inode, struct page *page);
2823 int commit_inmem_pages(struct inode *inode);
2824 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2825 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2826 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2827 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2828 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2829 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2830 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2831 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2832 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2833 void stop_discard_thread(struct f2fs_sb_info *sbi);
2834 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2835 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2836 void release_discard_addrs(struct f2fs_sb_info *sbi);
2837 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2838 void allocate_new_segments(struct f2fs_sb_info *sbi);
2839 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2840 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2841 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2842 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2843 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2844 						enum iostat_type io_type);
2845 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2846 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2847 int rewrite_data_page(struct f2fs_io_info *fio);
2848 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2849 			block_t old_blkaddr, block_t new_blkaddr,
2850 			bool recover_curseg, bool recover_newaddr);
2851 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2852 			block_t old_addr, block_t new_addr,
2853 			unsigned char version, bool recover_curseg,
2854 			bool recover_newaddr);
2855 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2856 			block_t old_blkaddr, block_t *new_blkaddr,
2857 			struct f2fs_summary *sum, int type,
2858 			struct f2fs_io_info *fio, bool add_list);
2859 void f2fs_wait_on_page_writeback(struct page *page,
2860 			enum page_type type, bool ordered);
2861 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2862 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2863 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2864 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2865 			unsigned int val, int alloc);
2866 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2867 int build_segment_manager(struct f2fs_sb_info *sbi);
2868 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2869 int __init create_segment_manager_caches(void);
2870 void destroy_segment_manager_caches(void);
2871 int rw_hint_to_seg_type(enum rw_hint hint);
2872 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2873 				enum temp_type temp);
2874 
2875 /*
2876  * checkpoint.c
2877  */
2878 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2879 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2880 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2881 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2882 bool is_valid_meta_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2883 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2884 			int type, bool sync);
2885 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2886 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2887 			long nr_to_write, enum iostat_type io_type);
2888 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2889 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2890 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2891 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2892 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2893 					unsigned int devidx, int type);
2894 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2895 					unsigned int devidx, int type);
2896 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2897 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2898 void release_orphan_inode(struct f2fs_sb_info *sbi);
2899 void add_orphan_inode(struct inode *inode);
2900 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2901 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2902 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2903 void update_dirty_page(struct inode *inode, struct page *page);
2904 void remove_dirty_inode(struct inode *inode);
2905 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2906 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2907 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2908 int __init create_checkpoint_caches(void);
2909 void destroy_checkpoint_caches(void);
2910 
2911 /*
2912  * data.c
2913  */
2914 int f2fs_init_post_read_processing(void);
2915 void f2fs_destroy_post_read_processing(void);
2916 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2917 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2918 				struct inode *inode, nid_t ino, pgoff_t idx,
2919 				enum page_type type);
2920 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2921 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2922 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2923 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2924 			block_t blk_addr, struct bio *bio);
2925 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2926 void set_data_blkaddr(struct dnode_of_data *dn);
2927 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2928 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2929 int reserve_new_block(struct dnode_of_data *dn);
2930 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2931 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2932 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2933 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2934 			int op_flags, bool for_write);
2935 struct page *find_data_page(struct inode *inode, pgoff_t index);
2936 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2937 			bool for_write);
2938 struct page *get_new_data_page(struct inode *inode,
2939 			struct page *ipage, pgoff_t index, bool new_i_size);
2940 int do_write_data_page(struct f2fs_io_info *fio);
2941 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2942 			int create, int flag);
2943 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2944 			u64 start, u64 len);
2945 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2946 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2947 int __f2fs_write_data_pages(struct address_space *mapping,
2948 						struct writeback_control *wbc,
2949 						enum iostat_type io_type);
2950 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2951 			unsigned int length);
2952 int f2fs_release_page(struct page *page, gfp_t wait);
2953 #ifdef CONFIG_MIGRATION
2954 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2955 			struct page *page, enum migrate_mode mode);
2956 #endif
2957 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2958 
2959 /*
2960  * gc.c
2961  */
2962 int start_gc_thread(struct f2fs_sb_info *sbi);
2963 void stop_gc_thread(struct f2fs_sb_info *sbi);
2964 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2965 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2966 			unsigned int segno);
2967 void build_gc_manager(struct f2fs_sb_info *sbi);
2968 
2969 /*
2970  * recovery.c
2971  */
2972 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2973 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2974 
2975 /*
2976  * debug.c
2977  */
2978 #ifdef CONFIG_F2FS_STAT_FS
2979 struct f2fs_stat_info {
2980 	struct list_head stat_list;
2981 	struct f2fs_sb_info *sbi;
2982 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2983 	int main_area_segs, main_area_sections, main_area_zones;
2984 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2985 	unsigned long long hit_total, total_ext;
2986 	int ext_tree, zombie_tree, ext_node;
2987 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2988 	int ndirty_data, ndirty_qdata;
2989 	int inmem_pages;
2990 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2991 	int nats, dirty_nats, sits, dirty_sits;
2992 	int free_nids, avail_nids, alloc_nids;
2993 	int total_count, utilization;
2994 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2995 	int nr_flushing, nr_flushed, flush_list_empty;
2996 	int nr_discarding, nr_discarded;
2997 	int nr_discard_cmd;
2998 	unsigned int undiscard_blks;
2999 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3000 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3001 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3002 	unsigned int bimodal, avg_vblocks;
3003 	int util_free, util_valid, util_invalid;
3004 	int rsvd_segs, overp_segs;
3005 	int dirty_count, node_pages, meta_pages;
3006 	int prefree_count, call_count, cp_count, bg_cp_count;
3007 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3008 	int bg_node_segs, bg_data_segs;
3009 	int tot_blks, data_blks, node_blks;
3010 	int bg_data_blks, bg_node_blks;
3011 	int curseg[NR_CURSEG_TYPE];
3012 	int cursec[NR_CURSEG_TYPE];
3013 	int curzone[NR_CURSEG_TYPE];
3014 
3015 	unsigned int segment_count[2];
3016 	unsigned int block_count[2];
3017 	unsigned int inplace_count;
3018 	unsigned long long base_mem, cache_mem, page_mem;
3019 };
3020 
3021 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3022 {
3023 	return (struct f2fs_stat_info *)sbi->stat_info;
3024 }
3025 
3026 #define stat_inc_cp_count(si)		((si)->cp_count++)
3027 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3028 #define stat_inc_call_count(si)		((si)->call_count++)
3029 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3030 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3031 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3032 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3033 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3034 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3035 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3036 #define stat_inc_inline_xattr(inode)					\
3037 	do {								\
3038 		if (f2fs_has_inline_xattr(inode))			\
3039 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3040 	} while (0)
3041 #define stat_dec_inline_xattr(inode)					\
3042 	do {								\
3043 		if (f2fs_has_inline_xattr(inode))			\
3044 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3045 	} while (0)
3046 #define stat_inc_inline_inode(inode)					\
3047 	do {								\
3048 		if (f2fs_has_inline_data(inode))			\
3049 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3050 	} while (0)
3051 #define stat_dec_inline_inode(inode)					\
3052 	do {								\
3053 		if (f2fs_has_inline_data(inode))			\
3054 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3055 	} while (0)
3056 #define stat_inc_inline_dir(inode)					\
3057 	do {								\
3058 		if (f2fs_has_inline_dentry(inode))			\
3059 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3060 	} while (0)
3061 #define stat_dec_inline_dir(inode)					\
3062 	do {								\
3063 		if (f2fs_has_inline_dentry(inode))			\
3064 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3065 	} while (0)
3066 #define stat_inc_seg_type(sbi, curseg)					\
3067 		((sbi)->segment_count[(curseg)->alloc_type]++)
3068 #define stat_inc_block_count(sbi, curseg)				\
3069 		((sbi)->block_count[(curseg)->alloc_type]++)
3070 #define stat_inc_inplace_blocks(sbi)					\
3071 		(atomic_inc(&(sbi)->inplace_count))
3072 #define stat_inc_atomic_write(inode)					\
3073 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3074 #define stat_dec_atomic_write(inode)					\
3075 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3076 #define stat_update_max_atomic_write(inode)				\
3077 	do {								\
3078 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3079 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3080 		if (cur > max)						\
3081 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3082 	} while (0)
3083 #define stat_inc_volatile_write(inode)					\
3084 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3085 #define stat_dec_volatile_write(inode)					\
3086 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3087 #define stat_update_max_volatile_write(inode)				\
3088 	do {								\
3089 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3090 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3091 		if (cur > max)						\
3092 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3093 	} while (0)
3094 #define stat_inc_seg_count(sbi, type, gc_type)				\
3095 	do {								\
3096 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3097 		si->tot_segs++;						\
3098 		if ((type) == SUM_TYPE_DATA) {				\
3099 			si->data_segs++;				\
3100 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3101 		} else {						\
3102 			si->node_segs++;				\
3103 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3104 		}							\
3105 	} while (0)
3106 
3107 #define stat_inc_tot_blk_count(si, blks)				\
3108 	((si)->tot_blks += (blks))
3109 
3110 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3111 	do {								\
3112 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3113 		stat_inc_tot_blk_count(si, blks);			\
3114 		si->data_blks += (blks);				\
3115 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3116 	} while (0)
3117 
3118 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3119 	do {								\
3120 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3121 		stat_inc_tot_blk_count(si, blks);			\
3122 		si->node_blks += (blks);				\
3123 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3124 	} while (0)
3125 
3126 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3127 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3128 int __init f2fs_create_root_stats(void);
3129 void f2fs_destroy_root_stats(void);
3130 #else
3131 #define stat_inc_cp_count(si)				do { } while (0)
3132 #define stat_inc_bg_cp_count(si)			do { } while (0)
3133 #define stat_inc_call_count(si)				do { } while (0)
3134 #define stat_inc_bggc_count(si)				do { } while (0)
3135 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3136 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3137 #define stat_inc_total_hit(sb)				do { } while (0)
3138 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3139 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3140 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3141 #define stat_inc_inline_xattr(inode)			do { } while (0)
3142 #define stat_dec_inline_xattr(inode)			do { } while (0)
3143 #define stat_inc_inline_inode(inode)			do { } while (0)
3144 #define stat_dec_inline_inode(inode)			do { } while (0)
3145 #define stat_inc_inline_dir(inode)			do { } while (0)
3146 #define stat_dec_inline_dir(inode)			do { } while (0)
3147 #define stat_inc_atomic_write(inode)			do { } while (0)
3148 #define stat_dec_atomic_write(inode)			do { } while (0)
3149 #define stat_update_max_atomic_write(inode)		do { } while (0)
3150 #define stat_inc_volatile_write(inode)			do { } while (0)
3151 #define stat_dec_volatile_write(inode)			do { } while (0)
3152 #define stat_update_max_volatile_write(inode)		do { } while (0)
3153 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3154 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3155 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3156 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3157 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3158 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3159 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3160 
3161 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3162 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3163 static inline int __init f2fs_create_root_stats(void) { return 0; }
3164 static inline void f2fs_destroy_root_stats(void) { }
3165 #endif
3166 
3167 extern const struct file_operations f2fs_dir_operations;
3168 extern const struct file_operations f2fs_file_operations;
3169 extern const struct inode_operations f2fs_file_inode_operations;
3170 extern const struct address_space_operations f2fs_dblock_aops;
3171 extern const struct address_space_operations f2fs_node_aops;
3172 extern const struct address_space_operations f2fs_meta_aops;
3173 extern const struct inode_operations f2fs_dir_inode_operations;
3174 extern const struct inode_operations f2fs_symlink_inode_operations;
3175 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3176 extern const struct inode_operations f2fs_special_inode_operations;
3177 extern struct kmem_cache *inode_entry_slab;
3178 
3179 /*
3180  * inline.c
3181  */
3182 bool f2fs_may_inline_data(struct inode *inode);
3183 bool f2fs_may_inline_dentry(struct inode *inode);
3184 void read_inline_data(struct page *page, struct page *ipage);
3185 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3186 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3187 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3188 int f2fs_convert_inline_inode(struct inode *inode);
3189 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3190 bool recover_inline_data(struct inode *inode, struct page *npage);
3191 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3192 			struct fscrypt_name *fname, struct page **res_page);
3193 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3194 			struct page *ipage);
3195 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3196 			const struct qstr *orig_name,
3197 			struct inode *inode, nid_t ino, umode_t mode);
3198 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3199 			struct inode *dir, struct inode *inode);
3200 bool f2fs_empty_inline_dir(struct inode *dir);
3201 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3202 			struct fscrypt_str *fstr);
3203 int f2fs_inline_data_fiemap(struct inode *inode,
3204 			struct fiemap_extent_info *fieinfo,
3205 			__u64 start, __u64 len);
3206 
3207 /*
3208  * shrinker.c
3209  */
3210 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3211 			struct shrink_control *sc);
3212 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3213 			struct shrink_control *sc);
3214 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3215 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3216 
3217 /*
3218  * extent_cache.c
3219  */
3220 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3221 				struct rb_entry *cached_re, unsigned int ofs);
3222 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3223 				struct rb_root *root, struct rb_node **parent,
3224 				unsigned int ofs);
3225 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3226 		struct rb_entry *cached_re, unsigned int ofs,
3227 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3228 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3229 		bool force);
3230 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3231 						struct rb_root *root);
3232 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3233 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3234 void f2fs_drop_extent_tree(struct inode *inode);
3235 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3236 void f2fs_destroy_extent_tree(struct inode *inode);
3237 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3238 			struct extent_info *ei);
3239 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3240 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3241 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3242 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3243 int __init create_extent_cache(void);
3244 void destroy_extent_cache(void);
3245 
3246 /*
3247  * sysfs.c
3248  */
3249 int __init f2fs_init_sysfs(void);
3250 void f2fs_exit_sysfs(void);
3251 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3252 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3253 
3254 /*
3255  * crypto support
3256  */
3257 static inline bool f2fs_encrypted_inode(struct inode *inode)
3258 {
3259 	return file_is_encrypt(inode);
3260 }
3261 
3262 static inline bool f2fs_encrypted_file(struct inode *inode)
3263 {
3264 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3265 }
3266 
3267 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3268 {
3269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3270 	file_set_encrypt(inode);
3271 	inode->i_flags |= S_ENCRYPTED;
3272 #endif
3273 }
3274 
3275 /*
3276  * Returns true if the reads of the inode's data need to undergo some
3277  * postprocessing step, like decryption or authenticity verification.
3278  */
3279 static inline bool f2fs_post_read_required(struct inode *inode)
3280 {
3281 	return f2fs_encrypted_file(inode);
3282 }
3283 
3284 #define F2FS_FEATURE_FUNCS(name, flagname) \
3285 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3286 { \
3287 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3288 }
3289 
3290 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3291 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3292 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3293 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3294 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3295 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3296 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3297 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3298 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3299 
3300 #ifdef CONFIG_BLK_DEV_ZONED
3301 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3302 			struct block_device *bdev, block_t blkaddr)
3303 {
3304 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3305 	int i;
3306 
3307 	for (i = 0; i < sbi->s_ndevs; i++)
3308 		if (FDEV(i).bdev == bdev)
3309 			return FDEV(i).blkz_type[zno];
3310 	return -EINVAL;
3311 }
3312 #endif
3313 
3314 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3315 {
3316 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3317 
3318 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3319 }
3320 
3321 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3322 {
3323 	clear_opt(sbi, ADAPTIVE);
3324 	clear_opt(sbi, LFS);
3325 
3326 	switch (mt) {
3327 	case F2FS_MOUNT_ADAPTIVE:
3328 		set_opt(sbi, ADAPTIVE);
3329 		break;
3330 	case F2FS_MOUNT_LFS:
3331 		set_opt(sbi, LFS);
3332 		break;
3333 	}
3334 }
3335 
3336 static inline bool f2fs_may_encrypt(struct inode *inode)
3337 {
3338 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3339 	umode_t mode = inode->i_mode;
3340 
3341 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3342 #else
3343 	return 0;
3344 #endif
3345 }
3346 
3347 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3348 {
3349 	return (f2fs_post_read_required(inode) ||
3350 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3351 			F2FS_I_SB(inode)->s_ndevs);
3352 }
3353 
3354 #endif
3355