1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 26 #ifdef CONFIG_F2FS_CHECK_FS 27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 29 #else 30 #define f2fs_bug_on(sbi, condition) \ 31 do { \ 32 if (unlikely(condition)) { \ 33 WARN_ON(1); \ 34 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 35 } \ 36 } while (0) 37 #define f2fs_down_write(x, y) down_write(x) 38 #endif 39 40 /* 41 * For mount options 42 */ 43 #define F2FS_MOUNT_BG_GC 0x00000001 44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 45 #define F2FS_MOUNT_DISCARD 0x00000004 46 #define F2FS_MOUNT_NOHEAP 0x00000008 47 #define F2FS_MOUNT_XATTR_USER 0x00000010 48 #define F2FS_MOUNT_POSIX_ACL 0x00000020 49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 51 #define F2FS_MOUNT_INLINE_DATA 0x00000100 52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 54 #define F2FS_MOUNT_NOBARRIER 0x00000800 55 #define F2FS_MOUNT_FASTBOOT 0x00001000 56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 59 60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 63 64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 65 typecheck(unsigned long long, b) && \ 66 ((long long)((a) - (b)) > 0)) 67 68 typedef u32 block_t; /* 69 * should not change u32, since it is the on-disk block 70 * address format, __le32. 71 */ 72 typedef u32 nid_t; 73 74 struct f2fs_mount_info { 75 unsigned int opt; 76 }; 77 78 #define F2FS_FEATURE_ENCRYPT 0x0001 79 80 #define F2FS_HAS_FEATURE(sb, mask) \ 81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 82 #define F2FS_SET_FEATURE(sb, mask) \ 83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 84 #define F2FS_CLEAR_FEATURE(sb, mask) \ 85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 86 87 #define CRCPOLY_LE 0xedb88320 88 89 static inline __u32 f2fs_crc32(void *buf, size_t len) 90 { 91 unsigned char *p = (unsigned char *)buf; 92 __u32 crc = F2FS_SUPER_MAGIC; 93 int i; 94 95 while (len--) { 96 crc ^= *p++; 97 for (i = 0; i < 8; i++) 98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 99 } 100 return crc; 101 } 102 103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 104 { 105 return f2fs_crc32(buf, buf_size) == blk_crc; 106 } 107 108 /* 109 * For checkpoint manager 110 */ 111 enum { 112 NAT_BITMAP, 113 SIT_BITMAP 114 }; 115 116 enum { 117 CP_UMOUNT, 118 CP_FASTBOOT, 119 CP_SYNC, 120 CP_RECOVERY, 121 CP_DISCARD, 122 }; 123 124 #define DEF_BATCHED_TRIM_SECTIONS 32 125 #define BATCHED_TRIM_SEGMENTS(sbi) \ 126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 127 #define BATCHED_TRIM_BLOCKS(sbi) \ 128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 129 #define DEF_CP_INTERVAL 60 /* 60 secs */ 130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */ 131 132 struct cp_control { 133 int reason; 134 __u64 trim_start; 135 __u64 trim_end; 136 __u64 trim_minlen; 137 __u64 trimmed; 138 }; 139 140 /* 141 * For CP/NAT/SIT/SSA readahead 142 */ 143 enum { 144 META_CP, 145 META_NAT, 146 META_SIT, 147 META_SSA, 148 META_POR, 149 }; 150 151 /* for the list of ino */ 152 enum { 153 ORPHAN_INO, /* for orphan ino list */ 154 APPEND_INO, /* for append ino list */ 155 UPDATE_INO, /* for update ino list */ 156 MAX_INO_ENTRY, /* max. list */ 157 }; 158 159 struct ino_entry { 160 struct list_head list; /* list head */ 161 nid_t ino; /* inode number */ 162 }; 163 164 /* for the list of inodes to be GCed */ 165 struct inode_entry { 166 struct list_head list; /* list head */ 167 struct inode *inode; /* vfs inode pointer */ 168 }; 169 170 /* for the list of blockaddresses to be discarded */ 171 struct discard_entry { 172 struct list_head list; /* list head */ 173 block_t blkaddr; /* block address to be discarded */ 174 int len; /* # of consecutive blocks of the discard */ 175 }; 176 177 /* for the list of fsync inodes, used only during recovery */ 178 struct fsync_inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 block_t blkaddr; /* block address locating the last fsync */ 182 block_t last_dentry; /* block address locating the last dentry */ 183 block_t last_inode; /* block address locating the last inode */ 184 }; 185 186 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 187 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 188 189 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 190 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 191 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 192 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 193 194 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 195 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 196 197 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 198 { 199 int before = nats_in_cursum(journal); 200 journal->n_nats = cpu_to_le16(before + i); 201 return before; 202 } 203 204 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 205 { 206 int before = sits_in_cursum(journal); 207 journal->n_sits = cpu_to_le16(before + i); 208 return before; 209 } 210 211 static inline bool __has_cursum_space(struct f2fs_journal *journal, 212 int size, int type) 213 { 214 if (type == NAT_JOURNAL) 215 return size <= MAX_NAT_JENTRIES(journal); 216 return size <= MAX_SIT_JENTRIES(journal); 217 } 218 219 /* 220 * ioctl commands 221 */ 222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 225 226 #define F2FS_IOCTL_MAGIC 0xf5 227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 235 236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 237 _IOR('f', 19, struct f2fs_encryption_policy) 238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 239 _IOW('f', 20, __u8[16]) 240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 241 _IOW('f', 21, struct f2fs_encryption_policy) 242 243 /* 244 * should be same as XFS_IOC_GOINGDOWN. 245 * Flags for going down operation used by FS_IOC_GOINGDOWN 246 */ 247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 252 253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 254 /* 255 * ioctl commands in 32 bit emulation 256 */ 257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 260 #endif 261 262 struct f2fs_defragment { 263 u64 start; 264 u64 len; 265 }; 266 267 /* 268 * For INODE and NODE manager 269 */ 270 /* for directory operations */ 271 struct f2fs_str { 272 unsigned char *name; 273 u32 len; 274 }; 275 276 struct f2fs_filename { 277 const struct qstr *usr_fname; 278 struct f2fs_str disk_name; 279 f2fs_hash_t hash; 280 #ifdef CONFIG_F2FS_FS_ENCRYPTION 281 struct f2fs_str crypto_buf; 282 #endif 283 }; 284 285 #define FSTR_INIT(n, l) { .name = n, .len = l } 286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 287 #define fname_name(p) ((p)->disk_name.name) 288 #define fname_len(p) ((p)->disk_name.len) 289 290 struct f2fs_dentry_ptr { 291 struct inode *inode; 292 const void *bitmap; 293 struct f2fs_dir_entry *dentry; 294 __u8 (*filename)[F2FS_SLOT_LEN]; 295 int max; 296 }; 297 298 static inline void make_dentry_ptr(struct inode *inode, 299 struct f2fs_dentry_ptr *d, void *src, int type) 300 { 301 d->inode = inode; 302 303 if (type == 1) { 304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 305 d->max = NR_DENTRY_IN_BLOCK; 306 d->bitmap = &t->dentry_bitmap; 307 d->dentry = t->dentry; 308 d->filename = t->filename; 309 } else { 310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 311 d->max = NR_INLINE_DENTRY; 312 d->bitmap = &t->dentry_bitmap; 313 d->dentry = t->dentry; 314 d->filename = t->filename; 315 } 316 } 317 318 /* 319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 320 * as its node offset to distinguish from index node blocks. 321 * But some bits are used to mark the node block. 322 */ 323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 324 >> OFFSET_BIT_SHIFT) 325 enum { 326 ALLOC_NODE, /* allocate a new node page if needed */ 327 LOOKUP_NODE, /* look up a node without readahead */ 328 LOOKUP_NODE_RA, /* 329 * look up a node with readahead called 330 * by get_data_block. 331 */ 332 }; 333 334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 335 336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 337 338 /* vector size for gang look-up from extent cache that consists of radix tree */ 339 #define EXT_TREE_VEC_SIZE 64 340 341 /* for in-memory extent cache entry */ 342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 343 344 /* number of extent info in extent cache we try to shrink */ 345 #define EXTENT_CACHE_SHRINK_NUMBER 128 346 347 struct extent_info { 348 unsigned int fofs; /* start offset in a file */ 349 u32 blk; /* start block address of the extent */ 350 unsigned int len; /* length of the extent */ 351 }; 352 353 struct extent_node { 354 struct rb_node rb_node; /* rb node located in rb-tree */ 355 struct list_head list; /* node in global extent list of sbi */ 356 struct extent_info ei; /* extent info */ 357 struct extent_tree *et; /* extent tree pointer */ 358 }; 359 360 struct extent_tree { 361 nid_t ino; /* inode number */ 362 struct rb_root root; /* root of extent info rb-tree */ 363 struct extent_node *cached_en; /* recently accessed extent node */ 364 struct extent_info largest; /* largested extent info */ 365 struct list_head list; /* to be used by sbi->zombie_list */ 366 rwlock_t lock; /* protect extent info rb-tree */ 367 atomic_t node_cnt; /* # of extent node in rb-tree*/ 368 }; 369 370 /* 371 * This structure is taken from ext4_map_blocks. 372 * 373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 374 */ 375 #define F2FS_MAP_NEW (1 << BH_New) 376 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 379 F2FS_MAP_UNWRITTEN) 380 381 struct f2fs_map_blocks { 382 block_t m_pblk; 383 block_t m_lblk; 384 unsigned int m_len; 385 unsigned int m_flags; 386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 387 }; 388 389 /* for flag in get_data_block */ 390 #define F2FS_GET_BLOCK_READ 0 391 #define F2FS_GET_BLOCK_DIO 1 392 #define F2FS_GET_BLOCK_FIEMAP 2 393 #define F2FS_GET_BLOCK_BMAP 3 394 #define F2FS_GET_BLOCK_PRE_DIO 4 395 #define F2FS_GET_BLOCK_PRE_AIO 5 396 397 /* 398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 399 */ 400 #define FADVISE_COLD_BIT 0x01 401 #define FADVISE_LOST_PINO_BIT 0x02 402 #define FADVISE_ENCRYPT_BIT 0x04 403 #define FADVISE_ENC_NAME_BIT 0x08 404 405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 416 417 /* Encryption algorithms */ 418 #define F2FS_ENCRYPTION_MODE_INVALID 0 419 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 420 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 421 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 422 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 423 424 #include "f2fs_crypto.h" 425 426 #define DEF_DIR_LEVEL 0 427 428 struct f2fs_inode_info { 429 struct inode vfs_inode; /* serve a vfs inode */ 430 unsigned long i_flags; /* keep an inode flags for ioctl */ 431 unsigned char i_advise; /* use to give file attribute hints */ 432 unsigned char i_dir_level; /* use for dentry level for large dir */ 433 unsigned int i_current_depth; /* use only in directory structure */ 434 unsigned int i_pino; /* parent inode number */ 435 umode_t i_acl_mode; /* keep file acl mode temporarily */ 436 437 /* Use below internally in f2fs*/ 438 unsigned long flags; /* use to pass per-file flags */ 439 struct rw_semaphore i_sem; /* protect fi info */ 440 atomic_t dirty_pages; /* # of dirty pages */ 441 f2fs_hash_t chash; /* hash value of given file name */ 442 unsigned int clevel; /* maximum level of given file name */ 443 nid_t i_xattr_nid; /* node id that contains xattrs */ 444 unsigned long long xattr_ver; /* cp version of xattr modification */ 445 446 struct list_head dirty_list; /* linked in global dirty list */ 447 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 448 struct mutex inmem_lock; /* lock for inmemory pages */ 449 450 struct extent_tree *extent_tree; /* cached extent_tree entry */ 451 452 #ifdef CONFIG_F2FS_FS_ENCRYPTION 453 /* Encryption params */ 454 struct f2fs_crypt_info *i_crypt_info; 455 #endif 456 }; 457 458 static inline void get_extent_info(struct extent_info *ext, 459 struct f2fs_extent i_ext) 460 { 461 ext->fofs = le32_to_cpu(i_ext.fofs); 462 ext->blk = le32_to_cpu(i_ext.blk); 463 ext->len = le32_to_cpu(i_ext.len); 464 } 465 466 static inline void set_raw_extent(struct extent_info *ext, 467 struct f2fs_extent *i_ext) 468 { 469 i_ext->fofs = cpu_to_le32(ext->fofs); 470 i_ext->blk = cpu_to_le32(ext->blk); 471 i_ext->len = cpu_to_le32(ext->len); 472 } 473 474 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 475 u32 blk, unsigned int len) 476 { 477 ei->fofs = fofs; 478 ei->blk = blk; 479 ei->len = len; 480 } 481 482 static inline bool __is_extent_same(struct extent_info *ei1, 483 struct extent_info *ei2) 484 { 485 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 486 ei1->len == ei2->len); 487 } 488 489 static inline bool __is_extent_mergeable(struct extent_info *back, 490 struct extent_info *front) 491 { 492 return (back->fofs + back->len == front->fofs && 493 back->blk + back->len == front->blk); 494 } 495 496 static inline bool __is_back_mergeable(struct extent_info *cur, 497 struct extent_info *back) 498 { 499 return __is_extent_mergeable(back, cur); 500 } 501 502 static inline bool __is_front_mergeable(struct extent_info *cur, 503 struct extent_info *front) 504 { 505 return __is_extent_mergeable(cur, front); 506 } 507 508 static inline void __try_update_largest_extent(struct extent_tree *et, 509 struct extent_node *en) 510 { 511 if (en->ei.len > et->largest.len) 512 et->largest = en->ei; 513 } 514 515 struct f2fs_nm_info { 516 block_t nat_blkaddr; /* base disk address of NAT */ 517 nid_t max_nid; /* maximum possible node ids */ 518 nid_t available_nids; /* maximum available node ids */ 519 nid_t next_scan_nid; /* the next nid to be scanned */ 520 unsigned int ram_thresh; /* control the memory footprint */ 521 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 522 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 523 524 /* NAT cache management */ 525 struct radix_tree_root nat_root;/* root of the nat entry cache */ 526 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 527 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 528 struct list_head nat_entries; /* cached nat entry list (clean) */ 529 unsigned int nat_cnt; /* the # of cached nat entries */ 530 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 531 532 /* free node ids management */ 533 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 534 struct list_head free_nid_list; /* a list for free nids */ 535 spinlock_t free_nid_list_lock; /* protect free nid list */ 536 unsigned int fcnt; /* the number of free node id */ 537 struct mutex build_lock; /* lock for build free nids */ 538 539 /* for checkpoint */ 540 char *nat_bitmap; /* NAT bitmap pointer */ 541 int bitmap_size; /* bitmap size */ 542 }; 543 544 /* 545 * this structure is used as one of function parameters. 546 * all the information are dedicated to a given direct node block determined 547 * by the data offset in a file. 548 */ 549 struct dnode_of_data { 550 struct inode *inode; /* vfs inode pointer */ 551 struct page *inode_page; /* its inode page, NULL is possible */ 552 struct page *node_page; /* cached direct node page */ 553 nid_t nid; /* node id of the direct node block */ 554 unsigned int ofs_in_node; /* data offset in the node page */ 555 bool inode_page_locked; /* inode page is locked or not */ 556 bool node_changed; /* is node block changed */ 557 char cur_level; /* level of hole node page */ 558 char max_level; /* level of current page located */ 559 block_t data_blkaddr; /* block address of the node block */ 560 }; 561 562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 563 struct page *ipage, struct page *npage, nid_t nid) 564 { 565 memset(dn, 0, sizeof(*dn)); 566 dn->inode = inode; 567 dn->inode_page = ipage; 568 dn->node_page = npage; 569 dn->nid = nid; 570 } 571 572 /* 573 * For SIT manager 574 * 575 * By default, there are 6 active log areas across the whole main area. 576 * When considering hot and cold data separation to reduce cleaning overhead, 577 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 578 * respectively. 579 * In the current design, you should not change the numbers intentionally. 580 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 581 * logs individually according to the underlying devices. (default: 6) 582 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 583 * data and 8 for node logs. 584 */ 585 #define NR_CURSEG_DATA_TYPE (3) 586 #define NR_CURSEG_NODE_TYPE (3) 587 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 588 589 enum { 590 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 591 CURSEG_WARM_DATA, /* data blocks */ 592 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 593 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 594 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 595 CURSEG_COLD_NODE, /* indirect node blocks */ 596 NO_CHECK_TYPE, 597 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 598 }; 599 600 struct flush_cmd { 601 struct completion wait; 602 struct llist_node llnode; 603 int ret; 604 }; 605 606 struct flush_cmd_control { 607 struct task_struct *f2fs_issue_flush; /* flush thread */ 608 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 609 struct llist_head issue_list; /* list for command issue */ 610 struct llist_node *dispatch_list; /* list for command dispatch */ 611 }; 612 613 struct f2fs_sm_info { 614 struct sit_info *sit_info; /* whole segment information */ 615 struct free_segmap_info *free_info; /* free segment information */ 616 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 617 struct curseg_info *curseg_array; /* active segment information */ 618 619 block_t seg0_blkaddr; /* block address of 0'th segment */ 620 block_t main_blkaddr; /* start block address of main area */ 621 block_t ssa_blkaddr; /* start block address of SSA area */ 622 623 unsigned int segment_count; /* total # of segments */ 624 unsigned int main_segments; /* # of segments in main area */ 625 unsigned int reserved_segments; /* # of reserved segments */ 626 unsigned int ovp_segments; /* # of overprovision segments */ 627 628 /* a threshold to reclaim prefree segments */ 629 unsigned int rec_prefree_segments; 630 631 /* for small discard management */ 632 struct list_head discard_list; /* 4KB discard list */ 633 int nr_discards; /* # of discards in the list */ 634 int max_discards; /* max. discards to be issued */ 635 636 /* for batched trimming */ 637 unsigned int trim_sections; /* # of sections to trim */ 638 639 struct list_head sit_entry_set; /* sit entry set list */ 640 641 unsigned int ipu_policy; /* in-place-update policy */ 642 unsigned int min_ipu_util; /* in-place-update threshold */ 643 unsigned int min_fsync_blocks; /* threshold for fsync */ 644 645 /* for flush command control */ 646 struct flush_cmd_control *cmd_control_info; 647 648 }; 649 650 /* 651 * For superblock 652 */ 653 /* 654 * COUNT_TYPE for monitoring 655 * 656 * f2fs monitors the number of several block types such as on-writeback, 657 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 658 */ 659 enum count_type { 660 F2FS_WRITEBACK, 661 F2FS_DIRTY_DENTS, 662 F2FS_DIRTY_DATA, 663 F2FS_DIRTY_NODES, 664 F2FS_DIRTY_META, 665 F2FS_INMEM_PAGES, 666 NR_COUNT_TYPE, 667 }; 668 669 /* 670 * The below are the page types of bios used in submit_bio(). 671 * The available types are: 672 * DATA User data pages. It operates as async mode. 673 * NODE Node pages. It operates as async mode. 674 * META FS metadata pages such as SIT, NAT, CP. 675 * NR_PAGE_TYPE The number of page types. 676 * META_FLUSH Make sure the previous pages are written 677 * with waiting the bio's completion 678 * ... Only can be used with META. 679 */ 680 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 681 enum page_type { 682 DATA, 683 NODE, 684 META, 685 NR_PAGE_TYPE, 686 META_FLUSH, 687 INMEM, /* the below types are used by tracepoints only. */ 688 INMEM_DROP, 689 INMEM_REVOKE, 690 IPU, 691 OPU, 692 }; 693 694 struct f2fs_io_info { 695 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 696 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 697 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 698 block_t new_blkaddr; /* new block address to be written */ 699 block_t old_blkaddr; /* old block address before Cow */ 700 struct page *page; /* page to be written */ 701 struct page *encrypted_page; /* encrypted page */ 702 }; 703 704 #define is_read_io(rw) (((rw) & 1) == READ) 705 struct f2fs_bio_info { 706 struct f2fs_sb_info *sbi; /* f2fs superblock */ 707 struct bio *bio; /* bios to merge */ 708 sector_t last_block_in_bio; /* last block number */ 709 struct f2fs_io_info fio; /* store buffered io info. */ 710 struct rw_semaphore io_rwsem; /* blocking op for bio */ 711 }; 712 713 enum inode_type { 714 DIR_INODE, /* for dirty dir inode */ 715 FILE_INODE, /* for dirty regular/symlink inode */ 716 NR_INODE_TYPE, 717 }; 718 719 /* for inner inode cache management */ 720 struct inode_management { 721 struct radix_tree_root ino_root; /* ino entry array */ 722 spinlock_t ino_lock; /* for ino entry lock */ 723 struct list_head ino_list; /* inode list head */ 724 unsigned long ino_num; /* number of entries */ 725 }; 726 727 /* For s_flag in struct f2fs_sb_info */ 728 enum { 729 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 730 SBI_IS_CLOSE, /* specify unmounting */ 731 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 732 SBI_POR_DOING, /* recovery is doing or not */ 733 }; 734 735 enum { 736 CP_TIME, 737 REQ_TIME, 738 MAX_TIME, 739 }; 740 741 struct f2fs_sb_info { 742 struct super_block *sb; /* pointer to VFS super block */ 743 struct proc_dir_entry *s_proc; /* proc entry */ 744 struct f2fs_super_block *raw_super; /* raw super block pointer */ 745 int valid_super_block; /* valid super block no */ 746 int s_flag; /* flags for sbi */ 747 748 /* for node-related operations */ 749 struct f2fs_nm_info *nm_info; /* node manager */ 750 struct inode *node_inode; /* cache node blocks */ 751 752 /* for segment-related operations */ 753 struct f2fs_sm_info *sm_info; /* segment manager */ 754 755 /* for bio operations */ 756 struct f2fs_bio_info read_io; /* for read bios */ 757 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 758 759 /* for checkpoint */ 760 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 761 struct inode *meta_inode; /* cache meta blocks */ 762 struct mutex cp_mutex; /* checkpoint procedure lock */ 763 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 764 struct rw_semaphore node_write; /* locking node writes */ 765 struct mutex writepages; /* mutex for writepages() */ 766 wait_queue_head_t cp_wait; 767 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 768 long interval_time[MAX_TIME]; /* to store thresholds */ 769 770 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 771 772 /* for orphan inode, use 0'th array */ 773 unsigned int max_orphans; /* max orphan inodes */ 774 775 /* for inode management */ 776 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 777 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 778 779 /* for extent tree cache */ 780 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 781 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 782 struct list_head extent_list; /* lru list for shrinker */ 783 spinlock_t extent_lock; /* locking extent lru list */ 784 atomic_t total_ext_tree; /* extent tree count */ 785 struct list_head zombie_list; /* extent zombie tree list */ 786 atomic_t total_zombie_tree; /* extent zombie tree count */ 787 atomic_t total_ext_node; /* extent info count */ 788 789 /* basic filesystem units */ 790 unsigned int log_sectors_per_block; /* log2 sectors per block */ 791 unsigned int log_blocksize; /* log2 block size */ 792 unsigned int blocksize; /* block size */ 793 unsigned int root_ino_num; /* root inode number*/ 794 unsigned int node_ino_num; /* node inode number*/ 795 unsigned int meta_ino_num; /* meta inode number*/ 796 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 797 unsigned int blocks_per_seg; /* blocks per segment */ 798 unsigned int segs_per_sec; /* segments per section */ 799 unsigned int secs_per_zone; /* sections per zone */ 800 unsigned int total_sections; /* total section count */ 801 unsigned int total_node_count; /* total node block count */ 802 unsigned int total_valid_node_count; /* valid node block count */ 803 unsigned int total_valid_inode_count; /* valid inode count */ 804 loff_t max_file_blocks; /* max block index of file */ 805 int active_logs; /* # of active logs */ 806 int dir_level; /* directory level */ 807 808 block_t user_block_count; /* # of user blocks */ 809 block_t total_valid_block_count; /* # of valid blocks */ 810 block_t alloc_valid_block_count; /* # of allocated blocks */ 811 block_t discard_blks; /* discard command candidats */ 812 block_t last_valid_block_count; /* for recovery */ 813 u32 s_next_generation; /* for NFS support */ 814 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 815 816 struct f2fs_mount_info mount_opt; /* mount options */ 817 818 /* for cleaning operations */ 819 struct mutex gc_mutex; /* mutex for GC */ 820 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 821 unsigned int cur_victim_sec; /* current victim section num */ 822 823 /* maximum # of trials to find a victim segment for SSR and GC */ 824 unsigned int max_victim_search; 825 826 /* 827 * for stat information. 828 * one is for the LFS mode, and the other is for the SSR mode. 829 */ 830 #ifdef CONFIG_F2FS_STAT_FS 831 struct f2fs_stat_info *stat_info; /* FS status information */ 832 unsigned int segment_count[2]; /* # of allocated segments */ 833 unsigned int block_count[2]; /* # of allocated blocks */ 834 atomic_t inplace_count; /* # of inplace update */ 835 atomic64_t total_hit_ext; /* # of lookup extent cache */ 836 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 837 atomic64_t read_hit_largest; /* # of hit largest extent node */ 838 atomic64_t read_hit_cached; /* # of hit cached extent node */ 839 atomic_t inline_xattr; /* # of inline_xattr inodes */ 840 atomic_t inline_inode; /* # of inline_data inodes */ 841 atomic_t inline_dir; /* # of inline_dentry inodes */ 842 int bg_gc; /* background gc calls */ 843 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 844 #endif 845 unsigned int last_victim[2]; /* last victim segment # */ 846 spinlock_t stat_lock; /* lock for stat operations */ 847 848 /* For sysfs suppport */ 849 struct kobject s_kobj; 850 struct completion s_kobj_unregister; 851 852 /* For shrinker support */ 853 struct list_head s_list; 854 struct mutex umount_mutex; 855 unsigned int shrinker_run_no; 856 857 /* For write statistics */ 858 u64 sectors_written_start; 859 u64 kbytes_written; 860 }; 861 862 /* For write statistics. Suppose sector size is 512 bytes, 863 * and the return value is in kbytes. s is of struct f2fs_sb_info. 864 */ 865 #define BD_PART_WRITTEN(s) \ 866 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 867 s->sectors_written_start) >> 1) 868 869 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 870 { 871 sbi->last_time[type] = jiffies; 872 } 873 874 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 875 { 876 struct timespec ts = {sbi->interval_time[type], 0}; 877 unsigned long interval = timespec_to_jiffies(&ts); 878 879 return time_after(jiffies, sbi->last_time[type] + interval); 880 } 881 882 static inline bool is_idle(struct f2fs_sb_info *sbi) 883 { 884 struct block_device *bdev = sbi->sb->s_bdev; 885 struct request_queue *q = bdev_get_queue(bdev); 886 struct request_list *rl = &q->root_rl; 887 888 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 889 return 0; 890 891 return f2fs_time_over(sbi, REQ_TIME); 892 } 893 894 /* 895 * Inline functions 896 */ 897 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 898 { 899 return container_of(inode, struct f2fs_inode_info, vfs_inode); 900 } 901 902 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 903 { 904 return sb->s_fs_info; 905 } 906 907 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 908 { 909 return F2FS_SB(inode->i_sb); 910 } 911 912 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 913 { 914 return F2FS_I_SB(mapping->host); 915 } 916 917 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 918 { 919 return F2FS_M_SB(page->mapping); 920 } 921 922 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 923 { 924 return (struct f2fs_super_block *)(sbi->raw_super); 925 } 926 927 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 928 { 929 return (struct f2fs_checkpoint *)(sbi->ckpt); 930 } 931 932 static inline struct f2fs_node *F2FS_NODE(struct page *page) 933 { 934 return (struct f2fs_node *)page_address(page); 935 } 936 937 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 938 { 939 return &((struct f2fs_node *)page_address(page))->i; 940 } 941 942 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 943 { 944 return (struct f2fs_nm_info *)(sbi->nm_info); 945 } 946 947 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 948 { 949 return (struct f2fs_sm_info *)(sbi->sm_info); 950 } 951 952 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 953 { 954 return (struct sit_info *)(SM_I(sbi)->sit_info); 955 } 956 957 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 958 { 959 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 960 } 961 962 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 963 { 964 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 965 } 966 967 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 968 { 969 return sbi->meta_inode->i_mapping; 970 } 971 972 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 973 { 974 return sbi->node_inode->i_mapping; 975 } 976 977 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 978 { 979 return sbi->s_flag & (0x01 << type); 980 } 981 982 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 983 { 984 sbi->s_flag |= (0x01 << type); 985 } 986 987 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 988 { 989 sbi->s_flag &= ~(0x01 << type); 990 } 991 992 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 993 { 994 return le64_to_cpu(cp->checkpoint_ver); 995 } 996 997 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 998 { 999 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1000 return ckpt_flags & f; 1001 } 1002 1003 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1004 { 1005 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1006 ckpt_flags |= f; 1007 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1008 } 1009 1010 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1011 { 1012 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1013 ckpt_flags &= (~f); 1014 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1015 } 1016 1017 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1018 { 1019 down_read(&sbi->cp_rwsem); 1020 } 1021 1022 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1023 { 1024 up_read(&sbi->cp_rwsem); 1025 } 1026 1027 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1028 { 1029 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 1030 } 1031 1032 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1033 { 1034 up_write(&sbi->cp_rwsem); 1035 } 1036 1037 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1038 { 1039 int reason = CP_SYNC; 1040 1041 if (test_opt(sbi, FASTBOOT)) 1042 reason = CP_FASTBOOT; 1043 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1044 reason = CP_UMOUNT; 1045 return reason; 1046 } 1047 1048 static inline bool __remain_node_summaries(int reason) 1049 { 1050 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1051 } 1052 1053 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1054 { 1055 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1056 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1057 } 1058 1059 /* 1060 * Check whether the given nid is within node id range. 1061 */ 1062 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1063 { 1064 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1065 return -EINVAL; 1066 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1067 return -EINVAL; 1068 return 0; 1069 } 1070 1071 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1072 1073 /* 1074 * Check whether the inode has blocks or not 1075 */ 1076 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1077 { 1078 if (F2FS_I(inode)->i_xattr_nid) 1079 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1080 else 1081 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1082 } 1083 1084 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1085 { 1086 return ofs == XATTR_NODE_OFFSET; 1087 } 1088 1089 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1090 struct inode *inode, blkcnt_t count) 1091 { 1092 block_t valid_block_count; 1093 1094 spin_lock(&sbi->stat_lock); 1095 valid_block_count = 1096 sbi->total_valid_block_count + (block_t)count; 1097 if (unlikely(valid_block_count > sbi->user_block_count)) { 1098 spin_unlock(&sbi->stat_lock); 1099 return false; 1100 } 1101 inode->i_blocks += count; 1102 sbi->total_valid_block_count = valid_block_count; 1103 sbi->alloc_valid_block_count += (block_t)count; 1104 spin_unlock(&sbi->stat_lock); 1105 return true; 1106 } 1107 1108 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1109 struct inode *inode, 1110 blkcnt_t count) 1111 { 1112 spin_lock(&sbi->stat_lock); 1113 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1114 f2fs_bug_on(sbi, inode->i_blocks < count); 1115 inode->i_blocks -= count; 1116 sbi->total_valid_block_count -= (block_t)count; 1117 spin_unlock(&sbi->stat_lock); 1118 } 1119 1120 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1121 { 1122 atomic_inc(&sbi->nr_pages[count_type]); 1123 set_sbi_flag(sbi, SBI_IS_DIRTY); 1124 } 1125 1126 static inline void inode_inc_dirty_pages(struct inode *inode) 1127 { 1128 atomic_inc(&F2FS_I(inode)->dirty_pages); 1129 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1130 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1131 } 1132 1133 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1134 { 1135 atomic_dec(&sbi->nr_pages[count_type]); 1136 } 1137 1138 static inline void inode_dec_dirty_pages(struct inode *inode) 1139 { 1140 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1141 !S_ISLNK(inode->i_mode)) 1142 return; 1143 1144 atomic_dec(&F2FS_I(inode)->dirty_pages); 1145 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1146 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1147 } 1148 1149 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1150 { 1151 return atomic_read(&sbi->nr_pages[count_type]); 1152 } 1153 1154 static inline int get_dirty_pages(struct inode *inode) 1155 { 1156 return atomic_read(&F2FS_I(inode)->dirty_pages); 1157 } 1158 1159 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1160 { 1161 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1162 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1163 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1164 } 1165 1166 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1167 { 1168 return sbi->total_valid_block_count; 1169 } 1170 1171 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1172 { 1173 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1174 1175 /* return NAT or SIT bitmap */ 1176 if (flag == NAT_BITMAP) 1177 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1178 else if (flag == SIT_BITMAP) 1179 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1180 1181 return 0; 1182 } 1183 1184 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1185 { 1186 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1187 } 1188 1189 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1190 { 1191 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1192 int offset; 1193 1194 if (__cp_payload(sbi) > 0) { 1195 if (flag == NAT_BITMAP) 1196 return &ckpt->sit_nat_version_bitmap; 1197 else 1198 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1199 } else { 1200 offset = (flag == NAT_BITMAP) ? 1201 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1202 return &ckpt->sit_nat_version_bitmap + offset; 1203 } 1204 } 1205 1206 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1207 { 1208 block_t start_addr; 1209 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1210 unsigned long long ckpt_version = cur_cp_version(ckpt); 1211 1212 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1213 1214 /* 1215 * odd numbered checkpoint should at cp segment 0 1216 * and even segment must be at cp segment 1 1217 */ 1218 if (!(ckpt_version & 1)) 1219 start_addr += sbi->blocks_per_seg; 1220 1221 return start_addr; 1222 } 1223 1224 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1225 { 1226 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1227 } 1228 1229 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1230 struct inode *inode) 1231 { 1232 block_t valid_block_count; 1233 unsigned int valid_node_count; 1234 1235 spin_lock(&sbi->stat_lock); 1236 1237 valid_block_count = sbi->total_valid_block_count + 1; 1238 if (unlikely(valid_block_count > sbi->user_block_count)) { 1239 spin_unlock(&sbi->stat_lock); 1240 return false; 1241 } 1242 1243 valid_node_count = sbi->total_valid_node_count + 1; 1244 if (unlikely(valid_node_count > sbi->total_node_count)) { 1245 spin_unlock(&sbi->stat_lock); 1246 return false; 1247 } 1248 1249 if (inode) 1250 inode->i_blocks++; 1251 1252 sbi->alloc_valid_block_count++; 1253 sbi->total_valid_node_count++; 1254 sbi->total_valid_block_count++; 1255 spin_unlock(&sbi->stat_lock); 1256 1257 return true; 1258 } 1259 1260 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1261 struct inode *inode) 1262 { 1263 spin_lock(&sbi->stat_lock); 1264 1265 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1266 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1267 f2fs_bug_on(sbi, !inode->i_blocks); 1268 1269 inode->i_blocks--; 1270 sbi->total_valid_node_count--; 1271 sbi->total_valid_block_count--; 1272 1273 spin_unlock(&sbi->stat_lock); 1274 } 1275 1276 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1277 { 1278 return sbi->total_valid_node_count; 1279 } 1280 1281 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1282 { 1283 spin_lock(&sbi->stat_lock); 1284 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1285 sbi->total_valid_inode_count++; 1286 spin_unlock(&sbi->stat_lock); 1287 } 1288 1289 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1290 { 1291 spin_lock(&sbi->stat_lock); 1292 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1293 sbi->total_valid_inode_count--; 1294 spin_unlock(&sbi->stat_lock); 1295 } 1296 1297 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1298 { 1299 return sbi->total_valid_inode_count; 1300 } 1301 1302 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1303 pgoff_t index, bool for_write) 1304 { 1305 if (!for_write) 1306 return grab_cache_page(mapping, index); 1307 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1308 } 1309 1310 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1311 { 1312 char *src_kaddr = kmap(src); 1313 char *dst_kaddr = kmap(dst); 1314 1315 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1316 kunmap(dst); 1317 kunmap(src); 1318 } 1319 1320 static inline void f2fs_put_page(struct page *page, int unlock) 1321 { 1322 if (!page) 1323 return; 1324 1325 if (unlock) { 1326 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1327 unlock_page(page); 1328 } 1329 page_cache_release(page); 1330 } 1331 1332 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1333 { 1334 if (dn->node_page) 1335 f2fs_put_page(dn->node_page, 1); 1336 if (dn->inode_page && dn->node_page != dn->inode_page) 1337 f2fs_put_page(dn->inode_page, 0); 1338 dn->node_page = NULL; 1339 dn->inode_page = NULL; 1340 } 1341 1342 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1343 size_t size) 1344 { 1345 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1346 } 1347 1348 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1349 gfp_t flags) 1350 { 1351 void *entry; 1352 1353 entry = kmem_cache_alloc(cachep, flags); 1354 if (!entry) 1355 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1356 return entry; 1357 } 1358 1359 static inline struct bio *f2fs_bio_alloc(int npages) 1360 { 1361 struct bio *bio; 1362 1363 /* No failure on bio allocation */ 1364 bio = bio_alloc(GFP_NOIO, npages); 1365 if (!bio) 1366 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1367 return bio; 1368 } 1369 1370 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1371 unsigned long index, void *item) 1372 { 1373 while (radix_tree_insert(root, index, item)) 1374 cond_resched(); 1375 } 1376 1377 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1378 1379 static inline bool IS_INODE(struct page *page) 1380 { 1381 struct f2fs_node *p = F2FS_NODE(page); 1382 return RAW_IS_INODE(p); 1383 } 1384 1385 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1386 { 1387 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1388 } 1389 1390 static inline block_t datablock_addr(struct page *node_page, 1391 unsigned int offset) 1392 { 1393 struct f2fs_node *raw_node; 1394 __le32 *addr_array; 1395 raw_node = F2FS_NODE(node_page); 1396 addr_array = blkaddr_in_node(raw_node); 1397 return le32_to_cpu(addr_array[offset]); 1398 } 1399 1400 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1401 { 1402 int mask; 1403 1404 addr += (nr >> 3); 1405 mask = 1 << (7 - (nr & 0x07)); 1406 return mask & *addr; 1407 } 1408 1409 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1410 { 1411 int mask; 1412 1413 addr += (nr >> 3); 1414 mask = 1 << (7 - (nr & 0x07)); 1415 *addr |= mask; 1416 } 1417 1418 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1419 { 1420 int mask; 1421 1422 addr += (nr >> 3); 1423 mask = 1 << (7 - (nr & 0x07)); 1424 *addr &= ~mask; 1425 } 1426 1427 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1428 { 1429 int mask; 1430 int ret; 1431 1432 addr += (nr >> 3); 1433 mask = 1 << (7 - (nr & 0x07)); 1434 ret = mask & *addr; 1435 *addr |= mask; 1436 return ret; 1437 } 1438 1439 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1440 { 1441 int mask; 1442 int ret; 1443 1444 addr += (nr >> 3); 1445 mask = 1 << (7 - (nr & 0x07)); 1446 ret = mask & *addr; 1447 *addr &= ~mask; 1448 return ret; 1449 } 1450 1451 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1452 { 1453 int mask; 1454 1455 addr += (nr >> 3); 1456 mask = 1 << (7 - (nr & 0x07)); 1457 *addr ^= mask; 1458 } 1459 1460 /* used for f2fs_inode_info->flags */ 1461 enum { 1462 FI_NEW_INODE, /* indicate newly allocated inode */ 1463 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1464 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1465 FI_INC_LINK, /* need to increment i_nlink */ 1466 FI_ACL_MODE, /* indicate acl mode */ 1467 FI_NO_ALLOC, /* should not allocate any blocks */ 1468 FI_FREE_NID, /* free allocated nide */ 1469 FI_UPDATE_DIR, /* should update inode block for consistency */ 1470 FI_DELAY_IPUT, /* used for the recovery */ 1471 FI_NO_EXTENT, /* not to use the extent cache */ 1472 FI_INLINE_XATTR, /* used for inline xattr */ 1473 FI_INLINE_DATA, /* used for inline data*/ 1474 FI_INLINE_DENTRY, /* used for inline dentry */ 1475 FI_APPEND_WRITE, /* inode has appended data */ 1476 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1477 FI_NEED_IPU, /* used for ipu per file */ 1478 FI_ATOMIC_FILE, /* indicate atomic file */ 1479 FI_VOLATILE_FILE, /* indicate volatile file */ 1480 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1481 FI_DROP_CACHE, /* drop dirty page cache */ 1482 FI_DATA_EXIST, /* indicate data exists */ 1483 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1484 FI_DO_DEFRAG, /* indicate defragment is running */ 1485 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1486 }; 1487 1488 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1489 { 1490 if (!test_bit(flag, &fi->flags)) 1491 set_bit(flag, &fi->flags); 1492 } 1493 1494 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1495 { 1496 return test_bit(flag, &fi->flags); 1497 } 1498 1499 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1500 { 1501 if (test_bit(flag, &fi->flags)) 1502 clear_bit(flag, &fi->flags); 1503 } 1504 1505 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1506 { 1507 fi->i_acl_mode = mode; 1508 set_inode_flag(fi, FI_ACL_MODE); 1509 } 1510 1511 static inline void get_inline_info(struct f2fs_inode_info *fi, 1512 struct f2fs_inode *ri) 1513 { 1514 if (ri->i_inline & F2FS_INLINE_XATTR) 1515 set_inode_flag(fi, FI_INLINE_XATTR); 1516 if (ri->i_inline & F2FS_INLINE_DATA) 1517 set_inode_flag(fi, FI_INLINE_DATA); 1518 if (ri->i_inline & F2FS_INLINE_DENTRY) 1519 set_inode_flag(fi, FI_INLINE_DENTRY); 1520 if (ri->i_inline & F2FS_DATA_EXIST) 1521 set_inode_flag(fi, FI_DATA_EXIST); 1522 if (ri->i_inline & F2FS_INLINE_DOTS) 1523 set_inode_flag(fi, FI_INLINE_DOTS); 1524 } 1525 1526 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1527 struct f2fs_inode *ri) 1528 { 1529 ri->i_inline = 0; 1530 1531 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1532 ri->i_inline |= F2FS_INLINE_XATTR; 1533 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1534 ri->i_inline |= F2FS_INLINE_DATA; 1535 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1536 ri->i_inline |= F2FS_INLINE_DENTRY; 1537 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1538 ri->i_inline |= F2FS_DATA_EXIST; 1539 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1540 ri->i_inline |= F2FS_INLINE_DOTS; 1541 } 1542 1543 static inline int f2fs_has_inline_xattr(struct inode *inode) 1544 { 1545 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1546 } 1547 1548 static inline unsigned int addrs_per_inode(struct inode *inode) 1549 { 1550 if (f2fs_has_inline_xattr(inode)) 1551 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1552 return DEF_ADDRS_PER_INODE; 1553 } 1554 1555 static inline void *inline_xattr_addr(struct page *page) 1556 { 1557 struct f2fs_inode *ri = F2FS_INODE(page); 1558 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1559 F2FS_INLINE_XATTR_ADDRS]); 1560 } 1561 1562 static inline int inline_xattr_size(struct inode *inode) 1563 { 1564 if (f2fs_has_inline_xattr(inode)) 1565 return F2FS_INLINE_XATTR_ADDRS << 2; 1566 else 1567 return 0; 1568 } 1569 1570 static inline int f2fs_has_inline_data(struct inode *inode) 1571 { 1572 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1573 } 1574 1575 static inline void f2fs_clear_inline_inode(struct inode *inode) 1576 { 1577 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1578 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1579 } 1580 1581 static inline int f2fs_exist_data(struct inode *inode) 1582 { 1583 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1584 } 1585 1586 static inline int f2fs_has_inline_dots(struct inode *inode) 1587 { 1588 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1589 } 1590 1591 static inline bool f2fs_is_atomic_file(struct inode *inode) 1592 { 1593 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1594 } 1595 1596 static inline bool f2fs_is_volatile_file(struct inode *inode) 1597 { 1598 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1599 } 1600 1601 static inline bool f2fs_is_first_block_written(struct inode *inode) 1602 { 1603 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1604 } 1605 1606 static inline bool f2fs_is_drop_cache(struct inode *inode) 1607 { 1608 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1609 } 1610 1611 static inline void *inline_data_addr(struct page *page) 1612 { 1613 struct f2fs_inode *ri = F2FS_INODE(page); 1614 return (void *)&(ri->i_addr[1]); 1615 } 1616 1617 static inline int f2fs_has_inline_dentry(struct inode *inode) 1618 { 1619 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1620 } 1621 1622 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1623 { 1624 if (!f2fs_has_inline_dentry(dir)) 1625 kunmap(page); 1626 } 1627 1628 static inline int is_file(struct inode *inode, int type) 1629 { 1630 return F2FS_I(inode)->i_advise & type; 1631 } 1632 1633 static inline void set_file(struct inode *inode, int type) 1634 { 1635 F2FS_I(inode)->i_advise |= type; 1636 } 1637 1638 static inline void clear_file(struct inode *inode, int type) 1639 { 1640 F2FS_I(inode)->i_advise &= ~type; 1641 } 1642 1643 static inline int f2fs_readonly(struct super_block *sb) 1644 { 1645 return sb->s_flags & MS_RDONLY; 1646 } 1647 1648 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1649 { 1650 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1651 } 1652 1653 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1654 { 1655 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1656 sbi->sb->s_flags |= MS_RDONLY; 1657 } 1658 1659 static inline bool is_dot_dotdot(const struct qstr *str) 1660 { 1661 if (str->len == 1 && str->name[0] == '.') 1662 return true; 1663 1664 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1665 return true; 1666 1667 return false; 1668 } 1669 1670 static inline bool f2fs_may_extent_tree(struct inode *inode) 1671 { 1672 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1673 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1674 return false; 1675 1676 return S_ISREG(inode->i_mode); 1677 } 1678 1679 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1680 { 1681 void *ret; 1682 1683 ret = kmalloc(size, flags | __GFP_NOWARN); 1684 if (!ret) 1685 ret = __vmalloc(size, flags, PAGE_KERNEL); 1686 return ret; 1687 } 1688 1689 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1690 { 1691 void *ret; 1692 1693 ret = kzalloc(size, flags | __GFP_NOWARN); 1694 if (!ret) 1695 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1696 return ret; 1697 } 1698 1699 #define get_inode_mode(i) \ 1700 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1701 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1702 1703 /* get offset of first page in next direct node */ 1704 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1705 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1706 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1707 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1708 1709 /* 1710 * file.c 1711 */ 1712 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1713 void truncate_data_blocks(struct dnode_of_data *); 1714 int truncate_blocks(struct inode *, u64, bool); 1715 int f2fs_truncate(struct inode *, bool); 1716 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1717 int f2fs_setattr(struct dentry *, struct iattr *); 1718 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1719 int truncate_data_blocks_range(struct dnode_of_data *, int); 1720 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1721 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1722 1723 /* 1724 * inode.c 1725 */ 1726 void f2fs_set_inode_flags(struct inode *); 1727 struct inode *f2fs_iget(struct super_block *, unsigned long); 1728 int try_to_free_nats(struct f2fs_sb_info *, int); 1729 int update_inode(struct inode *, struct page *); 1730 int update_inode_page(struct inode *); 1731 int f2fs_write_inode(struct inode *, struct writeback_control *); 1732 void f2fs_evict_inode(struct inode *); 1733 void handle_failed_inode(struct inode *); 1734 1735 /* 1736 * namei.c 1737 */ 1738 struct dentry *f2fs_get_parent(struct dentry *child); 1739 1740 /* 1741 * dir.c 1742 */ 1743 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1744 void set_de_type(struct f2fs_dir_entry *, umode_t); 1745 1746 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1747 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1748 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1749 unsigned int, struct f2fs_str *); 1750 void do_make_empty_dir(struct inode *, struct inode *, 1751 struct f2fs_dentry_ptr *); 1752 struct page *init_inode_metadata(struct inode *, struct inode *, 1753 const struct qstr *, struct page *); 1754 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1755 int room_for_filename(const void *, int, int); 1756 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1757 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1758 struct page **); 1759 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1760 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1761 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1762 struct page *, struct inode *); 1763 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1764 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1765 const struct qstr *, f2fs_hash_t , unsigned int); 1766 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1767 umode_t); 1768 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1769 struct inode *); 1770 int f2fs_do_tmpfile(struct inode *, struct inode *); 1771 bool f2fs_empty_dir(struct inode *); 1772 1773 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1774 { 1775 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1776 inode, inode->i_ino, inode->i_mode); 1777 } 1778 1779 /* 1780 * super.c 1781 */ 1782 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1783 int f2fs_sync_fs(struct super_block *, int); 1784 extern __printf(3, 4) 1785 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1786 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 1787 1788 /* 1789 * hash.c 1790 */ 1791 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1792 1793 /* 1794 * node.c 1795 */ 1796 struct dnode_of_data; 1797 struct node_info; 1798 1799 bool available_free_memory(struct f2fs_sb_info *, int); 1800 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1801 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1802 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1803 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1804 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 1805 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1806 int truncate_inode_blocks(struct inode *, pgoff_t); 1807 int truncate_xattr_node(struct inode *, struct page *); 1808 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1809 int remove_inode_page(struct inode *); 1810 struct page *new_inode_page(struct inode *); 1811 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1812 void ra_node_page(struct f2fs_sb_info *, nid_t); 1813 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1814 struct page *get_node_page_ra(struct page *, int); 1815 void sync_inode_page(struct dnode_of_data *); 1816 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1817 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1818 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1819 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1820 int try_to_free_nids(struct f2fs_sb_info *, int); 1821 void recover_inline_xattr(struct inode *, struct page *); 1822 void recover_xattr_data(struct inode *, struct page *, block_t); 1823 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1824 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1825 struct f2fs_summary_block *); 1826 void flush_nat_entries(struct f2fs_sb_info *); 1827 int build_node_manager(struct f2fs_sb_info *); 1828 void destroy_node_manager(struct f2fs_sb_info *); 1829 int __init create_node_manager_caches(void); 1830 void destroy_node_manager_caches(void); 1831 1832 /* 1833 * segment.c 1834 */ 1835 void register_inmem_page(struct inode *, struct page *); 1836 void drop_inmem_pages(struct inode *); 1837 int commit_inmem_pages(struct inode *); 1838 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 1839 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1840 int f2fs_issue_flush(struct f2fs_sb_info *); 1841 int create_flush_cmd_control(struct f2fs_sb_info *); 1842 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1843 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1844 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 1845 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1846 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1847 void release_discard_addrs(struct f2fs_sb_info *); 1848 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1849 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1850 void allocate_new_segments(struct f2fs_sb_info *); 1851 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1852 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1853 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1854 void write_meta_page(struct f2fs_sb_info *, struct page *); 1855 void write_node_page(unsigned int, struct f2fs_io_info *); 1856 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1857 void rewrite_data_page(struct f2fs_io_info *); 1858 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 1859 block_t, block_t, bool, bool); 1860 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1861 block_t, block_t, unsigned char, bool, bool); 1862 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1863 block_t, block_t *, struct f2fs_summary *, int); 1864 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 1865 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 1866 void write_data_summaries(struct f2fs_sb_info *, block_t); 1867 void write_node_summaries(struct f2fs_sb_info *, block_t); 1868 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 1869 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1870 int build_segment_manager(struct f2fs_sb_info *); 1871 void destroy_segment_manager(struct f2fs_sb_info *); 1872 int __init create_segment_manager_caches(void); 1873 void destroy_segment_manager_caches(void); 1874 1875 /* 1876 * checkpoint.c 1877 */ 1878 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1879 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1880 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 1881 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1882 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 1883 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1884 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1885 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1886 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1887 void release_ino_entry(struct f2fs_sb_info *); 1888 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1889 int acquire_orphan_inode(struct f2fs_sb_info *); 1890 void release_orphan_inode(struct f2fs_sb_info *); 1891 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1892 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1893 int recover_orphan_inodes(struct f2fs_sb_info *); 1894 int get_valid_checkpoint(struct f2fs_sb_info *); 1895 void update_dirty_page(struct inode *, struct page *); 1896 void add_dirty_dir_inode(struct inode *); 1897 void remove_dirty_inode(struct inode *); 1898 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 1899 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1900 void init_ino_entry_info(struct f2fs_sb_info *); 1901 int __init create_checkpoint_caches(void); 1902 void destroy_checkpoint_caches(void); 1903 1904 /* 1905 * data.c 1906 */ 1907 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1908 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 1909 struct page *, nid_t, enum page_type, int); 1910 int f2fs_submit_page_bio(struct f2fs_io_info *); 1911 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1912 void set_data_blkaddr(struct dnode_of_data *); 1913 int reserve_new_block(struct dnode_of_data *); 1914 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1915 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 1916 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1917 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 1918 struct page *find_data_page(struct inode *, pgoff_t); 1919 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 1920 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1921 int do_write_data_page(struct f2fs_io_info *); 1922 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 1923 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1924 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1925 int f2fs_release_page(struct page *, gfp_t); 1926 1927 /* 1928 * gc.c 1929 */ 1930 int start_gc_thread(struct f2fs_sb_info *); 1931 void stop_gc_thread(struct f2fs_sb_info *); 1932 block_t start_bidx_of_node(unsigned int, struct inode *); 1933 int f2fs_gc(struct f2fs_sb_info *, bool); 1934 void build_gc_manager(struct f2fs_sb_info *); 1935 1936 /* 1937 * recovery.c 1938 */ 1939 int recover_fsync_data(struct f2fs_sb_info *); 1940 bool space_for_roll_forward(struct f2fs_sb_info *); 1941 1942 /* 1943 * debug.c 1944 */ 1945 #ifdef CONFIG_F2FS_STAT_FS 1946 struct f2fs_stat_info { 1947 struct list_head stat_list; 1948 struct f2fs_sb_info *sbi; 1949 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1950 int main_area_segs, main_area_sections, main_area_zones; 1951 unsigned long long hit_largest, hit_cached, hit_rbtree; 1952 unsigned long long hit_total, total_ext; 1953 int ext_tree, zombie_tree, ext_node; 1954 int ndirty_node, ndirty_meta; 1955 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files; 1956 int nats, dirty_nats, sits, dirty_sits, fnids; 1957 int total_count, utilization; 1958 int bg_gc, inmem_pages, wb_pages; 1959 int inline_xattr, inline_inode, inline_dir; 1960 unsigned int valid_count, valid_node_count, valid_inode_count; 1961 unsigned int bimodal, avg_vblocks; 1962 int util_free, util_valid, util_invalid; 1963 int rsvd_segs, overp_segs; 1964 int dirty_count, node_pages, meta_pages; 1965 int prefree_count, call_count, cp_count, bg_cp_count; 1966 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1967 int bg_node_segs, bg_data_segs; 1968 int tot_blks, data_blks, node_blks; 1969 int bg_data_blks, bg_node_blks; 1970 int curseg[NR_CURSEG_TYPE]; 1971 int cursec[NR_CURSEG_TYPE]; 1972 int curzone[NR_CURSEG_TYPE]; 1973 1974 unsigned int segment_count[2]; 1975 unsigned int block_count[2]; 1976 unsigned int inplace_count; 1977 unsigned long long base_mem, cache_mem, page_mem; 1978 }; 1979 1980 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1981 { 1982 return (struct f2fs_stat_info *)sbi->stat_info; 1983 } 1984 1985 #define stat_inc_cp_count(si) ((si)->cp_count++) 1986 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 1987 #define stat_inc_call_count(si) ((si)->call_count++) 1988 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1989 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 1990 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 1991 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 1992 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 1993 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 1994 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 1995 #define stat_inc_inline_xattr(inode) \ 1996 do { \ 1997 if (f2fs_has_inline_xattr(inode)) \ 1998 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1999 } while (0) 2000 #define stat_dec_inline_xattr(inode) \ 2001 do { \ 2002 if (f2fs_has_inline_xattr(inode)) \ 2003 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2004 } while (0) 2005 #define stat_inc_inline_inode(inode) \ 2006 do { \ 2007 if (f2fs_has_inline_data(inode)) \ 2008 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2009 } while (0) 2010 #define stat_dec_inline_inode(inode) \ 2011 do { \ 2012 if (f2fs_has_inline_data(inode)) \ 2013 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2014 } while (0) 2015 #define stat_inc_inline_dir(inode) \ 2016 do { \ 2017 if (f2fs_has_inline_dentry(inode)) \ 2018 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2019 } while (0) 2020 #define stat_dec_inline_dir(inode) \ 2021 do { \ 2022 if (f2fs_has_inline_dentry(inode)) \ 2023 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2024 } while (0) 2025 #define stat_inc_seg_type(sbi, curseg) \ 2026 ((sbi)->segment_count[(curseg)->alloc_type]++) 2027 #define stat_inc_block_count(sbi, curseg) \ 2028 ((sbi)->block_count[(curseg)->alloc_type]++) 2029 #define stat_inc_inplace_blocks(sbi) \ 2030 (atomic_inc(&(sbi)->inplace_count)) 2031 #define stat_inc_seg_count(sbi, type, gc_type) \ 2032 do { \ 2033 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2034 (si)->tot_segs++; \ 2035 if (type == SUM_TYPE_DATA) { \ 2036 si->data_segs++; \ 2037 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2038 } else { \ 2039 si->node_segs++; \ 2040 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2041 } \ 2042 } while (0) 2043 2044 #define stat_inc_tot_blk_count(si, blks) \ 2045 (si->tot_blks += (blks)) 2046 2047 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2048 do { \ 2049 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2050 stat_inc_tot_blk_count(si, blks); \ 2051 si->data_blks += (blks); \ 2052 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2053 } while (0) 2054 2055 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2056 do { \ 2057 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2058 stat_inc_tot_blk_count(si, blks); \ 2059 si->node_blks += (blks); \ 2060 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2061 } while (0) 2062 2063 int f2fs_build_stats(struct f2fs_sb_info *); 2064 void f2fs_destroy_stats(struct f2fs_sb_info *); 2065 int __init f2fs_create_root_stats(void); 2066 void f2fs_destroy_root_stats(void); 2067 #else 2068 #define stat_inc_cp_count(si) 2069 #define stat_inc_bg_cp_count(si) 2070 #define stat_inc_call_count(si) 2071 #define stat_inc_bggc_count(si) 2072 #define stat_inc_dirty_inode(sbi, type) 2073 #define stat_dec_dirty_inode(sbi, type) 2074 #define stat_inc_total_hit(sb) 2075 #define stat_inc_rbtree_node_hit(sb) 2076 #define stat_inc_largest_node_hit(sbi) 2077 #define stat_inc_cached_node_hit(sbi) 2078 #define stat_inc_inline_xattr(inode) 2079 #define stat_dec_inline_xattr(inode) 2080 #define stat_inc_inline_inode(inode) 2081 #define stat_dec_inline_inode(inode) 2082 #define stat_inc_inline_dir(inode) 2083 #define stat_dec_inline_dir(inode) 2084 #define stat_inc_seg_type(sbi, curseg) 2085 #define stat_inc_block_count(sbi, curseg) 2086 #define stat_inc_inplace_blocks(sbi) 2087 #define stat_inc_seg_count(sbi, type, gc_type) 2088 #define stat_inc_tot_blk_count(si, blks) 2089 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2090 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2091 2092 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2093 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2094 static inline int __init f2fs_create_root_stats(void) { return 0; } 2095 static inline void f2fs_destroy_root_stats(void) { } 2096 #endif 2097 2098 extern const struct file_operations f2fs_dir_operations; 2099 extern const struct file_operations f2fs_file_operations; 2100 extern const struct inode_operations f2fs_file_inode_operations; 2101 extern const struct address_space_operations f2fs_dblock_aops; 2102 extern const struct address_space_operations f2fs_node_aops; 2103 extern const struct address_space_operations f2fs_meta_aops; 2104 extern const struct inode_operations f2fs_dir_inode_operations; 2105 extern const struct inode_operations f2fs_symlink_inode_operations; 2106 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2107 extern const struct inode_operations f2fs_special_inode_operations; 2108 extern struct kmem_cache *inode_entry_slab; 2109 2110 /* 2111 * inline.c 2112 */ 2113 bool f2fs_may_inline_data(struct inode *); 2114 bool f2fs_may_inline_dentry(struct inode *); 2115 void read_inline_data(struct page *, struct page *); 2116 bool truncate_inline_inode(struct page *, u64); 2117 int f2fs_read_inline_data(struct inode *, struct page *); 2118 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2119 int f2fs_convert_inline_inode(struct inode *); 2120 int f2fs_write_inline_data(struct inode *, struct page *); 2121 bool recover_inline_data(struct inode *, struct page *); 2122 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2123 struct f2fs_filename *, struct page **); 2124 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 2125 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2126 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2127 nid_t, umode_t); 2128 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2129 struct inode *, struct inode *); 2130 bool f2fs_empty_inline_dir(struct inode *); 2131 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2132 struct f2fs_str *); 2133 int f2fs_inline_data_fiemap(struct inode *, 2134 struct fiemap_extent_info *, __u64, __u64); 2135 2136 /* 2137 * shrinker.c 2138 */ 2139 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2140 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2141 void f2fs_join_shrinker(struct f2fs_sb_info *); 2142 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2143 2144 /* 2145 * extent_cache.c 2146 */ 2147 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2148 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2149 unsigned int f2fs_destroy_extent_node(struct inode *); 2150 void f2fs_destroy_extent_tree(struct inode *); 2151 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2152 void f2fs_update_extent_cache(struct dnode_of_data *); 2153 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2154 pgoff_t, block_t, unsigned int); 2155 void init_extent_cache_info(struct f2fs_sb_info *); 2156 int __init create_extent_cache(void); 2157 void destroy_extent_cache(void); 2158 2159 /* 2160 * crypto support 2161 */ 2162 static inline int f2fs_encrypted_inode(struct inode *inode) 2163 { 2164 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2165 return file_is_encrypt(inode); 2166 #else 2167 return 0; 2168 #endif 2169 } 2170 2171 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2172 { 2173 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2174 file_set_encrypt(inode); 2175 #endif 2176 } 2177 2178 static inline bool f2fs_bio_encrypted(struct bio *bio) 2179 { 2180 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2181 return unlikely(bio->bi_private != NULL); 2182 #else 2183 return false; 2184 #endif 2185 } 2186 2187 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2188 { 2189 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2190 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2191 #else 2192 return 0; 2193 #endif 2194 } 2195 2196 static inline bool f2fs_may_encrypt(struct inode *inode) 2197 { 2198 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2199 umode_t mode = inode->i_mode; 2200 2201 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2202 #else 2203 return 0; 2204 #endif 2205 } 2206 2207 /* crypto_policy.c */ 2208 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2209 struct inode *); 2210 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2211 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2212 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2213 2214 /* crypt.c */ 2215 extern struct kmem_cache *f2fs_crypt_info_cachep; 2216 bool f2fs_valid_contents_enc_mode(uint32_t); 2217 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2218 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2219 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2220 struct page *f2fs_encrypt(struct inode *, struct page *); 2221 int f2fs_decrypt(struct page *); 2222 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2223 2224 /* crypto_key.c */ 2225 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2226 int _f2fs_get_encryption_info(struct inode *inode); 2227 2228 /* crypto_fname.c */ 2229 bool f2fs_valid_filenames_enc_mode(uint32_t); 2230 u32 f2fs_fname_crypto_round_up(u32, u32); 2231 unsigned f2fs_fname_encrypted_size(struct inode *, u32); 2232 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2233 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2234 const struct f2fs_str *, struct f2fs_str *); 2235 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2236 struct f2fs_str *); 2237 2238 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2239 void f2fs_restore_and_release_control_page(struct page **); 2240 void f2fs_restore_control_page(struct page *); 2241 2242 int __init f2fs_init_crypto(void); 2243 int f2fs_crypto_initialize(void); 2244 void f2fs_exit_crypto(void); 2245 2246 int f2fs_has_encryption_key(struct inode *); 2247 2248 static inline int f2fs_get_encryption_info(struct inode *inode) 2249 { 2250 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2251 2252 if (!ci || 2253 (ci->ci_keyring_key && 2254 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2255 (1 << KEY_FLAG_REVOKED) | 2256 (1 << KEY_FLAG_DEAD))))) 2257 return _f2fs_get_encryption_info(inode); 2258 return 0; 2259 } 2260 2261 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2262 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2263 int lookup, struct f2fs_filename *); 2264 void f2fs_fname_free_filename(struct f2fs_filename *); 2265 #else 2266 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2267 static inline void f2fs_restore_control_page(struct page *p) { } 2268 2269 static inline int __init f2fs_init_crypto(void) { return 0; } 2270 static inline void f2fs_exit_crypto(void) { } 2271 2272 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2273 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2274 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2275 2276 static inline int f2fs_fname_setup_filename(struct inode *dir, 2277 const struct qstr *iname, 2278 int lookup, struct f2fs_filename *fname) 2279 { 2280 memset(fname, 0, sizeof(struct f2fs_filename)); 2281 fname->usr_fname = iname; 2282 fname->disk_name.name = (unsigned char *)iname->name; 2283 fname->disk_name.len = iname->len; 2284 return 0; 2285 } 2286 2287 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2288 #endif 2289 #endif 2290