xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4354994f097d068a894aa1a0860da54571df3582)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define F2FS_HAS_FEATURE(sb, mask)					\
156 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_SET_FEATURE(sb, mask)					\
158 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sb, mask)					\
160 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
161 
162 /*
163  * Default values for user and/or group using reserved blocks
164  */
165 #define	F2FS_DEF_RESUID		0
166 #define	F2FS_DEF_RESGID		0
167 
168 /*
169  * For checkpoint manager
170  */
171 enum {
172 	NAT_BITMAP,
173 	SIT_BITMAP
174 };
175 
176 #define	CP_UMOUNT	0x00000001
177 #define	CP_FASTBOOT	0x00000002
178 #define	CP_SYNC		0x00000004
179 #define	CP_RECOVERY	0x00000008
180 #define	CP_DISCARD	0x00000010
181 #define CP_TRIMMED	0x00000020
182 #define CP_PAUSE	0x00000040
183 
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
190 #define DEF_CP_INTERVAL			60	/* 60 secs */
191 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
192 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
193 
194 struct cp_control {
195 	int reason;
196 	__u64 trim_start;
197 	__u64 trim_end;
198 	__u64 trim_minlen;
199 };
200 
201 /*
202  * indicate meta/data type
203  */
204 enum {
205 	META_CP,
206 	META_NAT,
207 	META_SIT,
208 	META_SSA,
209 	META_MAX,
210 	META_POR,
211 	DATA_GENERIC,
212 	META_GENERIC,
213 };
214 
215 /* for the list of ino */
216 enum {
217 	ORPHAN_INO,		/* for orphan ino list */
218 	APPEND_INO,		/* for append ino list */
219 	UPDATE_INO,		/* for update ino list */
220 	TRANS_DIR_INO,		/* for trasactions dir ino list */
221 	FLUSH_INO,		/* for multiple device flushing */
222 	MAX_INO_ENTRY,		/* max. list */
223 };
224 
225 struct ino_entry {
226 	struct list_head list;		/* list head */
227 	nid_t ino;			/* inode number */
228 	unsigned int dirty_device;	/* dirty device bitmap */
229 };
230 
231 /* for the list of inodes to be GCed */
232 struct inode_entry {
233 	struct list_head list;	/* list head */
234 	struct inode *inode;	/* vfs inode pointer */
235 };
236 
237 struct fsync_node_entry {
238 	struct list_head list;	/* list head */
239 	struct page *page;	/* warm node page pointer */
240 	unsigned int seq_id;	/* sequence id */
241 };
242 
243 /* for the bitmap indicate blocks to be discarded */
244 struct discard_entry {
245 	struct list_head list;	/* list head */
246 	block_t start_blkaddr;	/* start blockaddr of current segment */
247 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
248 };
249 
250 /* default discard granularity of inner discard thread, unit: block count */
251 #define DEFAULT_DISCARD_GRANULARITY		16
252 
253 /* max discard pend list number */
254 #define MAX_PLIST_NUM		512
255 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
256 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
257 
258 enum {
259 	D_PREP,			/* initial */
260 	D_PARTIAL,		/* partially submitted */
261 	D_SUBMIT,		/* all submitted */
262 	D_DONE,			/* finished */
263 };
264 
265 struct discard_info {
266 	block_t lstart;			/* logical start address */
267 	block_t len;			/* length */
268 	block_t start;			/* actual start address in dev */
269 };
270 
271 struct discard_cmd {
272 	struct rb_node rb_node;		/* rb node located in rb-tree */
273 	union {
274 		struct {
275 			block_t lstart;	/* logical start address */
276 			block_t len;	/* length */
277 			block_t start;	/* actual start address in dev */
278 		};
279 		struct discard_info di;	/* discard info */
280 
281 	};
282 	struct list_head list;		/* command list */
283 	struct completion wait;		/* compleation */
284 	struct block_device *bdev;	/* bdev */
285 	unsigned short ref;		/* reference count */
286 	unsigned char state;		/* state */
287 	unsigned char issuing;		/* issuing discard */
288 	int error;			/* bio error */
289 	spinlock_t lock;		/* for state/bio_ref updating */
290 	unsigned short bio_ref;		/* bio reference count */
291 };
292 
293 enum {
294 	DPOLICY_BG,
295 	DPOLICY_FORCE,
296 	DPOLICY_FSTRIM,
297 	DPOLICY_UMOUNT,
298 	MAX_DPOLICY,
299 };
300 
301 struct discard_policy {
302 	int type;			/* type of discard */
303 	unsigned int min_interval;	/* used for candidates exist */
304 	unsigned int mid_interval;	/* used for device busy */
305 	unsigned int max_interval;	/* used for candidates not exist */
306 	unsigned int max_requests;	/* # of discards issued per round */
307 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
308 	bool io_aware;			/* issue discard in idle time */
309 	bool sync;			/* submit discard with REQ_SYNC flag */
310 	bool ordered;			/* issue discard by lba order */
311 	unsigned int granularity;	/* discard granularity */
312 };
313 
314 struct discard_cmd_control {
315 	struct task_struct *f2fs_issue_discard;	/* discard thread */
316 	struct list_head entry_list;		/* 4KB discard entry list */
317 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
318 	struct list_head wait_list;		/* store on-flushing entries */
319 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
320 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
321 	unsigned int discard_wake;		/* to wake up discard thread */
322 	struct mutex cmd_lock;
323 	unsigned int nr_discards;		/* # of discards in the list */
324 	unsigned int max_discards;		/* max. discards to be issued */
325 	unsigned int discard_granularity;	/* discard granularity */
326 	unsigned int undiscard_blks;		/* # of undiscard blocks */
327 	unsigned int next_pos;			/* next discard position */
328 	atomic_t issued_discard;		/* # of issued discard */
329 	atomic_t issing_discard;		/* # of issing discard */
330 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
331 	struct rb_root root;			/* root of discard rb-tree */
332 	bool rbtree_check;			/* config for consistence check */
333 };
334 
335 /* for the list of fsync inodes, used only during recovery */
336 struct fsync_inode_entry {
337 	struct list_head list;	/* list head */
338 	struct inode *inode;	/* vfs inode pointer */
339 	block_t blkaddr;	/* block address locating the last fsync */
340 	block_t last_dentry;	/* block address locating the last dentry */
341 };
342 
343 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
344 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
345 
346 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
347 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
348 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
349 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
350 
351 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
352 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
353 
354 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
355 {
356 	int before = nats_in_cursum(journal);
357 
358 	journal->n_nats = cpu_to_le16(before + i);
359 	return before;
360 }
361 
362 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
363 {
364 	int before = sits_in_cursum(journal);
365 
366 	journal->n_sits = cpu_to_le16(before + i);
367 	return before;
368 }
369 
370 static inline bool __has_cursum_space(struct f2fs_journal *journal,
371 							int size, int type)
372 {
373 	if (type == NAT_JOURNAL)
374 		return size <= MAX_NAT_JENTRIES(journal);
375 	return size <= MAX_SIT_JENTRIES(journal);
376 }
377 
378 /*
379  * ioctl commands
380  */
381 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
382 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
383 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
384 
385 #define F2FS_IOCTL_MAGIC		0xf5
386 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
387 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
388 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
389 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
390 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
391 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
392 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
393 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
394 						struct f2fs_defragment)
395 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
396 						struct f2fs_move_range)
397 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
398 						struct f2fs_flush_device)
399 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
400 						struct f2fs_gc_range)
401 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
402 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
403 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
404 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
405 
406 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
407 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
408 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
409 
410 /*
411  * should be same as XFS_IOC_GOINGDOWN.
412  * Flags for going down operation used by FS_IOC_GOINGDOWN
413  */
414 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
415 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
416 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
417 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
418 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
419 
420 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
421 /*
422  * ioctl commands in 32 bit emulation
423  */
424 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
425 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
426 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
427 #endif
428 
429 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
430 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
431 
432 struct f2fs_gc_range {
433 	u32 sync;
434 	u64 start;
435 	u64 len;
436 };
437 
438 struct f2fs_defragment {
439 	u64 start;
440 	u64 len;
441 };
442 
443 struct f2fs_move_range {
444 	u32 dst_fd;		/* destination fd */
445 	u64 pos_in;		/* start position in src_fd */
446 	u64 pos_out;		/* start position in dst_fd */
447 	u64 len;		/* size to move */
448 };
449 
450 struct f2fs_flush_device {
451 	u32 dev_num;		/* device number to flush */
452 	u32 segments;		/* # of segments to flush */
453 };
454 
455 /* for inline stuff */
456 #define DEF_INLINE_RESERVED_SIZE	1
457 #define DEF_MIN_INLINE_SIZE		1
458 static inline int get_extra_isize(struct inode *inode);
459 static inline int get_inline_xattr_addrs(struct inode *inode);
460 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
461 				(CUR_ADDRS_PER_INODE(inode) -		\
462 				get_inline_xattr_addrs(inode) -	\
463 				DEF_INLINE_RESERVED_SIZE))
464 
465 /* for inline dir */
466 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
467 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
468 				BITS_PER_BYTE + 1))
469 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
470 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
471 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
472 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 				NR_INLINE_DENTRY(inode) + \
474 				INLINE_DENTRY_BITMAP_SIZE(inode)))
475 
476 /*
477  * For INODE and NODE manager
478  */
479 /* for directory operations */
480 struct f2fs_dentry_ptr {
481 	struct inode *inode;
482 	void *bitmap;
483 	struct f2fs_dir_entry *dentry;
484 	__u8 (*filename)[F2FS_SLOT_LEN];
485 	int max;
486 	int nr_bitmap;
487 };
488 
489 static inline void make_dentry_ptr_block(struct inode *inode,
490 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
491 {
492 	d->inode = inode;
493 	d->max = NR_DENTRY_IN_BLOCK;
494 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
495 	d->bitmap = t->dentry_bitmap;
496 	d->dentry = t->dentry;
497 	d->filename = t->filename;
498 }
499 
500 static inline void make_dentry_ptr_inline(struct inode *inode,
501 					struct f2fs_dentry_ptr *d, void *t)
502 {
503 	int entry_cnt = NR_INLINE_DENTRY(inode);
504 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
505 	int reserved_size = INLINE_RESERVED_SIZE(inode);
506 
507 	d->inode = inode;
508 	d->max = entry_cnt;
509 	d->nr_bitmap = bitmap_size;
510 	d->bitmap = t;
511 	d->dentry = t + bitmap_size + reserved_size;
512 	d->filename = t + bitmap_size + reserved_size +
513 					SIZE_OF_DIR_ENTRY * entry_cnt;
514 }
515 
516 /*
517  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
518  * as its node offset to distinguish from index node blocks.
519  * But some bits are used to mark the node block.
520  */
521 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
522 				>> OFFSET_BIT_SHIFT)
523 enum {
524 	ALLOC_NODE,			/* allocate a new node page if needed */
525 	LOOKUP_NODE,			/* look up a node without readahead */
526 	LOOKUP_NODE_RA,			/*
527 					 * look up a node with readahead called
528 					 * by get_data_block.
529 					 */
530 };
531 
532 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
533 
534 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
535 
536 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
537 
538 /* for in-memory extent cache entry */
539 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
540 
541 /* number of extent info in extent cache we try to shrink */
542 #define EXTENT_CACHE_SHRINK_NUMBER	128
543 
544 struct rb_entry {
545 	struct rb_node rb_node;		/* rb node located in rb-tree */
546 	unsigned int ofs;		/* start offset of the entry */
547 	unsigned int len;		/* length of the entry */
548 };
549 
550 struct extent_info {
551 	unsigned int fofs;		/* start offset in a file */
552 	unsigned int len;		/* length of the extent */
553 	u32 blk;			/* start block address of the extent */
554 };
555 
556 struct extent_node {
557 	struct rb_node rb_node;
558 	union {
559 		struct {
560 			unsigned int fofs;
561 			unsigned int len;
562 			u32 blk;
563 		};
564 		struct extent_info ei;	/* extent info */
565 
566 	};
567 	struct list_head list;		/* node in global extent list of sbi */
568 	struct extent_tree *et;		/* extent tree pointer */
569 };
570 
571 struct extent_tree {
572 	nid_t ino;			/* inode number */
573 	struct rb_root root;		/* root of extent info rb-tree */
574 	struct extent_node *cached_en;	/* recently accessed extent node */
575 	struct extent_info largest;	/* largested extent info */
576 	struct list_head list;		/* to be used by sbi->zombie_list */
577 	rwlock_t lock;			/* protect extent info rb-tree */
578 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
579 	bool largest_updated;		/* largest extent updated */
580 };
581 
582 /*
583  * This structure is taken from ext4_map_blocks.
584  *
585  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
586  */
587 #define F2FS_MAP_NEW		(1 << BH_New)
588 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
589 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
590 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
591 				F2FS_MAP_UNWRITTEN)
592 
593 struct f2fs_map_blocks {
594 	block_t m_pblk;
595 	block_t m_lblk;
596 	unsigned int m_len;
597 	unsigned int m_flags;
598 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
599 	pgoff_t *m_next_extent;		/* point to next possible extent */
600 	int m_seg_type;
601 };
602 
603 /* for flag in get_data_block */
604 enum {
605 	F2FS_GET_BLOCK_DEFAULT,
606 	F2FS_GET_BLOCK_FIEMAP,
607 	F2FS_GET_BLOCK_BMAP,
608 	F2FS_GET_BLOCK_DIO,
609 	F2FS_GET_BLOCK_PRE_DIO,
610 	F2FS_GET_BLOCK_PRE_AIO,
611 	F2FS_GET_BLOCK_PRECACHE,
612 };
613 
614 /*
615  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
616  */
617 #define FADVISE_COLD_BIT	0x01
618 #define FADVISE_LOST_PINO_BIT	0x02
619 #define FADVISE_ENCRYPT_BIT	0x04
620 #define FADVISE_ENC_NAME_BIT	0x08
621 #define FADVISE_KEEP_SIZE_BIT	0x10
622 #define FADVISE_HOT_BIT		0x20
623 #define FADVISE_VERITY_BIT	0x40	/* reserved */
624 
625 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
626 
627 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
628 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
629 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
630 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
631 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
632 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
633 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
641 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
642 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
643 
644 #define DEF_DIR_LEVEL		0
645 
646 enum {
647 	GC_FAILURE_PIN,
648 	GC_FAILURE_ATOMIC,
649 	MAX_GC_FAILURE
650 };
651 
652 struct f2fs_inode_info {
653 	struct inode vfs_inode;		/* serve a vfs inode */
654 	unsigned long i_flags;		/* keep an inode flags for ioctl */
655 	unsigned char i_advise;		/* use to give file attribute hints */
656 	unsigned char i_dir_level;	/* use for dentry level for large dir */
657 	unsigned int i_current_depth;	/* only for directory depth */
658 	/* for gc failure statistic */
659 	unsigned int i_gc_failures[MAX_GC_FAILURE];
660 	unsigned int i_pino;		/* parent inode number */
661 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
662 
663 	/* Use below internally in f2fs*/
664 	unsigned long flags;		/* use to pass per-file flags */
665 	struct rw_semaphore i_sem;	/* protect fi info */
666 	atomic_t dirty_pages;		/* # of dirty pages */
667 	f2fs_hash_t chash;		/* hash value of given file name */
668 	unsigned int clevel;		/* maximum level of given file name */
669 	struct task_struct *task;	/* lookup and create consistency */
670 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
671 	nid_t i_xattr_nid;		/* node id that contains xattrs */
672 	loff_t	last_disk_size;		/* lastly written file size */
673 
674 #ifdef CONFIG_QUOTA
675 	struct dquot *i_dquot[MAXQUOTAS];
676 
677 	/* quota space reservation, managed internally by quota code */
678 	qsize_t i_reserved_quota;
679 #endif
680 	struct list_head dirty_list;	/* dirty list for dirs and files */
681 	struct list_head gdirty_list;	/* linked in global dirty list */
682 	struct list_head inmem_ilist;	/* list for inmem inodes */
683 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
684 	struct task_struct *inmem_task;	/* store inmemory task */
685 	struct mutex inmem_lock;	/* lock for inmemory pages */
686 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
687 
688 	/* avoid racing between foreground op and gc */
689 	struct rw_semaphore i_gc_rwsem[2];
690 	struct rw_semaphore i_mmap_sem;
691 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
692 
693 	int i_extra_isize;		/* size of extra space located in i_addr */
694 	kprojid_t i_projid;		/* id for project quota */
695 	int i_inline_xattr_size;	/* inline xattr size */
696 	struct timespec64 i_crtime;	/* inode creation time */
697 	struct timespec64 i_disk_time[4];/* inode disk times */
698 };
699 
700 static inline void get_extent_info(struct extent_info *ext,
701 					struct f2fs_extent *i_ext)
702 {
703 	ext->fofs = le32_to_cpu(i_ext->fofs);
704 	ext->blk = le32_to_cpu(i_ext->blk);
705 	ext->len = le32_to_cpu(i_ext->len);
706 }
707 
708 static inline void set_raw_extent(struct extent_info *ext,
709 					struct f2fs_extent *i_ext)
710 {
711 	i_ext->fofs = cpu_to_le32(ext->fofs);
712 	i_ext->blk = cpu_to_le32(ext->blk);
713 	i_ext->len = cpu_to_le32(ext->len);
714 }
715 
716 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
717 						u32 blk, unsigned int len)
718 {
719 	ei->fofs = fofs;
720 	ei->blk = blk;
721 	ei->len = len;
722 }
723 
724 static inline bool __is_discard_mergeable(struct discard_info *back,
725 			struct discard_info *front, unsigned int max_len)
726 {
727 	return (back->lstart + back->len == front->lstart) &&
728 		(back->len + front->len <= max_len);
729 }
730 
731 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
732 			struct discard_info *back, unsigned int max_len)
733 {
734 	return __is_discard_mergeable(back, cur, max_len);
735 }
736 
737 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
738 			struct discard_info *front, unsigned int max_len)
739 {
740 	return __is_discard_mergeable(cur, front, max_len);
741 }
742 
743 static inline bool __is_extent_mergeable(struct extent_info *back,
744 						struct extent_info *front)
745 {
746 	return (back->fofs + back->len == front->fofs &&
747 			back->blk + back->len == front->blk);
748 }
749 
750 static inline bool __is_back_mergeable(struct extent_info *cur,
751 						struct extent_info *back)
752 {
753 	return __is_extent_mergeable(back, cur);
754 }
755 
756 static inline bool __is_front_mergeable(struct extent_info *cur,
757 						struct extent_info *front)
758 {
759 	return __is_extent_mergeable(cur, front);
760 }
761 
762 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
763 static inline void __try_update_largest_extent(struct extent_tree *et,
764 						struct extent_node *en)
765 {
766 	if (en->ei.len > et->largest.len) {
767 		et->largest = en->ei;
768 		et->largest_updated = true;
769 	}
770 }
771 
772 /*
773  * For free nid management
774  */
775 enum nid_state {
776 	FREE_NID,		/* newly added to free nid list */
777 	PREALLOC_NID,		/* it is preallocated */
778 	MAX_NID_STATE,
779 };
780 
781 struct f2fs_nm_info {
782 	block_t nat_blkaddr;		/* base disk address of NAT */
783 	nid_t max_nid;			/* maximum possible node ids */
784 	nid_t available_nids;		/* # of available node ids */
785 	nid_t next_scan_nid;		/* the next nid to be scanned */
786 	unsigned int ram_thresh;	/* control the memory footprint */
787 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
788 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
789 
790 	/* NAT cache management */
791 	struct radix_tree_root nat_root;/* root of the nat entry cache */
792 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
793 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
794 	struct list_head nat_entries;	/* cached nat entry list (clean) */
795 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
796 	unsigned int nat_cnt;		/* the # of cached nat entries */
797 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
798 	unsigned int nat_blocks;	/* # of nat blocks */
799 
800 	/* free node ids management */
801 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
802 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
803 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
804 	spinlock_t nid_list_lock;	/* protect nid lists ops */
805 	struct mutex build_lock;	/* lock for build free nids */
806 	unsigned char **free_nid_bitmap;
807 	unsigned char *nat_block_bitmap;
808 	unsigned short *free_nid_count;	/* free nid count of NAT block */
809 
810 	/* for checkpoint */
811 	char *nat_bitmap;		/* NAT bitmap pointer */
812 
813 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
814 	unsigned char *nat_bits;	/* NAT bits blocks */
815 	unsigned char *full_nat_bits;	/* full NAT pages */
816 	unsigned char *empty_nat_bits;	/* empty NAT pages */
817 #ifdef CONFIG_F2FS_CHECK_FS
818 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
819 #endif
820 	int bitmap_size;		/* bitmap size */
821 };
822 
823 /*
824  * this structure is used as one of function parameters.
825  * all the information are dedicated to a given direct node block determined
826  * by the data offset in a file.
827  */
828 struct dnode_of_data {
829 	struct inode *inode;		/* vfs inode pointer */
830 	struct page *inode_page;	/* its inode page, NULL is possible */
831 	struct page *node_page;		/* cached direct node page */
832 	nid_t nid;			/* node id of the direct node block */
833 	unsigned int ofs_in_node;	/* data offset in the node page */
834 	bool inode_page_locked;		/* inode page is locked or not */
835 	bool node_changed;		/* is node block changed */
836 	char cur_level;			/* level of hole node page */
837 	char max_level;			/* level of current page located */
838 	block_t	data_blkaddr;		/* block address of the node block */
839 };
840 
841 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
842 		struct page *ipage, struct page *npage, nid_t nid)
843 {
844 	memset(dn, 0, sizeof(*dn));
845 	dn->inode = inode;
846 	dn->inode_page = ipage;
847 	dn->node_page = npage;
848 	dn->nid = nid;
849 }
850 
851 /*
852  * For SIT manager
853  *
854  * By default, there are 6 active log areas across the whole main area.
855  * When considering hot and cold data separation to reduce cleaning overhead,
856  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
857  * respectively.
858  * In the current design, you should not change the numbers intentionally.
859  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
860  * logs individually according to the underlying devices. (default: 6)
861  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
862  * data and 8 for node logs.
863  */
864 #define	NR_CURSEG_DATA_TYPE	(3)
865 #define NR_CURSEG_NODE_TYPE	(3)
866 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
867 
868 enum {
869 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
870 	CURSEG_WARM_DATA,	/* data blocks */
871 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
872 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
873 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
874 	CURSEG_COLD_NODE,	/* indirect node blocks */
875 	NO_CHECK_TYPE,
876 };
877 
878 struct flush_cmd {
879 	struct completion wait;
880 	struct llist_node llnode;
881 	nid_t ino;
882 	int ret;
883 };
884 
885 struct flush_cmd_control {
886 	struct task_struct *f2fs_issue_flush;	/* flush thread */
887 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
888 	atomic_t issued_flush;			/* # of issued flushes */
889 	atomic_t issing_flush;			/* # of issing flushes */
890 	struct llist_head issue_list;		/* list for command issue */
891 	struct llist_node *dispatch_list;	/* list for command dispatch */
892 };
893 
894 struct f2fs_sm_info {
895 	struct sit_info *sit_info;		/* whole segment information */
896 	struct free_segmap_info *free_info;	/* free segment information */
897 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
898 	struct curseg_info *curseg_array;	/* active segment information */
899 
900 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
901 
902 	block_t seg0_blkaddr;		/* block address of 0'th segment */
903 	block_t main_blkaddr;		/* start block address of main area */
904 	block_t ssa_blkaddr;		/* start block address of SSA area */
905 
906 	unsigned int segment_count;	/* total # of segments */
907 	unsigned int main_segments;	/* # of segments in main area */
908 	unsigned int reserved_segments;	/* # of reserved segments */
909 	unsigned int ovp_segments;	/* # of overprovision segments */
910 
911 	/* a threshold to reclaim prefree segments */
912 	unsigned int rec_prefree_segments;
913 
914 	/* for batched trimming */
915 	unsigned int trim_sections;		/* # of sections to trim */
916 
917 	struct list_head sit_entry_set;	/* sit entry set list */
918 
919 	unsigned int ipu_policy;	/* in-place-update policy */
920 	unsigned int min_ipu_util;	/* in-place-update threshold */
921 	unsigned int min_fsync_blocks;	/* threshold for fsync */
922 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
923 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
924 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
925 
926 	/* for flush command control */
927 	struct flush_cmd_control *fcc_info;
928 
929 	/* for discard command control */
930 	struct discard_cmd_control *dcc_info;
931 };
932 
933 /*
934  * For superblock
935  */
936 /*
937  * COUNT_TYPE for monitoring
938  *
939  * f2fs monitors the number of several block types such as on-writeback,
940  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
941  */
942 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
943 enum count_type {
944 	F2FS_DIRTY_DENTS,
945 	F2FS_DIRTY_DATA,
946 	F2FS_DIRTY_QDATA,
947 	F2FS_DIRTY_NODES,
948 	F2FS_DIRTY_META,
949 	F2FS_INMEM_PAGES,
950 	F2FS_DIRTY_IMETA,
951 	F2FS_WB_CP_DATA,
952 	F2FS_WB_DATA,
953 	NR_COUNT_TYPE,
954 };
955 
956 /*
957  * The below are the page types of bios used in submit_bio().
958  * The available types are:
959  * DATA			User data pages. It operates as async mode.
960  * NODE			Node pages. It operates as async mode.
961  * META			FS metadata pages such as SIT, NAT, CP.
962  * NR_PAGE_TYPE		The number of page types.
963  * META_FLUSH		Make sure the previous pages are written
964  *			with waiting the bio's completion
965  * ...			Only can be used with META.
966  */
967 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
968 enum page_type {
969 	DATA,
970 	NODE,
971 	META,
972 	NR_PAGE_TYPE,
973 	META_FLUSH,
974 	INMEM,		/* the below types are used by tracepoints only. */
975 	INMEM_DROP,
976 	INMEM_INVALIDATE,
977 	INMEM_REVOKE,
978 	IPU,
979 	OPU,
980 };
981 
982 enum temp_type {
983 	HOT = 0,	/* must be zero for meta bio */
984 	WARM,
985 	COLD,
986 	NR_TEMP_TYPE,
987 };
988 
989 enum need_lock_type {
990 	LOCK_REQ = 0,
991 	LOCK_DONE,
992 	LOCK_RETRY,
993 };
994 
995 enum cp_reason_type {
996 	CP_NO_NEEDED,
997 	CP_NON_REGULAR,
998 	CP_HARDLINK,
999 	CP_SB_NEED_CP,
1000 	CP_WRONG_PINO,
1001 	CP_NO_SPC_ROLL,
1002 	CP_NODE_NEED_CP,
1003 	CP_FASTBOOT_MODE,
1004 	CP_SPEC_LOG_NUM,
1005 	CP_RECOVER_DIR,
1006 };
1007 
1008 enum iostat_type {
1009 	APP_DIRECT_IO,			/* app direct IOs */
1010 	APP_BUFFERED_IO,		/* app buffered IOs */
1011 	APP_WRITE_IO,			/* app write IOs */
1012 	APP_MAPPED_IO,			/* app mapped IOs */
1013 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1014 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1015 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1016 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1017 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1018 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1019 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1020 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1021 	FS_DISCARD,			/* discard */
1022 	NR_IO_TYPE,
1023 };
1024 
1025 struct f2fs_io_info {
1026 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1027 	nid_t ino;		/* inode number */
1028 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1029 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1030 	int op;			/* contains REQ_OP_ */
1031 	int op_flags;		/* req_flag_bits */
1032 	block_t new_blkaddr;	/* new block address to be written */
1033 	block_t old_blkaddr;	/* old block address before Cow */
1034 	struct page *page;	/* page to be written */
1035 	struct page *encrypted_page;	/* encrypted page */
1036 	struct list_head list;		/* serialize IOs */
1037 	bool submitted;		/* indicate IO submission */
1038 	int need_lock;		/* indicate we need to lock cp_rwsem */
1039 	bool in_list;		/* indicate fio is in io_list */
1040 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1041 	bool retry;		/* need to reallocate block address */
1042 	enum iostat_type io_type;	/* io type */
1043 	struct writeback_control *io_wbc; /* writeback control */
1044 	unsigned char version;		/* version of the node */
1045 };
1046 
1047 #define is_read_io(rw) ((rw) == READ)
1048 struct f2fs_bio_info {
1049 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1050 	struct bio *bio;		/* bios to merge */
1051 	sector_t last_block_in_bio;	/* last block number */
1052 	struct f2fs_io_info fio;	/* store buffered io info. */
1053 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1054 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1055 	struct list_head io_list;	/* track fios */
1056 };
1057 
1058 #define FDEV(i)				(sbi->devs[i])
1059 #define RDEV(i)				(raw_super->devs[i])
1060 struct f2fs_dev_info {
1061 	struct block_device *bdev;
1062 	char path[MAX_PATH_LEN];
1063 	unsigned int total_segments;
1064 	block_t start_blk;
1065 	block_t end_blk;
1066 #ifdef CONFIG_BLK_DEV_ZONED
1067 	unsigned int nr_blkz;			/* Total number of zones */
1068 	u8 *blkz_type;				/* Array of zones type */
1069 #endif
1070 };
1071 
1072 enum inode_type {
1073 	DIR_INODE,			/* for dirty dir inode */
1074 	FILE_INODE,			/* for dirty regular/symlink inode */
1075 	DIRTY_META,			/* for all dirtied inode metadata */
1076 	ATOMIC_FILE,			/* for all atomic files */
1077 	NR_INODE_TYPE,
1078 };
1079 
1080 /* for inner inode cache management */
1081 struct inode_management {
1082 	struct radix_tree_root ino_root;	/* ino entry array */
1083 	spinlock_t ino_lock;			/* for ino entry lock */
1084 	struct list_head ino_list;		/* inode list head */
1085 	unsigned long ino_num;			/* number of entries */
1086 };
1087 
1088 /* For s_flag in struct f2fs_sb_info */
1089 enum {
1090 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1091 	SBI_IS_CLOSE,				/* specify unmounting */
1092 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1093 	SBI_POR_DOING,				/* recovery is doing or not */
1094 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1095 	SBI_NEED_CP,				/* need to checkpoint */
1096 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1097 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1098 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1099 };
1100 
1101 enum {
1102 	CP_TIME,
1103 	REQ_TIME,
1104 	DISCARD_TIME,
1105 	GC_TIME,
1106 	DISABLE_TIME,
1107 	MAX_TIME,
1108 };
1109 
1110 enum {
1111 	GC_NORMAL,
1112 	GC_IDLE_CB,
1113 	GC_IDLE_GREEDY,
1114 	GC_URGENT,
1115 };
1116 
1117 enum {
1118 	WHINT_MODE_OFF,		/* not pass down write hints */
1119 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1120 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1121 };
1122 
1123 enum {
1124 	ALLOC_MODE_DEFAULT,	/* stay default */
1125 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1126 };
1127 
1128 enum fsync_mode {
1129 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1130 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1131 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1132 };
1133 
1134 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1135 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1136 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1137 #else
1138 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1139 #endif
1140 
1141 struct f2fs_sb_info {
1142 	struct super_block *sb;			/* pointer to VFS super block */
1143 	struct proc_dir_entry *s_proc;		/* proc entry */
1144 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1145 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1146 	int valid_super_block;			/* valid super block no */
1147 	unsigned long s_flag;				/* flags for sbi */
1148 	struct mutex writepages;		/* mutex for writepages() */
1149 
1150 #ifdef CONFIG_BLK_DEV_ZONED
1151 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1152 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1153 #endif
1154 
1155 	/* for node-related operations */
1156 	struct f2fs_nm_info *nm_info;		/* node manager */
1157 	struct inode *node_inode;		/* cache node blocks */
1158 
1159 	/* for segment-related operations */
1160 	struct f2fs_sm_info *sm_info;		/* segment manager */
1161 
1162 	/* for bio operations */
1163 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1164 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1165 						/* bio ordering for NODE/DATA */
1166 	/* keep migration IO order for LFS mode */
1167 	struct rw_semaphore io_order_lock;
1168 	mempool_t *write_io_dummy;		/* Dummy pages */
1169 
1170 	/* for checkpoint */
1171 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1172 	int cur_cp_pack;			/* remain current cp pack */
1173 	spinlock_t cp_lock;			/* for flag in ckpt */
1174 	struct inode *meta_inode;		/* cache meta blocks */
1175 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1176 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1177 	struct rw_semaphore node_write;		/* locking node writes */
1178 	struct rw_semaphore node_change;	/* locking node change */
1179 	wait_queue_head_t cp_wait;
1180 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1181 	long interval_time[MAX_TIME];		/* to store thresholds */
1182 
1183 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1184 
1185 	spinlock_t fsync_node_lock;		/* for node entry lock */
1186 	struct list_head fsync_node_list;	/* node list head */
1187 	unsigned int fsync_seg_id;		/* sequence id */
1188 	unsigned int fsync_node_num;		/* number of node entries */
1189 
1190 	/* for orphan inode, use 0'th array */
1191 	unsigned int max_orphans;		/* max orphan inodes */
1192 
1193 	/* for inode management */
1194 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1195 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1196 
1197 	/* for extent tree cache */
1198 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1199 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1200 	struct list_head extent_list;		/* lru list for shrinker */
1201 	spinlock_t extent_lock;			/* locking extent lru list */
1202 	atomic_t total_ext_tree;		/* extent tree count */
1203 	struct list_head zombie_list;		/* extent zombie tree list */
1204 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1205 	atomic_t total_ext_node;		/* extent info count */
1206 
1207 	/* basic filesystem units */
1208 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1209 	unsigned int log_blocksize;		/* log2 block size */
1210 	unsigned int blocksize;			/* block size */
1211 	unsigned int root_ino_num;		/* root inode number*/
1212 	unsigned int node_ino_num;		/* node inode number*/
1213 	unsigned int meta_ino_num;		/* meta inode number*/
1214 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1215 	unsigned int blocks_per_seg;		/* blocks per segment */
1216 	unsigned int segs_per_sec;		/* segments per section */
1217 	unsigned int secs_per_zone;		/* sections per zone */
1218 	unsigned int total_sections;		/* total section count */
1219 	unsigned int total_node_count;		/* total node block count */
1220 	unsigned int total_valid_node_count;	/* valid node block count */
1221 	loff_t max_file_blocks;			/* max block index of file */
1222 	int dir_level;				/* directory level */
1223 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1224 	int readdir_ra;				/* readahead inode in readdir */
1225 
1226 	block_t user_block_count;		/* # of user blocks */
1227 	block_t total_valid_block_count;	/* # of valid blocks */
1228 	block_t discard_blks;			/* discard command candidats */
1229 	block_t last_valid_block_count;		/* for recovery */
1230 	block_t reserved_blocks;		/* configurable reserved blocks */
1231 	block_t current_reserved_blocks;	/* current reserved blocks */
1232 
1233 	/* Additional tracking for no checkpoint mode */
1234 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1235 
1236 	unsigned int nquota_files;		/* # of quota sysfile */
1237 
1238 	u32 s_next_generation;			/* for NFS support */
1239 
1240 	/* # of pages, see count_type */
1241 	atomic_t nr_pages[NR_COUNT_TYPE];
1242 	/* # of allocated blocks */
1243 	struct percpu_counter alloc_valid_block_count;
1244 
1245 	/* writeback control */
1246 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1247 
1248 	/* valid inode count */
1249 	struct percpu_counter total_valid_inode_count;
1250 
1251 	struct f2fs_mount_info mount_opt;	/* mount options */
1252 
1253 	/* for cleaning operations */
1254 	struct mutex gc_mutex;			/* mutex for GC */
1255 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1256 	unsigned int cur_victim_sec;		/* current victim section num */
1257 	unsigned int gc_mode;			/* current GC state */
1258 	/* for skip statistic */
1259 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1260 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1261 
1262 	/* threshold for gc trials on pinned files */
1263 	u64 gc_pin_file_threshold;
1264 
1265 	/* maximum # of trials to find a victim segment for SSR and GC */
1266 	unsigned int max_victim_search;
1267 
1268 	/*
1269 	 * for stat information.
1270 	 * one is for the LFS mode, and the other is for the SSR mode.
1271 	 */
1272 #ifdef CONFIG_F2FS_STAT_FS
1273 	struct f2fs_stat_info *stat_info;	/* FS status information */
1274 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1275 	unsigned int segment_count[2];		/* # of allocated segments */
1276 	unsigned int block_count[2];		/* # of allocated blocks */
1277 	atomic_t inplace_count;		/* # of inplace update */
1278 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1279 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1280 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1281 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1282 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1283 	atomic_t inline_inode;			/* # of inline_data inodes */
1284 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1285 	atomic_t aw_cnt;			/* # of atomic writes */
1286 	atomic_t vw_cnt;			/* # of volatile writes */
1287 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1288 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1289 	int bg_gc;				/* background gc calls */
1290 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1291 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1292 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1293 #endif
1294 	spinlock_t stat_lock;			/* lock for stat operations */
1295 
1296 	/* For app/fs IO statistics */
1297 	spinlock_t iostat_lock;
1298 	unsigned long long write_iostat[NR_IO_TYPE];
1299 	bool iostat_enable;
1300 
1301 	/* For sysfs suppport */
1302 	struct kobject s_kobj;
1303 	struct completion s_kobj_unregister;
1304 
1305 	/* For shrinker support */
1306 	struct list_head s_list;
1307 	int s_ndevs;				/* number of devices */
1308 	struct f2fs_dev_info *devs;		/* for device list */
1309 	unsigned int dirty_device;		/* for checkpoint data flush */
1310 	spinlock_t dev_lock;			/* protect dirty_device */
1311 	struct mutex umount_mutex;
1312 	unsigned int shrinker_run_no;
1313 
1314 	/* For write statistics */
1315 	u64 sectors_written_start;
1316 	u64 kbytes_written;
1317 
1318 	/* Reference to checksum algorithm driver via cryptoapi */
1319 	struct crypto_shash *s_chksum_driver;
1320 
1321 	/* Precomputed FS UUID checksum for seeding other checksums */
1322 	__u32 s_chksum_seed;
1323 };
1324 
1325 #ifdef CONFIG_F2FS_FAULT_INJECTION
1326 #define f2fs_show_injection_info(type)					\
1327 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1328 		KERN_INFO, f2fs_fault_name[type],			\
1329 		__func__, __builtin_return_address(0))
1330 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1331 {
1332 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1333 
1334 	if (!ffi->inject_rate)
1335 		return false;
1336 
1337 	if (!IS_FAULT_SET(ffi, type))
1338 		return false;
1339 
1340 	atomic_inc(&ffi->inject_ops);
1341 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1342 		atomic_set(&ffi->inject_ops, 0);
1343 		return true;
1344 	}
1345 	return false;
1346 }
1347 #else
1348 #define f2fs_show_injection_info(type) do { } while (0)
1349 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1350 {
1351 	return false;
1352 }
1353 #endif
1354 
1355 /* For write statistics. Suppose sector size is 512 bytes,
1356  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1357  */
1358 #define BD_PART_WRITTEN(s)						 \
1359 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1360 		(s)->sectors_written_start) >> 1)
1361 
1362 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1363 {
1364 	unsigned long now = jiffies;
1365 
1366 	sbi->last_time[type] = now;
1367 
1368 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1369 	if (type == REQ_TIME) {
1370 		sbi->last_time[DISCARD_TIME] = now;
1371 		sbi->last_time[GC_TIME] = now;
1372 	}
1373 }
1374 
1375 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1376 {
1377 	unsigned long interval = sbi->interval_time[type] * HZ;
1378 
1379 	return time_after(jiffies, sbi->last_time[type] + interval);
1380 }
1381 
1382 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1383 						int type)
1384 {
1385 	unsigned long interval = sbi->interval_time[type] * HZ;
1386 	unsigned int wait_ms = 0;
1387 	long delta;
1388 
1389 	delta = (sbi->last_time[type] + interval) - jiffies;
1390 	if (delta > 0)
1391 		wait_ms = jiffies_to_msecs(delta);
1392 
1393 	return wait_ms;
1394 }
1395 
1396 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
1397 {
1398 	struct block_device *bdev = sbi->sb->s_bdev;
1399 	struct request_queue *q = bdev_get_queue(bdev);
1400 	struct request_list *rl = &q->root_rl;
1401 
1402 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1403 		return false;
1404 
1405 	return f2fs_time_over(sbi, type);
1406 }
1407 
1408 /*
1409  * Inline functions
1410  */
1411 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1412 			      const void *address, unsigned int length)
1413 {
1414 	struct {
1415 		struct shash_desc shash;
1416 		char ctx[4];
1417 	} desc;
1418 	int err;
1419 
1420 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1421 
1422 	desc.shash.tfm = sbi->s_chksum_driver;
1423 	desc.shash.flags = 0;
1424 	*(u32 *)desc.ctx = crc;
1425 
1426 	err = crypto_shash_update(&desc.shash, address, length);
1427 	BUG_ON(err);
1428 
1429 	return *(u32 *)desc.ctx;
1430 }
1431 
1432 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1433 			   unsigned int length)
1434 {
1435 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1436 }
1437 
1438 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1439 				  void *buf, size_t buf_size)
1440 {
1441 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1442 }
1443 
1444 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1445 			      const void *address, unsigned int length)
1446 {
1447 	return __f2fs_crc32(sbi, crc, address, length);
1448 }
1449 
1450 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1451 {
1452 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1453 }
1454 
1455 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1456 {
1457 	return sb->s_fs_info;
1458 }
1459 
1460 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1461 {
1462 	return F2FS_SB(inode->i_sb);
1463 }
1464 
1465 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1466 {
1467 	return F2FS_I_SB(mapping->host);
1468 }
1469 
1470 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1471 {
1472 	return F2FS_M_SB(page->mapping);
1473 }
1474 
1475 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1476 {
1477 	return (struct f2fs_super_block *)(sbi->raw_super);
1478 }
1479 
1480 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1481 {
1482 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1483 }
1484 
1485 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1486 {
1487 	return (struct f2fs_node *)page_address(page);
1488 }
1489 
1490 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1491 {
1492 	return &((struct f2fs_node *)page_address(page))->i;
1493 }
1494 
1495 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1496 {
1497 	return (struct f2fs_nm_info *)(sbi->nm_info);
1498 }
1499 
1500 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1501 {
1502 	return (struct f2fs_sm_info *)(sbi->sm_info);
1503 }
1504 
1505 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1506 {
1507 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1508 }
1509 
1510 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1511 {
1512 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1513 }
1514 
1515 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1516 {
1517 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1518 }
1519 
1520 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1521 {
1522 	return sbi->meta_inode->i_mapping;
1523 }
1524 
1525 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1526 {
1527 	return sbi->node_inode->i_mapping;
1528 }
1529 
1530 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1531 {
1532 	return test_bit(type, &sbi->s_flag);
1533 }
1534 
1535 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1536 {
1537 	set_bit(type, &sbi->s_flag);
1538 }
1539 
1540 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1541 {
1542 	clear_bit(type, &sbi->s_flag);
1543 }
1544 
1545 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1546 {
1547 	return le64_to_cpu(cp->checkpoint_ver);
1548 }
1549 
1550 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1551 {
1552 	if (type < F2FS_MAX_QUOTAS)
1553 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1554 	return 0;
1555 }
1556 
1557 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1558 {
1559 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1560 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1561 }
1562 
1563 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1564 {
1565 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1566 
1567 	return ckpt_flags & f;
1568 }
1569 
1570 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1571 {
1572 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1573 }
1574 
1575 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1576 {
1577 	unsigned int ckpt_flags;
1578 
1579 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1580 	ckpt_flags |= f;
1581 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1582 }
1583 
1584 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1585 {
1586 	unsigned long flags;
1587 
1588 	spin_lock_irqsave(&sbi->cp_lock, flags);
1589 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1590 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1591 }
1592 
1593 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1594 {
1595 	unsigned int ckpt_flags;
1596 
1597 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1598 	ckpt_flags &= (~f);
1599 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1600 }
1601 
1602 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1603 {
1604 	unsigned long flags;
1605 
1606 	spin_lock_irqsave(&sbi->cp_lock, flags);
1607 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1608 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1609 }
1610 
1611 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1612 {
1613 	unsigned long flags;
1614 
1615 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1616 
1617 	if (lock)
1618 		spin_lock_irqsave(&sbi->cp_lock, flags);
1619 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1620 	kfree(NM_I(sbi)->nat_bits);
1621 	NM_I(sbi)->nat_bits = NULL;
1622 	if (lock)
1623 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1624 }
1625 
1626 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1627 					struct cp_control *cpc)
1628 {
1629 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1630 
1631 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1632 }
1633 
1634 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1635 {
1636 	down_read(&sbi->cp_rwsem);
1637 }
1638 
1639 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1640 {
1641 	return down_read_trylock(&sbi->cp_rwsem);
1642 }
1643 
1644 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1645 {
1646 	up_read(&sbi->cp_rwsem);
1647 }
1648 
1649 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1650 {
1651 	down_write(&sbi->cp_rwsem);
1652 }
1653 
1654 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1655 {
1656 	up_write(&sbi->cp_rwsem);
1657 }
1658 
1659 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1660 {
1661 	int reason = CP_SYNC;
1662 
1663 	if (test_opt(sbi, FASTBOOT))
1664 		reason = CP_FASTBOOT;
1665 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1666 		reason = CP_UMOUNT;
1667 	return reason;
1668 }
1669 
1670 static inline bool __remain_node_summaries(int reason)
1671 {
1672 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1673 }
1674 
1675 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1676 {
1677 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1678 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1679 }
1680 
1681 /*
1682  * Check whether the inode has blocks or not
1683  */
1684 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1685 {
1686 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1687 
1688 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1689 }
1690 
1691 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1692 {
1693 	return ofs == XATTR_NODE_OFFSET;
1694 }
1695 
1696 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1697 					struct inode *inode, bool cap)
1698 {
1699 	if (!inode)
1700 		return true;
1701 	if (!test_opt(sbi, RESERVE_ROOT))
1702 		return false;
1703 	if (IS_NOQUOTA(inode))
1704 		return true;
1705 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1706 		return true;
1707 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1708 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1709 		return true;
1710 	if (cap && capable(CAP_SYS_RESOURCE))
1711 		return true;
1712 	return false;
1713 }
1714 
1715 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1716 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1717 				 struct inode *inode, blkcnt_t *count)
1718 {
1719 	blkcnt_t diff = 0, release = 0;
1720 	block_t avail_user_block_count;
1721 	int ret;
1722 
1723 	ret = dquot_reserve_block(inode, *count);
1724 	if (ret)
1725 		return ret;
1726 
1727 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1728 		f2fs_show_injection_info(FAULT_BLOCK);
1729 		release = *count;
1730 		goto enospc;
1731 	}
1732 
1733 	/*
1734 	 * let's increase this in prior to actual block count change in order
1735 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1736 	 */
1737 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1738 
1739 	spin_lock(&sbi->stat_lock);
1740 	sbi->total_valid_block_count += (block_t)(*count);
1741 	avail_user_block_count = sbi->user_block_count -
1742 					sbi->current_reserved_blocks;
1743 
1744 	if (!__allow_reserved_blocks(sbi, inode, true))
1745 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1746 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1747 		avail_user_block_count -= sbi->unusable_block_count;
1748 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1749 		diff = sbi->total_valid_block_count - avail_user_block_count;
1750 		if (diff > *count)
1751 			diff = *count;
1752 		*count -= diff;
1753 		release = diff;
1754 		sbi->total_valid_block_count -= diff;
1755 		if (!*count) {
1756 			spin_unlock(&sbi->stat_lock);
1757 			goto enospc;
1758 		}
1759 	}
1760 	spin_unlock(&sbi->stat_lock);
1761 
1762 	if (unlikely(release)) {
1763 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1764 		dquot_release_reservation_block(inode, release);
1765 	}
1766 	f2fs_i_blocks_write(inode, *count, true, true);
1767 	return 0;
1768 
1769 enospc:
1770 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1771 	dquot_release_reservation_block(inode, release);
1772 	return -ENOSPC;
1773 }
1774 
1775 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1776 						struct inode *inode,
1777 						block_t count)
1778 {
1779 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1780 
1781 	spin_lock(&sbi->stat_lock);
1782 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1783 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1784 	sbi->total_valid_block_count -= (block_t)count;
1785 	if (sbi->reserved_blocks &&
1786 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1787 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1788 					sbi->current_reserved_blocks + count);
1789 	spin_unlock(&sbi->stat_lock);
1790 	f2fs_i_blocks_write(inode, count, false, true);
1791 }
1792 
1793 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1794 {
1795 	atomic_inc(&sbi->nr_pages[count_type]);
1796 
1797 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1798 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1799 		return;
1800 
1801 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1802 }
1803 
1804 static inline void inode_inc_dirty_pages(struct inode *inode)
1805 {
1806 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1807 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1808 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1809 	if (IS_NOQUOTA(inode))
1810 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1811 }
1812 
1813 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1814 {
1815 	atomic_dec(&sbi->nr_pages[count_type]);
1816 }
1817 
1818 static inline void inode_dec_dirty_pages(struct inode *inode)
1819 {
1820 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1821 			!S_ISLNK(inode->i_mode))
1822 		return;
1823 
1824 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1825 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1826 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1827 	if (IS_NOQUOTA(inode))
1828 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1829 }
1830 
1831 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1832 {
1833 	return atomic_read(&sbi->nr_pages[count_type]);
1834 }
1835 
1836 static inline int get_dirty_pages(struct inode *inode)
1837 {
1838 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1839 }
1840 
1841 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1842 {
1843 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1844 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1845 						sbi->log_blocks_per_seg;
1846 
1847 	return segs / sbi->segs_per_sec;
1848 }
1849 
1850 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1851 {
1852 	return sbi->total_valid_block_count;
1853 }
1854 
1855 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1856 {
1857 	return sbi->discard_blks;
1858 }
1859 
1860 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1861 {
1862 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1863 
1864 	/* return NAT or SIT bitmap */
1865 	if (flag == NAT_BITMAP)
1866 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1867 	else if (flag == SIT_BITMAP)
1868 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1869 
1870 	return 0;
1871 }
1872 
1873 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1874 {
1875 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1876 }
1877 
1878 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1879 {
1880 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1881 	int offset;
1882 
1883 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1884 		offset = (flag == SIT_BITMAP) ?
1885 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1886 		return &ckpt->sit_nat_version_bitmap + offset;
1887 	}
1888 
1889 	if (__cp_payload(sbi) > 0) {
1890 		if (flag == NAT_BITMAP)
1891 			return &ckpt->sit_nat_version_bitmap;
1892 		else
1893 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1894 	} else {
1895 		offset = (flag == NAT_BITMAP) ?
1896 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1897 		return &ckpt->sit_nat_version_bitmap + offset;
1898 	}
1899 }
1900 
1901 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1902 {
1903 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1904 
1905 	if (sbi->cur_cp_pack == 2)
1906 		start_addr += sbi->blocks_per_seg;
1907 	return start_addr;
1908 }
1909 
1910 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1911 {
1912 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1913 
1914 	if (sbi->cur_cp_pack == 1)
1915 		start_addr += sbi->blocks_per_seg;
1916 	return start_addr;
1917 }
1918 
1919 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1920 {
1921 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1922 }
1923 
1924 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1925 {
1926 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1927 }
1928 
1929 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1930 					struct inode *inode, bool is_inode)
1931 {
1932 	block_t	valid_block_count;
1933 	unsigned int valid_node_count;
1934 	bool quota = inode && !is_inode;
1935 
1936 	if (quota) {
1937 		int ret = dquot_reserve_block(inode, 1);
1938 		if (ret)
1939 			return ret;
1940 	}
1941 
1942 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1943 		f2fs_show_injection_info(FAULT_BLOCK);
1944 		goto enospc;
1945 	}
1946 
1947 	spin_lock(&sbi->stat_lock);
1948 
1949 	valid_block_count = sbi->total_valid_block_count +
1950 					sbi->current_reserved_blocks + 1;
1951 
1952 	if (!__allow_reserved_blocks(sbi, inode, false))
1953 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1954 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1955 		valid_block_count += sbi->unusable_block_count;
1956 
1957 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1958 		spin_unlock(&sbi->stat_lock);
1959 		goto enospc;
1960 	}
1961 
1962 	valid_node_count = sbi->total_valid_node_count + 1;
1963 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1964 		spin_unlock(&sbi->stat_lock);
1965 		goto enospc;
1966 	}
1967 
1968 	sbi->total_valid_node_count++;
1969 	sbi->total_valid_block_count++;
1970 	spin_unlock(&sbi->stat_lock);
1971 
1972 	if (inode) {
1973 		if (is_inode)
1974 			f2fs_mark_inode_dirty_sync(inode, true);
1975 		else
1976 			f2fs_i_blocks_write(inode, 1, true, true);
1977 	}
1978 
1979 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1980 	return 0;
1981 
1982 enospc:
1983 	if (quota)
1984 		dquot_release_reservation_block(inode, 1);
1985 	return -ENOSPC;
1986 }
1987 
1988 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1989 					struct inode *inode, bool is_inode)
1990 {
1991 	spin_lock(&sbi->stat_lock);
1992 
1993 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1994 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1995 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1996 
1997 	sbi->total_valid_node_count--;
1998 	sbi->total_valid_block_count--;
1999 	if (sbi->reserved_blocks &&
2000 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2001 		sbi->current_reserved_blocks++;
2002 
2003 	spin_unlock(&sbi->stat_lock);
2004 
2005 	if (!is_inode)
2006 		f2fs_i_blocks_write(inode, 1, false, true);
2007 }
2008 
2009 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2010 {
2011 	return sbi->total_valid_node_count;
2012 }
2013 
2014 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2015 {
2016 	percpu_counter_inc(&sbi->total_valid_inode_count);
2017 }
2018 
2019 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2020 {
2021 	percpu_counter_dec(&sbi->total_valid_inode_count);
2022 }
2023 
2024 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2025 {
2026 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2027 }
2028 
2029 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2030 						pgoff_t index, bool for_write)
2031 {
2032 	struct page *page;
2033 
2034 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2035 		if (!for_write)
2036 			page = find_get_page_flags(mapping, index,
2037 							FGP_LOCK | FGP_ACCESSED);
2038 		else
2039 			page = find_lock_page(mapping, index);
2040 		if (page)
2041 			return page;
2042 
2043 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2044 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2045 			return NULL;
2046 		}
2047 	}
2048 
2049 	if (!for_write)
2050 		return grab_cache_page(mapping, index);
2051 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2052 }
2053 
2054 static inline struct page *f2fs_pagecache_get_page(
2055 				struct address_space *mapping, pgoff_t index,
2056 				int fgp_flags, gfp_t gfp_mask)
2057 {
2058 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2059 		f2fs_show_injection_info(FAULT_PAGE_GET);
2060 		return NULL;
2061 	}
2062 
2063 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2064 }
2065 
2066 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2067 {
2068 	char *src_kaddr = kmap(src);
2069 	char *dst_kaddr = kmap(dst);
2070 
2071 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2072 	kunmap(dst);
2073 	kunmap(src);
2074 }
2075 
2076 static inline void f2fs_put_page(struct page *page, int unlock)
2077 {
2078 	if (!page)
2079 		return;
2080 
2081 	if (unlock) {
2082 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2083 		unlock_page(page);
2084 	}
2085 	put_page(page);
2086 }
2087 
2088 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2089 {
2090 	if (dn->node_page)
2091 		f2fs_put_page(dn->node_page, 1);
2092 	if (dn->inode_page && dn->node_page != dn->inode_page)
2093 		f2fs_put_page(dn->inode_page, 0);
2094 	dn->node_page = NULL;
2095 	dn->inode_page = NULL;
2096 }
2097 
2098 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2099 					size_t size)
2100 {
2101 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2102 }
2103 
2104 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2105 						gfp_t flags)
2106 {
2107 	void *entry;
2108 
2109 	entry = kmem_cache_alloc(cachep, flags);
2110 	if (!entry)
2111 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2112 	return entry;
2113 }
2114 
2115 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2116 						int npages, bool no_fail)
2117 {
2118 	struct bio *bio;
2119 
2120 	if (no_fail) {
2121 		/* No failure on bio allocation */
2122 		bio = bio_alloc(GFP_NOIO, npages);
2123 		if (!bio)
2124 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2125 		return bio;
2126 	}
2127 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2128 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2129 		return NULL;
2130 	}
2131 
2132 	return bio_alloc(GFP_KERNEL, npages);
2133 }
2134 
2135 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2136 				unsigned long index, void *item)
2137 {
2138 	while (radix_tree_insert(root, index, item))
2139 		cond_resched();
2140 }
2141 
2142 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2143 
2144 static inline bool IS_INODE(struct page *page)
2145 {
2146 	struct f2fs_node *p = F2FS_NODE(page);
2147 
2148 	return RAW_IS_INODE(p);
2149 }
2150 
2151 static inline int offset_in_addr(struct f2fs_inode *i)
2152 {
2153 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2154 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2155 }
2156 
2157 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2158 {
2159 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2160 }
2161 
2162 static inline int f2fs_has_extra_attr(struct inode *inode);
2163 static inline block_t datablock_addr(struct inode *inode,
2164 			struct page *node_page, unsigned int offset)
2165 {
2166 	struct f2fs_node *raw_node;
2167 	__le32 *addr_array;
2168 	int base = 0;
2169 	bool is_inode = IS_INODE(node_page);
2170 
2171 	raw_node = F2FS_NODE(node_page);
2172 
2173 	/* from GC path only */
2174 	if (is_inode) {
2175 		if (!inode)
2176 			base = offset_in_addr(&raw_node->i);
2177 		else if (f2fs_has_extra_attr(inode))
2178 			base = get_extra_isize(inode);
2179 	}
2180 
2181 	addr_array = blkaddr_in_node(raw_node);
2182 	return le32_to_cpu(addr_array[base + offset]);
2183 }
2184 
2185 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2186 {
2187 	int mask;
2188 
2189 	addr += (nr >> 3);
2190 	mask = 1 << (7 - (nr & 0x07));
2191 	return mask & *addr;
2192 }
2193 
2194 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2195 {
2196 	int mask;
2197 
2198 	addr += (nr >> 3);
2199 	mask = 1 << (7 - (nr & 0x07));
2200 	*addr |= mask;
2201 }
2202 
2203 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2204 {
2205 	int mask;
2206 
2207 	addr += (nr >> 3);
2208 	mask = 1 << (7 - (nr & 0x07));
2209 	*addr &= ~mask;
2210 }
2211 
2212 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2213 {
2214 	int mask;
2215 	int ret;
2216 
2217 	addr += (nr >> 3);
2218 	mask = 1 << (7 - (nr & 0x07));
2219 	ret = mask & *addr;
2220 	*addr |= mask;
2221 	return ret;
2222 }
2223 
2224 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2225 {
2226 	int mask;
2227 	int ret;
2228 
2229 	addr += (nr >> 3);
2230 	mask = 1 << (7 - (nr & 0x07));
2231 	ret = mask & *addr;
2232 	*addr &= ~mask;
2233 	return ret;
2234 }
2235 
2236 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2237 {
2238 	int mask;
2239 
2240 	addr += (nr >> 3);
2241 	mask = 1 << (7 - (nr & 0x07));
2242 	*addr ^= mask;
2243 }
2244 
2245 /*
2246  * Inode flags
2247  */
2248 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2249 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2250 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2251 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2252 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2253 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2254 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2255 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2256 /* Reserved for compression usage... */
2257 #define F2FS_DIRTY_FL			0x00000100
2258 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2259 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2260 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2261 /* End compression flags --- maybe not all used */
2262 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2263 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2264 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2265 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2266 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2267 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2268 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2269 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2270 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2271 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2272 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2273 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2274 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2275 
2276 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2277 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2278 
2279 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2280 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2281 					 F2FS_IMMUTABLE_FL | \
2282 					 F2FS_APPEND_FL | \
2283 					 F2FS_NODUMP_FL | \
2284 					 F2FS_NOATIME_FL | \
2285 					 F2FS_PROJINHERIT_FL)
2286 
2287 /* Flags that should be inherited by new inodes from their parent. */
2288 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2289 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2290 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2291 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2292 			   F2FS_PROJINHERIT_FL)
2293 
2294 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2295 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2296 
2297 /* Flags that are appropriate for non-directories/regular files. */
2298 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2299 
2300 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2301 {
2302 	if (S_ISDIR(mode))
2303 		return flags;
2304 	else if (S_ISREG(mode))
2305 		return flags & F2FS_REG_FLMASK;
2306 	else
2307 		return flags & F2FS_OTHER_FLMASK;
2308 }
2309 
2310 /* used for f2fs_inode_info->flags */
2311 enum {
2312 	FI_NEW_INODE,		/* indicate newly allocated inode */
2313 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2314 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2315 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2316 	FI_INC_LINK,		/* need to increment i_nlink */
2317 	FI_ACL_MODE,		/* indicate acl mode */
2318 	FI_NO_ALLOC,		/* should not allocate any blocks */
2319 	FI_FREE_NID,		/* free allocated nide */
2320 	FI_NO_EXTENT,		/* not to use the extent cache */
2321 	FI_INLINE_XATTR,	/* used for inline xattr */
2322 	FI_INLINE_DATA,		/* used for inline data*/
2323 	FI_INLINE_DENTRY,	/* used for inline dentry */
2324 	FI_APPEND_WRITE,	/* inode has appended data */
2325 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2326 	FI_NEED_IPU,		/* used for ipu per file */
2327 	FI_ATOMIC_FILE,		/* indicate atomic file */
2328 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2329 	FI_VOLATILE_FILE,	/* indicate volatile file */
2330 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2331 	FI_DROP_CACHE,		/* drop dirty page cache */
2332 	FI_DATA_EXIST,		/* indicate data exists */
2333 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2334 	FI_DO_DEFRAG,		/* indicate defragment is running */
2335 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2336 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2337 	FI_HOT_DATA,		/* indicate file is hot */
2338 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2339 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2340 	FI_PIN_FILE,		/* indicate file should not be gced */
2341 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2342 };
2343 
2344 static inline void __mark_inode_dirty_flag(struct inode *inode,
2345 						int flag, bool set)
2346 {
2347 	switch (flag) {
2348 	case FI_INLINE_XATTR:
2349 	case FI_INLINE_DATA:
2350 	case FI_INLINE_DENTRY:
2351 	case FI_NEW_INODE:
2352 		if (set)
2353 			return;
2354 	case FI_DATA_EXIST:
2355 	case FI_INLINE_DOTS:
2356 	case FI_PIN_FILE:
2357 		f2fs_mark_inode_dirty_sync(inode, true);
2358 	}
2359 }
2360 
2361 static inline void set_inode_flag(struct inode *inode, int flag)
2362 {
2363 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2364 		set_bit(flag, &F2FS_I(inode)->flags);
2365 	__mark_inode_dirty_flag(inode, flag, true);
2366 }
2367 
2368 static inline int is_inode_flag_set(struct inode *inode, int flag)
2369 {
2370 	return test_bit(flag, &F2FS_I(inode)->flags);
2371 }
2372 
2373 static inline void clear_inode_flag(struct inode *inode, int flag)
2374 {
2375 	if (test_bit(flag, &F2FS_I(inode)->flags))
2376 		clear_bit(flag, &F2FS_I(inode)->flags);
2377 	__mark_inode_dirty_flag(inode, flag, false);
2378 }
2379 
2380 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2381 {
2382 	F2FS_I(inode)->i_acl_mode = mode;
2383 	set_inode_flag(inode, FI_ACL_MODE);
2384 	f2fs_mark_inode_dirty_sync(inode, false);
2385 }
2386 
2387 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2388 {
2389 	if (inc)
2390 		inc_nlink(inode);
2391 	else
2392 		drop_nlink(inode);
2393 	f2fs_mark_inode_dirty_sync(inode, true);
2394 }
2395 
2396 static inline void f2fs_i_blocks_write(struct inode *inode,
2397 					block_t diff, bool add, bool claim)
2398 {
2399 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2400 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2401 
2402 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2403 	if (add) {
2404 		if (claim)
2405 			dquot_claim_block(inode, diff);
2406 		else
2407 			dquot_alloc_block_nofail(inode, diff);
2408 	} else {
2409 		dquot_free_block(inode, diff);
2410 	}
2411 
2412 	f2fs_mark_inode_dirty_sync(inode, true);
2413 	if (clean || recover)
2414 		set_inode_flag(inode, FI_AUTO_RECOVER);
2415 }
2416 
2417 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2418 {
2419 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2420 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2421 
2422 	if (i_size_read(inode) == i_size)
2423 		return;
2424 
2425 	i_size_write(inode, i_size);
2426 	f2fs_mark_inode_dirty_sync(inode, true);
2427 	if (clean || recover)
2428 		set_inode_flag(inode, FI_AUTO_RECOVER);
2429 }
2430 
2431 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2432 {
2433 	F2FS_I(inode)->i_current_depth = depth;
2434 	f2fs_mark_inode_dirty_sync(inode, true);
2435 }
2436 
2437 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2438 					unsigned int count)
2439 {
2440 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2441 	f2fs_mark_inode_dirty_sync(inode, true);
2442 }
2443 
2444 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2445 {
2446 	F2FS_I(inode)->i_xattr_nid = xnid;
2447 	f2fs_mark_inode_dirty_sync(inode, true);
2448 }
2449 
2450 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2451 {
2452 	F2FS_I(inode)->i_pino = pino;
2453 	f2fs_mark_inode_dirty_sync(inode, true);
2454 }
2455 
2456 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2457 {
2458 	struct f2fs_inode_info *fi = F2FS_I(inode);
2459 
2460 	if (ri->i_inline & F2FS_INLINE_XATTR)
2461 		set_bit(FI_INLINE_XATTR, &fi->flags);
2462 	if (ri->i_inline & F2FS_INLINE_DATA)
2463 		set_bit(FI_INLINE_DATA, &fi->flags);
2464 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2465 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2466 	if (ri->i_inline & F2FS_DATA_EXIST)
2467 		set_bit(FI_DATA_EXIST, &fi->flags);
2468 	if (ri->i_inline & F2FS_INLINE_DOTS)
2469 		set_bit(FI_INLINE_DOTS, &fi->flags);
2470 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2471 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2472 	if (ri->i_inline & F2FS_PIN_FILE)
2473 		set_bit(FI_PIN_FILE, &fi->flags);
2474 }
2475 
2476 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2477 {
2478 	ri->i_inline = 0;
2479 
2480 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2481 		ri->i_inline |= F2FS_INLINE_XATTR;
2482 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2483 		ri->i_inline |= F2FS_INLINE_DATA;
2484 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2485 		ri->i_inline |= F2FS_INLINE_DENTRY;
2486 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2487 		ri->i_inline |= F2FS_DATA_EXIST;
2488 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2489 		ri->i_inline |= F2FS_INLINE_DOTS;
2490 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2491 		ri->i_inline |= F2FS_EXTRA_ATTR;
2492 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2493 		ri->i_inline |= F2FS_PIN_FILE;
2494 }
2495 
2496 static inline int f2fs_has_extra_attr(struct inode *inode)
2497 {
2498 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2499 }
2500 
2501 static inline int f2fs_has_inline_xattr(struct inode *inode)
2502 {
2503 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2504 }
2505 
2506 static inline unsigned int addrs_per_inode(struct inode *inode)
2507 {
2508 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2509 }
2510 
2511 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2512 {
2513 	struct f2fs_inode *ri = F2FS_INODE(page);
2514 
2515 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2516 					get_inline_xattr_addrs(inode)]);
2517 }
2518 
2519 static inline int inline_xattr_size(struct inode *inode)
2520 {
2521 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2522 }
2523 
2524 static inline int f2fs_has_inline_data(struct inode *inode)
2525 {
2526 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2527 }
2528 
2529 static inline int f2fs_exist_data(struct inode *inode)
2530 {
2531 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2532 }
2533 
2534 static inline int f2fs_has_inline_dots(struct inode *inode)
2535 {
2536 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2537 }
2538 
2539 static inline bool f2fs_is_pinned_file(struct inode *inode)
2540 {
2541 	return is_inode_flag_set(inode, FI_PIN_FILE);
2542 }
2543 
2544 static inline bool f2fs_is_atomic_file(struct inode *inode)
2545 {
2546 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2547 }
2548 
2549 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2550 {
2551 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2552 }
2553 
2554 static inline bool f2fs_is_volatile_file(struct inode *inode)
2555 {
2556 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2557 }
2558 
2559 static inline bool f2fs_is_first_block_written(struct inode *inode)
2560 {
2561 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2562 }
2563 
2564 static inline bool f2fs_is_drop_cache(struct inode *inode)
2565 {
2566 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2567 }
2568 
2569 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2570 {
2571 	struct f2fs_inode *ri = F2FS_INODE(page);
2572 	int extra_size = get_extra_isize(inode);
2573 
2574 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2575 }
2576 
2577 static inline int f2fs_has_inline_dentry(struct inode *inode)
2578 {
2579 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2580 }
2581 
2582 static inline int is_file(struct inode *inode, int type)
2583 {
2584 	return F2FS_I(inode)->i_advise & type;
2585 }
2586 
2587 static inline void set_file(struct inode *inode, int type)
2588 {
2589 	F2FS_I(inode)->i_advise |= type;
2590 	f2fs_mark_inode_dirty_sync(inode, true);
2591 }
2592 
2593 static inline void clear_file(struct inode *inode, int type)
2594 {
2595 	F2FS_I(inode)->i_advise &= ~type;
2596 	f2fs_mark_inode_dirty_sync(inode, true);
2597 }
2598 
2599 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2600 {
2601 	bool ret;
2602 
2603 	if (dsync) {
2604 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2605 
2606 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2607 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2608 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2609 		return ret;
2610 	}
2611 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2612 			file_keep_isize(inode) ||
2613 			i_size_read(inode) & ~PAGE_MASK)
2614 		return false;
2615 
2616 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2617 		return false;
2618 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2619 		return false;
2620 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2621 		return false;
2622 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2623 						&F2FS_I(inode)->i_crtime))
2624 		return false;
2625 
2626 	down_read(&F2FS_I(inode)->i_sem);
2627 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2628 	up_read(&F2FS_I(inode)->i_sem);
2629 
2630 	return ret;
2631 }
2632 
2633 static inline bool f2fs_readonly(struct super_block *sb)
2634 {
2635 	return sb_rdonly(sb);
2636 }
2637 
2638 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2639 {
2640 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2641 }
2642 
2643 static inline bool is_dot_dotdot(const struct qstr *str)
2644 {
2645 	if (str->len == 1 && str->name[0] == '.')
2646 		return true;
2647 
2648 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2649 		return true;
2650 
2651 	return false;
2652 }
2653 
2654 static inline bool f2fs_may_extent_tree(struct inode *inode)
2655 {
2656 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2657 			is_inode_flag_set(inode, FI_NO_EXTENT))
2658 		return false;
2659 
2660 	return S_ISREG(inode->i_mode);
2661 }
2662 
2663 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2664 					size_t size, gfp_t flags)
2665 {
2666 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2667 		f2fs_show_injection_info(FAULT_KMALLOC);
2668 		return NULL;
2669 	}
2670 
2671 	return kmalloc(size, flags);
2672 }
2673 
2674 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2675 					size_t size, gfp_t flags)
2676 {
2677 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2678 }
2679 
2680 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2681 					size_t size, gfp_t flags)
2682 {
2683 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2684 		f2fs_show_injection_info(FAULT_KVMALLOC);
2685 		return NULL;
2686 	}
2687 
2688 	return kvmalloc(size, flags);
2689 }
2690 
2691 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2692 					size_t size, gfp_t flags)
2693 {
2694 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2695 }
2696 
2697 static inline int get_extra_isize(struct inode *inode)
2698 {
2699 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2700 }
2701 
2702 static inline int get_inline_xattr_addrs(struct inode *inode)
2703 {
2704 	return F2FS_I(inode)->i_inline_xattr_size;
2705 }
2706 
2707 #define f2fs_get_inode_mode(i) \
2708 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2709 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2710 
2711 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2712 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2713 	offsetof(struct f2fs_inode, i_extra_isize))	\
2714 
2715 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2716 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2717 		((offsetof(typeof(*f2fs_inode), field) +	\
2718 		sizeof((f2fs_inode)->field))			\
2719 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2720 
2721 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2722 {
2723 	int i;
2724 
2725 	spin_lock(&sbi->iostat_lock);
2726 	for (i = 0; i < NR_IO_TYPE; i++)
2727 		sbi->write_iostat[i] = 0;
2728 	spin_unlock(&sbi->iostat_lock);
2729 }
2730 
2731 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2732 			enum iostat_type type, unsigned long long io_bytes)
2733 {
2734 	if (!sbi->iostat_enable)
2735 		return;
2736 	spin_lock(&sbi->iostat_lock);
2737 	sbi->write_iostat[type] += io_bytes;
2738 
2739 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2740 		sbi->write_iostat[APP_BUFFERED_IO] =
2741 			sbi->write_iostat[APP_WRITE_IO] -
2742 			sbi->write_iostat[APP_DIRECT_IO];
2743 	spin_unlock(&sbi->iostat_lock);
2744 }
2745 
2746 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&	\
2747 				(!is_read_io(fio->op) || fio->is_meta))
2748 
2749 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2750 					block_t blkaddr, int type);
2751 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2752 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2753 					block_t blkaddr, int type)
2754 {
2755 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2756 		f2fs_msg(sbi->sb, KERN_ERR,
2757 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2758 			blkaddr, type);
2759 		f2fs_bug_on(sbi, 1);
2760 	}
2761 }
2762 
2763 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2764 {
2765 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2766 		return false;
2767 	return true;
2768 }
2769 
2770 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2771 						block_t blkaddr)
2772 {
2773 	if (!__is_valid_data_blkaddr(blkaddr))
2774 		return false;
2775 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2776 	return true;
2777 }
2778 
2779 /*
2780  * file.c
2781  */
2782 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2783 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2784 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2785 int f2fs_truncate(struct inode *inode);
2786 int f2fs_getattr(const struct path *path, struct kstat *stat,
2787 			u32 request_mask, unsigned int flags);
2788 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2789 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2790 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2791 int f2fs_precache_extents(struct inode *inode);
2792 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2793 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2794 int f2fs_pin_file_control(struct inode *inode, bool inc);
2795 
2796 /*
2797  * inode.c
2798  */
2799 void f2fs_set_inode_flags(struct inode *inode);
2800 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2801 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2802 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2803 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2804 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2805 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2806 void f2fs_update_inode_page(struct inode *inode);
2807 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2808 void f2fs_evict_inode(struct inode *inode);
2809 void f2fs_handle_failed_inode(struct inode *inode);
2810 
2811 /*
2812  * namei.c
2813  */
2814 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2815 							bool hot, bool set);
2816 struct dentry *f2fs_get_parent(struct dentry *child);
2817 
2818 /*
2819  * dir.c
2820  */
2821 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2822 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2823 			f2fs_hash_t namehash, int *max_slots,
2824 			struct f2fs_dentry_ptr *d);
2825 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2826 			unsigned int start_pos, struct fscrypt_str *fstr);
2827 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2828 			struct f2fs_dentry_ptr *d);
2829 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2830 			const struct qstr *new_name,
2831 			const struct qstr *orig_name, struct page *dpage);
2832 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2833 			unsigned int current_depth);
2834 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2835 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2836 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2837 			struct fscrypt_name *fname, struct page **res_page);
2838 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2839 			const struct qstr *child, struct page **res_page);
2840 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2841 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2842 			struct page **page);
2843 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2844 			struct page *page, struct inode *inode);
2845 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2846 			const struct qstr *name, f2fs_hash_t name_hash,
2847 			unsigned int bit_pos);
2848 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2849 			const struct qstr *orig_name,
2850 			struct inode *inode, nid_t ino, umode_t mode);
2851 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2852 			struct inode *inode, nid_t ino, umode_t mode);
2853 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2854 			struct inode *inode, nid_t ino, umode_t mode);
2855 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2856 			struct inode *dir, struct inode *inode);
2857 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2858 bool f2fs_empty_dir(struct inode *dir);
2859 
2860 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2861 {
2862 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2863 				inode, inode->i_ino, inode->i_mode);
2864 }
2865 
2866 /*
2867  * super.c
2868  */
2869 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2870 void f2fs_inode_synced(struct inode *inode);
2871 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2872 void f2fs_quota_off_umount(struct super_block *sb);
2873 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2874 int f2fs_sync_fs(struct super_block *sb, int sync);
2875 extern __printf(3, 4)
2876 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2877 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2878 
2879 /*
2880  * hash.c
2881  */
2882 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2883 				struct fscrypt_name *fname);
2884 
2885 /*
2886  * node.c
2887  */
2888 struct dnode_of_data;
2889 struct node_info;
2890 
2891 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2892 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2893 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2894 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2895 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2896 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2897 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2898 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2899 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2900 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2901 						struct node_info *ni);
2902 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2903 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2904 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2905 int f2fs_truncate_xattr_node(struct inode *inode);
2906 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2907 					unsigned int seq_id);
2908 int f2fs_remove_inode_page(struct inode *inode);
2909 struct page *f2fs_new_inode_page(struct inode *inode);
2910 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2911 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2912 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2913 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2914 void f2fs_move_node_page(struct page *node_page, int gc_type);
2915 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2916 			struct writeback_control *wbc, bool atomic,
2917 			unsigned int *seq_id);
2918 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2919 			struct writeback_control *wbc,
2920 			bool do_balance, enum iostat_type io_type);
2921 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2922 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2923 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2924 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2925 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2926 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2927 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2928 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2929 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2930 			unsigned int segno, struct f2fs_summary_block *sum);
2931 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2932 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2933 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2934 int __init f2fs_create_node_manager_caches(void);
2935 void f2fs_destroy_node_manager_caches(void);
2936 
2937 /*
2938  * segment.c
2939  */
2940 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2941 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2942 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2943 void f2fs_drop_inmem_pages(struct inode *inode);
2944 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2945 int f2fs_commit_inmem_pages(struct inode *inode);
2946 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2947 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2948 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2949 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2950 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2951 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2952 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2953 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2954 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2955 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2956 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2957 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2958 					struct cp_control *cpc);
2959 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
2960 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
2961 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2962 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2963 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2964 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2965 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2966 					struct cp_control *cpc);
2967 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2968 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2969 					block_t blk_addr);
2970 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2971 						enum iostat_type io_type);
2972 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2973 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2974 			struct f2fs_io_info *fio);
2975 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2976 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2977 			block_t old_blkaddr, block_t new_blkaddr,
2978 			bool recover_curseg, bool recover_newaddr);
2979 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2980 			block_t old_addr, block_t new_addr,
2981 			unsigned char version, bool recover_curseg,
2982 			bool recover_newaddr);
2983 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2984 			block_t old_blkaddr, block_t *new_blkaddr,
2985 			struct f2fs_summary *sum, int type,
2986 			struct f2fs_io_info *fio, bool add_list);
2987 void f2fs_wait_on_page_writeback(struct page *page,
2988 			enum page_type type, bool ordered);
2989 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
2990 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2991 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2992 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2993 			unsigned int val, int alloc);
2994 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2995 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2996 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2997 int __init f2fs_create_segment_manager_caches(void);
2998 void f2fs_destroy_segment_manager_caches(void);
2999 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3000 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3001 			enum page_type type, enum temp_type temp);
3002 
3003 /*
3004  * checkpoint.c
3005  */
3006 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3007 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3008 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3009 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3010 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3011 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3012 					block_t blkaddr, int type);
3013 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3014 			int type, bool sync);
3015 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3016 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3017 			long nr_to_write, enum iostat_type io_type);
3018 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3019 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3020 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3021 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3022 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3023 					unsigned int devidx, int type);
3024 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3025 					unsigned int devidx, int type);
3026 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3027 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3028 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3029 void f2fs_add_orphan_inode(struct inode *inode);
3030 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3031 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3032 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3033 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3034 void f2fs_remove_dirty_inode(struct inode *inode);
3035 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3036 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3037 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3038 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3039 int __init f2fs_create_checkpoint_caches(void);
3040 void f2fs_destroy_checkpoint_caches(void);
3041 
3042 /*
3043  * data.c
3044  */
3045 int f2fs_init_post_read_processing(void);
3046 void f2fs_destroy_post_read_processing(void);
3047 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3048 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3049 				struct inode *inode, struct page *page,
3050 				nid_t ino, enum page_type type);
3051 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3052 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3053 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3054 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3055 			block_t blk_addr, struct bio *bio);
3056 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3057 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3058 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3059 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3060 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3061 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3062 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3063 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3064 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3065 			int op_flags, bool for_write);
3066 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3067 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3068 			bool for_write);
3069 struct page *f2fs_get_new_data_page(struct inode *inode,
3070 			struct page *ipage, pgoff_t index, bool new_i_size);
3071 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3072 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3073 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3074 			int create, int flag);
3075 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3076 			u64 start, u64 len);
3077 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3078 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3079 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3080 			unsigned int length);
3081 int f2fs_release_page(struct page *page, gfp_t wait);
3082 #ifdef CONFIG_MIGRATION
3083 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3084 			struct page *page, enum migrate_mode mode);
3085 #endif
3086 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3087 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3088 
3089 /*
3090  * gc.c
3091  */
3092 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3093 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3094 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3095 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3096 			unsigned int segno);
3097 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3098 
3099 /*
3100  * recovery.c
3101  */
3102 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3103 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3104 
3105 /*
3106  * debug.c
3107  */
3108 #ifdef CONFIG_F2FS_STAT_FS
3109 struct f2fs_stat_info {
3110 	struct list_head stat_list;
3111 	struct f2fs_sb_info *sbi;
3112 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3113 	int main_area_segs, main_area_sections, main_area_zones;
3114 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3115 	unsigned long long hit_total, total_ext;
3116 	int ext_tree, zombie_tree, ext_node;
3117 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3118 	int ndirty_data, ndirty_qdata;
3119 	int inmem_pages;
3120 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3121 	int nats, dirty_nats, sits, dirty_sits;
3122 	int free_nids, avail_nids, alloc_nids;
3123 	int total_count, utilization;
3124 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3125 	unsigned int io_skip_bggc, other_skip_bggc;
3126 	int nr_flushing, nr_flushed, flush_list_empty;
3127 	int nr_discarding, nr_discarded;
3128 	int nr_discard_cmd;
3129 	unsigned int undiscard_blks;
3130 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3131 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3132 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3133 	unsigned int bimodal, avg_vblocks;
3134 	int util_free, util_valid, util_invalid;
3135 	int rsvd_segs, overp_segs;
3136 	int dirty_count, node_pages, meta_pages;
3137 	int prefree_count, call_count, cp_count, bg_cp_count;
3138 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3139 	int bg_node_segs, bg_data_segs;
3140 	int tot_blks, data_blks, node_blks;
3141 	int bg_data_blks, bg_node_blks;
3142 	unsigned long long skipped_atomic_files[2];
3143 	int curseg[NR_CURSEG_TYPE];
3144 	int cursec[NR_CURSEG_TYPE];
3145 	int curzone[NR_CURSEG_TYPE];
3146 
3147 	unsigned int meta_count[META_MAX];
3148 	unsigned int segment_count[2];
3149 	unsigned int block_count[2];
3150 	unsigned int inplace_count;
3151 	unsigned long long base_mem, cache_mem, page_mem;
3152 };
3153 
3154 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3155 {
3156 	return (struct f2fs_stat_info *)sbi->stat_info;
3157 }
3158 
3159 #define stat_inc_cp_count(si)		((si)->cp_count++)
3160 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3161 #define stat_inc_call_count(si)		((si)->call_count++)
3162 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3163 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3164 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3165 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3166 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3167 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3168 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3169 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3170 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3171 #define stat_inc_inline_xattr(inode)					\
3172 	do {								\
3173 		if (f2fs_has_inline_xattr(inode))			\
3174 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3175 	} while (0)
3176 #define stat_dec_inline_xattr(inode)					\
3177 	do {								\
3178 		if (f2fs_has_inline_xattr(inode))			\
3179 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3180 	} while (0)
3181 #define stat_inc_inline_inode(inode)					\
3182 	do {								\
3183 		if (f2fs_has_inline_data(inode))			\
3184 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3185 	} while (0)
3186 #define stat_dec_inline_inode(inode)					\
3187 	do {								\
3188 		if (f2fs_has_inline_data(inode))			\
3189 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3190 	} while (0)
3191 #define stat_inc_inline_dir(inode)					\
3192 	do {								\
3193 		if (f2fs_has_inline_dentry(inode))			\
3194 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3195 	} while (0)
3196 #define stat_dec_inline_dir(inode)					\
3197 	do {								\
3198 		if (f2fs_has_inline_dentry(inode))			\
3199 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3200 	} while (0)
3201 #define stat_inc_meta_count(sbi, blkaddr)				\
3202 	do {								\
3203 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3204 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3205 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3206 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3207 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3208 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3209 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3210 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3211 	} while (0)
3212 #define stat_inc_seg_type(sbi, curseg)					\
3213 		((sbi)->segment_count[(curseg)->alloc_type]++)
3214 #define stat_inc_block_count(sbi, curseg)				\
3215 		((sbi)->block_count[(curseg)->alloc_type]++)
3216 #define stat_inc_inplace_blocks(sbi)					\
3217 		(atomic_inc(&(sbi)->inplace_count))
3218 #define stat_inc_atomic_write(inode)					\
3219 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3220 #define stat_dec_atomic_write(inode)					\
3221 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3222 #define stat_update_max_atomic_write(inode)				\
3223 	do {								\
3224 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3225 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3226 		if (cur > max)						\
3227 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3228 	} while (0)
3229 #define stat_inc_volatile_write(inode)					\
3230 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3231 #define stat_dec_volatile_write(inode)					\
3232 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3233 #define stat_update_max_volatile_write(inode)				\
3234 	do {								\
3235 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3236 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3237 		if (cur > max)						\
3238 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3239 	} while (0)
3240 #define stat_inc_seg_count(sbi, type, gc_type)				\
3241 	do {								\
3242 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3243 		si->tot_segs++;						\
3244 		if ((type) == SUM_TYPE_DATA) {				\
3245 			si->data_segs++;				\
3246 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3247 		} else {						\
3248 			si->node_segs++;				\
3249 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3250 		}							\
3251 	} while (0)
3252 
3253 #define stat_inc_tot_blk_count(si, blks)				\
3254 	((si)->tot_blks += (blks))
3255 
3256 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3257 	do {								\
3258 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3259 		stat_inc_tot_blk_count(si, blks);			\
3260 		si->data_blks += (blks);				\
3261 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3262 	} while (0)
3263 
3264 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3265 	do {								\
3266 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3267 		stat_inc_tot_blk_count(si, blks);			\
3268 		si->node_blks += (blks);				\
3269 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3270 	} while (0)
3271 
3272 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3273 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3274 int __init f2fs_create_root_stats(void);
3275 void f2fs_destroy_root_stats(void);
3276 #else
3277 #define stat_inc_cp_count(si)				do { } while (0)
3278 #define stat_inc_bg_cp_count(si)			do { } while (0)
3279 #define stat_inc_call_count(si)				do { } while (0)
3280 #define stat_inc_bggc_count(si)				do { } while (0)
3281 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3282 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3283 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3284 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3285 #define stat_inc_total_hit(sb)				do { } while (0)
3286 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3287 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3288 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3289 #define stat_inc_inline_xattr(inode)			do { } while (0)
3290 #define stat_dec_inline_xattr(inode)			do { } while (0)
3291 #define stat_inc_inline_inode(inode)			do { } while (0)
3292 #define stat_dec_inline_inode(inode)			do { } while (0)
3293 #define stat_inc_inline_dir(inode)			do { } while (0)
3294 #define stat_dec_inline_dir(inode)			do { } while (0)
3295 #define stat_inc_atomic_write(inode)			do { } while (0)
3296 #define stat_dec_atomic_write(inode)			do { } while (0)
3297 #define stat_update_max_atomic_write(inode)		do { } while (0)
3298 #define stat_inc_volatile_write(inode)			do { } while (0)
3299 #define stat_dec_volatile_write(inode)			do { } while (0)
3300 #define stat_update_max_volatile_write(inode)		do { } while (0)
3301 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3302 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3303 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3304 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3305 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3306 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3307 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3308 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3309 
3310 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3311 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3312 static inline int __init f2fs_create_root_stats(void) { return 0; }
3313 static inline void f2fs_destroy_root_stats(void) { }
3314 #endif
3315 
3316 extern const struct file_operations f2fs_dir_operations;
3317 extern const struct file_operations f2fs_file_operations;
3318 extern const struct inode_operations f2fs_file_inode_operations;
3319 extern const struct address_space_operations f2fs_dblock_aops;
3320 extern const struct address_space_operations f2fs_node_aops;
3321 extern const struct address_space_operations f2fs_meta_aops;
3322 extern const struct inode_operations f2fs_dir_inode_operations;
3323 extern const struct inode_operations f2fs_symlink_inode_operations;
3324 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3325 extern const struct inode_operations f2fs_special_inode_operations;
3326 extern struct kmem_cache *f2fs_inode_entry_slab;
3327 
3328 /*
3329  * inline.c
3330  */
3331 bool f2fs_may_inline_data(struct inode *inode);
3332 bool f2fs_may_inline_dentry(struct inode *inode);
3333 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3334 void f2fs_truncate_inline_inode(struct inode *inode,
3335 						struct page *ipage, u64 from);
3336 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3337 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3338 int f2fs_convert_inline_inode(struct inode *inode);
3339 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3340 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3341 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3342 			struct fscrypt_name *fname, struct page **res_page);
3343 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3344 			struct page *ipage);
3345 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3346 			const struct qstr *orig_name,
3347 			struct inode *inode, nid_t ino, umode_t mode);
3348 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3349 				struct page *page, struct inode *dir,
3350 				struct inode *inode);
3351 bool f2fs_empty_inline_dir(struct inode *dir);
3352 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3353 			struct fscrypt_str *fstr);
3354 int f2fs_inline_data_fiemap(struct inode *inode,
3355 			struct fiemap_extent_info *fieinfo,
3356 			__u64 start, __u64 len);
3357 
3358 /*
3359  * shrinker.c
3360  */
3361 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3362 			struct shrink_control *sc);
3363 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3364 			struct shrink_control *sc);
3365 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3366 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3367 
3368 /*
3369  * extent_cache.c
3370  */
3371 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3372 				struct rb_entry *cached_re, unsigned int ofs);
3373 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3374 				struct rb_root *root, struct rb_node **parent,
3375 				unsigned int ofs);
3376 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3377 		struct rb_entry *cached_re, unsigned int ofs,
3378 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3379 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3380 		bool force);
3381 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3382 						struct rb_root *root);
3383 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3384 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3385 void f2fs_drop_extent_tree(struct inode *inode);
3386 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3387 void f2fs_destroy_extent_tree(struct inode *inode);
3388 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3389 			struct extent_info *ei);
3390 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3391 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3392 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3393 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3394 int __init f2fs_create_extent_cache(void);
3395 void f2fs_destroy_extent_cache(void);
3396 
3397 /*
3398  * sysfs.c
3399  */
3400 int __init f2fs_init_sysfs(void);
3401 void f2fs_exit_sysfs(void);
3402 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3403 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3404 
3405 /*
3406  * crypto support
3407  */
3408 static inline bool f2fs_encrypted_inode(struct inode *inode)
3409 {
3410 	return file_is_encrypt(inode);
3411 }
3412 
3413 static inline bool f2fs_encrypted_file(struct inode *inode)
3414 {
3415 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3416 }
3417 
3418 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3419 {
3420 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3421 	file_set_encrypt(inode);
3422 	inode->i_flags |= S_ENCRYPTED;
3423 #endif
3424 }
3425 
3426 /*
3427  * Returns true if the reads of the inode's data need to undergo some
3428  * postprocessing step, like decryption or authenticity verification.
3429  */
3430 static inline bool f2fs_post_read_required(struct inode *inode)
3431 {
3432 	return f2fs_encrypted_file(inode);
3433 }
3434 
3435 #define F2FS_FEATURE_FUNCS(name, flagname) \
3436 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3437 { \
3438 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3439 }
3440 
3441 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3442 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3443 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3444 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3445 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3446 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3447 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3448 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3449 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3450 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3451 
3452 #ifdef CONFIG_BLK_DEV_ZONED
3453 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3454 			struct block_device *bdev, block_t blkaddr)
3455 {
3456 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3457 	int i;
3458 
3459 	for (i = 0; i < sbi->s_ndevs; i++)
3460 		if (FDEV(i).bdev == bdev)
3461 			return FDEV(i).blkz_type[zno];
3462 	return -EINVAL;
3463 }
3464 #endif
3465 
3466 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3467 {
3468 	return f2fs_sb_has_blkzoned(sbi->sb);
3469 }
3470 
3471 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3472 {
3473 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3474 }
3475 
3476 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3477 {
3478 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3479 					f2fs_hw_should_discard(sbi);
3480 }
3481 
3482 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3483 {
3484 	clear_opt(sbi, ADAPTIVE);
3485 	clear_opt(sbi, LFS);
3486 
3487 	switch (mt) {
3488 	case F2FS_MOUNT_ADAPTIVE:
3489 		set_opt(sbi, ADAPTIVE);
3490 		break;
3491 	case F2FS_MOUNT_LFS:
3492 		set_opt(sbi, LFS);
3493 		break;
3494 	}
3495 }
3496 
3497 static inline bool f2fs_may_encrypt(struct inode *inode)
3498 {
3499 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3500 	umode_t mode = inode->i_mode;
3501 
3502 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3503 #else
3504 	return false;
3505 #endif
3506 }
3507 
3508 static inline int block_unaligned_IO(struct inode *inode,
3509 				struct kiocb *iocb, struct iov_iter *iter)
3510 {
3511 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3512 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3513 	loff_t offset = iocb->ki_pos;
3514 	unsigned long align = offset | iov_iter_alignment(iter);
3515 
3516 	return align & blocksize_mask;
3517 }
3518 
3519 static inline int allow_outplace_dio(struct inode *inode,
3520 				struct kiocb *iocb, struct iov_iter *iter)
3521 {
3522 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3523 	int rw = iov_iter_rw(iter);
3524 
3525 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3526 				!block_unaligned_IO(inode, iocb, iter));
3527 }
3528 
3529 static inline bool f2fs_force_buffered_io(struct inode *inode,
3530 				struct kiocb *iocb, struct iov_iter *iter)
3531 {
3532 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 	int rw = iov_iter_rw(iter);
3534 
3535 	if (f2fs_post_read_required(inode))
3536 		return true;
3537 	if (sbi->s_ndevs)
3538 		return true;
3539 	/*
3540 	 * for blkzoned device, fallback direct IO to buffered IO, so
3541 	 * all IOs can be serialized by log-structured write.
3542 	 */
3543 	if (f2fs_sb_has_blkzoned(sbi->sb))
3544 		return true;
3545 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3546 				block_unaligned_IO(inode, iocb, iter))
3547 		return true;
3548 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3549 		return true;
3550 
3551 	return false;
3552 }
3553 
3554 #ifdef CONFIG_F2FS_FAULT_INJECTION
3555 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3556 							unsigned int type);
3557 #else
3558 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3559 #endif
3560 
3561 #endif
3562