xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 3a2ad5672bb36ee9c07bab97dadc8b0f70d391f4)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_IO,
50 	FAULT_CHECKPOINT,
51 	FAULT_MAX,
52 };
53 
54 struct f2fs_fault_info {
55 	atomic_t inject_ops;
56 	unsigned int inject_rate;
57 	unsigned int inject_type;
58 };
59 
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63 
64 /*
65  * For mount options
66  */
67 #define F2FS_MOUNT_BG_GC		0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
69 #define F2FS_MOUNT_DISCARD		0x00000004
70 #define F2FS_MOUNT_NOHEAP		0x00000008
71 #define F2FS_MOUNT_XATTR_USER		0x00000010
72 #define F2FS_MOUNT_POSIX_ACL		0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
75 #define F2FS_MOUNT_INLINE_DATA		0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
78 #define F2FS_MOUNT_NOBARRIER		0x00000800
79 #define F2FS_MOUNT_FASTBOOT		0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
84 #define F2FS_MOUNT_ADAPTIVE		0x00020000
85 #define F2FS_MOUNT_LFS			0x00040000
86 
87 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
90 
91 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
92 		typecheck(unsigned long long, b) &&			\
93 		((long long)((a) - (b)) > 0))
94 
95 typedef u32 block_t;	/*
96 			 * should not change u32, since it is the on-disk block
97 			 * address format, __le32.
98 			 */
99 typedef u32 nid_t;
100 
101 struct f2fs_mount_info {
102 	unsigned int	opt;
103 };
104 
105 #define F2FS_FEATURE_ENCRYPT	0x0001
106 #define F2FS_FEATURE_HMSMR	0x0002
107 
108 #define F2FS_HAS_FEATURE(sb, mask)					\
109 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask)					\
111 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask)					\
113 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114 
115 /*
116  * For checkpoint manager
117  */
118 enum {
119 	NAT_BITMAP,
120 	SIT_BITMAP
121 };
122 
123 enum {
124 	CP_UMOUNT,
125 	CP_FASTBOOT,
126 	CP_SYNC,
127 	CP_RECOVERY,
128 	CP_DISCARD,
129 };
130 
131 #define DEF_BATCHED_TRIM_SECTIONS	2
132 #define BATCHED_TRIM_SEGMENTS(sbi)	\
133 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi)	\
135 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL			60	/* 60 secs */
137 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
138 
139 struct cp_control {
140 	int reason;
141 	__u64 trim_start;
142 	__u64 trim_end;
143 	__u64 trim_minlen;
144 	__u64 trimmed;
145 };
146 
147 /*
148  * For CP/NAT/SIT/SSA readahead
149  */
150 enum {
151 	META_CP,
152 	META_NAT,
153 	META_SIT,
154 	META_SSA,
155 	META_POR,
156 };
157 
158 /* for the list of ino */
159 enum {
160 	ORPHAN_INO,		/* for orphan ino list */
161 	APPEND_INO,		/* for append ino list */
162 	UPDATE_INO,		/* for update ino list */
163 	MAX_INO_ENTRY,		/* max. list */
164 };
165 
166 struct ino_entry {
167 	struct list_head list;	/* list head */
168 	nid_t ino;		/* inode number */
169 };
170 
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 	struct list_head list;	/* list head */
174 	struct inode *inode;	/* vfs inode pointer */
175 };
176 
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 	struct list_head list;	/* list head */
180 	block_t blkaddr;	/* block address to be discarded */
181 	int len;		/* # of consecutive blocks of the discard */
182 };
183 
184 struct bio_entry {
185 	struct list_head list;
186 	struct bio *bio;
187 	struct completion event;
188 	int error;
189 };
190 
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 	struct list_head list;	/* list head */
194 	struct inode *inode;	/* vfs inode pointer */
195 	block_t blkaddr;	/* block address locating the last fsync */
196 	block_t last_dentry;	/* block address locating the last dentry */
197 };
198 
199 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
201 
202 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
206 
207 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209 
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 	int before = nats_in_cursum(journal);
213 	journal->n_nats = cpu_to_le16(before + i);
214 	return before;
215 }
216 
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 	int before = sits_in_cursum(journal);
220 	journal->n_sits = cpu_to_le16(before + i);
221 	return before;
222 }
223 
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 							int size, int type)
226 {
227 	if (type == NAT_JOURNAL)
228 		return size <= MAX_NAT_JENTRIES(journal);
229 	return size <= MAX_SIT_JENTRIES(journal);
230 }
231 
232 /*
233  * ioctl commands
234  */
235 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
238 
239 #define F2FS_IOCTL_MAGIC		0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
249 						struct f2fs_move_range)
250 
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
254 
255 /*
256  * should be same as XFS_IOC_GOINGDOWN.
257  * Flags for going down operation used by FS_IOC_GOINGDOWN
258  */
259 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
264 
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267  * ioctl commands in 32 bit emulation
268  */
269 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
272 #endif
273 
274 struct f2fs_defragment {
275 	u64 start;
276 	u64 len;
277 };
278 
279 struct f2fs_move_range {
280 	u32 dst_fd;		/* destination fd */
281 	u64 pos_in;		/* start position in src_fd */
282 	u64 pos_out;		/* start position in dst_fd */
283 	u64 len;		/* size to move */
284 };
285 
286 /*
287  * For INODE and NODE manager
288  */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 	struct inode *inode;
292 	const void *bitmap;
293 	struct f2fs_dir_entry *dentry;
294 	__u8 (*filename)[F2FS_SLOT_LEN];
295 	int max;
296 };
297 
298 static inline void make_dentry_ptr(struct inode *inode,
299 		struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 	d->inode = inode;
302 
303 	if (type == 1) {
304 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 		d->max = NR_DENTRY_IN_BLOCK;
306 		d->bitmap = &t->dentry_bitmap;
307 		d->dentry = t->dentry;
308 		d->filename = t->filename;
309 	} else {
310 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 		d->max = NR_INLINE_DENTRY;
312 		d->bitmap = &t->dentry_bitmap;
313 		d->dentry = t->dentry;
314 		d->filename = t->filename;
315 	}
316 }
317 
318 /*
319  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320  * as its node offset to distinguish from index node blocks.
321  * But some bits are used to mark the node block.
322  */
323 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 				>> OFFSET_BIT_SHIFT)
325 enum {
326 	ALLOC_NODE,			/* allocate a new node page if needed */
327 	LOOKUP_NODE,			/* look up a node without readahead */
328 	LOOKUP_NODE_RA,			/*
329 					 * look up a node with readahead called
330 					 * by get_data_block.
331 					 */
332 };
333 
334 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
335 
336 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
337 
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE	64
340 
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
343 
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER	128
346 
347 struct extent_info {
348 	unsigned int fofs;		/* start offset in a file */
349 	u32 blk;			/* start block address of the extent */
350 	unsigned int len;		/* length of the extent */
351 };
352 
353 struct extent_node {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	struct list_head list;		/* node in global extent list of sbi */
356 	struct extent_info ei;		/* extent info */
357 	struct extent_tree *et;		/* extent tree pointer */
358 };
359 
360 struct extent_tree {
361 	nid_t ino;			/* inode number */
362 	struct rb_root root;		/* root of extent info rb-tree */
363 	struct extent_node *cached_en;	/* recently accessed extent node */
364 	struct extent_info largest;	/* largested extent info */
365 	struct list_head list;		/* to be used by sbi->zombie_list */
366 	rwlock_t lock;			/* protect extent info rb-tree */
367 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
368 };
369 
370 /*
371  * This structure is taken from ext4_map_blocks.
372  *
373  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374  */
375 #define F2FS_MAP_NEW		(1 << BH_New)
376 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 				F2FS_MAP_UNWRITTEN)
380 
381 struct f2fs_map_blocks {
382 	block_t m_pblk;
383 	block_t m_lblk;
384 	unsigned int m_len;
385 	unsigned int m_flags;
386 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
387 };
388 
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ		0
391 #define F2FS_GET_BLOCK_DIO		1
392 #define F2FS_GET_BLOCK_FIEMAP		2
393 #define F2FS_GET_BLOCK_BMAP		3
394 #define F2FS_GET_BLOCK_PRE_DIO		4
395 #define F2FS_GET_BLOCK_PRE_AIO		5
396 
397 /*
398  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399  */
400 #define FADVISE_COLD_BIT	0x01
401 #define FADVISE_LOST_PINO_BIT	0x02
402 #define FADVISE_ENCRYPT_BIT	0x04
403 #define FADVISE_ENC_NAME_BIT	0x08
404 
405 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416 
417 #define DEF_DIR_LEVEL		0
418 
419 struct f2fs_inode_info {
420 	struct inode vfs_inode;		/* serve a vfs inode */
421 	unsigned long i_flags;		/* keep an inode flags for ioctl */
422 	unsigned char i_advise;		/* use to give file attribute hints */
423 	unsigned char i_dir_level;	/* use for dentry level for large dir */
424 	unsigned int i_current_depth;	/* use only in directory structure */
425 	unsigned int i_pino;		/* parent inode number */
426 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
427 
428 	/* Use below internally in f2fs*/
429 	unsigned long flags;		/* use to pass per-file flags */
430 	struct rw_semaphore i_sem;	/* protect fi info */
431 	struct percpu_counter dirty_pages;	/* # of dirty pages */
432 	f2fs_hash_t chash;		/* hash value of given file name */
433 	unsigned int clevel;		/* maximum level of given file name */
434 	nid_t i_xattr_nid;		/* node id that contains xattrs */
435 	unsigned long long xattr_ver;	/* cp version of xattr modification */
436 	loff_t	last_disk_size;		/* lastly written file size */
437 
438 	struct list_head dirty_list;	/* dirty list for dirs and files */
439 	struct list_head gdirty_list;	/* linked in global dirty list */
440 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
441 	struct mutex inmem_lock;	/* lock for inmemory pages */
442 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
443 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
444 };
445 
446 static inline void get_extent_info(struct extent_info *ext,
447 					struct f2fs_extent *i_ext)
448 {
449 	ext->fofs = le32_to_cpu(i_ext->fofs);
450 	ext->blk = le32_to_cpu(i_ext->blk);
451 	ext->len = le32_to_cpu(i_ext->len);
452 }
453 
454 static inline void set_raw_extent(struct extent_info *ext,
455 					struct f2fs_extent *i_ext)
456 {
457 	i_ext->fofs = cpu_to_le32(ext->fofs);
458 	i_ext->blk = cpu_to_le32(ext->blk);
459 	i_ext->len = cpu_to_le32(ext->len);
460 }
461 
462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
463 						u32 blk, unsigned int len)
464 {
465 	ei->fofs = fofs;
466 	ei->blk = blk;
467 	ei->len = len;
468 }
469 
470 static inline bool __is_extent_same(struct extent_info *ei1,
471 						struct extent_info *ei2)
472 {
473 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
474 						ei1->len == ei2->len);
475 }
476 
477 static inline bool __is_extent_mergeable(struct extent_info *back,
478 						struct extent_info *front)
479 {
480 	return (back->fofs + back->len == front->fofs &&
481 			back->blk + back->len == front->blk);
482 }
483 
484 static inline bool __is_back_mergeable(struct extent_info *cur,
485 						struct extent_info *back)
486 {
487 	return __is_extent_mergeable(back, cur);
488 }
489 
490 static inline bool __is_front_mergeable(struct extent_info *cur,
491 						struct extent_info *front)
492 {
493 	return __is_extent_mergeable(cur, front);
494 }
495 
496 extern void f2fs_mark_inode_dirty_sync(struct inode *);
497 static inline void __try_update_largest_extent(struct inode *inode,
498 			struct extent_tree *et, struct extent_node *en)
499 {
500 	if (en->ei.len > et->largest.len) {
501 		et->largest = en->ei;
502 		f2fs_mark_inode_dirty_sync(inode);
503 	}
504 }
505 
506 enum nid_list {
507 	FREE_NID_LIST,
508 	ALLOC_NID_LIST,
509 	MAX_NID_LIST,
510 };
511 
512 struct f2fs_nm_info {
513 	block_t nat_blkaddr;		/* base disk address of NAT */
514 	nid_t max_nid;			/* maximum possible node ids */
515 	nid_t available_nids;		/* maximum available node ids */
516 	nid_t next_scan_nid;		/* the next nid to be scanned */
517 	unsigned int ram_thresh;	/* control the memory footprint */
518 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
519 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
520 
521 	/* NAT cache management */
522 	struct radix_tree_root nat_root;/* root of the nat entry cache */
523 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
524 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
525 	struct list_head nat_entries;	/* cached nat entry list (clean) */
526 	unsigned int nat_cnt;		/* the # of cached nat entries */
527 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
528 
529 	/* free node ids management */
530 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
531 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
532 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
533 	spinlock_t nid_list_lock;	/* protect nid lists ops */
534 	struct mutex build_lock;	/* lock for build free nids */
535 
536 	/* for checkpoint */
537 	char *nat_bitmap;		/* NAT bitmap pointer */
538 	int bitmap_size;		/* bitmap size */
539 };
540 
541 /*
542  * this structure is used as one of function parameters.
543  * all the information are dedicated to a given direct node block determined
544  * by the data offset in a file.
545  */
546 struct dnode_of_data {
547 	struct inode *inode;		/* vfs inode pointer */
548 	struct page *inode_page;	/* its inode page, NULL is possible */
549 	struct page *node_page;		/* cached direct node page */
550 	nid_t nid;			/* node id of the direct node block */
551 	unsigned int ofs_in_node;	/* data offset in the node page */
552 	bool inode_page_locked;		/* inode page is locked or not */
553 	bool node_changed;		/* is node block changed */
554 	char cur_level;			/* level of hole node page */
555 	char max_level;			/* level of current page located */
556 	block_t	data_blkaddr;		/* block address of the node block */
557 };
558 
559 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
560 		struct page *ipage, struct page *npage, nid_t nid)
561 {
562 	memset(dn, 0, sizeof(*dn));
563 	dn->inode = inode;
564 	dn->inode_page = ipage;
565 	dn->node_page = npage;
566 	dn->nid = nid;
567 }
568 
569 /*
570  * For SIT manager
571  *
572  * By default, there are 6 active log areas across the whole main area.
573  * When considering hot and cold data separation to reduce cleaning overhead,
574  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
575  * respectively.
576  * In the current design, you should not change the numbers intentionally.
577  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
578  * logs individually according to the underlying devices. (default: 6)
579  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
580  * data and 8 for node logs.
581  */
582 #define	NR_CURSEG_DATA_TYPE	(3)
583 #define NR_CURSEG_NODE_TYPE	(3)
584 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
585 
586 enum {
587 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
588 	CURSEG_WARM_DATA,	/* data blocks */
589 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
590 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
591 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
592 	CURSEG_COLD_NODE,	/* indirect node blocks */
593 	NO_CHECK_TYPE,
594 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
595 };
596 
597 struct flush_cmd {
598 	struct completion wait;
599 	struct llist_node llnode;
600 	int ret;
601 };
602 
603 struct flush_cmd_control {
604 	struct task_struct *f2fs_issue_flush;	/* flush thread */
605 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
606 	atomic_t submit_flush;			/* # of issued flushes */
607 	struct llist_head issue_list;		/* list for command issue */
608 	struct llist_node *dispatch_list;	/* list for command dispatch */
609 };
610 
611 struct f2fs_sm_info {
612 	struct sit_info *sit_info;		/* whole segment information */
613 	struct free_segmap_info *free_info;	/* free segment information */
614 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
615 	struct curseg_info *curseg_array;	/* active segment information */
616 
617 	block_t seg0_blkaddr;		/* block address of 0'th segment */
618 	block_t main_blkaddr;		/* start block address of main area */
619 	block_t ssa_blkaddr;		/* start block address of SSA area */
620 
621 	unsigned int segment_count;	/* total # of segments */
622 	unsigned int main_segments;	/* # of segments in main area */
623 	unsigned int reserved_segments;	/* # of reserved segments */
624 	unsigned int ovp_segments;	/* # of overprovision segments */
625 
626 	/* a threshold to reclaim prefree segments */
627 	unsigned int rec_prefree_segments;
628 
629 	/* for small discard management */
630 	struct list_head discard_list;		/* 4KB discard list */
631 	struct list_head wait_list;		/* linked with issued discard bio */
632 	int nr_discards;			/* # of discards in the list */
633 	int max_discards;			/* max. discards to be issued */
634 
635 	/* for batched trimming */
636 	unsigned int trim_sections;		/* # of sections to trim */
637 
638 	struct list_head sit_entry_set;	/* sit entry set list */
639 
640 	unsigned int ipu_policy;	/* in-place-update policy */
641 	unsigned int min_ipu_util;	/* in-place-update threshold */
642 	unsigned int min_fsync_blocks;	/* threshold for fsync */
643 
644 	/* for flush command control */
645 	struct flush_cmd_control *cmd_control_info;
646 
647 };
648 
649 /*
650  * For superblock
651  */
652 /*
653  * COUNT_TYPE for monitoring
654  *
655  * f2fs monitors the number of several block types such as on-writeback,
656  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
657  */
658 enum count_type {
659 	F2FS_DIRTY_DENTS,
660 	F2FS_DIRTY_DATA,
661 	F2FS_DIRTY_NODES,
662 	F2FS_DIRTY_META,
663 	F2FS_INMEM_PAGES,
664 	F2FS_DIRTY_IMETA,
665 	NR_COUNT_TYPE,
666 };
667 
668 /*
669  * The below are the page types of bios used in submit_bio().
670  * The available types are:
671  * DATA			User data pages. It operates as async mode.
672  * NODE			Node pages. It operates as async mode.
673  * META			FS metadata pages such as SIT, NAT, CP.
674  * NR_PAGE_TYPE		The number of page types.
675  * META_FLUSH		Make sure the previous pages are written
676  *			with waiting the bio's completion
677  * ...			Only can be used with META.
678  */
679 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
680 enum page_type {
681 	DATA,
682 	NODE,
683 	META,
684 	NR_PAGE_TYPE,
685 	META_FLUSH,
686 	INMEM,		/* the below types are used by tracepoints only. */
687 	INMEM_DROP,
688 	INMEM_REVOKE,
689 	IPU,
690 	OPU,
691 };
692 
693 struct f2fs_io_info {
694 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
695 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
696 	int op;			/* contains REQ_OP_ */
697 	int op_flags;		/* rq_flag_bits */
698 	block_t new_blkaddr;	/* new block address to be written */
699 	block_t old_blkaddr;	/* old block address before Cow */
700 	struct page *page;	/* page to be written */
701 	struct page *encrypted_page;	/* encrypted page */
702 };
703 
704 #define is_read_io(rw) (rw == READ)
705 struct f2fs_bio_info {
706 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
707 	struct bio *bio;		/* bios to merge */
708 	sector_t last_block_in_bio;	/* last block number */
709 	struct f2fs_io_info fio;	/* store buffered io info. */
710 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
711 };
712 
713 enum inode_type {
714 	DIR_INODE,			/* for dirty dir inode */
715 	FILE_INODE,			/* for dirty regular/symlink inode */
716 	DIRTY_META,			/* for all dirtied inode metadata */
717 	NR_INODE_TYPE,
718 };
719 
720 /* for inner inode cache management */
721 struct inode_management {
722 	struct radix_tree_root ino_root;	/* ino entry array */
723 	spinlock_t ino_lock;			/* for ino entry lock */
724 	struct list_head ino_list;		/* inode list head */
725 	unsigned long ino_num;			/* number of entries */
726 };
727 
728 /* For s_flag in struct f2fs_sb_info */
729 enum {
730 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
731 	SBI_IS_CLOSE,				/* specify unmounting */
732 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
733 	SBI_POR_DOING,				/* recovery is doing or not */
734 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
735 	SBI_NEED_CP,				/* need to checkpoint */
736 };
737 
738 enum {
739 	CP_TIME,
740 	REQ_TIME,
741 	MAX_TIME,
742 };
743 
744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
745 #define F2FS_KEY_DESC_PREFIX "f2fs:"
746 #define F2FS_KEY_DESC_PREFIX_SIZE 5
747 #endif
748 struct f2fs_sb_info {
749 	struct super_block *sb;			/* pointer to VFS super block */
750 	struct proc_dir_entry *s_proc;		/* proc entry */
751 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
752 	int valid_super_block;			/* valid super block no */
753 	unsigned long s_flag;				/* flags for sbi */
754 
755 #ifdef CONFIG_F2FS_FS_ENCRYPTION
756 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
757 	u8 key_prefix_size;
758 #endif
759 	/* for node-related operations */
760 	struct f2fs_nm_info *nm_info;		/* node manager */
761 	struct inode *node_inode;		/* cache node blocks */
762 
763 	/* for segment-related operations */
764 	struct f2fs_sm_info *sm_info;		/* segment manager */
765 
766 	/* for bio operations */
767 	struct f2fs_bio_info read_io;			/* for read bios */
768 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
769 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
770 
771 	/* for checkpoint */
772 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
773 	spinlock_t cp_lock;			/* for flag in ckpt */
774 	struct inode *meta_inode;		/* cache meta blocks */
775 	struct mutex cp_mutex;			/* checkpoint procedure lock */
776 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
777 	struct rw_semaphore node_write;		/* locking node writes */
778 	wait_queue_head_t cp_wait;
779 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
780 	long interval_time[MAX_TIME];		/* to store thresholds */
781 
782 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
783 
784 	/* for orphan inode, use 0'th array */
785 	unsigned int max_orphans;		/* max orphan inodes */
786 
787 	/* for inode management */
788 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
789 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
790 
791 	/* for extent tree cache */
792 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
793 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
794 	struct list_head extent_list;		/* lru list for shrinker */
795 	spinlock_t extent_lock;			/* locking extent lru list */
796 	atomic_t total_ext_tree;		/* extent tree count */
797 	struct list_head zombie_list;		/* extent zombie tree list */
798 	atomic_t total_zombie_tree;		/* extent zombie tree count */
799 	atomic_t total_ext_node;		/* extent info count */
800 
801 	/* basic filesystem units */
802 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
803 	unsigned int log_blocksize;		/* log2 block size */
804 	unsigned int blocksize;			/* block size */
805 	unsigned int root_ino_num;		/* root inode number*/
806 	unsigned int node_ino_num;		/* node inode number*/
807 	unsigned int meta_ino_num;		/* meta inode number*/
808 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
809 	unsigned int blocks_per_seg;		/* blocks per segment */
810 	unsigned int segs_per_sec;		/* segments per section */
811 	unsigned int secs_per_zone;		/* sections per zone */
812 	unsigned int total_sections;		/* total section count */
813 	unsigned int total_node_count;		/* total node block count */
814 	unsigned int total_valid_node_count;	/* valid node block count */
815 	loff_t max_file_blocks;			/* max block index of file */
816 	int active_logs;			/* # of active logs */
817 	int dir_level;				/* directory level */
818 
819 	block_t user_block_count;		/* # of user blocks */
820 	block_t total_valid_block_count;	/* # of valid blocks */
821 	block_t discard_blks;			/* discard command candidats */
822 	block_t last_valid_block_count;		/* for recovery */
823 	u32 s_next_generation;			/* for NFS support */
824 	atomic_t nr_wb_bios;			/* # of writeback bios */
825 
826 	/* # of pages, see count_type */
827 	struct percpu_counter nr_pages[NR_COUNT_TYPE];
828 	/* # of allocated blocks */
829 	struct percpu_counter alloc_valid_block_count;
830 
831 	/* valid inode count */
832 	struct percpu_counter total_valid_inode_count;
833 
834 	struct f2fs_mount_info mount_opt;	/* mount options */
835 
836 	/* for cleaning operations */
837 	struct mutex gc_mutex;			/* mutex for GC */
838 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
839 	unsigned int cur_victim_sec;		/* current victim section num */
840 
841 	/* maximum # of trials to find a victim segment for SSR and GC */
842 	unsigned int max_victim_search;
843 
844 	/*
845 	 * for stat information.
846 	 * one is for the LFS mode, and the other is for the SSR mode.
847 	 */
848 #ifdef CONFIG_F2FS_STAT_FS
849 	struct f2fs_stat_info *stat_info;	/* FS status information */
850 	unsigned int segment_count[2];		/* # of allocated segments */
851 	unsigned int block_count[2];		/* # of allocated blocks */
852 	atomic_t inplace_count;		/* # of inplace update */
853 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
854 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
855 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
856 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
857 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
858 	atomic_t inline_inode;			/* # of inline_data inodes */
859 	atomic_t inline_dir;			/* # of inline_dentry inodes */
860 	int bg_gc;				/* background gc calls */
861 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
862 #endif
863 	unsigned int last_victim[2];		/* last victim segment # */
864 	spinlock_t stat_lock;			/* lock for stat operations */
865 
866 	/* For sysfs suppport */
867 	struct kobject s_kobj;
868 	struct completion s_kobj_unregister;
869 
870 	/* For shrinker support */
871 	struct list_head s_list;
872 	struct mutex umount_mutex;
873 	unsigned int shrinker_run_no;
874 
875 	/* For write statistics */
876 	u64 sectors_written_start;
877 	u64 kbytes_written;
878 
879 	/* Reference to checksum algorithm driver via cryptoapi */
880 	struct crypto_shash *s_chksum_driver;
881 
882 	/* For fault injection */
883 #ifdef CONFIG_F2FS_FAULT_INJECTION
884 	struct f2fs_fault_info fault_info;
885 #endif
886 };
887 
888 #ifdef CONFIG_F2FS_FAULT_INJECTION
889 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
890 {
891 	struct f2fs_fault_info *ffi = &sbi->fault_info;
892 
893 	if (!ffi->inject_rate)
894 		return false;
895 
896 	if (!IS_FAULT_SET(ffi, type))
897 		return false;
898 
899 	atomic_inc(&ffi->inject_ops);
900 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
901 		atomic_set(&ffi->inject_ops, 0);
902 		printk("%sF2FS-fs : inject %s in %pF\n",
903 				KERN_INFO,
904 				fault_name[type],
905 				__builtin_return_address(0));
906 		return true;
907 	}
908 	return false;
909 }
910 #endif
911 
912 /* For write statistics. Suppose sector size is 512 bytes,
913  * and the return value is in kbytes. s is of struct f2fs_sb_info.
914  */
915 #define BD_PART_WRITTEN(s)						 \
916 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
917 		s->sectors_written_start) >> 1)
918 
919 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
920 {
921 	sbi->last_time[type] = jiffies;
922 }
923 
924 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
925 {
926 	struct timespec ts = {sbi->interval_time[type], 0};
927 	unsigned long interval = timespec_to_jiffies(&ts);
928 
929 	return time_after(jiffies, sbi->last_time[type] + interval);
930 }
931 
932 static inline bool is_idle(struct f2fs_sb_info *sbi)
933 {
934 	struct block_device *bdev = sbi->sb->s_bdev;
935 	struct request_queue *q = bdev_get_queue(bdev);
936 	struct request_list *rl = &q->root_rl;
937 
938 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
939 		return 0;
940 
941 	return f2fs_time_over(sbi, REQ_TIME);
942 }
943 
944 /*
945  * Inline functions
946  */
947 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
948 			   unsigned int length)
949 {
950 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
951 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
952 	int err;
953 
954 	shash->tfm = sbi->s_chksum_driver;
955 	shash->flags = 0;
956 	*ctx = F2FS_SUPER_MAGIC;
957 
958 	err = crypto_shash_update(shash, address, length);
959 	BUG_ON(err);
960 
961 	return *ctx;
962 }
963 
964 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
965 				  void *buf, size_t buf_size)
966 {
967 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
968 }
969 
970 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
971 {
972 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
973 }
974 
975 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
976 {
977 	return sb->s_fs_info;
978 }
979 
980 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
981 {
982 	return F2FS_SB(inode->i_sb);
983 }
984 
985 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
986 {
987 	return F2FS_I_SB(mapping->host);
988 }
989 
990 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
991 {
992 	return F2FS_M_SB(page->mapping);
993 }
994 
995 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
996 {
997 	return (struct f2fs_super_block *)(sbi->raw_super);
998 }
999 
1000 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1001 {
1002 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1003 }
1004 
1005 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1006 {
1007 	return (struct f2fs_node *)page_address(page);
1008 }
1009 
1010 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1011 {
1012 	return &((struct f2fs_node *)page_address(page))->i;
1013 }
1014 
1015 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1016 {
1017 	return (struct f2fs_nm_info *)(sbi->nm_info);
1018 }
1019 
1020 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1021 {
1022 	return (struct f2fs_sm_info *)(sbi->sm_info);
1023 }
1024 
1025 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1026 {
1027 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1028 }
1029 
1030 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1031 {
1032 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1033 }
1034 
1035 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1036 {
1037 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1038 }
1039 
1040 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1041 {
1042 	return sbi->meta_inode->i_mapping;
1043 }
1044 
1045 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1046 {
1047 	return sbi->node_inode->i_mapping;
1048 }
1049 
1050 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1051 {
1052 	return test_bit(type, &sbi->s_flag);
1053 }
1054 
1055 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1056 {
1057 	set_bit(type, &sbi->s_flag);
1058 }
1059 
1060 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1061 {
1062 	clear_bit(type, &sbi->s_flag);
1063 }
1064 
1065 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1066 {
1067 	return le64_to_cpu(cp->checkpoint_ver);
1068 }
1069 
1070 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1071 {
1072 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1073 
1074 	return ckpt_flags & f;
1075 }
1076 
1077 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1078 {
1079 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1080 }
1081 
1082 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1083 {
1084 	unsigned int ckpt_flags;
1085 
1086 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1087 	ckpt_flags |= f;
1088 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1089 }
1090 
1091 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1092 {
1093 	spin_lock(&sbi->cp_lock);
1094 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1095 	spin_unlock(&sbi->cp_lock);
1096 }
1097 
1098 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1099 {
1100 	unsigned int ckpt_flags;
1101 
1102 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1103 	ckpt_flags &= (~f);
1104 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1105 }
1106 
1107 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1108 {
1109 	spin_lock(&sbi->cp_lock);
1110 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1111 	spin_unlock(&sbi->cp_lock);
1112 }
1113 
1114 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1115 {
1116 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1117 
1118 	return blk_queue_discard(q);
1119 }
1120 
1121 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1122 {
1123 	down_read(&sbi->cp_rwsem);
1124 }
1125 
1126 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1127 {
1128 	up_read(&sbi->cp_rwsem);
1129 }
1130 
1131 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1132 {
1133 	down_write(&sbi->cp_rwsem);
1134 }
1135 
1136 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1137 {
1138 	up_write(&sbi->cp_rwsem);
1139 }
1140 
1141 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1142 {
1143 	int reason = CP_SYNC;
1144 
1145 	if (test_opt(sbi, FASTBOOT))
1146 		reason = CP_FASTBOOT;
1147 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1148 		reason = CP_UMOUNT;
1149 	return reason;
1150 }
1151 
1152 static inline bool __remain_node_summaries(int reason)
1153 {
1154 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1155 }
1156 
1157 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1158 {
1159 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1160 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1161 }
1162 
1163 /*
1164  * Check whether the given nid is within node id range.
1165  */
1166 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1167 {
1168 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1169 		return -EINVAL;
1170 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1171 		return -EINVAL;
1172 	return 0;
1173 }
1174 
1175 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1176 
1177 /*
1178  * Check whether the inode has blocks or not
1179  */
1180 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1181 {
1182 	if (F2FS_I(inode)->i_xattr_nid)
1183 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1184 	else
1185 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1186 }
1187 
1188 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1189 {
1190 	return ofs == XATTR_NODE_OFFSET;
1191 }
1192 
1193 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1194 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1195 				 struct inode *inode, blkcnt_t *count)
1196 {
1197 	blkcnt_t diff;
1198 
1199 #ifdef CONFIG_F2FS_FAULT_INJECTION
1200 	if (time_to_inject(sbi, FAULT_BLOCK))
1201 		return false;
1202 #endif
1203 	/*
1204 	 * let's increase this in prior to actual block count change in order
1205 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1206 	 */
1207 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1208 
1209 	spin_lock(&sbi->stat_lock);
1210 	sbi->total_valid_block_count += (block_t)(*count);
1211 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1212 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1213 		*count -= diff;
1214 		sbi->total_valid_block_count = sbi->user_block_count;
1215 		if (!*count) {
1216 			spin_unlock(&sbi->stat_lock);
1217 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1218 			return false;
1219 		}
1220 	}
1221 	spin_unlock(&sbi->stat_lock);
1222 
1223 	f2fs_i_blocks_write(inode, *count, true);
1224 	return true;
1225 }
1226 
1227 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1228 						struct inode *inode,
1229 						blkcnt_t count)
1230 {
1231 	spin_lock(&sbi->stat_lock);
1232 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1233 	f2fs_bug_on(sbi, inode->i_blocks < count);
1234 	sbi->total_valid_block_count -= (block_t)count;
1235 	spin_unlock(&sbi->stat_lock);
1236 	f2fs_i_blocks_write(inode, count, false);
1237 }
1238 
1239 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1240 {
1241 	percpu_counter_inc(&sbi->nr_pages[count_type]);
1242 
1243 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES)
1244 		return;
1245 
1246 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1247 }
1248 
1249 static inline void inode_inc_dirty_pages(struct inode *inode)
1250 {
1251 	percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1252 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1253 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1254 }
1255 
1256 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1257 {
1258 	percpu_counter_dec(&sbi->nr_pages[count_type]);
1259 }
1260 
1261 static inline void inode_dec_dirty_pages(struct inode *inode)
1262 {
1263 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1264 			!S_ISLNK(inode->i_mode))
1265 		return;
1266 
1267 	percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1268 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1269 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1270 }
1271 
1272 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1273 {
1274 	return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1275 }
1276 
1277 static inline s64 get_dirty_pages(struct inode *inode)
1278 {
1279 	return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1280 }
1281 
1282 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1283 {
1284 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1285 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1286 						sbi->log_blocks_per_seg;
1287 
1288 	return segs / sbi->segs_per_sec;
1289 }
1290 
1291 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1292 {
1293 	return sbi->total_valid_block_count;
1294 }
1295 
1296 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1297 {
1298 	return sbi->discard_blks;
1299 }
1300 
1301 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1302 {
1303 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1304 
1305 	/* return NAT or SIT bitmap */
1306 	if (flag == NAT_BITMAP)
1307 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1308 	else if (flag == SIT_BITMAP)
1309 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1310 
1311 	return 0;
1312 }
1313 
1314 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1315 {
1316 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1317 }
1318 
1319 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1320 {
1321 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1322 	int offset;
1323 
1324 	if (__cp_payload(sbi) > 0) {
1325 		if (flag == NAT_BITMAP)
1326 			return &ckpt->sit_nat_version_bitmap;
1327 		else
1328 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1329 	} else {
1330 		offset = (flag == NAT_BITMAP) ?
1331 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1332 		return &ckpt->sit_nat_version_bitmap + offset;
1333 	}
1334 }
1335 
1336 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1337 {
1338 	block_t start_addr;
1339 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1340 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1341 
1342 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1343 
1344 	/*
1345 	 * odd numbered checkpoint should at cp segment 0
1346 	 * and even segment must be at cp segment 1
1347 	 */
1348 	if (!(ckpt_version & 1))
1349 		start_addr += sbi->blocks_per_seg;
1350 
1351 	return start_addr;
1352 }
1353 
1354 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1355 {
1356 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1357 }
1358 
1359 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1360 						struct inode *inode)
1361 {
1362 	block_t	valid_block_count;
1363 	unsigned int valid_node_count;
1364 
1365 	spin_lock(&sbi->stat_lock);
1366 
1367 	valid_block_count = sbi->total_valid_block_count + 1;
1368 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1369 		spin_unlock(&sbi->stat_lock);
1370 		return false;
1371 	}
1372 
1373 	valid_node_count = sbi->total_valid_node_count + 1;
1374 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1375 		spin_unlock(&sbi->stat_lock);
1376 		return false;
1377 	}
1378 
1379 	if (inode)
1380 		f2fs_i_blocks_write(inode, 1, true);
1381 
1382 	sbi->total_valid_node_count++;
1383 	sbi->total_valid_block_count++;
1384 	spin_unlock(&sbi->stat_lock);
1385 
1386 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1387 	return true;
1388 }
1389 
1390 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1391 						struct inode *inode)
1392 {
1393 	spin_lock(&sbi->stat_lock);
1394 
1395 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1396 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1397 	f2fs_bug_on(sbi, !inode->i_blocks);
1398 
1399 	f2fs_i_blocks_write(inode, 1, false);
1400 	sbi->total_valid_node_count--;
1401 	sbi->total_valid_block_count--;
1402 
1403 	spin_unlock(&sbi->stat_lock);
1404 }
1405 
1406 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1407 {
1408 	return sbi->total_valid_node_count;
1409 }
1410 
1411 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1412 {
1413 	percpu_counter_inc(&sbi->total_valid_inode_count);
1414 }
1415 
1416 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1417 {
1418 	percpu_counter_dec(&sbi->total_valid_inode_count);
1419 }
1420 
1421 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1422 {
1423 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1424 }
1425 
1426 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1427 						pgoff_t index, bool for_write)
1428 {
1429 #ifdef CONFIG_F2FS_FAULT_INJECTION
1430 	struct page *page = find_lock_page(mapping, index);
1431 	if (page)
1432 		return page;
1433 
1434 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1435 		return NULL;
1436 #endif
1437 	if (!for_write)
1438 		return grab_cache_page(mapping, index);
1439 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1440 }
1441 
1442 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1443 {
1444 	char *src_kaddr = kmap(src);
1445 	char *dst_kaddr = kmap(dst);
1446 
1447 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1448 	kunmap(dst);
1449 	kunmap(src);
1450 }
1451 
1452 static inline void f2fs_put_page(struct page *page, int unlock)
1453 {
1454 	if (!page)
1455 		return;
1456 
1457 	if (unlock) {
1458 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1459 		unlock_page(page);
1460 	}
1461 	put_page(page);
1462 }
1463 
1464 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1465 {
1466 	if (dn->node_page)
1467 		f2fs_put_page(dn->node_page, 1);
1468 	if (dn->inode_page && dn->node_page != dn->inode_page)
1469 		f2fs_put_page(dn->inode_page, 0);
1470 	dn->node_page = NULL;
1471 	dn->inode_page = NULL;
1472 }
1473 
1474 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1475 					size_t size)
1476 {
1477 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1478 }
1479 
1480 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1481 						gfp_t flags)
1482 {
1483 	void *entry;
1484 
1485 	entry = kmem_cache_alloc(cachep, flags);
1486 	if (!entry)
1487 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1488 	return entry;
1489 }
1490 
1491 static inline struct bio *f2fs_bio_alloc(int npages)
1492 {
1493 	struct bio *bio;
1494 
1495 	/* No failure on bio allocation */
1496 	bio = bio_alloc(GFP_NOIO, npages);
1497 	if (!bio)
1498 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1499 	return bio;
1500 }
1501 
1502 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1503 				unsigned long index, void *item)
1504 {
1505 	while (radix_tree_insert(root, index, item))
1506 		cond_resched();
1507 }
1508 
1509 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1510 
1511 static inline bool IS_INODE(struct page *page)
1512 {
1513 	struct f2fs_node *p = F2FS_NODE(page);
1514 	return RAW_IS_INODE(p);
1515 }
1516 
1517 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1518 {
1519 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1520 }
1521 
1522 static inline block_t datablock_addr(struct page *node_page,
1523 		unsigned int offset)
1524 {
1525 	struct f2fs_node *raw_node;
1526 	__le32 *addr_array;
1527 	raw_node = F2FS_NODE(node_page);
1528 	addr_array = blkaddr_in_node(raw_node);
1529 	return le32_to_cpu(addr_array[offset]);
1530 }
1531 
1532 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1533 {
1534 	int mask;
1535 
1536 	addr += (nr >> 3);
1537 	mask = 1 << (7 - (nr & 0x07));
1538 	return mask & *addr;
1539 }
1540 
1541 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1542 {
1543 	int mask;
1544 
1545 	addr += (nr >> 3);
1546 	mask = 1 << (7 - (nr & 0x07));
1547 	*addr |= mask;
1548 }
1549 
1550 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1551 {
1552 	int mask;
1553 
1554 	addr += (nr >> 3);
1555 	mask = 1 << (7 - (nr & 0x07));
1556 	*addr &= ~mask;
1557 }
1558 
1559 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1560 {
1561 	int mask;
1562 	int ret;
1563 
1564 	addr += (nr >> 3);
1565 	mask = 1 << (7 - (nr & 0x07));
1566 	ret = mask & *addr;
1567 	*addr |= mask;
1568 	return ret;
1569 }
1570 
1571 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1572 {
1573 	int mask;
1574 	int ret;
1575 
1576 	addr += (nr >> 3);
1577 	mask = 1 << (7 - (nr & 0x07));
1578 	ret = mask & *addr;
1579 	*addr &= ~mask;
1580 	return ret;
1581 }
1582 
1583 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1584 {
1585 	int mask;
1586 
1587 	addr += (nr >> 3);
1588 	mask = 1 << (7 - (nr & 0x07));
1589 	*addr ^= mask;
1590 }
1591 
1592 /* used for f2fs_inode_info->flags */
1593 enum {
1594 	FI_NEW_INODE,		/* indicate newly allocated inode */
1595 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1596 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1597 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1598 	FI_INC_LINK,		/* need to increment i_nlink */
1599 	FI_ACL_MODE,		/* indicate acl mode */
1600 	FI_NO_ALLOC,		/* should not allocate any blocks */
1601 	FI_FREE_NID,		/* free allocated nide */
1602 	FI_NO_EXTENT,		/* not to use the extent cache */
1603 	FI_INLINE_XATTR,	/* used for inline xattr */
1604 	FI_INLINE_DATA,		/* used for inline data*/
1605 	FI_INLINE_DENTRY,	/* used for inline dentry */
1606 	FI_APPEND_WRITE,	/* inode has appended data */
1607 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1608 	FI_NEED_IPU,		/* used for ipu per file */
1609 	FI_ATOMIC_FILE,		/* indicate atomic file */
1610 	FI_VOLATILE_FILE,	/* indicate volatile file */
1611 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1612 	FI_DROP_CACHE,		/* drop dirty page cache */
1613 	FI_DATA_EXIST,		/* indicate data exists */
1614 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1615 	FI_DO_DEFRAG,		/* indicate defragment is running */
1616 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1617 };
1618 
1619 static inline void __mark_inode_dirty_flag(struct inode *inode,
1620 						int flag, bool set)
1621 {
1622 	switch (flag) {
1623 	case FI_INLINE_XATTR:
1624 	case FI_INLINE_DATA:
1625 	case FI_INLINE_DENTRY:
1626 		if (set)
1627 			return;
1628 	case FI_DATA_EXIST:
1629 	case FI_INLINE_DOTS:
1630 		f2fs_mark_inode_dirty_sync(inode);
1631 	}
1632 }
1633 
1634 static inline void set_inode_flag(struct inode *inode, int flag)
1635 {
1636 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1637 		set_bit(flag, &F2FS_I(inode)->flags);
1638 	__mark_inode_dirty_flag(inode, flag, true);
1639 }
1640 
1641 static inline int is_inode_flag_set(struct inode *inode, int flag)
1642 {
1643 	return test_bit(flag, &F2FS_I(inode)->flags);
1644 }
1645 
1646 static inline void clear_inode_flag(struct inode *inode, int flag)
1647 {
1648 	if (test_bit(flag, &F2FS_I(inode)->flags))
1649 		clear_bit(flag, &F2FS_I(inode)->flags);
1650 	__mark_inode_dirty_flag(inode, flag, false);
1651 }
1652 
1653 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1654 {
1655 	F2FS_I(inode)->i_acl_mode = mode;
1656 	set_inode_flag(inode, FI_ACL_MODE);
1657 	f2fs_mark_inode_dirty_sync(inode);
1658 }
1659 
1660 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1661 {
1662 	if (inc)
1663 		inc_nlink(inode);
1664 	else
1665 		drop_nlink(inode);
1666 	f2fs_mark_inode_dirty_sync(inode);
1667 }
1668 
1669 static inline void f2fs_i_blocks_write(struct inode *inode,
1670 					blkcnt_t diff, bool add)
1671 {
1672 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1673 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1674 
1675 	inode->i_blocks = add ? inode->i_blocks + diff :
1676 				inode->i_blocks - diff;
1677 	f2fs_mark_inode_dirty_sync(inode);
1678 	if (clean || recover)
1679 		set_inode_flag(inode, FI_AUTO_RECOVER);
1680 }
1681 
1682 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1683 {
1684 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1685 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1686 
1687 	if (i_size_read(inode) == i_size)
1688 		return;
1689 
1690 	i_size_write(inode, i_size);
1691 	f2fs_mark_inode_dirty_sync(inode);
1692 	if (clean || recover)
1693 		set_inode_flag(inode, FI_AUTO_RECOVER);
1694 }
1695 
1696 static inline bool f2fs_skip_inode_update(struct inode *inode)
1697 {
1698 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1699 		return false;
1700 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1701 }
1702 
1703 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1704 {
1705 	F2FS_I(inode)->i_current_depth = depth;
1706 	f2fs_mark_inode_dirty_sync(inode);
1707 }
1708 
1709 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1710 {
1711 	F2FS_I(inode)->i_xattr_nid = xnid;
1712 	f2fs_mark_inode_dirty_sync(inode);
1713 }
1714 
1715 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1716 {
1717 	F2FS_I(inode)->i_pino = pino;
1718 	f2fs_mark_inode_dirty_sync(inode);
1719 }
1720 
1721 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1722 {
1723 	struct f2fs_inode_info *fi = F2FS_I(inode);
1724 
1725 	if (ri->i_inline & F2FS_INLINE_XATTR)
1726 		set_bit(FI_INLINE_XATTR, &fi->flags);
1727 	if (ri->i_inline & F2FS_INLINE_DATA)
1728 		set_bit(FI_INLINE_DATA, &fi->flags);
1729 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1730 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1731 	if (ri->i_inline & F2FS_DATA_EXIST)
1732 		set_bit(FI_DATA_EXIST, &fi->flags);
1733 	if (ri->i_inline & F2FS_INLINE_DOTS)
1734 		set_bit(FI_INLINE_DOTS, &fi->flags);
1735 }
1736 
1737 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1738 {
1739 	ri->i_inline = 0;
1740 
1741 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1742 		ri->i_inline |= F2FS_INLINE_XATTR;
1743 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1744 		ri->i_inline |= F2FS_INLINE_DATA;
1745 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1746 		ri->i_inline |= F2FS_INLINE_DENTRY;
1747 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1748 		ri->i_inline |= F2FS_DATA_EXIST;
1749 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1750 		ri->i_inline |= F2FS_INLINE_DOTS;
1751 }
1752 
1753 static inline int f2fs_has_inline_xattr(struct inode *inode)
1754 {
1755 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1756 }
1757 
1758 static inline unsigned int addrs_per_inode(struct inode *inode)
1759 {
1760 	if (f2fs_has_inline_xattr(inode))
1761 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1762 	return DEF_ADDRS_PER_INODE;
1763 }
1764 
1765 static inline void *inline_xattr_addr(struct page *page)
1766 {
1767 	struct f2fs_inode *ri = F2FS_INODE(page);
1768 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1769 					F2FS_INLINE_XATTR_ADDRS]);
1770 }
1771 
1772 static inline int inline_xattr_size(struct inode *inode)
1773 {
1774 	if (f2fs_has_inline_xattr(inode))
1775 		return F2FS_INLINE_XATTR_ADDRS << 2;
1776 	else
1777 		return 0;
1778 }
1779 
1780 static inline int f2fs_has_inline_data(struct inode *inode)
1781 {
1782 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1783 }
1784 
1785 static inline void f2fs_clear_inline_inode(struct inode *inode)
1786 {
1787 	clear_inode_flag(inode, FI_INLINE_DATA);
1788 	clear_inode_flag(inode, FI_DATA_EXIST);
1789 }
1790 
1791 static inline int f2fs_exist_data(struct inode *inode)
1792 {
1793 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1794 }
1795 
1796 static inline int f2fs_has_inline_dots(struct inode *inode)
1797 {
1798 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1799 }
1800 
1801 static inline bool f2fs_is_atomic_file(struct inode *inode)
1802 {
1803 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1804 }
1805 
1806 static inline bool f2fs_is_volatile_file(struct inode *inode)
1807 {
1808 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1809 }
1810 
1811 static inline bool f2fs_is_first_block_written(struct inode *inode)
1812 {
1813 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1814 }
1815 
1816 static inline bool f2fs_is_drop_cache(struct inode *inode)
1817 {
1818 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1819 }
1820 
1821 static inline void *inline_data_addr(struct page *page)
1822 {
1823 	struct f2fs_inode *ri = F2FS_INODE(page);
1824 	return (void *)&(ri->i_addr[1]);
1825 }
1826 
1827 static inline int f2fs_has_inline_dentry(struct inode *inode)
1828 {
1829 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1830 }
1831 
1832 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1833 {
1834 	if (!f2fs_has_inline_dentry(dir))
1835 		kunmap(page);
1836 }
1837 
1838 static inline int is_file(struct inode *inode, int type)
1839 {
1840 	return F2FS_I(inode)->i_advise & type;
1841 }
1842 
1843 static inline void set_file(struct inode *inode, int type)
1844 {
1845 	F2FS_I(inode)->i_advise |= type;
1846 	f2fs_mark_inode_dirty_sync(inode);
1847 }
1848 
1849 static inline void clear_file(struct inode *inode, int type)
1850 {
1851 	F2FS_I(inode)->i_advise &= ~type;
1852 	f2fs_mark_inode_dirty_sync(inode);
1853 }
1854 
1855 static inline int f2fs_readonly(struct super_block *sb)
1856 {
1857 	return sb->s_flags & MS_RDONLY;
1858 }
1859 
1860 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1861 {
1862 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1863 }
1864 
1865 static inline bool is_dot_dotdot(const struct qstr *str)
1866 {
1867 	if (str->len == 1 && str->name[0] == '.')
1868 		return true;
1869 
1870 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1871 		return true;
1872 
1873 	return false;
1874 }
1875 
1876 static inline bool f2fs_may_extent_tree(struct inode *inode)
1877 {
1878 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1879 			is_inode_flag_set(inode, FI_NO_EXTENT))
1880 		return false;
1881 
1882 	return S_ISREG(inode->i_mode);
1883 }
1884 
1885 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1886 					size_t size, gfp_t flags)
1887 {
1888 #ifdef CONFIG_F2FS_FAULT_INJECTION
1889 	if (time_to_inject(sbi, FAULT_KMALLOC))
1890 		return NULL;
1891 #endif
1892 	return kmalloc(size, flags);
1893 }
1894 
1895 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1896 {
1897 	void *ret;
1898 
1899 	ret = kmalloc(size, flags | __GFP_NOWARN);
1900 	if (!ret)
1901 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1902 	return ret;
1903 }
1904 
1905 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1906 {
1907 	void *ret;
1908 
1909 	ret = kzalloc(size, flags | __GFP_NOWARN);
1910 	if (!ret)
1911 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1912 	return ret;
1913 }
1914 
1915 #define get_inode_mode(i) \
1916 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1917 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1918 
1919 /* get offset of first page in next direct node */
1920 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1921 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1922 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1923 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1924 
1925 /*
1926  * file.c
1927  */
1928 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1929 void truncate_data_blocks(struct dnode_of_data *);
1930 int truncate_blocks(struct inode *, u64, bool);
1931 int f2fs_truncate(struct inode *);
1932 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1933 int f2fs_setattr(struct dentry *, struct iattr *);
1934 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1935 int truncate_data_blocks_range(struct dnode_of_data *, int);
1936 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1937 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1938 
1939 /*
1940  * inode.c
1941  */
1942 void f2fs_set_inode_flags(struct inode *);
1943 struct inode *f2fs_iget(struct super_block *, unsigned long);
1944 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1945 int try_to_free_nats(struct f2fs_sb_info *, int);
1946 int update_inode(struct inode *, struct page *);
1947 int update_inode_page(struct inode *);
1948 int f2fs_write_inode(struct inode *, struct writeback_control *);
1949 void f2fs_evict_inode(struct inode *);
1950 void handle_failed_inode(struct inode *);
1951 
1952 /*
1953  * namei.c
1954  */
1955 struct dentry *f2fs_get_parent(struct dentry *child);
1956 
1957 /*
1958  * dir.c
1959  */
1960 void set_de_type(struct f2fs_dir_entry *, umode_t);
1961 unsigned char get_de_type(struct f2fs_dir_entry *);
1962 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1963 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1964 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1965 			unsigned int, struct fscrypt_str *);
1966 void do_make_empty_dir(struct inode *, struct inode *,
1967 			struct f2fs_dentry_ptr *);
1968 struct page *init_inode_metadata(struct inode *, struct inode *,
1969 		const struct qstr *, const struct qstr *, struct page *);
1970 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1971 int room_for_filename(const void *, int, int);
1972 void f2fs_drop_nlink(struct inode *, struct inode *);
1973 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
1974 							struct page **);
1975 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1976 							struct page **);
1977 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1978 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1979 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1980 				struct page *, struct inode *);
1981 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1982 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1983 			const struct qstr *, f2fs_hash_t , unsigned int);
1984 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1985 			const struct qstr *, struct inode *, nid_t, umode_t);
1986 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
1987 			nid_t, umode_t);
1988 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1989 			umode_t);
1990 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1991 							struct inode *);
1992 int f2fs_do_tmpfile(struct inode *, struct inode *);
1993 bool f2fs_empty_dir(struct inode *);
1994 
1995 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1996 {
1997 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1998 				inode, inode->i_ino, inode->i_mode);
1999 }
2000 
2001 /*
2002  * super.c
2003  */
2004 int f2fs_inode_dirtied(struct inode *);
2005 void f2fs_inode_synced(struct inode *);
2006 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2007 int f2fs_sync_fs(struct super_block *, int);
2008 extern __printf(3, 4)
2009 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2010 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2011 
2012 /*
2013  * hash.c
2014  */
2015 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2016 
2017 /*
2018  * node.c
2019  */
2020 struct dnode_of_data;
2021 struct node_info;
2022 
2023 bool available_free_memory(struct f2fs_sb_info *, int);
2024 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2025 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2026 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2027 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2028 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2029 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2030 int truncate_inode_blocks(struct inode *, pgoff_t);
2031 int truncate_xattr_node(struct inode *, struct page *);
2032 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2033 int remove_inode_page(struct inode *);
2034 struct page *new_inode_page(struct inode *);
2035 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2036 void ra_node_page(struct f2fs_sb_info *, nid_t);
2037 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2038 struct page *get_node_page_ra(struct page *, int);
2039 void move_node_page(struct page *, int);
2040 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2041 			struct writeback_control *, bool);
2042 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2043 void build_free_nids(struct f2fs_sb_info *, bool);
2044 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2045 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2046 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2047 int try_to_free_nids(struct f2fs_sb_info *, int);
2048 void recover_inline_xattr(struct inode *, struct page *);
2049 void recover_xattr_data(struct inode *, struct page *, block_t);
2050 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2051 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2052 				struct f2fs_summary_block *);
2053 void flush_nat_entries(struct f2fs_sb_info *);
2054 int build_node_manager(struct f2fs_sb_info *);
2055 void destroy_node_manager(struct f2fs_sb_info *);
2056 int __init create_node_manager_caches(void);
2057 void destroy_node_manager_caches(void);
2058 
2059 /*
2060  * segment.c
2061  */
2062 void register_inmem_page(struct inode *, struct page *);
2063 void drop_inmem_pages(struct inode *);
2064 int commit_inmem_pages(struct inode *);
2065 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2066 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2067 int f2fs_issue_flush(struct f2fs_sb_info *);
2068 int create_flush_cmd_control(struct f2fs_sb_info *);
2069 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2070 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2071 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2072 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2073 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2074 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2075 void release_discard_addrs(struct f2fs_sb_info *);
2076 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2077 void allocate_new_segments(struct f2fs_sb_info *);
2078 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2079 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2080 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2081 void write_meta_page(struct f2fs_sb_info *, struct page *);
2082 void write_node_page(unsigned int, struct f2fs_io_info *);
2083 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2084 void rewrite_data_page(struct f2fs_io_info *);
2085 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2086 					block_t, block_t, bool, bool);
2087 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2088 				block_t, block_t, unsigned char, bool, bool);
2089 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2090 		block_t, block_t *, struct f2fs_summary *, int);
2091 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2092 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2093 void write_data_summaries(struct f2fs_sb_info *, block_t);
2094 void write_node_summaries(struct f2fs_sb_info *, block_t);
2095 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2096 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2097 int build_segment_manager(struct f2fs_sb_info *);
2098 void destroy_segment_manager(struct f2fs_sb_info *);
2099 int __init create_segment_manager_caches(void);
2100 void destroy_segment_manager_caches(void);
2101 
2102 /*
2103  * checkpoint.c
2104  */
2105 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2106 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2107 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2108 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2109 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2110 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2111 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2112 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2113 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2114 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2115 void release_ino_entry(struct f2fs_sb_info *, bool);
2116 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2117 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2118 int acquire_orphan_inode(struct f2fs_sb_info *);
2119 void release_orphan_inode(struct f2fs_sb_info *);
2120 void add_orphan_inode(struct inode *);
2121 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2122 int recover_orphan_inodes(struct f2fs_sb_info *);
2123 int get_valid_checkpoint(struct f2fs_sb_info *);
2124 void update_dirty_page(struct inode *, struct page *);
2125 void remove_dirty_inode(struct inode *);
2126 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2127 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2128 void init_ino_entry_info(struct f2fs_sb_info *);
2129 int __init create_checkpoint_caches(void);
2130 void destroy_checkpoint_caches(void);
2131 
2132 /*
2133  * data.c
2134  */
2135 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2136 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2137 				struct page *, nid_t, enum page_type, int);
2138 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2139 int f2fs_submit_page_bio(struct f2fs_io_info *);
2140 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2141 void set_data_blkaddr(struct dnode_of_data *);
2142 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2143 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2144 int reserve_new_block(struct dnode_of_data *);
2145 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2146 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2147 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2148 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2149 struct page *find_data_page(struct inode *, pgoff_t);
2150 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2151 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2152 int do_write_data_page(struct f2fs_io_info *);
2153 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2154 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2155 void f2fs_set_page_dirty_nobuffers(struct page *);
2156 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2157 int f2fs_release_page(struct page *, gfp_t);
2158 #ifdef CONFIG_MIGRATION
2159 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2160 				enum migrate_mode);
2161 #endif
2162 
2163 /*
2164  * gc.c
2165  */
2166 int start_gc_thread(struct f2fs_sb_info *);
2167 void stop_gc_thread(struct f2fs_sb_info *);
2168 block_t start_bidx_of_node(unsigned int, struct inode *);
2169 int f2fs_gc(struct f2fs_sb_info *, bool);
2170 void build_gc_manager(struct f2fs_sb_info *);
2171 
2172 /*
2173  * recovery.c
2174  */
2175 int recover_fsync_data(struct f2fs_sb_info *, bool);
2176 bool space_for_roll_forward(struct f2fs_sb_info *);
2177 
2178 /*
2179  * debug.c
2180  */
2181 #ifdef CONFIG_F2FS_STAT_FS
2182 struct f2fs_stat_info {
2183 	struct list_head stat_list;
2184 	struct f2fs_sb_info *sbi;
2185 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2186 	int main_area_segs, main_area_sections, main_area_zones;
2187 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2188 	unsigned long long hit_total, total_ext;
2189 	int ext_tree, zombie_tree, ext_node;
2190 	s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2191 	s64 inmem_pages;
2192 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2193 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2194 	int total_count, utilization;
2195 	int bg_gc, wb_bios;
2196 	int inline_xattr, inline_inode, inline_dir, orphans;
2197 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2198 	unsigned int bimodal, avg_vblocks;
2199 	int util_free, util_valid, util_invalid;
2200 	int rsvd_segs, overp_segs;
2201 	int dirty_count, node_pages, meta_pages;
2202 	int prefree_count, call_count, cp_count, bg_cp_count;
2203 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2204 	int bg_node_segs, bg_data_segs;
2205 	int tot_blks, data_blks, node_blks;
2206 	int bg_data_blks, bg_node_blks;
2207 	int curseg[NR_CURSEG_TYPE];
2208 	int cursec[NR_CURSEG_TYPE];
2209 	int curzone[NR_CURSEG_TYPE];
2210 
2211 	unsigned int segment_count[2];
2212 	unsigned int block_count[2];
2213 	unsigned int inplace_count;
2214 	unsigned long long base_mem, cache_mem, page_mem;
2215 };
2216 
2217 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2218 {
2219 	return (struct f2fs_stat_info *)sbi->stat_info;
2220 }
2221 
2222 #define stat_inc_cp_count(si)		((si)->cp_count++)
2223 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2224 #define stat_inc_call_count(si)		((si)->call_count++)
2225 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2226 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2227 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2228 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2229 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2230 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2231 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2232 #define stat_inc_inline_xattr(inode)					\
2233 	do {								\
2234 		if (f2fs_has_inline_xattr(inode))			\
2235 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2236 	} while (0)
2237 #define stat_dec_inline_xattr(inode)					\
2238 	do {								\
2239 		if (f2fs_has_inline_xattr(inode))			\
2240 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2241 	} while (0)
2242 #define stat_inc_inline_inode(inode)					\
2243 	do {								\
2244 		if (f2fs_has_inline_data(inode))			\
2245 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2246 	} while (0)
2247 #define stat_dec_inline_inode(inode)					\
2248 	do {								\
2249 		if (f2fs_has_inline_data(inode))			\
2250 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2251 	} while (0)
2252 #define stat_inc_inline_dir(inode)					\
2253 	do {								\
2254 		if (f2fs_has_inline_dentry(inode))			\
2255 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2256 	} while (0)
2257 #define stat_dec_inline_dir(inode)					\
2258 	do {								\
2259 		if (f2fs_has_inline_dentry(inode))			\
2260 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2261 	} while (0)
2262 #define stat_inc_seg_type(sbi, curseg)					\
2263 		((sbi)->segment_count[(curseg)->alloc_type]++)
2264 #define stat_inc_block_count(sbi, curseg)				\
2265 		((sbi)->block_count[(curseg)->alloc_type]++)
2266 #define stat_inc_inplace_blocks(sbi)					\
2267 		(atomic_inc(&(sbi)->inplace_count))
2268 #define stat_inc_seg_count(sbi, type, gc_type)				\
2269 	do {								\
2270 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2271 		(si)->tot_segs++;					\
2272 		if (type == SUM_TYPE_DATA) {				\
2273 			si->data_segs++;				\
2274 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2275 		} else {						\
2276 			si->node_segs++;				\
2277 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2278 		}							\
2279 	} while (0)
2280 
2281 #define stat_inc_tot_blk_count(si, blks)				\
2282 	(si->tot_blks += (blks))
2283 
2284 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2285 	do {								\
2286 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2287 		stat_inc_tot_blk_count(si, blks);			\
2288 		si->data_blks += (blks);				\
2289 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2290 	} while (0)
2291 
2292 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2293 	do {								\
2294 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2295 		stat_inc_tot_blk_count(si, blks);			\
2296 		si->node_blks += (blks);				\
2297 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2298 	} while (0)
2299 
2300 int f2fs_build_stats(struct f2fs_sb_info *);
2301 void f2fs_destroy_stats(struct f2fs_sb_info *);
2302 int __init f2fs_create_root_stats(void);
2303 void f2fs_destroy_root_stats(void);
2304 #else
2305 #define stat_inc_cp_count(si)
2306 #define stat_inc_bg_cp_count(si)
2307 #define stat_inc_call_count(si)
2308 #define stat_inc_bggc_count(si)
2309 #define stat_inc_dirty_inode(sbi, type)
2310 #define stat_dec_dirty_inode(sbi, type)
2311 #define stat_inc_total_hit(sb)
2312 #define stat_inc_rbtree_node_hit(sb)
2313 #define stat_inc_largest_node_hit(sbi)
2314 #define stat_inc_cached_node_hit(sbi)
2315 #define stat_inc_inline_xattr(inode)
2316 #define stat_dec_inline_xattr(inode)
2317 #define stat_inc_inline_inode(inode)
2318 #define stat_dec_inline_inode(inode)
2319 #define stat_inc_inline_dir(inode)
2320 #define stat_dec_inline_dir(inode)
2321 #define stat_inc_seg_type(sbi, curseg)
2322 #define stat_inc_block_count(sbi, curseg)
2323 #define stat_inc_inplace_blocks(sbi)
2324 #define stat_inc_seg_count(sbi, type, gc_type)
2325 #define stat_inc_tot_blk_count(si, blks)
2326 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2327 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2328 
2329 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2330 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2331 static inline int __init f2fs_create_root_stats(void) { return 0; }
2332 static inline void f2fs_destroy_root_stats(void) { }
2333 #endif
2334 
2335 extern const struct file_operations f2fs_dir_operations;
2336 extern const struct file_operations f2fs_file_operations;
2337 extern const struct inode_operations f2fs_file_inode_operations;
2338 extern const struct address_space_operations f2fs_dblock_aops;
2339 extern const struct address_space_operations f2fs_node_aops;
2340 extern const struct address_space_operations f2fs_meta_aops;
2341 extern const struct inode_operations f2fs_dir_inode_operations;
2342 extern const struct inode_operations f2fs_symlink_inode_operations;
2343 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2344 extern const struct inode_operations f2fs_special_inode_operations;
2345 extern struct kmem_cache *inode_entry_slab;
2346 
2347 /*
2348  * inline.c
2349  */
2350 bool f2fs_may_inline_data(struct inode *);
2351 bool f2fs_may_inline_dentry(struct inode *);
2352 void read_inline_data(struct page *, struct page *);
2353 bool truncate_inline_inode(struct page *, u64);
2354 int f2fs_read_inline_data(struct inode *, struct page *);
2355 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2356 int f2fs_convert_inline_inode(struct inode *);
2357 int f2fs_write_inline_data(struct inode *, struct page *);
2358 bool recover_inline_data(struct inode *, struct page *);
2359 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2360 				struct fscrypt_name *, struct page **);
2361 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2362 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2363 		const struct qstr *, struct inode *, nid_t, umode_t);
2364 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2365 						struct inode *, struct inode *);
2366 bool f2fs_empty_inline_dir(struct inode *);
2367 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2368 						struct fscrypt_str *);
2369 int f2fs_inline_data_fiemap(struct inode *,
2370 		struct fiemap_extent_info *, __u64, __u64);
2371 
2372 /*
2373  * shrinker.c
2374  */
2375 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2376 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2377 void f2fs_join_shrinker(struct f2fs_sb_info *);
2378 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2379 
2380 /*
2381  * extent_cache.c
2382  */
2383 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2384 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2385 void f2fs_drop_extent_tree(struct inode *);
2386 unsigned int f2fs_destroy_extent_node(struct inode *);
2387 void f2fs_destroy_extent_tree(struct inode *);
2388 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2389 void f2fs_update_extent_cache(struct dnode_of_data *);
2390 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2391 						pgoff_t, block_t, unsigned int);
2392 void init_extent_cache_info(struct f2fs_sb_info *);
2393 int __init create_extent_cache(void);
2394 void destroy_extent_cache(void);
2395 
2396 /*
2397  * crypto support
2398  */
2399 static inline bool f2fs_encrypted_inode(struct inode *inode)
2400 {
2401 	return file_is_encrypt(inode);
2402 }
2403 
2404 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2405 {
2406 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2407 	file_set_encrypt(inode);
2408 #endif
2409 }
2410 
2411 static inline bool f2fs_bio_encrypted(struct bio *bio)
2412 {
2413 	return bio->bi_private != NULL;
2414 }
2415 
2416 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2417 {
2418 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2419 }
2420 
2421 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2422 {
2423 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2424 }
2425 
2426 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2427 {
2428 	clear_opt(sbi, ADAPTIVE);
2429 	clear_opt(sbi, LFS);
2430 
2431 	switch (mt) {
2432 	case F2FS_MOUNT_ADAPTIVE:
2433 		set_opt(sbi, ADAPTIVE);
2434 		break;
2435 	case F2FS_MOUNT_LFS:
2436 		set_opt(sbi, LFS);
2437 		break;
2438 	}
2439 }
2440 
2441 static inline bool f2fs_may_encrypt(struct inode *inode)
2442 {
2443 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2444 	umode_t mode = inode->i_mode;
2445 
2446 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2447 #else
2448 	return 0;
2449 #endif
2450 }
2451 
2452 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2453 #define fscrypt_set_d_op(i)
2454 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2455 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2456 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2457 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2458 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2459 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2460 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2461 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2462 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2463 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2464 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2465 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2466 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2467 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2468 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2469 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2470 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2471 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2472 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2473 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2474 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2475 #endif
2476 #endif
2477