1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 78 #endif 79 80 /* 81 * For mount options 82 */ 83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 84 #define F2FS_MOUNT_DISCARD 0x00000004 85 #define F2FS_MOUNT_NOHEAP 0x00000008 86 #define F2FS_MOUNT_XATTR_USER 0x00000010 87 #define F2FS_MOUNT_POSIX_ACL 0x00000020 88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 89 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 90 #define F2FS_MOUNT_INLINE_DATA 0x00000100 91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 93 #define F2FS_MOUNT_NOBARRIER 0x00000800 94 #define F2FS_MOUNT_FASTBOOT 0x00001000 95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00002000 96 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 97 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 98 #define F2FS_MOUNT_USRQUOTA 0x00080000 99 #define F2FS_MOUNT_GRPQUOTA 0x00100000 100 #define F2FS_MOUNT_PRJQUOTA 0x00200000 101 #define F2FS_MOUNT_QUOTA 0x00400000 102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 103 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 105 #define F2FS_MOUNT_NORECOVERY 0x04000000 106 #define F2FS_MOUNT_ATGC 0x08000000 107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 108 #define F2FS_MOUNT_GC_MERGE 0x20000000 109 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x80000000 111 112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 116 117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 118 typecheck(unsigned long long, b) && \ 119 ((long long)((a) - (b)) > 0)) 120 121 typedef u32 block_t; /* 122 * should not change u32, since it is the on-disk block 123 * address format, __le32. 124 */ 125 typedef u32 nid_t; 126 127 #define COMPRESS_EXT_NUM 16 128 129 /* 130 * An implementation of an rwsem that is explicitly unfair to readers. This 131 * prevents priority inversion when a low-priority reader acquires the read lock 132 * while sleeping on the write lock but the write lock is needed by 133 * higher-priority clients. 134 */ 135 136 struct f2fs_rwsem { 137 struct rw_semaphore internal_rwsem; 138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 139 wait_queue_head_t read_waiters; 140 #endif 141 }; 142 143 struct f2fs_mount_info { 144 unsigned int opt; 145 int write_io_size_bits; /* Write IO size bits */ 146 block_t root_reserved_blocks; /* root reserved blocks */ 147 kuid_t s_resuid; /* reserved blocks for uid */ 148 kgid_t s_resgid; /* reserved blocks for gid */ 149 int active_logs; /* # of active logs */ 150 int inline_xattr_size; /* inline xattr size */ 151 #ifdef CONFIG_F2FS_FAULT_INJECTION 152 struct f2fs_fault_info fault_info; /* For fault injection */ 153 #endif 154 #ifdef CONFIG_QUOTA 155 /* Names of quota files with journalled quota */ 156 char *s_qf_names[MAXQUOTAS]; 157 int s_jquota_fmt; /* Format of quota to use */ 158 #endif 159 /* For which write hints are passed down to block layer */ 160 int alloc_mode; /* segment allocation policy */ 161 int fsync_mode; /* fsync policy */ 162 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 163 int bggc_mode; /* bggc mode: off, on or sync */ 164 int memory_mode; /* memory mode */ 165 int discard_unit; /* 166 * discard command's offset/size should 167 * be aligned to this unit: block, 168 * segment or section 169 */ 170 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 171 block_t unusable_cap_perc; /* percentage for cap */ 172 block_t unusable_cap; /* Amount of space allowed to be 173 * unusable when disabling checkpoint 174 */ 175 176 /* For compression */ 177 unsigned char compress_algorithm; /* algorithm type */ 178 unsigned char compress_log_size; /* cluster log size */ 179 unsigned char compress_level; /* compress level */ 180 bool compress_chksum; /* compressed data chksum */ 181 unsigned char compress_ext_cnt; /* extension count */ 182 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 183 int compress_mode; /* compression mode */ 184 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 185 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 186 }; 187 188 #define F2FS_FEATURE_ENCRYPT 0x0001 189 #define F2FS_FEATURE_BLKZONED 0x0002 190 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 191 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 192 #define F2FS_FEATURE_PRJQUOTA 0x0010 193 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 195 #define F2FS_FEATURE_QUOTA_INO 0x0080 196 #define F2FS_FEATURE_INODE_CRTIME 0x0100 197 #define F2FS_FEATURE_LOST_FOUND 0x0200 198 #define F2FS_FEATURE_VERITY 0x0400 199 #define F2FS_FEATURE_SB_CHKSUM 0x0800 200 #define F2FS_FEATURE_CASEFOLD 0x1000 201 #define F2FS_FEATURE_COMPRESSION 0x2000 202 #define F2FS_FEATURE_RO 0x4000 203 204 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 205 ((raw_super->feature & cpu_to_le32(mask)) != 0) 206 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 207 208 /* 209 * Default values for user and/or group using reserved blocks 210 */ 211 #define F2FS_DEF_RESUID 0 212 #define F2FS_DEF_RESGID 0 213 214 /* 215 * For checkpoint manager 216 */ 217 enum { 218 NAT_BITMAP, 219 SIT_BITMAP 220 }; 221 222 #define CP_UMOUNT 0x00000001 223 #define CP_FASTBOOT 0x00000002 224 #define CP_SYNC 0x00000004 225 #define CP_RECOVERY 0x00000008 226 #define CP_DISCARD 0x00000010 227 #define CP_TRIMMED 0x00000020 228 #define CP_PAUSE 0x00000040 229 #define CP_RESIZE 0x00000080 230 231 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 232 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 233 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 234 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 235 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 236 #define DEF_CP_INTERVAL 60 /* 60 secs */ 237 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 238 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 239 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 240 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 241 242 struct cp_control { 243 int reason; 244 __u64 trim_start; 245 __u64 trim_end; 246 __u64 trim_minlen; 247 }; 248 249 /* 250 * indicate meta/data type 251 */ 252 enum { 253 META_CP, 254 META_NAT, 255 META_SIT, 256 META_SSA, 257 META_MAX, 258 META_POR, 259 DATA_GENERIC, /* check range only */ 260 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 261 DATA_GENERIC_ENHANCE_READ, /* 262 * strong check on range and segment 263 * bitmap but no warning due to race 264 * condition of read on truncated area 265 * by extent_cache 266 */ 267 DATA_GENERIC_ENHANCE_UPDATE, /* 268 * strong check on range and segment 269 * bitmap for update case 270 */ 271 META_GENERIC, 272 }; 273 274 /* for the list of ino */ 275 enum { 276 ORPHAN_INO, /* for orphan ino list */ 277 APPEND_INO, /* for append ino list */ 278 UPDATE_INO, /* for update ino list */ 279 TRANS_DIR_INO, /* for transactions dir ino list */ 280 FLUSH_INO, /* for multiple device flushing */ 281 MAX_INO_ENTRY, /* max. list */ 282 }; 283 284 struct ino_entry { 285 struct list_head list; /* list head */ 286 nid_t ino; /* inode number */ 287 unsigned int dirty_device; /* dirty device bitmap */ 288 }; 289 290 /* for the list of inodes to be GCed */ 291 struct inode_entry { 292 struct list_head list; /* list head */ 293 struct inode *inode; /* vfs inode pointer */ 294 }; 295 296 struct fsync_node_entry { 297 struct list_head list; /* list head */ 298 struct page *page; /* warm node page pointer */ 299 unsigned int seq_id; /* sequence id */ 300 }; 301 302 struct ckpt_req { 303 struct completion wait; /* completion for checkpoint done */ 304 struct llist_node llnode; /* llist_node to be linked in wait queue */ 305 int ret; /* return code of checkpoint */ 306 ktime_t queue_time; /* request queued time */ 307 }; 308 309 struct ckpt_req_control { 310 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 311 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 312 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 313 atomic_t issued_ckpt; /* # of actually issued ckpts */ 314 atomic_t total_ckpt; /* # of total ckpts */ 315 atomic_t queued_ckpt; /* # of queued ckpts */ 316 struct llist_head issue_list; /* list for command issue */ 317 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 318 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 319 unsigned int peak_time; /* peak wait time in msec until now */ 320 }; 321 322 /* for the bitmap indicate blocks to be discarded */ 323 struct discard_entry { 324 struct list_head list; /* list head */ 325 block_t start_blkaddr; /* start blockaddr of current segment */ 326 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 327 }; 328 329 /* minimum discard granularity, unit: block count */ 330 #define MIN_DISCARD_GRANULARITY 1 331 /* default discard granularity of inner discard thread, unit: block count */ 332 #define DEFAULT_DISCARD_GRANULARITY 16 333 /* default maximum discard granularity of ordered discard, unit: block count */ 334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 335 336 /* max discard pend list number */ 337 #define MAX_PLIST_NUM 512 338 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 339 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 340 341 enum { 342 D_PREP, /* initial */ 343 D_PARTIAL, /* partially submitted */ 344 D_SUBMIT, /* all submitted */ 345 D_DONE, /* finished */ 346 }; 347 348 struct discard_info { 349 block_t lstart; /* logical start address */ 350 block_t len; /* length */ 351 block_t start; /* actual start address in dev */ 352 }; 353 354 struct discard_cmd { 355 struct rb_node rb_node; /* rb node located in rb-tree */ 356 union { 357 struct { 358 block_t lstart; /* logical start address */ 359 block_t len; /* length */ 360 block_t start; /* actual start address in dev */ 361 }; 362 struct discard_info di; /* discard info */ 363 364 }; 365 struct list_head list; /* command list */ 366 struct completion wait; /* compleation */ 367 struct block_device *bdev; /* bdev */ 368 unsigned short ref; /* reference count */ 369 unsigned char state; /* state */ 370 unsigned char queued; /* queued discard */ 371 int error; /* bio error */ 372 spinlock_t lock; /* for state/bio_ref updating */ 373 unsigned short bio_ref; /* bio reference count */ 374 }; 375 376 enum { 377 DPOLICY_BG, 378 DPOLICY_FORCE, 379 DPOLICY_FSTRIM, 380 DPOLICY_UMOUNT, 381 MAX_DPOLICY, 382 }; 383 384 struct discard_policy { 385 int type; /* type of discard */ 386 unsigned int min_interval; /* used for candidates exist */ 387 unsigned int mid_interval; /* used for device busy */ 388 unsigned int max_interval; /* used for candidates not exist */ 389 unsigned int max_requests; /* # of discards issued per round */ 390 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 391 bool io_aware; /* issue discard in idle time */ 392 bool sync; /* submit discard with REQ_SYNC flag */ 393 bool ordered; /* issue discard by lba order */ 394 bool timeout; /* discard timeout for put_super */ 395 unsigned int granularity; /* discard granularity */ 396 }; 397 398 struct discard_cmd_control { 399 struct task_struct *f2fs_issue_discard; /* discard thread */ 400 struct list_head entry_list; /* 4KB discard entry list */ 401 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 402 struct list_head wait_list; /* store on-flushing entries */ 403 struct list_head fstrim_list; /* in-flight discard from fstrim */ 404 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 405 unsigned int discard_wake; /* to wake up discard thread */ 406 struct mutex cmd_lock; 407 unsigned int nr_discards; /* # of discards in the list */ 408 unsigned int max_discards; /* max. discards to be issued */ 409 unsigned int max_discard_request; /* max. discard request per round */ 410 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 411 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 412 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 413 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 414 unsigned int discard_granularity; /* discard granularity */ 415 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 416 unsigned int undiscard_blks; /* # of undiscard blocks */ 417 unsigned int next_pos; /* next discard position */ 418 atomic_t issued_discard; /* # of issued discard */ 419 atomic_t queued_discard; /* # of queued discard */ 420 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 421 struct rb_root_cached root; /* root of discard rb-tree */ 422 bool rbtree_check; /* config for consistence check */ 423 }; 424 425 /* for the list of fsync inodes, used only during recovery */ 426 struct fsync_inode_entry { 427 struct list_head list; /* list head */ 428 struct inode *inode; /* vfs inode pointer */ 429 block_t blkaddr; /* block address locating the last fsync */ 430 block_t last_dentry; /* block address locating the last dentry */ 431 }; 432 433 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 434 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 435 436 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 437 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 438 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 439 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 440 441 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 442 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 443 444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 445 { 446 int before = nats_in_cursum(journal); 447 448 journal->n_nats = cpu_to_le16(before + i); 449 return before; 450 } 451 452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 453 { 454 int before = sits_in_cursum(journal); 455 456 journal->n_sits = cpu_to_le16(before + i); 457 return before; 458 } 459 460 static inline bool __has_cursum_space(struct f2fs_journal *journal, 461 int size, int type) 462 { 463 if (type == NAT_JOURNAL) 464 return size <= MAX_NAT_JENTRIES(journal); 465 return size <= MAX_SIT_JENTRIES(journal); 466 } 467 468 /* for inline stuff */ 469 #define DEF_INLINE_RESERVED_SIZE 1 470 static inline int get_extra_isize(struct inode *inode); 471 static inline int get_inline_xattr_addrs(struct inode *inode); 472 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 473 (CUR_ADDRS_PER_INODE(inode) - \ 474 get_inline_xattr_addrs(inode) - \ 475 DEF_INLINE_RESERVED_SIZE)) 476 477 /* for inline dir */ 478 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 479 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 480 BITS_PER_BYTE + 1)) 481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 482 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 483 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 484 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 485 NR_INLINE_DENTRY(inode) + \ 486 INLINE_DENTRY_BITMAP_SIZE(inode))) 487 488 /* 489 * For INODE and NODE manager 490 */ 491 /* for directory operations */ 492 493 struct f2fs_filename { 494 /* 495 * The filename the user specified. This is NULL for some 496 * filesystem-internal operations, e.g. converting an inline directory 497 * to a non-inline one, or roll-forward recovering an encrypted dentry. 498 */ 499 const struct qstr *usr_fname; 500 501 /* 502 * The on-disk filename. For encrypted directories, this is encrypted. 503 * This may be NULL for lookups in an encrypted dir without the key. 504 */ 505 struct fscrypt_str disk_name; 506 507 /* The dirhash of this filename */ 508 f2fs_hash_t hash; 509 510 #ifdef CONFIG_FS_ENCRYPTION 511 /* 512 * For lookups in encrypted directories: either the buffer backing 513 * disk_name, or a buffer that holds the decoded no-key name. 514 */ 515 struct fscrypt_str crypto_buf; 516 #endif 517 #if IS_ENABLED(CONFIG_UNICODE) 518 /* 519 * For casefolded directories: the casefolded name, but it's left NULL 520 * if the original name is not valid Unicode, if the original name is 521 * "." or "..", if the directory is both casefolded and encrypted and 522 * its encryption key is unavailable, or if the filesystem is doing an 523 * internal operation where usr_fname is also NULL. In all these cases 524 * we fall back to treating the name as an opaque byte sequence. 525 */ 526 struct fscrypt_str cf_name; 527 #endif 528 }; 529 530 struct f2fs_dentry_ptr { 531 struct inode *inode; 532 void *bitmap; 533 struct f2fs_dir_entry *dentry; 534 __u8 (*filename)[F2FS_SLOT_LEN]; 535 int max; 536 int nr_bitmap; 537 }; 538 539 static inline void make_dentry_ptr_block(struct inode *inode, 540 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 541 { 542 d->inode = inode; 543 d->max = NR_DENTRY_IN_BLOCK; 544 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 545 d->bitmap = t->dentry_bitmap; 546 d->dentry = t->dentry; 547 d->filename = t->filename; 548 } 549 550 static inline void make_dentry_ptr_inline(struct inode *inode, 551 struct f2fs_dentry_ptr *d, void *t) 552 { 553 int entry_cnt = NR_INLINE_DENTRY(inode); 554 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 555 int reserved_size = INLINE_RESERVED_SIZE(inode); 556 557 d->inode = inode; 558 d->max = entry_cnt; 559 d->nr_bitmap = bitmap_size; 560 d->bitmap = t; 561 d->dentry = t + bitmap_size + reserved_size; 562 d->filename = t + bitmap_size + reserved_size + 563 SIZE_OF_DIR_ENTRY * entry_cnt; 564 } 565 566 /* 567 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 568 * as its node offset to distinguish from index node blocks. 569 * But some bits are used to mark the node block. 570 */ 571 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 572 >> OFFSET_BIT_SHIFT) 573 enum { 574 ALLOC_NODE, /* allocate a new node page if needed */ 575 LOOKUP_NODE, /* look up a node without readahead */ 576 LOOKUP_NODE_RA, /* 577 * look up a node with readahead called 578 * by get_data_block. 579 */ 580 }; 581 582 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 583 584 /* congestion wait timeout value, default: 20ms */ 585 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 586 587 /* maximum retry quota flush count */ 588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 589 590 /* maximum retry of EIO'ed page */ 591 #define MAX_RETRY_PAGE_EIO 100 592 593 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 594 595 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 596 597 /* dirty segments threshold for triggering CP */ 598 #define DEFAULT_DIRTY_THRESHOLD 4 599 600 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 601 #define RECOVERY_MIN_RA_BLOCKS 1 602 603 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 604 605 /* for in-memory extent cache entry */ 606 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 607 608 /* number of extent info in extent cache we try to shrink */ 609 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 610 611 /* number of age extent info in extent cache we try to shrink */ 612 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 613 #define LAST_AGE_WEIGHT 30 614 #define SAME_AGE_REGION 1024 615 616 /* 617 * Define data block with age less than 1GB as hot data 618 * define data block with age less than 10GB but more than 1GB as warm data 619 */ 620 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 621 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 622 623 /* extent cache type */ 624 enum extent_type { 625 EX_READ, 626 EX_BLOCK_AGE, 627 NR_EXTENT_CACHES, 628 }; 629 630 struct rb_entry { 631 struct rb_node rb_node; /* rb node located in rb-tree */ 632 union { 633 struct { 634 unsigned int ofs; /* start offset of the entry */ 635 unsigned int len; /* length of the entry */ 636 }; 637 unsigned long long key; /* 64-bits key */ 638 } __packed; 639 }; 640 641 struct extent_info { 642 unsigned int fofs; /* start offset in a file */ 643 unsigned int len; /* length of the extent */ 644 union { 645 /* read extent_cache */ 646 struct { 647 /* start block address of the extent */ 648 block_t blk; 649 #ifdef CONFIG_F2FS_FS_COMPRESSION 650 /* physical extent length of compressed blocks */ 651 unsigned int c_len; 652 #endif 653 }; 654 /* block age extent_cache */ 655 struct { 656 /* block age of the extent */ 657 unsigned long long age; 658 /* last total blocks allocated */ 659 unsigned long long last_blocks; 660 }; 661 }; 662 }; 663 664 struct extent_node { 665 struct rb_node rb_node; /* rb node located in rb-tree */ 666 struct extent_info ei; /* extent info */ 667 struct list_head list; /* node in global extent list of sbi */ 668 struct extent_tree *et; /* extent tree pointer */ 669 }; 670 671 struct extent_tree { 672 nid_t ino; /* inode number */ 673 enum extent_type type; /* keep the extent tree type */ 674 struct rb_root_cached root; /* root of extent info rb-tree */ 675 struct extent_node *cached_en; /* recently accessed extent node */ 676 struct list_head list; /* to be used by sbi->zombie_list */ 677 rwlock_t lock; /* protect extent info rb-tree */ 678 atomic_t node_cnt; /* # of extent node in rb-tree*/ 679 bool largest_updated; /* largest extent updated */ 680 struct extent_info largest; /* largest cached extent for EX_READ */ 681 }; 682 683 struct extent_tree_info { 684 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 685 struct mutex extent_tree_lock; /* locking extent radix tree */ 686 struct list_head extent_list; /* lru list for shrinker */ 687 spinlock_t extent_lock; /* locking extent lru list */ 688 atomic_t total_ext_tree; /* extent tree count */ 689 struct list_head zombie_list; /* extent zombie tree list */ 690 atomic_t total_zombie_tree; /* extent zombie tree count */ 691 atomic_t total_ext_node; /* extent info count */ 692 }; 693 694 /* 695 * State of block returned by f2fs_map_blocks. 696 */ 697 #define F2FS_MAP_NEW (1U << 0) 698 #define F2FS_MAP_MAPPED (1U << 1) 699 #define F2FS_MAP_DELALLOC (1U << 2) 700 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 701 F2FS_MAP_DELALLOC) 702 703 struct f2fs_map_blocks { 704 struct block_device *m_bdev; /* for multi-device dio */ 705 block_t m_pblk; 706 block_t m_lblk; 707 unsigned int m_len; 708 unsigned int m_flags; 709 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 710 pgoff_t *m_next_extent; /* point to next possible extent */ 711 int m_seg_type; 712 bool m_may_create; /* indicate it is from write path */ 713 bool m_multidev_dio; /* indicate it allows multi-device dio */ 714 }; 715 716 /* for flag in get_data_block */ 717 enum { 718 F2FS_GET_BLOCK_DEFAULT, 719 F2FS_GET_BLOCK_FIEMAP, 720 F2FS_GET_BLOCK_BMAP, 721 F2FS_GET_BLOCK_DIO, 722 F2FS_GET_BLOCK_PRE_DIO, 723 F2FS_GET_BLOCK_PRE_AIO, 724 F2FS_GET_BLOCK_PRECACHE, 725 }; 726 727 /* 728 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 729 */ 730 #define FADVISE_COLD_BIT 0x01 731 #define FADVISE_LOST_PINO_BIT 0x02 732 #define FADVISE_ENCRYPT_BIT 0x04 733 #define FADVISE_ENC_NAME_BIT 0x08 734 #define FADVISE_KEEP_SIZE_BIT 0x10 735 #define FADVISE_HOT_BIT 0x20 736 #define FADVISE_VERITY_BIT 0x40 737 #define FADVISE_TRUNC_BIT 0x80 738 739 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 740 741 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 742 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 743 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 744 745 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 746 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 747 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 748 749 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 750 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 751 752 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 753 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 754 755 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 756 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 757 758 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 759 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 760 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 761 762 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 763 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 764 765 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 766 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 767 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 768 769 #define DEF_DIR_LEVEL 0 770 771 enum { 772 GC_FAILURE_PIN, 773 MAX_GC_FAILURE 774 }; 775 776 /* used for f2fs_inode_info->flags */ 777 enum { 778 FI_NEW_INODE, /* indicate newly allocated inode */ 779 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 780 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 781 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 782 FI_INC_LINK, /* need to increment i_nlink */ 783 FI_ACL_MODE, /* indicate acl mode */ 784 FI_NO_ALLOC, /* should not allocate any blocks */ 785 FI_FREE_NID, /* free allocated nide */ 786 FI_NO_EXTENT, /* not to use the extent cache */ 787 FI_INLINE_XATTR, /* used for inline xattr */ 788 FI_INLINE_DATA, /* used for inline data*/ 789 FI_INLINE_DENTRY, /* used for inline dentry */ 790 FI_APPEND_WRITE, /* inode has appended data */ 791 FI_UPDATE_WRITE, /* inode has in-place-update data */ 792 FI_NEED_IPU, /* used for ipu per file */ 793 FI_ATOMIC_FILE, /* indicate atomic file */ 794 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 795 FI_DROP_CACHE, /* drop dirty page cache */ 796 FI_DATA_EXIST, /* indicate data exists */ 797 FI_INLINE_DOTS, /* indicate inline dot dentries */ 798 FI_SKIP_WRITES, /* should skip data page writeback */ 799 FI_OPU_WRITE, /* used for opu per file */ 800 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 801 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 802 FI_HOT_DATA, /* indicate file is hot */ 803 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 804 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 805 FI_PIN_FILE, /* indicate file should not be gced */ 806 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 807 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 808 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 809 FI_MMAP_FILE, /* indicate file was mmapped */ 810 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 811 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 812 FI_ALIGNED_WRITE, /* enable aligned write */ 813 FI_COW_FILE, /* indicate COW file */ 814 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 815 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 816 FI_MAX, /* max flag, never be used */ 817 }; 818 819 struct f2fs_inode_info { 820 struct inode vfs_inode; /* serve a vfs inode */ 821 unsigned long i_flags; /* keep an inode flags for ioctl */ 822 unsigned char i_advise; /* use to give file attribute hints */ 823 unsigned char i_dir_level; /* use for dentry level for large dir */ 824 unsigned int i_current_depth; /* only for directory depth */ 825 /* for gc failure statistic */ 826 unsigned int i_gc_failures[MAX_GC_FAILURE]; 827 unsigned int i_pino; /* parent inode number */ 828 umode_t i_acl_mode; /* keep file acl mode temporarily */ 829 830 /* Use below internally in f2fs*/ 831 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 832 struct f2fs_rwsem i_sem; /* protect fi info */ 833 atomic_t dirty_pages; /* # of dirty pages */ 834 f2fs_hash_t chash; /* hash value of given file name */ 835 unsigned int clevel; /* maximum level of given file name */ 836 struct task_struct *task; /* lookup and create consistency */ 837 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 838 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 839 nid_t i_xattr_nid; /* node id that contains xattrs */ 840 loff_t last_disk_size; /* lastly written file size */ 841 spinlock_t i_size_lock; /* protect last_disk_size */ 842 843 #ifdef CONFIG_QUOTA 844 struct dquot *i_dquot[MAXQUOTAS]; 845 846 /* quota space reservation, managed internally by quota code */ 847 qsize_t i_reserved_quota; 848 #endif 849 struct list_head dirty_list; /* dirty list for dirs and files */ 850 struct list_head gdirty_list; /* linked in global dirty list */ 851 struct task_struct *atomic_write_task; /* store atomic write task */ 852 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 853 /* cached extent_tree entry */ 854 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 855 856 /* avoid racing between foreground op and gc */ 857 struct f2fs_rwsem i_gc_rwsem[2]; 858 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 859 860 int i_extra_isize; /* size of extra space located in i_addr */ 861 kprojid_t i_projid; /* id for project quota */ 862 int i_inline_xattr_size; /* inline xattr size */ 863 struct timespec64 i_crtime; /* inode creation time */ 864 struct timespec64 i_disk_time[4];/* inode disk times */ 865 866 /* for file compress */ 867 atomic_t i_compr_blocks; /* # of compressed blocks */ 868 unsigned char i_compress_algorithm; /* algorithm type */ 869 unsigned char i_log_cluster_size; /* log of cluster size */ 870 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 871 unsigned short i_compress_flag; /* compress flag */ 872 unsigned int i_cluster_size; /* cluster size */ 873 874 unsigned int atomic_write_cnt; 875 loff_t original_i_size; /* original i_size before atomic write */ 876 }; 877 878 static inline void get_read_extent_info(struct extent_info *ext, 879 struct f2fs_extent *i_ext) 880 { 881 ext->fofs = le32_to_cpu(i_ext->fofs); 882 ext->blk = le32_to_cpu(i_ext->blk); 883 ext->len = le32_to_cpu(i_ext->len); 884 } 885 886 static inline void set_raw_read_extent(struct extent_info *ext, 887 struct f2fs_extent *i_ext) 888 { 889 i_ext->fofs = cpu_to_le32(ext->fofs); 890 i_ext->blk = cpu_to_le32(ext->blk); 891 i_ext->len = cpu_to_le32(ext->len); 892 } 893 894 static inline bool __is_discard_mergeable(struct discard_info *back, 895 struct discard_info *front, unsigned int max_len) 896 { 897 return (back->lstart + back->len == front->lstart) && 898 (back->len + front->len <= max_len); 899 } 900 901 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 902 struct discard_info *back, unsigned int max_len) 903 { 904 return __is_discard_mergeable(back, cur, max_len); 905 } 906 907 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 908 struct discard_info *front, unsigned int max_len) 909 { 910 return __is_discard_mergeable(cur, front, max_len); 911 } 912 913 /* 914 * For free nid management 915 */ 916 enum nid_state { 917 FREE_NID, /* newly added to free nid list */ 918 PREALLOC_NID, /* it is preallocated */ 919 MAX_NID_STATE, 920 }; 921 922 enum nat_state { 923 TOTAL_NAT, 924 DIRTY_NAT, 925 RECLAIMABLE_NAT, 926 MAX_NAT_STATE, 927 }; 928 929 struct f2fs_nm_info { 930 block_t nat_blkaddr; /* base disk address of NAT */ 931 nid_t max_nid; /* maximum possible node ids */ 932 nid_t available_nids; /* # of available node ids */ 933 nid_t next_scan_nid; /* the next nid to be scanned */ 934 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 935 unsigned int ram_thresh; /* control the memory footprint */ 936 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 937 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 938 939 /* NAT cache management */ 940 struct radix_tree_root nat_root;/* root of the nat entry cache */ 941 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 942 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 943 struct list_head nat_entries; /* cached nat entry list (clean) */ 944 spinlock_t nat_list_lock; /* protect clean nat entry list */ 945 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 946 unsigned int nat_blocks; /* # of nat blocks */ 947 948 /* free node ids management */ 949 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 950 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 951 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 952 spinlock_t nid_list_lock; /* protect nid lists ops */ 953 struct mutex build_lock; /* lock for build free nids */ 954 unsigned char **free_nid_bitmap; 955 unsigned char *nat_block_bitmap; 956 unsigned short *free_nid_count; /* free nid count of NAT block */ 957 958 /* for checkpoint */ 959 char *nat_bitmap; /* NAT bitmap pointer */ 960 961 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 962 unsigned char *nat_bits; /* NAT bits blocks */ 963 unsigned char *full_nat_bits; /* full NAT pages */ 964 unsigned char *empty_nat_bits; /* empty NAT pages */ 965 #ifdef CONFIG_F2FS_CHECK_FS 966 char *nat_bitmap_mir; /* NAT bitmap mirror */ 967 #endif 968 int bitmap_size; /* bitmap size */ 969 }; 970 971 /* 972 * this structure is used as one of function parameters. 973 * all the information are dedicated to a given direct node block determined 974 * by the data offset in a file. 975 */ 976 struct dnode_of_data { 977 struct inode *inode; /* vfs inode pointer */ 978 struct page *inode_page; /* its inode page, NULL is possible */ 979 struct page *node_page; /* cached direct node page */ 980 nid_t nid; /* node id of the direct node block */ 981 unsigned int ofs_in_node; /* data offset in the node page */ 982 bool inode_page_locked; /* inode page is locked or not */ 983 bool node_changed; /* is node block changed */ 984 char cur_level; /* level of hole node page */ 985 char max_level; /* level of current page located */ 986 block_t data_blkaddr; /* block address of the node block */ 987 }; 988 989 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 990 struct page *ipage, struct page *npage, nid_t nid) 991 { 992 memset(dn, 0, sizeof(*dn)); 993 dn->inode = inode; 994 dn->inode_page = ipage; 995 dn->node_page = npage; 996 dn->nid = nid; 997 } 998 999 /* 1000 * For SIT manager 1001 * 1002 * By default, there are 6 active log areas across the whole main area. 1003 * When considering hot and cold data separation to reduce cleaning overhead, 1004 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 1005 * respectively. 1006 * In the current design, you should not change the numbers intentionally. 1007 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1008 * logs individually according to the underlying devices. (default: 6) 1009 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1010 * data and 8 for node logs. 1011 */ 1012 #define NR_CURSEG_DATA_TYPE (3) 1013 #define NR_CURSEG_NODE_TYPE (3) 1014 #define NR_CURSEG_INMEM_TYPE (2) 1015 #define NR_CURSEG_RO_TYPE (2) 1016 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1017 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1018 1019 enum { 1020 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1021 CURSEG_WARM_DATA, /* data blocks */ 1022 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1023 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1024 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1025 CURSEG_COLD_NODE, /* indirect node blocks */ 1026 NR_PERSISTENT_LOG, /* number of persistent log */ 1027 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1028 /* pinned file that needs consecutive block address */ 1029 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1030 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1031 }; 1032 1033 struct flush_cmd { 1034 struct completion wait; 1035 struct llist_node llnode; 1036 nid_t ino; 1037 int ret; 1038 }; 1039 1040 struct flush_cmd_control { 1041 struct task_struct *f2fs_issue_flush; /* flush thread */ 1042 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1043 atomic_t issued_flush; /* # of issued flushes */ 1044 atomic_t queued_flush; /* # of queued flushes */ 1045 struct llist_head issue_list; /* list for command issue */ 1046 struct llist_node *dispatch_list; /* list for command dispatch */ 1047 }; 1048 1049 struct f2fs_sm_info { 1050 struct sit_info *sit_info; /* whole segment information */ 1051 struct free_segmap_info *free_info; /* free segment information */ 1052 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1053 struct curseg_info *curseg_array; /* active segment information */ 1054 1055 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1056 1057 block_t seg0_blkaddr; /* block address of 0'th segment */ 1058 block_t main_blkaddr; /* start block address of main area */ 1059 block_t ssa_blkaddr; /* start block address of SSA area */ 1060 1061 unsigned int segment_count; /* total # of segments */ 1062 unsigned int main_segments; /* # of segments in main area */ 1063 unsigned int reserved_segments; /* # of reserved segments */ 1064 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1065 unsigned int ovp_segments; /* # of overprovision segments */ 1066 1067 /* a threshold to reclaim prefree segments */ 1068 unsigned int rec_prefree_segments; 1069 1070 struct list_head sit_entry_set; /* sit entry set list */ 1071 1072 unsigned int ipu_policy; /* in-place-update policy */ 1073 unsigned int min_ipu_util; /* in-place-update threshold */ 1074 unsigned int min_fsync_blocks; /* threshold for fsync */ 1075 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1076 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1077 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1078 1079 /* for flush command control */ 1080 struct flush_cmd_control *fcc_info; 1081 1082 /* for discard command control */ 1083 struct discard_cmd_control *dcc_info; 1084 }; 1085 1086 /* 1087 * For superblock 1088 */ 1089 /* 1090 * COUNT_TYPE for monitoring 1091 * 1092 * f2fs monitors the number of several block types such as on-writeback, 1093 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1094 */ 1095 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1096 enum count_type { 1097 F2FS_DIRTY_DENTS, 1098 F2FS_DIRTY_DATA, 1099 F2FS_DIRTY_QDATA, 1100 F2FS_DIRTY_NODES, 1101 F2FS_DIRTY_META, 1102 F2FS_DIRTY_IMETA, 1103 F2FS_WB_CP_DATA, 1104 F2FS_WB_DATA, 1105 F2FS_RD_DATA, 1106 F2FS_RD_NODE, 1107 F2FS_RD_META, 1108 F2FS_DIO_WRITE, 1109 F2FS_DIO_READ, 1110 NR_COUNT_TYPE, 1111 }; 1112 1113 /* 1114 * The below are the page types of bios used in submit_bio(). 1115 * The available types are: 1116 * DATA User data pages. It operates as async mode. 1117 * NODE Node pages. It operates as async mode. 1118 * META FS metadata pages such as SIT, NAT, CP. 1119 * NR_PAGE_TYPE The number of page types. 1120 * META_FLUSH Make sure the previous pages are written 1121 * with waiting the bio's completion 1122 * ... Only can be used with META. 1123 */ 1124 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1125 enum page_type { 1126 DATA = 0, 1127 NODE = 1, /* should not change this */ 1128 META, 1129 NR_PAGE_TYPE, 1130 META_FLUSH, 1131 IPU, /* the below types are used by tracepoints only. */ 1132 OPU, 1133 }; 1134 1135 enum temp_type { 1136 HOT = 0, /* must be zero for meta bio */ 1137 WARM, 1138 COLD, 1139 NR_TEMP_TYPE, 1140 }; 1141 1142 enum need_lock_type { 1143 LOCK_REQ = 0, 1144 LOCK_DONE, 1145 LOCK_RETRY, 1146 }; 1147 1148 enum cp_reason_type { 1149 CP_NO_NEEDED, 1150 CP_NON_REGULAR, 1151 CP_COMPRESSED, 1152 CP_HARDLINK, 1153 CP_SB_NEED_CP, 1154 CP_WRONG_PINO, 1155 CP_NO_SPC_ROLL, 1156 CP_NODE_NEED_CP, 1157 CP_FASTBOOT_MODE, 1158 CP_SPEC_LOG_NUM, 1159 CP_RECOVER_DIR, 1160 }; 1161 1162 enum iostat_type { 1163 /* WRITE IO */ 1164 APP_DIRECT_IO, /* app direct write IOs */ 1165 APP_BUFFERED_IO, /* app buffered write IOs */ 1166 APP_WRITE_IO, /* app write IOs */ 1167 APP_MAPPED_IO, /* app mapped IOs */ 1168 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1169 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1170 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1171 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1172 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1173 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1174 FS_GC_DATA_IO, /* data IOs from forground gc */ 1175 FS_GC_NODE_IO, /* node IOs from forground gc */ 1176 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1177 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1178 FS_CP_META_IO, /* meta IOs from checkpoint */ 1179 1180 /* READ IO */ 1181 APP_DIRECT_READ_IO, /* app direct read IOs */ 1182 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1183 APP_READ_IO, /* app read IOs */ 1184 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1185 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1186 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1187 FS_DATA_READ_IO, /* data read IOs */ 1188 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1189 FS_CDATA_READ_IO, /* compressed data read IOs */ 1190 FS_NODE_READ_IO, /* node read IOs */ 1191 FS_META_READ_IO, /* meta read IOs */ 1192 1193 /* other */ 1194 FS_DISCARD, /* discard */ 1195 NR_IO_TYPE, 1196 }; 1197 1198 struct f2fs_io_info { 1199 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1200 nid_t ino; /* inode number */ 1201 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1202 enum temp_type temp; /* contains HOT/WARM/COLD */ 1203 enum req_op op; /* contains REQ_OP_ */ 1204 blk_opf_t op_flags; /* req_flag_bits */ 1205 block_t new_blkaddr; /* new block address to be written */ 1206 block_t old_blkaddr; /* old block address before Cow */ 1207 struct page *page; /* page to be written */ 1208 struct page *encrypted_page; /* encrypted page */ 1209 struct page *compressed_page; /* compressed page */ 1210 struct list_head list; /* serialize IOs */ 1211 bool submitted; /* indicate IO submission */ 1212 int need_lock; /* indicate we need to lock cp_rwsem */ 1213 bool in_list; /* indicate fio is in io_list */ 1214 bool is_por; /* indicate IO is from recovery or not */ 1215 bool retry; /* need to reallocate block address */ 1216 int compr_blocks; /* # of compressed block addresses */ 1217 bool encrypted; /* indicate file is encrypted */ 1218 bool post_read; /* require post read */ 1219 enum iostat_type io_type; /* io type */ 1220 struct writeback_control *io_wbc; /* writeback control */ 1221 struct bio **bio; /* bio for ipu */ 1222 sector_t *last_block; /* last block number in bio */ 1223 unsigned char version; /* version of the node */ 1224 }; 1225 1226 struct bio_entry { 1227 struct bio *bio; 1228 struct list_head list; 1229 }; 1230 1231 #define is_read_io(rw) ((rw) == READ) 1232 struct f2fs_bio_info { 1233 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1234 struct bio *bio; /* bios to merge */ 1235 sector_t last_block_in_bio; /* last block number */ 1236 struct f2fs_io_info fio; /* store buffered io info. */ 1237 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1238 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1239 struct list_head io_list; /* track fios */ 1240 struct list_head bio_list; /* bio entry list head */ 1241 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1242 }; 1243 1244 #define FDEV(i) (sbi->devs[i]) 1245 #define RDEV(i) (raw_super->devs[i]) 1246 struct f2fs_dev_info { 1247 struct block_device *bdev; 1248 char path[MAX_PATH_LEN]; 1249 unsigned int total_segments; 1250 block_t start_blk; 1251 block_t end_blk; 1252 #ifdef CONFIG_BLK_DEV_ZONED 1253 unsigned int nr_blkz; /* Total number of zones */ 1254 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1255 #endif 1256 }; 1257 1258 enum inode_type { 1259 DIR_INODE, /* for dirty dir inode */ 1260 FILE_INODE, /* for dirty regular/symlink inode */ 1261 DIRTY_META, /* for all dirtied inode metadata */ 1262 NR_INODE_TYPE, 1263 }; 1264 1265 /* for inner inode cache management */ 1266 struct inode_management { 1267 struct radix_tree_root ino_root; /* ino entry array */ 1268 spinlock_t ino_lock; /* for ino entry lock */ 1269 struct list_head ino_list; /* inode list head */ 1270 unsigned long ino_num; /* number of entries */ 1271 }; 1272 1273 /* for GC_AT */ 1274 struct atgc_management { 1275 bool atgc_enabled; /* ATGC is enabled or not */ 1276 struct rb_root_cached root; /* root of victim rb-tree */ 1277 struct list_head victim_list; /* linked with all victim entries */ 1278 unsigned int victim_count; /* victim count in rb-tree */ 1279 unsigned int candidate_ratio; /* candidate ratio */ 1280 unsigned int max_candidate_count; /* max candidate count */ 1281 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1282 unsigned long long age_threshold; /* age threshold */ 1283 }; 1284 1285 struct f2fs_gc_control { 1286 unsigned int victim_segno; /* target victim segment number */ 1287 int init_gc_type; /* FG_GC or BG_GC */ 1288 bool no_bg_gc; /* check the space and stop bg_gc */ 1289 bool should_migrate_blocks; /* should migrate blocks */ 1290 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1291 unsigned int nr_free_secs; /* # of free sections to do GC */ 1292 }; 1293 1294 /* For s_flag in struct f2fs_sb_info */ 1295 enum { 1296 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1297 SBI_IS_CLOSE, /* specify unmounting */ 1298 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1299 SBI_POR_DOING, /* recovery is doing or not */ 1300 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1301 SBI_NEED_CP, /* need to checkpoint */ 1302 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1303 SBI_IS_RECOVERED, /* recovered orphan/data */ 1304 SBI_CP_DISABLED, /* CP was disabled last mount */ 1305 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1306 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1307 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1308 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1309 SBI_IS_RESIZEFS, /* resizefs is in process */ 1310 SBI_IS_FREEZING, /* freezefs is in process */ 1311 }; 1312 1313 enum { 1314 CP_TIME, 1315 REQ_TIME, 1316 DISCARD_TIME, 1317 GC_TIME, 1318 DISABLE_TIME, 1319 UMOUNT_DISCARD_TIMEOUT, 1320 MAX_TIME, 1321 }; 1322 1323 /* Note that you need to keep synchronization with this gc_mode_names array */ 1324 enum { 1325 GC_NORMAL, 1326 GC_IDLE_CB, 1327 GC_IDLE_GREEDY, 1328 GC_IDLE_AT, 1329 GC_URGENT_HIGH, 1330 GC_URGENT_LOW, 1331 GC_URGENT_MID, 1332 MAX_GC_MODE, 1333 }; 1334 1335 enum { 1336 BGGC_MODE_ON, /* background gc is on */ 1337 BGGC_MODE_OFF, /* background gc is off */ 1338 BGGC_MODE_SYNC, /* 1339 * background gc is on, migrating blocks 1340 * like foreground gc 1341 */ 1342 }; 1343 1344 enum { 1345 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1346 FS_MODE_LFS, /* use lfs allocation only */ 1347 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1348 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1349 }; 1350 1351 enum { 1352 ALLOC_MODE_DEFAULT, /* stay default */ 1353 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1354 }; 1355 1356 enum fsync_mode { 1357 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1358 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1359 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1360 }; 1361 1362 enum { 1363 COMPR_MODE_FS, /* 1364 * automatically compress compression 1365 * enabled files 1366 */ 1367 COMPR_MODE_USER, /* 1368 * automatical compression is disabled. 1369 * user can control the file compression 1370 * using ioctls 1371 */ 1372 }; 1373 1374 enum { 1375 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1376 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1377 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1378 }; 1379 1380 enum { 1381 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1382 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1383 }; 1384 1385 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1386 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1387 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1388 1389 /* 1390 * Layout of f2fs page.private: 1391 * 1392 * Layout A: lowest bit should be 1 1393 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1394 * bit 0 PAGE_PRIVATE_NOT_POINTER 1395 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1396 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1397 * bit 3 PAGE_PRIVATE_INLINE_INODE 1398 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1399 * bit 5- f2fs private data 1400 * 1401 * Layout B: lowest bit should be 0 1402 * page.private is a wrapped pointer. 1403 */ 1404 enum { 1405 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1406 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1407 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1408 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1409 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1410 PAGE_PRIVATE_MAX 1411 }; 1412 1413 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1414 static inline bool page_private_##name(struct page *page) \ 1415 { \ 1416 return PagePrivate(page) && \ 1417 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1418 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1419 } 1420 1421 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1422 static inline void set_page_private_##name(struct page *page) \ 1423 { \ 1424 if (!PagePrivate(page)) { \ 1425 get_page(page); \ 1426 SetPagePrivate(page); \ 1427 set_page_private(page, 0); \ 1428 } \ 1429 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1430 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1431 } 1432 1433 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1434 static inline void clear_page_private_##name(struct page *page) \ 1435 { \ 1436 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1437 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \ 1438 set_page_private(page, 0); \ 1439 if (PagePrivate(page)) { \ 1440 ClearPagePrivate(page); \ 1441 put_page(page); \ 1442 }\ 1443 } \ 1444 } 1445 1446 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1447 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1448 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1449 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1450 1451 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1452 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1453 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1454 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1455 1456 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1457 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1458 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1459 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1460 1461 static inline unsigned long get_page_private_data(struct page *page) 1462 { 1463 unsigned long data = page_private(page); 1464 1465 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1466 return 0; 1467 return data >> PAGE_PRIVATE_MAX; 1468 } 1469 1470 static inline void set_page_private_data(struct page *page, unsigned long data) 1471 { 1472 if (!PagePrivate(page)) { 1473 get_page(page); 1474 SetPagePrivate(page); 1475 set_page_private(page, 0); 1476 } 1477 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1478 page_private(page) |= data << PAGE_PRIVATE_MAX; 1479 } 1480 1481 static inline void clear_page_private_data(struct page *page) 1482 { 1483 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1; 1484 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { 1485 set_page_private(page, 0); 1486 if (PagePrivate(page)) { 1487 ClearPagePrivate(page); 1488 put_page(page); 1489 } 1490 } 1491 } 1492 1493 /* For compression */ 1494 enum compress_algorithm_type { 1495 COMPRESS_LZO, 1496 COMPRESS_LZ4, 1497 COMPRESS_ZSTD, 1498 COMPRESS_LZORLE, 1499 COMPRESS_MAX, 1500 }; 1501 1502 enum compress_flag { 1503 COMPRESS_CHKSUM, 1504 COMPRESS_MAX_FLAG, 1505 }; 1506 1507 #define COMPRESS_WATERMARK 20 1508 #define COMPRESS_PERCENT 20 1509 1510 #define COMPRESS_DATA_RESERVED_SIZE 4 1511 struct compress_data { 1512 __le32 clen; /* compressed data size */ 1513 __le32 chksum; /* compressed data chksum */ 1514 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1515 u8 cdata[]; /* compressed data */ 1516 }; 1517 1518 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1519 1520 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1521 1522 #define COMPRESS_LEVEL_OFFSET 8 1523 1524 /* compress context */ 1525 struct compress_ctx { 1526 struct inode *inode; /* inode the context belong to */ 1527 pgoff_t cluster_idx; /* cluster index number */ 1528 unsigned int cluster_size; /* page count in cluster */ 1529 unsigned int log_cluster_size; /* log of cluster size */ 1530 struct page **rpages; /* pages store raw data in cluster */ 1531 unsigned int nr_rpages; /* total page number in rpages */ 1532 struct page **cpages; /* pages store compressed data in cluster */ 1533 unsigned int nr_cpages; /* total page number in cpages */ 1534 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1535 void *rbuf; /* virtual mapped address on rpages */ 1536 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1537 size_t rlen; /* valid data length in rbuf */ 1538 size_t clen; /* valid data length in cbuf */ 1539 void *private; /* payload buffer for specified compression algorithm */ 1540 void *private2; /* extra payload buffer */ 1541 }; 1542 1543 /* compress context for write IO path */ 1544 struct compress_io_ctx { 1545 u32 magic; /* magic number to indicate page is compressed */ 1546 struct inode *inode; /* inode the context belong to */ 1547 struct page **rpages; /* pages store raw data in cluster */ 1548 unsigned int nr_rpages; /* total page number in rpages */ 1549 atomic_t pending_pages; /* in-flight compressed page count */ 1550 }; 1551 1552 /* Context for decompressing one cluster on the read IO path */ 1553 struct decompress_io_ctx { 1554 u32 magic; /* magic number to indicate page is compressed */ 1555 struct inode *inode; /* inode the context belong to */ 1556 pgoff_t cluster_idx; /* cluster index number */ 1557 unsigned int cluster_size; /* page count in cluster */ 1558 unsigned int log_cluster_size; /* log of cluster size */ 1559 struct page **rpages; /* pages store raw data in cluster */ 1560 unsigned int nr_rpages; /* total page number in rpages */ 1561 struct page **cpages; /* pages store compressed data in cluster */ 1562 unsigned int nr_cpages; /* total page number in cpages */ 1563 struct page **tpages; /* temp pages to pad holes in cluster */ 1564 void *rbuf; /* virtual mapped address on rpages */ 1565 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1566 size_t rlen; /* valid data length in rbuf */ 1567 size_t clen; /* valid data length in cbuf */ 1568 1569 /* 1570 * The number of compressed pages remaining to be read in this cluster. 1571 * This is initially nr_cpages. It is decremented by 1 each time a page 1572 * has been read (or failed to be read). When it reaches 0, the cluster 1573 * is decompressed (or an error is reported). 1574 * 1575 * If an error occurs before all the pages have been submitted for I/O, 1576 * then this will never reach 0. In this case the I/O submitter is 1577 * responsible for calling f2fs_decompress_end_io() instead. 1578 */ 1579 atomic_t remaining_pages; 1580 1581 /* 1582 * Number of references to this decompress_io_ctx. 1583 * 1584 * One reference is held for I/O completion. This reference is dropped 1585 * after the pagecache pages are updated and unlocked -- either after 1586 * decompression (and verity if enabled), or after an error. 1587 * 1588 * In addition, each compressed page holds a reference while it is in a 1589 * bio. These references are necessary prevent compressed pages from 1590 * being freed while they are still in a bio. 1591 */ 1592 refcount_t refcnt; 1593 1594 bool failed; /* IO error occurred before decompression? */ 1595 bool need_verity; /* need fs-verity verification after decompression? */ 1596 void *private; /* payload buffer for specified decompression algorithm */ 1597 void *private2; /* extra payload buffer */ 1598 struct work_struct verity_work; /* work to verify the decompressed pages */ 1599 struct work_struct free_work; /* work for late free this structure itself */ 1600 }; 1601 1602 #define NULL_CLUSTER ((unsigned int)(~0)) 1603 #define MIN_COMPRESS_LOG_SIZE 2 1604 #define MAX_COMPRESS_LOG_SIZE 8 1605 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1606 1607 struct f2fs_sb_info { 1608 struct super_block *sb; /* pointer to VFS super block */ 1609 struct proc_dir_entry *s_proc; /* proc entry */ 1610 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1611 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1612 int valid_super_block; /* valid super block no */ 1613 unsigned long s_flag; /* flags for sbi */ 1614 struct mutex writepages; /* mutex for writepages() */ 1615 1616 #ifdef CONFIG_BLK_DEV_ZONED 1617 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1618 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1619 #endif 1620 1621 /* for node-related operations */ 1622 struct f2fs_nm_info *nm_info; /* node manager */ 1623 struct inode *node_inode; /* cache node blocks */ 1624 1625 /* for segment-related operations */ 1626 struct f2fs_sm_info *sm_info; /* segment manager */ 1627 1628 /* for bio operations */ 1629 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1630 /* keep migration IO order for LFS mode */ 1631 struct f2fs_rwsem io_order_lock; 1632 mempool_t *write_io_dummy; /* Dummy pages */ 1633 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1634 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1635 1636 /* for checkpoint */ 1637 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1638 int cur_cp_pack; /* remain current cp pack */ 1639 spinlock_t cp_lock; /* for flag in ckpt */ 1640 struct inode *meta_inode; /* cache meta blocks */ 1641 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1642 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1643 struct f2fs_rwsem node_write; /* locking node writes */ 1644 struct f2fs_rwsem node_change; /* locking node change */ 1645 wait_queue_head_t cp_wait; 1646 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1647 long interval_time[MAX_TIME]; /* to store thresholds */ 1648 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1649 1650 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1651 1652 spinlock_t fsync_node_lock; /* for node entry lock */ 1653 struct list_head fsync_node_list; /* node list head */ 1654 unsigned int fsync_seg_id; /* sequence id */ 1655 unsigned int fsync_node_num; /* number of node entries */ 1656 1657 /* for orphan inode, use 0'th array */ 1658 unsigned int max_orphans; /* max orphan inodes */ 1659 1660 /* for inode management */ 1661 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1662 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1663 struct mutex flush_lock; /* for flush exclusion */ 1664 1665 /* for extent tree cache */ 1666 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1667 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1668 1669 /* The threshold used for hot and warm data seperation*/ 1670 unsigned int hot_data_age_threshold; 1671 unsigned int warm_data_age_threshold; 1672 1673 /* basic filesystem units */ 1674 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1675 unsigned int log_blocksize; /* log2 block size */ 1676 unsigned int blocksize; /* block size */ 1677 unsigned int root_ino_num; /* root inode number*/ 1678 unsigned int node_ino_num; /* node inode number*/ 1679 unsigned int meta_ino_num; /* meta inode number*/ 1680 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1681 unsigned int blocks_per_seg; /* blocks per segment */ 1682 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1683 unsigned int segs_per_sec; /* segments per section */ 1684 unsigned int secs_per_zone; /* sections per zone */ 1685 unsigned int total_sections; /* total section count */ 1686 unsigned int total_node_count; /* total node block count */ 1687 unsigned int total_valid_node_count; /* valid node block count */ 1688 int dir_level; /* directory level */ 1689 bool readdir_ra; /* readahead inode in readdir */ 1690 u64 max_io_bytes; /* max io bytes to merge IOs */ 1691 1692 block_t user_block_count; /* # of user blocks */ 1693 block_t total_valid_block_count; /* # of valid blocks */ 1694 block_t discard_blks; /* discard command candidats */ 1695 block_t last_valid_block_count; /* for recovery */ 1696 block_t reserved_blocks; /* configurable reserved blocks */ 1697 block_t current_reserved_blocks; /* current reserved blocks */ 1698 1699 /* Additional tracking for no checkpoint mode */ 1700 block_t unusable_block_count; /* # of blocks saved by last cp */ 1701 1702 unsigned int nquota_files; /* # of quota sysfile */ 1703 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1704 1705 /* # of pages, see count_type */ 1706 atomic_t nr_pages[NR_COUNT_TYPE]; 1707 /* # of allocated blocks */ 1708 struct percpu_counter alloc_valid_block_count; 1709 /* # of node block writes as roll forward recovery */ 1710 struct percpu_counter rf_node_block_count; 1711 1712 /* writeback control */ 1713 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1714 1715 /* valid inode count */ 1716 struct percpu_counter total_valid_inode_count; 1717 1718 struct f2fs_mount_info mount_opt; /* mount options */ 1719 1720 /* for cleaning operations */ 1721 struct f2fs_rwsem gc_lock; /* 1722 * semaphore for GC, avoid 1723 * race between GC and GC or CP 1724 */ 1725 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1726 struct atgc_management am; /* atgc management */ 1727 unsigned int cur_victim_sec; /* current victim section num */ 1728 unsigned int gc_mode; /* current GC state */ 1729 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1730 spinlock_t gc_remaining_trials_lock; 1731 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1732 unsigned int gc_remaining_trials; 1733 1734 /* for skip statistic */ 1735 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1736 1737 /* threshold for gc trials on pinned files */ 1738 u64 gc_pin_file_threshold; 1739 struct f2fs_rwsem pin_sem; 1740 1741 /* maximum # of trials to find a victim segment for SSR and GC */ 1742 unsigned int max_victim_search; 1743 /* migration granularity of garbage collection, unit: segment */ 1744 unsigned int migration_granularity; 1745 1746 /* 1747 * for stat information. 1748 * one is for the LFS mode, and the other is for the SSR mode. 1749 */ 1750 #ifdef CONFIG_F2FS_STAT_FS 1751 struct f2fs_stat_info *stat_info; /* FS status information */ 1752 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1753 unsigned int segment_count[2]; /* # of allocated segments */ 1754 unsigned int block_count[2]; /* # of allocated blocks */ 1755 atomic_t inplace_count; /* # of inplace update */ 1756 /* # of lookup extent cache */ 1757 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1758 /* # of hit rbtree extent node */ 1759 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1760 /* # of hit cached extent node */ 1761 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1762 /* # of hit largest extent node in read extent cache */ 1763 atomic64_t read_hit_largest; 1764 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1765 atomic_t inline_inode; /* # of inline_data inodes */ 1766 atomic_t inline_dir; /* # of inline_dentry inodes */ 1767 atomic_t compr_inode; /* # of compressed inodes */ 1768 atomic64_t compr_blocks; /* # of compressed blocks */ 1769 atomic_t swapfile_inode; /* # of swapfile inodes */ 1770 atomic_t atomic_files; /* # of opened atomic file */ 1771 atomic_t max_aw_cnt; /* max # of atomic writes */ 1772 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1773 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1774 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1775 #endif 1776 spinlock_t stat_lock; /* lock for stat operations */ 1777 1778 /* to attach REQ_META|REQ_FUA flags */ 1779 unsigned int data_io_flag; 1780 unsigned int node_io_flag; 1781 1782 /* For sysfs support */ 1783 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1784 struct completion s_kobj_unregister; 1785 1786 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1787 struct completion s_stat_kobj_unregister; 1788 1789 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1790 struct completion s_feature_list_kobj_unregister; 1791 1792 /* For shrinker support */ 1793 struct list_head s_list; 1794 struct mutex umount_mutex; 1795 unsigned int shrinker_run_no; 1796 1797 /* For multi devices */ 1798 int s_ndevs; /* number of devices */ 1799 struct f2fs_dev_info *devs; /* for device list */ 1800 unsigned int dirty_device; /* for checkpoint data flush */ 1801 spinlock_t dev_lock; /* protect dirty_device */ 1802 bool aligned_blksize; /* all devices has the same logical blksize */ 1803 1804 /* For write statistics */ 1805 u64 sectors_written_start; 1806 u64 kbytes_written; 1807 1808 /* Reference to checksum algorithm driver via cryptoapi */ 1809 struct crypto_shash *s_chksum_driver; 1810 1811 /* Precomputed FS UUID checksum for seeding other checksums */ 1812 __u32 s_chksum_seed; 1813 1814 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1815 1816 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1817 spinlock_t error_lock; /* protect errors array */ 1818 bool error_dirty; /* errors of sb is dirty */ 1819 1820 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1821 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1822 1823 /* For reclaimed segs statistics per each GC mode */ 1824 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1825 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1826 1827 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1828 1829 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1830 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1831 1832 /* For atomic write statistics */ 1833 atomic64_t current_atomic_write; 1834 s64 peak_atomic_write; 1835 u64 committed_atomic_block; 1836 u64 revoked_atomic_block; 1837 1838 #ifdef CONFIG_F2FS_FS_COMPRESSION 1839 struct kmem_cache *page_array_slab; /* page array entry */ 1840 unsigned int page_array_slab_size; /* default page array slab size */ 1841 1842 /* For runtime compression statistics */ 1843 u64 compr_written_block; 1844 u64 compr_saved_block; 1845 u32 compr_new_inode; 1846 1847 /* For compressed block cache */ 1848 struct inode *compress_inode; /* cache compressed blocks */ 1849 unsigned int compress_percent; /* cache page percentage */ 1850 unsigned int compress_watermark; /* cache page watermark */ 1851 atomic_t compress_page_hit; /* cache hit count */ 1852 #endif 1853 1854 #ifdef CONFIG_F2FS_IOSTAT 1855 /* For app/fs IO statistics */ 1856 spinlock_t iostat_lock; 1857 unsigned long long rw_iostat[NR_IO_TYPE]; 1858 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1859 bool iostat_enable; 1860 unsigned long iostat_next_period; 1861 unsigned int iostat_period_ms; 1862 1863 /* For io latency related statistics info in one iostat period */ 1864 spinlock_t iostat_lat_lock; 1865 struct iostat_lat_info *iostat_io_lat; 1866 #endif 1867 }; 1868 1869 #ifdef CONFIG_F2FS_FAULT_INJECTION 1870 #define f2fs_show_injection_info(sbi, type) \ 1871 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1872 KERN_INFO, sbi->sb->s_id, \ 1873 f2fs_fault_name[type], \ 1874 __func__, __builtin_return_address(0)) 1875 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1876 { 1877 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1878 1879 if (!ffi->inject_rate) 1880 return false; 1881 1882 if (!IS_FAULT_SET(ffi, type)) 1883 return false; 1884 1885 atomic_inc(&ffi->inject_ops); 1886 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1887 atomic_set(&ffi->inject_ops, 0); 1888 return true; 1889 } 1890 return false; 1891 } 1892 #else 1893 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1894 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1895 { 1896 return false; 1897 } 1898 #endif 1899 1900 /* 1901 * Test if the mounted volume is a multi-device volume. 1902 * - For a single regular disk volume, sbi->s_ndevs is 0. 1903 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1904 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1905 */ 1906 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1907 { 1908 return sbi->s_ndevs > 1; 1909 } 1910 1911 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1912 { 1913 unsigned long now = jiffies; 1914 1915 sbi->last_time[type] = now; 1916 1917 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1918 if (type == REQ_TIME) { 1919 sbi->last_time[DISCARD_TIME] = now; 1920 sbi->last_time[GC_TIME] = now; 1921 } 1922 } 1923 1924 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1925 { 1926 unsigned long interval = sbi->interval_time[type] * HZ; 1927 1928 return time_after(jiffies, sbi->last_time[type] + interval); 1929 } 1930 1931 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1932 int type) 1933 { 1934 unsigned long interval = sbi->interval_time[type] * HZ; 1935 unsigned int wait_ms = 0; 1936 long delta; 1937 1938 delta = (sbi->last_time[type] + interval) - jiffies; 1939 if (delta > 0) 1940 wait_ms = jiffies_to_msecs(delta); 1941 1942 return wait_ms; 1943 } 1944 1945 /* 1946 * Inline functions 1947 */ 1948 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1949 const void *address, unsigned int length) 1950 { 1951 struct { 1952 struct shash_desc shash; 1953 char ctx[4]; 1954 } desc; 1955 int err; 1956 1957 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1958 1959 desc.shash.tfm = sbi->s_chksum_driver; 1960 *(u32 *)desc.ctx = crc; 1961 1962 err = crypto_shash_update(&desc.shash, address, length); 1963 BUG_ON(err); 1964 1965 return *(u32 *)desc.ctx; 1966 } 1967 1968 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1969 unsigned int length) 1970 { 1971 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1972 } 1973 1974 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1975 void *buf, size_t buf_size) 1976 { 1977 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1978 } 1979 1980 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1981 const void *address, unsigned int length) 1982 { 1983 return __f2fs_crc32(sbi, crc, address, length); 1984 } 1985 1986 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1987 { 1988 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1989 } 1990 1991 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1992 { 1993 return sb->s_fs_info; 1994 } 1995 1996 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1997 { 1998 return F2FS_SB(inode->i_sb); 1999 } 2000 2001 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 2002 { 2003 return F2FS_I_SB(mapping->host); 2004 } 2005 2006 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 2007 { 2008 return F2FS_M_SB(page_file_mapping(page)); 2009 } 2010 2011 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 2012 { 2013 return (struct f2fs_super_block *)(sbi->raw_super); 2014 } 2015 2016 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 2017 { 2018 return (struct f2fs_checkpoint *)(sbi->ckpt); 2019 } 2020 2021 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2022 { 2023 return (struct f2fs_node *)page_address(page); 2024 } 2025 2026 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2027 { 2028 return &((struct f2fs_node *)page_address(page))->i; 2029 } 2030 2031 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2032 { 2033 return (struct f2fs_nm_info *)(sbi->nm_info); 2034 } 2035 2036 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2037 { 2038 return (struct f2fs_sm_info *)(sbi->sm_info); 2039 } 2040 2041 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2042 { 2043 return (struct sit_info *)(SM_I(sbi)->sit_info); 2044 } 2045 2046 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2047 { 2048 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2049 } 2050 2051 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2052 { 2053 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2054 } 2055 2056 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2057 { 2058 return sbi->meta_inode->i_mapping; 2059 } 2060 2061 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2062 { 2063 return sbi->node_inode->i_mapping; 2064 } 2065 2066 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2067 { 2068 return test_bit(type, &sbi->s_flag); 2069 } 2070 2071 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2072 { 2073 set_bit(type, &sbi->s_flag); 2074 } 2075 2076 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2077 { 2078 clear_bit(type, &sbi->s_flag); 2079 } 2080 2081 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2082 { 2083 return le64_to_cpu(cp->checkpoint_ver); 2084 } 2085 2086 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2087 { 2088 if (type < F2FS_MAX_QUOTAS) 2089 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2090 return 0; 2091 } 2092 2093 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2094 { 2095 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2096 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2097 } 2098 2099 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2100 { 2101 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2102 2103 return ckpt_flags & f; 2104 } 2105 2106 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2107 { 2108 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2109 } 2110 2111 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2112 { 2113 unsigned int ckpt_flags; 2114 2115 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2116 ckpt_flags |= f; 2117 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2118 } 2119 2120 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2121 { 2122 unsigned long flags; 2123 2124 spin_lock_irqsave(&sbi->cp_lock, flags); 2125 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2126 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2127 } 2128 2129 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2130 { 2131 unsigned int ckpt_flags; 2132 2133 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2134 ckpt_flags &= (~f); 2135 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2136 } 2137 2138 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2139 { 2140 unsigned long flags; 2141 2142 spin_lock_irqsave(&sbi->cp_lock, flags); 2143 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2144 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2145 } 2146 2147 #define init_f2fs_rwsem(sem) \ 2148 do { \ 2149 static struct lock_class_key __key; \ 2150 \ 2151 __init_f2fs_rwsem((sem), #sem, &__key); \ 2152 } while (0) 2153 2154 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2155 const char *sem_name, struct lock_class_key *key) 2156 { 2157 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2158 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2159 init_waitqueue_head(&sem->read_waiters); 2160 #endif 2161 } 2162 2163 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2164 { 2165 return rwsem_is_locked(&sem->internal_rwsem); 2166 } 2167 2168 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2169 { 2170 return rwsem_is_contended(&sem->internal_rwsem); 2171 } 2172 2173 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2174 { 2175 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2176 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2177 #else 2178 down_read(&sem->internal_rwsem); 2179 #endif 2180 } 2181 2182 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2183 { 2184 return down_read_trylock(&sem->internal_rwsem); 2185 } 2186 2187 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2188 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2189 { 2190 down_read_nested(&sem->internal_rwsem, subclass); 2191 } 2192 #else 2193 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2194 #endif 2195 2196 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2197 { 2198 up_read(&sem->internal_rwsem); 2199 } 2200 2201 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2202 { 2203 down_write(&sem->internal_rwsem); 2204 } 2205 2206 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2207 { 2208 return down_write_trylock(&sem->internal_rwsem); 2209 } 2210 2211 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2212 { 2213 up_write(&sem->internal_rwsem); 2214 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2215 wake_up_all(&sem->read_waiters); 2216 #endif 2217 } 2218 2219 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2220 { 2221 f2fs_down_read(&sbi->cp_rwsem); 2222 } 2223 2224 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2225 { 2226 if (time_to_inject(sbi, FAULT_LOCK_OP)) { 2227 f2fs_show_injection_info(sbi, FAULT_LOCK_OP); 2228 return 0; 2229 } 2230 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2231 } 2232 2233 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2234 { 2235 f2fs_up_read(&sbi->cp_rwsem); 2236 } 2237 2238 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2239 { 2240 f2fs_down_write(&sbi->cp_rwsem); 2241 } 2242 2243 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2244 { 2245 f2fs_up_write(&sbi->cp_rwsem); 2246 } 2247 2248 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2249 { 2250 int reason = CP_SYNC; 2251 2252 if (test_opt(sbi, FASTBOOT)) 2253 reason = CP_FASTBOOT; 2254 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2255 reason = CP_UMOUNT; 2256 return reason; 2257 } 2258 2259 static inline bool __remain_node_summaries(int reason) 2260 { 2261 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2262 } 2263 2264 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2265 { 2266 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2267 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2268 } 2269 2270 /* 2271 * Check whether the inode has blocks or not 2272 */ 2273 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2274 { 2275 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2276 2277 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2278 } 2279 2280 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2281 { 2282 return ofs == XATTR_NODE_OFFSET; 2283 } 2284 2285 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2286 struct inode *inode, bool cap) 2287 { 2288 if (!inode) 2289 return true; 2290 if (!test_opt(sbi, RESERVE_ROOT)) 2291 return false; 2292 if (IS_NOQUOTA(inode)) 2293 return true; 2294 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2295 return true; 2296 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2297 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2298 return true; 2299 if (cap && capable(CAP_SYS_RESOURCE)) 2300 return true; 2301 return false; 2302 } 2303 2304 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2305 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2306 struct inode *inode, blkcnt_t *count) 2307 { 2308 blkcnt_t diff = 0, release = 0; 2309 block_t avail_user_block_count; 2310 int ret; 2311 2312 ret = dquot_reserve_block(inode, *count); 2313 if (ret) 2314 return ret; 2315 2316 if (time_to_inject(sbi, FAULT_BLOCK)) { 2317 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2318 release = *count; 2319 goto release_quota; 2320 } 2321 2322 /* 2323 * let's increase this in prior to actual block count change in order 2324 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2325 */ 2326 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2327 2328 spin_lock(&sbi->stat_lock); 2329 sbi->total_valid_block_count += (block_t)(*count); 2330 avail_user_block_count = sbi->user_block_count - 2331 sbi->current_reserved_blocks; 2332 2333 if (!__allow_reserved_blocks(sbi, inode, true)) 2334 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2335 2336 if (F2FS_IO_ALIGNED(sbi)) 2337 avail_user_block_count -= sbi->blocks_per_seg * 2338 SM_I(sbi)->additional_reserved_segments; 2339 2340 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2341 if (avail_user_block_count > sbi->unusable_block_count) 2342 avail_user_block_count -= sbi->unusable_block_count; 2343 else 2344 avail_user_block_count = 0; 2345 } 2346 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2347 diff = sbi->total_valid_block_count - avail_user_block_count; 2348 if (diff > *count) 2349 diff = *count; 2350 *count -= diff; 2351 release = diff; 2352 sbi->total_valid_block_count -= diff; 2353 if (!*count) { 2354 spin_unlock(&sbi->stat_lock); 2355 goto enospc; 2356 } 2357 } 2358 spin_unlock(&sbi->stat_lock); 2359 2360 if (unlikely(release)) { 2361 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2362 dquot_release_reservation_block(inode, release); 2363 } 2364 f2fs_i_blocks_write(inode, *count, true, true); 2365 return 0; 2366 2367 enospc: 2368 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2369 release_quota: 2370 dquot_release_reservation_block(inode, release); 2371 return -ENOSPC; 2372 } 2373 2374 __printf(2, 3) 2375 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2376 2377 #define f2fs_err(sbi, fmt, ...) \ 2378 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2379 #define f2fs_warn(sbi, fmt, ...) \ 2380 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2381 #define f2fs_notice(sbi, fmt, ...) \ 2382 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2383 #define f2fs_info(sbi, fmt, ...) \ 2384 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2385 #define f2fs_debug(sbi, fmt, ...) \ 2386 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2387 2388 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2389 struct inode *inode, 2390 block_t count) 2391 { 2392 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2393 2394 spin_lock(&sbi->stat_lock); 2395 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2396 sbi->total_valid_block_count -= (block_t)count; 2397 if (sbi->reserved_blocks && 2398 sbi->current_reserved_blocks < sbi->reserved_blocks) 2399 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2400 sbi->current_reserved_blocks + count); 2401 spin_unlock(&sbi->stat_lock); 2402 if (unlikely(inode->i_blocks < sectors)) { 2403 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2404 inode->i_ino, 2405 (unsigned long long)inode->i_blocks, 2406 (unsigned long long)sectors); 2407 set_sbi_flag(sbi, SBI_NEED_FSCK); 2408 return; 2409 } 2410 f2fs_i_blocks_write(inode, count, false, true); 2411 } 2412 2413 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2414 { 2415 atomic_inc(&sbi->nr_pages[count_type]); 2416 2417 if (count_type == F2FS_DIRTY_DENTS || 2418 count_type == F2FS_DIRTY_NODES || 2419 count_type == F2FS_DIRTY_META || 2420 count_type == F2FS_DIRTY_QDATA || 2421 count_type == F2FS_DIRTY_IMETA) 2422 set_sbi_flag(sbi, SBI_IS_DIRTY); 2423 } 2424 2425 static inline void inode_inc_dirty_pages(struct inode *inode) 2426 { 2427 atomic_inc(&F2FS_I(inode)->dirty_pages); 2428 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2429 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2430 if (IS_NOQUOTA(inode)) 2431 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2432 } 2433 2434 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2435 { 2436 atomic_dec(&sbi->nr_pages[count_type]); 2437 } 2438 2439 static inline void inode_dec_dirty_pages(struct inode *inode) 2440 { 2441 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2442 !S_ISLNK(inode->i_mode)) 2443 return; 2444 2445 atomic_dec(&F2FS_I(inode)->dirty_pages); 2446 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2447 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2448 if (IS_NOQUOTA(inode)) 2449 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2450 } 2451 2452 static inline void inc_atomic_write_cnt(struct inode *inode) 2453 { 2454 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2455 struct f2fs_inode_info *fi = F2FS_I(inode); 2456 u64 current_write; 2457 2458 fi->atomic_write_cnt++; 2459 atomic64_inc(&sbi->current_atomic_write); 2460 current_write = atomic64_read(&sbi->current_atomic_write); 2461 if (current_write > sbi->peak_atomic_write) 2462 sbi->peak_atomic_write = current_write; 2463 } 2464 2465 static inline void release_atomic_write_cnt(struct inode *inode) 2466 { 2467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2468 struct f2fs_inode_info *fi = F2FS_I(inode); 2469 2470 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2471 fi->atomic_write_cnt = 0; 2472 } 2473 2474 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2475 { 2476 return atomic_read(&sbi->nr_pages[count_type]); 2477 } 2478 2479 static inline int get_dirty_pages(struct inode *inode) 2480 { 2481 return atomic_read(&F2FS_I(inode)->dirty_pages); 2482 } 2483 2484 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2485 { 2486 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2487 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2488 sbi->log_blocks_per_seg; 2489 2490 return segs / sbi->segs_per_sec; 2491 } 2492 2493 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2494 { 2495 return sbi->total_valid_block_count; 2496 } 2497 2498 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2499 { 2500 return sbi->discard_blks; 2501 } 2502 2503 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2504 { 2505 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2506 2507 /* return NAT or SIT bitmap */ 2508 if (flag == NAT_BITMAP) 2509 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2510 else if (flag == SIT_BITMAP) 2511 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2512 2513 return 0; 2514 } 2515 2516 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2517 { 2518 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2519 } 2520 2521 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2522 { 2523 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2524 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2525 int offset; 2526 2527 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2528 offset = (flag == SIT_BITMAP) ? 2529 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2530 /* 2531 * if large_nat_bitmap feature is enabled, leave checksum 2532 * protection for all nat/sit bitmaps. 2533 */ 2534 return tmp_ptr + offset + sizeof(__le32); 2535 } 2536 2537 if (__cp_payload(sbi) > 0) { 2538 if (flag == NAT_BITMAP) 2539 return tmp_ptr; 2540 else 2541 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2542 } else { 2543 offset = (flag == NAT_BITMAP) ? 2544 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2545 return tmp_ptr + offset; 2546 } 2547 } 2548 2549 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2550 { 2551 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2552 2553 if (sbi->cur_cp_pack == 2) 2554 start_addr += sbi->blocks_per_seg; 2555 return start_addr; 2556 } 2557 2558 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2559 { 2560 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2561 2562 if (sbi->cur_cp_pack == 1) 2563 start_addr += sbi->blocks_per_seg; 2564 return start_addr; 2565 } 2566 2567 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2568 { 2569 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2570 } 2571 2572 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2573 { 2574 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2575 } 2576 2577 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2578 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2579 struct inode *inode, bool is_inode) 2580 { 2581 block_t valid_block_count; 2582 unsigned int valid_node_count, user_block_count; 2583 int err; 2584 2585 if (is_inode) { 2586 if (inode) { 2587 err = dquot_alloc_inode(inode); 2588 if (err) 2589 return err; 2590 } 2591 } else { 2592 err = dquot_reserve_block(inode, 1); 2593 if (err) 2594 return err; 2595 } 2596 2597 if (time_to_inject(sbi, FAULT_BLOCK)) { 2598 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2599 goto enospc; 2600 } 2601 2602 spin_lock(&sbi->stat_lock); 2603 2604 valid_block_count = sbi->total_valid_block_count + 2605 sbi->current_reserved_blocks + 1; 2606 2607 if (!__allow_reserved_blocks(sbi, inode, false)) 2608 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2609 2610 if (F2FS_IO_ALIGNED(sbi)) 2611 valid_block_count += sbi->blocks_per_seg * 2612 SM_I(sbi)->additional_reserved_segments; 2613 2614 user_block_count = sbi->user_block_count; 2615 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2616 user_block_count -= sbi->unusable_block_count; 2617 2618 if (unlikely(valid_block_count > user_block_count)) { 2619 spin_unlock(&sbi->stat_lock); 2620 goto enospc; 2621 } 2622 2623 valid_node_count = sbi->total_valid_node_count + 1; 2624 if (unlikely(valid_node_count > sbi->total_node_count)) { 2625 spin_unlock(&sbi->stat_lock); 2626 goto enospc; 2627 } 2628 2629 sbi->total_valid_node_count++; 2630 sbi->total_valid_block_count++; 2631 spin_unlock(&sbi->stat_lock); 2632 2633 if (inode) { 2634 if (is_inode) 2635 f2fs_mark_inode_dirty_sync(inode, true); 2636 else 2637 f2fs_i_blocks_write(inode, 1, true, true); 2638 } 2639 2640 percpu_counter_inc(&sbi->alloc_valid_block_count); 2641 return 0; 2642 2643 enospc: 2644 if (is_inode) { 2645 if (inode) 2646 dquot_free_inode(inode); 2647 } else { 2648 dquot_release_reservation_block(inode, 1); 2649 } 2650 return -ENOSPC; 2651 } 2652 2653 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2654 struct inode *inode, bool is_inode) 2655 { 2656 spin_lock(&sbi->stat_lock); 2657 2658 if (unlikely(!sbi->total_valid_block_count || 2659 !sbi->total_valid_node_count)) { 2660 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2661 sbi->total_valid_block_count, 2662 sbi->total_valid_node_count); 2663 set_sbi_flag(sbi, SBI_NEED_FSCK); 2664 } else { 2665 sbi->total_valid_block_count--; 2666 sbi->total_valid_node_count--; 2667 } 2668 2669 if (sbi->reserved_blocks && 2670 sbi->current_reserved_blocks < sbi->reserved_blocks) 2671 sbi->current_reserved_blocks++; 2672 2673 spin_unlock(&sbi->stat_lock); 2674 2675 if (is_inode) { 2676 dquot_free_inode(inode); 2677 } else { 2678 if (unlikely(inode->i_blocks == 0)) { 2679 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2680 inode->i_ino, 2681 (unsigned long long)inode->i_blocks); 2682 set_sbi_flag(sbi, SBI_NEED_FSCK); 2683 return; 2684 } 2685 f2fs_i_blocks_write(inode, 1, false, true); 2686 } 2687 } 2688 2689 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2690 { 2691 return sbi->total_valid_node_count; 2692 } 2693 2694 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2695 { 2696 percpu_counter_inc(&sbi->total_valid_inode_count); 2697 } 2698 2699 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2700 { 2701 percpu_counter_dec(&sbi->total_valid_inode_count); 2702 } 2703 2704 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2705 { 2706 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2707 } 2708 2709 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2710 pgoff_t index, bool for_write) 2711 { 2712 struct page *page; 2713 unsigned int flags; 2714 2715 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2716 if (!for_write) 2717 page = find_get_page_flags(mapping, index, 2718 FGP_LOCK | FGP_ACCESSED); 2719 else 2720 page = find_lock_page(mapping, index); 2721 if (page) 2722 return page; 2723 2724 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2725 f2fs_show_injection_info(F2FS_M_SB(mapping), 2726 FAULT_PAGE_ALLOC); 2727 return NULL; 2728 } 2729 } 2730 2731 if (!for_write) 2732 return grab_cache_page(mapping, index); 2733 2734 flags = memalloc_nofs_save(); 2735 page = grab_cache_page_write_begin(mapping, index); 2736 memalloc_nofs_restore(flags); 2737 2738 return page; 2739 } 2740 2741 static inline struct page *f2fs_pagecache_get_page( 2742 struct address_space *mapping, pgoff_t index, 2743 int fgp_flags, gfp_t gfp_mask) 2744 { 2745 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2746 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2747 return NULL; 2748 } 2749 2750 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2751 } 2752 2753 static inline void f2fs_put_page(struct page *page, int unlock) 2754 { 2755 if (!page) 2756 return; 2757 2758 if (unlock) { 2759 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2760 unlock_page(page); 2761 } 2762 put_page(page); 2763 } 2764 2765 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2766 { 2767 if (dn->node_page) 2768 f2fs_put_page(dn->node_page, 1); 2769 if (dn->inode_page && dn->node_page != dn->inode_page) 2770 f2fs_put_page(dn->inode_page, 0); 2771 dn->node_page = NULL; 2772 dn->inode_page = NULL; 2773 } 2774 2775 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2776 size_t size) 2777 { 2778 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2779 } 2780 2781 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2782 gfp_t flags) 2783 { 2784 void *entry; 2785 2786 entry = kmem_cache_alloc(cachep, flags); 2787 if (!entry) 2788 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2789 return entry; 2790 } 2791 2792 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2793 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2794 { 2795 if (nofail) 2796 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2797 2798 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) { 2799 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC); 2800 return NULL; 2801 } 2802 2803 return kmem_cache_alloc(cachep, flags); 2804 } 2805 2806 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2807 { 2808 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2809 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2810 get_pages(sbi, F2FS_WB_CP_DATA) || 2811 get_pages(sbi, F2FS_DIO_READ) || 2812 get_pages(sbi, F2FS_DIO_WRITE)) 2813 return true; 2814 2815 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2816 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2817 return true; 2818 2819 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2820 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2821 return true; 2822 return false; 2823 } 2824 2825 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2826 { 2827 if (sbi->gc_mode == GC_URGENT_HIGH) 2828 return true; 2829 2830 if (is_inflight_io(sbi, type)) 2831 return false; 2832 2833 if (sbi->gc_mode == GC_URGENT_MID) 2834 return true; 2835 2836 if (sbi->gc_mode == GC_URGENT_LOW && 2837 (type == DISCARD_TIME || type == GC_TIME)) 2838 return true; 2839 2840 return f2fs_time_over(sbi, type); 2841 } 2842 2843 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2844 unsigned long index, void *item) 2845 { 2846 while (radix_tree_insert(root, index, item)) 2847 cond_resched(); 2848 } 2849 2850 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2851 2852 static inline bool IS_INODE(struct page *page) 2853 { 2854 struct f2fs_node *p = F2FS_NODE(page); 2855 2856 return RAW_IS_INODE(p); 2857 } 2858 2859 static inline int offset_in_addr(struct f2fs_inode *i) 2860 { 2861 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2862 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2863 } 2864 2865 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2866 { 2867 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2868 } 2869 2870 static inline int f2fs_has_extra_attr(struct inode *inode); 2871 static inline block_t data_blkaddr(struct inode *inode, 2872 struct page *node_page, unsigned int offset) 2873 { 2874 struct f2fs_node *raw_node; 2875 __le32 *addr_array; 2876 int base = 0; 2877 bool is_inode = IS_INODE(node_page); 2878 2879 raw_node = F2FS_NODE(node_page); 2880 2881 if (is_inode) { 2882 if (!inode) 2883 /* from GC path only */ 2884 base = offset_in_addr(&raw_node->i); 2885 else if (f2fs_has_extra_attr(inode)) 2886 base = get_extra_isize(inode); 2887 } 2888 2889 addr_array = blkaddr_in_node(raw_node); 2890 return le32_to_cpu(addr_array[base + offset]); 2891 } 2892 2893 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2894 { 2895 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2896 } 2897 2898 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2899 { 2900 int mask; 2901 2902 addr += (nr >> 3); 2903 mask = 1 << (7 - (nr & 0x07)); 2904 return mask & *addr; 2905 } 2906 2907 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2908 { 2909 int mask; 2910 2911 addr += (nr >> 3); 2912 mask = 1 << (7 - (nr & 0x07)); 2913 *addr |= mask; 2914 } 2915 2916 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2917 { 2918 int mask; 2919 2920 addr += (nr >> 3); 2921 mask = 1 << (7 - (nr & 0x07)); 2922 *addr &= ~mask; 2923 } 2924 2925 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2926 { 2927 int mask; 2928 int ret; 2929 2930 addr += (nr >> 3); 2931 mask = 1 << (7 - (nr & 0x07)); 2932 ret = mask & *addr; 2933 *addr |= mask; 2934 return ret; 2935 } 2936 2937 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2938 { 2939 int mask; 2940 int ret; 2941 2942 addr += (nr >> 3); 2943 mask = 1 << (7 - (nr & 0x07)); 2944 ret = mask & *addr; 2945 *addr &= ~mask; 2946 return ret; 2947 } 2948 2949 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2950 { 2951 int mask; 2952 2953 addr += (nr >> 3); 2954 mask = 1 << (7 - (nr & 0x07)); 2955 *addr ^= mask; 2956 } 2957 2958 /* 2959 * On-disk inode flags (f2fs_inode::i_flags) 2960 */ 2961 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2962 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2963 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2964 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2965 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2966 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2967 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2968 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2969 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2970 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2971 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2972 2973 /* Flags that should be inherited by new inodes from their parent. */ 2974 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2975 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2976 F2FS_CASEFOLD_FL) 2977 2978 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2979 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2980 F2FS_CASEFOLD_FL)) 2981 2982 /* Flags that are appropriate for non-directories/regular files. */ 2983 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2984 2985 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2986 { 2987 if (S_ISDIR(mode)) 2988 return flags; 2989 else if (S_ISREG(mode)) 2990 return flags & F2FS_REG_FLMASK; 2991 else 2992 return flags & F2FS_OTHER_FLMASK; 2993 } 2994 2995 static inline void __mark_inode_dirty_flag(struct inode *inode, 2996 int flag, bool set) 2997 { 2998 switch (flag) { 2999 case FI_INLINE_XATTR: 3000 case FI_INLINE_DATA: 3001 case FI_INLINE_DENTRY: 3002 case FI_NEW_INODE: 3003 if (set) 3004 return; 3005 fallthrough; 3006 case FI_DATA_EXIST: 3007 case FI_INLINE_DOTS: 3008 case FI_PIN_FILE: 3009 case FI_COMPRESS_RELEASED: 3010 f2fs_mark_inode_dirty_sync(inode, true); 3011 } 3012 } 3013 3014 static inline void set_inode_flag(struct inode *inode, int flag) 3015 { 3016 set_bit(flag, F2FS_I(inode)->flags); 3017 __mark_inode_dirty_flag(inode, flag, true); 3018 } 3019 3020 static inline int is_inode_flag_set(struct inode *inode, int flag) 3021 { 3022 return test_bit(flag, F2FS_I(inode)->flags); 3023 } 3024 3025 static inline void clear_inode_flag(struct inode *inode, int flag) 3026 { 3027 clear_bit(flag, F2FS_I(inode)->flags); 3028 __mark_inode_dirty_flag(inode, flag, false); 3029 } 3030 3031 static inline bool f2fs_verity_in_progress(struct inode *inode) 3032 { 3033 return IS_ENABLED(CONFIG_FS_VERITY) && 3034 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3035 } 3036 3037 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3038 { 3039 F2FS_I(inode)->i_acl_mode = mode; 3040 set_inode_flag(inode, FI_ACL_MODE); 3041 f2fs_mark_inode_dirty_sync(inode, false); 3042 } 3043 3044 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3045 { 3046 if (inc) 3047 inc_nlink(inode); 3048 else 3049 drop_nlink(inode); 3050 f2fs_mark_inode_dirty_sync(inode, true); 3051 } 3052 3053 static inline void f2fs_i_blocks_write(struct inode *inode, 3054 block_t diff, bool add, bool claim) 3055 { 3056 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3057 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3058 3059 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3060 if (add) { 3061 if (claim) 3062 dquot_claim_block(inode, diff); 3063 else 3064 dquot_alloc_block_nofail(inode, diff); 3065 } else { 3066 dquot_free_block(inode, diff); 3067 } 3068 3069 f2fs_mark_inode_dirty_sync(inode, true); 3070 if (clean || recover) 3071 set_inode_flag(inode, FI_AUTO_RECOVER); 3072 } 3073 3074 static inline bool f2fs_is_atomic_file(struct inode *inode); 3075 3076 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3077 { 3078 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3079 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3080 3081 if (i_size_read(inode) == i_size) 3082 return; 3083 3084 i_size_write(inode, i_size); 3085 3086 if (f2fs_is_atomic_file(inode)) 3087 return; 3088 3089 f2fs_mark_inode_dirty_sync(inode, true); 3090 if (clean || recover) 3091 set_inode_flag(inode, FI_AUTO_RECOVER); 3092 } 3093 3094 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3095 { 3096 F2FS_I(inode)->i_current_depth = depth; 3097 f2fs_mark_inode_dirty_sync(inode, true); 3098 } 3099 3100 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3101 unsigned int count) 3102 { 3103 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3104 f2fs_mark_inode_dirty_sync(inode, true); 3105 } 3106 3107 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3108 { 3109 F2FS_I(inode)->i_xattr_nid = xnid; 3110 f2fs_mark_inode_dirty_sync(inode, true); 3111 } 3112 3113 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3114 { 3115 F2FS_I(inode)->i_pino = pino; 3116 f2fs_mark_inode_dirty_sync(inode, true); 3117 } 3118 3119 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3120 { 3121 struct f2fs_inode_info *fi = F2FS_I(inode); 3122 3123 if (ri->i_inline & F2FS_INLINE_XATTR) 3124 set_bit(FI_INLINE_XATTR, fi->flags); 3125 if (ri->i_inline & F2FS_INLINE_DATA) 3126 set_bit(FI_INLINE_DATA, fi->flags); 3127 if (ri->i_inline & F2FS_INLINE_DENTRY) 3128 set_bit(FI_INLINE_DENTRY, fi->flags); 3129 if (ri->i_inline & F2FS_DATA_EXIST) 3130 set_bit(FI_DATA_EXIST, fi->flags); 3131 if (ri->i_inline & F2FS_INLINE_DOTS) 3132 set_bit(FI_INLINE_DOTS, fi->flags); 3133 if (ri->i_inline & F2FS_EXTRA_ATTR) 3134 set_bit(FI_EXTRA_ATTR, fi->flags); 3135 if (ri->i_inline & F2FS_PIN_FILE) 3136 set_bit(FI_PIN_FILE, fi->flags); 3137 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3138 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3139 } 3140 3141 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3142 { 3143 ri->i_inline = 0; 3144 3145 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3146 ri->i_inline |= F2FS_INLINE_XATTR; 3147 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3148 ri->i_inline |= F2FS_INLINE_DATA; 3149 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3150 ri->i_inline |= F2FS_INLINE_DENTRY; 3151 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3152 ri->i_inline |= F2FS_DATA_EXIST; 3153 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3154 ri->i_inline |= F2FS_INLINE_DOTS; 3155 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3156 ri->i_inline |= F2FS_EXTRA_ATTR; 3157 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3158 ri->i_inline |= F2FS_PIN_FILE; 3159 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3160 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3161 } 3162 3163 static inline int f2fs_has_extra_attr(struct inode *inode) 3164 { 3165 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3166 } 3167 3168 static inline int f2fs_has_inline_xattr(struct inode *inode) 3169 { 3170 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3171 } 3172 3173 static inline int f2fs_compressed_file(struct inode *inode) 3174 { 3175 return S_ISREG(inode->i_mode) && 3176 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3177 } 3178 3179 static inline bool f2fs_need_compress_data(struct inode *inode) 3180 { 3181 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3182 3183 if (!f2fs_compressed_file(inode)) 3184 return false; 3185 3186 if (compress_mode == COMPR_MODE_FS) 3187 return true; 3188 else if (compress_mode == COMPR_MODE_USER && 3189 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3190 return true; 3191 3192 return false; 3193 } 3194 3195 static inline unsigned int addrs_per_inode(struct inode *inode) 3196 { 3197 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3198 get_inline_xattr_addrs(inode); 3199 3200 if (!f2fs_compressed_file(inode)) 3201 return addrs; 3202 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3203 } 3204 3205 static inline unsigned int addrs_per_block(struct inode *inode) 3206 { 3207 if (!f2fs_compressed_file(inode)) 3208 return DEF_ADDRS_PER_BLOCK; 3209 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3210 } 3211 3212 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3213 { 3214 struct f2fs_inode *ri = F2FS_INODE(page); 3215 3216 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3217 get_inline_xattr_addrs(inode)]); 3218 } 3219 3220 static inline int inline_xattr_size(struct inode *inode) 3221 { 3222 if (f2fs_has_inline_xattr(inode)) 3223 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3224 return 0; 3225 } 3226 3227 /* 3228 * Notice: check inline_data flag without inode page lock is unsafe. 3229 * It could change at any time by f2fs_convert_inline_page(). 3230 */ 3231 static inline int f2fs_has_inline_data(struct inode *inode) 3232 { 3233 return is_inode_flag_set(inode, FI_INLINE_DATA); 3234 } 3235 3236 static inline int f2fs_exist_data(struct inode *inode) 3237 { 3238 return is_inode_flag_set(inode, FI_DATA_EXIST); 3239 } 3240 3241 static inline int f2fs_has_inline_dots(struct inode *inode) 3242 { 3243 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3244 } 3245 3246 static inline int f2fs_is_mmap_file(struct inode *inode) 3247 { 3248 return is_inode_flag_set(inode, FI_MMAP_FILE); 3249 } 3250 3251 static inline bool f2fs_is_pinned_file(struct inode *inode) 3252 { 3253 return is_inode_flag_set(inode, FI_PIN_FILE); 3254 } 3255 3256 static inline bool f2fs_is_atomic_file(struct inode *inode) 3257 { 3258 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3259 } 3260 3261 static inline bool f2fs_is_cow_file(struct inode *inode) 3262 { 3263 return is_inode_flag_set(inode, FI_COW_FILE); 3264 } 3265 3266 static inline bool f2fs_is_first_block_written(struct inode *inode) 3267 { 3268 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3269 } 3270 3271 static inline bool f2fs_is_drop_cache(struct inode *inode) 3272 { 3273 return is_inode_flag_set(inode, FI_DROP_CACHE); 3274 } 3275 3276 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3277 { 3278 struct f2fs_inode *ri = F2FS_INODE(page); 3279 int extra_size = get_extra_isize(inode); 3280 3281 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3282 } 3283 3284 static inline int f2fs_has_inline_dentry(struct inode *inode) 3285 { 3286 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3287 } 3288 3289 static inline int is_file(struct inode *inode, int type) 3290 { 3291 return F2FS_I(inode)->i_advise & type; 3292 } 3293 3294 static inline void set_file(struct inode *inode, int type) 3295 { 3296 if (is_file(inode, type)) 3297 return; 3298 F2FS_I(inode)->i_advise |= type; 3299 f2fs_mark_inode_dirty_sync(inode, true); 3300 } 3301 3302 static inline void clear_file(struct inode *inode, int type) 3303 { 3304 if (!is_file(inode, type)) 3305 return; 3306 F2FS_I(inode)->i_advise &= ~type; 3307 f2fs_mark_inode_dirty_sync(inode, true); 3308 } 3309 3310 static inline bool f2fs_is_time_consistent(struct inode *inode) 3311 { 3312 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3313 return false; 3314 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3315 return false; 3316 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3317 return false; 3318 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3319 &F2FS_I(inode)->i_crtime)) 3320 return false; 3321 return true; 3322 } 3323 3324 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3325 { 3326 bool ret; 3327 3328 if (dsync) { 3329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3330 3331 spin_lock(&sbi->inode_lock[DIRTY_META]); 3332 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3333 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3334 return ret; 3335 } 3336 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3337 file_keep_isize(inode) || 3338 i_size_read(inode) & ~PAGE_MASK) 3339 return false; 3340 3341 if (!f2fs_is_time_consistent(inode)) 3342 return false; 3343 3344 spin_lock(&F2FS_I(inode)->i_size_lock); 3345 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3346 spin_unlock(&F2FS_I(inode)->i_size_lock); 3347 3348 return ret; 3349 } 3350 3351 static inline bool f2fs_readonly(struct super_block *sb) 3352 { 3353 return sb_rdonly(sb); 3354 } 3355 3356 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3357 { 3358 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3359 } 3360 3361 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3362 { 3363 if (len == 1 && name[0] == '.') 3364 return true; 3365 3366 if (len == 2 && name[0] == '.' && name[1] == '.') 3367 return true; 3368 3369 return false; 3370 } 3371 3372 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3373 size_t size, gfp_t flags) 3374 { 3375 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3376 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3377 return NULL; 3378 } 3379 3380 return kmalloc(size, flags); 3381 } 3382 3383 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3384 size_t size, gfp_t flags) 3385 { 3386 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3387 } 3388 3389 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3390 size_t size, gfp_t flags) 3391 { 3392 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3393 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3394 return NULL; 3395 } 3396 3397 return kvmalloc(size, flags); 3398 } 3399 3400 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3401 size_t size, gfp_t flags) 3402 { 3403 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3404 } 3405 3406 static inline int get_extra_isize(struct inode *inode) 3407 { 3408 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3409 } 3410 3411 static inline int get_inline_xattr_addrs(struct inode *inode) 3412 { 3413 return F2FS_I(inode)->i_inline_xattr_size; 3414 } 3415 3416 #define f2fs_get_inode_mode(i) \ 3417 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3418 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3419 3420 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3421 (offsetof(struct f2fs_inode, i_extra_end) - \ 3422 offsetof(struct f2fs_inode, i_extra_isize)) \ 3423 3424 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3425 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3426 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3427 sizeof((f2fs_inode)->field)) \ 3428 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3429 3430 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3431 3432 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3433 3434 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3435 block_t blkaddr, int type); 3436 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3437 block_t blkaddr, int type) 3438 { 3439 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3440 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3441 blkaddr, type); 3442 f2fs_bug_on(sbi, 1); 3443 } 3444 } 3445 3446 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3447 { 3448 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3449 blkaddr == COMPRESS_ADDR) 3450 return false; 3451 return true; 3452 } 3453 3454 /* 3455 * file.c 3456 */ 3457 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3458 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3459 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3460 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3461 int f2fs_truncate(struct inode *inode); 3462 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3463 struct kstat *stat, u32 request_mask, unsigned int flags); 3464 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3465 struct iattr *attr); 3466 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3467 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3468 int f2fs_precache_extents(struct inode *inode); 3469 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3470 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3471 struct dentry *dentry, struct fileattr *fa); 3472 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3473 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3474 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3475 int f2fs_pin_file_control(struct inode *inode, bool inc); 3476 3477 /* 3478 * inode.c 3479 */ 3480 void f2fs_set_inode_flags(struct inode *inode); 3481 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3482 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3483 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3484 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3485 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3486 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3487 void f2fs_update_inode_page(struct inode *inode); 3488 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3489 void f2fs_evict_inode(struct inode *inode); 3490 void f2fs_handle_failed_inode(struct inode *inode); 3491 3492 /* 3493 * namei.c 3494 */ 3495 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3496 bool hot, bool set); 3497 struct dentry *f2fs_get_parent(struct dentry *child); 3498 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 3499 struct inode **new_inode); 3500 3501 /* 3502 * dir.c 3503 */ 3504 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3505 int f2fs_init_casefolded_name(const struct inode *dir, 3506 struct f2fs_filename *fname); 3507 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3508 int lookup, struct f2fs_filename *fname); 3509 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3510 struct f2fs_filename *fname); 3511 void f2fs_free_filename(struct f2fs_filename *fname); 3512 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3513 const struct f2fs_filename *fname, int *max_slots); 3514 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3515 unsigned int start_pos, struct fscrypt_str *fstr); 3516 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3517 struct f2fs_dentry_ptr *d); 3518 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3519 const struct f2fs_filename *fname, struct page *dpage); 3520 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3521 unsigned int current_depth); 3522 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3523 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3524 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3525 const struct f2fs_filename *fname, 3526 struct page **res_page); 3527 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3528 const struct qstr *child, struct page **res_page); 3529 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3530 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3531 struct page **page); 3532 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3533 struct page *page, struct inode *inode); 3534 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3535 const struct f2fs_filename *fname); 3536 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3537 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3538 unsigned int bit_pos); 3539 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3540 struct inode *inode, nid_t ino, umode_t mode); 3541 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3542 struct inode *inode, nid_t ino, umode_t mode); 3543 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3544 struct inode *inode, nid_t ino, umode_t mode); 3545 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3546 struct inode *dir, struct inode *inode); 3547 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3548 bool f2fs_empty_dir(struct inode *dir); 3549 3550 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3551 { 3552 if (fscrypt_is_nokey_name(dentry)) 3553 return -ENOKEY; 3554 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3555 inode, inode->i_ino, inode->i_mode); 3556 } 3557 3558 /* 3559 * super.c 3560 */ 3561 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3562 void f2fs_inode_synced(struct inode *inode); 3563 int f2fs_dquot_initialize(struct inode *inode); 3564 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3565 int f2fs_quota_sync(struct super_block *sb, int type); 3566 loff_t max_file_blocks(struct inode *inode); 3567 void f2fs_quota_off_umount(struct super_block *sb); 3568 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason); 3569 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3570 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3571 int f2fs_sync_fs(struct super_block *sb, int sync); 3572 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3573 3574 /* 3575 * hash.c 3576 */ 3577 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3578 3579 /* 3580 * node.c 3581 */ 3582 struct node_info; 3583 3584 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3585 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3586 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3587 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3588 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3589 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3590 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3591 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3592 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3593 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3594 struct node_info *ni, bool checkpoint_context); 3595 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3596 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3597 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3598 int f2fs_truncate_xattr_node(struct inode *inode); 3599 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3600 unsigned int seq_id); 3601 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3602 int f2fs_remove_inode_page(struct inode *inode); 3603 struct page *f2fs_new_inode_page(struct inode *inode); 3604 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3605 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3606 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3607 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3608 int f2fs_move_node_page(struct page *node_page, int gc_type); 3609 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3610 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3611 struct writeback_control *wbc, bool atomic, 3612 unsigned int *seq_id); 3613 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3614 struct writeback_control *wbc, 3615 bool do_balance, enum iostat_type io_type); 3616 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3617 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3618 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3619 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3620 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3621 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3622 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3623 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3624 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3625 unsigned int segno, struct f2fs_summary_block *sum); 3626 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3627 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3628 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3629 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3630 int __init f2fs_create_node_manager_caches(void); 3631 void f2fs_destroy_node_manager_caches(void); 3632 3633 /* 3634 * segment.c 3635 */ 3636 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3637 int f2fs_commit_atomic_write(struct inode *inode); 3638 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3639 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3640 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3641 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3642 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3643 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3644 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3645 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3646 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3647 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3648 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3649 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3650 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3651 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3652 struct cp_control *cpc); 3653 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3654 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3655 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3656 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3657 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3658 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3659 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3660 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3661 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3662 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3663 unsigned int *newseg, bool new_sec, int dir); 3664 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3665 unsigned int start, unsigned int end); 3666 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3667 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3668 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3669 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3670 struct cp_control *cpc); 3671 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3672 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3673 block_t blk_addr); 3674 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3675 enum iostat_type io_type); 3676 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3677 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3678 struct f2fs_io_info *fio); 3679 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3680 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3681 block_t old_blkaddr, block_t new_blkaddr, 3682 bool recover_curseg, bool recover_newaddr, 3683 bool from_gc); 3684 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3685 block_t old_addr, block_t new_addr, 3686 unsigned char version, bool recover_curseg, 3687 bool recover_newaddr); 3688 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3689 block_t old_blkaddr, block_t *new_blkaddr, 3690 struct f2fs_summary *sum, int type, 3691 struct f2fs_io_info *fio); 3692 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3693 block_t blkaddr, unsigned int blkcnt); 3694 void f2fs_wait_on_page_writeback(struct page *page, 3695 enum page_type type, bool ordered, bool locked); 3696 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3697 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3698 block_t len); 3699 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3700 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3701 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3702 unsigned int val, int alloc); 3703 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3704 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3705 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3706 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3707 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3708 int __init f2fs_create_segment_manager_caches(void); 3709 void f2fs_destroy_segment_manager_caches(void); 3710 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3711 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3712 unsigned int segno); 3713 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3714 unsigned int segno); 3715 3716 #define DEF_FRAGMENT_SIZE 4 3717 #define MIN_FRAGMENT_SIZE 1 3718 #define MAX_FRAGMENT_SIZE 512 3719 3720 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3721 { 3722 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3723 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3724 } 3725 3726 /* 3727 * checkpoint.c 3728 */ 3729 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3730 unsigned char reason); 3731 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3732 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3733 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3734 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3735 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3736 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3737 block_t blkaddr, int type); 3738 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3739 int type, bool sync); 3740 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3741 unsigned int ra_blocks); 3742 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3743 long nr_to_write, enum iostat_type io_type); 3744 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3745 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3746 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3747 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3748 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3749 unsigned int devidx, int type); 3750 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3751 unsigned int devidx, int type); 3752 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3753 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3754 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3755 void f2fs_add_orphan_inode(struct inode *inode); 3756 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3757 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3758 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3759 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3760 void f2fs_remove_dirty_inode(struct inode *inode); 3761 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3762 bool from_cp); 3763 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3764 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3765 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3766 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3767 int __init f2fs_create_checkpoint_caches(void); 3768 void f2fs_destroy_checkpoint_caches(void); 3769 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3770 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3771 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3772 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3773 3774 /* 3775 * data.c 3776 */ 3777 int __init f2fs_init_bioset(void); 3778 void f2fs_destroy_bioset(void); 3779 int f2fs_init_bio_entry_cache(void); 3780 void f2fs_destroy_bio_entry_cache(void); 3781 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3782 enum page_type type); 3783 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3784 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3785 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3786 struct inode *inode, struct page *page, 3787 nid_t ino, enum page_type type); 3788 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3789 struct bio **bio, struct page *page); 3790 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3791 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3792 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3793 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3794 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3795 block_t blk_addr, sector_t *sector); 3796 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3797 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3798 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3799 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3800 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3801 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3802 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3803 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3804 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3805 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3806 pgoff_t *next_pgofs); 3807 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3808 bool for_write); 3809 struct page *f2fs_get_new_data_page(struct inode *inode, 3810 struct page *ipage, pgoff_t index, bool new_i_size); 3811 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3812 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3813 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3814 u64 start, u64 len); 3815 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3816 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3817 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3818 int f2fs_write_single_data_page(struct page *page, int *submitted, 3819 struct bio **bio, sector_t *last_block, 3820 struct writeback_control *wbc, 3821 enum iostat_type io_type, 3822 int compr_blocks, bool allow_balance); 3823 void f2fs_write_failed(struct inode *inode, loff_t to); 3824 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3825 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3826 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3827 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3828 int f2fs_init_post_read_processing(void); 3829 void f2fs_destroy_post_read_processing(void); 3830 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3831 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3832 extern const struct iomap_ops f2fs_iomap_ops; 3833 3834 /* 3835 * gc.c 3836 */ 3837 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3838 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3839 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3840 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3841 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3842 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3843 int __init f2fs_create_garbage_collection_cache(void); 3844 void f2fs_destroy_garbage_collection_cache(void); 3845 3846 /* 3847 * recovery.c 3848 */ 3849 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3850 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3851 int __init f2fs_create_recovery_cache(void); 3852 void f2fs_destroy_recovery_cache(void); 3853 3854 /* 3855 * debug.c 3856 */ 3857 #ifdef CONFIG_F2FS_STAT_FS 3858 struct f2fs_stat_info { 3859 struct list_head stat_list; 3860 struct f2fs_sb_info *sbi; 3861 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3862 int main_area_segs, main_area_sections, main_area_zones; 3863 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3864 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3865 unsigned long long total_ext[NR_EXTENT_CACHES]; 3866 unsigned long long hit_total[NR_EXTENT_CACHES]; 3867 int ext_tree[NR_EXTENT_CACHES]; 3868 int zombie_tree[NR_EXTENT_CACHES]; 3869 int ext_node[NR_EXTENT_CACHES]; 3870 /* to count memory footprint */ 3871 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3872 /* for read extent cache */ 3873 unsigned long long hit_largest; 3874 /* for block age extent cache */ 3875 unsigned long long allocated_data_blocks; 3876 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3877 int ndirty_data, ndirty_qdata; 3878 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3879 int nats, dirty_nats, sits, dirty_sits; 3880 int free_nids, avail_nids, alloc_nids; 3881 int total_count, utilization; 3882 int bg_gc, nr_wb_cp_data, nr_wb_data; 3883 int nr_rd_data, nr_rd_node, nr_rd_meta; 3884 int nr_dio_read, nr_dio_write; 3885 unsigned int io_skip_bggc, other_skip_bggc; 3886 int nr_flushing, nr_flushed, flush_list_empty; 3887 int nr_discarding, nr_discarded; 3888 int nr_discard_cmd; 3889 unsigned int undiscard_blks; 3890 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3891 unsigned int cur_ckpt_time, peak_ckpt_time; 3892 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3893 int compr_inode, swapfile_inode; 3894 unsigned long long compr_blocks; 3895 int aw_cnt, max_aw_cnt; 3896 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3897 unsigned int bimodal, avg_vblocks; 3898 int util_free, util_valid, util_invalid; 3899 int rsvd_segs, overp_segs; 3900 int dirty_count, node_pages, meta_pages, compress_pages; 3901 int compress_page_hit; 3902 int prefree_count, call_count, cp_count, bg_cp_count; 3903 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3904 int bg_node_segs, bg_data_segs; 3905 int tot_blks, data_blks, node_blks; 3906 int bg_data_blks, bg_node_blks; 3907 int curseg[NR_CURSEG_TYPE]; 3908 int cursec[NR_CURSEG_TYPE]; 3909 int curzone[NR_CURSEG_TYPE]; 3910 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3911 unsigned int full_seg[NR_CURSEG_TYPE]; 3912 unsigned int valid_blks[NR_CURSEG_TYPE]; 3913 3914 unsigned int meta_count[META_MAX]; 3915 unsigned int segment_count[2]; 3916 unsigned int block_count[2]; 3917 unsigned int inplace_count; 3918 unsigned long long base_mem, cache_mem, page_mem; 3919 }; 3920 3921 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3922 { 3923 return (struct f2fs_stat_info *)sbi->stat_info; 3924 } 3925 3926 #define stat_inc_cp_count(si) ((si)->cp_count++) 3927 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3928 #define stat_inc_call_count(si) ((si)->call_count++) 3929 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3930 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3931 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3932 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3933 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3934 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3935 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3936 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3937 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3938 #define stat_inc_inline_xattr(inode) \ 3939 do { \ 3940 if (f2fs_has_inline_xattr(inode)) \ 3941 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3942 } while (0) 3943 #define stat_dec_inline_xattr(inode) \ 3944 do { \ 3945 if (f2fs_has_inline_xattr(inode)) \ 3946 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3947 } while (0) 3948 #define stat_inc_inline_inode(inode) \ 3949 do { \ 3950 if (f2fs_has_inline_data(inode)) \ 3951 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3952 } while (0) 3953 #define stat_dec_inline_inode(inode) \ 3954 do { \ 3955 if (f2fs_has_inline_data(inode)) \ 3956 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3957 } while (0) 3958 #define stat_inc_inline_dir(inode) \ 3959 do { \ 3960 if (f2fs_has_inline_dentry(inode)) \ 3961 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3962 } while (0) 3963 #define stat_dec_inline_dir(inode) \ 3964 do { \ 3965 if (f2fs_has_inline_dentry(inode)) \ 3966 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3967 } while (0) 3968 #define stat_inc_compr_inode(inode) \ 3969 do { \ 3970 if (f2fs_compressed_file(inode)) \ 3971 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3972 } while (0) 3973 #define stat_dec_compr_inode(inode) \ 3974 do { \ 3975 if (f2fs_compressed_file(inode)) \ 3976 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3977 } while (0) 3978 #define stat_add_compr_blocks(inode, blocks) \ 3979 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3980 #define stat_sub_compr_blocks(inode, blocks) \ 3981 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3982 #define stat_inc_swapfile_inode(inode) \ 3983 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 3984 #define stat_dec_swapfile_inode(inode) \ 3985 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 3986 #define stat_inc_atomic_inode(inode) \ 3987 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 3988 #define stat_dec_atomic_inode(inode) \ 3989 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 3990 #define stat_inc_meta_count(sbi, blkaddr) \ 3991 do { \ 3992 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3993 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3994 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3995 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3996 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3997 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3998 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3999 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4000 } while (0) 4001 #define stat_inc_seg_type(sbi, curseg) \ 4002 ((sbi)->segment_count[(curseg)->alloc_type]++) 4003 #define stat_inc_block_count(sbi, curseg) \ 4004 ((sbi)->block_count[(curseg)->alloc_type]++) 4005 #define stat_inc_inplace_blocks(sbi) \ 4006 (atomic_inc(&(sbi)->inplace_count)) 4007 #define stat_update_max_atomic_write(inode) \ 4008 do { \ 4009 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4010 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4011 if (cur > max) \ 4012 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4013 } while (0) 4014 #define stat_inc_seg_count(sbi, type, gc_type) \ 4015 do { \ 4016 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4017 si->tot_segs++; \ 4018 if ((type) == SUM_TYPE_DATA) { \ 4019 si->data_segs++; \ 4020 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 4021 } else { \ 4022 si->node_segs++; \ 4023 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 4024 } \ 4025 } while (0) 4026 4027 #define stat_inc_tot_blk_count(si, blks) \ 4028 ((si)->tot_blks += (blks)) 4029 4030 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4031 do { \ 4032 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4033 stat_inc_tot_blk_count(si, blks); \ 4034 si->data_blks += (blks); \ 4035 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4036 } while (0) 4037 4038 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4039 do { \ 4040 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4041 stat_inc_tot_blk_count(si, blks); \ 4042 si->node_blks += (blks); \ 4043 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4044 } while (0) 4045 4046 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4047 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4048 void __init f2fs_create_root_stats(void); 4049 void f2fs_destroy_root_stats(void); 4050 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4051 #else 4052 #define stat_inc_cp_count(si) do { } while (0) 4053 #define stat_inc_bg_cp_count(si) do { } while (0) 4054 #define stat_inc_call_count(si) do { } while (0) 4055 #define stat_inc_bggc_count(si) do { } while (0) 4056 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4057 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4058 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4059 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4060 #define stat_inc_total_hit(sbi, type) do { } while (0) 4061 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4062 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4063 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4064 #define stat_inc_inline_xattr(inode) do { } while (0) 4065 #define stat_dec_inline_xattr(inode) do { } while (0) 4066 #define stat_inc_inline_inode(inode) do { } while (0) 4067 #define stat_dec_inline_inode(inode) do { } while (0) 4068 #define stat_inc_inline_dir(inode) do { } while (0) 4069 #define stat_dec_inline_dir(inode) do { } while (0) 4070 #define stat_inc_compr_inode(inode) do { } while (0) 4071 #define stat_dec_compr_inode(inode) do { } while (0) 4072 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4073 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4074 #define stat_inc_swapfile_inode(inode) do { } while (0) 4075 #define stat_dec_swapfile_inode(inode) do { } while (0) 4076 #define stat_inc_atomic_inode(inode) do { } while (0) 4077 #define stat_dec_atomic_inode(inode) do { } while (0) 4078 #define stat_update_max_atomic_write(inode) do { } while (0) 4079 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4080 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4081 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4082 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4083 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 4084 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4085 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4086 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4087 4088 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4089 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4090 static inline void __init f2fs_create_root_stats(void) { } 4091 static inline void f2fs_destroy_root_stats(void) { } 4092 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4093 #endif 4094 4095 extern const struct file_operations f2fs_dir_operations; 4096 extern const struct file_operations f2fs_file_operations; 4097 extern const struct inode_operations f2fs_file_inode_operations; 4098 extern const struct address_space_operations f2fs_dblock_aops; 4099 extern const struct address_space_operations f2fs_node_aops; 4100 extern const struct address_space_operations f2fs_meta_aops; 4101 extern const struct inode_operations f2fs_dir_inode_operations; 4102 extern const struct inode_operations f2fs_symlink_inode_operations; 4103 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4104 extern const struct inode_operations f2fs_special_inode_operations; 4105 extern struct kmem_cache *f2fs_inode_entry_slab; 4106 4107 /* 4108 * inline.c 4109 */ 4110 bool f2fs_may_inline_data(struct inode *inode); 4111 bool f2fs_sanity_check_inline_data(struct inode *inode); 4112 bool f2fs_may_inline_dentry(struct inode *inode); 4113 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4114 void f2fs_truncate_inline_inode(struct inode *inode, 4115 struct page *ipage, u64 from); 4116 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4117 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4118 int f2fs_convert_inline_inode(struct inode *inode); 4119 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4120 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4121 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4122 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4123 const struct f2fs_filename *fname, 4124 struct page **res_page); 4125 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4126 struct page *ipage); 4127 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4128 struct inode *inode, nid_t ino, umode_t mode); 4129 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4130 struct page *page, struct inode *dir, 4131 struct inode *inode); 4132 bool f2fs_empty_inline_dir(struct inode *dir); 4133 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4134 struct fscrypt_str *fstr); 4135 int f2fs_inline_data_fiemap(struct inode *inode, 4136 struct fiemap_extent_info *fieinfo, 4137 __u64 start, __u64 len); 4138 4139 /* 4140 * shrinker.c 4141 */ 4142 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4143 struct shrink_control *sc); 4144 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4145 struct shrink_control *sc); 4146 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4147 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4148 4149 /* 4150 * extent_cache.c 4151 */ 4152 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 4153 struct rb_entry *cached_re, unsigned int ofs); 4154 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 4155 struct rb_root_cached *root, 4156 struct rb_node **parent, 4157 unsigned long long key, bool *left_most); 4158 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 4159 struct rb_root_cached *root, 4160 struct rb_node **parent, 4161 unsigned int ofs, bool *leftmost); 4162 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 4163 struct rb_entry *cached_re, unsigned int ofs, 4164 struct rb_entry **prev_entry, struct rb_entry **next_entry, 4165 struct rb_node ***insert_p, struct rb_node **insert_parent, 4166 bool force, bool *leftmost); 4167 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 4168 struct rb_root_cached *root, bool check_key); 4169 void f2fs_init_extent_tree(struct inode *inode); 4170 void f2fs_drop_extent_tree(struct inode *inode); 4171 void f2fs_destroy_extent_node(struct inode *inode); 4172 void f2fs_destroy_extent_tree(struct inode *inode); 4173 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4174 int __init f2fs_create_extent_cache(void); 4175 void f2fs_destroy_extent_cache(void); 4176 4177 /* read extent cache ops */ 4178 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4179 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4180 struct extent_info *ei); 4181 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4182 block_t *blkaddr); 4183 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4184 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4185 pgoff_t fofs, block_t blkaddr, unsigned int len); 4186 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4187 int nr_shrink); 4188 4189 /* block age extent cache ops */ 4190 void f2fs_init_age_extent_tree(struct inode *inode); 4191 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4192 struct extent_info *ei); 4193 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4194 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4195 pgoff_t fofs, unsigned int len); 4196 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4197 int nr_shrink); 4198 4199 /* 4200 * sysfs.c 4201 */ 4202 #define MIN_RA_MUL 2 4203 #define MAX_RA_MUL 256 4204 4205 int __init f2fs_init_sysfs(void); 4206 void f2fs_exit_sysfs(void); 4207 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4208 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4209 4210 /* verity.c */ 4211 extern const struct fsverity_operations f2fs_verityops; 4212 4213 /* 4214 * crypto support 4215 */ 4216 static inline bool f2fs_encrypted_file(struct inode *inode) 4217 { 4218 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4219 } 4220 4221 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4222 { 4223 #ifdef CONFIG_FS_ENCRYPTION 4224 file_set_encrypt(inode); 4225 f2fs_set_inode_flags(inode); 4226 #endif 4227 } 4228 4229 /* 4230 * Returns true if the reads of the inode's data need to undergo some 4231 * postprocessing step, like decryption or authenticity verification. 4232 */ 4233 static inline bool f2fs_post_read_required(struct inode *inode) 4234 { 4235 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4236 f2fs_compressed_file(inode); 4237 } 4238 4239 /* 4240 * compress.c 4241 */ 4242 #ifdef CONFIG_F2FS_FS_COMPRESSION 4243 bool f2fs_is_compressed_page(struct page *page); 4244 struct page *f2fs_compress_control_page(struct page *page); 4245 int f2fs_prepare_compress_overwrite(struct inode *inode, 4246 struct page **pagep, pgoff_t index, void **fsdata); 4247 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4248 pgoff_t index, unsigned copied); 4249 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4250 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4251 bool f2fs_is_compress_backend_ready(struct inode *inode); 4252 int __init f2fs_init_compress_mempool(void); 4253 void f2fs_destroy_compress_mempool(void); 4254 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4255 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4256 block_t blkaddr, bool in_task); 4257 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4258 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4259 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4260 int index, int nr_pages, bool uptodate); 4261 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4262 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4263 int f2fs_write_multi_pages(struct compress_ctx *cc, 4264 int *submitted, 4265 struct writeback_control *wbc, 4266 enum iostat_type io_type); 4267 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4268 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4269 pgoff_t fofs, block_t blkaddr, 4270 unsigned int llen, unsigned int c_len); 4271 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4272 unsigned nr_pages, sector_t *last_block_in_bio, 4273 bool is_readahead, bool for_write); 4274 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4275 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4276 bool in_task); 4277 void f2fs_put_page_dic(struct page *page, bool in_task); 4278 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4279 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4280 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4281 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4282 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4283 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4284 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4285 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4286 int __init f2fs_init_compress_cache(void); 4287 void f2fs_destroy_compress_cache(void); 4288 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4289 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4290 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4291 nid_t ino, block_t blkaddr); 4292 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4293 block_t blkaddr); 4294 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4295 #define inc_compr_inode_stat(inode) \ 4296 do { \ 4297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4298 sbi->compr_new_inode++; \ 4299 } while (0) 4300 #define add_compr_block_stat(inode, blocks) \ 4301 do { \ 4302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4303 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4304 sbi->compr_written_block += blocks; \ 4305 sbi->compr_saved_block += diff; \ 4306 } while (0) 4307 #else 4308 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4309 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4310 { 4311 if (!f2fs_compressed_file(inode)) 4312 return true; 4313 /* not support compression */ 4314 return false; 4315 } 4316 static inline struct page *f2fs_compress_control_page(struct page *page) 4317 { 4318 WARN_ON_ONCE(1); 4319 return ERR_PTR(-EINVAL); 4320 } 4321 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4322 static inline void f2fs_destroy_compress_mempool(void) { } 4323 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4324 bool in_task) { } 4325 static inline void f2fs_end_read_compressed_page(struct page *page, 4326 bool failed, block_t blkaddr, bool in_task) 4327 { 4328 WARN_ON_ONCE(1); 4329 } 4330 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4331 { 4332 WARN_ON_ONCE(1); 4333 } 4334 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4335 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4336 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4337 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4338 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4339 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4340 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4341 static inline void f2fs_destroy_compress_cache(void) { } 4342 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4343 block_t blkaddr) { } 4344 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4345 struct page *page, nid_t ino, block_t blkaddr) { } 4346 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4347 struct page *page, block_t blkaddr) { return false; } 4348 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4349 nid_t ino) { } 4350 #define inc_compr_inode_stat(inode) do { } while (0) 4351 static inline void f2fs_update_read_extent_tree_range_compressed( 4352 struct inode *inode, 4353 pgoff_t fofs, block_t blkaddr, 4354 unsigned int llen, unsigned int c_len) { } 4355 #endif 4356 4357 static inline int set_compress_context(struct inode *inode) 4358 { 4359 #ifdef CONFIG_F2FS_FS_COMPRESSION 4360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4361 4362 F2FS_I(inode)->i_compress_algorithm = 4363 F2FS_OPTION(sbi).compress_algorithm; 4364 F2FS_I(inode)->i_log_cluster_size = 4365 F2FS_OPTION(sbi).compress_log_size; 4366 F2FS_I(inode)->i_compress_flag = 4367 F2FS_OPTION(sbi).compress_chksum ? 4368 1 << COMPRESS_CHKSUM : 0; 4369 F2FS_I(inode)->i_cluster_size = 4370 1 << F2FS_I(inode)->i_log_cluster_size; 4371 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4372 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4373 F2FS_OPTION(sbi).compress_level) 4374 F2FS_I(inode)->i_compress_flag |= 4375 F2FS_OPTION(sbi).compress_level << 4376 COMPRESS_LEVEL_OFFSET; 4377 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4378 set_inode_flag(inode, FI_COMPRESSED_FILE); 4379 stat_inc_compr_inode(inode); 4380 inc_compr_inode_stat(inode); 4381 f2fs_mark_inode_dirty_sync(inode, true); 4382 return 0; 4383 #else 4384 return -EOPNOTSUPP; 4385 #endif 4386 } 4387 4388 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4389 { 4390 struct f2fs_inode_info *fi = F2FS_I(inode); 4391 4392 if (!f2fs_compressed_file(inode)) 4393 return true; 4394 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4395 return false; 4396 4397 fi->i_flags &= ~F2FS_COMPR_FL; 4398 stat_dec_compr_inode(inode); 4399 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4400 f2fs_mark_inode_dirty_sync(inode, true); 4401 return true; 4402 } 4403 4404 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4405 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4406 { \ 4407 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4408 } 4409 4410 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4411 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4412 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4413 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4414 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4415 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4416 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4417 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4418 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4419 F2FS_FEATURE_FUNCS(verity, VERITY); 4420 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4421 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4422 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4423 F2FS_FEATURE_FUNCS(readonly, RO); 4424 4425 #ifdef CONFIG_BLK_DEV_ZONED 4426 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4427 block_t blkaddr) 4428 { 4429 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4430 4431 return test_bit(zno, FDEV(devi).blkz_seq); 4432 } 4433 #endif 4434 4435 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4436 { 4437 return f2fs_sb_has_blkzoned(sbi); 4438 } 4439 4440 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4441 { 4442 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4443 } 4444 4445 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4446 { 4447 int i; 4448 4449 if (!f2fs_is_multi_device(sbi)) 4450 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4451 4452 for (i = 0; i < sbi->s_ndevs; i++) 4453 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4454 return true; 4455 return false; 4456 } 4457 4458 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4459 { 4460 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4461 f2fs_hw_should_discard(sbi); 4462 } 4463 4464 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4465 { 4466 int i; 4467 4468 if (!f2fs_is_multi_device(sbi)) 4469 return bdev_read_only(sbi->sb->s_bdev); 4470 4471 for (i = 0; i < sbi->s_ndevs; i++) 4472 if (bdev_read_only(FDEV(i).bdev)) 4473 return true; 4474 return false; 4475 } 4476 4477 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4478 { 4479 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4480 } 4481 4482 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4483 { 4484 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4485 } 4486 4487 static inline bool f2fs_may_compress(struct inode *inode) 4488 { 4489 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4490 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode)) 4491 return false; 4492 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4493 } 4494 4495 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4496 u64 blocks, bool add) 4497 { 4498 struct f2fs_inode_info *fi = F2FS_I(inode); 4499 int diff = fi->i_cluster_size - blocks; 4500 4501 /* don't update i_compr_blocks if saved blocks were released */ 4502 if (!add && !atomic_read(&fi->i_compr_blocks)) 4503 return; 4504 4505 if (add) { 4506 atomic_add(diff, &fi->i_compr_blocks); 4507 stat_add_compr_blocks(inode, diff); 4508 } else { 4509 atomic_sub(diff, &fi->i_compr_blocks); 4510 stat_sub_compr_blocks(inode, diff); 4511 } 4512 f2fs_mark_inode_dirty_sync(inode, true); 4513 } 4514 4515 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4516 int flag) 4517 { 4518 if (!f2fs_is_multi_device(sbi)) 4519 return false; 4520 if (flag != F2FS_GET_BLOCK_DIO) 4521 return false; 4522 return sbi->aligned_blksize; 4523 } 4524 4525 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4526 { 4527 return fsverity_active(inode) && 4528 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4529 } 4530 4531 #ifdef CONFIG_F2FS_FAULT_INJECTION 4532 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4533 unsigned int type); 4534 #else 4535 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4536 #endif 4537 4538 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4539 { 4540 #ifdef CONFIG_QUOTA 4541 if (f2fs_sb_has_quota_ino(sbi)) 4542 return true; 4543 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4544 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4545 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4546 return true; 4547 #endif 4548 return false; 4549 } 4550 4551 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4552 { 4553 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4554 } 4555 4556 static inline void f2fs_io_schedule_timeout(long timeout) 4557 { 4558 set_current_state(TASK_UNINTERRUPTIBLE); 4559 io_schedule_timeout(timeout); 4560 } 4561 4562 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4563 enum page_type type) 4564 { 4565 if (unlikely(f2fs_cp_error(sbi))) 4566 return; 4567 4568 if (ofs == sbi->page_eio_ofs[type]) { 4569 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4570 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4571 } else { 4572 sbi->page_eio_ofs[type] = ofs; 4573 sbi->page_eio_cnt[type] = 0; 4574 } 4575 } 4576 4577 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4578 { 4579 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4580 } 4581 4582 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4583 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4584 4585 #endif /* _LINUX_F2FS_H */ 4586