1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 79 /* maximum retry count for injected failure */ 80 #define DEFAULT_FAILURE_RETRY_COUNT 8 81 #else 82 #define DEFAULT_FAILURE_RETRY_COUNT 1 83 #endif 84 85 /* 86 * For mount options 87 */ 88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 89 #define F2FS_MOUNT_DISCARD 0x00000002 90 #define F2FS_MOUNT_NOHEAP 0x00000004 91 #define F2FS_MOUNT_XATTR_USER 0x00000008 92 #define F2FS_MOUNT_POSIX_ACL 0x00000010 93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 94 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 95 #define F2FS_MOUNT_INLINE_DATA 0x00000080 96 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 97 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 98 #define F2FS_MOUNT_NOBARRIER 0x00000400 99 #define F2FS_MOUNT_FASTBOOT 0x00000800 100 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 101 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 102 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 103 #define F2FS_MOUNT_USRQUOTA 0x00008000 104 #define F2FS_MOUNT_GRPQUOTA 0x00010000 105 #define F2FS_MOUNT_PRJQUOTA 0x00020000 106 #define F2FS_MOUNT_QUOTA 0x00040000 107 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 108 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 109 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 110 #define F2FS_MOUNT_NORECOVERY 0x00400000 111 #define F2FS_MOUNT_ATGC 0x00800000 112 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 113 #define F2FS_MOUNT_GC_MERGE 0x02000000 114 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 115 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 116 117 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 118 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 119 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 120 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 121 122 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 123 typecheck(unsigned long long, b) && \ 124 ((long long)((a) - (b)) > 0)) 125 126 typedef u32 block_t; /* 127 * should not change u32, since it is the on-disk block 128 * address format, __le32. 129 */ 130 typedef u32 nid_t; 131 132 #define COMPRESS_EXT_NUM 16 133 134 /* 135 * An implementation of an rwsem that is explicitly unfair to readers. This 136 * prevents priority inversion when a low-priority reader acquires the read lock 137 * while sleeping on the write lock but the write lock is needed by 138 * higher-priority clients. 139 */ 140 141 struct f2fs_rwsem { 142 struct rw_semaphore internal_rwsem; 143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 144 wait_queue_head_t read_waiters; 145 #endif 146 }; 147 148 struct f2fs_mount_info { 149 unsigned int opt; 150 block_t root_reserved_blocks; /* root reserved blocks */ 151 kuid_t s_resuid; /* reserved blocks for uid */ 152 kgid_t s_resgid; /* reserved blocks for gid */ 153 int active_logs; /* # of active logs */ 154 int inline_xattr_size; /* inline xattr size */ 155 #ifdef CONFIG_F2FS_FAULT_INJECTION 156 struct f2fs_fault_info fault_info; /* For fault injection */ 157 #endif 158 #ifdef CONFIG_QUOTA 159 /* Names of quota files with journalled quota */ 160 char *s_qf_names[MAXQUOTAS]; 161 int s_jquota_fmt; /* Format of quota to use */ 162 #endif 163 /* For which write hints are passed down to block layer */ 164 int alloc_mode; /* segment allocation policy */ 165 int fsync_mode; /* fsync policy */ 166 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 167 int bggc_mode; /* bggc mode: off, on or sync */ 168 int memory_mode; /* memory mode */ 169 int errors; /* errors parameter */ 170 int discard_unit; /* 171 * discard command's offset/size should 172 * be aligned to this unit: block, 173 * segment or section 174 */ 175 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 176 block_t unusable_cap_perc; /* percentage for cap */ 177 block_t unusable_cap; /* Amount of space allowed to be 178 * unusable when disabling checkpoint 179 */ 180 181 /* For compression */ 182 unsigned char compress_algorithm; /* algorithm type */ 183 unsigned char compress_log_size; /* cluster log size */ 184 unsigned char compress_level; /* compress level */ 185 bool compress_chksum; /* compressed data chksum */ 186 unsigned char compress_ext_cnt; /* extension count */ 187 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 188 int compress_mode; /* compression mode */ 189 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 190 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 191 }; 192 193 #define F2FS_FEATURE_ENCRYPT 0x00000001 194 #define F2FS_FEATURE_BLKZONED 0x00000002 195 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 196 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 197 #define F2FS_FEATURE_PRJQUOTA 0x00000010 198 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 200 #define F2FS_FEATURE_QUOTA_INO 0x00000080 201 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 202 #define F2FS_FEATURE_LOST_FOUND 0x00000200 203 #define F2FS_FEATURE_VERITY 0x00000400 204 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 205 #define F2FS_FEATURE_CASEFOLD 0x00001000 206 #define F2FS_FEATURE_COMPRESSION 0x00002000 207 #define F2FS_FEATURE_RO 0x00004000 208 209 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 210 ((raw_super->feature & cpu_to_le32(mask)) != 0) 211 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 212 213 /* 214 * Default values for user and/or group using reserved blocks 215 */ 216 #define F2FS_DEF_RESUID 0 217 #define F2FS_DEF_RESGID 0 218 219 /* 220 * For checkpoint manager 221 */ 222 enum { 223 NAT_BITMAP, 224 SIT_BITMAP 225 }; 226 227 #define CP_UMOUNT 0x00000001 228 #define CP_FASTBOOT 0x00000002 229 #define CP_SYNC 0x00000004 230 #define CP_RECOVERY 0x00000008 231 #define CP_DISCARD 0x00000010 232 #define CP_TRIMMED 0x00000020 233 #define CP_PAUSE 0x00000040 234 #define CP_RESIZE 0x00000080 235 236 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 237 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 238 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 239 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 240 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 241 #define DEF_CP_INTERVAL 60 /* 60 secs */ 242 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 243 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 244 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 245 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 246 247 struct cp_control { 248 int reason; 249 __u64 trim_start; 250 __u64 trim_end; 251 __u64 trim_minlen; 252 }; 253 254 /* 255 * indicate meta/data type 256 */ 257 enum { 258 META_CP, 259 META_NAT, 260 META_SIT, 261 META_SSA, 262 META_MAX, 263 META_POR, 264 DATA_GENERIC, /* check range only */ 265 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 266 DATA_GENERIC_ENHANCE_READ, /* 267 * strong check on range and segment 268 * bitmap but no warning due to race 269 * condition of read on truncated area 270 * by extent_cache 271 */ 272 DATA_GENERIC_ENHANCE_UPDATE, /* 273 * strong check on range and segment 274 * bitmap for update case 275 */ 276 META_GENERIC, 277 }; 278 279 /* for the list of ino */ 280 enum { 281 ORPHAN_INO, /* for orphan ino list */ 282 APPEND_INO, /* for append ino list */ 283 UPDATE_INO, /* for update ino list */ 284 TRANS_DIR_INO, /* for transactions dir ino list */ 285 XATTR_DIR_INO, /* for xattr updated dir ino list */ 286 FLUSH_INO, /* for multiple device flushing */ 287 MAX_INO_ENTRY, /* max. list */ 288 }; 289 290 struct ino_entry { 291 struct list_head list; /* list head */ 292 nid_t ino; /* inode number */ 293 unsigned int dirty_device; /* dirty device bitmap */ 294 }; 295 296 /* for the list of inodes to be GCed */ 297 struct inode_entry { 298 struct list_head list; /* list head */ 299 struct inode *inode; /* vfs inode pointer */ 300 }; 301 302 struct fsync_node_entry { 303 struct list_head list; /* list head */ 304 struct page *page; /* warm node page pointer */ 305 unsigned int seq_id; /* sequence id */ 306 }; 307 308 struct ckpt_req { 309 struct completion wait; /* completion for checkpoint done */ 310 struct llist_node llnode; /* llist_node to be linked in wait queue */ 311 int ret; /* return code of checkpoint */ 312 ktime_t queue_time; /* request queued time */ 313 }; 314 315 struct ckpt_req_control { 316 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 317 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 318 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 319 atomic_t issued_ckpt; /* # of actually issued ckpts */ 320 atomic_t total_ckpt; /* # of total ckpts */ 321 atomic_t queued_ckpt; /* # of queued ckpts */ 322 struct llist_head issue_list; /* list for command issue */ 323 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 324 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 325 unsigned int peak_time; /* peak wait time in msec until now */ 326 }; 327 328 /* for the bitmap indicate blocks to be discarded */ 329 struct discard_entry { 330 struct list_head list; /* list head */ 331 block_t start_blkaddr; /* start blockaddr of current segment */ 332 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 333 }; 334 335 /* minimum discard granularity, unit: block count */ 336 #define MIN_DISCARD_GRANULARITY 1 337 /* default discard granularity of inner discard thread, unit: block count */ 338 #define DEFAULT_DISCARD_GRANULARITY 16 339 /* default maximum discard granularity of ordered discard, unit: block count */ 340 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 341 342 /* max discard pend list number */ 343 #define MAX_PLIST_NUM 512 344 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 345 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 346 347 enum { 348 D_PREP, /* initial */ 349 D_PARTIAL, /* partially submitted */ 350 D_SUBMIT, /* all submitted */ 351 D_DONE, /* finished */ 352 }; 353 354 struct discard_info { 355 block_t lstart; /* logical start address */ 356 block_t len; /* length */ 357 block_t start; /* actual start address in dev */ 358 }; 359 360 struct discard_cmd { 361 struct rb_node rb_node; /* rb node located in rb-tree */ 362 struct discard_info di; /* discard info */ 363 struct list_head list; /* command list */ 364 struct completion wait; /* compleation */ 365 struct block_device *bdev; /* bdev */ 366 unsigned short ref; /* reference count */ 367 unsigned char state; /* state */ 368 unsigned char queued; /* queued discard */ 369 int error; /* bio error */ 370 spinlock_t lock; /* for state/bio_ref updating */ 371 unsigned short bio_ref; /* bio reference count */ 372 }; 373 374 enum { 375 DPOLICY_BG, 376 DPOLICY_FORCE, 377 DPOLICY_FSTRIM, 378 DPOLICY_UMOUNT, 379 MAX_DPOLICY, 380 }; 381 382 struct discard_policy { 383 int type; /* type of discard */ 384 unsigned int min_interval; /* used for candidates exist */ 385 unsigned int mid_interval; /* used for device busy */ 386 unsigned int max_interval; /* used for candidates not exist */ 387 unsigned int max_requests; /* # of discards issued per round */ 388 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 389 bool io_aware; /* issue discard in idle time */ 390 bool sync; /* submit discard with REQ_SYNC flag */ 391 bool ordered; /* issue discard by lba order */ 392 bool timeout; /* discard timeout for put_super */ 393 unsigned int granularity; /* discard granularity */ 394 }; 395 396 struct discard_cmd_control { 397 struct task_struct *f2fs_issue_discard; /* discard thread */ 398 struct list_head entry_list; /* 4KB discard entry list */ 399 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 400 struct list_head wait_list; /* store on-flushing entries */ 401 struct list_head fstrim_list; /* in-flight discard from fstrim */ 402 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 403 struct mutex cmd_lock; 404 unsigned int nr_discards; /* # of discards in the list */ 405 unsigned int max_discards; /* max. discards to be issued */ 406 unsigned int max_discard_request; /* max. discard request per round */ 407 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 408 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 409 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 410 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 411 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 412 unsigned int discard_granularity; /* discard granularity */ 413 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 414 unsigned int undiscard_blks; /* # of undiscard blocks */ 415 unsigned int next_pos; /* next discard position */ 416 atomic_t issued_discard; /* # of issued discard */ 417 atomic_t queued_discard; /* # of queued discard */ 418 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 419 struct rb_root_cached root; /* root of discard rb-tree */ 420 bool rbtree_check; /* config for consistence check */ 421 bool discard_wake; /* to wake up discard thread */ 422 }; 423 424 /* for the list of fsync inodes, used only during recovery */ 425 struct fsync_inode_entry { 426 struct list_head list; /* list head */ 427 struct inode *inode; /* vfs inode pointer */ 428 block_t blkaddr; /* block address locating the last fsync */ 429 block_t last_dentry; /* block address locating the last dentry */ 430 }; 431 432 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 433 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 434 435 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 436 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 437 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 438 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 439 440 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 441 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 442 443 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 444 { 445 int before = nats_in_cursum(journal); 446 447 journal->n_nats = cpu_to_le16(before + i); 448 return before; 449 } 450 451 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 452 { 453 int before = sits_in_cursum(journal); 454 455 journal->n_sits = cpu_to_le16(before + i); 456 return before; 457 } 458 459 static inline bool __has_cursum_space(struct f2fs_journal *journal, 460 int size, int type) 461 { 462 if (type == NAT_JOURNAL) 463 return size <= MAX_NAT_JENTRIES(journal); 464 return size <= MAX_SIT_JENTRIES(journal); 465 } 466 467 /* for inline stuff */ 468 #define DEF_INLINE_RESERVED_SIZE 1 469 static inline int get_extra_isize(struct inode *inode); 470 static inline int get_inline_xattr_addrs(struct inode *inode); 471 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 472 (CUR_ADDRS_PER_INODE(inode) - \ 473 get_inline_xattr_addrs(inode) - \ 474 DEF_INLINE_RESERVED_SIZE)) 475 476 /* for inline dir */ 477 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 479 BITS_PER_BYTE + 1)) 480 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 481 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 482 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 483 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 484 NR_INLINE_DENTRY(inode) + \ 485 INLINE_DENTRY_BITMAP_SIZE(inode))) 486 487 /* 488 * For INODE and NODE manager 489 */ 490 /* for directory operations */ 491 492 struct f2fs_filename { 493 /* 494 * The filename the user specified. This is NULL for some 495 * filesystem-internal operations, e.g. converting an inline directory 496 * to a non-inline one, or roll-forward recovering an encrypted dentry. 497 */ 498 const struct qstr *usr_fname; 499 500 /* 501 * The on-disk filename. For encrypted directories, this is encrypted. 502 * This may be NULL for lookups in an encrypted dir without the key. 503 */ 504 struct fscrypt_str disk_name; 505 506 /* The dirhash of this filename */ 507 f2fs_hash_t hash; 508 509 #ifdef CONFIG_FS_ENCRYPTION 510 /* 511 * For lookups in encrypted directories: either the buffer backing 512 * disk_name, or a buffer that holds the decoded no-key name. 513 */ 514 struct fscrypt_str crypto_buf; 515 #endif 516 #if IS_ENABLED(CONFIG_UNICODE) 517 /* 518 * For casefolded directories: the casefolded name, but it's left NULL 519 * if the original name is not valid Unicode, if the original name is 520 * "." or "..", if the directory is both casefolded and encrypted and 521 * its encryption key is unavailable, or if the filesystem is doing an 522 * internal operation where usr_fname is also NULL. In all these cases 523 * we fall back to treating the name as an opaque byte sequence. 524 */ 525 struct fscrypt_str cf_name; 526 #endif 527 }; 528 529 struct f2fs_dentry_ptr { 530 struct inode *inode; 531 void *bitmap; 532 struct f2fs_dir_entry *dentry; 533 __u8 (*filename)[F2FS_SLOT_LEN]; 534 int max; 535 int nr_bitmap; 536 }; 537 538 static inline void make_dentry_ptr_block(struct inode *inode, 539 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 540 { 541 d->inode = inode; 542 d->max = NR_DENTRY_IN_BLOCK; 543 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 544 d->bitmap = t->dentry_bitmap; 545 d->dentry = t->dentry; 546 d->filename = t->filename; 547 } 548 549 static inline void make_dentry_ptr_inline(struct inode *inode, 550 struct f2fs_dentry_ptr *d, void *t) 551 { 552 int entry_cnt = NR_INLINE_DENTRY(inode); 553 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 554 int reserved_size = INLINE_RESERVED_SIZE(inode); 555 556 d->inode = inode; 557 d->max = entry_cnt; 558 d->nr_bitmap = bitmap_size; 559 d->bitmap = t; 560 d->dentry = t + bitmap_size + reserved_size; 561 d->filename = t + bitmap_size + reserved_size + 562 SIZE_OF_DIR_ENTRY * entry_cnt; 563 } 564 565 /* 566 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 567 * as its node offset to distinguish from index node blocks. 568 * But some bits are used to mark the node block. 569 */ 570 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 571 >> OFFSET_BIT_SHIFT) 572 enum { 573 ALLOC_NODE, /* allocate a new node page if needed */ 574 LOOKUP_NODE, /* look up a node without readahead */ 575 LOOKUP_NODE_RA, /* 576 * look up a node with readahead called 577 * by get_data_block. 578 */ 579 }; 580 581 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 582 583 /* congestion wait timeout value, default: 20ms */ 584 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 585 586 /* maximum retry quota flush count */ 587 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 588 589 /* maximum retry of EIO'ed page */ 590 #define MAX_RETRY_PAGE_EIO 100 591 592 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 593 594 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 595 596 /* dirty segments threshold for triggering CP */ 597 #define DEFAULT_DIRTY_THRESHOLD 4 598 599 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 600 #define RECOVERY_MIN_RA_BLOCKS 1 601 602 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 603 604 /* for in-memory extent cache entry */ 605 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 606 607 /* number of extent info in extent cache we try to shrink */ 608 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 609 610 /* number of age extent info in extent cache we try to shrink */ 611 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 612 #define LAST_AGE_WEIGHT 30 613 #define SAME_AGE_REGION 1024 614 615 /* 616 * Define data block with age less than 1GB as hot data 617 * define data block with age less than 10GB but more than 1GB as warm data 618 */ 619 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 620 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 621 622 /* extent cache type */ 623 enum extent_type { 624 EX_READ, 625 EX_BLOCK_AGE, 626 NR_EXTENT_CACHES, 627 }; 628 629 struct extent_info { 630 unsigned int fofs; /* start offset in a file */ 631 unsigned int len; /* length of the extent */ 632 union { 633 /* read extent_cache */ 634 struct { 635 /* start block address of the extent */ 636 block_t blk; 637 #ifdef CONFIG_F2FS_FS_COMPRESSION 638 /* physical extent length of compressed blocks */ 639 unsigned int c_len; 640 #endif 641 }; 642 /* block age extent_cache */ 643 struct { 644 /* block age of the extent */ 645 unsigned long long age; 646 /* last total blocks allocated */ 647 unsigned long long last_blocks; 648 }; 649 }; 650 }; 651 652 struct extent_node { 653 struct rb_node rb_node; /* rb node located in rb-tree */ 654 struct extent_info ei; /* extent info */ 655 struct list_head list; /* node in global extent list of sbi */ 656 struct extent_tree *et; /* extent tree pointer */ 657 }; 658 659 struct extent_tree { 660 nid_t ino; /* inode number */ 661 enum extent_type type; /* keep the extent tree type */ 662 struct rb_root_cached root; /* root of extent info rb-tree */ 663 struct extent_node *cached_en; /* recently accessed extent node */ 664 struct list_head list; /* to be used by sbi->zombie_list */ 665 rwlock_t lock; /* protect extent info rb-tree */ 666 atomic_t node_cnt; /* # of extent node in rb-tree*/ 667 bool largest_updated; /* largest extent updated */ 668 struct extent_info largest; /* largest cached extent for EX_READ */ 669 }; 670 671 struct extent_tree_info { 672 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 673 struct mutex extent_tree_lock; /* locking extent radix tree */ 674 struct list_head extent_list; /* lru list for shrinker */ 675 spinlock_t extent_lock; /* locking extent lru list */ 676 atomic_t total_ext_tree; /* extent tree count */ 677 struct list_head zombie_list; /* extent zombie tree list */ 678 atomic_t total_zombie_tree; /* extent zombie tree count */ 679 atomic_t total_ext_node; /* extent info count */ 680 }; 681 682 /* 683 * State of block returned by f2fs_map_blocks. 684 */ 685 #define F2FS_MAP_NEW (1U << 0) 686 #define F2FS_MAP_MAPPED (1U << 1) 687 #define F2FS_MAP_DELALLOC (1U << 2) 688 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 689 F2FS_MAP_DELALLOC) 690 691 struct f2fs_map_blocks { 692 struct block_device *m_bdev; /* for multi-device dio */ 693 block_t m_pblk; 694 block_t m_lblk; 695 unsigned int m_len; 696 unsigned int m_flags; 697 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 698 pgoff_t *m_next_extent; /* point to next possible extent */ 699 int m_seg_type; 700 bool m_may_create; /* indicate it is from write path */ 701 bool m_multidev_dio; /* indicate it allows multi-device dio */ 702 }; 703 704 /* for flag in get_data_block */ 705 enum { 706 F2FS_GET_BLOCK_DEFAULT, 707 F2FS_GET_BLOCK_FIEMAP, 708 F2FS_GET_BLOCK_BMAP, 709 F2FS_GET_BLOCK_DIO, 710 F2FS_GET_BLOCK_PRE_DIO, 711 F2FS_GET_BLOCK_PRE_AIO, 712 F2FS_GET_BLOCK_PRECACHE, 713 }; 714 715 /* 716 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 717 */ 718 #define FADVISE_COLD_BIT 0x01 719 #define FADVISE_LOST_PINO_BIT 0x02 720 #define FADVISE_ENCRYPT_BIT 0x04 721 #define FADVISE_ENC_NAME_BIT 0x08 722 #define FADVISE_KEEP_SIZE_BIT 0x10 723 #define FADVISE_HOT_BIT 0x20 724 #define FADVISE_VERITY_BIT 0x40 725 #define FADVISE_TRUNC_BIT 0x80 726 727 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 728 729 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 730 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 731 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 732 733 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 734 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 735 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 736 737 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 738 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 739 740 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 741 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 742 743 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 744 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 745 746 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 747 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 748 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 749 750 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 751 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 752 753 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 754 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 755 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 756 757 #define DEF_DIR_LEVEL 0 758 759 enum { 760 GC_FAILURE_PIN, 761 MAX_GC_FAILURE 762 }; 763 764 /* used for f2fs_inode_info->flags */ 765 enum { 766 FI_NEW_INODE, /* indicate newly allocated inode */ 767 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 768 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 769 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 770 FI_INC_LINK, /* need to increment i_nlink */ 771 FI_ACL_MODE, /* indicate acl mode */ 772 FI_NO_ALLOC, /* should not allocate any blocks */ 773 FI_FREE_NID, /* free allocated nide */ 774 FI_NO_EXTENT, /* not to use the extent cache */ 775 FI_INLINE_XATTR, /* used for inline xattr */ 776 FI_INLINE_DATA, /* used for inline data*/ 777 FI_INLINE_DENTRY, /* used for inline dentry */ 778 FI_APPEND_WRITE, /* inode has appended data */ 779 FI_UPDATE_WRITE, /* inode has in-place-update data */ 780 FI_NEED_IPU, /* used for ipu per file */ 781 FI_ATOMIC_FILE, /* indicate atomic file */ 782 FI_DATA_EXIST, /* indicate data exists */ 783 FI_INLINE_DOTS, /* indicate inline dot dentries */ 784 FI_SKIP_WRITES, /* should skip data page writeback */ 785 FI_OPU_WRITE, /* used for opu per file */ 786 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 787 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 788 FI_HOT_DATA, /* indicate file is hot */ 789 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 790 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 791 FI_PIN_FILE, /* indicate file should not be gced */ 792 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 793 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 794 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 795 FI_MMAP_FILE, /* indicate file was mmapped */ 796 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 797 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 798 FI_ALIGNED_WRITE, /* enable aligned write */ 799 FI_COW_FILE, /* indicate COW file */ 800 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 801 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */ 802 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 803 FI_OPENED_FILE, /* indicate file has been opened */ 804 FI_MAX, /* max flag, never be used */ 805 }; 806 807 struct f2fs_inode_info { 808 struct inode vfs_inode; /* serve a vfs inode */ 809 unsigned long i_flags; /* keep an inode flags for ioctl */ 810 unsigned char i_advise; /* use to give file attribute hints */ 811 unsigned char i_dir_level; /* use for dentry level for large dir */ 812 unsigned int i_current_depth; /* only for directory depth */ 813 /* for gc failure statistic */ 814 unsigned int i_gc_failures[MAX_GC_FAILURE]; 815 unsigned int i_pino; /* parent inode number */ 816 umode_t i_acl_mode; /* keep file acl mode temporarily */ 817 818 /* Use below internally in f2fs*/ 819 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 820 struct f2fs_rwsem i_sem; /* protect fi info */ 821 atomic_t dirty_pages; /* # of dirty pages */ 822 f2fs_hash_t chash; /* hash value of given file name */ 823 unsigned int clevel; /* maximum level of given file name */ 824 struct task_struct *task; /* lookup and create consistency */ 825 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 826 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 827 nid_t i_xattr_nid; /* node id that contains xattrs */ 828 loff_t last_disk_size; /* lastly written file size */ 829 spinlock_t i_size_lock; /* protect last_disk_size */ 830 831 #ifdef CONFIG_QUOTA 832 struct dquot __rcu *i_dquot[MAXQUOTAS]; 833 834 /* quota space reservation, managed internally by quota code */ 835 qsize_t i_reserved_quota; 836 #endif 837 struct list_head dirty_list; /* dirty list for dirs and files */ 838 struct list_head gdirty_list; /* linked in global dirty list */ 839 struct task_struct *atomic_write_task; /* store atomic write task */ 840 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 841 /* cached extent_tree entry */ 842 union { 843 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 844 struct inode *atomic_inode; 845 /* point to atomic_inode, available only for cow_inode */ 846 }; 847 848 /* avoid racing between foreground op and gc */ 849 struct f2fs_rwsem i_gc_rwsem[2]; 850 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 851 852 int i_extra_isize; /* size of extra space located in i_addr */ 853 kprojid_t i_projid; /* id for project quota */ 854 int i_inline_xattr_size; /* inline xattr size */ 855 struct timespec64 i_crtime; /* inode creation time */ 856 struct timespec64 i_disk_time[3];/* inode disk times */ 857 858 /* for file compress */ 859 atomic_t i_compr_blocks; /* # of compressed blocks */ 860 unsigned char i_compress_algorithm; /* algorithm type */ 861 unsigned char i_log_cluster_size; /* log of cluster size */ 862 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 863 unsigned char i_compress_flag; /* compress flag */ 864 unsigned int i_cluster_size; /* cluster size */ 865 866 unsigned int atomic_write_cnt; 867 loff_t original_i_size; /* original i_size before atomic write */ 868 }; 869 870 static inline void get_read_extent_info(struct extent_info *ext, 871 struct f2fs_extent *i_ext) 872 { 873 ext->fofs = le32_to_cpu(i_ext->fofs); 874 ext->blk = le32_to_cpu(i_ext->blk); 875 ext->len = le32_to_cpu(i_ext->len); 876 } 877 878 static inline void set_raw_read_extent(struct extent_info *ext, 879 struct f2fs_extent *i_ext) 880 { 881 i_ext->fofs = cpu_to_le32(ext->fofs); 882 i_ext->blk = cpu_to_le32(ext->blk); 883 i_ext->len = cpu_to_le32(ext->len); 884 } 885 886 static inline bool __is_discard_mergeable(struct discard_info *back, 887 struct discard_info *front, unsigned int max_len) 888 { 889 return (back->lstart + back->len == front->lstart) && 890 (back->len + front->len <= max_len); 891 } 892 893 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 894 struct discard_info *back, unsigned int max_len) 895 { 896 return __is_discard_mergeable(back, cur, max_len); 897 } 898 899 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 900 struct discard_info *front, unsigned int max_len) 901 { 902 return __is_discard_mergeable(cur, front, max_len); 903 } 904 905 /* 906 * For free nid management 907 */ 908 enum nid_state { 909 FREE_NID, /* newly added to free nid list */ 910 PREALLOC_NID, /* it is preallocated */ 911 MAX_NID_STATE, 912 }; 913 914 enum nat_state { 915 TOTAL_NAT, 916 DIRTY_NAT, 917 RECLAIMABLE_NAT, 918 MAX_NAT_STATE, 919 }; 920 921 struct f2fs_nm_info { 922 block_t nat_blkaddr; /* base disk address of NAT */ 923 nid_t max_nid; /* maximum possible node ids */ 924 nid_t available_nids; /* # of available node ids */ 925 nid_t next_scan_nid; /* the next nid to be scanned */ 926 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 927 unsigned int ram_thresh; /* control the memory footprint */ 928 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 929 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 930 931 /* NAT cache management */ 932 struct radix_tree_root nat_root;/* root of the nat entry cache */ 933 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 934 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 935 struct list_head nat_entries; /* cached nat entry list (clean) */ 936 spinlock_t nat_list_lock; /* protect clean nat entry list */ 937 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 938 unsigned int nat_blocks; /* # of nat blocks */ 939 940 /* free node ids management */ 941 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 942 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 943 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 944 spinlock_t nid_list_lock; /* protect nid lists ops */ 945 struct mutex build_lock; /* lock for build free nids */ 946 unsigned char **free_nid_bitmap; 947 unsigned char *nat_block_bitmap; 948 unsigned short *free_nid_count; /* free nid count of NAT block */ 949 950 /* for checkpoint */ 951 char *nat_bitmap; /* NAT bitmap pointer */ 952 953 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 954 unsigned char *nat_bits; /* NAT bits blocks */ 955 unsigned char *full_nat_bits; /* full NAT pages */ 956 unsigned char *empty_nat_bits; /* empty NAT pages */ 957 #ifdef CONFIG_F2FS_CHECK_FS 958 char *nat_bitmap_mir; /* NAT bitmap mirror */ 959 #endif 960 int bitmap_size; /* bitmap size */ 961 }; 962 963 /* 964 * this structure is used as one of function parameters. 965 * all the information are dedicated to a given direct node block determined 966 * by the data offset in a file. 967 */ 968 struct dnode_of_data { 969 struct inode *inode; /* vfs inode pointer */ 970 struct page *inode_page; /* its inode page, NULL is possible */ 971 struct page *node_page; /* cached direct node page */ 972 nid_t nid; /* node id of the direct node block */ 973 unsigned int ofs_in_node; /* data offset in the node page */ 974 bool inode_page_locked; /* inode page is locked or not */ 975 bool node_changed; /* is node block changed */ 976 char cur_level; /* level of hole node page */ 977 char max_level; /* level of current page located */ 978 block_t data_blkaddr; /* block address of the node block */ 979 }; 980 981 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 982 struct page *ipage, struct page *npage, nid_t nid) 983 { 984 memset(dn, 0, sizeof(*dn)); 985 dn->inode = inode; 986 dn->inode_page = ipage; 987 dn->node_page = npage; 988 dn->nid = nid; 989 } 990 991 /* 992 * For SIT manager 993 * 994 * By default, there are 6 active log areas across the whole main area. 995 * When considering hot and cold data separation to reduce cleaning overhead, 996 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 997 * respectively. 998 * In the current design, you should not change the numbers intentionally. 999 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1000 * logs individually according to the underlying devices. (default: 6) 1001 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1002 * data and 8 for node logs. 1003 */ 1004 #define NR_CURSEG_DATA_TYPE (3) 1005 #define NR_CURSEG_NODE_TYPE (3) 1006 #define NR_CURSEG_INMEM_TYPE (2) 1007 #define NR_CURSEG_RO_TYPE (2) 1008 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1009 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1010 1011 enum { 1012 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1013 CURSEG_WARM_DATA, /* data blocks */ 1014 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1015 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1016 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1017 CURSEG_COLD_NODE, /* indirect node blocks */ 1018 NR_PERSISTENT_LOG, /* number of persistent log */ 1019 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1020 /* pinned file that needs consecutive block address */ 1021 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1022 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1023 }; 1024 1025 struct flush_cmd { 1026 struct completion wait; 1027 struct llist_node llnode; 1028 nid_t ino; 1029 int ret; 1030 }; 1031 1032 struct flush_cmd_control { 1033 struct task_struct *f2fs_issue_flush; /* flush thread */ 1034 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1035 atomic_t issued_flush; /* # of issued flushes */ 1036 atomic_t queued_flush; /* # of queued flushes */ 1037 struct llist_head issue_list; /* list for command issue */ 1038 struct llist_node *dispatch_list; /* list for command dispatch */ 1039 }; 1040 1041 struct f2fs_sm_info { 1042 struct sit_info *sit_info; /* whole segment information */ 1043 struct free_segmap_info *free_info; /* free segment information */ 1044 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1045 struct curseg_info *curseg_array; /* active segment information */ 1046 1047 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1048 1049 block_t seg0_blkaddr; /* block address of 0'th segment */ 1050 block_t main_blkaddr; /* start block address of main area */ 1051 block_t ssa_blkaddr; /* start block address of SSA area */ 1052 1053 unsigned int segment_count; /* total # of segments */ 1054 unsigned int main_segments; /* # of segments in main area */ 1055 unsigned int reserved_segments; /* # of reserved segments */ 1056 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1057 unsigned int ovp_segments; /* # of overprovision segments */ 1058 1059 /* a threshold to reclaim prefree segments */ 1060 unsigned int rec_prefree_segments; 1061 1062 struct list_head sit_entry_set; /* sit entry set list */ 1063 1064 unsigned int ipu_policy; /* in-place-update policy */ 1065 unsigned int min_ipu_util; /* in-place-update threshold */ 1066 unsigned int min_fsync_blocks; /* threshold for fsync */ 1067 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1068 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1069 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1070 1071 /* for flush command control */ 1072 struct flush_cmd_control *fcc_info; 1073 1074 /* for discard command control */ 1075 struct discard_cmd_control *dcc_info; 1076 }; 1077 1078 /* 1079 * For superblock 1080 */ 1081 /* 1082 * COUNT_TYPE for monitoring 1083 * 1084 * f2fs monitors the number of several block types such as on-writeback, 1085 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1086 */ 1087 #define WB_DATA_TYPE(p, f) \ 1088 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1089 enum count_type { 1090 F2FS_DIRTY_DENTS, 1091 F2FS_DIRTY_DATA, 1092 F2FS_DIRTY_QDATA, 1093 F2FS_DIRTY_NODES, 1094 F2FS_DIRTY_META, 1095 F2FS_DIRTY_IMETA, 1096 F2FS_WB_CP_DATA, 1097 F2FS_WB_DATA, 1098 F2FS_RD_DATA, 1099 F2FS_RD_NODE, 1100 F2FS_RD_META, 1101 F2FS_DIO_WRITE, 1102 F2FS_DIO_READ, 1103 NR_COUNT_TYPE, 1104 }; 1105 1106 /* 1107 * The below are the page types of bios used in submit_bio(). 1108 * The available types are: 1109 * DATA User data pages. It operates as async mode. 1110 * NODE Node pages. It operates as async mode. 1111 * META FS metadata pages such as SIT, NAT, CP. 1112 * NR_PAGE_TYPE The number of page types. 1113 * META_FLUSH Make sure the previous pages are written 1114 * with waiting the bio's completion 1115 * ... Only can be used with META. 1116 */ 1117 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1118 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) 1119 enum page_type { 1120 DATA = 0, 1121 NODE = 1, /* should not change this */ 1122 META, 1123 NR_PAGE_TYPE, 1124 META_FLUSH, 1125 IPU, /* the below types are used by tracepoints only. */ 1126 OPU, 1127 }; 1128 1129 enum temp_type { 1130 HOT = 0, /* must be zero for meta bio */ 1131 WARM, 1132 COLD, 1133 NR_TEMP_TYPE, 1134 }; 1135 1136 enum need_lock_type { 1137 LOCK_REQ = 0, 1138 LOCK_DONE, 1139 LOCK_RETRY, 1140 }; 1141 1142 enum cp_reason_type { 1143 CP_NO_NEEDED, 1144 CP_NON_REGULAR, 1145 CP_COMPRESSED, 1146 CP_HARDLINK, 1147 CP_SB_NEED_CP, 1148 CP_WRONG_PINO, 1149 CP_NO_SPC_ROLL, 1150 CP_NODE_NEED_CP, 1151 CP_FASTBOOT_MODE, 1152 CP_SPEC_LOG_NUM, 1153 CP_RECOVER_DIR, 1154 CP_XATTR_DIR, 1155 }; 1156 1157 enum iostat_type { 1158 /* WRITE IO */ 1159 APP_DIRECT_IO, /* app direct write IOs */ 1160 APP_BUFFERED_IO, /* app buffered write IOs */ 1161 APP_WRITE_IO, /* app write IOs */ 1162 APP_MAPPED_IO, /* app mapped IOs */ 1163 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1164 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1165 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1166 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1167 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1168 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1169 FS_GC_DATA_IO, /* data IOs from forground gc */ 1170 FS_GC_NODE_IO, /* node IOs from forground gc */ 1171 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1172 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1173 FS_CP_META_IO, /* meta IOs from checkpoint */ 1174 1175 /* READ IO */ 1176 APP_DIRECT_READ_IO, /* app direct read IOs */ 1177 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1178 APP_READ_IO, /* app read IOs */ 1179 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1180 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1181 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1182 FS_DATA_READ_IO, /* data read IOs */ 1183 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1184 FS_CDATA_READ_IO, /* compressed data read IOs */ 1185 FS_NODE_READ_IO, /* node read IOs */ 1186 FS_META_READ_IO, /* meta read IOs */ 1187 1188 /* other */ 1189 FS_DISCARD_IO, /* discard */ 1190 FS_FLUSH_IO, /* flush */ 1191 FS_ZONE_RESET_IO, /* zone reset */ 1192 NR_IO_TYPE, 1193 }; 1194 1195 struct f2fs_io_info { 1196 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1197 nid_t ino; /* inode number */ 1198 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1199 enum temp_type temp; /* contains HOT/WARM/COLD */ 1200 enum req_op op; /* contains REQ_OP_ */ 1201 blk_opf_t op_flags; /* req_flag_bits */ 1202 block_t new_blkaddr; /* new block address to be written */ 1203 block_t old_blkaddr; /* old block address before Cow */ 1204 struct page *page; /* page to be written */ 1205 struct page *encrypted_page; /* encrypted page */ 1206 struct page *compressed_page; /* compressed page */ 1207 struct list_head list; /* serialize IOs */ 1208 unsigned int compr_blocks; /* # of compressed block addresses */ 1209 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1210 unsigned int version:8; /* version of the node */ 1211 unsigned int submitted:1; /* indicate IO submission */ 1212 unsigned int in_list:1; /* indicate fio is in io_list */ 1213 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1214 unsigned int encrypted:1; /* indicate file is encrypted */ 1215 unsigned int meta_gc:1; /* require meta inode GC */ 1216 enum iostat_type io_type; /* io type */ 1217 struct writeback_control *io_wbc; /* writeback control */ 1218 struct bio **bio; /* bio for ipu */ 1219 sector_t *last_block; /* last block number in bio */ 1220 }; 1221 1222 struct bio_entry { 1223 struct bio *bio; 1224 struct list_head list; 1225 }; 1226 1227 #define is_read_io(rw) ((rw) == READ) 1228 struct f2fs_bio_info { 1229 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1230 struct bio *bio; /* bios to merge */ 1231 sector_t last_block_in_bio; /* last block number */ 1232 struct f2fs_io_info fio; /* store buffered io info. */ 1233 #ifdef CONFIG_BLK_DEV_ZONED 1234 struct completion zone_wait; /* condition value for the previous open zone to close */ 1235 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1236 void *bi_private; /* previous bi_private for pending bio */ 1237 #endif 1238 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1239 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1240 struct list_head io_list; /* track fios */ 1241 struct list_head bio_list; /* bio entry list head */ 1242 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1243 }; 1244 1245 #define FDEV(i) (sbi->devs[i]) 1246 #define RDEV(i) (raw_super->devs[i]) 1247 struct f2fs_dev_info { 1248 struct block_device *bdev; 1249 char path[MAX_PATH_LEN]; 1250 unsigned int total_segments; 1251 block_t start_blk; 1252 block_t end_blk; 1253 #ifdef CONFIG_BLK_DEV_ZONED 1254 unsigned int nr_blkz; /* Total number of zones */ 1255 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1256 #endif 1257 }; 1258 1259 enum inode_type { 1260 DIR_INODE, /* for dirty dir inode */ 1261 FILE_INODE, /* for dirty regular/symlink inode */ 1262 DIRTY_META, /* for all dirtied inode metadata */ 1263 NR_INODE_TYPE, 1264 }; 1265 1266 /* for inner inode cache management */ 1267 struct inode_management { 1268 struct radix_tree_root ino_root; /* ino entry array */ 1269 spinlock_t ino_lock; /* for ino entry lock */ 1270 struct list_head ino_list; /* inode list head */ 1271 unsigned long ino_num; /* number of entries */ 1272 }; 1273 1274 /* for GC_AT */ 1275 struct atgc_management { 1276 bool atgc_enabled; /* ATGC is enabled or not */ 1277 struct rb_root_cached root; /* root of victim rb-tree */ 1278 struct list_head victim_list; /* linked with all victim entries */ 1279 unsigned int victim_count; /* victim count in rb-tree */ 1280 unsigned int candidate_ratio; /* candidate ratio */ 1281 unsigned int max_candidate_count; /* max candidate count */ 1282 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1283 unsigned long long age_threshold; /* age threshold */ 1284 }; 1285 1286 struct f2fs_gc_control { 1287 unsigned int victim_segno; /* target victim segment number */ 1288 int init_gc_type; /* FG_GC or BG_GC */ 1289 bool no_bg_gc; /* check the space and stop bg_gc */ 1290 bool should_migrate_blocks; /* should migrate blocks */ 1291 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1292 unsigned int nr_free_secs; /* # of free sections to do GC */ 1293 }; 1294 1295 /* 1296 * For s_flag in struct f2fs_sb_info 1297 * Modification on enum should be synchronized with s_flag array 1298 */ 1299 enum { 1300 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1301 SBI_IS_CLOSE, /* specify unmounting */ 1302 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1303 SBI_POR_DOING, /* recovery is doing or not */ 1304 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1305 SBI_NEED_CP, /* need to checkpoint */ 1306 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1307 SBI_IS_RECOVERED, /* recovered orphan/data */ 1308 SBI_CP_DISABLED, /* CP was disabled last mount */ 1309 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1310 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1311 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1312 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1313 SBI_IS_RESIZEFS, /* resizefs is in process */ 1314 SBI_IS_FREEZING, /* freezefs is in process */ 1315 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1316 MAX_SBI_FLAG, 1317 }; 1318 1319 enum { 1320 CP_TIME, 1321 REQ_TIME, 1322 DISCARD_TIME, 1323 GC_TIME, 1324 DISABLE_TIME, 1325 UMOUNT_DISCARD_TIMEOUT, 1326 MAX_TIME, 1327 }; 1328 1329 /* Note that you need to keep synchronization with this gc_mode_names array */ 1330 enum { 1331 GC_NORMAL, 1332 GC_IDLE_CB, 1333 GC_IDLE_GREEDY, 1334 GC_IDLE_AT, 1335 GC_URGENT_HIGH, 1336 GC_URGENT_LOW, 1337 GC_URGENT_MID, 1338 MAX_GC_MODE, 1339 }; 1340 1341 enum { 1342 BGGC_MODE_ON, /* background gc is on */ 1343 BGGC_MODE_OFF, /* background gc is off */ 1344 BGGC_MODE_SYNC, /* 1345 * background gc is on, migrating blocks 1346 * like foreground gc 1347 */ 1348 }; 1349 1350 enum { 1351 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1352 FS_MODE_LFS, /* use lfs allocation only */ 1353 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1354 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1355 }; 1356 1357 enum { 1358 ALLOC_MODE_DEFAULT, /* stay default */ 1359 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1360 }; 1361 1362 enum fsync_mode { 1363 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1364 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1365 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1366 }; 1367 1368 enum { 1369 COMPR_MODE_FS, /* 1370 * automatically compress compression 1371 * enabled files 1372 */ 1373 COMPR_MODE_USER, /* 1374 * automatical compression is disabled. 1375 * user can control the file compression 1376 * using ioctls 1377 */ 1378 }; 1379 1380 enum { 1381 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1382 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1383 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1384 }; 1385 1386 enum { 1387 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1388 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1389 }; 1390 1391 enum errors_option { 1392 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1393 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1394 MOUNT_ERRORS_PANIC, /* panic on errors */ 1395 }; 1396 1397 enum { 1398 BACKGROUND, 1399 FOREGROUND, 1400 MAX_CALL_TYPE, 1401 TOTAL_CALL = FOREGROUND, 1402 }; 1403 1404 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1405 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1406 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1407 1408 /* 1409 * Layout of f2fs page.private: 1410 * 1411 * Layout A: lowest bit should be 1 1412 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1413 * bit 0 PAGE_PRIVATE_NOT_POINTER 1414 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION 1415 * bit 2 PAGE_PRIVATE_INLINE_INODE 1416 * bit 3 PAGE_PRIVATE_REF_RESOURCE 1417 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE 1418 * bit 5- f2fs private data 1419 * 1420 * Layout B: lowest bit should be 0 1421 * page.private is a wrapped pointer. 1422 */ 1423 enum { 1424 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1425 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1426 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1427 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1428 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1429 PAGE_PRIVATE_MAX 1430 }; 1431 1432 /* For compression */ 1433 enum compress_algorithm_type { 1434 COMPRESS_LZO, 1435 COMPRESS_LZ4, 1436 COMPRESS_ZSTD, 1437 COMPRESS_LZORLE, 1438 COMPRESS_MAX, 1439 }; 1440 1441 enum compress_flag { 1442 COMPRESS_CHKSUM, 1443 COMPRESS_MAX_FLAG, 1444 }; 1445 1446 #define COMPRESS_WATERMARK 20 1447 #define COMPRESS_PERCENT 20 1448 1449 #define COMPRESS_DATA_RESERVED_SIZE 4 1450 struct compress_data { 1451 __le32 clen; /* compressed data size */ 1452 __le32 chksum; /* compressed data chksum */ 1453 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1454 u8 cdata[]; /* compressed data */ 1455 }; 1456 1457 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1458 1459 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1460 1461 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1462 1463 #define COMPRESS_LEVEL_OFFSET 8 1464 1465 /* compress context */ 1466 struct compress_ctx { 1467 struct inode *inode; /* inode the context belong to */ 1468 pgoff_t cluster_idx; /* cluster index number */ 1469 unsigned int cluster_size; /* page count in cluster */ 1470 unsigned int log_cluster_size; /* log of cluster size */ 1471 struct page **rpages; /* pages store raw data in cluster */ 1472 unsigned int nr_rpages; /* total page number in rpages */ 1473 struct page **cpages; /* pages store compressed data in cluster */ 1474 unsigned int nr_cpages; /* total page number in cpages */ 1475 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1476 void *rbuf; /* virtual mapped address on rpages */ 1477 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1478 size_t rlen; /* valid data length in rbuf */ 1479 size_t clen; /* valid data length in cbuf */ 1480 void *private; /* payload buffer for specified compression algorithm */ 1481 void *private2; /* extra payload buffer */ 1482 }; 1483 1484 /* compress context for write IO path */ 1485 struct compress_io_ctx { 1486 u32 magic; /* magic number to indicate page is compressed */ 1487 struct inode *inode; /* inode the context belong to */ 1488 struct page **rpages; /* pages store raw data in cluster */ 1489 unsigned int nr_rpages; /* total page number in rpages */ 1490 atomic_t pending_pages; /* in-flight compressed page count */ 1491 }; 1492 1493 /* Context for decompressing one cluster on the read IO path */ 1494 struct decompress_io_ctx { 1495 u32 magic; /* magic number to indicate page is compressed */ 1496 struct inode *inode; /* inode the context belong to */ 1497 pgoff_t cluster_idx; /* cluster index number */ 1498 unsigned int cluster_size; /* page count in cluster */ 1499 unsigned int log_cluster_size; /* log of cluster size */ 1500 struct page **rpages; /* pages store raw data in cluster */ 1501 unsigned int nr_rpages; /* total page number in rpages */ 1502 struct page **cpages; /* pages store compressed data in cluster */ 1503 unsigned int nr_cpages; /* total page number in cpages */ 1504 struct page **tpages; /* temp pages to pad holes in cluster */ 1505 void *rbuf; /* virtual mapped address on rpages */ 1506 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1507 size_t rlen; /* valid data length in rbuf */ 1508 size_t clen; /* valid data length in cbuf */ 1509 1510 /* 1511 * The number of compressed pages remaining to be read in this cluster. 1512 * This is initially nr_cpages. It is decremented by 1 each time a page 1513 * has been read (or failed to be read). When it reaches 0, the cluster 1514 * is decompressed (or an error is reported). 1515 * 1516 * If an error occurs before all the pages have been submitted for I/O, 1517 * then this will never reach 0. In this case the I/O submitter is 1518 * responsible for calling f2fs_decompress_end_io() instead. 1519 */ 1520 atomic_t remaining_pages; 1521 1522 /* 1523 * Number of references to this decompress_io_ctx. 1524 * 1525 * One reference is held for I/O completion. This reference is dropped 1526 * after the pagecache pages are updated and unlocked -- either after 1527 * decompression (and verity if enabled), or after an error. 1528 * 1529 * In addition, each compressed page holds a reference while it is in a 1530 * bio. These references are necessary prevent compressed pages from 1531 * being freed while they are still in a bio. 1532 */ 1533 refcount_t refcnt; 1534 1535 bool failed; /* IO error occurred before decompression? */ 1536 bool need_verity; /* need fs-verity verification after decompression? */ 1537 void *private; /* payload buffer for specified decompression algorithm */ 1538 void *private2; /* extra payload buffer */ 1539 struct work_struct verity_work; /* work to verify the decompressed pages */ 1540 struct work_struct free_work; /* work for late free this structure itself */ 1541 }; 1542 1543 #define NULL_CLUSTER ((unsigned int)(~0)) 1544 #define MIN_COMPRESS_LOG_SIZE 2 1545 #define MAX_COMPRESS_LOG_SIZE 8 1546 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1547 1548 struct f2fs_sb_info { 1549 struct super_block *sb; /* pointer to VFS super block */ 1550 struct proc_dir_entry *s_proc; /* proc entry */ 1551 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1552 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1553 int valid_super_block; /* valid super block no */ 1554 unsigned long s_flag; /* flags for sbi */ 1555 struct mutex writepages; /* mutex for writepages() */ 1556 1557 #ifdef CONFIG_BLK_DEV_ZONED 1558 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1559 #endif 1560 1561 /* for node-related operations */ 1562 struct f2fs_nm_info *nm_info; /* node manager */ 1563 struct inode *node_inode; /* cache node blocks */ 1564 1565 /* for segment-related operations */ 1566 struct f2fs_sm_info *sm_info; /* segment manager */ 1567 1568 /* for bio operations */ 1569 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1570 /* keep migration IO order for LFS mode */ 1571 struct f2fs_rwsem io_order_lock; 1572 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1573 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1574 1575 /* for checkpoint */ 1576 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1577 int cur_cp_pack; /* remain current cp pack */ 1578 spinlock_t cp_lock; /* for flag in ckpt */ 1579 struct inode *meta_inode; /* cache meta blocks */ 1580 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1581 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1582 struct f2fs_rwsem node_write; /* locking node writes */ 1583 struct f2fs_rwsem node_change; /* locking node change */ 1584 wait_queue_head_t cp_wait; 1585 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1586 long interval_time[MAX_TIME]; /* to store thresholds */ 1587 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1588 1589 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1590 1591 spinlock_t fsync_node_lock; /* for node entry lock */ 1592 struct list_head fsync_node_list; /* node list head */ 1593 unsigned int fsync_seg_id; /* sequence id */ 1594 unsigned int fsync_node_num; /* number of node entries */ 1595 1596 /* for orphan inode, use 0'th array */ 1597 unsigned int max_orphans; /* max orphan inodes */ 1598 1599 /* for inode management */ 1600 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1601 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1602 struct mutex flush_lock; /* for flush exclusion */ 1603 1604 /* for extent tree cache */ 1605 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1606 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1607 1608 /* The threshold used for hot and warm data seperation*/ 1609 unsigned int hot_data_age_threshold; 1610 unsigned int warm_data_age_threshold; 1611 unsigned int last_age_weight; 1612 1613 /* basic filesystem units */ 1614 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1615 unsigned int log_blocksize; /* log2 block size */ 1616 unsigned int blocksize; /* block size */ 1617 unsigned int root_ino_num; /* root inode number*/ 1618 unsigned int node_ino_num; /* node inode number*/ 1619 unsigned int meta_ino_num; /* meta inode number*/ 1620 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1621 unsigned int blocks_per_seg; /* blocks per segment */ 1622 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1623 unsigned int segs_per_sec; /* segments per section */ 1624 unsigned int secs_per_zone; /* sections per zone */ 1625 unsigned int total_sections; /* total section count */ 1626 unsigned int total_node_count; /* total node block count */ 1627 unsigned int total_valid_node_count; /* valid node block count */ 1628 int dir_level; /* directory level */ 1629 bool readdir_ra; /* readahead inode in readdir */ 1630 u64 max_io_bytes; /* max io bytes to merge IOs */ 1631 1632 block_t user_block_count; /* # of user blocks */ 1633 block_t total_valid_block_count; /* # of valid blocks */ 1634 block_t discard_blks; /* discard command candidats */ 1635 block_t last_valid_block_count; /* for recovery */ 1636 block_t reserved_blocks; /* configurable reserved blocks */ 1637 block_t current_reserved_blocks; /* current reserved blocks */ 1638 1639 /* Additional tracking for no checkpoint mode */ 1640 block_t unusable_block_count; /* # of blocks saved by last cp */ 1641 1642 unsigned int nquota_files; /* # of quota sysfile */ 1643 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1644 1645 /* # of pages, see count_type */ 1646 atomic_t nr_pages[NR_COUNT_TYPE]; 1647 /* # of allocated blocks */ 1648 struct percpu_counter alloc_valid_block_count; 1649 /* # of node block writes as roll forward recovery */ 1650 struct percpu_counter rf_node_block_count; 1651 1652 /* writeback control */ 1653 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1654 1655 /* valid inode count */ 1656 struct percpu_counter total_valid_inode_count; 1657 1658 struct f2fs_mount_info mount_opt; /* mount options */ 1659 1660 /* for cleaning operations */ 1661 struct f2fs_rwsem gc_lock; /* 1662 * semaphore for GC, avoid 1663 * race between GC and GC or CP 1664 */ 1665 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1666 struct atgc_management am; /* atgc management */ 1667 unsigned int cur_victim_sec; /* current victim section num */ 1668 unsigned int gc_mode; /* current GC state */ 1669 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1670 spinlock_t gc_remaining_trials_lock; 1671 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1672 unsigned int gc_remaining_trials; 1673 1674 /* for skip statistic */ 1675 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1676 1677 /* threshold for gc trials on pinned files */ 1678 u64 gc_pin_file_threshold; 1679 struct f2fs_rwsem pin_sem; 1680 1681 /* maximum # of trials to find a victim segment for SSR and GC */ 1682 unsigned int max_victim_search; 1683 /* migration granularity of garbage collection, unit: segment */ 1684 unsigned int migration_granularity; 1685 1686 /* 1687 * for stat information. 1688 * one is for the LFS mode, and the other is for the SSR mode. 1689 */ 1690 #ifdef CONFIG_F2FS_STAT_FS 1691 struct f2fs_stat_info *stat_info; /* FS status information */ 1692 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1693 unsigned int segment_count[2]; /* # of allocated segments */ 1694 unsigned int block_count[2]; /* # of allocated blocks */ 1695 atomic_t inplace_count; /* # of inplace update */ 1696 /* # of lookup extent cache */ 1697 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1698 /* # of hit rbtree extent node */ 1699 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1700 /* # of hit cached extent node */ 1701 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1702 /* # of hit largest extent node in read extent cache */ 1703 atomic64_t read_hit_largest; 1704 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1705 atomic_t inline_inode; /* # of inline_data inodes */ 1706 atomic_t inline_dir; /* # of inline_dentry inodes */ 1707 atomic_t compr_inode; /* # of compressed inodes */ 1708 atomic64_t compr_blocks; /* # of compressed blocks */ 1709 atomic_t swapfile_inode; /* # of swapfile inodes */ 1710 atomic_t atomic_files; /* # of opened atomic file */ 1711 atomic_t max_aw_cnt; /* max # of atomic writes */ 1712 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1713 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1714 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1715 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1716 #endif 1717 spinlock_t stat_lock; /* lock for stat operations */ 1718 1719 /* to attach REQ_META|REQ_FUA flags */ 1720 unsigned int data_io_flag; 1721 unsigned int node_io_flag; 1722 1723 /* For sysfs support */ 1724 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1725 struct completion s_kobj_unregister; 1726 1727 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1728 struct completion s_stat_kobj_unregister; 1729 1730 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1731 struct completion s_feature_list_kobj_unregister; 1732 1733 /* For shrinker support */ 1734 struct list_head s_list; 1735 struct mutex umount_mutex; 1736 unsigned int shrinker_run_no; 1737 1738 /* For multi devices */ 1739 int s_ndevs; /* number of devices */ 1740 struct f2fs_dev_info *devs; /* for device list */ 1741 unsigned int dirty_device; /* for checkpoint data flush */ 1742 spinlock_t dev_lock; /* protect dirty_device */ 1743 bool aligned_blksize; /* all devices has the same logical blksize */ 1744 1745 /* For write statistics */ 1746 u64 sectors_written_start; 1747 u64 kbytes_written; 1748 1749 /* Reference to checksum algorithm driver via cryptoapi */ 1750 struct crypto_shash *s_chksum_driver; 1751 1752 /* Precomputed FS UUID checksum for seeding other checksums */ 1753 __u32 s_chksum_seed; 1754 1755 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1756 1757 /* 1758 * If we are in irq context, let's update error information into 1759 * on-disk superblock in the work. 1760 */ 1761 struct work_struct s_error_work; 1762 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1763 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1764 spinlock_t error_lock; /* protect errors/stop_reason array */ 1765 bool error_dirty; /* errors of sb is dirty */ 1766 1767 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1768 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1769 1770 /* For reclaimed segs statistics per each GC mode */ 1771 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1772 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1773 1774 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1775 1776 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1777 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1778 1779 /* For atomic write statistics */ 1780 atomic64_t current_atomic_write; 1781 s64 peak_atomic_write; 1782 u64 committed_atomic_block; 1783 u64 revoked_atomic_block; 1784 1785 #ifdef CONFIG_F2FS_FS_COMPRESSION 1786 struct kmem_cache *page_array_slab; /* page array entry */ 1787 unsigned int page_array_slab_size; /* default page array slab size */ 1788 1789 /* For runtime compression statistics */ 1790 u64 compr_written_block; 1791 u64 compr_saved_block; 1792 u32 compr_new_inode; 1793 1794 /* For compressed block cache */ 1795 struct inode *compress_inode; /* cache compressed blocks */ 1796 unsigned int compress_percent; /* cache page percentage */ 1797 unsigned int compress_watermark; /* cache page watermark */ 1798 atomic_t compress_page_hit; /* cache hit count */ 1799 #endif 1800 1801 #ifdef CONFIG_F2FS_IOSTAT 1802 /* For app/fs IO statistics */ 1803 spinlock_t iostat_lock; 1804 unsigned long long iostat_count[NR_IO_TYPE]; 1805 unsigned long long iostat_bytes[NR_IO_TYPE]; 1806 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1807 bool iostat_enable; 1808 unsigned long iostat_next_period; 1809 unsigned int iostat_period_ms; 1810 1811 /* For io latency related statistics info in one iostat period */ 1812 spinlock_t iostat_lat_lock; 1813 struct iostat_lat_info *iostat_io_lat; 1814 #endif 1815 }; 1816 1817 /* Definitions to access f2fs_sb_info */ 1818 #define BLKS_PER_SEG(sbi) \ 1819 ((sbi)->blocks_per_seg) 1820 #define BLKS_PER_SEC(sbi) \ 1821 ((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg) 1822 #define SEGS_PER_SEC(sbi) \ 1823 ((sbi)->segs_per_sec) 1824 1825 __printf(3, 4) 1826 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); 1827 1828 #define f2fs_err(sbi, fmt, ...) \ 1829 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) 1830 #define f2fs_warn(sbi, fmt, ...) \ 1831 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) 1832 #define f2fs_notice(sbi, fmt, ...) \ 1833 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) 1834 #define f2fs_info(sbi, fmt, ...) \ 1835 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) 1836 #define f2fs_debug(sbi, fmt, ...) \ 1837 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) 1838 1839 #define f2fs_err_ratelimited(sbi, fmt, ...) \ 1840 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) 1841 #define f2fs_warn_ratelimited(sbi, fmt, ...) \ 1842 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) 1843 #define f2fs_info_ratelimited(sbi, fmt, ...) \ 1844 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) 1845 1846 #ifdef CONFIG_F2FS_FAULT_INJECTION 1847 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1848 __builtin_return_address(0)) 1849 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1850 const char *func, const char *parent_func) 1851 { 1852 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1853 1854 if (!ffi->inject_rate) 1855 return false; 1856 1857 if (!IS_FAULT_SET(ffi, type)) 1858 return false; 1859 1860 atomic_inc(&ffi->inject_ops); 1861 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1862 atomic_set(&ffi->inject_ops, 0); 1863 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", 1864 f2fs_fault_name[type], func, parent_func); 1865 return true; 1866 } 1867 return false; 1868 } 1869 #else 1870 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1871 { 1872 return false; 1873 } 1874 #endif 1875 1876 /* 1877 * Test if the mounted volume is a multi-device volume. 1878 * - For a single regular disk volume, sbi->s_ndevs is 0. 1879 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1880 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1881 */ 1882 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1883 { 1884 return sbi->s_ndevs > 1; 1885 } 1886 1887 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1888 { 1889 unsigned long now = jiffies; 1890 1891 sbi->last_time[type] = now; 1892 1893 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1894 if (type == REQ_TIME) { 1895 sbi->last_time[DISCARD_TIME] = now; 1896 sbi->last_time[GC_TIME] = now; 1897 } 1898 } 1899 1900 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1901 { 1902 unsigned long interval = sbi->interval_time[type] * HZ; 1903 1904 return time_after(jiffies, sbi->last_time[type] + interval); 1905 } 1906 1907 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1908 int type) 1909 { 1910 unsigned long interval = sbi->interval_time[type] * HZ; 1911 unsigned int wait_ms = 0; 1912 long delta; 1913 1914 delta = (sbi->last_time[type] + interval) - jiffies; 1915 if (delta > 0) 1916 wait_ms = jiffies_to_msecs(delta); 1917 1918 return wait_ms; 1919 } 1920 1921 /* 1922 * Inline functions 1923 */ 1924 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1925 const void *address, unsigned int length) 1926 { 1927 struct { 1928 struct shash_desc shash; 1929 char ctx[4]; 1930 } desc; 1931 int err; 1932 1933 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1934 1935 desc.shash.tfm = sbi->s_chksum_driver; 1936 *(u32 *)desc.ctx = crc; 1937 1938 err = crypto_shash_update(&desc.shash, address, length); 1939 BUG_ON(err); 1940 1941 return *(u32 *)desc.ctx; 1942 } 1943 1944 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1945 unsigned int length) 1946 { 1947 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1948 } 1949 1950 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1951 void *buf, size_t buf_size) 1952 { 1953 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1954 } 1955 1956 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1957 const void *address, unsigned int length) 1958 { 1959 return __f2fs_crc32(sbi, crc, address, length); 1960 } 1961 1962 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1963 { 1964 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1965 } 1966 1967 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1968 { 1969 return sb->s_fs_info; 1970 } 1971 1972 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1973 { 1974 return F2FS_SB(inode->i_sb); 1975 } 1976 1977 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1978 { 1979 return F2FS_I_SB(mapping->host); 1980 } 1981 1982 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1983 { 1984 return F2FS_M_SB(page_file_mapping(page)); 1985 } 1986 1987 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1988 { 1989 return (struct f2fs_super_block *)(sbi->raw_super); 1990 } 1991 1992 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1993 { 1994 return (struct f2fs_checkpoint *)(sbi->ckpt); 1995 } 1996 1997 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1998 { 1999 return (struct f2fs_node *)page_address(page); 2000 } 2001 2002 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2003 { 2004 return &((struct f2fs_node *)page_address(page))->i; 2005 } 2006 2007 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2008 { 2009 return (struct f2fs_nm_info *)(sbi->nm_info); 2010 } 2011 2012 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2013 { 2014 return (struct f2fs_sm_info *)(sbi->sm_info); 2015 } 2016 2017 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2018 { 2019 return (struct sit_info *)(SM_I(sbi)->sit_info); 2020 } 2021 2022 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2023 { 2024 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2025 } 2026 2027 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2028 { 2029 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2030 } 2031 2032 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2033 { 2034 return sbi->meta_inode->i_mapping; 2035 } 2036 2037 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2038 { 2039 return sbi->node_inode->i_mapping; 2040 } 2041 2042 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2043 { 2044 return test_bit(type, &sbi->s_flag); 2045 } 2046 2047 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2048 { 2049 set_bit(type, &sbi->s_flag); 2050 } 2051 2052 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2053 { 2054 clear_bit(type, &sbi->s_flag); 2055 } 2056 2057 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2058 { 2059 return le64_to_cpu(cp->checkpoint_ver); 2060 } 2061 2062 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2063 { 2064 if (type < F2FS_MAX_QUOTAS) 2065 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2066 return 0; 2067 } 2068 2069 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2070 { 2071 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2072 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2073 } 2074 2075 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2076 { 2077 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2078 2079 return ckpt_flags & f; 2080 } 2081 2082 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2083 { 2084 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2085 } 2086 2087 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2088 { 2089 unsigned int ckpt_flags; 2090 2091 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2092 ckpt_flags |= f; 2093 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2094 } 2095 2096 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2097 { 2098 unsigned long flags; 2099 2100 spin_lock_irqsave(&sbi->cp_lock, flags); 2101 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2102 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2103 } 2104 2105 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2106 { 2107 unsigned int ckpt_flags; 2108 2109 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2110 ckpt_flags &= (~f); 2111 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2112 } 2113 2114 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2115 { 2116 unsigned long flags; 2117 2118 spin_lock_irqsave(&sbi->cp_lock, flags); 2119 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2120 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2121 } 2122 2123 #define init_f2fs_rwsem(sem) \ 2124 do { \ 2125 static struct lock_class_key __key; \ 2126 \ 2127 __init_f2fs_rwsem((sem), #sem, &__key); \ 2128 } while (0) 2129 2130 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2131 const char *sem_name, struct lock_class_key *key) 2132 { 2133 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2134 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2135 init_waitqueue_head(&sem->read_waiters); 2136 #endif 2137 } 2138 2139 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2140 { 2141 return rwsem_is_locked(&sem->internal_rwsem); 2142 } 2143 2144 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2145 { 2146 return rwsem_is_contended(&sem->internal_rwsem); 2147 } 2148 2149 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2150 { 2151 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2152 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2153 #else 2154 down_read(&sem->internal_rwsem); 2155 #endif 2156 } 2157 2158 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2159 { 2160 return down_read_trylock(&sem->internal_rwsem); 2161 } 2162 2163 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2164 { 2165 up_read(&sem->internal_rwsem); 2166 } 2167 2168 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2169 { 2170 down_write(&sem->internal_rwsem); 2171 } 2172 2173 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2174 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2175 { 2176 down_read_nested(&sem->internal_rwsem, subclass); 2177 } 2178 2179 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2180 { 2181 down_write_nested(&sem->internal_rwsem, subclass); 2182 } 2183 #else 2184 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2185 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2186 #endif 2187 2188 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2189 { 2190 return down_write_trylock(&sem->internal_rwsem); 2191 } 2192 2193 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2194 { 2195 up_write(&sem->internal_rwsem); 2196 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2197 wake_up_all(&sem->read_waiters); 2198 #endif 2199 } 2200 2201 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2202 { 2203 f2fs_down_read(&sbi->cp_rwsem); 2204 } 2205 2206 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2207 { 2208 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2209 return 0; 2210 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2211 } 2212 2213 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2214 { 2215 f2fs_up_read(&sbi->cp_rwsem); 2216 } 2217 2218 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2219 { 2220 f2fs_down_write(&sbi->cp_rwsem); 2221 } 2222 2223 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2224 { 2225 f2fs_up_write(&sbi->cp_rwsem); 2226 } 2227 2228 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2229 { 2230 int reason = CP_SYNC; 2231 2232 if (test_opt(sbi, FASTBOOT)) 2233 reason = CP_FASTBOOT; 2234 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2235 reason = CP_UMOUNT; 2236 return reason; 2237 } 2238 2239 static inline bool __remain_node_summaries(int reason) 2240 { 2241 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2242 } 2243 2244 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2245 { 2246 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2247 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2248 } 2249 2250 /* 2251 * Check whether the inode has blocks or not 2252 */ 2253 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2254 { 2255 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2256 2257 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2258 } 2259 2260 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2261 { 2262 return ofs == XATTR_NODE_OFFSET; 2263 } 2264 2265 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2266 struct inode *inode, bool cap) 2267 { 2268 if (!inode) 2269 return true; 2270 if (!test_opt(sbi, RESERVE_ROOT)) 2271 return false; 2272 if (IS_NOQUOTA(inode)) 2273 return true; 2274 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2275 return true; 2276 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2277 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2278 return true; 2279 if (cap && capable(CAP_SYS_RESOURCE)) 2280 return true; 2281 return false; 2282 } 2283 2284 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, 2285 struct inode *inode, bool cap) 2286 { 2287 block_t avail_user_block_count; 2288 2289 avail_user_block_count = sbi->user_block_count - 2290 sbi->current_reserved_blocks; 2291 2292 if (!__allow_reserved_blocks(sbi, inode, cap)) 2293 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2294 2295 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2296 if (avail_user_block_count > sbi->unusable_block_count) 2297 avail_user_block_count -= sbi->unusable_block_count; 2298 else 2299 avail_user_block_count = 0; 2300 } 2301 2302 return avail_user_block_count; 2303 } 2304 2305 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2306 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2307 struct inode *inode, blkcnt_t *count, bool partial) 2308 { 2309 long long diff = 0, release = 0; 2310 block_t avail_user_block_count; 2311 int ret; 2312 2313 ret = dquot_reserve_block(inode, *count); 2314 if (ret) 2315 return ret; 2316 2317 if (time_to_inject(sbi, FAULT_BLOCK)) { 2318 release = *count; 2319 goto release_quota; 2320 } 2321 2322 /* 2323 * let's increase this in prior to actual block count change in order 2324 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2325 */ 2326 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2327 2328 spin_lock(&sbi->stat_lock); 2329 2330 avail_user_block_count = get_available_block_count(sbi, inode, true); 2331 diff = (long long)sbi->total_valid_block_count + *count - 2332 avail_user_block_count; 2333 if (unlikely(diff > 0)) { 2334 if (!partial) { 2335 spin_unlock(&sbi->stat_lock); 2336 release = *count; 2337 goto enospc; 2338 } 2339 if (diff > *count) 2340 diff = *count; 2341 *count -= diff; 2342 release = diff; 2343 if (!*count) { 2344 spin_unlock(&sbi->stat_lock); 2345 goto enospc; 2346 } 2347 } 2348 sbi->total_valid_block_count += (block_t)(*count); 2349 2350 spin_unlock(&sbi->stat_lock); 2351 2352 if (unlikely(release)) { 2353 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2354 dquot_release_reservation_block(inode, release); 2355 } 2356 f2fs_i_blocks_write(inode, *count, true, true); 2357 return 0; 2358 2359 enospc: 2360 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2361 release_quota: 2362 dquot_release_reservation_block(inode, release); 2363 return -ENOSPC; 2364 } 2365 2366 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2367 static inline bool page_private_##name(struct page *page) \ 2368 { \ 2369 return PagePrivate(page) && \ 2370 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2371 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2372 } 2373 2374 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2375 static inline void set_page_private_##name(struct page *page) \ 2376 { \ 2377 if (!PagePrivate(page)) \ 2378 attach_page_private(page, (void *)0); \ 2379 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2380 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2381 } 2382 2383 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2384 static inline void clear_page_private_##name(struct page *page) \ 2385 { \ 2386 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2387 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2388 detach_page_private(page); \ 2389 } 2390 2391 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2392 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2393 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2394 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 2395 2396 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2397 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2398 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2399 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 2400 2401 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2402 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2403 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2404 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 2405 2406 static inline unsigned long get_page_private_data(struct page *page) 2407 { 2408 unsigned long data = page_private(page); 2409 2410 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2411 return 0; 2412 return data >> PAGE_PRIVATE_MAX; 2413 } 2414 2415 static inline void set_page_private_data(struct page *page, unsigned long data) 2416 { 2417 if (!PagePrivate(page)) 2418 attach_page_private(page, (void *)0); 2419 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2420 page_private(page) |= data << PAGE_PRIVATE_MAX; 2421 } 2422 2423 static inline void clear_page_private_data(struct page *page) 2424 { 2425 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2426 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2427 detach_page_private(page); 2428 } 2429 2430 static inline void clear_page_private_all(struct page *page) 2431 { 2432 clear_page_private_data(page); 2433 clear_page_private_reference(page); 2434 clear_page_private_gcing(page); 2435 clear_page_private_inline(page); 2436 clear_page_private_atomic(page); 2437 2438 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2439 } 2440 2441 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2442 struct inode *inode, 2443 block_t count) 2444 { 2445 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2446 2447 spin_lock(&sbi->stat_lock); 2448 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2449 sbi->total_valid_block_count -= (block_t)count; 2450 if (sbi->reserved_blocks && 2451 sbi->current_reserved_blocks < sbi->reserved_blocks) 2452 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2453 sbi->current_reserved_blocks + count); 2454 spin_unlock(&sbi->stat_lock); 2455 if (unlikely(inode->i_blocks < sectors)) { 2456 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2457 inode->i_ino, 2458 (unsigned long long)inode->i_blocks, 2459 (unsigned long long)sectors); 2460 set_sbi_flag(sbi, SBI_NEED_FSCK); 2461 return; 2462 } 2463 f2fs_i_blocks_write(inode, count, false, true); 2464 } 2465 2466 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2467 { 2468 atomic_inc(&sbi->nr_pages[count_type]); 2469 2470 if (count_type == F2FS_DIRTY_DENTS || 2471 count_type == F2FS_DIRTY_NODES || 2472 count_type == F2FS_DIRTY_META || 2473 count_type == F2FS_DIRTY_QDATA || 2474 count_type == F2FS_DIRTY_IMETA) 2475 set_sbi_flag(sbi, SBI_IS_DIRTY); 2476 } 2477 2478 static inline void inode_inc_dirty_pages(struct inode *inode) 2479 { 2480 atomic_inc(&F2FS_I(inode)->dirty_pages); 2481 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2482 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2483 if (IS_NOQUOTA(inode)) 2484 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2485 } 2486 2487 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2488 { 2489 atomic_dec(&sbi->nr_pages[count_type]); 2490 } 2491 2492 static inline void inode_dec_dirty_pages(struct inode *inode) 2493 { 2494 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2495 !S_ISLNK(inode->i_mode)) 2496 return; 2497 2498 atomic_dec(&F2FS_I(inode)->dirty_pages); 2499 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2500 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2501 if (IS_NOQUOTA(inode)) 2502 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2503 } 2504 2505 static inline void inc_atomic_write_cnt(struct inode *inode) 2506 { 2507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2508 struct f2fs_inode_info *fi = F2FS_I(inode); 2509 u64 current_write; 2510 2511 fi->atomic_write_cnt++; 2512 atomic64_inc(&sbi->current_atomic_write); 2513 current_write = atomic64_read(&sbi->current_atomic_write); 2514 if (current_write > sbi->peak_atomic_write) 2515 sbi->peak_atomic_write = current_write; 2516 } 2517 2518 static inline void release_atomic_write_cnt(struct inode *inode) 2519 { 2520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2521 struct f2fs_inode_info *fi = F2FS_I(inode); 2522 2523 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2524 fi->atomic_write_cnt = 0; 2525 } 2526 2527 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2528 { 2529 return atomic_read(&sbi->nr_pages[count_type]); 2530 } 2531 2532 static inline int get_dirty_pages(struct inode *inode) 2533 { 2534 return atomic_read(&F2FS_I(inode)->dirty_pages); 2535 } 2536 2537 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2538 { 2539 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, 2540 BLKS_PER_SEC(sbi)); 2541 } 2542 2543 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2544 { 2545 return sbi->total_valid_block_count; 2546 } 2547 2548 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2549 { 2550 return sbi->discard_blks; 2551 } 2552 2553 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2554 { 2555 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2556 2557 /* return NAT or SIT bitmap */ 2558 if (flag == NAT_BITMAP) 2559 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2560 else if (flag == SIT_BITMAP) 2561 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2562 2563 return 0; 2564 } 2565 2566 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2567 { 2568 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2569 } 2570 2571 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2572 { 2573 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2574 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2575 int offset; 2576 2577 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2578 offset = (flag == SIT_BITMAP) ? 2579 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2580 /* 2581 * if large_nat_bitmap feature is enabled, leave checksum 2582 * protection for all nat/sit bitmaps. 2583 */ 2584 return tmp_ptr + offset + sizeof(__le32); 2585 } 2586 2587 if (__cp_payload(sbi) > 0) { 2588 if (flag == NAT_BITMAP) 2589 return tmp_ptr; 2590 else 2591 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2592 } else { 2593 offset = (flag == NAT_BITMAP) ? 2594 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2595 return tmp_ptr + offset; 2596 } 2597 } 2598 2599 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2600 { 2601 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2602 2603 if (sbi->cur_cp_pack == 2) 2604 start_addr += BLKS_PER_SEG(sbi); 2605 return start_addr; 2606 } 2607 2608 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2609 { 2610 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2611 2612 if (sbi->cur_cp_pack == 1) 2613 start_addr += BLKS_PER_SEG(sbi); 2614 return start_addr; 2615 } 2616 2617 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2618 { 2619 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2620 } 2621 2622 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2623 { 2624 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2625 } 2626 2627 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2628 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2629 struct inode *inode, bool is_inode) 2630 { 2631 block_t valid_block_count; 2632 unsigned int valid_node_count; 2633 unsigned int avail_user_block_count; 2634 int err; 2635 2636 if (is_inode) { 2637 if (inode) { 2638 err = dquot_alloc_inode(inode); 2639 if (err) 2640 return err; 2641 } 2642 } else { 2643 err = dquot_reserve_block(inode, 1); 2644 if (err) 2645 return err; 2646 } 2647 2648 if (time_to_inject(sbi, FAULT_BLOCK)) 2649 goto enospc; 2650 2651 spin_lock(&sbi->stat_lock); 2652 2653 valid_block_count = sbi->total_valid_block_count + 1; 2654 avail_user_block_count = get_available_block_count(sbi, inode, false); 2655 2656 if (unlikely(valid_block_count > avail_user_block_count)) { 2657 spin_unlock(&sbi->stat_lock); 2658 goto enospc; 2659 } 2660 2661 valid_node_count = sbi->total_valid_node_count + 1; 2662 if (unlikely(valid_node_count > sbi->total_node_count)) { 2663 spin_unlock(&sbi->stat_lock); 2664 goto enospc; 2665 } 2666 2667 sbi->total_valid_node_count++; 2668 sbi->total_valid_block_count++; 2669 spin_unlock(&sbi->stat_lock); 2670 2671 if (inode) { 2672 if (is_inode) 2673 f2fs_mark_inode_dirty_sync(inode, true); 2674 else 2675 f2fs_i_blocks_write(inode, 1, true, true); 2676 } 2677 2678 percpu_counter_inc(&sbi->alloc_valid_block_count); 2679 return 0; 2680 2681 enospc: 2682 if (is_inode) { 2683 if (inode) 2684 dquot_free_inode(inode); 2685 } else { 2686 dquot_release_reservation_block(inode, 1); 2687 } 2688 return -ENOSPC; 2689 } 2690 2691 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2692 struct inode *inode, bool is_inode) 2693 { 2694 spin_lock(&sbi->stat_lock); 2695 2696 if (unlikely(!sbi->total_valid_block_count || 2697 !sbi->total_valid_node_count)) { 2698 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2699 sbi->total_valid_block_count, 2700 sbi->total_valid_node_count); 2701 set_sbi_flag(sbi, SBI_NEED_FSCK); 2702 } else { 2703 sbi->total_valid_block_count--; 2704 sbi->total_valid_node_count--; 2705 } 2706 2707 if (sbi->reserved_blocks && 2708 sbi->current_reserved_blocks < sbi->reserved_blocks) 2709 sbi->current_reserved_blocks++; 2710 2711 spin_unlock(&sbi->stat_lock); 2712 2713 if (is_inode) { 2714 dquot_free_inode(inode); 2715 } else { 2716 if (unlikely(inode->i_blocks == 0)) { 2717 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2718 inode->i_ino, 2719 (unsigned long long)inode->i_blocks); 2720 set_sbi_flag(sbi, SBI_NEED_FSCK); 2721 return; 2722 } 2723 f2fs_i_blocks_write(inode, 1, false, true); 2724 } 2725 } 2726 2727 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2728 { 2729 return sbi->total_valid_node_count; 2730 } 2731 2732 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2733 { 2734 percpu_counter_inc(&sbi->total_valid_inode_count); 2735 } 2736 2737 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2738 { 2739 percpu_counter_dec(&sbi->total_valid_inode_count); 2740 } 2741 2742 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2743 { 2744 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2745 } 2746 2747 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2748 pgoff_t index, bool for_write) 2749 { 2750 struct page *page; 2751 unsigned int flags; 2752 2753 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2754 if (!for_write) 2755 page = find_get_page_flags(mapping, index, 2756 FGP_LOCK | FGP_ACCESSED); 2757 else 2758 page = find_lock_page(mapping, index); 2759 if (page) 2760 return page; 2761 2762 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2763 return NULL; 2764 } 2765 2766 if (!for_write) 2767 return grab_cache_page(mapping, index); 2768 2769 flags = memalloc_nofs_save(); 2770 page = grab_cache_page_write_begin(mapping, index); 2771 memalloc_nofs_restore(flags); 2772 2773 return page; 2774 } 2775 2776 static inline struct page *f2fs_pagecache_get_page( 2777 struct address_space *mapping, pgoff_t index, 2778 fgf_t fgp_flags, gfp_t gfp_mask) 2779 { 2780 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2781 return NULL; 2782 2783 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2784 } 2785 2786 static inline void f2fs_put_page(struct page *page, int unlock) 2787 { 2788 if (!page) 2789 return; 2790 2791 if (unlock) { 2792 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2793 unlock_page(page); 2794 } 2795 put_page(page); 2796 } 2797 2798 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2799 { 2800 if (dn->node_page) 2801 f2fs_put_page(dn->node_page, 1); 2802 if (dn->inode_page && dn->node_page != dn->inode_page) 2803 f2fs_put_page(dn->inode_page, 0); 2804 dn->node_page = NULL; 2805 dn->inode_page = NULL; 2806 } 2807 2808 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2809 size_t size) 2810 { 2811 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2812 } 2813 2814 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2815 gfp_t flags) 2816 { 2817 void *entry; 2818 2819 entry = kmem_cache_alloc(cachep, flags); 2820 if (!entry) 2821 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2822 return entry; 2823 } 2824 2825 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2826 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2827 { 2828 if (nofail) 2829 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2830 2831 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2832 return NULL; 2833 2834 return kmem_cache_alloc(cachep, flags); 2835 } 2836 2837 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2838 { 2839 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2840 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2841 get_pages(sbi, F2FS_WB_CP_DATA) || 2842 get_pages(sbi, F2FS_DIO_READ) || 2843 get_pages(sbi, F2FS_DIO_WRITE)) 2844 return true; 2845 2846 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2847 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2848 return true; 2849 2850 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2851 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2852 return true; 2853 return false; 2854 } 2855 2856 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2857 { 2858 if (sbi->gc_mode == GC_URGENT_HIGH) 2859 return true; 2860 2861 if (is_inflight_io(sbi, type)) 2862 return false; 2863 2864 if (sbi->gc_mode == GC_URGENT_MID) 2865 return true; 2866 2867 if (sbi->gc_mode == GC_URGENT_LOW && 2868 (type == DISCARD_TIME || type == GC_TIME)) 2869 return true; 2870 2871 return f2fs_time_over(sbi, type); 2872 } 2873 2874 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2875 unsigned long index, void *item) 2876 { 2877 while (radix_tree_insert(root, index, item)) 2878 cond_resched(); 2879 } 2880 2881 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2882 2883 static inline bool IS_INODE(struct page *page) 2884 { 2885 struct f2fs_node *p = F2FS_NODE(page); 2886 2887 return RAW_IS_INODE(p); 2888 } 2889 2890 static inline int offset_in_addr(struct f2fs_inode *i) 2891 { 2892 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2893 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2894 } 2895 2896 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2897 { 2898 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2899 } 2900 2901 static inline int f2fs_has_extra_attr(struct inode *inode); 2902 static inline block_t data_blkaddr(struct inode *inode, 2903 struct page *node_page, unsigned int offset) 2904 { 2905 struct f2fs_node *raw_node; 2906 __le32 *addr_array; 2907 int base = 0; 2908 bool is_inode = IS_INODE(node_page); 2909 2910 raw_node = F2FS_NODE(node_page); 2911 2912 if (is_inode) { 2913 if (!inode) 2914 /* from GC path only */ 2915 base = offset_in_addr(&raw_node->i); 2916 else if (f2fs_has_extra_attr(inode)) 2917 base = get_extra_isize(inode); 2918 } 2919 2920 addr_array = blkaddr_in_node(raw_node); 2921 return le32_to_cpu(addr_array[base + offset]); 2922 } 2923 2924 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2925 { 2926 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2927 } 2928 2929 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2930 { 2931 int mask; 2932 2933 addr += (nr >> 3); 2934 mask = BIT(7 - (nr & 0x07)); 2935 return mask & *addr; 2936 } 2937 2938 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2939 { 2940 int mask; 2941 2942 addr += (nr >> 3); 2943 mask = BIT(7 - (nr & 0x07)); 2944 *addr |= mask; 2945 } 2946 2947 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2948 { 2949 int mask; 2950 2951 addr += (nr >> 3); 2952 mask = BIT(7 - (nr & 0x07)); 2953 *addr &= ~mask; 2954 } 2955 2956 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2957 { 2958 int mask; 2959 int ret; 2960 2961 addr += (nr >> 3); 2962 mask = BIT(7 - (nr & 0x07)); 2963 ret = mask & *addr; 2964 *addr |= mask; 2965 return ret; 2966 } 2967 2968 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2969 { 2970 int mask; 2971 int ret; 2972 2973 addr += (nr >> 3); 2974 mask = BIT(7 - (nr & 0x07)); 2975 ret = mask & *addr; 2976 *addr &= ~mask; 2977 return ret; 2978 } 2979 2980 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2981 { 2982 int mask; 2983 2984 addr += (nr >> 3); 2985 mask = BIT(7 - (nr & 0x07)); 2986 *addr ^= mask; 2987 } 2988 2989 /* 2990 * On-disk inode flags (f2fs_inode::i_flags) 2991 */ 2992 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2993 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2994 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2995 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2996 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2997 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2998 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2999 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 3000 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 3001 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 3002 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 3003 3004 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 3005 3006 /* Flags that should be inherited by new inodes from their parent. */ 3007 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 3008 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3009 F2FS_CASEFOLD_FL) 3010 3011 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 3012 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3013 F2FS_CASEFOLD_FL)) 3014 3015 /* Flags that are appropriate for non-directories/regular files. */ 3016 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3017 3018 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3019 { 3020 if (S_ISDIR(mode)) 3021 return flags; 3022 else if (S_ISREG(mode)) 3023 return flags & F2FS_REG_FLMASK; 3024 else 3025 return flags & F2FS_OTHER_FLMASK; 3026 } 3027 3028 static inline void __mark_inode_dirty_flag(struct inode *inode, 3029 int flag, bool set) 3030 { 3031 switch (flag) { 3032 case FI_INLINE_XATTR: 3033 case FI_INLINE_DATA: 3034 case FI_INLINE_DENTRY: 3035 case FI_NEW_INODE: 3036 if (set) 3037 return; 3038 fallthrough; 3039 case FI_DATA_EXIST: 3040 case FI_INLINE_DOTS: 3041 case FI_PIN_FILE: 3042 case FI_COMPRESS_RELEASED: 3043 f2fs_mark_inode_dirty_sync(inode, true); 3044 } 3045 } 3046 3047 static inline void set_inode_flag(struct inode *inode, int flag) 3048 { 3049 set_bit(flag, F2FS_I(inode)->flags); 3050 __mark_inode_dirty_flag(inode, flag, true); 3051 } 3052 3053 static inline int is_inode_flag_set(struct inode *inode, int flag) 3054 { 3055 return test_bit(flag, F2FS_I(inode)->flags); 3056 } 3057 3058 static inline void clear_inode_flag(struct inode *inode, int flag) 3059 { 3060 clear_bit(flag, F2FS_I(inode)->flags); 3061 __mark_inode_dirty_flag(inode, flag, false); 3062 } 3063 3064 static inline bool f2fs_verity_in_progress(struct inode *inode) 3065 { 3066 return IS_ENABLED(CONFIG_FS_VERITY) && 3067 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3068 } 3069 3070 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3071 { 3072 F2FS_I(inode)->i_acl_mode = mode; 3073 set_inode_flag(inode, FI_ACL_MODE); 3074 f2fs_mark_inode_dirty_sync(inode, false); 3075 } 3076 3077 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3078 { 3079 if (inc) 3080 inc_nlink(inode); 3081 else 3082 drop_nlink(inode); 3083 f2fs_mark_inode_dirty_sync(inode, true); 3084 } 3085 3086 static inline void f2fs_i_blocks_write(struct inode *inode, 3087 block_t diff, bool add, bool claim) 3088 { 3089 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3090 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3091 3092 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3093 if (add) { 3094 if (claim) 3095 dquot_claim_block(inode, diff); 3096 else 3097 dquot_alloc_block_nofail(inode, diff); 3098 } else { 3099 dquot_free_block(inode, diff); 3100 } 3101 3102 f2fs_mark_inode_dirty_sync(inode, true); 3103 if (clean || recover) 3104 set_inode_flag(inode, FI_AUTO_RECOVER); 3105 } 3106 3107 static inline bool f2fs_is_atomic_file(struct inode *inode); 3108 3109 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3110 { 3111 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3112 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3113 3114 if (i_size_read(inode) == i_size) 3115 return; 3116 3117 i_size_write(inode, i_size); 3118 3119 if (f2fs_is_atomic_file(inode)) 3120 return; 3121 3122 f2fs_mark_inode_dirty_sync(inode, true); 3123 if (clean || recover) 3124 set_inode_flag(inode, FI_AUTO_RECOVER); 3125 } 3126 3127 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3128 { 3129 F2FS_I(inode)->i_current_depth = depth; 3130 f2fs_mark_inode_dirty_sync(inode, true); 3131 } 3132 3133 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3134 unsigned int count) 3135 { 3136 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3137 f2fs_mark_inode_dirty_sync(inode, true); 3138 } 3139 3140 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3141 { 3142 F2FS_I(inode)->i_xattr_nid = xnid; 3143 f2fs_mark_inode_dirty_sync(inode, true); 3144 } 3145 3146 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3147 { 3148 F2FS_I(inode)->i_pino = pino; 3149 f2fs_mark_inode_dirty_sync(inode, true); 3150 } 3151 3152 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3153 { 3154 struct f2fs_inode_info *fi = F2FS_I(inode); 3155 3156 if (ri->i_inline & F2FS_INLINE_XATTR) 3157 set_bit(FI_INLINE_XATTR, fi->flags); 3158 if (ri->i_inline & F2FS_INLINE_DATA) 3159 set_bit(FI_INLINE_DATA, fi->flags); 3160 if (ri->i_inline & F2FS_INLINE_DENTRY) 3161 set_bit(FI_INLINE_DENTRY, fi->flags); 3162 if (ri->i_inline & F2FS_DATA_EXIST) 3163 set_bit(FI_DATA_EXIST, fi->flags); 3164 if (ri->i_inline & F2FS_INLINE_DOTS) 3165 set_bit(FI_INLINE_DOTS, fi->flags); 3166 if (ri->i_inline & F2FS_EXTRA_ATTR) 3167 set_bit(FI_EXTRA_ATTR, fi->flags); 3168 if (ri->i_inline & F2FS_PIN_FILE) 3169 set_bit(FI_PIN_FILE, fi->flags); 3170 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3171 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3172 } 3173 3174 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3175 { 3176 ri->i_inline = 0; 3177 3178 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3179 ri->i_inline |= F2FS_INLINE_XATTR; 3180 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3181 ri->i_inline |= F2FS_INLINE_DATA; 3182 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3183 ri->i_inline |= F2FS_INLINE_DENTRY; 3184 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3185 ri->i_inline |= F2FS_DATA_EXIST; 3186 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3187 ri->i_inline |= F2FS_INLINE_DOTS; 3188 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3189 ri->i_inline |= F2FS_EXTRA_ATTR; 3190 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3191 ri->i_inline |= F2FS_PIN_FILE; 3192 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3193 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3194 } 3195 3196 static inline int f2fs_has_extra_attr(struct inode *inode) 3197 { 3198 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3199 } 3200 3201 static inline int f2fs_has_inline_xattr(struct inode *inode) 3202 { 3203 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3204 } 3205 3206 static inline int f2fs_compressed_file(struct inode *inode) 3207 { 3208 return S_ISREG(inode->i_mode) && 3209 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3210 } 3211 3212 static inline bool f2fs_need_compress_data(struct inode *inode) 3213 { 3214 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3215 3216 if (!f2fs_compressed_file(inode)) 3217 return false; 3218 3219 if (compress_mode == COMPR_MODE_FS) 3220 return true; 3221 else if (compress_mode == COMPR_MODE_USER && 3222 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3223 return true; 3224 3225 return false; 3226 } 3227 3228 static inline unsigned int addrs_per_inode(struct inode *inode) 3229 { 3230 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3231 get_inline_xattr_addrs(inode); 3232 3233 if (!f2fs_compressed_file(inode)) 3234 return addrs; 3235 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3236 } 3237 3238 static inline unsigned int addrs_per_block(struct inode *inode) 3239 { 3240 if (!f2fs_compressed_file(inode)) 3241 return DEF_ADDRS_PER_BLOCK; 3242 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3243 } 3244 3245 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3246 { 3247 struct f2fs_inode *ri = F2FS_INODE(page); 3248 3249 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3250 get_inline_xattr_addrs(inode)]); 3251 } 3252 3253 static inline int inline_xattr_size(struct inode *inode) 3254 { 3255 if (f2fs_has_inline_xattr(inode)) 3256 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3257 return 0; 3258 } 3259 3260 /* 3261 * Notice: check inline_data flag without inode page lock is unsafe. 3262 * It could change at any time by f2fs_convert_inline_page(). 3263 */ 3264 static inline int f2fs_has_inline_data(struct inode *inode) 3265 { 3266 return is_inode_flag_set(inode, FI_INLINE_DATA); 3267 } 3268 3269 static inline int f2fs_exist_data(struct inode *inode) 3270 { 3271 return is_inode_flag_set(inode, FI_DATA_EXIST); 3272 } 3273 3274 static inline int f2fs_has_inline_dots(struct inode *inode) 3275 { 3276 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3277 } 3278 3279 static inline int f2fs_is_mmap_file(struct inode *inode) 3280 { 3281 return is_inode_flag_set(inode, FI_MMAP_FILE); 3282 } 3283 3284 static inline bool f2fs_is_pinned_file(struct inode *inode) 3285 { 3286 return is_inode_flag_set(inode, FI_PIN_FILE); 3287 } 3288 3289 static inline bool f2fs_is_atomic_file(struct inode *inode) 3290 { 3291 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3292 } 3293 3294 static inline bool f2fs_is_cow_file(struct inode *inode) 3295 { 3296 return is_inode_flag_set(inode, FI_COW_FILE); 3297 } 3298 3299 static inline __le32 *get_dnode_addr(struct inode *inode, 3300 struct page *node_page); 3301 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3302 { 3303 __le32 *addr = get_dnode_addr(inode, page); 3304 3305 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3306 } 3307 3308 static inline int f2fs_has_inline_dentry(struct inode *inode) 3309 { 3310 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3311 } 3312 3313 static inline int is_file(struct inode *inode, int type) 3314 { 3315 return F2FS_I(inode)->i_advise & type; 3316 } 3317 3318 static inline void set_file(struct inode *inode, int type) 3319 { 3320 if (is_file(inode, type)) 3321 return; 3322 F2FS_I(inode)->i_advise |= type; 3323 f2fs_mark_inode_dirty_sync(inode, true); 3324 } 3325 3326 static inline void clear_file(struct inode *inode, int type) 3327 { 3328 if (!is_file(inode, type)) 3329 return; 3330 F2FS_I(inode)->i_advise &= ~type; 3331 f2fs_mark_inode_dirty_sync(inode, true); 3332 } 3333 3334 static inline bool f2fs_is_time_consistent(struct inode *inode) 3335 { 3336 struct timespec64 ctime = inode_get_ctime(inode); 3337 3338 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3339 return false; 3340 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime)) 3341 return false; 3342 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3343 return false; 3344 return true; 3345 } 3346 3347 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3348 { 3349 bool ret; 3350 3351 if (dsync) { 3352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3353 3354 spin_lock(&sbi->inode_lock[DIRTY_META]); 3355 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3356 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3357 return ret; 3358 } 3359 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3360 file_keep_isize(inode) || 3361 i_size_read(inode) & ~PAGE_MASK) 3362 return false; 3363 3364 if (!f2fs_is_time_consistent(inode)) 3365 return false; 3366 3367 spin_lock(&F2FS_I(inode)->i_size_lock); 3368 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3369 spin_unlock(&F2FS_I(inode)->i_size_lock); 3370 3371 return ret; 3372 } 3373 3374 static inline bool f2fs_readonly(struct super_block *sb) 3375 { 3376 return sb_rdonly(sb); 3377 } 3378 3379 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3380 { 3381 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3382 } 3383 3384 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3385 { 3386 if (len == 1 && name[0] == '.') 3387 return true; 3388 3389 if (len == 2 && name[0] == '.' && name[1] == '.') 3390 return true; 3391 3392 return false; 3393 } 3394 3395 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3396 size_t size, gfp_t flags) 3397 { 3398 if (time_to_inject(sbi, FAULT_KMALLOC)) 3399 return NULL; 3400 3401 return kmalloc(size, flags); 3402 } 3403 3404 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3405 { 3406 if (time_to_inject(sbi, FAULT_KMALLOC)) 3407 return NULL; 3408 3409 return __getname(); 3410 } 3411 3412 static inline void f2fs_putname(char *buf) 3413 { 3414 __putname(buf); 3415 } 3416 3417 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3418 size_t size, gfp_t flags) 3419 { 3420 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3421 } 3422 3423 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3424 size_t size, gfp_t flags) 3425 { 3426 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3427 return NULL; 3428 3429 return kvmalloc(size, flags); 3430 } 3431 3432 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3433 size_t size, gfp_t flags) 3434 { 3435 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3436 } 3437 3438 static inline int get_extra_isize(struct inode *inode) 3439 { 3440 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3441 } 3442 3443 static inline int get_inline_xattr_addrs(struct inode *inode) 3444 { 3445 return F2FS_I(inode)->i_inline_xattr_size; 3446 } 3447 3448 static inline __le32 *get_dnode_addr(struct inode *inode, 3449 struct page *node_page) 3450 { 3451 int base = 0; 3452 3453 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) 3454 base = get_extra_isize(inode); 3455 3456 return blkaddr_in_node(F2FS_NODE(node_page)) + base; 3457 } 3458 3459 #define f2fs_get_inode_mode(i) \ 3460 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3461 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3462 3463 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3464 3465 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3466 (offsetof(struct f2fs_inode, i_extra_end) - \ 3467 offsetof(struct f2fs_inode, i_extra_isize)) \ 3468 3469 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3470 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3471 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3472 sizeof((f2fs_inode)->field)) \ 3473 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3474 3475 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) 3476 3477 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3478 3479 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3480 block_t blkaddr, int type); 3481 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3482 block_t blkaddr, int type) 3483 { 3484 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3485 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3486 blkaddr, type); 3487 } 3488 3489 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3490 { 3491 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3492 blkaddr == COMPRESS_ADDR) 3493 return false; 3494 return true; 3495 } 3496 3497 /* 3498 * file.c 3499 */ 3500 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3501 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3502 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3503 int f2fs_truncate(struct inode *inode); 3504 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3505 struct kstat *stat, u32 request_mask, unsigned int flags); 3506 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3507 struct iattr *attr); 3508 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3509 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3510 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 3511 bool readonly, bool need_lock); 3512 int f2fs_precache_extents(struct inode *inode); 3513 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3514 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3515 struct dentry *dentry, struct fileattr *fa); 3516 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3517 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3518 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3519 int f2fs_pin_file_control(struct inode *inode, bool inc); 3520 3521 /* 3522 * inode.c 3523 */ 3524 void f2fs_set_inode_flags(struct inode *inode); 3525 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3526 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3527 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3528 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3529 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3530 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3531 void f2fs_update_inode_page(struct inode *inode); 3532 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3533 void f2fs_evict_inode(struct inode *inode); 3534 void f2fs_handle_failed_inode(struct inode *inode); 3535 3536 /* 3537 * namei.c 3538 */ 3539 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3540 bool hot, bool set); 3541 struct dentry *f2fs_get_parent(struct dentry *child); 3542 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3543 struct inode **new_inode); 3544 3545 /* 3546 * dir.c 3547 */ 3548 int f2fs_init_casefolded_name(const struct inode *dir, 3549 struct f2fs_filename *fname); 3550 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3551 int lookup, struct f2fs_filename *fname); 3552 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3553 struct f2fs_filename *fname); 3554 void f2fs_free_filename(struct f2fs_filename *fname); 3555 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3556 const struct f2fs_filename *fname, int *max_slots); 3557 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3558 unsigned int start_pos, struct fscrypt_str *fstr); 3559 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3560 struct f2fs_dentry_ptr *d); 3561 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3562 const struct f2fs_filename *fname, struct page *dpage); 3563 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3564 unsigned int current_depth); 3565 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3566 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3567 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3568 const struct f2fs_filename *fname, 3569 struct page **res_page); 3570 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3571 const struct qstr *child, struct page **res_page); 3572 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3573 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3574 struct page **page); 3575 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3576 struct page *page, struct inode *inode); 3577 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3578 const struct f2fs_filename *fname); 3579 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3580 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3581 unsigned int bit_pos); 3582 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3583 struct inode *inode, nid_t ino, umode_t mode); 3584 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3585 struct inode *inode, nid_t ino, umode_t mode); 3586 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3587 struct inode *inode, nid_t ino, umode_t mode); 3588 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3589 struct inode *dir, struct inode *inode); 3590 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3591 struct f2fs_filename *fname); 3592 bool f2fs_empty_dir(struct inode *dir); 3593 3594 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3595 { 3596 if (fscrypt_is_nokey_name(dentry)) 3597 return -ENOKEY; 3598 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3599 inode, inode->i_ino, inode->i_mode); 3600 } 3601 3602 /* 3603 * super.c 3604 */ 3605 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3606 void f2fs_inode_synced(struct inode *inode); 3607 int f2fs_dquot_initialize(struct inode *inode); 3608 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3609 int f2fs_quota_sync(struct super_block *sb, int type); 3610 loff_t max_file_blocks(struct inode *inode); 3611 void f2fs_quota_off_umount(struct super_block *sb); 3612 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3613 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3614 bool irq_context); 3615 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3616 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3617 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3618 int f2fs_sync_fs(struct super_block *sb, int sync); 3619 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3620 3621 /* 3622 * hash.c 3623 */ 3624 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3625 3626 /* 3627 * node.c 3628 */ 3629 struct node_info; 3630 3631 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3632 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3633 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3634 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3635 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3636 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3637 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3638 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3639 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3640 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3641 struct node_info *ni, bool checkpoint_context); 3642 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3643 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3644 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3645 int f2fs_truncate_xattr_node(struct inode *inode); 3646 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3647 unsigned int seq_id); 3648 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3649 int f2fs_remove_inode_page(struct inode *inode); 3650 struct page *f2fs_new_inode_page(struct inode *inode); 3651 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3652 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3653 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3654 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3655 int f2fs_move_node_page(struct page *node_page, int gc_type); 3656 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3657 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3658 struct writeback_control *wbc, bool atomic, 3659 unsigned int *seq_id); 3660 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3661 struct writeback_control *wbc, 3662 bool do_balance, enum iostat_type io_type); 3663 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3664 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3665 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3666 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3667 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3668 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3669 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3670 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3671 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3672 unsigned int segno, struct f2fs_summary_block *sum); 3673 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3674 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3675 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3676 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3677 int __init f2fs_create_node_manager_caches(void); 3678 void f2fs_destroy_node_manager_caches(void); 3679 3680 /* 3681 * segment.c 3682 */ 3683 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3684 int f2fs_commit_atomic_write(struct inode *inode); 3685 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3686 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3687 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3688 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3689 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3690 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3692 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3693 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3694 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3695 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3696 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3697 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3698 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3699 struct cp_control *cpc); 3700 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3701 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3702 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3703 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3704 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3705 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3706 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3707 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3708 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3709 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3710 unsigned int *newseg, bool new_sec, int dir); 3711 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3712 unsigned int start, unsigned int end); 3713 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3714 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); 3715 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3716 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3717 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3718 struct cp_control *cpc); 3719 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3720 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3721 block_t blk_addr); 3722 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3723 enum iostat_type io_type); 3724 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3725 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3726 struct f2fs_io_info *fio); 3727 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3728 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3729 block_t old_blkaddr, block_t new_blkaddr, 3730 bool recover_curseg, bool recover_newaddr, 3731 bool from_gc); 3732 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3733 block_t old_addr, block_t new_addr, 3734 unsigned char version, bool recover_curseg, 3735 bool recover_newaddr); 3736 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3737 block_t old_blkaddr, block_t *new_blkaddr, 3738 struct f2fs_summary *sum, int type, 3739 struct f2fs_io_info *fio); 3740 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3741 block_t blkaddr, unsigned int blkcnt); 3742 void f2fs_wait_on_page_writeback(struct page *page, 3743 enum page_type type, bool ordered, bool locked); 3744 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3745 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3746 block_t len); 3747 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3748 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3749 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3750 unsigned int val, int alloc); 3751 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3752 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3753 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3754 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3755 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3756 int __init f2fs_create_segment_manager_caches(void); 3757 void f2fs_destroy_segment_manager_caches(void); 3758 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3759 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3760 unsigned int segno); 3761 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3762 unsigned int segno); 3763 3764 #define DEF_FRAGMENT_SIZE 4 3765 #define MIN_FRAGMENT_SIZE 1 3766 #define MAX_FRAGMENT_SIZE 512 3767 3768 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3769 { 3770 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3771 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3772 } 3773 3774 /* 3775 * checkpoint.c 3776 */ 3777 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3778 unsigned char reason); 3779 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3780 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3781 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3782 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3783 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3784 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3785 block_t blkaddr, int type); 3786 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3787 int type, bool sync); 3788 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3789 unsigned int ra_blocks); 3790 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3791 long nr_to_write, enum iostat_type io_type); 3792 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3793 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3794 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3795 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3796 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3797 unsigned int devidx, int type); 3798 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3799 unsigned int devidx, int type); 3800 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3801 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3802 void f2fs_add_orphan_inode(struct inode *inode); 3803 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3804 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3805 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3806 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3807 void f2fs_remove_dirty_inode(struct inode *inode); 3808 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3809 bool from_cp); 3810 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3811 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3812 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3813 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3814 int __init f2fs_create_checkpoint_caches(void); 3815 void f2fs_destroy_checkpoint_caches(void); 3816 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3817 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3818 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3819 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3820 3821 /* 3822 * data.c 3823 */ 3824 int __init f2fs_init_bioset(void); 3825 void f2fs_destroy_bioset(void); 3826 bool f2fs_is_cp_guaranteed(struct page *page); 3827 int f2fs_init_bio_entry_cache(void); 3828 void f2fs_destroy_bio_entry_cache(void); 3829 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3830 enum page_type type); 3831 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3832 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3833 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3834 struct inode *inode, struct page *page, 3835 nid_t ino, enum page_type type); 3836 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3837 struct bio **bio, struct page *page); 3838 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3839 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3840 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3841 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3842 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3843 block_t blk_addr, sector_t *sector); 3844 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3845 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3846 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3847 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3848 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3849 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3850 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3851 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3852 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3853 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3854 pgoff_t *next_pgofs); 3855 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3856 bool for_write); 3857 struct page *f2fs_get_new_data_page(struct inode *inode, 3858 struct page *ipage, pgoff_t index, bool new_i_size); 3859 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3860 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3861 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3862 u64 start, u64 len); 3863 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3864 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3865 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3866 int f2fs_write_single_data_page(struct page *page, int *submitted, 3867 struct bio **bio, sector_t *last_block, 3868 struct writeback_control *wbc, 3869 enum iostat_type io_type, 3870 int compr_blocks, bool allow_balance); 3871 void f2fs_write_failed(struct inode *inode, loff_t to); 3872 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3873 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3874 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3875 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3876 int f2fs_init_post_read_processing(void); 3877 void f2fs_destroy_post_read_processing(void); 3878 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3879 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3880 extern const struct iomap_ops f2fs_iomap_ops; 3881 3882 /* 3883 * gc.c 3884 */ 3885 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3886 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3887 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3888 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3889 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3890 int f2fs_gc_range(struct f2fs_sb_info *sbi, 3891 unsigned int start_seg, unsigned int end_seg, 3892 bool dry_run, unsigned int dry_run_sections); 3893 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3894 int __init f2fs_create_garbage_collection_cache(void); 3895 void f2fs_destroy_garbage_collection_cache(void); 3896 /* victim selection function for cleaning and SSR */ 3897 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3898 int gc_type, int type, char alloc_mode, 3899 unsigned long long age); 3900 3901 /* 3902 * recovery.c 3903 */ 3904 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3905 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3906 int __init f2fs_create_recovery_cache(void); 3907 void f2fs_destroy_recovery_cache(void); 3908 3909 /* 3910 * debug.c 3911 */ 3912 #ifdef CONFIG_F2FS_STAT_FS 3913 struct f2fs_stat_info { 3914 struct list_head stat_list; 3915 struct f2fs_sb_info *sbi; 3916 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3917 int main_area_segs, main_area_sections, main_area_zones; 3918 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3919 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3920 unsigned long long total_ext[NR_EXTENT_CACHES]; 3921 unsigned long long hit_total[NR_EXTENT_CACHES]; 3922 int ext_tree[NR_EXTENT_CACHES]; 3923 int zombie_tree[NR_EXTENT_CACHES]; 3924 int ext_node[NR_EXTENT_CACHES]; 3925 /* to count memory footprint */ 3926 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3927 /* for read extent cache */ 3928 unsigned long long hit_largest; 3929 /* for block age extent cache */ 3930 unsigned long long allocated_data_blocks; 3931 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3932 int ndirty_data, ndirty_qdata; 3933 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3934 int nats, dirty_nats, sits, dirty_sits; 3935 int free_nids, avail_nids, alloc_nids; 3936 int total_count, utilization; 3937 int nr_wb_cp_data, nr_wb_data; 3938 int nr_rd_data, nr_rd_node, nr_rd_meta; 3939 int nr_dio_read, nr_dio_write; 3940 unsigned int io_skip_bggc, other_skip_bggc; 3941 int nr_flushing, nr_flushed, flush_list_empty; 3942 int nr_discarding, nr_discarded; 3943 int nr_discard_cmd; 3944 unsigned int undiscard_blks; 3945 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3946 unsigned int cur_ckpt_time, peak_ckpt_time; 3947 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3948 int compr_inode, swapfile_inode; 3949 unsigned long long compr_blocks; 3950 int aw_cnt, max_aw_cnt; 3951 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3952 unsigned int bimodal, avg_vblocks; 3953 int util_free, util_valid, util_invalid; 3954 int rsvd_segs, overp_segs; 3955 int dirty_count, node_pages, meta_pages, compress_pages; 3956 int compress_page_hit; 3957 int prefree_count, free_segs, free_secs; 3958 int cp_call_count[MAX_CALL_TYPE], cp_count; 3959 int gc_call_count[MAX_CALL_TYPE]; 3960 int gc_segs[2][2]; 3961 int gc_secs[2][2]; 3962 int tot_blks, data_blks, node_blks; 3963 int bg_data_blks, bg_node_blks; 3964 int curseg[NR_CURSEG_TYPE]; 3965 int cursec[NR_CURSEG_TYPE]; 3966 int curzone[NR_CURSEG_TYPE]; 3967 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3968 unsigned int full_seg[NR_CURSEG_TYPE]; 3969 unsigned int valid_blks[NR_CURSEG_TYPE]; 3970 3971 unsigned int meta_count[META_MAX]; 3972 unsigned int segment_count[2]; 3973 unsigned int block_count[2]; 3974 unsigned int inplace_count; 3975 unsigned long long base_mem, cache_mem, page_mem; 3976 }; 3977 3978 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3979 { 3980 return (struct f2fs_stat_info *)sbi->stat_info; 3981 } 3982 3983 #define stat_inc_cp_call_count(sbi, foreground) \ 3984 atomic_inc(&sbi->cp_call_count[(foreground)]) 3985 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3986 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3987 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3988 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3989 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3990 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3991 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3992 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3993 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3994 #define stat_inc_inline_xattr(inode) \ 3995 do { \ 3996 if (f2fs_has_inline_xattr(inode)) \ 3997 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3998 } while (0) 3999 #define stat_dec_inline_xattr(inode) \ 4000 do { \ 4001 if (f2fs_has_inline_xattr(inode)) \ 4002 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 4003 } while (0) 4004 #define stat_inc_inline_inode(inode) \ 4005 do { \ 4006 if (f2fs_has_inline_data(inode)) \ 4007 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 4008 } while (0) 4009 #define stat_dec_inline_inode(inode) \ 4010 do { \ 4011 if (f2fs_has_inline_data(inode)) \ 4012 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 4013 } while (0) 4014 #define stat_inc_inline_dir(inode) \ 4015 do { \ 4016 if (f2fs_has_inline_dentry(inode)) \ 4017 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 4018 } while (0) 4019 #define stat_dec_inline_dir(inode) \ 4020 do { \ 4021 if (f2fs_has_inline_dentry(inode)) \ 4022 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4023 } while (0) 4024 #define stat_inc_compr_inode(inode) \ 4025 do { \ 4026 if (f2fs_compressed_file(inode)) \ 4027 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4028 } while (0) 4029 #define stat_dec_compr_inode(inode) \ 4030 do { \ 4031 if (f2fs_compressed_file(inode)) \ 4032 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4033 } while (0) 4034 #define stat_add_compr_blocks(inode, blocks) \ 4035 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4036 #define stat_sub_compr_blocks(inode, blocks) \ 4037 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4038 #define stat_inc_swapfile_inode(inode) \ 4039 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4040 #define stat_dec_swapfile_inode(inode) \ 4041 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4042 #define stat_inc_atomic_inode(inode) \ 4043 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4044 #define stat_dec_atomic_inode(inode) \ 4045 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4046 #define stat_inc_meta_count(sbi, blkaddr) \ 4047 do { \ 4048 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4049 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4050 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4051 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4052 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4053 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4054 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4055 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4056 } while (0) 4057 #define stat_inc_seg_type(sbi, curseg) \ 4058 ((sbi)->segment_count[(curseg)->alloc_type]++) 4059 #define stat_inc_block_count(sbi, curseg) \ 4060 ((sbi)->block_count[(curseg)->alloc_type]++) 4061 #define stat_inc_inplace_blocks(sbi) \ 4062 (atomic_inc(&(sbi)->inplace_count)) 4063 #define stat_update_max_atomic_write(inode) \ 4064 do { \ 4065 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4066 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4067 if (cur > max) \ 4068 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4069 } while (0) 4070 #define stat_inc_gc_call_count(sbi, foreground) \ 4071 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4072 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4073 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4074 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4075 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4076 4077 #define stat_inc_tot_blk_count(si, blks) \ 4078 ((si)->tot_blks += (blks)) 4079 4080 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4081 do { \ 4082 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4083 stat_inc_tot_blk_count(si, blks); \ 4084 si->data_blks += (blks); \ 4085 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4086 } while (0) 4087 4088 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4089 do { \ 4090 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4091 stat_inc_tot_blk_count(si, blks); \ 4092 si->node_blks += (blks); \ 4093 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4094 } while (0) 4095 4096 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4097 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4098 void __init f2fs_create_root_stats(void); 4099 void f2fs_destroy_root_stats(void); 4100 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4101 #else 4102 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4103 #define stat_inc_cp_count(sbi) do { } while (0) 4104 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4105 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4106 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4107 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4108 #define stat_inc_total_hit(sbi, type) do { } while (0) 4109 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4110 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4111 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4112 #define stat_inc_inline_xattr(inode) do { } while (0) 4113 #define stat_dec_inline_xattr(inode) do { } while (0) 4114 #define stat_inc_inline_inode(inode) do { } while (0) 4115 #define stat_dec_inline_inode(inode) do { } while (0) 4116 #define stat_inc_inline_dir(inode) do { } while (0) 4117 #define stat_dec_inline_dir(inode) do { } while (0) 4118 #define stat_inc_compr_inode(inode) do { } while (0) 4119 #define stat_dec_compr_inode(inode) do { } while (0) 4120 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4121 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4122 #define stat_inc_swapfile_inode(inode) do { } while (0) 4123 #define stat_dec_swapfile_inode(inode) do { } while (0) 4124 #define stat_inc_atomic_inode(inode) do { } while (0) 4125 #define stat_dec_atomic_inode(inode) do { } while (0) 4126 #define stat_update_max_atomic_write(inode) do { } while (0) 4127 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4128 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4129 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4130 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4131 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4132 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4133 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4134 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4135 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4136 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4137 4138 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4139 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4140 static inline void __init f2fs_create_root_stats(void) { } 4141 static inline void f2fs_destroy_root_stats(void) { } 4142 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4143 #endif 4144 4145 extern const struct file_operations f2fs_dir_operations; 4146 extern const struct file_operations f2fs_file_operations; 4147 extern const struct inode_operations f2fs_file_inode_operations; 4148 extern const struct address_space_operations f2fs_dblock_aops; 4149 extern const struct address_space_operations f2fs_node_aops; 4150 extern const struct address_space_operations f2fs_meta_aops; 4151 extern const struct inode_operations f2fs_dir_inode_operations; 4152 extern const struct inode_operations f2fs_symlink_inode_operations; 4153 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4154 extern const struct inode_operations f2fs_special_inode_operations; 4155 extern struct kmem_cache *f2fs_inode_entry_slab; 4156 4157 /* 4158 * inline.c 4159 */ 4160 bool f2fs_may_inline_data(struct inode *inode); 4161 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage); 4162 bool f2fs_may_inline_dentry(struct inode *inode); 4163 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4164 void f2fs_truncate_inline_inode(struct inode *inode, 4165 struct page *ipage, u64 from); 4166 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4167 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4168 int f2fs_convert_inline_inode(struct inode *inode); 4169 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4170 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4171 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4172 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4173 const struct f2fs_filename *fname, 4174 struct page **res_page); 4175 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4176 struct page *ipage); 4177 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4178 struct inode *inode, nid_t ino, umode_t mode); 4179 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4180 struct page *page, struct inode *dir, 4181 struct inode *inode); 4182 bool f2fs_empty_inline_dir(struct inode *dir); 4183 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4184 struct fscrypt_str *fstr); 4185 int f2fs_inline_data_fiemap(struct inode *inode, 4186 struct fiemap_extent_info *fieinfo, 4187 __u64 start, __u64 len); 4188 4189 /* 4190 * shrinker.c 4191 */ 4192 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4193 struct shrink_control *sc); 4194 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4195 struct shrink_control *sc); 4196 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4197 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4198 4199 /* 4200 * extent_cache.c 4201 */ 4202 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage); 4203 void f2fs_init_extent_tree(struct inode *inode); 4204 void f2fs_drop_extent_tree(struct inode *inode); 4205 void f2fs_destroy_extent_node(struct inode *inode); 4206 void f2fs_destroy_extent_tree(struct inode *inode); 4207 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4208 int __init f2fs_create_extent_cache(void); 4209 void f2fs_destroy_extent_cache(void); 4210 4211 /* read extent cache ops */ 4212 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4213 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4214 struct extent_info *ei); 4215 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4216 block_t *blkaddr); 4217 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4218 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4219 pgoff_t fofs, block_t blkaddr, unsigned int len); 4220 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4221 int nr_shrink); 4222 4223 /* block age extent cache ops */ 4224 void f2fs_init_age_extent_tree(struct inode *inode); 4225 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4226 struct extent_info *ei); 4227 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4228 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4229 pgoff_t fofs, unsigned int len); 4230 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4231 int nr_shrink); 4232 4233 /* 4234 * sysfs.c 4235 */ 4236 #define MIN_RA_MUL 2 4237 #define MAX_RA_MUL 256 4238 4239 int __init f2fs_init_sysfs(void); 4240 void f2fs_exit_sysfs(void); 4241 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4242 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4243 4244 /* verity.c */ 4245 extern const struct fsverity_operations f2fs_verityops; 4246 4247 /* 4248 * crypto support 4249 */ 4250 static inline bool f2fs_encrypted_file(struct inode *inode) 4251 { 4252 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4253 } 4254 4255 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4256 { 4257 #ifdef CONFIG_FS_ENCRYPTION 4258 file_set_encrypt(inode); 4259 f2fs_set_inode_flags(inode); 4260 #endif 4261 } 4262 4263 /* 4264 * Returns true if the reads of the inode's data need to undergo some 4265 * postprocessing step, like decryption or authenticity verification. 4266 */ 4267 static inline bool f2fs_post_read_required(struct inode *inode) 4268 { 4269 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4270 f2fs_compressed_file(inode); 4271 } 4272 4273 static inline bool f2fs_used_in_atomic_write(struct inode *inode) 4274 { 4275 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); 4276 } 4277 4278 static inline bool f2fs_meta_inode_gc_required(struct inode *inode) 4279 { 4280 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); 4281 } 4282 4283 /* 4284 * compress.c 4285 */ 4286 #ifdef CONFIG_F2FS_FS_COMPRESSION 4287 enum cluster_check_type { 4288 CLUSTER_IS_COMPR, /* check only if compressed cluster */ 4289 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */ 4290 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */ 4291 }; 4292 bool f2fs_is_compressed_page(struct page *page); 4293 struct page *f2fs_compress_control_page(struct page *page); 4294 int f2fs_prepare_compress_overwrite(struct inode *inode, 4295 struct page **pagep, pgoff_t index, void **fsdata); 4296 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4297 pgoff_t index, unsigned copied); 4298 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4299 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4300 bool f2fs_is_compress_backend_ready(struct inode *inode); 4301 bool f2fs_is_compress_level_valid(int alg, int lvl); 4302 int __init f2fs_init_compress_mempool(void); 4303 void f2fs_destroy_compress_mempool(void); 4304 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4305 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4306 block_t blkaddr, bool in_task); 4307 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4308 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4309 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4310 int index, int nr_pages, bool uptodate); 4311 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4312 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4313 int f2fs_write_multi_pages(struct compress_ctx *cc, 4314 int *submitted, 4315 struct writeback_control *wbc, 4316 enum iostat_type io_type); 4317 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4318 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index); 4319 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4320 pgoff_t fofs, block_t blkaddr, 4321 unsigned int llen, unsigned int c_len); 4322 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4323 unsigned nr_pages, sector_t *last_block_in_bio, 4324 bool is_readahead, bool for_write); 4325 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4326 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4327 bool in_task); 4328 void f2fs_put_page_dic(struct page *page, bool in_task); 4329 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4330 unsigned int ofs_in_node); 4331 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4332 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4333 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4334 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4335 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4336 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4337 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4338 int __init f2fs_init_compress_cache(void); 4339 void f2fs_destroy_compress_cache(void); 4340 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4341 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4342 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4343 nid_t ino, block_t blkaddr); 4344 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4345 block_t blkaddr); 4346 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4347 #define inc_compr_inode_stat(inode) \ 4348 do { \ 4349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4350 sbi->compr_new_inode++; \ 4351 } while (0) 4352 #define add_compr_block_stat(inode, blocks) \ 4353 do { \ 4354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4355 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4356 sbi->compr_written_block += blocks; \ 4357 sbi->compr_saved_block += diff; \ 4358 } while (0) 4359 #else 4360 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4361 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4362 { 4363 if (!f2fs_compressed_file(inode)) 4364 return true; 4365 /* not support compression */ 4366 return false; 4367 } 4368 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4369 static inline struct page *f2fs_compress_control_page(struct page *page) 4370 { 4371 WARN_ON_ONCE(1); 4372 return ERR_PTR(-EINVAL); 4373 } 4374 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4375 static inline void f2fs_destroy_compress_mempool(void) { } 4376 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4377 bool in_task) { } 4378 static inline void f2fs_end_read_compressed_page(struct page *page, 4379 bool failed, block_t blkaddr, bool in_task) 4380 { 4381 WARN_ON_ONCE(1); 4382 } 4383 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4384 { 4385 WARN_ON_ONCE(1); 4386 } 4387 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4388 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4389 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4390 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4391 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4392 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4393 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4394 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4395 static inline void f2fs_destroy_compress_cache(void) { } 4396 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4397 block_t blkaddr) { } 4398 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4399 struct page *page, nid_t ino, block_t blkaddr) { } 4400 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4401 struct page *page, block_t blkaddr) { return false; } 4402 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4403 nid_t ino) { } 4404 #define inc_compr_inode_stat(inode) do { } while (0) 4405 static inline int f2fs_is_compressed_cluster( 4406 struct inode *inode, 4407 pgoff_t index) { return 0; } 4408 static inline bool f2fs_is_sparse_cluster( 4409 struct inode *inode, 4410 pgoff_t index) { return true; } 4411 static inline void f2fs_update_read_extent_tree_range_compressed( 4412 struct inode *inode, 4413 pgoff_t fofs, block_t blkaddr, 4414 unsigned int llen, unsigned int c_len) { } 4415 #endif 4416 4417 static inline int set_compress_context(struct inode *inode) 4418 { 4419 #ifdef CONFIG_F2FS_FS_COMPRESSION 4420 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4421 4422 F2FS_I(inode)->i_compress_algorithm = 4423 F2FS_OPTION(sbi).compress_algorithm; 4424 F2FS_I(inode)->i_log_cluster_size = 4425 F2FS_OPTION(sbi).compress_log_size; 4426 F2FS_I(inode)->i_compress_flag = 4427 F2FS_OPTION(sbi).compress_chksum ? 4428 BIT(COMPRESS_CHKSUM) : 0; 4429 F2FS_I(inode)->i_cluster_size = 4430 BIT(F2FS_I(inode)->i_log_cluster_size); 4431 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4432 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4433 F2FS_OPTION(sbi).compress_level) 4434 F2FS_I(inode)->i_compress_level = 4435 F2FS_OPTION(sbi).compress_level; 4436 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4437 set_inode_flag(inode, FI_COMPRESSED_FILE); 4438 stat_inc_compr_inode(inode); 4439 inc_compr_inode_stat(inode); 4440 f2fs_mark_inode_dirty_sync(inode, true); 4441 return 0; 4442 #else 4443 return -EOPNOTSUPP; 4444 #endif 4445 } 4446 4447 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4448 { 4449 struct f2fs_inode_info *fi = F2FS_I(inode); 4450 4451 f2fs_down_write(&F2FS_I(inode)->i_sem); 4452 4453 if (!f2fs_compressed_file(inode)) { 4454 f2fs_up_write(&F2FS_I(inode)->i_sem); 4455 return true; 4456 } 4457 if (f2fs_is_mmap_file(inode) || 4458 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4459 f2fs_up_write(&F2FS_I(inode)->i_sem); 4460 return false; 4461 } 4462 4463 fi->i_flags &= ~F2FS_COMPR_FL; 4464 stat_dec_compr_inode(inode); 4465 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4466 f2fs_mark_inode_dirty_sync(inode, true); 4467 4468 f2fs_up_write(&F2FS_I(inode)->i_sem); 4469 return true; 4470 } 4471 4472 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4473 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4474 { \ 4475 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4476 } 4477 4478 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4479 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4480 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4481 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4482 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4483 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4484 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4485 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4486 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4487 F2FS_FEATURE_FUNCS(verity, VERITY); 4488 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4489 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4490 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4491 F2FS_FEATURE_FUNCS(readonly, RO); 4492 4493 #ifdef CONFIG_BLK_DEV_ZONED 4494 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4495 block_t blkaddr) 4496 { 4497 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4498 4499 return test_bit(zno, FDEV(devi).blkz_seq); 4500 } 4501 #endif 4502 4503 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4504 struct block_device *bdev) 4505 { 4506 int i; 4507 4508 if (!f2fs_is_multi_device(sbi)) 4509 return 0; 4510 4511 for (i = 0; i < sbi->s_ndevs; i++) 4512 if (FDEV(i).bdev == bdev) 4513 return i; 4514 4515 WARN_ON(1); 4516 return -1; 4517 } 4518 4519 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4520 { 4521 return f2fs_sb_has_blkzoned(sbi); 4522 } 4523 4524 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4525 { 4526 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4527 } 4528 4529 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4530 { 4531 int i; 4532 4533 if (!f2fs_is_multi_device(sbi)) 4534 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4535 4536 for (i = 0; i < sbi->s_ndevs; i++) 4537 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4538 return true; 4539 return false; 4540 } 4541 4542 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4543 { 4544 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4545 f2fs_hw_should_discard(sbi); 4546 } 4547 4548 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4549 { 4550 int i; 4551 4552 if (!f2fs_is_multi_device(sbi)) 4553 return bdev_read_only(sbi->sb->s_bdev); 4554 4555 for (i = 0; i < sbi->s_ndevs; i++) 4556 if (bdev_read_only(FDEV(i).bdev)) 4557 return true; 4558 return false; 4559 } 4560 4561 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4562 { 4563 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4564 } 4565 4566 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4567 { 4568 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4569 } 4570 4571 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, 4572 block_t blkaddr) 4573 { 4574 if (f2fs_sb_has_blkzoned(sbi)) { 4575 int devi = f2fs_target_device_index(sbi, blkaddr); 4576 4577 return !bdev_is_zoned(FDEV(devi).bdev); 4578 } 4579 return true; 4580 } 4581 4582 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4583 { 4584 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4585 } 4586 4587 static inline bool f2fs_may_compress(struct inode *inode) 4588 { 4589 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4590 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4591 f2fs_is_mmap_file(inode)) 4592 return false; 4593 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4594 } 4595 4596 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4597 u64 blocks, bool add) 4598 { 4599 struct f2fs_inode_info *fi = F2FS_I(inode); 4600 int diff = fi->i_cluster_size - blocks; 4601 4602 /* don't update i_compr_blocks if saved blocks were released */ 4603 if (!add && !atomic_read(&fi->i_compr_blocks)) 4604 return; 4605 4606 if (add) { 4607 atomic_add(diff, &fi->i_compr_blocks); 4608 stat_add_compr_blocks(inode, diff); 4609 } else { 4610 atomic_sub(diff, &fi->i_compr_blocks); 4611 stat_sub_compr_blocks(inode, diff); 4612 } 4613 f2fs_mark_inode_dirty_sync(inode, true); 4614 } 4615 4616 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4617 int flag) 4618 { 4619 if (!f2fs_is_multi_device(sbi)) 4620 return false; 4621 if (flag != F2FS_GET_BLOCK_DIO) 4622 return false; 4623 return sbi->aligned_blksize; 4624 } 4625 4626 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4627 { 4628 return fsverity_active(inode) && 4629 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4630 } 4631 4632 #ifdef CONFIG_F2FS_FAULT_INJECTION 4633 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 4634 unsigned long type); 4635 #else 4636 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 4637 unsigned long rate, unsigned long type) 4638 { 4639 return 0; 4640 } 4641 #endif 4642 4643 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4644 { 4645 #ifdef CONFIG_QUOTA 4646 if (f2fs_sb_has_quota_ino(sbi)) 4647 return true; 4648 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4649 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4650 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4651 return true; 4652 #endif 4653 return false; 4654 } 4655 4656 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4657 { 4658 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4659 } 4660 4661 static inline void f2fs_io_schedule_timeout(long timeout) 4662 { 4663 set_current_state(TASK_UNINTERRUPTIBLE); 4664 io_schedule_timeout(timeout); 4665 } 4666 4667 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4668 enum page_type type) 4669 { 4670 if (unlikely(f2fs_cp_error(sbi))) 4671 return; 4672 4673 if (ofs == sbi->page_eio_ofs[type]) { 4674 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4675 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4676 } else { 4677 sbi->page_eio_ofs[type] = ofs; 4678 sbi->page_eio_cnt[type] = 0; 4679 } 4680 } 4681 4682 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4683 { 4684 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4685 } 4686 4687 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4688 block_t blkaddr, unsigned int cnt) 4689 { 4690 bool need_submit = false; 4691 int i = 0; 4692 4693 do { 4694 struct page *page; 4695 4696 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4697 if (page) { 4698 if (PageWriteback(page)) 4699 need_submit = true; 4700 f2fs_put_page(page, 0); 4701 } 4702 } while (++i < cnt && !need_submit); 4703 4704 if (need_submit) 4705 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4706 NULL, 0, DATA); 4707 4708 truncate_inode_pages_range(META_MAPPING(sbi), 4709 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4710 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4711 } 4712 4713 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4714 block_t blkaddr) 4715 { 4716 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4717 f2fs_invalidate_compress_page(sbi, blkaddr); 4718 } 4719 4720 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4721 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4722 4723 #endif /* _LINUX_F2FS_H */ 4724