1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 21 /* 22 * For mount options 23 */ 24 #define F2FS_MOUNT_BG_GC 0x00000001 25 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 26 #define F2FS_MOUNT_DISCARD 0x00000004 27 #define F2FS_MOUNT_NOHEAP 0x00000008 28 #define F2FS_MOUNT_XATTR_USER 0x00000010 29 #define F2FS_MOUNT_POSIX_ACL 0x00000020 30 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 31 32 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 33 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 34 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 35 36 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 37 typecheck(unsigned long long, b) && \ 38 ((long long)((a) - (b)) > 0)) 39 40 typedef u32 block_t; /* 41 * should not change u32, since it is the on-disk block 42 * address format, __le32. 43 */ 44 typedef u32 nid_t; 45 46 struct f2fs_mount_info { 47 unsigned int opt; 48 }; 49 50 static inline __u32 f2fs_crc32(void *buff, size_t len) 51 { 52 return crc32_le(F2FS_SUPER_MAGIC, buff, len); 53 } 54 55 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size) 56 { 57 return f2fs_crc32(buff, buff_size) == blk_crc; 58 } 59 60 /* 61 * For checkpoint manager 62 */ 63 enum { 64 NAT_BITMAP, 65 SIT_BITMAP 66 }; 67 68 /* for the list of orphan inodes */ 69 struct orphan_inode_entry { 70 struct list_head list; /* list head */ 71 nid_t ino; /* inode number */ 72 }; 73 74 /* for the list of directory inodes */ 75 struct dir_inode_entry { 76 struct list_head list; /* list head */ 77 struct inode *inode; /* vfs inode pointer */ 78 }; 79 80 /* for the list of fsync inodes, used only during recovery */ 81 struct fsync_inode_entry { 82 struct list_head list; /* list head */ 83 struct inode *inode; /* vfs inode pointer */ 84 block_t blkaddr; /* block address locating the last inode */ 85 }; 86 87 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 88 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 89 90 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 91 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 92 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 93 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 94 95 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 96 { 97 int before = nats_in_cursum(rs); 98 rs->n_nats = cpu_to_le16(before + i); 99 return before; 100 } 101 102 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 103 { 104 int before = sits_in_cursum(rs); 105 rs->n_sits = cpu_to_le16(before + i); 106 return before; 107 } 108 109 /* 110 * ioctl commands 111 */ 112 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 113 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 114 115 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 116 /* 117 * ioctl commands in 32 bit emulation 118 */ 119 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 120 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 121 #endif 122 123 /* 124 * For INODE and NODE manager 125 */ 126 #define XATTR_NODE_OFFSET (-1) /* 127 * store xattrs to one node block per 128 * file keeping -1 as its node offset to 129 * distinguish from index node blocks. 130 */ 131 enum { 132 ALLOC_NODE, /* allocate a new node page if needed */ 133 LOOKUP_NODE, /* look up a node without readahead */ 134 LOOKUP_NODE_RA, /* 135 * look up a node with readahead called 136 * by get_datablock_ro. 137 */ 138 }; 139 140 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 141 142 /* for in-memory extent cache entry */ 143 struct extent_info { 144 rwlock_t ext_lock; /* rwlock for consistency */ 145 unsigned int fofs; /* start offset in a file */ 146 u32 blk_addr; /* start block address of the extent */ 147 unsigned int len; /* length of the extent */ 148 }; 149 150 /* 151 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 152 */ 153 #define FADVISE_COLD_BIT 0x01 154 #define FADVISE_CP_BIT 0x02 155 156 struct f2fs_inode_info { 157 struct inode vfs_inode; /* serve a vfs inode */ 158 unsigned long i_flags; /* keep an inode flags for ioctl */ 159 unsigned char i_advise; /* use to give file attribute hints */ 160 unsigned int i_current_depth; /* use only in directory structure */ 161 unsigned int i_pino; /* parent inode number */ 162 umode_t i_acl_mode; /* keep file acl mode temporarily */ 163 164 /* Use below internally in f2fs*/ 165 unsigned long flags; /* use to pass per-file flags */ 166 atomic_t dirty_dents; /* # of dirty dentry pages */ 167 f2fs_hash_t chash; /* hash value of given file name */ 168 unsigned int clevel; /* maximum level of given file name */ 169 nid_t i_xattr_nid; /* node id that contains xattrs */ 170 struct extent_info ext; /* in-memory extent cache entry */ 171 }; 172 173 static inline void get_extent_info(struct extent_info *ext, 174 struct f2fs_extent i_ext) 175 { 176 write_lock(&ext->ext_lock); 177 ext->fofs = le32_to_cpu(i_ext.fofs); 178 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 179 ext->len = le32_to_cpu(i_ext.len); 180 write_unlock(&ext->ext_lock); 181 } 182 183 static inline void set_raw_extent(struct extent_info *ext, 184 struct f2fs_extent *i_ext) 185 { 186 read_lock(&ext->ext_lock); 187 i_ext->fofs = cpu_to_le32(ext->fofs); 188 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 189 i_ext->len = cpu_to_le32(ext->len); 190 read_unlock(&ext->ext_lock); 191 } 192 193 struct f2fs_nm_info { 194 block_t nat_blkaddr; /* base disk address of NAT */ 195 nid_t max_nid; /* maximum possible node ids */ 196 nid_t next_scan_nid; /* the next nid to be scanned */ 197 198 /* NAT cache management */ 199 struct radix_tree_root nat_root;/* root of the nat entry cache */ 200 rwlock_t nat_tree_lock; /* protect nat_tree_lock */ 201 unsigned int nat_cnt; /* the # of cached nat entries */ 202 struct list_head nat_entries; /* cached nat entry list (clean) */ 203 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ 204 205 /* free node ids management */ 206 struct list_head free_nid_list; /* a list for free nids */ 207 spinlock_t free_nid_list_lock; /* protect free nid list */ 208 unsigned int fcnt; /* the number of free node id */ 209 struct mutex build_lock; /* lock for build free nids */ 210 211 /* for checkpoint */ 212 char *nat_bitmap; /* NAT bitmap pointer */ 213 int bitmap_size; /* bitmap size */ 214 }; 215 216 /* 217 * this structure is used as one of function parameters. 218 * all the information are dedicated to a given direct node block determined 219 * by the data offset in a file. 220 */ 221 struct dnode_of_data { 222 struct inode *inode; /* vfs inode pointer */ 223 struct page *inode_page; /* its inode page, NULL is possible */ 224 struct page *node_page; /* cached direct node page */ 225 nid_t nid; /* node id of the direct node block */ 226 unsigned int ofs_in_node; /* data offset in the node page */ 227 bool inode_page_locked; /* inode page is locked or not */ 228 block_t data_blkaddr; /* block address of the node block */ 229 }; 230 231 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 232 struct page *ipage, struct page *npage, nid_t nid) 233 { 234 memset(dn, 0, sizeof(*dn)); 235 dn->inode = inode; 236 dn->inode_page = ipage; 237 dn->node_page = npage; 238 dn->nid = nid; 239 } 240 241 /* 242 * For SIT manager 243 * 244 * By default, there are 6 active log areas across the whole main area. 245 * When considering hot and cold data separation to reduce cleaning overhead, 246 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 247 * respectively. 248 * In the current design, you should not change the numbers intentionally. 249 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 250 * logs individually according to the underlying devices. (default: 6) 251 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 252 * data and 8 for node logs. 253 */ 254 #define NR_CURSEG_DATA_TYPE (3) 255 #define NR_CURSEG_NODE_TYPE (3) 256 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 257 258 enum { 259 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 260 CURSEG_WARM_DATA, /* data blocks */ 261 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 262 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 263 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 264 CURSEG_COLD_NODE, /* indirect node blocks */ 265 NO_CHECK_TYPE 266 }; 267 268 struct f2fs_sm_info { 269 struct sit_info *sit_info; /* whole segment information */ 270 struct free_segmap_info *free_info; /* free segment information */ 271 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 272 struct curseg_info *curseg_array; /* active segment information */ 273 274 struct list_head wblist_head; /* list of under-writeback pages */ 275 spinlock_t wblist_lock; /* lock for checkpoint */ 276 277 block_t seg0_blkaddr; /* block address of 0'th segment */ 278 block_t main_blkaddr; /* start block address of main area */ 279 block_t ssa_blkaddr; /* start block address of SSA area */ 280 281 unsigned int segment_count; /* total # of segments */ 282 unsigned int main_segments; /* # of segments in main area */ 283 unsigned int reserved_segments; /* # of reserved segments */ 284 unsigned int ovp_segments; /* # of overprovision segments */ 285 }; 286 287 /* 288 * For directory operation 289 */ 290 #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1) 291 #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2) 292 #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3) 293 #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4) 294 #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5) 295 296 /* 297 * For superblock 298 */ 299 /* 300 * COUNT_TYPE for monitoring 301 * 302 * f2fs monitors the number of several block types such as on-writeback, 303 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 304 */ 305 enum count_type { 306 F2FS_WRITEBACK, 307 F2FS_DIRTY_DENTS, 308 F2FS_DIRTY_NODES, 309 F2FS_DIRTY_META, 310 NR_COUNT_TYPE, 311 }; 312 313 /* 314 * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS]. 315 * The checkpoint procedure blocks all the locks in this fs_lock array. 316 * Some FS operations grab free locks, and if there is no free lock, 317 * then wait to grab a lock in a round-robin manner. 318 */ 319 #define NR_GLOBAL_LOCKS 8 320 321 /* 322 * The below are the page types of bios used in submti_bio(). 323 * The available types are: 324 * DATA User data pages. It operates as async mode. 325 * NODE Node pages. It operates as async mode. 326 * META FS metadata pages such as SIT, NAT, CP. 327 * NR_PAGE_TYPE The number of page types. 328 * META_FLUSH Make sure the previous pages are written 329 * with waiting the bio's completion 330 * ... Only can be used with META. 331 */ 332 enum page_type { 333 DATA, 334 NODE, 335 META, 336 NR_PAGE_TYPE, 337 META_FLUSH, 338 }; 339 340 struct f2fs_sb_info { 341 struct super_block *sb; /* pointer to VFS super block */ 342 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 343 struct f2fs_super_block *raw_super; /* raw super block pointer */ 344 int s_dirty; /* dirty flag for checkpoint */ 345 346 /* for node-related operations */ 347 struct f2fs_nm_info *nm_info; /* node manager */ 348 struct inode *node_inode; /* cache node blocks */ 349 350 /* for segment-related operations */ 351 struct f2fs_sm_info *sm_info; /* segment manager */ 352 struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */ 353 sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */ 354 struct rw_semaphore bio_sem; /* IO semaphore */ 355 356 /* for checkpoint */ 357 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 358 struct inode *meta_inode; /* cache meta blocks */ 359 struct mutex cp_mutex; /* checkpoint procedure lock */ 360 struct mutex fs_lock[NR_GLOBAL_LOCKS]; /* blocking FS operations */ 361 struct mutex node_write; /* locking node writes */ 362 struct mutex writepages; /* mutex for writepages() */ 363 unsigned char next_lock_num; /* round-robin global locks */ 364 int por_doing; /* recovery is doing or not */ 365 int on_build_free_nids; /* build_free_nids is doing */ 366 367 /* for orphan inode management */ 368 struct list_head orphan_inode_list; /* orphan inode list */ 369 struct mutex orphan_inode_mutex; /* for orphan inode list */ 370 unsigned int n_orphans; /* # of orphan inodes */ 371 372 /* for directory inode management */ 373 struct list_head dir_inode_list; /* dir inode list */ 374 spinlock_t dir_inode_lock; /* for dir inode list lock */ 375 376 /* basic file system units */ 377 unsigned int log_sectors_per_block; /* log2 sectors per block */ 378 unsigned int log_blocksize; /* log2 block size */ 379 unsigned int blocksize; /* block size */ 380 unsigned int root_ino_num; /* root inode number*/ 381 unsigned int node_ino_num; /* node inode number*/ 382 unsigned int meta_ino_num; /* meta inode number*/ 383 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 384 unsigned int blocks_per_seg; /* blocks per segment */ 385 unsigned int segs_per_sec; /* segments per section */ 386 unsigned int secs_per_zone; /* sections per zone */ 387 unsigned int total_sections; /* total section count */ 388 unsigned int total_node_count; /* total node block count */ 389 unsigned int total_valid_node_count; /* valid node block count */ 390 unsigned int total_valid_inode_count; /* valid inode count */ 391 int active_logs; /* # of active logs */ 392 393 block_t user_block_count; /* # of user blocks */ 394 block_t total_valid_block_count; /* # of valid blocks */ 395 block_t alloc_valid_block_count; /* # of allocated blocks */ 396 block_t last_valid_block_count; /* for recovery */ 397 u32 s_next_generation; /* for NFS support */ 398 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 399 400 struct f2fs_mount_info mount_opt; /* mount options */ 401 402 /* for cleaning operations */ 403 struct mutex gc_mutex; /* mutex for GC */ 404 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 405 unsigned int cur_victim_sec; /* current victim section num */ 406 407 /* 408 * for stat information. 409 * one is for the LFS mode, and the other is for the SSR mode. 410 */ 411 #ifdef CONFIG_F2FS_STAT_FS 412 struct f2fs_stat_info *stat_info; /* FS status information */ 413 unsigned int segment_count[2]; /* # of allocated segments */ 414 unsigned int block_count[2]; /* # of allocated blocks */ 415 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 416 int bg_gc; /* background gc calls */ 417 unsigned int n_dirty_dirs; /* # of dir inodes */ 418 #endif 419 unsigned int last_victim[2]; /* last victim segment # */ 420 spinlock_t stat_lock; /* lock for stat operations */ 421 }; 422 423 /* 424 * Inline functions 425 */ 426 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 427 { 428 return container_of(inode, struct f2fs_inode_info, vfs_inode); 429 } 430 431 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 432 { 433 return sb->s_fs_info; 434 } 435 436 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 437 { 438 return (struct f2fs_super_block *)(sbi->raw_super); 439 } 440 441 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 442 { 443 return (struct f2fs_checkpoint *)(sbi->ckpt); 444 } 445 446 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 447 { 448 return (struct f2fs_nm_info *)(sbi->nm_info); 449 } 450 451 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 452 { 453 return (struct f2fs_sm_info *)(sbi->sm_info); 454 } 455 456 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 457 { 458 return (struct sit_info *)(SM_I(sbi)->sit_info); 459 } 460 461 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 462 { 463 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 464 } 465 466 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 467 { 468 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 469 } 470 471 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) 472 { 473 sbi->s_dirty = 1; 474 } 475 476 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) 477 { 478 sbi->s_dirty = 0; 479 } 480 481 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 482 { 483 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 484 return ckpt_flags & f; 485 } 486 487 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 488 { 489 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 490 ckpt_flags |= f; 491 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 492 } 493 494 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 495 { 496 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 497 ckpt_flags &= (~f); 498 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 499 } 500 501 static inline void mutex_lock_all(struct f2fs_sb_info *sbi) 502 { 503 int i; 504 505 for (i = 0; i < NR_GLOBAL_LOCKS; i++) { 506 /* 507 * This is the only time we take multiple fs_lock[] 508 * instances; the order is immaterial since we 509 * always hold cp_mutex, which serializes multiple 510 * such operations. 511 */ 512 mutex_lock_nest_lock(&sbi->fs_lock[i], &sbi->cp_mutex); 513 } 514 } 515 516 static inline void mutex_unlock_all(struct f2fs_sb_info *sbi) 517 { 518 int i = 0; 519 for (; i < NR_GLOBAL_LOCKS; i++) 520 mutex_unlock(&sbi->fs_lock[i]); 521 } 522 523 static inline int mutex_lock_op(struct f2fs_sb_info *sbi) 524 { 525 unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS; 526 int i = 0; 527 528 for (; i < NR_GLOBAL_LOCKS; i++) 529 if (mutex_trylock(&sbi->fs_lock[i])) 530 return i; 531 532 mutex_lock(&sbi->fs_lock[next_lock]); 533 sbi->next_lock_num++; 534 return next_lock; 535 } 536 537 static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock) 538 { 539 if (ilock < 0) 540 return; 541 BUG_ON(ilock >= NR_GLOBAL_LOCKS); 542 mutex_unlock(&sbi->fs_lock[ilock]); 543 } 544 545 /* 546 * Check whether the given nid is within node id range. 547 */ 548 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 549 { 550 WARN_ON((nid >= NM_I(sbi)->max_nid)); 551 if (nid >= NM_I(sbi)->max_nid) 552 return -EINVAL; 553 return 0; 554 } 555 556 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 557 558 /* 559 * Check whether the inode has blocks or not 560 */ 561 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 562 { 563 if (F2FS_I(inode)->i_xattr_nid) 564 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1); 565 else 566 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS); 567 } 568 569 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 570 struct inode *inode, blkcnt_t count) 571 { 572 block_t valid_block_count; 573 574 spin_lock(&sbi->stat_lock); 575 valid_block_count = 576 sbi->total_valid_block_count + (block_t)count; 577 if (valid_block_count > sbi->user_block_count) { 578 spin_unlock(&sbi->stat_lock); 579 return false; 580 } 581 inode->i_blocks += count; 582 sbi->total_valid_block_count = valid_block_count; 583 sbi->alloc_valid_block_count += (block_t)count; 584 spin_unlock(&sbi->stat_lock); 585 return true; 586 } 587 588 static inline int dec_valid_block_count(struct f2fs_sb_info *sbi, 589 struct inode *inode, 590 blkcnt_t count) 591 { 592 spin_lock(&sbi->stat_lock); 593 BUG_ON(sbi->total_valid_block_count < (block_t) count); 594 BUG_ON(inode->i_blocks < count); 595 inode->i_blocks -= count; 596 sbi->total_valid_block_count -= (block_t)count; 597 spin_unlock(&sbi->stat_lock); 598 return 0; 599 } 600 601 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 602 { 603 atomic_inc(&sbi->nr_pages[count_type]); 604 F2FS_SET_SB_DIRT(sbi); 605 } 606 607 static inline void inode_inc_dirty_dents(struct inode *inode) 608 { 609 atomic_inc(&F2FS_I(inode)->dirty_dents); 610 } 611 612 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 613 { 614 atomic_dec(&sbi->nr_pages[count_type]); 615 } 616 617 static inline void inode_dec_dirty_dents(struct inode *inode) 618 { 619 atomic_dec(&F2FS_I(inode)->dirty_dents); 620 } 621 622 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 623 { 624 return atomic_read(&sbi->nr_pages[count_type]); 625 } 626 627 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 628 { 629 unsigned int pages_per_sec = sbi->segs_per_sec * 630 (1 << sbi->log_blocks_per_seg); 631 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 632 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 633 } 634 635 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 636 { 637 block_t ret; 638 spin_lock(&sbi->stat_lock); 639 ret = sbi->total_valid_block_count; 640 spin_unlock(&sbi->stat_lock); 641 return ret; 642 } 643 644 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 645 { 646 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 647 648 /* return NAT or SIT bitmap */ 649 if (flag == NAT_BITMAP) 650 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 651 else if (flag == SIT_BITMAP) 652 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 653 654 return 0; 655 } 656 657 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 658 { 659 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 660 int offset = (flag == NAT_BITMAP) ? 661 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 662 return &ckpt->sit_nat_version_bitmap + offset; 663 } 664 665 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 666 { 667 block_t start_addr; 668 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 669 unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); 670 671 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 672 673 /* 674 * odd numbered checkpoint should at cp segment 0 675 * and even segent must be at cp segment 1 676 */ 677 if (!(ckpt_version & 1)) 678 start_addr += sbi->blocks_per_seg; 679 680 return start_addr; 681 } 682 683 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 684 { 685 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 686 } 687 688 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 689 struct inode *inode, 690 unsigned int count) 691 { 692 block_t valid_block_count; 693 unsigned int valid_node_count; 694 695 spin_lock(&sbi->stat_lock); 696 697 valid_block_count = sbi->total_valid_block_count + (block_t)count; 698 sbi->alloc_valid_block_count += (block_t)count; 699 valid_node_count = sbi->total_valid_node_count + count; 700 701 if (valid_block_count > sbi->user_block_count) { 702 spin_unlock(&sbi->stat_lock); 703 return false; 704 } 705 706 if (valid_node_count > sbi->total_node_count) { 707 spin_unlock(&sbi->stat_lock); 708 return false; 709 } 710 711 if (inode) 712 inode->i_blocks += count; 713 sbi->total_valid_node_count = valid_node_count; 714 sbi->total_valid_block_count = valid_block_count; 715 spin_unlock(&sbi->stat_lock); 716 717 return true; 718 } 719 720 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 721 struct inode *inode, 722 unsigned int count) 723 { 724 spin_lock(&sbi->stat_lock); 725 726 BUG_ON(sbi->total_valid_block_count < count); 727 BUG_ON(sbi->total_valid_node_count < count); 728 BUG_ON(inode->i_blocks < count); 729 730 inode->i_blocks -= count; 731 sbi->total_valid_node_count -= count; 732 sbi->total_valid_block_count -= (block_t)count; 733 734 spin_unlock(&sbi->stat_lock); 735 } 736 737 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 738 { 739 unsigned int ret; 740 spin_lock(&sbi->stat_lock); 741 ret = sbi->total_valid_node_count; 742 spin_unlock(&sbi->stat_lock); 743 return ret; 744 } 745 746 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 747 { 748 spin_lock(&sbi->stat_lock); 749 BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count); 750 sbi->total_valid_inode_count++; 751 spin_unlock(&sbi->stat_lock); 752 } 753 754 static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi) 755 { 756 spin_lock(&sbi->stat_lock); 757 BUG_ON(!sbi->total_valid_inode_count); 758 sbi->total_valid_inode_count--; 759 spin_unlock(&sbi->stat_lock); 760 return 0; 761 } 762 763 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 764 { 765 unsigned int ret; 766 spin_lock(&sbi->stat_lock); 767 ret = sbi->total_valid_inode_count; 768 spin_unlock(&sbi->stat_lock); 769 return ret; 770 } 771 772 static inline void f2fs_put_page(struct page *page, int unlock) 773 { 774 if (!page || IS_ERR(page)) 775 return; 776 777 if (unlock) { 778 BUG_ON(!PageLocked(page)); 779 unlock_page(page); 780 } 781 page_cache_release(page); 782 } 783 784 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 785 { 786 if (dn->node_page) 787 f2fs_put_page(dn->node_page, 1); 788 if (dn->inode_page && dn->node_page != dn->inode_page) 789 f2fs_put_page(dn->inode_page, 0); 790 dn->node_page = NULL; 791 dn->inode_page = NULL; 792 } 793 794 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 795 size_t size, void (*ctor)(void *)) 796 { 797 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); 798 } 799 800 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 801 802 static inline bool IS_INODE(struct page *page) 803 { 804 struct f2fs_node *p = (struct f2fs_node *)page_address(page); 805 return RAW_IS_INODE(p); 806 } 807 808 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 809 { 810 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 811 } 812 813 static inline block_t datablock_addr(struct page *node_page, 814 unsigned int offset) 815 { 816 struct f2fs_node *raw_node; 817 __le32 *addr_array; 818 raw_node = (struct f2fs_node *)page_address(node_page); 819 addr_array = blkaddr_in_node(raw_node); 820 return le32_to_cpu(addr_array[offset]); 821 } 822 823 static inline int f2fs_test_bit(unsigned int nr, char *addr) 824 { 825 int mask; 826 827 addr += (nr >> 3); 828 mask = 1 << (7 - (nr & 0x07)); 829 return mask & *addr; 830 } 831 832 static inline int f2fs_set_bit(unsigned int nr, char *addr) 833 { 834 int mask; 835 int ret; 836 837 addr += (nr >> 3); 838 mask = 1 << (7 - (nr & 0x07)); 839 ret = mask & *addr; 840 *addr |= mask; 841 return ret; 842 } 843 844 static inline int f2fs_clear_bit(unsigned int nr, char *addr) 845 { 846 int mask; 847 int ret; 848 849 addr += (nr >> 3); 850 mask = 1 << (7 - (nr & 0x07)); 851 ret = mask & *addr; 852 *addr &= ~mask; 853 return ret; 854 } 855 856 /* used for f2fs_inode_info->flags */ 857 enum { 858 FI_NEW_INODE, /* indicate newly allocated inode */ 859 FI_INC_LINK, /* need to increment i_nlink */ 860 FI_ACL_MODE, /* indicate acl mode */ 861 FI_NO_ALLOC, /* should not allocate any blocks */ 862 FI_DELAY_IPUT, /* used for the recovery */ 863 }; 864 865 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 866 { 867 set_bit(flag, &fi->flags); 868 } 869 870 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 871 { 872 return test_bit(flag, &fi->flags); 873 } 874 875 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 876 { 877 clear_bit(flag, &fi->flags); 878 } 879 880 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 881 { 882 fi->i_acl_mode = mode; 883 set_inode_flag(fi, FI_ACL_MODE); 884 } 885 886 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) 887 { 888 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 889 clear_inode_flag(fi, FI_ACL_MODE); 890 return 1; 891 } 892 return 0; 893 } 894 895 static inline int f2fs_readonly(struct super_block *sb) 896 { 897 return sb->s_flags & MS_RDONLY; 898 } 899 900 /* 901 * file.c 902 */ 903 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 904 void truncate_data_blocks(struct dnode_of_data *); 905 void f2fs_truncate(struct inode *); 906 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 907 int f2fs_setattr(struct dentry *, struct iattr *); 908 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 909 int truncate_data_blocks_range(struct dnode_of_data *, int); 910 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 911 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 912 913 /* 914 * inode.c 915 */ 916 void f2fs_set_inode_flags(struct inode *); 917 struct inode *f2fs_iget(struct super_block *, unsigned long); 918 void update_inode(struct inode *, struct page *); 919 int update_inode_page(struct inode *); 920 int f2fs_write_inode(struct inode *, struct writeback_control *); 921 void f2fs_evict_inode(struct inode *); 922 923 /* 924 * namei.c 925 */ 926 struct dentry *f2fs_get_parent(struct dentry *child); 927 928 /* 929 * dir.c 930 */ 931 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 932 struct page **); 933 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 934 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 935 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 936 struct page *, struct inode *); 937 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 938 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); 939 int f2fs_make_empty(struct inode *, struct inode *); 940 bool f2fs_empty_dir(struct inode *); 941 942 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 943 { 944 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 945 inode); 946 } 947 948 /* 949 * super.c 950 */ 951 int f2fs_sync_fs(struct super_block *, int); 952 extern __printf(3, 4) 953 void f2fs_msg(struct super_block *, const char *, const char *, ...); 954 955 /* 956 * hash.c 957 */ 958 f2fs_hash_t f2fs_dentry_hash(const char *, size_t); 959 960 /* 961 * node.c 962 */ 963 struct dnode_of_data; 964 struct node_info; 965 966 int is_checkpointed_node(struct f2fs_sb_info *, nid_t); 967 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 968 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 969 int truncate_inode_blocks(struct inode *, pgoff_t); 970 int remove_inode_page(struct inode *); 971 struct page *new_inode_page(struct inode *, const struct qstr *); 972 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 973 void ra_node_page(struct f2fs_sb_info *, nid_t); 974 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 975 struct page *get_node_page_ra(struct page *, int); 976 void sync_inode_page(struct dnode_of_data *); 977 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 978 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 979 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 980 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 981 void recover_node_page(struct f2fs_sb_info *, struct page *, 982 struct f2fs_summary *, struct node_info *, block_t); 983 int recover_inode_page(struct f2fs_sb_info *, struct page *); 984 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 985 struct f2fs_summary_block *); 986 void flush_nat_entries(struct f2fs_sb_info *); 987 int build_node_manager(struct f2fs_sb_info *); 988 void destroy_node_manager(struct f2fs_sb_info *); 989 int __init create_node_manager_caches(void); 990 void destroy_node_manager_caches(void); 991 992 /* 993 * segment.c 994 */ 995 void f2fs_balance_fs(struct f2fs_sb_info *); 996 void invalidate_blocks(struct f2fs_sb_info *, block_t); 997 void locate_dirty_segment(struct f2fs_sb_info *, unsigned int); 998 void clear_prefree_segments(struct f2fs_sb_info *); 999 int npages_for_summary_flush(struct f2fs_sb_info *); 1000 void allocate_new_segments(struct f2fs_sb_info *); 1001 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1002 struct bio *f2fs_bio_alloc(struct block_device *, int); 1003 void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync); 1004 void write_meta_page(struct f2fs_sb_info *, struct page *); 1005 void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int, 1006 block_t, block_t *); 1007 void write_data_page(struct inode *, struct page *, struct dnode_of_data*, 1008 block_t, block_t *); 1009 void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t); 1010 void recover_data_page(struct f2fs_sb_info *, struct page *, 1011 struct f2fs_summary *, block_t, block_t); 1012 void rewrite_node_page(struct f2fs_sb_info *, struct page *, 1013 struct f2fs_summary *, block_t, block_t); 1014 void write_data_summaries(struct f2fs_sb_info *, block_t); 1015 void write_node_summaries(struct f2fs_sb_info *, block_t); 1016 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1017 int, unsigned int, int); 1018 void flush_sit_entries(struct f2fs_sb_info *); 1019 int build_segment_manager(struct f2fs_sb_info *); 1020 void destroy_segment_manager(struct f2fs_sb_info *); 1021 1022 /* 1023 * checkpoint.c 1024 */ 1025 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1026 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1027 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1028 int check_orphan_space(struct f2fs_sb_info *); 1029 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1030 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1031 int recover_orphan_inodes(struct f2fs_sb_info *); 1032 int get_valid_checkpoint(struct f2fs_sb_info *); 1033 void set_dirty_dir_page(struct inode *, struct page *); 1034 void add_dirty_dir_inode(struct inode *); 1035 void remove_dirty_dir_inode(struct inode *); 1036 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t); 1037 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1038 void write_checkpoint(struct f2fs_sb_info *, bool); 1039 void init_orphan_info(struct f2fs_sb_info *); 1040 int __init create_checkpoint_caches(void); 1041 void destroy_checkpoint_caches(void); 1042 1043 /* 1044 * data.c 1045 */ 1046 int reserve_new_block(struct dnode_of_data *); 1047 void update_extent_cache(block_t, struct dnode_of_data *); 1048 struct page *find_data_page(struct inode *, pgoff_t, bool); 1049 struct page *get_lock_data_page(struct inode *, pgoff_t); 1050 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1051 int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int); 1052 int do_write_data_page(struct page *); 1053 1054 /* 1055 * gc.c 1056 */ 1057 int start_gc_thread(struct f2fs_sb_info *); 1058 void stop_gc_thread(struct f2fs_sb_info *); 1059 block_t start_bidx_of_node(unsigned int); 1060 int f2fs_gc(struct f2fs_sb_info *); 1061 void build_gc_manager(struct f2fs_sb_info *); 1062 int __init create_gc_caches(void); 1063 void destroy_gc_caches(void); 1064 1065 /* 1066 * recovery.c 1067 */ 1068 int recover_fsync_data(struct f2fs_sb_info *); 1069 bool space_for_roll_forward(struct f2fs_sb_info *); 1070 1071 /* 1072 * debug.c 1073 */ 1074 #ifdef CONFIG_F2FS_STAT_FS 1075 struct f2fs_stat_info { 1076 struct list_head stat_list; 1077 struct f2fs_sb_info *sbi; 1078 struct mutex stat_lock; 1079 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1080 int main_area_segs, main_area_sections, main_area_zones; 1081 int hit_ext, total_ext; 1082 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1083 int nats, sits, fnids; 1084 int total_count, utilization; 1085 int bg_gc; 1086 unsigned int valid_count, valid_node_count, valid_inode_count; 1087 unsigned int bimodal, avg_vblocks; 1088 int util_free, util_valid, util_invalid; 1089 int rsvd_segs, overp_segs; 1090 int dirty_count, node_pages, meta_pages; 1091 int prefree_count, call_count; 1092 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1093 int tot_blks, data_blks, node_blks; 1094 int curseg[NR_CURSEG_TYPE]; 1095 int cursec[NR_CURSEG_TYPE]; 1096 int curzone[NR_CURSEG_TYPE]; 1097 1098 unsigned int segment_count[2]; 1099 unsigned int block_count[2]; 1100 unsigned base_mem, cache_mem; 1101 }; 1102 1103 #define stat_inc_call_count(si) ((si)->call_count++) 1104 1105 #define stat_inc_seg_count(sbi, type) \ 1106 do { \ 1107 struct f2fs_stat_info *si = sbi->stat_info; \ 1108 (si)->tot_segs++; \ 1109 if (type == SUM_TYPE_DATA) \ 1110 si->data_segs++; \ 1111 else \ 1112 si->node_segs++; \ 1113 } while (0) 1114 1115 #define stat_inc_tot_blk_count(si, blks) \ 1116 (si->tot_blks += (blks)) 1117 1118 #define stat_inc_data_blk_count(sbi, blks) \ 1119 do { \ 1120 struct f2fs_stat_info *si = sbi->stat_info; \ 1121 stat_inc_tot_blk_count(si, blks); \ 1122 si->data_blks += (blks); \ 1123 } while (0) 1124 1125 #define stat_inc_node_blk_count(sbi, blks) \ 1126 do { \ 1127 struct f2fs_stat_info *si = sbi->stat_info; \ 1128 stat_inc_tot_blk_count(si, blks); \ 1129 si->node_blks += (blks); \ 1130 } while (0) 1131 1132 int f2fs_build_stats(struct f2fs_sb_info *); 1133 void f2fs_destroy_stats(struct f2fs_sb_info *); 1134 void __init f2fs_create_root_stats(void); 1135 void f2fs_destroy_root_stats(void); 1136 #else 1137 #define stat_inc_call_count(si) 1138 #define stat_inc_seg_count(si, type) 1139 #define stat_inc_tot_blk_count(si, blks) 1140 #define stat_inc_data_blk_count(si, blks) 1141 #define stat_inc_node_blk_count(sbi, blks) 1142 1143 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1144 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1145 static inline void __init f2fs_create_root_stats(void) { } 1146 static inline void f2fs_destroy_root_stats(void) { } 1147 #endif 1148 1149 extern const struct file_operations f2fs_dir_operations; 1150 extern const struct file_operations f2fs_file_operations; 1151 extern const struct inode_operations f2fs_file_inode_operations; 1152 extern const struct address_space_operations f2fs_dblock_aops; 1153 extern const struct address_space_operations f2fs_node_aops; 1154 extern const struct address_space_operations f2fs_meta_aops; 1155 extern const struct inode_operations f2fs_dir_inode_operations; 1156 extern const struct inode_operations f2fs_symlink_inode_operations; 1157 extern const struct inode_operations f2fs_special_inode_operations; 1158 #endif 1159