xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4356e48e64374ceac6e4313244eb65158a954b40)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
28 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition)					\
31 	do {								\
32 		if (unlikely(condition)) {				\
33 			WARN_ON(1);					\
34 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
35 		}							\
36 	} while (0)
37 #define f2fs_down_write(x, y)	down_write(x)
38 #endif
39 
40 /*
41  * For mount options
42  */
43 #define F2FS_MOUNT_BG_GC		0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
45 #define F2FS_MOUNT_DISCARD		0x00000004
46 #define F2FS_MOUNT_NOHEAP		0x00000008
47 #define F2FS_MOUNT_XATTR_USER		0x00000010
48 #define F2FS_MOUNT_POSIX_ACL		0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
51 #define F2FS_MOUNT_INLINE_DATA		0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
54 #define F2FS_MOUNT_NOBARRIER		0x00000800
55 #define F2FS_MOUNT_FASTBOOT		0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
59 
60 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
63 
64 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
65 		typecheck(unsigned long long, b) &&			\
66 		((long long)((a) - (b)) > 0))
67 
68 typedef u32 block_t;	/*
69 			 * should not change u32, since it is the on-disk block
70 			 * address format, __le32.
71 			 */
72 typedef u32 nid_t;
73 
74 struct f2fs_mount_info {
75 	unsigned int	opt;
76 };
77 
78 #define F2FS_FEATURE_ENCRYPT	0x0001
79 
80 #define F2FS_HAS_FEATURE(sb, mask)					\
81 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask)					\
83 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask)					\
85 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86 
87 #define CRCPOLY_LE 0xedb88320
88 
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 	unsigned char *p = (unsigned char *)buf;
92 	__u32 crc = F2FS_SUPER_MAGIC;
93 	int i;
94 
95 	while (len--) {
96 		crc ^= *p++;
97 		for (i = 0; i < 8; i++)
98 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 	}
100 	return crc;
101 }
102 
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 	return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107 
108 /*
109  * For checkpoint manager
110  */
111 enum {
112 	NAT_BITMAP,
113 	SIT_BITMAP
114 };
115 
116 enum {
117 	CP_UMOUNT,
118 	CP_FASTBOOT,
119 	CP_SYNC,
120 	CP_RECOVERY,
121 	CP_DISCARD,
122 };
123 
124 #define DEF_BATCHED_TRIM_SECTIONS	32
125 #define BATCHED_TRIM_SEGMENTS(sbi)	\
126 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi)	\
128 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL			60	/* 60 secs */
130 #define DEF_IDLE_INTERVAL		120	/* 2 mins */
131 
132 struct cp_control {
133 	int reason;
134 	__u64 trim_start;
135 	__u64 trim_end;
136 	__u64 trim_minlen;
137 	__u64 trimmed;
138 };
139 
140 /*
141  * For CP/NAT/SIT/SSA readahead
142  */
143 enum {
144 	META_CP,
145 	META_NAT,
146 	META_SIT,
147 	META_SSA,
148 	META_POR,
149 };
150 
151 /* for the list of ino */
152 enum {
153 	ORPHAN_INO,		/* for orphan ino list */
154 	APPEND_INO,		/* for append ino list */
155 	UPDATE_INO,		/* for update ino list */
156 	MAX_INO_ENTRY,		/* max. list */
157 };
158 
159 struct ino_entry {
160 	struct list_head list;	/* list head */
161 	nid_t ino;		/* inode number */
162 };
163 
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 	struct list_head list;	/* list head */
167 	struct inode *inode;	/* vfs inode pointer */
168 };
169 
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 	struct list_head list;	/* list head */
173 	block_t blkaddr;	/* block address to be discarded */
174 	int len;		/* # of consecutive blocks of the discard */
175 };
176 
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 	struct list_head list;	/* list head */
180 	struct inode *inode;	/* vfs inode pointer */
181 	block_t blkaddr;	/* block address locating the last fsync */
182 	block_t last_dentry;	/* block address locating the last dentry */
183 	block_t last_inode;	/* block address locating the last inode */
184 };
185 
186 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
187 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
188 
189 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
190 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
191 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
192 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
193 
194 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
195 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
196 
197 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
198 {
199 	int before = nats_in_cursum(journal);
200 	journal->n_nats = cpu_to_le16(before + i);
201 	return before;
202 }
203 
204 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
205 {
206 	int before = sits_in_cursum(journal);
207 	journal->n_sits = cpu_to_le16(before + i);
208 	return before;
209 }
210 
211 static inline bool __has_cursum_space(struct f2fs_journal *journal,
212 							int size, int type)
213 {
214 	if (type == NAT_JOURNAL)
215 		return size <= MAX_NAT_JENTRIES(journal);
216 	return size <= MAX_SIT_JENTRIES(journal);
217 }
218 
219 /*
220  * ioctl commands
221  */
222 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
225 
226 #define F2FS_IOCTL_MAGIC		0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
235 
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
237 		_IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
239 		_IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
241 		_IOW('f', 21, struct f2fs_encryption_policy)
242 
243 /*
244  * should be same as XFS_IOC_GOINGDOWN.
245  * Flags for going down operation used by FS_IOC_GOINGDOWN
246  */
247 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
252 
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255  * ioctl commands in 32 bit emulation
256  */
257 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
260 #endif
261 
262 struct f2fs_defragment {
263 	u64 start;
264 	u64 len;
265 };
266 
267 /*
268  * For INODE and NODE manager
269  */
270 /* for directory operations */
271 struct f2fs_str {
272 	unsigned char *name;
273 	u32 len;
274 };
275 
276 struct f2fs_filename {
277 	const struct qstr *usr_fname;
278 	struct f2fs_str disk_name;
279 	f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 	struct f2fs_str crypto_buf;
282 #endif
283 };
284 
285 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
286 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p)		((p)->disk_name.name)
288 #define fname_len(p)		((p)->disk_name.len)
289 
290 struct f2fs_dentry_ptr {
291 	struct inode *inode;
292 	const void *bitmap;
293 	struct f2fs_dir_entry *dentry;
294 	__u8 (*filename)[F2FS_SLOT_LEN];
295 	int max;
296 };
297 
298 static inline void make_dentry_ptr(struct inode *inode,
299 		struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 	d->inode = inode;
302 
303 	if (type == 1) {
304 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 		d->max = NR_DENTRY_IN_BLOCK;
306 		d->bitmap = &t->dentry_bitmap;
307 		d->dentry = t->dentry;
308 		d->filename = t->filename;
309 	} else {
310 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 		d->max = NR_INLINE_DENTRY;
312 		d->bitmap = &t->dentry_bitmap;
313 		d->dentry = t->dentry;
314 		d->filename = t->filename;
315 	}
316 }
317 
318 /*
319  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320  * as its node offset to distinguish from index node blocks.
321  * But some bits are used to mark the node block.
322  */
323 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 				>> OFFSET_BIT_SHIFT)
325 enum {
326 	ALLOC_NODE,			/* allocate a new node page if needed */
327 	LOOKUP_NODE,			/* look up a node without readahead */
328 	LOOKUP_NODE_RA,			/*
329 					 * look up a node with readahead called
330 					 * by get_data_block.
331 					 */
332 };
333 
334 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
335 
336 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
337 
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE	64
340 
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
343 
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER	128
346 
347 struct extent_info {
348 	unsigned int fofs;		/* start offset in a file */
349 	u32 blk;			/* start block address of the extent */
350 	unsigned int len;		/* length of the extent */
351 };
352 
353 struct extent_node {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	struct list_head list;		/* node in global extent list of sbi */
356 	struct extent_info ei;		/* extent info */
357 	struct extent_tree *et;		/* extent tree pointer */
358 };
359 
360 struct extent_tree {
361 	nid_t ino;			/* inode number */
362 	struct rb_root root;		/* root of extent info rb-tree */
363 	struct extent_node *cached_en;	/* recently accessed extent node */
364 	struct extent_info largest;	/* largested extent info */
365 	struct list_head list;		/* to be used by sbi->zombie_list */
366 	rwlock_t lock;			/* protect extent info rb-tree */
367 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
368 };
369 
370 /*
371  * This structure is taken from ext4_map_blocks.
372  *
373  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374  */
375 #define F2FS_MAP_NEW		(1 << BH_New)
376 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 				F2FS_MAP_UNWRITTEN)
380 
381 struct f2fs_map_blocks {
382 	block_t m_pblk;
383 	block_t m_lblk;
384 	unsigned int m_len;
385 	unsigned int m_flags;
386 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
387 };
388 
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ		0
391 #define F2FS_GET_BLOCK_DIO		1
392 #define F2FS_GET_BLOCK_FIEMAP		2
393 #define F2FS_GET_BLOCK_BMAP		3
394 #define F2FS_GET_BLOCK_PRE_DIO		4
395 #define F2FS_GET_BLOCK_PRE_AIO		5
396 
397 /*
398  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399  */
400 #define FADVISE_COLD_BIT	0x01
401 #define FADVISE_LOST_PINO_BIT	0x02
402 #define FADVISE_ENCRYPT_BIT	0x04
403 #define FADVISE_ENC_NAME_BIT	0x08
404 
405 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416 
417 /* Encryption algorithms */
418 #define F2FS_ENCRYPTION_MODE_INVALID		0
419 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
420 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
421 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
422 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
423 
424 #include "f2fs_crypto.h"
425 
426 #define DEF_DIR_LEVEL		0
427 
428 struct f2fs_inode_info {
429 	struct inode vfs_inode;		/* serve a vfs inode */
430 	unsigned long i_flags;		/* keep an inode flags for ioctl */
431 	unsigned char i_advise;		/* use to give file attribute hints */
432 	unsigned char i_dir_level;	/* use for dentry level for large dir */
433 	unsigned int i_current_depth;	/* use only in directory structure */
434 	unsigned int i_pino;		/* parent inode number */
435 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
436 
437 	/* Use below internally in f2fs*/
438 	unsigned long flags;		/* use to pass per-file flags */
439 	struct rw_semaphore i_sem;	/* protect fi info */
440 	atomic_t dirty_pages;		/* # of dirty pages */
441 	f2fs_hash_t chash;		/* hash value of given file name */
442 	unsigned int clevel;		/* maximum level of given file name */
443 	nid_t i_xattr_nid;		/* node id that contains xattrs */
444 	unsigned long long xattr_ver;	/* cp version of xattr modification */
445 
446 	struct list_head dirty_list;	/* linked in global dirty list */
447 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
448 	struct mutex inmem_lock;	/* lock for inmemory pages */
449 
450 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
451 
452 #ifdef CONFIG_F2FS_FS_ENCRYPTION
453 	/* Encryption params */
454 	struct f2fs_crypt_info *i_crypt_info;
455 #endif
456 };
457 
458 static inline void get_extent_info(struct extent_info *ext,
459 					struct f2fs_extent i_ext)
460 {
461 	ext->fofs = le32_to_cpu(i_ext.fofs);
462 	ext->blk = le32_to_cpu(i_ext.blk);
463 	ext->len = le32_to_cpu(i_ext.len);
464 }
465 
466 static inline void set_raw_extent(struct extent_info *ext,
467 					struct f2fs_extent *i_ext)
468 {
469 	i_ext->fofs = cpu_to_le32(ext->fofs);
470 	i_ext->blk = cpu_to_le32(ext->blk);
471 	i_ext->len = cpu_to_le32(ext->len);
472 }
473 
474 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
475 						u32 blk, unsigned int len)
476 {
477 	ei->fofs = fofs;
478 	ei->blk = blk;
479 	ei->len = len;
480 }
481 
482 static inline bool __is_extent_same(struct extent_info *ei1,
483 						struct extent_info *ei2)
484 {
485 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
486 						ei1->len == ei2->len);
487 }
488 
489 static inline bool __is_extent_mergeable(struct extent_info *back,
490 						struct extent_info *front)
491 {
492 	return (back->fofs + back->len == front->fofs &&
493 			back->blk + back->len == front->blk);
494 }
495 
496 static inline bool __is_back_mergeable(struct extent_info *cur,
497 						struct extent_info *back)
498 {
499 	return __is_extent_mergeable(back, cur);
500 }
501 
502 static inline bool __is_front_mergeable(struct extent_info *cur,
503 						struct extent_info *front)
504 {
505 	return __is_extent_mergeable(cur, front);
506 }
507 
508 static inline void __try_update_largest_extent(struct extent_tree *et,
509 						struct extent_node *en)
510 {
511 	if (en->ei.len > et->largest.len)
512 		et->largest = en->ei;
513 }
514 
515 struct f2fs_nm_info {
516 	block_t nat_blkaddr;		/* base disk address of NAT */
517 	nid_t max_nid;			/* maximum possible node ids */
518 	nid_t available_nids;		/* maximum available node ids */
519 	nid_t next_scan_nid;		/* the next nid to be scanned */
520 	unsigned int ram_thresh;	/* control the memory footprint */
521 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
522 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
523 
524 	/* NAT cache management */
525 	struct radix_tree_root nat_root;/* root of the nat entry cache */
526 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
527 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
528 	struct list_head nat_entries;	/* cached nat entry list (clean) */
529 	unsigned int nat_cnt;		/* the # of cached nat entries */
530 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
531 
532 	/* free node ids management */
533 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
534 	struct list_head free_nid_list;	/* a list for free nids */
535 	spinlock_t free_nid_list_lock;	/* protect free nid list */
536 	unsigned int fcnt;		/* the number of free node id */
537 	struct mutex build_lock;	/* lock for build free nids */
538 
539 	/* for checkpoint */
540 	char *nat_bitmap;		/* NAT bitmap pointer */
541 	int bitmap_size;		/* bitmap size */
542 };
543 
544 /*
545  * this structure is used as one of function parameters.
546  * all the information are dedicated to a given direct node block determined
547  * by the data offset in a file.
548  */
549 struct dnode_of_data {
550 	struct inode *inode;		/* vfs inode pointer */
551 	struct page *inode_page;	/* its inode page, NULL is possible */
552 	struct page *node_page;		/* cached direct node page */
553 	nid_t nid;			/* node id of the direct node block */
554 	unsigned int ofs_in_node;	/* data offset in the node page */
555 	bool inode_page_locked;		/* inode page is locked or not */
556 	bool node_changed;		/* is node block changed */
557 	char cur_level;			/* level of hole node page */
558 	char max_level;			/* level of current page located */
559 	block_t	data_blkaddr;		/* block address of the node block */
560 };
561 
562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
563 		struct page *ipage, struct page *npage, nid_t nid)
564 {
565 	memset(dn, 0, sizeof(*dn));
566 	dn->inode = inode;
567 	dn->inode_page = ipage;
568 	dn->node_page = npage;
569 	dn->nid = nid;
570 }
571 
572 /*
573  * For SIT manager
574  *
575  * By default, there are 6 active log areas across the whole main area.
576  * When considering hot and cold data separation to reduce cleaning overhead,
577  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
578  * respectively.
579  * In the current design, you should not change the numbers intentionally.
580  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
581  * logs individually according to the underlying devices. (default: 6)
582  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
583  * data and 8 for node logs.
584  */
585 #define	NR_CURSEG_DATA_TYPE	(3)
586 #define NR_CURSEG_NODE_TYPE	(3)
587 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
588 
589 enum {
590 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
591 	CURSEG_WARM_DATA,	/* data blocks */
592 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
593 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
594 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
595 	CURSEG_COLD_NODE,	/* indirect node blocks */
596 	NO_CHECK_TYPE,
597 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
598 };
599 
600 struct flush_cmd {
601 	struct completion wait;
602 	struct llist_node llnode;
603 	int ret;
604 };
605 
606 struct flush_cmd_control {
607 	struct task_struct *f2fs_issue_flush;	/* flush thread */
608 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
609 	struct llist_head issue_list;		/* list for command issue */
610 	struct llist_node *dispatch_list;	/* list for command dispatch */
611 };
612 
613 struct f2fs_sm_info {
614 	struct sit_info *sit_info;		/* whole segment information */
615 	struct free_segmap_info *free_info;	/* free segment information */
616 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
617 	struct curseg_info *curseg_array;	/* active segment information */
618 
619 	block_t seg0_blkaddr;		/* block address of 0'th segment */
620 	block_t main_blkaddr;		/* start block address of main area */
621 	block_t ssa_blkaddr;		/* start block address of SSA area */
622 
623 	unsigned int segment_count;	/* total # of segments */
624 	unsigned int main_segments;	/* # of segments in main area */
625 	unsigned int reserved_segments;	/* # of reserved segments */
626 	unsigned int ovp_segments;	/* # of overprovision segments */
627 
628 	/* a threshold to reclaim prefree segments */
629 	unsigned int rec_prefree_segments;
630 
631 	/* for small discard management */
632 	struct list_head discard_list;		/* 4KB discard list */
633 	int nr_discards;			/* # of discards in the list */
634 	int max_discards;			/* max. discards to be issued */
635 
636 	/* for batched trimming */
637 	unsigned int trim_sections;		/* # of sections to trim */
638 
639 	struct list_head sit_entry_set;	/* sit entry set list */
640 
641 	unsigned int ipu_policy;	/* in-place-update policy */
642 	unsigned int min_ipu_util;	/* in-place-update threshold */
643 	unsigned int min_fsync_blocks;	/* threshold for fsync */
644 
645 	/* for flush command control */
646 	struct flush_cmd_control *cmd_control_info;
647 
648 };
649 
650 /*
651  * For superblock
652  */
653 /*
654  * COUNT_TYPE for monitoring
655  *
656  * f2fs monitors the number of several block types such as on-writeback,
657  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
658  */
659 enum count_type {
660 	F2FS_WRITEBACK,
661 	F2FS_DIRTY_DENTS,
662 	F2FS_DIRTY_DATA,
663 	F2FS_DIRTY_NODES,
664 	F2FS_DIRTY_META,
665 	F2FS_INMEM_PAGES,
666 	NR_COUNT_TYPE,
667 };
668 
669 /*
670  * The below are the page types of bios used in submit_bio().
671  * The available types are:
672  * DATA			User data pages. It operates as async mode.
673  * NODE			Node pages. It operates as async mode.
674  * META			FS metadata pages such as SIT, NAT, CP.
675  * NR_PAGE_TYPE		The number of page types.
676  * META_FLUSH		Make sure the previous pages are written
677  *			with waiting the bio's completion
678  * ...			Only can be used with META.
679  */
680 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
681 enum page_type {
682 	DATA,
683 	NODE,
684 	META,
685 	NR_PAGE_TYPE,
686 	META_FLUSH,
687 	INMEM,		/* the below types are used by tracepoints only. */
688 	INMEM_DROP,
689 	INMEM_REVOKE,
690 	IPU,
691 	OPU,
692 };
693 
694 struct f2fs_io_info {
695 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
696 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
697 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
698 	block_t new_blkaddr;	/* new block address to be written */
699 	block_t old_blkaddr;	/* old block address before Cow */
700 	struct page *page;	/* page to be written */
701 	struct page *encrypted_page;	/* encrypted page */
702 };
703 
704 #define is_read_io(rw)	(((rw) & 1) == READ)
705 struct f2fs_bio_info {
706 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
707 	struct bio *bio;		/* bios to merge */
708 	sector_t last_block_in_bio;	/* last block number */
709 	struct f2fs_io_info fio;	/* store buffered io info. */
710 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
711 };
712 
713 enum inode_type {
714 	DIR_INODE,			/* for dirty dir inode */
715 	FILE_INODE,			/* for dirty regular/symlink inode */
716 	NR_INODE_TYPE,
717 };
718 
719 /* for inner inode cache management */
720 struct inode_management {
721 	struct radix_tree_root ino_root;	/* ino entry array */
722 	spinlock_t ino_lock;			/* for ino entry lock */
723 	struct list_head ino_list;		/* inode list head */
724 	unsigned long ino_num;			/* number of entries */
725 };
726 
727 /* For s_flag in struct f2fs_sb_info */
728 enum {
729 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
730 	SBI_IS_CLOSE,				/* specify unmounting */
731 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
732 	SBI_POR_DOING,				/* recovery is doing or not */
733 };
734 
735 enum {
736 	CP_TIME,
737 	REQ_TIME,
738 	MAX_TIME,
739 };
740 
741 struct f2fs_sb_info {
742 	struct super_block *sb;			/* pointer to VFS super block */
743 	struct proc_dir_entry *s_proc;		/* proc entry */
744 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
745 	int valid_super_block;			/* valid super block no */
746 	int s_flag;				/* flags for sbi */
747 
748 	/* for node-related operations */
749 	struct f2fs_nm_info *nm_info;		/* node manager */
750 	struct inode *node_inode;		/* cache node blocks */
751 
752 	/* for segment-related operations */
753 	struct f2fs_sm_info *sm_info;		/* segment manager */
754 
755 	/* for bio operations */
756 	struct f2fs_bio_info read_io;			/* for read bios */
757 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
758 
759 	/* for checkpoint */
760 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
761 	struct inode *meta_inode;		/* cache meta blocks */
762 	struct mutex cp_mutex;			/* checkpoint procedure lock */
763 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
764 	struct rw_semaphore node_write;		/* locking node writes */
765 	struct mutex writepages;		/* mutex for writepages() */
766 	wait_queue_head_t cp_wait;
767 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
768 	long interval_time[MAX_TIME];		/* to store thresholds */
769 
770 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
771 
772 	/* for orphan inode, use 0'th array */
773 	unsigned int max_orphans;		/* max orphan inodes */
774 
775 	/* for inode management */
776 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
777 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
778 
779 	/* for extent tree cache */
780 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
781 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
782 	struct list_head extent_list;		/* lru list for shrinker */
783 	spinlock_t extent_lock;			/* locking extent lru list */
784 	atomic_t total_ext_tree;		/* extent tree count */
785 	struct list_head zombie_list;		/* extent zombie tree list */
786 	atomic_t total_zombie_tree;		/* extent zombie tree count */
787 	atomic_t total_ext_node;		/* extent info count */
788 
789 	/* basic filesystem units */
790 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
791 	unsigned int log_blocksize;		/* log2 block size */
792 	unsigned int blocksize;			/* block size */
793 	unsigned int root_ino_num;		/* root inode number*/
794 	unsigned int node_ino_num;		/* node inode number*/
795 	unsigned int meta_ino_num;		/* meta inode number*/
796 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
797 	unsigned int blocks_per_seg;		/* blocks per segment */
798 	unsigned int segs_per_sec;		/* segments per section */
799 	unsigned int secs_per_zone;		/* sections per zone */
800 	unsigned int total_sections;		/* total section count */
801 	unsigned int total_node_count;		/* total node block count */
802 	unsigned int total_valid_node_count;	/* valid node block count */
803 	unsigned int total_valid_inode_count;	/* valid inode count */
804 	loff_t max_file_blocks;			/* max block index of file */
805 	int active_logs;			/* # of active logs */
806 	int dir_level;				/* directory level */
807 
808 	block_t user_block_count;		/* # of user blocks */
809 	block_t total_valid_block_count;	/* # of valid blocks */
810 	block_t alloc_valid_block_count;	/* # of allocated blocks */
811 	block_t discard_blks;			/* discard command candidats */
812 	block_t last_valid_block_count;		/* for recovery */
813 	u32 s_next_generation;			/* for NFS support */
814 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
815 
816 	struct f2fs_mount_info mount_opt;	/* mount options */
817 
818 	/* for cleaning operations */
819 	struct mutex gc_mutex;			/* mutex for GC */
820 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
821 	unsigned int cur_victim_sec;		/* current victim section num */
822 
823 	/* maximum # of trials to find a victim segment for SSR and GC */
824 	unsigned int max_victim_search;
825 
826 	/*
827 	 * for stat information.
828 	 * one is for the LFS mode, and the other is for the SSR mode.
829 	 */
830 #ifdef CONFIG_F2FS_STAT_FS
831 	struct f2fs_stat_info *stat_info;	/* FS status information */
832 	unsigned int segment_count[2];		/* # of allocated segments */
833 	unsigned int block_count[2];		/* # of allocated blocks */
834 	atomic_t inplace_count;		/* # of inplace update */
835 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
836 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
837 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
838 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
839 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
840 	atomic_t inline_inode;			/* # of inline_data inodes */
841 	atomic_t inline_dir;			/* # of inline_dentry inodes */
842 	int bg_gc;				/* background gc calls */
843 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
844 #endif
845 	unsigned int last_victim[2];		/* last victim segment # */
846 	spinlock_t stat_lock;			/* lock for stat operations */
847 
848 	/* For sysfs suppport */
849 	struct kobject s_kobj;
850 	struct completion s_kobj_unregister;
851 
852 	/* For shrinker support */
853 	struct list_head s_list;
854 	struct mutex umount_mutex;
855 	unsigned int shrinker_run_no;
856 
857 	/* For write statistics */
858 	u64 sectors_written_start;
859 	u64 kbytes_written;
860 };
861 
862 /* For write statistics. Suppose sector size is 512 bytes,
863  * and the return value is in kbytes. s is of struct f2fs_sb_info.
864  */
865 #define BD_PART_WRITTEN(s)						 \
866 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
867 		s->sectors_written_start) >> 1)
868 
869 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
870 {
871 	sbi->last_time[type] = jiffies;
872 }
873 
874 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
875 {
876 	struct timespec ts = {sbi->interval_time[type], 0};
877 	unsigned long interval = timespec_to_jiffies(&ts);
878 
879 	return time_after(jiffies, sbi->last_time[type] + interval);
880 }
881 
882 static inline bool is_idle(struct f2fs_sb_info *sbi)
883 {
884 	struct block_device *bdev = sbi->sb->s_bdev;
885 	struct request_queue *q = bdev_get_queue(bdev);
886 	struct request_list *rl = &q->root_rl;
887 
888 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
889 		return 0;
890 
891 	return f2fs_time_over(sbi, REQ_TIME);
892 }
893 
894 /*
895  * Inline functions
896  */
897 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
898 {
899 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
900 }
901 
902 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
903 {
904 	return sb->s_fs_info;
905 }
906 
907 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
908 {
909 	return F2FS_SB(inode->i_sb);
910 }
911 
912 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
913 {
914 	return F2FS_I_SB(mapping->host);
915 }
916 
917 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
918 {
919 	return F2FS_M_SB(page->mapping);
920 }
921 
922 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
923 {
924 	return (struct f2fs_super_block *)(sbi->raw_super);
925 }
926 
927 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
928 {
929 	return (struct f2fs_checkpoint *)(sbi->ckpt);
930 }
931 
932 static inline struct f2fs_node *F2FS_NODE(struct page *page)
933 {
934 	return (struct f2fs_node *)page_address(page);
935 }
936 
937 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
938 {
939 	return &((struct f2fs_node *)page_address(page))->i;
940 }
941 
942 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
943 {
944 	return (struct f2fs_nm_info *)(sbi->nm_info);
945 }
946 
947 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
948 {
949 	return (struct f2fs_sm_info *)(sbi->sm_info);
950 }
951 
952 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
953 {
954 	return (struct sit_info *)(SM_I(sbi)->sit_info);
955 }
956 
957 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
958 {
959 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
960 }
961 
962 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
963 {
964 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
965 }
966 
967 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
968 {
969 	return sbi->meta_inode->i_mapping;
970 }
971 
972 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
973 {
974 	return sbi->node_inode->i_mapping;
975 }
976 
977 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
978 {
979 	return sbi->s_flag & (0x01 << type);
980 }
981 
982 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
983 {
984 	sbi->s_flag |= (0x01 << type);
985 }
986 
987 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
988 {
989 	sbi->s_flag &= ~(0x01 << type);
990 }
991 
992 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
993 {
994 	return le64_to_cpu(cp->checkpoint_ver);
995 }
996 
997 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
998 {
999 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1000 	return ckpt_flags & f;
1001 }
1002 
1003 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1004 {
1005 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1006 	ckpt_flags |= f;
1007 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1008 }
1009 
1010 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1011 {
1012 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1013 	ckpt_flags &= (~f);
1014 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1015 }
1016 
1017 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1018 {
1019 	down_read(&sbi->cp_rwsem);
1020 }
1021 
1022 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1023 {
1024 	up_read(&sbi->cp_rwsem);
1025 }
1026 
1027 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1028 {
1029 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1030 }
1031 
1032 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1033 {
1034 	up_write(&sbi->cp_rwsem);
1035 }
1036 
1037 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1038 {
1039 	int reason = CP_SYNC;
1040 
1041 	if (test_opt(sbi, FASTBOOT))
1042 		reason = CP_FASTBOOT;
1043 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1044 		reason = CP_UMOUNT;
1045 	return reason;
1046 }
1047 
1048 static inline bool __remain_node_summaries(int reason)
1049 {
1050 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1051 }
1052 
1053 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1054 {
1055 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1056 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1057 }
1058 
1059 /*
1060  * Check whether the given nid is within node id range.
1061  */
1062 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1063 {
1064 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1065 		return -EINVAL;
1066 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1067 		return -EINVAL;
1068 	return 0;
1069 }
1070 
1071 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1072 
1073 /*
1074  * Check whether the inode has blocks or not
1075  */
1076 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1077 {
1078 	if (F2FS_I(inode)->i_xattr_nid)
1079 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1080 	else
1081 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1082 }
1083 
1084 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1085 {
1086 	return ofs == XATTR_NODE_OFFSET;
1087 }
1088 
1089 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1090 				 struct inode *inode, blkcnt_t count)
1091 {
1092 	block_t	valid_block_count;
1093 
1094 	spin_lock(&sbi->stat_lock);
1095 	valid_block_count =
1096 		sbi->total_valid_block_count + (block_t)count;
1097 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1098 		spin_unlock(&sbi->stat_lock);
1099 		return false;
1100 	}
1101 	inode->i_blocks += count;
1102 	sbi->total_valid_block_count = valid_block_count;
1103 	sbi->alloc_valid_block_count += (block_t)count;
1104 	spin_unlock(&sbi->stat_lock);
1105 	return true;
1106 }
1107 
1108 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1109 						struct inode *inode,
1110 						blkcnt_t count)
1111 {
1112 	spin_lock(&sbi->stat_lock);
1113 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1114 	f2fs_bug_on(sbi, inode->i_blocks < count);
1115 	inode->i_blocks -= count;
1116 	sbi->total_valid_block_count -= (block_t)count;
1117 	spin_unlock(&sbi->stat_lock);
1118 }
1119 
1120 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1121 {
1122 	atomic_inc(&sbi->nr_pages[count_type]);
1123 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1124 }
1125 
1126 static inline void inode_inc_dirty_pages(struct inode *inode)
1127 {
1128 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1129 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1130 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1131 }
1132 
1133 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1134 {
1135 	atomic_dec(&sbi->nr_pages[count_type]);
1136 }
1137 
1138 static inline void inode_dec_dirty_pages(struct inode *inode)
1139 {
1140 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1141 			!S_ISLNK(inode->i_mode))
1142 		return;
1143 
1144 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1145 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1146 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1147 }
1148 
1149 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1150 {
1151 	return atomic_read(&sbi->nr_pages[count_type]);
1152 }
1153 
1154 static inline int get_dirty_pages(struct inode *inode)
1155 {
1156 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1157 }
1158 
1159 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1160 {
1161 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1162 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1163 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1164 }
1165 
1166 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1167 {
1168 	return sbi->total_valid_block_count;
1169 }
1170 
1171 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1172 {
1173 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1174 
1175 	/* return NAT or SIT bitmap */
1176 	if (flag == NAT_BITMAP)
1177 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1178 	else if (flag == SIT_BITMAP)
1179 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1180 
1181 	return 0;
1182 }
1183 
1184 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1185 {
1186 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1187 }
1188 
1189 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1190 {
1191 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1192 	int offset;
1193 
1194 	if (__cp_payload(sbi) > 0) {
1195 		if (flag == NAT_BITMAP)
1196 			return &ckpt->sit_nat_version_bitmap;
1197 		else
1198 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1199 	} else {
1200 		offset = (flag == NAT_BITMAP) ?
1201 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1202 		return &ckpt->sit_nat_version_bitmap + offset;
1203 	}
1204 }
1205 
1206 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1207 {
1208 	block_t start_addr;
1209 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1210 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1211 
1212 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1213 
1214 	/*
1215 	 * odd numbered checkpoint should at cp segment 0
1216 	 * and even segment must be at cp segment 1
1217 	 */
1218 	if (!(ckpt_version & 1))
1219 		start_addr += sbi->blocks_per_seg;
1220 
1221 	return start_addr;
1222 }
1223 
1224 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1225 {
1226 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1227 }
1228 
1229 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1230 						struct inode *inode)
1231 {
1232 	block_t	valid_block_count;
1233 	unsigned int valid_node_count;
1234 
1235 	spin_lock(&sbi->stat_lock);
1236 
1237 	valid_block_count = sbi->total_valid_block_count + 1;
1238 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1239 		spin_unlock(&sbi->stat_lock);
1240 		return false;
1241 	}
1242 
1243 	valid_node_count = sbi->total_valid_node_count + 1;
1244 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1245 		spin_unlock(&sbi->stat_lock);
1246 		return false;
1247 	}
1248 
1249 	if (inode)
1250 		inode->i_blocks++;
1251 
1252 	sbi->alloc_valid_block_count++;
1253 	sbi->total_valid_node_count++;
1254 	sbi->total_valid_block_count++;
1255 	spin_unlock(&sbi->stat_lock);
1256 
1257 	return true;
1258 }
1259 
1260 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1261 						struct inode *inode)
1262 {
1263 	spin_lock(&sbi->stat_lock);
1264 
1265 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1266 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1267 	f2fs_bug_on(sbi, !inode->i_blocks);
1268 
1269 	inode->i_blocks--;
1270 	sbi->total_valid_node_count--;
1271 	sbi->total_valid_block_count--;
1272 
1273 	spin_unlock(&sbi->stat_lock);
1274 }
1275 
1276 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1277 {
1278 	return sbi->total_valid_node_count;
1279 }
1280 
1281 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1282 {
1283 	spin_lock(&sbi->stat_lock);
1284 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1285 	sbi->total_valid_inode_count++;
1286 	spin_unlock(&sbi->stat_lock);
1287 }
1288 
1289 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1290 {
1291 	spin_lock(&sbi->stat_lock);
1292 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1293 	sbi->total_valid_inode_count--;
1294 	spin_unlock(&sbi->stat_lock);
1295 }
1296 
1297 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1298 {
1299 	return sbi->total_valid_inode_count;
1300 }
1301 
1302 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1303 						pgoff_t index, bool for_write)
1304 {
1305 	if (!for_write)
1306 		return grab_cache_page(mapping, index);
1307 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1308 }
1309 
1310 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1311 {
1312 	char *src_kaddr = kmap(src);
1313 	char *dst_kaddr = kmap(dst);
1314 
1315 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1316 	kunmap(dst);
1317 	kunmap(src);
1318 }
1319 
1320 static inline void f2fs_put_page(struct page *page, int unlock)
1321 {
1322 	if (!page)
1323 		return;
1324 
1325 	if (unlock) {
1326 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1327 		unlock_page(page);
1328 	}
1329 	page_cache_release(page);
1330 }
1331 
1332 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1333 {
1334 	if (dn->node_page)
1335 		f2fs_put_page(dn->node_page, 1);
1336 	if (dn->inode_page && dn->node_page != dn->inode_page)
1337 		f2fs_put_page(dn->inode_page, 0);
1338 	dn->node_page = NULL;
1339 	dn->inode_page = NULL;
1340 }
1341 
1342 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1343 					size_t size)
1344 {
1345 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1346 }
1347 
1348 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1349 						gfp_t flags)
1350 {
1351 	void *entry;
1352 
1353 	entry = kmem_cache_alloc(cachep, flags);
1354 	if (!entry)
1355 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1356 	return entry;
1357 }
1358 
1359 static inline struct bio *f2fs_bio_alloc(int npages)
1360 {
1361 	struct bio *bio;
1362 
1363 	/* No failure on bio allocation */
1364 	bio = bio_alloc(GFP_NOIO, npages);
1365 	if (!bio)
1366 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1367 	return bio;
1368 }
1369 
1370 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1371 				unsigned long index, void *item)
1372 {
1373 	while (radix_tree_insert(root, index, item))
1374 		cond_resched();
1375 }
1376 
1377 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1378 
1379 static inline bool IS_INODE(struct page *page)
1380 {
1381 	struct f2fs_node *p = F2FS_NODE(page);
1382 	return RAW_IS_INODE(p);
1383 }
1384 
1385 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1386 {
1387 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1388 }
1389 
1390 static inline block_t datablock_addr(struct page *node_page,
1391 		unsigned int offset)
1392 {
1393 	struct f2fs_node *raw_node;
1394 	__le32 *addr_array;
1395 	raw_node = F2FS_NODE(node_page);
1396 	addr_array = blkaddr_in_node(raw_node);
1397 	return le32_to_cpu(addr_array[offset]);
1398 }
1399 
1400 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1401 {
1402 	int mask;
1403 
1404 	addr += (nr >> 3);
1405 	mask = 1 << (7 - (nr & 0x07));
1406 	return mask & *addr;
1407 }
1408 
1409 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1410 {
1411 	int mask;
1412 
1413 	addr += (nr >> 3);
1414 	mask = 1 << (7 - (nr & 0x07));
1415 	*addr |= mask;
1416 }
1417 
1418 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1419 {
1420 	int mask;
1421 
1422 	addr += (nr >> 3);
1423 	mask = 1 << (7 - (nr & 0x07));
1424 	*addr &= ~mask;
1425 }
1426 
1427 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1428 {
1429 	int mask;
1430 	int ret;
1431 
1432 	addr += (nr >> 3);
1433 	mask = 1 << (7 - (nr & 0x07));
1434 	ret = mask & *addr;
1435 	*addr |= mask;
1436 	return ret;
1437 }
1438 
1439 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1440 {
1441 	int mask;
1442 	int ret;
1443 
1444 	addr += (nr >> 3);
1445 	mask = 1 << (7 - (nr & 0x07));
1446 	ret = mask & *addr;
1447 	*addr &= ~mask;
1448 	return ret;
1449 }
1450 
1451 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1452 {
1453 	int mask;
1454 
1455 	addr += (nr >> 3);
1456 	mask = 1 << (7 - (nr & 0x07));
1457 	*addr ^= mask;
1458 }
1459 
1460 /* used for f2fs_inode_info->flags */
1461 enum {
1462 	FI_NEW_INODE,		/* indicate newly allocated inode */
1463 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1464 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1465 	FI_INC_LINK,		/* need to increment i_nlink */
1466 	FI_ACL_MODE,		/* indicate acl mode */
1467 	FI_NO_ALLOC,		/* should not allocate any blocks */
1468 	FI_FREE_NID,		/* free allocated nide */
1469 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1470 	FI_DELAY_IPUT,		/* used for the recovery */
1471 	FI_NO_EXTENT,		/* not to use the extent cache */
1472 	FI_INLINE_XATTR,	/* used for inline xattr */
1473 	FI_INLINE_DATA,		/* used for inline data*/
1474 	FI_INLINE_DENTRY,	/* used for inline dentry */
1475 	FI_APPEND_WRITE,	/* inode has appended data */
1476 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1477 	FI_NEED_IPU,		/* used for ipu per file */
1478 	FI_ATOMIC_FILE,		/* indicate atomic file */
1479 	FI_VOLATILE_FILE,	/* indicate volatile file */
1480 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1481 	FI_DROP_CACHE,		/* drop dirty page cache */
1482 	FI_DATA_EXIST,		/* indicate data exists */
1483 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1484 	FI_DO_DEFRAG,		/* indicate defragment is running */
1485 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1486 };
1487 
1488 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1489 {
1490 	if (!test_bit(flag, &fi->flags))
1491 		set_bit(flag, &fi->flags);
1492 }
1493 
1494 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1495 {
1496 	return test_bit(flag, &fi->flags);
1497 }
1498 
1499 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1500 {
1501 	if (test_bit(flag, &fi->flags))
1502 		clear_bit(flag, &fi->flags);
1503 }
1504 
1505 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1506 {
1507 	fi->i_acl_mode = mode;
1508 	set_inode_flag(fi, FI_ACL_MODE);
1509 }
1510 
1511 static inline void get_inline_info(struct f2fs_inode_info *fi,
1512 					struct f2fs_inode *ri)
1513 {
1514 	if (ri->i_inline & F2FS_INLINE_XATTR)
1515 		set_inode_flag(fi, FI_INLINE_XATTR);
1516 	if (ri->i_inline & F2FS_INLINE_DATA)
1517 		set_inode_flag(fi, FI_INLINE_DATA);
1518 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1519 		set_inode_flag(fi, FI_INLINE_DENTRY);
1520 	if (ri->i_inline & F2FS_DATA_EXIST)
1521 		set_inode_flag(fi, FI_DATA_EXIST);
1522 	if (ri->i_inline & F2FS_INLINE_DOTS)
1523 		set_inode_flag(fi, FI_INLINE_DOTS);
1524 }
1525 
1526 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1527 					struct f2fs_inode *ri)
1528 {
1529 	ri->i_inline = 0;
1530 
1531 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1532 		ri->i_inline |= F2FS_INLINE_XATTR;
1533 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1534 		ri->i_inline |= F2FS_INLINE_DATA;
1535 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1536 		ri->i_inline |= F2FS_INLINE_DENTRY;
1537 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1538 		ri->i_inline |= F2FS_DATA_EXIST;
1539 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1540 		ri->i_inline |= F2FS_INLINE_DOTS;
1541 }
1542 
1543 static inline int f2fs_has_inline_xattr(struct inode *inode)
1544 {
1545 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1546 }
1547 
1548 static inline unsigned int addrs_per_inode(struct inode *inode)
1549 {
1550 	if (f2fs_has_inline_xattr(inode))
1551 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1552 	return DEF_ADDRS_PER_INODE;
1553 }
1554 
1555 static inline void *inline_xattr_addr(struct page *page)
1556 {
1557 	struct f2fs_inode *ri = F2FS_INODE(page);
1558 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1559 					F2FS_INLINE_XATTR_ADDRS]);
1560 }
1561 
1562 static inline int inline_xattr_size(struct inode *inode)
1563 {
1564 	if (f2fs_has_inline_xattr(inode))
1565 		return F2FS_INLINE_XATTR_ADDRS << 2;
1566 	else
1567 		return 0;
1568 }
1569 
1570 static inline int f2fs_has_inline_data(struct inode *inode)
1571 {
1572 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1573 }
1574 
1575 static inline void f2fs_clear_inline_inode(struct inode *inode)
1576 {
1577 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1578 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1579 }
1580 
1581 static inline int f2fs_exist_data(struct inode *inode)
1582 {
1583 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1584 }
1585 
1586 static inline int f2fs_has_inline_dots(struct inode *inode)
1587 {
1588 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1589 }
1590 
1591 static inline bool f2fs_is_atomic_file(struct inode *inode)
1592 {
1593 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1594 }
1595 
1596 static inline bool f2fs_is_volatile_file(struct inode *inode)
1597 {
1598 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1599 }
1600 
1601 static inline bool f2fs_is_first_block_written(struct inode *inode)
1602 {
1603 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1604 }
1605 
1606 static inline bool f2fs_is_drop_cache(struct inode *inode)
1607 {
1608 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1609 }
1610 
1611 static inline void *inline_data_addr(struct page *page)
1612 {
1613 	struct f2fs_inode *ri = F2FS_INODE(page);
1614 	return (void *)&(ri->i_addr[1]);
1615 }
1616 
1617 static inline int f2fs_has_inline_dentry(struct inode *inode)
1618 {
1619 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1620 }
1621 
1622 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1623 {
1624 	if (!f2fs_has_inline_dentry(dir))
1625 		kunmap(page);
1626 }
1627 
1628 static inline int is_file(struct inode *inode, int type)
1629 {
1630 	return F2FS_I(inode)->i_advise & type;
1631 }
1632 
1633 static inline void set_file(struct inode *inode, int type)
1634 {
1635 	F2FS_I(inode)->i_advise |= type;
1636 }
1637 
1638 static inline void clear_file(struct inode *inode, int type)
1639 {
1640 	F2FS_I(inode)->i_advise &= ~type;
1641 }
1642 
1643 static inline int f2fs_readonly(struct super_block *sb)
1644 {
1645 	return sb->s_flags & MS_RDONLY;
1646 }
1647 
1648 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1649 {
1650 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1651 }
1652 
1653 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1654 {
1655 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1656 	sbi->sb->s_flags |= MS_RDONLY;
1657 }
1658 
1659 static inline bool is_dot_dotdot(const struct qstr *str)
1660 {
1661 	if (str->len == 1 && str->name[0] == '.')
1662 		return true;
1663 
1664 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1665 		return true;
1666 
1667 	return false;
1668 }
1669 
1670 static inline bool f2fs_may_extent_tree(struct inode *inode)
1671 {
1672 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1673 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1674 		return false;
1675 
1676 	return S_ISREG(inode->i_mode);
1677 }
1678 
1679 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1680 {
1681 	void *ret;
1682 
1683 	ret = kmalloc(size, flags | __GFP_NOWARN);
1684 	if (!ret)
1685 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1686 	return ret;
1687 }
1688 
1689 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1690 {
1691 	void *ret;
1692 
1693 	ret = kzalloc(size, flags | __GFP_NOWARN);
1694 	if (!ret)
1695 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1696 	return ret;
1697 }
1698 
1699 #define get_inode_mode(i) \
1700 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1701 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1702 
1703 /* get offset of first page in next direct node */
1704 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1705 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1706 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1707 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1708 
1709 /*
1710  * file.c
1711  */
1712 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1713 void truncate_data_blocks(struct dnode_of_data *);
1714 int truncate_blocks(struct inode *, u64, bool);
1715 int f2fs_truncate(struct inode *, bool);
1716 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1717 int f2fs_setattr(struct dentry *, struct iattr *);
1718 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1719 int truncate_data_blocks_range(struct dnode_of_data *, int);
1720 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1721 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1722 
1723 /*
1724  * inode.c
1725  */
1726 void f2fs_set_inode_flags(struct inode *);
1727 struct inode *f2fs_iget(struct super_block *, unsigned long);
1728 int try_to_free_nats(struct f2fs_sb_info *, int);
1729 int update_inode(struct inode *, struct page *);
1730 int update_inode_page(struct inode *);
1731 int f2fs_write_inode(struct inode *, struct writeback_control *);
1732 void f2fs_evict_inode(struct inode *);
1733 void handle_failed_inode(struct inode *);
1734 
1735 /*
1736  * namei.c
1737  */
1738 struct dentry *f2fs_get_parent(struct dentry *child);
1739 
1740 /*
1741  * dir.c
1742  */
1743 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1744 void set_de_type(struct f2fs_dir_entry *, umode_t);
1745 
1746 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1747 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1748 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1749 			unsigned int, struct f2fs_str *);
1750 void do_make_empty_dir(struct inode *, struct inode *,
1751 			struct f2fs_dentry_ptr *);
1752 struct page *init_inode_metadata(struct inode *, struct inode *,
1753 			const struct qstr *, struct page *);
1754 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1755 int room_for_filename(const void *, int, int);
1756 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1757 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1758 							struct page **);
1759 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1760 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1761 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1762 				struct page *, struct inode *);
1763 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1764 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1765 			const struct qstr *, f2fs_hash_t , unsigned int);
1766 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1767 			umode_t);
1768 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1769 							struct inode *);
1770 int f2fs_do_tmpfile(struct inode *, struct inode *);
1771 bool f2fs_empty_dir(struct inode *);
1772 
1773 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1774 {
1775 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1776 				inode, inode->i_ino, inode->i_mode);
1777 }
1778 
1779 /*
1780  * super.c
1781  */
1782 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1783 int f2fs_sync_fs(struct super_block *, int);
1784 extern __printf(3, 4)
1785 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1786 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1787 
1788 /*
1789  * hash.c
1790  */
1791 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1792 
1793 /*
1794  * node.c
1795  */
1796 struct dnode_of_data;
1797 struct node_info;
1798 
1799 bool available_free_memory(struct f2fs_sb_info *, int);
1800 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1801 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1802 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1803 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1804 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1805 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1806 int truncate_inode_blocks(struct inode *, pgoff_t);
1807 int truncate_xattr_node(struct inode *, struct page *);
1808 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1809 int remove_inode_page(struct inode *);
1810 struct page *new_inode_page(struct inode *);
1811 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1812 void ra_node_page(struct f2fs_sb_info *, nid_t);
1813 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1814 struct page *get_node_page_ra(struct page *, int);
1815 void sync_inode_page(struct dnode_of_data *);
1816 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1817 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1818 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1819 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1820 int try_to_free_nids(struct f2fs_sb_info *, int);
1821 void recover_inline_xattr(struct inode *, struct page *);
1822 void recover_xattr_data(struct inode *, struct page *, block_t);
1823 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1824 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1825 				struct f2fs_summary_block *);
1826 void flush_nat_entries(struct f2fs_sb_info *);
1827 int build_node_manager(struct f2fs_sb_info *);
1828 void destroy_node_manager(struct f2fs_sb_info *);
1829 int __init create_node_manager_caches(void);
1830 void destroy_node_manager_caches(void);
1831 
1832 /*
1833  * segment.c
1834  */
1835 void register_inmem_page(struct inode *, struct page *);
1836 void drop_inmem_pages(struct inode *);
1837 int commit_inmem_pages(struct inode *);
1838 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1839 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1840 int f2fs_issue_flush(struct f2fs_sb_info *);
1841 int create_flush_cmd_control(struct f2fs_sb_info *);
1842 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1843 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1844 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1845 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1846 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1847 void release_discard_addrs(struct f2fs_sb_info *);
1848 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1849 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1850 void allocate_new_segments(struct f2fs_sb_info *);
1851 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1852 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1853 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1854 void write_meta_page(struct f2fs_sb_info *, struct page *);
1855 void write_node_page(unsigned int, struct f2fs_io_info *);
1856 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1857 void rewrite_data_page(struct f2fs_io_info *);
1858 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1859 					block_t, block_t, bool, bool);
1860 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1861 				block_t, block_t, unsigned char, bool, bool);
1862 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1863 		block_t, block_t *, struct f2fs_summary *, int);
1864 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1865 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1866 void write_data_summaries(struct f2fs_sb_info *, block_t);
1867 void write_node_summaries(struct f2fs_sb_info *, block_t);
1868 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1869 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1870 int build_segment_manager(struct f2fs_sb_info *);
1871 void destroy_segment_manager(struct f2fs_sb_info *);
1872 int __init create_segment_manager_caches(void);
1873 void destroy_segment_manager_caches(void);
1874 
1875 /*
1876  * checkpoint.c
1877  */
1878 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1879 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1880 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1881 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1882 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1883 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1884 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1885 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1886 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1887 void release_ino_entry(struct f2fs_sb_info *);
1888 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1889 int acquire_orphan_inode(struct f2fs_sb_info *);
1890 void release_orphan_inode(struct f2fs_sb_info *);
1891 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1892 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1893 int recover_orphan_inodes(struct f2fs_sb_info *);
1894 int get_valid_checkpoint(struct f2fs_sb_info *);
1895 void update_dirty_page(struct inode *, struct page *);
1896 void add_dirty_dir_inode(struct inode *);
1897 void remove_dirty_inode(struct inode *);
1898 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1899 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1900 void init_ino_entry_info(struct f2fs_sb_info *);
1901 int __init create_checkpoint_caches(void);
1902 void destroy_checkpoint_caches(void);
1903 
1904 /*
1905  * data.c
1906  */
1907 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1908 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1909 				struct page *, nid_t, enum page_type, int);
1910 int f2fs_submit_page_bio(struct f2fs_io_info *);
1911 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1912 void set_data_blkaddr(struct dnode_of_data *);
1913 int reserve_new_block(struct dnode_of_data *);
1914 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1915 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1916 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1917 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1918 struct page *find_data_page(struct inode *, pgoff_t);
1919 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1920 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1921 int do_write_data_page(struct f2fs_io_info *);
1922 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1923 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1924 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1925 int f2fs_release_page(struct page *, gfp_t);
1926 
1927 /*
1928  * gc.c
1929  */
1930 int start_gc_thread(struct f2fs_sb_info *);
1931 void stop_gc_thread(struct f2fs_sb_info *);
1932 block_t start_bidx_of_node(unsigned int, struct inode *);
1933 int f2fs_gc(struct f2fs_sb_info *, bool);
1934 void build_gc_manager(struct f2fs_sb_info *);
1935 
1936 /*
1937  * recovery.c
1938  */
1939 int recover_fsync_data(struct f2fs_sb_info *);
1940 bool space_for_roll_forward(struct f2fs_sb_info *);
1941 
1942 /*
1943  * debug.c
1944  */
1945 #ifdef CONFIG_F2FS_STAT_FS
1946 struct f2fs_stat_info {
1947 	struct list_head stat_list;
1948 	struct f2fs_sb_info *sbi;
1949 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1950 	int main_area_segs, main_area_sections, main_area_zones;
1951 	unsigned long long hit_largest, hit_cached, hit_rbtree;
1952 	unsigned long long hit_total, total_ext;
1953 	int ext_tree, zombie_tree, ext_node;
1954 	int ndirty_node, ndirty_meta;
1955 	int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1956 	int nats, dirty_nats, sits, dirty_sits, fnids;
1957 	int total_count, utilization;
1958 	int bg_gc, inmem_pages, wb_pages;
1959 	int inline_xattr, inline_inode, inline_dir;
1960 	unsigned int valid_count, valid_node_count, valid_inode_count;
1961 	unsigned int bimodal, avg_vblocks;
1962 	int util_free, util_valid, util_invalid;
1963 	int rsvd_segs, overp_segs;
1964 	int dirty_count, node_pages, meta_pages;
1965 	int prefree_count, call_count, cp_count, bg_cp_count;
1966 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1967 	int bg_node_segs, bg_data_segs;
1968 	int tot_blks, data_blks, node_blks;
1969 	int bg_data_blks, bg_node_blks;
1970 	int curseg[NR_CURSEG_TYPE];
1971 	int cursec[NR_CURSEG_TYPE];
1972 	int curzone[NR_CURSEG_TYPE];
1973 
1974 	unsigned int segment_count[2];
1975 	unsigned int block_count[2];
1976 	unsigned int inplace_count;
1977 	unsigned long long base_mem, cache_mem, page_mem;
1978 };
1979 
1980 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1981 {
1982 	return (struct f2fs_stat_info *)sbi->stat_info;
1983 }
1984 
1985 #define stat_inc_cp_count(si)		((si)->cp_count++)
1986 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
1987 #define stat_inc_call_count(si)		((si)->call_count++)
1988 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1989 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
1990 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
1991 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
1992 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
1993 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
1994 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
1995 #define stat_inc_inline_xattr(inode)					\
1996 	do {								\
1997 		if (f2fs_has_inline_xattr(inode))			\
1998 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1999 	} while (0)
2000 #define stat_dec_inline_xattr(inode)					\
2001 	do {								\
2002 		if (f2fs_has_inline_xattr(inode))			\
2003 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2004 	} while (0)
2005 #define stat_inc_inline_inode(inode)					\
2006 	do {								\
2007 		if (f2fs_has_inline_data(inode))			\
2008 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2009 	} while (0)
2010 #define stat_dec_inline_inode(inode)					\
2011 	do {								\
2012 		if (f2fs_has_inline_data(inode))			\
2013 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2014 	} while (0)
2015 #define stat_inc_inline_dir(inode)					\
2016 	do {								\
2017 		if (f2fs_has_inline_dentry(inode))			\
2018 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2019 	} while (0)
2020 #define stat_dec_inline_dir(inode)					\
2021 	do {								\
2022 		if (f2fs_has_inline_dentry(inode))			\
2023 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2024 	} while (0)
2025 #define stat_inc_seg_type(sbi, curseg)					\
2026 		((sbi)->segment_count[(curseg)->alloc_type]++)
2027 #define stat_inc_block_count(sbi, curseg)				\
2028 		((sbi)->block_count[(curseg)->alloc_type]++)
2029 #define stat_inc_inplace_blocks(sbi)					\
2030 		(atomic_inc(&(sbi)->inplace_count))
2031 #define stat_inc_seg_count(sbi, type, gc_type)				\
2032 	do {								\
2033 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2034 		(si)->tot_segs++;					\
2035 		if (type == SUM_TYPE_DATA) {				\
2036 			si->data_segs++;				\
2037 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2038 		} else {						\
2039 			si->node_segs++;				\
2040 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2041 		}							\
2042 	} while (0)
2043 
2044 #define stat_inc_tot_blk_count(si, blks)				\
2045 	(si->tot_blks += (blks))
2046 
2047 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2048 	do {								\
2049 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2050 		stat_inc_tot_blk_count(si, blks);			\
2051 		si->data_blks += (blks);				\
2052 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2053 	} while (0)
2054 
2055 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2056 	do {								\
2057 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2058 		stat_inc_tot_blk_count(si, blks);			\
2059 		si->node_blks += (blks);				\
2060 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2061 	} while (0)
2062 
2063 int f2fs_build_stats(struct f2fs_sb_info *);
2064 void f2fs_destroy_stats(struct f2fs_sb_info *);
2065 int __init f2fs_create_root_stats(void);
2066 void f2fs_destroy_root_stats(void);
2067 #else
2068 #define stat_inc_cp_count(si)
2069 #define stat_inc_bg_cp_count(si)
2070 #define stat_inc_call_count(si)
2071 #define stat_inc_bggc_count(si)
2072 #define stat_inc_dirty_inode(sbi, type)
2073 #define stat_dec_dirty_inode(sbi, type)
2074 #define stat_inc_total_hit(sb)
2075 #define stat_inc_rbtree_node_hit(sb)
2076 #define stat_inc_largest_node_hit(sbi)
2077 #define stat_inc_cached_node_hit(sbi)
2078 #define stat_inc_inline_xattr(inode)
2079 #define stat_dec_inline_xattr(inode)
2080 #define stat_inc_inline_inode(inode)
2081 #define stat_dec_inline_inode(inode)
2082 #define stat_inc_inline_dir(inode)
2083 #define stat_dec_inline_dir(inode)
2084 #define stat_inc_seg_type(sbi, curseg)
2085 #define stat_inc_block_count(sbi, curseg)
2086 #define stat_inc_inplace_blocks(sbi)
2087 #define stat_inc_seg_count(sbi, type, gc_type)
2088 #define stat_inc_tot_blk_count(si, blks)
2089 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2090 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2091 
2092 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2093 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2094 static inline int __init f2fs_create_root_stats(void) { return 0; }
2095 static inline void f2fs_destroy_root_stats(void) { }
2096 #endif
2097 
2098 extern const struct file_operations f2fs_dir_operations;
2099 extern const struct file_operations f2fs_file_operations;
2100 extern const struct inode_operations f2fs_file_inode_operations;
2101 extern const struct address_space_operations f2fs_dblock_aops;
2102 extern const struct address_space_operations f2fs_node_aops;
2103 extern const struct address_space_operations f2fs_meta_aops;
2104 extern const struct inode_operations f2fs_dir_inode_operations;
2105 extern const struct inode_operations f2fs_symlink_inode_operations;
2106 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2107 extern const struct inode_operations f2fs_special_inode_operations;
2108 extern struct kmem_cache *inode_entry_slab;
2109 
2110 /*
2111  * inline.c
2112  */
2113 bool f2fs_may_inline_data(struct inode *);
2114 bool f2fs_may_inline_dentry(struct inode *);
2115 void read_inline_data(struct page *, struct page *);
2116 bool truncate_inline_inode(struct page *, u64);
2117 int f2fs_read_inline_data(struct inode *, struct page *);
2118 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2119 int f2fs_convert_inline_inode(struct inode *);
2120 int f2fs_write_inline_data(struct inode *, struct page *);
2121 bool recover_inline_data(struct inode *, struct page *);
2122 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2123 				struct f2fs_filename *, struct page **);
2124 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2125 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2126 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2127 						nid_t, umode_t);
2128 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2129 						struct inode *, struct inode *);
2130 bool f2fs_empty_inline_dir(struct inode *);
2131 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2132 						struct f2fs_str *);
2133 int f2fs_inline_data_fiemap(struct inode *,
2134 		struct fiemap_extent_info *, __u64, __u64);
2135 
2136 /*
2137  * shrinker.c
2138  */
2139 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2140 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2141 void f2fs_join_shrinker(struct f2fs_sb_info *);
2142 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2143 
2144 /*
2145  * extent_cache.c
2146  */
2147 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2148 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2149 unsigned int f2fs_destroy_extent_node(struct inode *);
2150 void f2fs_destroy_extent_tree(struct inode *);
2151 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2152 void f2fs_update_extent_cache(struct dnode_of_data *);
2153 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2154 						pgoff_t, block_t, unsigned int);
2155 void init_extent_cache_info(struct f2fs_sb_info *);
2156 int __init create_extent_cache(void);
2157 void destroy_extent_cache(void);
2158 
2159 /*
2160  * crypto support
2161  */
2162 static inline int f2fs_encrypted_inode(struct inode *inode)
2163 {
2164 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2165 	return file_is_encrypt(inode);
2166 #else
2167 	return 0;
2168 #endif
2169 }
2170 
2171 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2172 {
2173 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2174 	file_set_encrypt(inode);
2175 #endif
2176 }
2177 
2178 static inline bool f2fs_bio_encrypted(struct bio *bio)
2179 {
2180 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2181 	return unlikely(bio->bi_private != NULL);
2182 #else
2183 	return false;
2184 #endif
2185 }
2186 
2187 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2188 {
2189 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2190 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2191 #else
2192 	return 0;
2193 #endif
2194 }
2195 
2196 static inline bool f2fs_may_encrypt(struct inode *inode)
2197 {
2198 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2199 	umode_t mode = inode->i_mode;
2200 
2201 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2202 #else
2203 	return 0;
2204 #endif
2205 }
2206 
2207 /* crypto_policy.c */
2208 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2209 							struct inode *);
2210 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2211 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2212 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2213 
2214 /* crypt.c */
2215 extern struct kmem_cache *f2fs_crypt_info_cachep;
2216 bool f2fs_valid_contents_enc_mode(uint32_t);
2217 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2218 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2219 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2220 struct page *f2fs_encrypt(struct inode *, struct page *);
2221 int f2fs_decrypt(struct page *);
2222 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2223 
2224 /* crypto_key.c */
2225 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2226 int _f2fs_get_encryption_info(struct inode *inode);
2227 
2228 /* crypto_fname.c */
2229 bool f2fs_valid_filenames_enc_mode(uint32_t);
2230 u32 f2fs_fname_crypto_round_up(u32, u32);
2231 unsigned f2fs_fname_encrypted_size(struct inode *, u32);
2232 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2233 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2234 			const struct f2fs_str *, struct f2fs_str *);
2235 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2236 			struct f2fs_str *);
2237 
2238 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2239 void f2fs_restore_and_release_control_page(struct page **);
2240 void f2fs_restore_control_page(struct page *);
2241 
2242 int __init f2fs_init_crypto(void);
2243 int f2fs_crypto_initialize(void);
2244 void f2fs_exit_crypto(void);
2245 
2246 int f2fs_has_encryption_key(struct inode *);
2247 
2248 static inline int f2fs_get_encryption_info(struct inode *inode)
2249 {
2250 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2251 
2252 	if (!ci ||
2253 		(ci->ci_keyring_key &&
2254 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2255 					       (1 << KEY_FLAG_REVOKED) |
2256 					       (1 << KEY_FLAG_DEAD)))))
2257 		return _f2fs_get_encryption_info(inode);
2258 	return 0;
2259 }
2260 
2261 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2262 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2263 				int lookup, struct f2fs_filename *);
2264 void f2fs_fname_free_filename(struct f2fs_filename *);
2265 #else
2266 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2267 static inline void f2fs_restore_control_page(struct page *p) { }
2268 
2269 static inline int __init f2fs_init_crypto(void) { return 0; }
2270 static inline void f2fs_exit_crypto(void) { }
2271 
2272 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2273 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2274 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2275 
2276 static inline int f2fs_fname_setup_filename(struct inode *dir,
2277 					const struct qstr *iname,
2278 					int lookup, struct f2fs_filename *fname)
2279 {
2280 	memset(fname, 0, sizeof(struct f2fs_filename));
2281 	fname->usr_fname = iname;
2282 	fname->disk_name.name = (unsigned char *)iname->name;
2283 	fname->disk_name.len = iname->len;
2284 	return 0;
2285 }
2286 
2287 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2288 #endif
2289 #endif
2290