1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_IO, 50 FAULT_CHECKPOINT, 51 FAULT_MAX, 52 }; 53 54 struct f2fs_fault_info { 55 atomic_t inject_ops; 56 unsigned int inject_rate; 57 unsigned int inject_type; 58 }; 59 60 extern char *fault_name[FAULT_MAX]; 61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 62 #endif 63 64 /* 65 * For mount options 66 */ 67 #define F2FS_MOUNT_BG_GC 0x00000001 68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 69 #define F2FS_MOUNT_DISCARD 0x00000004 70 #define F2FS_MOUNT_NOHEAP 0x00000008 71 #define F2FS_MOUNT_XATTR_USER 0x00000010 72 #define F2FS_MOUNT_POSIX_ACL 0x00000020 73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 75 #define F2FS_MOUNT_INLINE_DATA 0x00000100 76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 78 #define F2FS_MOUNT_NOBARRIER 0x00000800 79 #define F2FS_MOUNT_FASTBOOT 0x00001000 80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 84 #define F2FS_MOUNT_ADAPTIVE 0x00020000 85 #define F2FS_MOUNT_LFS 0x00040000 86 87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 90 91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 92 typecheck(unsigned long long, b) && \ 93 ((long long)((a) - (b)) > 0)) 94 95 typedef u32 block_t; /* 96 * should not change u32, since it is the on-disk block 97 * address format, __le32. 98 */ 99 typedef u32 nid_t; 100 101 struct f2fs_mount_info { 102 unsigned int opt; 103 }; 104 105 #define F2FS_FEATURE_ENCRYPT 0x0001 106 #define F2FS_FEATURE_HMSMR 0x0002 107 108 #define F2FS_HAS_FEATURE(sb, mask) \ 109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 110 #define F2FS_SET_FEATURE(sb, mask) \ 111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 112 #define F2FS_CLEAR_FEATURE(sb, mask) \ 113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 114 115 /* 116 * For checkpoint manager 117 */ 118 enum { 119 NAT_BITMAP, 120 SIT_BITMAP 121 }; 122 123 enum { 124 CP_UMOUNT, 125 CP_FASTBOOT, 126 CP_SYNC, 127 CP_RECOVERY, 128 CP_DISCARD, 129 }; 130 131 #define DEF_BATCHED_TRIM_SECTIONS 2 132 #define BATCHED_TRIM_SEGMENTS(sbi) \ 133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 134 #define BATCHED_TRIM_BLOCKS(sbi) \ 135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 136 #define DEF_CP_INTERVAL 60 /* 60 secs */ 137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 138 139 struct cp_control { 140 int reason; 141 __u64 trim_start; 142 __u64 trim_end; 143 __u64 trim_minlen; 144 __u64 trimmed; 145 }; 146 147 /* 148 * For CP/NAT/SIT/SSA readahead 149 */ 150 enum { 151 META_CP, 152 META_NAT, 153 META_SIT, 154 META_SSA, 155 META_POR, 156 }; 157 158 /* for the list of ino */ 159 enum { 160 ORPHAN_INO, /* for orphan ino list */ 161 APPEND_INO, /* for append ino list */ 162 UPDATE_INO, /* for update ino list */ 163 MAX_INO_ENTRY, /* max. list */ 164 }; 165 166 struct ino_entry { 167 struct list_head list; /* list head */ 168 nid_t ino; /* inode number */ 169 }; 170 171 /* for the list of inodes to be GCed */ 172 struct inode_entry { 173 struct list_head list; /* list head */ 174 struct inode *inode; /* vfs inode pointer */ 175 }; 176 177 /* for the list of blockaddresses to be discarded */ 178 struct discard_entry { 179 struct list_head list; /* list head */ 180 block_t blkaddr; /* block address to be discarded */ 181 int len; /* # of consecutive blocks of the discard */ 182 }; 183 184 struct bio_entry { 185 struct list_head list; 186 struct bio *bio; 187 struct completion event; 188 int error; 189 }; 190 191 /* for the list of fsync inodes, used only during recovery */ 192 struct fsync_inode_entry { 193 struct list_head list; /* list head */ 194 struct inode *inode; /* vfs inode pointer */ 195 block_t blkaddr; /* block address locating the last fsync */ 196 block_t last_dentry; /* block address locating the last dentry */ 197 }; 198 199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 201 202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 206 207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 209 210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 211 { 212 int before = nats_in_cursum(journal); 213 journal->n_nats = cpu_to_le16(before + i); 214 return before; 215 } 216 217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 218 { 219 int before = sits_in_cursum(journal); 220 journal->n_sits = cpu_to_le16(before + i); 221 return before; 222 } 223 224 static inline bool __has_cursum_space(struct f2fs_journal *journal, 225 int size, int type) 226 { 227 if (type == NAT_JOURNAL) 228 return size <= MAX_NAT_JENTRIES(journal); 229 return size <= MAX_SIT_JENTRIES(journal); 230 } 231 232 /* 233 * ioctl commands 234 */ 235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 238 239 #define F2FS_IOCTL_MAGIC 0xf5 240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 249 struct f2fs_move_range) 250 251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 254 255 /* 256 * should be same as XFS_IOC_GOINGDOWN. 257 * Flags for going down operation used by FS_IOC_GOINGDOWN 258 */ 259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 264 265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 266 /* 267 * ioctl commands in 32 bit emulation 268 */ 269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 272 #endif 273 274 struct f2fs_defragment { 275 u64 start; 276 u64 len; 277 }; 278 279 struct f2fs_move_range { 280 u32 dst_fd; /* destination fd */ 281 u64 pos_in; /* start position in src_fd */ 282 u64 pos_out; /* start position in dst_fd */ 283 u64 len; /* size to move */ 284 }; 285 286 /* 287 * For INODE and NODE manager 288 */ 289 /* for directory operations */ 290 struct f2fs_dentry_ptr { 291 struct inode *inode; 292 const void *bitmap; 293 struct f2fs_dir_entry *dentry; 294 __u8 (*filename)[F2FS_SLOT_LEN]; 295 int max; 296 }; 297 298 static inline void make_dentry_ptr(struct inode *inode, 299 struct f2fs_dentry_ptr *d, void *src, int type) 300 { 301 d->inode = inode; 302 303 if (type == 1) { 304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 305 d->max = NR_DENTRY_IN_BLOCK; 306 d->bitmap = &t->dentry_bitmap; 307 d->dentry = t->dentry; 308 d->filename = t->filename; 309 } else { 310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 311 d->max = NR_INLINE_DENTRY; 312 d->bitmap = &t->dentry_bitmap; 313 d->dentry = t->dentry; 314 d->filename = t->filename; 315 } 316 } 317 318 /* 319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 320 * as its node offset to distinguish from index node blocks. 321 * But some bits are used to mark the node block. 322 */ 323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 324 >> OFFSET_BIT_SHIFT) 325 enum { 326 ALLOC_NODE, /* allocate a new node page if needed */ 327 LOOKUP_NODE, /* look up a node without readahead */ 328 LOOKUP_NODE_RA, /* 329 * look up a node with readahead called 330 * by get_data_block. 331 */ 332 }; 333 334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 335 336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 337 338 /* vector size for gang look-up from extent cache that consists of radix tree */ 339 #define EXT_TREE_VEC_SIZE 64 340 341 /* for in-memory extent cache entry */ 342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 343 344 /* number of extent info in extent cache we try to shrink */ 345 #define EXTENT_CACHE_SHRINK_NUMBER 128 346 347 struct extent_info { 348 unsigned int fofs; /* start offset in a file */ 349 u32 blk; /* start block address of the extent */ 350 unsigned int len; /* length of the extent */ 351 }; 352 353 struct extent_node { 354 struct rb_node rb_node; /* rb node located in rb-tree */ 355 struct list_head list; /* node in global extent list of sbi */ 356 struct extent_info ei; /* extent info */ 357 struct extent_tree *et; /* extent tree pointer */ 358 }; 359 360 struct extent_tree { 361 nid_t ino; /* inode number */ 362 struct rb_root root; /* root of extent info rb-tree */ 363 struct extent_node *cached_en; /* recently accessed extent node */ 364 struct extent_info largest; /* largested extent info */ 365 struct list_head list; /* to be used by sbi->zombie_list */ 366 rwlock_t lock; /* protect extent info rb-tree */ 367 atomic_t node_cnt; /* # of extent node in rb-tree*/ 368 }; 369 370 /* 371 * This structure is taken from ext4_map_blocks. 372 * 373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 374 */ 375 #define F2FS_MAP_NEW (1 << BH_New) 376 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 379 F2FS_MAP_UNWRITTEN) 380 381 struct f2fs_map_blocks { 382 block_t m_pblk; 383 block_t m_lblk; 384 unsigned int m_len; 385 unsigned int m_flags; 386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 387 }; 388 389 /* for flag in get_data_block */ 390 #define F2FS_GET_BLOCK_READ 0 391 #define F2FS_GET_BLOCK_DIO 1 392 #define F2FS_GET_BLOCK_FIEMAP 2 393 #define F2FS_GET_BLOCK_BMAP 3 394 #define F2FS_GET_BLOCK_PRE_DIO 4 395 #define F2FS_GET_BLOCK_PRE_AIO 5 396 397 /* 398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 399 */ 400 #define FADVISE_COLD_BIT 0x01 401 #define FADVISE_LOST_PINO_BIT 0x02 402 #define FADVISE_ENCRYPT_BIT 0x04 403 #define FADVISE_ENC_NAME_BIT 0x08 404 405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 416 417 #define DEF_DIR_LEVEL 0 418 419 struct f2fs_inode_info { 420 struct inode vfs_inode; /* serve a vfs inode */ 421 unsigned long i_flags; /* keep an inode flags for ioctl */ 422 unsigned char i_advise; /* use to give file attribute hints */ 423 unsigned char i_dir_level; /* use for dentry level for large dir */ 424 unsigned int i_current_depth; /* use only in directory structure */ 425 unsigned int i_pino; /* parent inode number */ 426 umode_t i_acl_mode; /* keep file acl mode temporarily */ 427 428 /* Use below internally in f2fs*/ 429 unsigned long flags; /* use to pass per-file flags */ 430 struct rw_semaphore i_sem; /* protect fi info */ 431 struct percpu_counter dirty_pages; /* # of dirty pages */ 432 f2fs_hash_t chash; /* hash value of given file name */ 433 unsigned int clevel; /* maximum level of given file name */ 434 nid_t i_xattr_nid; /* node id that contains xattrs */ 435 unsigned long long xattr_ver; /* cp version of xattr modification */ 436 loff_t last_disk_size; /* lastly written file size */ 437 438 struct list_head dirty_list; /* dirty list for dirs and files */ 439 struct list_head gdirty_list; /* linked in global dirty list */ 440 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 441 struct mutex inmem_lock; /* lock for inmemory pages */ 442 struct extent_tree *extent_tree; /* cached extent_tree entry */ 443 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 444 }; 445 446 static inline void get_extent_info(struct extent_info *ext, 447 struct f2fs_extent *i_ext) 448 { 449 ext->fofs = le32_to_cpu(i_ext->fofs); 450 ext->blk = le32_to_cpu(i_ext->blk); 451 ext->len = le32_to_cpu(i_ext->len); 452 } 453 454 static inline void set_raw_extent(struct extent_info *ext, 455 struct f2fs_extent *i_ext) 456 { 457 i_ext->fofs = cpu_to_le32(ext->fofs); 458 i_ext->blk = cpu_to_le32(ext->blk); 459 i_ext->len = cpu_to_le32(ext->len); 460 } 461 462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 463 u32 blk, unsigned int len) 464 { 465 ei->fofs = fofs; 466 ei->blk = blk; 467 ei->len = len; 468 } 469 470 static inline bool __is_extent_same(struct extent_info *ei1, 471 struct extent_info *ei2) 472 { 473 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 474 ei1->len == ei2->len); 475 } 476 477 static inline bool __is_extent_mergeable(struct extent_info *back, 478 struct extent_info *front) 479 { 480 return (back->fofs + back->len == front->fofs && 481 back->blk + back->len == front->blk); 482 } 483 484 static inline bool __is_back_mergeable(struct extent_info *cur, 485 struct extent_info *back) 486 { 487 return __is_extent_mergeable(back, cur); 488 } 489 490 static inline bool __is_front_mergeable(struct extent_info *cur, 491 struct extent_info *front) 492 { 493 return __is_extent_mergeable(cur, front); 494 } 495 496 extern void f2fs_mark_inode_dirty_sync(struct inode *); 497 static inline void __try_update_largest_extent(struct inode *inode, 498 struct extent_tree *et, struct extent_node *en) 499 { 500 if (en->ei.len > et->largest.len) { 501 et->largest = en->ei; 502 f2fs_mark_inode_dirty_sync(inode); 503 } 504 } 505 506 enum nid_list { 507 FREE_NID_LIST, 508 ALLOC_NID_LIST, 509 MAX_NID_LIST, 510 }; 511 512 struct f2fs_nm_info { 513 block_t nat_blkaddr; /* base disk address of NAT */ 514 nid_t max_nid; /* maximum possible node ids */ 515 nid_t available_nids; /* maximum available node ids */ 516 nid_t next_scan_nid; /* the next nid to be scanned */ 517 unsigned int ram_thresh; /* control the memory footprint */ 518 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 519 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 520 521 /* NAT cache management */ 522 struct radix_tree_root nat_root;/* root of the nat entry cache */ 523 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 524 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 525 struct list_head nat_entries; /* cached nat entry list (clean) */ 526 unsigned int nat_cnt; /* the # of cached nat entries */ 527 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 528 529 /* free node ids management */ 530 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 531 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 532 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 533 spinlock_t nid_list_lock; /* protect nid lists ops */ 534 struct mutex build_lock; /* lock for build free nids */ 535 536 /* for checkpoint */ 537 char *nat_bitmap; /* NAT bitmap pointer */ 538 int bitmap_size; /* bitmap size */ 539 }; 540 541 /* 542 * this structure is used as one of function parameters. 543 * all the information are dedicated to a given direct node block determined 544 * by the data offset in a file. 545 */ 546 struct dnode_of_data { 547 struct inode *inode; /* vfs inode pointer */ 548 struct page *inode_page; /* its inode page, NULL is possible */ 549 struct page *node_page; /* cached direct node page */ 550 nid_t nid; /* node id of the direct node block */ 551 unsigned int ofs_in_node; /* data offset in the node page */ 552 bool inode_page_locked; /* inode page is locked or not */ 553 bool node_changed; /* is node block changed */ 554 char cur_level; /* level of hole node page */ 555 char max_level; /* level of current page located */ 556 block_t data_blkaddr; /* block address of the node block */ 557 }; 558 559 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 560 struct page *ipage, struct page *npage, nid_t nid) 561 { 562 memset(dn, 0, sizeof(*dn)); 563 dn->inode = inode; 564 dn->inode_page = ipage; 565 dn->node_page = npage; 566 dn->nid = nid; 567 } 568 569 /* 570 * For SIT manager 571 * 572 * By default, there are 6 active log areas across the whole main area. 573 * When considering hot and cold data separation to reduce cleaning overhead, 574 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 575 * respectively. 576 * In the current design, you should not change the numbers intentionally. 577 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 578 * logs individually according to the underlying devices. (default: 6) 579 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 580 * data and 8 for node logs. 581 */ 582 #define NR_CURSEG_DATA_TYPE (3) 583 #define NR_CURSEG_NODE_TYPE (3) 584 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 585 586 enum { 587 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 588 CURSEG_WARM_DATA, /* data blocks */ 589 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 590 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 591 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 592 CURSEG_COLD_NODE, /* indirect node blocks */ 593 NO_CHECK_TYPE, 594 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 595 }; 596 597 struct flush_cmd { 598 struct completion wait; 599 struct llist_node llnode; 600 int ret; 601 }; 602 603 struct flush_cmd_control { 604 struct task_struct *f2fs_issue_flush; /* flush thread */ 605 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 606 atomic_t submit_flush; /* # of issued flushes */ 607 struct llist_head issue_list; /* list for command issue */ 608 struct llist_node *dispatch_list; /* list for command dispatch */ 609 }; 610 611 struct f2fs_sm_info { 612 struct sit_info *sit_info; /* whole segment information */ 613 struct free_segmap_info *free_info; /* free segment information */ 614 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 615 struct curseg_info *curseg_array; /* active segment information */ 616 617 block_t seg0_blkaddr; /* block address of 0'th segment */ 618 block_t main_blkaddr; /* start block address of main area */ 619 block_t ssa_blkaddr; /* start block address of SSA area */ 620 621 unsigned int segment_count; /* total # of segments */ 622 unsigned int main_segments; /* # of segments in main area */ 623 unsigned int reserved_segments; /* # of reserved segments */ 624 unsigned int ovp_segments; /* # of overprovision segments */ 625 626 /* a threshold to reclaim prefree segments */ 627 unsigned int rec_prefree_segments; 628 629 /* for small discard management */ 630 struct list_head discard_list; /* 4KB discard list */ 631 struct list_head wait_list; /* linked with issued discard bio */ 632 int nr_discards; /* # of discards in the list */ 633 int max_discards; /* max. discards to be issued */ 634 635 /* for batched trimming */ 636 unsigned int trim_sections; /* # of sections to trim */ 637 638 struct list_head sit_entry_set; /* sit entry set list */ 639 640 unsigned int ipu_policy; /* in-place-update policy */ 641 unsigned int min_ipu_util; /* in-place-update threshold */ 642 unsigned int min_fsync_blocks; /* threshold for fsync */ 643 644 /* for flush command control */ 645 struct flush_cmd_control *cmd_control_info; 646 647 }; 648 649 /* 650 * For superblock 651 */ 652 /* 653 * COUNT_TYPE for monitoring 654 * 655 * f2fs monitors the number of several block types such as on-writeback, 656 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 657 */ 658 enum count_type { 659 F2FS_DIRTY_DENTS, 660 F2FS_DIRTY_DATA, 661 F2FS_DIRTY_NODES, 662 F2FS_DIRTY_META, 663 F2FS_INMEM_PAGES, 664 F2FS_DIRTY_IMETA, 665 NR_COUNT_TYPE, 666 }; 667 668 /* 669 * The below are the page types of bios used in submit_bio(). 670 * The available types are: 671 * DATA User data pages. It operates as async mode. 672 * NODE Node pages. It operates as async mode. 673 * META FS metadata pages such as SIT, NAT, CP. 674 * NR_PAGE_TYPE The number of page types. 675 * META_FLUSH Make sure the previous pages are written 676 * with waiting the bio's completion 677 * ... Only can be used with META. 678 */ 679 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 680 enum page_type { 681 DATA, 682 NODE, 683 META, 684 NR_PAGE_TYPE, 685 META_FLUSH, 686 INMEM, /* the below types are used by tracepoints only. */ 687 INMEM_DROP, 688 INMEM_REVOKE, 689 IPU, 690 OPU, 691 }; 692 693 struct f2fs_io_info { 694 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 695 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 696 int op; /* contains REQ_OP_ */ 697 int op_flags; /* rq_flag_bits */ 698 block_t new_blkaddr; /* new block address to be written */ 699 block_t old_blkaddr; /* old block address before Cow */ 700 struct page *page; /* page to be written */ 701 struct page *encrypted_page; /* encrypted page */ 702 }; 703 704 #define is_read_io(rw) (rw == READ) 705 struct f2fs_bio_info { 706 struct f2fs_sb_info *sbi; /* f2fs superblock */ 707 struct bio *bio; /* bios to merge */ 708 sector_t last_block_in_bio; /* last block number */ 709 struct f2fs_io_info fio; /* store buffered io info. */ 710 struct rw_semaphore io_rwsem; /* blocking op for bio */ 711 }; 712 713 enum inode_type { 714 DIR_INODE, /* for dirty dir inode */ 715 FILE_INODE, /* for dirty regular/symlink inode */ 716 DIRTY_META, /* for all dirtied inode metadata */ 717 NR_INODE_TYPE, 718 }; 719 720 /* for inner inode cache management */ 721 struct inode_management { 722 struct radix_tree_root ino_root; /* ino entry array */ 723 spinlock_t ino_lock; /* for ino entry lock */ 724 struct list_head ino_list; /* inode list head */ 725 unsigned long ino_num; /* number of entries */ 726 }; 727 728 /* For s_flag in struct f2fs_sb_info */ 729 enum { 730 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 731 SBI_IS_CLOSE, /* specify unmounting */ 732 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 733 SBI_POR_DOING, /* recovery is doing or not */ 734 SBI_NEED_SB_WRITE, /* need to recover superblock */ 735 SBI_NEED_CP, /* need to checkpoint */ 736 }; 737 738 enum { 739 CP_TIME, 740 REQ_TIME, 741 MAX_TIME, 742 }; 743 744 #ifdef CONFIG_F2FS_FS_ENCRYPTION 745 #define F2FS_KEY_DESC_PREFIX "f2fs:" 746 #define F2FS_KEY_DESC_PREFIX_SIZE 5 747 #endif 748 struct f2fs_sb_info { 749 struct super_block *sb; /* pointer to VFS super block */ 750 struct proc_dir_entry *s_proc; /* proc entry */ 751 struct f2fs_super_block *raw_super; /* raw super block pointer */ 752 int valid_super_block; /* valid super block no */ 753 unsigned long s_flag; /* flags for sbi */ 754 755 #ifdef CONFIG_F2FS_FS_ENCRYPTION 756 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 757 u8 key_prefix_size; 758 #endif 759 /* for node-related operations */ 760 struct f2fs_nm_info *nm_info; /* node manager */ 761 struct inode *node_inode; /* cache node blocks */ 762 763 /* for segment-related operations */ 764 struct f2fs_sm_info *sm_info; /* segment manager */ 765 766 /* for bio operations */ 767 struct f2fs_bio_info read_io; /* for read bios */ 768 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 769 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 770 771 /* for checkpoint */ 772 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 773 spinlock_t cp_lock; /* for flag in ckpt */ 774 struct inode *meta_inode; /* cache meta blocks */ 775 struct mutex cp_mutex; /* checkpoint procedure lock */ 776 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 777 struct rw_semaphore node_write; /* locking node writes */ 778 wait_queue_head_t cp_wait; 779 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 780 long interval_time[MAX_TIME]; /* to store thresholds */ 781 782 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 783 784 /* for orphan inode, use 0'th array */ 785 unsigned int max_orphans; /* max orphan inodes */ 786 787 /* for inode management */ 788 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 789 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 790 791 /* for extent tree cache */ 792 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 793 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 794 struct list_head extent_list; /* lru list for shrinker */ 795 spinlock_t extent_lock; /* locking extent lru list */ 796 atomic_t total_ext_tree; /* extent tree count */ 797 struct list_head zombie_list; /* extent zombie tree list */ 798 atomic_t total_zombie_tree; /* extent zombie tree count */ 799 atomic_t total_ext_node; /* extent info count */ 800 801 /* basic filesystem units */ 802 unsigned int log_sectors_per_block; /* log2 sectors per block */ 803 unsigned int log_blocksize; /* log2 block size */ 804 unsigned int blocksize; /* block size */ 805 unsigned int root_ino_num; /* root inode number*/ 806 unsigned int node_ino_num; /* node inode number*/ 807 unsigned int meta_ino_num; /* meta inode number*/ 808 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 809 unsigned int blocks_per_seg; /* blocks per segment */ 810 unsigned int segs_per_sec; /* segments per section */ 811 unsigned int secs_per_zone; /* sections per zone */ 812 unsigned int total_sections; /* total section count */ 813 unsigned int total_node_count; /* total node block count */ 814 unsigned int total_valid_node_count; /* valid node block count */ 815 loff_t max_file_blocks; /* max block index of file */ 816 int active_logs; /* # of active logs */ 817 int dir_level; /* directory level */ 818 819 block_t user_block_count; /* # of user blocks */ 820 block_t total_valid_block_count; /* # of valid blocks */ 821 block_t discard_blks; /* discard command candidats */ 822 block_t last_valid_block_count; /* for recovery */ 823 u32 s_next_generation; /* for NFS support */ 824 atomic_t nr_wb_bios; /* # of writeback bios */ 825 826 /* # of pages, see count_type */ 827 struct percpu_counter nr_pages[NR_COUNT_TYPE]; 828 /* # of allocated blocks */ 829 struct percpu_counter alloc_valid_block_count; 830 831 /* valid inode count */ 832 struct percpu_counter total_valid_inode_count; 833 834 struct f2fs_mount_info mount_opt; /* mount options */ 835 836 /* for cleaning operations */ 837 struct mutex gc_mutex; /* mutex for GC */ 838 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 839 unsigned int cur_victim_sec; /* current victim section num */ 840 841 /* maximum # of trials to find a victim segment for SSR and GC */ 842 unsigned int max_victim_search; 843 844 /* 845 * for stat information. 846 * one is for the LFS mode, and the other is for the SSR mode. 847 */ 848 #ifdef CONFIG_F2FS_STAT_FS 849 struct f2fs_stat_info *stat_info; /* FS status information */ 850 unsigned int segment_count[2]; /* # of allocated segments */ 851 unsigned int block_count[2]; /* # of allocated blocks */ 852 atomic_t inplace_count; /* # of inplace update */ 853 atomic64_t total_hit_ext; /* # of lookup extent cache */ 854 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 855 atomic64_t read_hit_largest; /* # of hit largest extent node */ 856 atomic64_t read_hit_cached; /* # of hit cached extent node */ 857 atomic_t inline_xattr; /* # of inline_xattr inodes */ 858 atomic_t inline_inode; /* # of inline_data inodes */ 859 atomic_t inline_dir; /* # of inline_dentry inodes */ 860 int bg_gc; /* background gc calls */ 861 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 862 #endif 863 unsigned int last_victim[2]; /* last victim segment # */ 864 spinlock_t stat_lock; /* lock for stat operations */ 865 866 /* For sysfs suppport */ 867 struct kobject s_kobj; 868 struct completion s_kobj_unregister; 869 870 /* For shrinker support */ 871 struct list_head s_list; 872 struct mutex umount_mutex; 873 unsigned int shrinker_run_no; 874 875 /* For write statistics */ 876 u64 sectors_written_start; 877 u64 kbytes_written; 878 879 /* Reference to checksum algorithm driver via cryptoapi */ 880 struct crypto_shash *s_chksum_driver; 881 882 /* For fault injection */ 883 #ifdef CONFIG_F2FS_FAULT_INJECTION 884 struct f2fs_fault_info fault_info; 885 #endif 886 }; 887 888 #ifdef CONFIG_F2FS_FAULT_INJECTION 889 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 890 { 891 struct f2fs_fault_info *ffi = &sbi->fault_info; 892 893 if (!ffi->inject_rate) 894 return false; 895 896 if (!IS_FAULT_SET(ffi, type)) 897 return false; 898 899 atomic_inc(&ffi->inject_ops); 900 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 901 atomic_set(&ffi->inject_ops, 0); 902 printk("%sF2FS-fs : inject %s in %pF\n", 903 KERN_INFO, 904 fault_name[type], 905 __builtin_return_address(0)); 906 return true; 907 } 908 return false; 909 } 910 #endif 911 912 /* For write statistics. Suppose sector size is 512 bytes, 913 * and the return value is in kbytes. s is of struct f2fs_sb_info. 914 */ 915 #define BD_PART_WRITTEN(s) \ 916 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 917 s->sectors_written_start) >> 1) 918 919 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 920 { 921 sbi->last_time[type] = jiffies; 922 } 923 924 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 925 { 926 struct timespec ts = {sbi->interval_time[type], 0}; 927 unsigned long interval = timespec_to_jiffies(&ts); 928 929 return time_after(jiffies, sbi->last_time[type] + interval); 930 } 931 932 static inline bool is_idle(struct f2fs_sb_info *sbi) 933 { 934 struct block_device *bdev = sbi->sb->s_bdev; 935 struct request_queue *q = bdev_get_queue(bdev); 936 struct request_list *rl = &q->root_rl; 937 938 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 939 return 0; 940 941 return f2fs_time_over(sbi, REQ_TIME); 942 } 943 944 /* 945 * Inline functions 946 */ 947 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 948 unsigned int length) 949 { 950 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 951 u32 *ctx = (u32 *)shash_desc_ctx(shash); 952 int err; 953 954 shash->tfm = sbi->s_chksum_driver; 955 shash->flags = 0; 956 *ctx = F2FS_SUPER_MAGIC; 957 958 err = crypto_shash_update(shash, address, length); 959 BUG_ON(err); 960 961 return *ctx; 962 } 963 964 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 965 void *buf, size_t buf_size) 966 { 967 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 968 } 969 970 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 971 { 972 return container_of(inode, struct f2fs_inode_info, vfs_inode); 973 } 974 975 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 976 { 977 return sb->s_fs_info; 978 } 979 980 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 981 { 982 return F2FS_SB(inode->i_sb); 983 } 984 985 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 986 { 987 return F2FS_I_SB(mapping->host); 988 } 989 990 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 991 { 992 return F2FS_M_SB(page->mapping); 993 } 994 995 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 996 { 997 return (struct f2fs_super_block *)(sbi->raw_super); 998 } 999 1000 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1001 { 1002 return (struct f2fs_checkpoint *)(sbi->ckpt); 1003 } 1004 1005 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1006 { 1007 return (struct f2fs_node *)page_address(page); 1008 } 1009 1010 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1011 { 1012 return &((struct f2fs_node *)page_address(page))->i; 1013 } 1014 1015 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1016 { 1017 return (struct f2fs_nm_info *)(sbi->nm_info); 1018 } 1019 1020 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1021 { 1022 return (struct f2fs_sm_info *)(sbi->sm_info); 1023 } 1024 1025 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1026 { 1027 return (struct sit_info *)(SM_I(sbi)->sit_info); 1028 } 1029 1030 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1031 { 1032 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1033 } 1034 1035 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1036 { 1037 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1038 } 1039 1040 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1041 { 1042 return sbi->meta_inode->i_mapping; 1043 } 1044 1045 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1046 { 1047 return sbi->node_inode->i_mapping; 1048 } 1049 1050 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1051 { 1052 return test_bit(type, &sbi->s_flag); 1053 } 1054 1055 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1056 { 1057 set_bit(type, &sbi->s_flag); 1058 } 1059 1060 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1061 { 1062 clear_bit(type, &sbi->s_flag); 1063 } 1064 1065 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1066 { 1067 return le64_to_cpu(cp->checkpoint_ver); 1068 } 1069 1070 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1071 { 1072 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1073 1074 return ckpt_flags & f; 1075 } 1076 1077 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1078 { 1079 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1080 } 1081 1082 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1083 { 1084 unsigned int ckpt_flags; 1085 1086 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1087 ckpt_flags |= f; 1088 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1089 } 1090 1091 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1092 { 1093 spin_lock(&sbi->cp_lock); 1094 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1095 spin_unlock(&sbi->cp_lock); 1096 } 1097 1098 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1099 { 1100 unsigned int ckpt_flags; 1101 1102 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1103 ckpt_flags &= (~f); 1104 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1105 } 1106 1107 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1108 { 1109 spin_lock(&sbi->cp_lock); 1110 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1111 spin_unlock(&sbi->cp_lock); 1112 } 1113 1114 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 1115 { 1116 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 1117 1118 return blk_queue_discard(q); 1119 } 1120 1121 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1122 { 1123 down_read(&sbi->cp_rwsem); 1124 } 1125 1126 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1127 { 1128 up_read(&sbi->cp_rwsem); 1129 } 1130 1131 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1132 { 1133 down_write(&sbi->cp_rwsem); 1134 } 1135 1136 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1137 { 1138 up_write(&sbi->cp_rwsem); 1139 } 1140 1141 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1142 { 1143 int reason = CP_SYNC; 1144 1145 if (test_opt(sbi, FASTBOOT)) 1146 reason = CP_FASTBOOT; 1147 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1148 reason = CP_UMOUNT; 1149 return reason; 1150 } 1151 1152 static inline bool __remain_node_summaries(int reason) 1153 { 1154 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1155 } 1156 1157 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1158 { 1159 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1160 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1161 } 1162 1163 /* 1164 * Check whether the given nid is within node id range. 1165 */ 1166 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1167 { 1168 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1169 return -EINVAL; 1170 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1171 return -EINVAL; 1172 return 0; 1173 } 1174 1175 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1176 1177 /* 1178 * Check whether the inode has blocks or not 1179 */ 1180 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1181 { 1182 if (F2FS_I(inode)->i_xattr_nid) 1183 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1184 else 1185 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1186 } 1187 1188 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1189 { 1190 return ofs == XATTR_NODE_OFFSET; 1191 } 1192 1193 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1194 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1195 struct inode *inode, blkcnt_t *count) 1196 { 1197 blkcnt_t diff; 1198 1199 #ifdef CONFIG_F2FS_FAULT_INJECTION 1200 if (time_to_inject(sbi, FAULT_BLOCK)) 1201 return false; 1202 #endif 1203 /* 1204 * let's increase this in prior to actual block count change in order 1205 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1206 */ 1207 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1208 1209 spin_lock(&sbi->stat_lock); 1210 sbi->total_valid_block_count += (block_t)(*count); 1211 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1212 diff = sbi->total_valid_block_count - sbi->user_block_count; 1213 *count -= diff; 1214 sbi->total_valid_block_count = sbi->user_block_count; 1215 if (!*count) { 1216 spin_unlock(&sbi->stat_lock); 1217 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1218 return false; 1219 } 1220 } 1221 spin_unlock(&sbi->stat_lock); 1222 1223 f2fs_i_blocks_write(inode, *count, true); 1224 return true; 1225 } 1226 1227 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1228 struct inode *inode, 1229 blkcnt_t count) 1230 { 1231 spin_lock(&sbi->stat_lock); 1232 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1233 f2fs_bug_on(sbi, inode->i_blocks < count); 1234 sbi->total_valid_block_count -= (block_t)count; 1235 spin_unlock(&sbi->stat_lock); 1236 f2fs_i_blocks_write(inode, count, false); 1237 } 1238 1239 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1240 { 1241 percpu_counter_inc(&sbi->nr_pages[count_type]); 1242 1243 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES) 1244 return; 1245 1246 set_sbi_flag(sbi, SBI_IS_DIRTY); 1247 } 1248 1249 static inline void inode_inc_dirty_pages(struct inode *inode) 1250 { 1251 percpu_counter_inc(&F2FS_I(inode)->dirty_pages); 1252 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1253 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1254 } 1255 1256 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1257 { 1258 percpu_counter_dec(&sbi->nr_pages[count_type]); 1259 } 1260 1261 static inline void inode_dec_dirty_pages(struct inode *inode) 1262 { 1263 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1264 !S_ISLNK(inode->i_mode)) 1265 return; 1266 1267 percpu_counter_dec(&F2FS_I(inode)->dirty_pages); 1268 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1269 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1270 } 1271 1272 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1273 { 1274 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]); 1275 } 1276 1277 static inline s64 get_dirty_pages(struct inode *inode) 1278 { 1279 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages); 1280 } 1281 1282 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1283 { 1284 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1285 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1286 sbi->log_blocks_per_seg; 1287 1288 return segs / sbi->segs_per_sec; 1289 } 1290 1291 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1292 { 1293 return sbi->total_valid_block_count; 1294 } 1295 1296 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1297 { 1298 return sbi->discard_blks; 1299 } 1300 1301 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1302 { 1303 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1304 1305 /* return NAT or SIT bitmap */ 1306 if (flag == NAT_BITMAP) 1307 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1308 else if (flag == SIT_BITMAP) 1309 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1310 1311 return 0; 1312 } 1313 1314 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1315 { 1316 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1317 } 1318 1319 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1320 { 1321 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1322 int offset; 1323 1324 if (__cp_payload(sbi) > 0) { 1325 if (flag == NAT_BITMAP) 1326 return &ckpt->sit_nat_version_bitmap; 1327 else 1328 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1329 } else { 1330 offset = (flag == NAT_BITMAP) ? 1331 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1332 return &ckpt->sit_nat_version_bitmap + offset; 1333 } 1334 } 1335 1336 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1337 { 1338 block_t start_addr; 1339 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1340 unsigned long long ckpt_version = cur_cp_version(ckpt); 1341 1342 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1343 1344 /* 1345 * odd numbered checkpoint should at cp segment 0 1346 * and even segment must be at cp segment 1 1347 */ 1348 if (!(ckpt_version & 1)) 1349 start_addr += sbi->blocks_per_seg; 1350 1351 return start_addr; 1352 } 1353 1354 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1355 { 1356 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1357 } 1358 1359 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1360 struct inode *inode) 1361 { 1362 block_t valid_block_count; 1363 unsigned int valid_node_count; 1364 1365 spin_lock(&sbi->stat_lock); 1366 1367 valid_block_count = sbi->total_valid_block_count + 1; 1368 if (unlikely(valid_block_count > sbi->user_block_count)) { 1369 spin_unlock(&sbi->stat_lock); 1370 return false; 1371 } 1372 1373 valid_node_count = sbi->total_valid_node_count + 1; 1374 if (unlikely(valid_node_count > sbi->total_node_count)) { 1375 spin_unlock(&sbi->stat_lock); 1376 return false; 1377 } 1378 1379 if (inode) 1380 f2fs_i_blocks_write(inode, 1, true); 1381 1382 sbi->total_valid_node_count++; 1383 sbi->total_valid_block_count++; 1384 spin_unlock(&sbi->stat_lock); 1385 1386 percpu_counter_inc(&sbi->alloc_valid_block_count); 1387 return true; 1388 } 1389 1390 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1391 struct inode *inode) 1392 { 1393 spin_lock(&sbi->stat_lock); 1394 1395 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1396 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1397 f2fs_bug_on(sbi, !inode->i_blocks); 1398 1399 f2fs_i_blocks_write(inode, 1, false); 1400 sbi->total_valid_node_count--; 1401 sbi->total_valid_block_count--; 1402 1403 spin_unlock(&sbi->stat_lock); 1404 } 1405 1406 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1407 { 1408 return sbi->total_valid_node_count; 1409 } 1410 1411 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1412 { 1413 percpu_counter_inc(&sbi->total_valid_inode_count); 1414 } 1415 1416 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1417 { 1418 percpu_counter_dec(&sbi->total_valid_inode_count); 1419 } 1420 1421 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1422 { 1423 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1424 } 1425 1426 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1427 pgoff_t index, bool for_write) 1428 { 1429 #ifdef CONFIG_F2FS_FAULT_INJECTION 1430 struct page *page = find_lock_page(mapping, index); 1431 if (page) 1432 return page; 1433 1434 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 1435 return NULL; 1436 #endif 1437 if (!for_write) 1438 return grab_cache_page(mapping, index); 1439 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1440 } 1441 1442 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1443 { 1444 char *src_kaddr = kmap(src); 1445 char *dst_kaddr = kmap(dst); 1446 1447 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1448 kunmap(dst); 1449 kunmap(src); 1450 } 1451 1452 static inline void f2fs_put_page(struct page *page, int unlock) 1453 { 1454 if (!page) 1455 return; 1456 1457 if (unlock) { 1458 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1459 unlock_page(page); 1460 } 1461 put_page(page); 1462 } 1463 1464 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1465 { 1466 if (dn->node_page) 1467 f2fs_put_page(dn->node_page, 1); 1468 if (dn->inode_page && dn->node_page != dn->inode_page) 1469 f2fs_put_page(dn->inode_page, 0); 1470 dn->node_page = NULL; 1471 dn->inode_page = NULL; 1472 } 1473 1474 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1475 size_t size) 1476 { 1477 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1478 } 1479 1480 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1481 gfp_t flags) 1482 { 1483 void *entry; 1484 1485 entry = kmem_cache_alloc(cachep, flags); 1486 if (!entry) 1487 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1488 return entry; 1489 } 1490 1491 static inline struct bio *f2fs_bio_alloc(int npages) 1492 { 1493 struct bio *bio; 1494 1495 /* No failure on bio allocation */ 1496 bio = bio_alloc(GFP_NOIO, npages); 1497 if (!bio) 1498 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1499 return bio; 1500 } 1501 1502 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1503 unsigned long index, void *item) 1504 { 1505 while (radix_tree_insert(root, index, item)) 1506 cond_resched(); 1507 } 1508 1509 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1510 1511 static inline bool IS_INODE(struct page *page) 1512 { 1513 struct f2fs_node *p = F2FS_NODE(page); 1514 return RAW_IS_INODE(p); 1515 } 1516 1517 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1518 { 1519 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1520 } 1521 1522 static inline block_t datablock_addr(struct page *node_page, 1523 unsigned int offset) 1524 { 1525 struct f2fs_node *raw_node; 1526 __le32 *addr_array; 1527 raw_node = F2FS_NODE(node_page); 1528 addr_array = blkaddr_in_node(raw_node); 1529 return le32_to_cpu(addr_array[offset]); 1530 } 1531 1532 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1533 { 1534 int mask; 1535 1536 addr += (nr >> 3); 1537 mask = 1 << (7 - (nr & 0x07)); 1538 return mask & *addr; 1539 } 1540 1541 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1542 { 1543 int mask; 1544 1545 addr += (nr >> 3); 1546 mask = 1 << (7 - (nr & 0x07)); 1547 *addr |= mask; 1548 } 1549 1550 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1551 { 1552 int mask; 1553 1554 addr += (nr >> 3); 1555 mask = 1 << (7 - (nr & 0x07)); 1556 *addr &= ~mask; 1557 } 1558 1559 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1560 { 1561 int mask; 1562 int ret; 1563 1564 addr += (nr >> 3); 1565 mask = 1 << (7 - (nr & 0x07)); 1566 ret = mask & *addr; 1567 *addr |= mask; 1568 return ret; 1569 } 1570 1571 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1572 { 1573 int mask; 1574 int ret; 1575 1576 addr += (nr >> 3); 1577 mask = 1 << (7 - (nr & 0x07)); 1578 ret = mask & *addr; 1579 *addr &= ~mask; 1580 return ret; 1581 } 1582 1583 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1584 { 1585 int mask; 1586 1587 addr += (nr >> 3); 1588 mask = 1 << (7 - (nr & 0x07)); 1589 *addr ^= mask; 1590 } 1591 1592 /* used for f2fs_inode_info->flags */ 1593 enum { 1594 FI_NEW_INODE, /* indicate newly allocated inode */ 1595 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1596 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1597 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1598 FI_INC_LINK, /* need to increment i_nlink */ 1599 FI_ACL_MODE, /* indicate acl mode */ 1600 FI_NO_ALLOC, /* should not allocate any blocks */ 1601 FI_FREE_NID, /* free allocated nide */ 1602 FI_NO_EXTENT, /* not to use the extent cache */ 1603 FI_INLINE_XATTR, /* used for inline xattr */ 1604 FI_INLINE_DATA, /* used for inline data*/ 1605 FI_INLINE_DENTRY, /* used for inline dentry */ 1606 FI_APPEND_WRITE, /* inode has appended data */ 1607 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1608 FI_NEED_IPU, /* used for ipu per file */ 1609 FI_ATOMIC_FILE, /* indicate atomic file */ 1610 FI_VOLATILE_FILE, /* indicate volatile file */ 1611 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1612 FI_DROP_CACHE, /* drop dirty page cache */ 1613 FI_DATA_EXIST, /* indicate data exists */ 1614 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1615 FI_DO_DEFRAG, /* indicate defragment is running */ 1616 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1617 }; 1618 1619 static inline void __mark_inode_dirty_flag(struct inode *inode, 1620 int flag, bool set) 1621 { 1622 switch (flag) { 1623 case FI_INLINE_XATTR: 1624 case FI_INLINE_DATA: 1625 case FI_INLINE_DENTRY: 1626 if (set) 1627 return; 1628 case FI_DATA_EXIST: 1629 case FI_INLINE_DOTS: 1630 f2fs_mark_inode_dirty_sync(inode); 1631 } 1632 } 1633 1634 static inline void set_inode_flag(struct inode *inode, int flag) 1635 { 1636 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1637 set_bit(flag, &F2FS_I(inode)->flags); 1638 __mark_inode_dirty_flag(inode, flag, true); 1639 } 1640 1641 static inline int is_inode_flag_set(struct inode *inode, int flag) 1642 { 1643 return test_bit(flag, &F2FS_I(inode)->flags); 1644 } 1645 1646 static inline void clear_inode_flag(struct inode *inode, int flag) 1647 { 1648 if (test_bit(flag, &F2FS_I(inode)->flags)) 1649 clear_bit(flag, &F2FS_I(inode)->flags); 1650 __mark_inode_dirty_flag(inode, flag, false); 1651 } 1652 1653 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1654 { 1655 F2FS_I(inode)->i_acl_mode = mode; 1656 set_inode_flag(inode, FI_ACL_MODE); 1657 f2fs_mark_inode_dirty_sync(inode); 1658 } 1659 1660 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1661 { 1662 if (inc) 1663 inc_nlink(inode); 1664 else 1665 drop_nlink(inode); 1666 f2fs_mark_inode_dirty_sync(inode); 1667 } 1668 1669 static inline void f2fs_i_blocks_write(struct inode *inode, 1670 blkcnt_t diff, bool add) 1671 { 1672 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1673 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1674 1675 inode->i_blocks = add ? inode->i_blocks + diff : 1676 inode->i_blocks - diff; 1677 f2fs_mark_inode_dirty_sync(inode); 1678 if (clean || recover) 1679 set_inode_flag(inode, FI_AUTO_RECOVER); 1680 } 1681 1682 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1683 { 1684 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1685 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1686 1687 if (i_size_read(inode) == i_size) 1688 return; 1689 1690 i_size_write(inode, i_size); 1691 f2fs_mark_inode_dirty_sync(inode); 1692 if (clean || recover) 1693 set_inode_flag(inode, FI_AUTO_RECOVER); 1694 } 1695 1696 static inline bool f2fs_skip_inode_update(struct inode *inode) 1697 { 1698 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1699 return false; 1700 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1701 } 1702 1703 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1704 { 1705 F2FS_I(inode)->i_current_depth = depth; 1706 f2fs_mark_inode_dirty_sync(inode); 1707 } 1708 1709 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1710 { 1711 F2FS_I(inode)->i_xattr_nid = xnid; 1712 f2fs_mark_inode_dirty_sync(inode); 1713 } 1714 1715 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1716 { 1717 F2FS_I(inode)->i_pino = pino; 1718 f2fs_mark_inode_dirty_sync(inode); 1719 } 1720 1721 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1722 { 1723 struct f2fs_inode_info *fi = F2FS_I(inode); 1724 1725 if (ri->i_inline & F2FS_INLINE_XATTR) 1726 set_bit(FI_INLINE_XATTR, &fi->flags); 1727 if (ri->i_inline & F2FS_INLINE_DATA) 1728 set_bit(FI_INLINE_DATA, &fi->flags); 1729 if (ri->i_inline & F2FS_INLINE_DENTRY) 1730 set_bit(FI_INLINE_DENTRY, &fi->flags); 1731 if (ri->i_inline & F2FS_DATA_EXIST) 1732 set_bit(FI_DATA_EXIST, &fi->flags); 1733 if (ri->i_inline & F2FS_INLINE_DOTS) 1734 set_bit(FI_INLINE_DOTS, &fi->flags); 1735 } 1736 1737 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1738 { 1739 ri->i_inline = 0; 1740 1741 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1742 ri->i_inline |= F2FS_INLINE_XATTR; 1743 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1744 ri->i_inline |= F2FS_INLINE_DATA; 1745 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1746 ri->i_inline |= F2FS_INLINE_DENTRY; 1747 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1748 ri->i_inline |= F2FS_DATA_EXIST; 1749 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1750 ri->i_inline |= F2FS_INLINE_DOTS; 1751 } 1752 1753 static inline int f2fs_has_inline_xattr(struct inode *inode) 1754 { 1755 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1756 } 1757 1758 static inline unsigned int addrs_per_inode(struct inode *inode) 1759 { 1760 if (f2fs_has_inline_xattr(inode)) 1761 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1762 return DEF_ADDRS_PER_INODE; 1763 } 1764 1765 static inline void *inline_xattr_addr(struct page *page) 1766 { 1767 struct f2fs_inode *ri = F2FS_INODE(page); 1768 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1769 F2FS_INLINE_XATTR_ADDRS]); 1770 } 1771 1772 static inline int inline_xattr_size(struct inode *inode) 1773 { 1774 if (f2fs_has_inline_xattr(inode)) 1775 return F2FS_INLINE_XATTR_ADDRS << 2; 1776 else 1777 return 0; 1778 } 1779 1780 static inline int f2fs_has_inline_data(struct inode *inode) 1781 { 1782 return is_inode_flag_set(inode, FI_INLINE_DATA); 1783 } 1784 1785 static inline void f2fs_clear_inline_inode(struct inode *inode) 1786 { 1787 clear_inode_flag(inode, FI_INLINE_DATA); 1788 clear_inode_flag(inode, FI_DATA_EXIST); 1789 } 1790 1791 static inline int f2fs_exist_data(struct inode *inode) 1792 { 1793 return is_inode_flag_set(inode, FI_DATA_EXIST); 1794 } 1795 1796 static inline int f2fs_has_inline_dots(struct inode *inode) 1797 { 1798 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1799 } 1800 1801 static inline bool f2fs_is_atomic_file(struct inode *inode) 1802 { 1803 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1804 } 1805 1806 static inline bool f2fs_is_volatile_file(struct inode *inode) 1807 { 1808 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1809 } 1810 1811 static inline bool f2fs_is_first_block_written(struct inode *inode) 1812 { 1813 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1814 } 1815 1816 static inline bool f2fs_is_drop_cache(struct inode *inode) 1817 { 1818 return is_inode_flag_set(inode, FI_DROP_CACHE); 1819 } 1820 1821 static inline void *inline_data_addr(struct page *page) 1822 { 1823 struct f2fs_inode *ri = F2FS_INODE(page); 1824 return (void *)&(ri->i_addr[1]); 1825 } 1826 1827 static inline int f2fs_has_inline_dentry(struct inode *inode) 1828 { 1829 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1830 } 1831 1832 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1833 { 1834 if (!f2fs_has_inline_dentry(dir)) 1835 kunmap(page); 1836 } 1837 1838 static inline int is_file(struct inode *inode, int type) 1839 { 1840 return F2FS_I(inode)->i_advise & type; 1841 } 1842 1843 static inline void set_file(struct inode *inode, int type) 1844 { 1845 F2FS_I(inode)->i_advise |= type; 1846 f2fs_mark_inode_dirty_sync(inode); 1847 } 1848 1849 static inline void clear_file(struct inode *inode, int type) 1850 { 1851 F2FS_I(inode)->i_advise &= ~type; 1852 f2fs_mark_inode_dirty_sync(inode); 1853 } 1854 1855 static inline int f2fs_readonly(struct super_block *sb) 1856 { 1857 return sb->s_flags & MS_RDONLY; 1858 } 1859 1860 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1861 { 1862 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1863 } 1864 1865 static inline bool is_dot_dotdot(const struct qstr *str) 1866 { 1867 if (str->len == 1 && str->name[0] == '.') 1868 return true; 1869 1870 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1871 return true; 1872 1873 return false; 1874 } 1875 1876 static inline bool f2fs_may_extent_tree(struct inode *inode) 1877 { 1878 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1879 is_inode_flag_set(inode, FI_NO_EXTENT)) 1880 return false; 1881 1882 return S_ISREG(inode->i_mode); 1883 } 1884 1885 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1886 size_t size, gfp_t flags) 1887 { 1888 #ifdef CONFIG_F2FS_FAULT_INJECTION 1889 if (time_to_inject(sbi, FAULT_KMALLOC)) 1890 return NULL; 1891 #endif 1892 return kmalloc(size, flags); 1893 } 1894 1895 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1896 { 1897 void *ret; 1898 1899 ret = kmalloc(size, flags | __GFP_NOWARN); 1900 if (!ret) 1901 ret = __vmalloc(size, flags, PAGE_KERNEL); 1902 return ret; 1903 } 1904 1905 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1906 { 1907 void *ret; 1908 1909 ret = kzalloc(size, flags | __GFP_NOWARN); 1910 if (!ret) 1911 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1912 return ret; 1913 } 1914 1915 #define get_inode_mode(i) \ 1916 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1917 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1918 1919 /* get offset of first page in next direct node */ 1920 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1921 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1922 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1923 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1924 1925 /* 1926 * file.c 1927 */ 1928 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1929 void truncate_data_blocks(struct dnode_of_data *); 1930 int truncate_blocks(struct inode *, u64, bool); 1931 int f2fs_truncate(struct inode *); 1932 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1933 int f2fs_setattr(struct dentry *, struct iattr *); 1934 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1935 int truncate_data_blocks_range(struct dnode_of_data *, int); 1936 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1937 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1938 1939 /* 1940 * inode.c 1941 */ 1942 void f2fs_set_inode_flags(struct inode *); 1943 struct inode *f2fs_iget(struct super_block *, unsigned long); 1944 struct inode *f2fs_iget_retry(struct super_block *, unsigned long); 1945 int try_to_free_nats(struct f2fs_sb_info *, int); 1946 int update_inode(struct inode *, struct page *); 1947 int update_inode_page(struct inode *); 1948 int f2fs_write_inode(struct inode *, struct writeback_control *); 1949 void f2fs_evict_inode(struct inode *); 1950 void handle_failed_inode(struct inode *); 1951 1952 /* 1953 * namei.c 1954 */ 1955 struct dentry *f2fs_get_parent(struct dentry *child); 1956 1957 /* 1958 * dir.c 1959 */ 1960 void set_de_type(struct f2fs_dir_entry *, umode_t); 1961 unsigned char get_de_type(struct f2fs_dir_entry *); 1962 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1963 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1964 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1965 unsigned int, struct fscrypt_str *); 1966 void do_make_empty_dir(struct inode *, struct inode *, 1967 struct f2fs_dentry_ptr *); 1968 struct page *init_inode_metadata(struct inode *, struct inode *, 1969 const struct qstr *, const struct qstr *, struct page *); 1970 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1971 int room_for_filename(const void *, int, int); 1972 void f2fs_drop_nlink(struct inode *, struct inode *); 1973 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *, 1974 struct page **); 1975 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 1976 struct page **); 1977 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1978 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 1979 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1980 struct page *, struct inode *); 1981 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1982 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1983 const struct qstr *, f2fs_hash_t , unsigned int); 1984 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 1985 const struct qstr *, struct inode *, nid_t, umode_t); 1986 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *, 1987 nid_t, umode_t); 1988 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1989 umode_t); 1990 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1991 struct inode *); 1992 int f2fs_do_tmpfile(struct inode *, struct inode *); 1993 bool f2fs_empty_dir(struct inode *); 1994 1995 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1996 { 1997 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1998 inode, inode->i_ino, inode->i_mode); 1999 } 2000 2001 /* 2002 * super.c 2003 */ 2004 int f2fs_inode_dirtied(struct inode *); 2005 void f2fs_inode_synced(struct inode *); 2006 int f2fs_commit_super(struct f2fs_sb_info *, bool); 2007 int f2fs_sync_fs(struct super_block *, int); 2008 extern __printf(3, 4) 2009 void f2fs_msg(struct super_block *, const char *, const char *, ...); 2010 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2011 2012 /* 2013 * hash.c 2014 */ 2015 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 2016 2017 /* 2018 * node.c 2019 */ 2020 struct dnode_of_data; 2021 struct node_info; 2022 2023 bool available_free_memory(struct f2fs_sb_info *, int); 2024 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 2025 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 2026 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 2027 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 2028 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 2029 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 2030 int truncate_inode_blocks(struct inode *, pgoff_t); 2031 int truncate_xattr_node(struct inode *, struct page *); 2032 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 2033 int remove_inode_page(struct inode *); 2034 struct page *new_inode_page(struct inode *); 2035 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 2036 void ra_node_page(struct f2fs_sb_info *, nid_t); 2037 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 2038 struct page *get_node_page_ra(struct page *, int); 2039 void move_node_page(struct page *, int); 2040 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 2041 struct writeback_control *, bool); 2042 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 2043 void build_free_nids(struct f2fs_sb_info *, bool); 2044 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 2045 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 2046 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 2047 int try_to_free_nids(struct f2fs_sb_info *, int); 2048 void recover_inline_xattr(struct inode *, struct page *); 2049 void recover_xattr_data(struct inode *, struct page *, block_t); 2050 int recover_inode_page(struct f2fs_sb_info *, struct page *); 2051 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 2052 struct f2fs_summary_block *); 2053 void flush_nat_entries(struct f2fs_sb_info *); 2054 int build_node_manager(struct f2fs_sb_info *); 2055 void destroy_node_manager(struct f2fs_sb_info *); 2056 int __init create_node_manager_caches(void); 2057 void destroy_node_manager_caches(void); 2058 2059 /* 2060 * segment.c 2061 */ 2062 void register_inmem_page(struct inode *, struct page *); 2063 void drop_inmem_pages(struct inode *); 2064 int commit_inmem_pages(struct inode *); 2065 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2066 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2067 int f2fs_issue_flush(struct f2fs_sb_info *); 2068 int create_flush_cmd_control(struct f2fs_sb_info *); 2069 void destroy_flush_cmd_control(struct f2fs_sb_info *); 2070 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2071 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2072 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2073 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *); 2074 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2075 void release_discard_addrs(struct f2fs_sb_info *); 2076 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2077 void allocate_new_segments(struct f2fs_sb_info *); 2078 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2079 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2080 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2081 void write_meta_page(struct f2fs_sb_info *, struct page *); 2082 void write_node_page(unsigned int, struct f2fs_io_info *); 2083 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2084 void rewrite_data_page(struct f2fs_io_info *); 2085 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2086 block_t, block_t, bool, bool); 2087 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2088 block_t, block_t, unsigned char, bool, bool); 2089 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2090 block_t, block_t *, struct f2fs_summary *, int); 2091 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2092 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2093 void write_data_summaries(struct f2fs_sb_info *, block_t); 2094 void write_node_summaries(struct f2fs_sb_info *, block_t); 2095 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2096 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2097 int build_segment_manager(struct f2fs_sb_info *); 2098 void destroy_segment_manager(struct f2fs_sb_info *); 2099 int __init create_segment_manager_caches(void); 2100 void destroy_segment_manager_caches(void); 2101 2102 /* 2103 * checkpoint.c 2104 */ 2105 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2106 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2107 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2108 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2109 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2110 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2111 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2112 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2113 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2114 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2115 void release_ino_entry(struct f2fs_sb_info *, bool); 2116 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2117 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2118 int acquire_orphan_inode(struct f2fs_sb_info *); 2119 void release_orphan_inode(struct f2fs_sb_info *); 2120 void add_orphan_inode(struct inode *); 2121 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2122 int recover_orphan_inodes(struct f2fs_sb_info *); 2123 int get_valid_checkpoint(struct f2fs_sb_info *); 2124 void update_dirty_page(struct inode *, struct page *); 2125 void remove_dirty_inode(struct inode *); 2126 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2127 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2128 void init_ino_entry_info(struct f2fs_sb_info *); 2129 int __init create_checkpoint_caches(void); 2130 void destroy_checkpoint_caches(void); 2131 2132 /* 2133 * data.c 2134 */ 2135 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2136 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2137 struct page *, nid_t, enum page_type, int); 2138 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2139 int f2fs_submit_page_bio(struct f2fs_io_info *); 2140 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2141 void set_data_blkaddr(struct dnode_of_data *); 2142 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2143 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2144 int reserve_new_block(struct dnode_of_data *); 2145 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2146 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2147 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2148 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2149 struct page *find_data_page(struct inode *, pgoff_t); 2150 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2151 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2152 int do_write_data_page(struct f2fs_io_info *); 2153 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2154 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2155 void f2fs_set_page_dirty_nobuffers(struct page *); 2156 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2157 int f2fs_release_page(struct page *, gfp_t); 2158 #ifdef CONFIG_MIGRATION 2159 int f2fs_migrate_page(struct address_space *, struct page *, struct page *, 2160 enum migrate_mode); 2161 #endif 2162 2163 /* 2164 * gc.c 2165 */ 2166 int start_gc_thread(struct f2fs_sb_info *); 2167 void stop_gc_thread(struct f2fs_sb_info *); 2168 block_t start_bidx_of_node(unsigned int, struct inode *); 2169 int f2fs_gc(struct f2fs_sb_info *, bool); 2170 void build_gc_manager(struct f2fs_sb_info *); 2171 2172 /* 2173 * recovery.c 2174 */ 2175 int recover_fsync_data(struct f2fs_sb_info *, bool); 2176 bool space_for_roll_forward(struct f2fs_sb_info *); 2177 2178 /* 2179 * debug.c 2180 */ 2181 #ifdef CONFIG_F2FS_STAT_FS 2182 struct f2fs_stat_info { 2183 struct list_head stat_list; 2184 struct f2fs_sb_info *sbi; 2185 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2186 int main_area_segs, main_area_sections, main_area_zones; 2187 unsigned long long hit_largest, hit_cached, hit_rbtree; 2188 unsigned long long hit_total, total_ext; 2189 int ext_tree, zombie_tree, ext_node; 2190 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2191 s64 inmem_pages; 2192 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2193 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2194 int total_count, utilization; 2195 int bg_gc, wb_bios; 2196 int inline_xattr, inline_inode, inline_dir, orphans; 2197 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2198 unsigned int bimodal, avg_vblocks; 2199 int util_free, util_valid, util_invalid; 2200 int rsvd_segs, overp_segs; 2201 int dirty_count, node_pages, meta_pages; 2202 int prefree_count, call_count, cp_count, bg_cp_count; 2203 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2204 int bg_node_segs, bg_data_segs; 2205 int tot_blks, data_blks, node_blks; 2206 int bg_data_blks, bg_node_blks; 2207 int curseg[NR_CURSEG_TYPE]; 2208 int cursec[NR_CURSEG_TYPE]; 2209 int curzone[NR_CURSEG_TYPE]; 2210 2211 unsigned int segment_count[2]; 2212 unsigned int block_count[2]; 2213 unsigned int inplace_count; 2214 unsigned long long base_mem, cache_mem, page_mem; 2215 }; 2216 2217 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2218 { 2219 return (struct f2fs_stat_info *)sbi->stat_info; 2220 } 2221 2222 #define stat_inc_cp_count(si) ((si)->cp_count++) 2223 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2224 #define stat_inc_call_count(si) ((si)->call_count++) 2225 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2226 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2227 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2228 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2229 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2230 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2231 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2232 #define stat_inc_inline_xattr(inode) \ 2233 do { \ 2234 if (f2fs_has_inline_xattr(inode)) \ 2235 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2236 } while (0) 2237 #define stat_dec_inline_xattr(inode) \ 2238 do { \ 2239 if (f2fs_has_inline_xattr(inode)) \ 2240 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2241 } while (0) 2242 #define stat_inc_inline_inode(inode) \ 2243 do { \ 2244 if (f2fs_has_inline_data(inode)) \ 2245 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2246 } while (0) 2247 #define stat_dec_inline_inode(inode) \ 2248 do { \ 2249 if (f2fs_has_inline_data(inode)) \ 2250 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2251 } while (0) 2252 #define stat_inc_inline_dir(inode) \ 2253 do { \ 2254 if (f2fs_has_inline_dentry(inode)) \ 2255 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2256 } while (0) 2257 #define stat_dec_inline_dir(inode) \ 2258 do { \ 2259 if (f2fs_has_inline_dentry(inode)) \ 2260 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2261 } while (0) 2262 #define stat_inc_seg_type(sbi, curseg) \ 2263 ((sbi)->segment_count[(curseg)->alloc_type]++) 2264 #define stat_inc_block_count(sbi, curseg) \ 2265 ((sbi)->block_count[(curseg)->alloc_type]++) 2266 #define stat_inc_inplace_blocks(sbi) \ 2267 (atomic_inc(&(sbi)->inplace_count)) 2268 #define stat_inc_seg_count(sbi, type, gc_type) \ 2269 do { \ 2270 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2271 (si)->tot_segs++; \ 2272 if (type == SUM_TYPE_DATA) { \ 2273 si->data_segs++; \ 2274 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2275 } else { \ 2276 si->node_segs++; \ 2277 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2278 } \ 2279 } while (0) 2280 2281 #define stat_inc_tot_blk_count(si, blks) \ 2282 (si->tot_blks += (blks)) 2283 2284 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2285 do { \ 2286 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2287 stat_inc_tot_blk_count(si, blks); \ 2288 si->data_blks += (blks); \ 2289 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2290 } while (0) 2291 2292 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2293 do { \ 2294 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2295 stat_inc_tot_blk_count(si, blks); \ 2296 si->node_blks += (blks); \ 2297 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2298 } while (0) 2299 2300 int f2fs_build_stats(struct f2fs_sb_info *); 2301 void f2fs_destroy_stats(struct f2fs_sb_info *); 2302 int __init f2fs_create_root_stats(void); 2303 void f2fs_destroy_root_stats(void); 2304 #else 2305 #define stat_inc_cp_count(si) 2306 #define stat_inc_bg_cp_count(si) 2307 #define stat_inc_call_count(si) 2308 #define stat_inc_bggc_count(si) 2309 #define stat_inc_dirty_inode(sbi, type) 2310 #define stat_dec_dirty_inode(sbi, type) 2311 #define stat_inc_total_hit(sb) 2312 #define stat_inc_rbtree_node_hit(sb) 2313 #define stat_inc_largest_node_hit(sbi) 2314 #define stat_inc_cached_node_hit(sbi) 2315 #define stat_inc_inline_xattr(inode) 2316 #define stat_dec_inline_xattr(inode) 2317 #define stat_inc_inline_inode(inode) 2318 #define stat_dec_inline_inode(inode) 2319 #define stat_inc_inline_dir(inode) 2320 #define stat_dec_inline_dir(inode) 2321 #define stat_inc_seg_type(sbi, curseg) 2322 #define stat_inc_block_count(sbi, curseg) 2323 #define stat_inc_inplace_blocks(sbi) 2324 #define stat_inc_seg_count(sbi, type, gc_type) 2325 #define stat_inc_tot_blk_count(si, blks) 2326 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2327 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2328 2329 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2330 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2331 static inline int __init f2fs_create_root_stats(void) { return 0; } 2332 static inline void f2fs_destroy_root_stats(void) { } 2333 #endif 2334 2335 extern const struct file_operations f2fs_dir_operations; 2336 extern const struct file_operations f2fs_file_operations; 2337 extern const struct inode_operations f2fs_file_inode_operations; 2338 extern const struct address_space_operations f2fs_dblock_aops; 2339 extern const struct address_space_operations f2fs_node_aops; 2340 extern const struct address_space_operations f2fs_meta_aops; 2341 extern const struct inode_operations f2fs_dir_inode_operations; 2342 extern const struct inode_operations f2fs_symlink_inode_operations; 2343 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2344 extern const struct inode_operations f2fs_special_inode_operations; 2345 extern struct kmem_cache *inode_entry_slab; 2346 2347 /* 2348 * inline.c 2349 */ 2350 bool f2fs_may_inline_data(struct inode *); 2351 bool f2fs_may_inline_dentry(struct inode *); 2352 void read_inline_data(struct page *, struct page *); 2353 bool truncate_inline_inode(struct page *, u64); 2354 int f2fs_read_inline_data(struct inode *, struct page *); 2355 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2356 int f2fs_convert_inline_inode(struct inode *); 2357 int f2fs_write_inline_data(struct inode *, struct page *); 2358 bool recover_inline_data(struct inode *, struct page *); 2359 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2360 struct fscrypt_name *, struct page **); 2361 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2362 int f2fs_add_inline_entry(struct inode *, const struct qstr *, 2363 const struct qstr *, struct inode *, nid_t, umode_t); 2364 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2365 struct inode *, struct inode *); 2366 bool f2fs_empty_inline_dir(struct inode *); 2367 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2368 struct fscrypt_str *); 2369 int f2fs_inline_data_fiemap(struct inode *, 2370 struct fiemap_extent_info *, __u64, __u64); 2371 2372 /* 2373 * shrinker.c 2374 */ 2375 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2376 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2377 void f2fs_join_shrinker(struct f2fs_sb_info *); 2378 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2379 2380 /* 2381 * extent_cache.c 2382 */ 2383 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2384 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2385 void f2fs_drop_extent_tree(struct inode *); 2386 unsigned int f2fs_destroy_extent_node(struct inode *); 2387 void f2fs_destroy_extent_tree(struct inode *); 2388 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2389 void f2fs_update_extent_cache(struct dnode_of_data *); 2390 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2391 pgoff_t, block_t, unsigned int); 2392 void init_extent_cache_info(struct f2fs_sb_info *); 2393 int __init create_extent_cache(void); 2394 void destroy_extent_cache(void); 2395 2396 /* 2397 * crypto support 2398 */ 2399 static inline bool f2fs_encrypted_inode(struct inode *inode) 2400 { 2401 return file_is_encrypt(inode); 2402 } 2403 2404 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2405 { 2406 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2407 file_set_encrypt(inode); 2408 #endif 2409 } 2410 2411 static inline bool f2fs_bio_encrypted(struct bio *bio) 2412 { 2413 return bio->bi_private != NULL; 2414 } 2415 2416 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2417 { 2418 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2419 } 2420 2421 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb) 2422 { 2423 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR); 2424 } 2425 2426 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2427 { 2428 clear_opt(sbi, ADAPTIVE); 2429 clear_opt(sbi, LFS); 2430 2431 switch (mt) { 2432 case F2FS_MOUNT_ADAPTIVE: 2433 set_opt(sbi, ADAPTIVE); 2434 break; 2435 case F2FS_MOUNT_LFS: 2436 set_opt(sbi, LFS); 2437 break; 2438 } 2439 } 2440 2441 static inline bool f2fs_may_encrypt(struct inode *inode) 2442 { 2443 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2444 umode_t mode = inode->i_mode; 2445 2446 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2447 #else 2448 return 0; 2449 #endif 2450 } 2451 2452 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2453 #define fscrypt_set_d_op(i) 2454 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2455 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2456 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2457 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2458 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2459 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2460 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2461 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2462 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2463 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2464 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2465 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2466 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2467 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2468 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2469 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2470 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2471 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2472 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2473 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2474 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2475 #endif 2476 #endif 2477