1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 #endif 79 80 /* 81 * For mount options 82 */ 83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 84 #define F2FS_MOUNT_DISCARD 0x00000004 85 #define F2FS_MOUNT_NOHEAP 0x00000008 86 #define F2FS_MOUNT_XATTR_USER 0x00000010 87 #define F2FS_MOUNT_POSIX_ACL 0x00000020 88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 89 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 90 #define F2FS_MOUNT_INLINE_DATA 0x00000100 91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 93 #define F2FS_MOUNT_NOBARRIER 0x00000800 94 #define F2FS_MOUNT_FASTBOOT 0x00001000 95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00002000 96 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 97 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 98 #define F2FS_MOUNT_USRQUOTA 0x00080000 99 #define F2FS_MOUNT_GRPQUOTA 0x00100000 100 #define F2FS_MOUNT_PRJQUOTA 0x00200000 101 #define F2FS_MOUNT_QUOTA 0x00400000 102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 103 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 105 #define F2FS_MOUNT_NORECOVERY 0x04000000 106 #define F2FS_MOUNT_ATGC 0x08000000 107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 108 #define F2FS_MOUNT_GC_MERGE 0x20000000 109 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x80000000 111 112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 116 117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 118 typecheck(unsigned long long, b) && \ 119 ((long long)((a) - (b)) > 0)) 120 121 typedef u32 block_t; /* 122 * should not change u32, since it is the on-disk block 123 * address format, __le32. 124 */ 125 typedef u32 nid_t; 126 127 #define COMPRESS_EXT_NUM 16 128 129 /* 130 * An implementation of an rwsem that is explicitly unfair to readers. This 131 * prevents priority inversion when a low-priority reader acquires the read lock 132 * while sleeping on the write lock but the write lock is needed by 133 * higher-priority clients. 134 */ 135 136 struct f2fs_rwsem { 137 struct rw_semaphore internal_rwsem; 138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 139 wait_queue_head_t read_waiters; 140 #endif 141 }; 142 143 struct f2fs_mount_info { 144 unsigned int opt; 145 int write_io_size_bits; /* Write IO size bits */ 146 block_t root_reserved_blocks; /* root reserved blocks */ 147 kuid_t s_resuid; /* reserved blocks for uid */ 148 kgid_t s_resgid; /* reserved blocks for gid */ 149 int active_logs; /* # of active logs */ 150 int inline_xattr_size; /* inline xattr size */ 151 #ifdef CONFIG_F2FS_FAULT_INJECTION 152 struct f2fs_fault_info fault_info; /* For fault injection */ 153 #endif 154 #ifdef CONFIG_QUOTA 155 /* Names of quota files with journalled quota */ 156 char *s_qf_names[MAXQUOTAS]; 157 int s_jquota_fmt; /* Format of quota to use */ 158 #endif 159 /* For which write hints are passed down to block layer */ 160 int alloc_mode; /* segment allocation policy */ 161 int fsync_mode; /* fsync policy */ 162 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 163 int bggc_mode; /* bggc mode: off, on or sync */ 164 int memory_mode; /* memory mode */ 165 int discard_unit; /* 166 * discard command's offset/size should 167 * be aligned to this unit: block, 168 * segment or section 169 */ 170 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 171 block_t unusable_cap_perc; /* percentage for cap */ 172 block_t unusable_cap; /* Amount of space allowed to be 173 * unusable when disabling checkpoint 174 */ 175 176 /* For compression */ 177 unsigned char compress_algorithm; /* algorithm type */ 178 unsigned char compress_log_size; /* cluster log size */ 179 unsigned char compress_level; /* compress level */ 180 bool compress_chksum; /* compressed data chksum */ 181 unsigned char compress_ext_cnt; /* extension count */ 182 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 183 int compress_mode; /* compression mode */ 184 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 185 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 186 }; 187 188 #define F2FS_FEATURE_ENCRYPT 0x0001 189 #define F2FS_FEATURE_BLKZONED 0x0002 190 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 191 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 192 #define F2FS_FEATURE_PRJQUOTA 0x0010 193 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 195 #define F2FS_FEATURE_QUOTA_INO 0x0080 196 #define F2FS_FEATURE_INODE_CRTIME 0x0100 197 #define F2FS_FEATURE_LOST_FOUND 0x0200 198 #define F2FS_FEATURE_VERITY 0x0400 199 #define F2FS_FEATURE_SB_CHKSUM 0x0800 200 #define F2FS_FEATURE_CASEFOLD 0x1000 201 #define F2FS_FEATURE_COMPRESSION 0x2000 202 #define F2FS_FEATURE_RO 0x4000 203 204 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 205 ((raw_super->feature & cpu_to_le32(mask)) != 0) 206 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 207 208 /* 209 * Default values for user and/or group using reserved blocks 210 */ 211 #define F2FS_DEF_RESUID 0 212 #define F2FS_DEF_RESGID 0 213 214 /* 215 * For checkpoint manager 216 */ 217 enum { 218 NAT_BITMAP, 219 SIT_BITMAP 220 }; 221 222 #define CP_UMOUNT 0x00000001 223 #define CP_FASTBOOT 0x00000002 224 #define CP_SYNC 0x00000004 225 #define CP_RECOVERY 0x00000008 226 #define CP_DISCARD 0x00000010 227 #define CP_TRIMMED 0x00000020 228 #define CP_PAUSE 0x00000040 229 #define CP_RESIZE 0x00000080 230 231 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 232 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 233 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 234 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 235 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 236 #define DEF_CP_INTERVAL 60 /* 60 secs */ 237 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 238 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 239 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 240 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 241 242 struct cp_control { 243 int reason; 244 __u64 trim_start; 245 __u64 trim_end; 246 __u64 trim_minlen; 247 }; 248 249 /* 250 * indicate meta/data type 251 */ 252 enum { 253 META_CP, 254 META_NAT, 255 META_SIT, 256 META_SSA, 257 META_MAX, 258 META_POR, 259 DATA_GENERIC, /* check range only */ 260 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 261 DATA_GENERIC_ENHANCE_READ, /* 262 * strong check on range and segment 263 * bitmap but no warning due to race 264 * condition of read on truncated area 265 * by extent_cache 266 */ 267 DATA_GENERIC_ENHANCE_UPDATE, /* 268 * strong check on range and segment 269 * bitmap for update case 270 */ 271 META_GENERIC, 272 }; 273 274 /* for the list of ino */ 275 enum { 276 ORPHAN_INO, /* for orphan ino list */ 277 APPEND_INO, /* for append ino list */ 278 UPDATE_INO, /* for update ino list */ 279 TRANS_DIR_INO, /* for transactions dir ino list */ 280 FLUSH_INO, /* for multiple device flushing */ 281 MAX_INO_ENTRY, /* max. list */ 282 }; 283 284 struct ino_entry { 285 struct list_head list; /* list head */ 286 nid_t ino; /* inode number */ 287 unsigned int dirty_device; /* dirty device bitmap */ 288 }; 289 290 /* for the list of inodes to be GCed */ 291 struct inode_entry { 292 struct list_head list; /* list head */ 293 struct inode *inode; /* vfs inode pointer */ 294 }; 295 296 struct fsync_node_entry { 297 struct list_head list; /* list head */ 298 struct page *page; /* warm node page pointer */ 299 unsigned int seq_id; /* sequence id */ 300 }; 301 302 struct ckpt_req { 303 struct completion wait; /* completion for checkpoint done */ 304 struct llist_node llnode; /* llist_node to be linked in wait queue */ 305 int ret; /* return code of checkpoint */ 306 ktime_t queue_time; /* request queued time */ 307 }; 308 309 struct ckpt_req_control { 310 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 311 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 312 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 313 atomic_t issued_ckpt; /* # of actually issued ckpts */ 314 atomic_t total_ckpt; /* # of total ckpts */ 315 atomic_t queued_ckpt; /* # of queued ckpts */ 316 struct llist_head issue_list; /* list for command issue */ 317 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 318 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 319 unsigned int peak_time; /* peak wait time in msec until now */ 320 }; 321 322 /* for the bitmap indicate blocks to be discarded */ 323 struct discard_entry { 324 struct list_head list; /* list head */ 325 block_t start_blkaddr; /* start blockaddr of current segment */ 326 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 327 }; 328 329 /* minimum discard granularity, unit: block count */ 330 #define MIN_DISCARD_GRANULARITY 1 331 /* default discard granularity of inner discard thread, unit: block count */ 332 #define DEFAULT_DISCARD_GRANULARITY 16 333 /* default maximum discard granularity of ordered discard, unit: block count */ 334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 335 336 /* max discard pend list number */ 337 #define MAX_PLIST_NUM 512 338 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 339 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 340 341 enum { 342 D_PREP, /* initial */ 343 D_PARTIAL, /* partially submitted */ 344 D_SUBMIT, /* all submitted */ 345 D_DONE, /* finished */ 346 }; 347 348 struct discard_info { 349 block_t lstart; /* logical start address */ 350 block_t len; /* length */ 351 block_t start; /* actual start address in dev */ 352 }; 353 354 struct discard_cmd { 355 struct rb_node rb_node; /* rb node located in rb-tree */ 356 struct discard_info di; /* discard info */ 357 struct list_head list; /* command list */ 358 struct completion wait; /* compleation */ 359 struct block_device *bdev; /* bdev */ 360 unsigned short ref; /* reference count */ 361 unsigned char state; /* state */ 362 unsigned char queued; /* queued discard */ 363 int error; /* bio error */ 364 spinlock_t lock; /* for state/bio_ref updating */ 365 unsigned short bio_ref; /* bio reference count */ 366 }; 367 368 enum { 369 DPOLICY_BG, 370 DPOLICY_FORCE, 371 DPOLICY_FSTRIM, 372 DPOLICY_UMOUNT, 373 MAX_DPOLICY, 374 }; 375 376 struct discard_policy { 377 int type; /* type of discard */ 378 unsigned int min_interval; /* used for candidates exist */ 379 unsigned int mid_interval; /* used for device busy */ 380 unsigned int max_interval; /* used for candidates not exist */ 381 unsigned int max_requests; /* # of discards issued per round */ 382 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 383 bool io_aware; /* issue discard in idle time */ 384 bool sync; /* submit discard with REQ_SYNC flag */ 385 bool ordered; /* issue discard by lba order */ 386 bool timeout; /* discard timeout for put_super */ 387 unsigned int granularity; /* discard granularity */ 388 }; 389 390 struct discard_cmd_control { 391 struct task_struct *f2fs_issue_discard; /* discard thread */ 392 struct list_head entry_list; /* 4KB discard entry list */ 393 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 394 struct list_head wait_list; /* store on-flushing entries */ 395 struct list_head fstrim_list; /* in-flight discard from fstrim */ 396 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 397 struct mutex cmd_lock; 398 unsigned int nr_discards; /* # of discards in the list */ 399 unsigned int max_discards; /* max. discards to be issued */ 400 unsigned int max_discard_request; /* max. discard request per round */ 401 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 402 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 403 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 404 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 405 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 406 unsigned int discard_granularity; /* discard granularity */ 407 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 408 unsigned int undiscard_blks; /* # of undiscard blocks */ 409 unsigned int next_pos; /* next discard position */ 410 atomic_t issued_discard; /* # of issued discard */ 411 atomic_t queued_discard; /* # of queued discard */ 412 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 413 struct rb_root_cached root; /* root of discard rb-tree */ 414 bool rbtree_check; /* config for consistence check */ 415 bool discard_wake; /* to wake up discard thread */ 416 }; 417 418 /* for the list of fsync inodes, used only during recovery */ 419 struct fsync_inode_entry { 420 struct list_head list; /* list head */ 421 struct inode *inode; /* vfs inode pointer */ 422 block_t blkaddr; /* block address locating the last fsync */ 423 block_t last_dentry; /* block address locating the last dentry */ 424 }; 425 426 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 427 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 428 429 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 430 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 431 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 432 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 433 434 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 435 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 436 437 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 438 { 439 int before = nats_in_cursum(journal); 440 441 journal->n_nats = cpu_to_le16(before + i); 442 return before; 443 } 444 445 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 446 { 447 int before = sits_in_cursum(journal); 448 449 journal->n_sits = cpu_to_le16(before + i); 450 return before; 451 } 452 453 static inline bool __has_cursum_space(struct f2fs_journal *journal, 454 int size, int type) 455 { 456 if (type == NAT_JOURNAL) 457 return size <= MAX_NAT_JENTRIES(journal); 458 return size <= MAX_SIT_JENTRIES(journal); 459 } 460 461 /* for inline stuff */ 462 #define DEF_INLINE_RESERVED_SIZE 1 463 static inline int get_extra_isize(struct inode *inode); 464 static inline int get_inline_xattr_addrs(struct inode *inode); 465 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 466 (CUR_ADDRS_PER_INODE(inode) - \ 467 get_inline_xattr_addrs(inode) - \ 468 DEF_INLINE_RESERVED_SIZE)) 469 470 /* for inline dir */ 471 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 472 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 473 BITS_PER_BYTE + 1)) 474 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 475 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 476 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 477 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 478 NR_INLINE_DENTRY(inode) + \ 479 INLINE_DENTRY_BITMAP_SIZE(inode))) 480 481 /* 482 * For INODE and NODE manager 483 */ 484 /* for directory operations */ 485 486 struct f2fs_filename { 487 /* 488 * The filename the user specified. This is NULL for some 489 * filesystem-internal operations, e.g. converting an inline directory 490 * to a non-inline one, or roll-forward recovering an encrypted dentry. 491 */ 492 const struct qstr *usr_fname; 493 494 /* 495 * The on-disk filename. For encrypted directories, this is encrypted. 496 * This may be NULL for lookups in an encrypted dir without the key. 497 */ 498 struct fscrypt_str disk_name; 499 500 /* The dirhash of this filename */ 501 f2fs_hash_t hash; 502 503 #ifdef CONFIG_FS_ENCRYPTION 504 /* 505 * For lookups in encrypted directories: either the buffer backing 506 * disk_name, or a buffer that holds the decoded no-key name. 507 */ 508 struct fscrypt_str crypto_buf; 509 #endif 510 #if IS_ENABLED(CONFIG_UNICODE) 511 /* 512 * For casefolded directories: the casefolded name, but it's left NULL 513 * if the original name is not valid Unicode, if the original name is 514 * "." or "..", if the directory is both casefolded and encrypted and 515 * its encryption key is unavailable, or if the filesystem is doing an 516 * internal operation where usr_fname is also NULL. In all these cases 517 * we fall back to treating the name as an opaque byte sequence. 518 */ 519 struct fscrypt_str cf_name; 520 #endif 521 }; 522 523 struct f2fs_dentry_ptr { 524 struct inode *inode; 525 void *bitmap; 526 struct f2fs_dir_entry *dentry; 527 __u8 (*filename)[F2FS_SLOT_LEN]; 528 int max; 529 int nr_bitmap; 530 }; 531 532 static inline void make_dentry_ptr_block(struct inode *inode, 533 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 534 { 535 d->inode = inode; 536 d->max = NR_DENTRY_IN_BLOCK; 537 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 538 d->bitmap = t->dentry_bitmap; 539 d->dentry = t->dentry; 540 d->filename = t->filename; 541 } 542 543 static inline void make_dentry_ptr_inline(struct inode *inode, 544 struct f2fs_dentry_ptr *d, void *t) 545 { 546 int entry_cnt = NR_INLINE_DENTRY(inode); 547 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 548 int reserved_size = INLINE_RESERVED_SIZE(inode); 549 550 d->inode = inode; 551 d->max = entry_cnt; 552 d->nr_bitmap = bitmap_size; 553 d->bitmap = t; 554 d->dentry = t + bitmap_size + reserved_size; 555 d->filename = t + bitmap_size + reserved_size + 556 SIZE_OF_DIR_ENTRY * entry_cnt; 557 } 558 559 /* 560 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 561 * as its node offset to distinguish from index node blocks. 562 * But some bits are used to mark the node block. 563 */ 564 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 565 >> OFFSET_BIT_SHIFT) 566 enum { 567 ALLOC_NODE, /* allocate a new node page if needed */ 568 LOOKUP_NODE, /* look up a node without readahead */ 569 LOOKUP_NODE_RA, /* 570 * look up a node with readahead called 571 * by get_data_block. 572 */ 573 }; 574 575 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 576 577 /* congestion wait timeout value, default: 20ms */ 578 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 579 580 /* maximum retry quota flush count */ 581 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 582 583 /* maximum retry of EIO'ed page */ 584 #define MAX_RETRY_PAGE_EIO 100 585 586 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 587 588 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 589 590 /* dirty segments threshold for triggering CP */ 591 #define DEFAULT_DIRTY_THRESHOLD 4 592 593 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 594 #define RECOVERY_MIN_RA_BLOCKS 1 595 596 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 597 598 /* for in-memory extent cache entry */ 599 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 600 601 /* number of extent info in extent cache we try to shrink */ 602 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 603 604 /* number of age extent info in extent cache we try to shrink */ 605 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 606 #define LAST_AGE_WEIGHT 30 607 #define SAME_AGE_REGION 1024 608 609 /* 610 * Define data block with age less than 1GB as hot data 611 * define data block with age less than 10GB but more than 1GB as warm data 612 */ 613 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 614 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 615 616 /* extent cache type */ 617 enum extent_type { 618 EX_READ, 619 EX_BLOCK_AGE, 620 NR_EXTENT_CACHES, 621 }; 622 623 struct extent_info { 624 unsigned int fofs; /* start offset in a file */ 625 unsigned int len; /* length of the extent */ 626 union { 627 /* read extent_cache */ 628 struct { 629 /* start block address of the extent */ 630 block_t blk; 631 #ifdef CONFIG_F2FS_FS_COMPRESSION 632 /* physical extent length of compressed blocks */ 633 unsigned int c_len; 634 #endif 635 }; 636 /* block age extent_cache */ 637 struct { 638 /* block age of the extent */ 639 unsigned long long age; 640 /* last total blocks allocated */ 641 unsigned long long last_blocks; 642 }; 643 }; 644 }; 645 646 struct extent_node { 647 struct rb_node rb_node; /* rb node located in rb-tree */ 648 struct extent_info ei; /* extent info */ 649 struct list_head list; /* node in global extent list of sbi */ 650 struct extent_tree *et; /* extent tree pointer */ 651 }; 652 653 struct extent_tree { 654 nid_t ino; /* inode number */ 655 enum extent_type type; /* keep the extent tree type */ 656 struct rb_root_cached root; /* root of extent info rb-tree */ 657 struct extent_node *cached_en; /* recently accessed extent node */ 658 struct list_head list; /* to be used by sbi->zombie_list */ 659 rwlock_t lock; /* protect extent info rb-tree */ 660 atomic_t node_cnt; /* # of extent node in rb-tree*/ 661 bool largest_updated; /* largest extent updated */ 662 struct extent_info largest; /* largest cached extent for EX_READ */ 663 }; 664 665 struct extent_tree_info { 666 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 667 struct mutex extent_tree_lock; /* locking extent radix tree */ 668 struct list_head extent_list; /* lru list for shrinker */ 669 spinlock_t extent_lock; /* locking extent lru list */ 670 atomic_t total_ext_tree; /* extent tree count */ 671 struct list_head zombie_list; /* extent zombie tree list */ 672 atomic_t total_zombie_tree; /* extent zombie tree count */ 673 atomic_t total_ext_node; /* extent info count */ 674 }; 675 676 /* 677 * State of block returned by f2fs_map_blocks. 678 */ 679 #define F2FS_MAP_NEW (1U << 0) 680 #define F2FS_MAP_MAPPED (1U << 1) 681 #define F2FS_MAP_DELALLOC (1U << 2) 682 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 683 F2FS_MAP_DELALLOC) 684 685 struct f2fs_map_blocks { 686 struct block_device *m_bdev; /* for multi-device dio */ 687 block_t m_pblk; 688 block_t m_lblk; 689 unsigned int m_len; 690 unsigned int m_flags; 691 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 692 pgoff_t *m_next_extent; /* point to next possible extent */ 693 int m_seg_type; 694 bool m_may_create; /* indicate it is from write path */ 695 bool m_multidev_dio; /* indicate it allows multi-device dio */ 696 }; 697 698 /* for flag in get_data_block */ 699 enum { 700 F2FS_GET_BLOCK_DEFAULT, 701 F2FS_GET_BLOCK_FIEMAP, 702 F2FS_GET_BLOCK_BMAP, 703 F2FS_GET_BLOCK_DIO, 704 F2FS_GET_BLOCK_PRE_DIO, 705 F2FS_GET_BLOCK_PRE_AIO, 706 F2FS_GET_BLOCK_PRECACHE, 707 }; 708 709 /* 710 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 711 */ 712 #define FADVISE_COLD_BIT 0x01 713 #define FADVISE_LOST_PINO_BIT 0x02 714 #define FADVISE_ENCRYPT_BIT 0x04 715 #define FADVISE_ENC_NAME_BIT 0x08 716 #define FADVISE_KEEP_SIZE_BIT 0x10 717 #define FADVISE_HOT_BIT 0x20 718 #define FADVISE_VERITY_BIT 0x40 719 #define FADVISE_TRUNC_BIT 0x80 720 721 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 722 723 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 724 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 725 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 726 727 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 728 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 729 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 730 731 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 732 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 733 734 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 735 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 736 737 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 738 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 739 740 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 741 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 742 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 743 744 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 745 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 746 747 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 748 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 749 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 750 751 #define DEF_DIR_LEVEL 0 752 753 enum { 754 GC_FAILURE_PIN, 755 MAX_GC_FAILURE 756 }; 757 758 /* used for f2fs_inode_info->flags */ 759 enum { 760 FI_NEW_INODE, /* indicate newly allocated inode */ 761 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 762 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 763 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 764 FI_INC_LINK, /* need to increment i_nlink */ 765 FI_ACL_MODE, /* indicate acl mode */ 766 FI_NO_ALLOC, /* should not allocate any blocks */ 767 FI_FREE_NID, /* free allocated nide */ 768 FI_NO_EXTENT, /* not to use the extent cache */ 769 FI_INLINE_XATTR, /* used for inline xattr */ 770 FI_INLINE_DATA, /* used for inline data*/ 771 FI_INLINE_DENTRY, /* used for inline dentry */ 772 FI_APPEND_WRITE, /* inode has appended data */ 773 FI_UPDATE_WRITE, /* inode has in-place-update data */ 774 FI_NEED_IPU, /* used for ipu per file */ 775 FI_ATOMIC_FILE, /* indicate atomic file */ 776 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 777 FI_DROP_CACHE, /* drop dirty page cache */ 778 FI_DATA_EXIST, /* indicate data exists */ 779 FI_INLINE_DOTS, /* indicate inline dot dentries */ 780 FI_SKIP_WRITES, /* should skip data page writeback */ 781 FI_OPU_WRITE, /* used for opu per file */ 782 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 783 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 784 FI_HOT_DATA, /* indicate file is hot */ 785 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 786 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 787 FI_PIN_FILE, /* indicate file should not be gced */ 788 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 789 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 790 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 791 FI_MMAP_FILE, /* indicate file was mmapped */ 792 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 793 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 794 FI_ALIGNED_WRITE, /* enable aligned write */ 795 FI_COW_FILE, /* indicate COW file */ 796 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 797 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 798 FI_MAX, /* max flag, never be used */ 799 }; 800 801 struct f2fs_inode_info { 802 struct inode vfs_inode; /* serve a vfs inode */ 803 unsigned long i_flags; /* keep an inode flags for ioctl */ 804 unsigned char i_advise; /* use to give file attribute hints */ 805 unsigned char i_dir_level; /* use for dentry level for large dir */ 806 unsigned int i_current_depth; /* only for directory depth */ 807 /* for gc failure statistic */ 808 unsigned int i_gc_failures[MAX_GC_FAILURE]; 809 unsigned int i_pino; /* parent inode number */ 810 umode_t i_acl_mode; /* keep file acl mode temporarily */ 811 812 /* Use below internally in f2fs*/ 813 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 814 struct f2fs_rwsem i_sem; /* protect fi info */ 815 atomic_t dirty_pages; /* # of dirty pages */ 816 f2fs_hash_t chash; /* hash value of given file name */ 817 unsigned int clevel; /* maximum level of given file name */ 818 struct task_struct *task; /* lookup and create consistency */ 819 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 820 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 821 nid_t i_xattr_nid; /* node id that contains xattrs */ 822 loff_t last_disk_size; /* lastly written file size */ 823 spinlock_t i_size_lock; /* protect last_disk_size */ 824 825 #ifdef CONFIG_QUOTA 826 struct dquot *i_dquot[MAXQUOTAS]; 827 828 /* quota space reservation, managed internally by quota code */ 829 qsize_t i_reserved_quota; 830 #endif 831 struct list_head dirty_list; /* dirty list for dirs and files */ 832 struct list_head gdirty_list; /* linked in global dirty list */ 833 struct task_struct *atomic_write_task; /* store atomic write task */ 834 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 835 /* cached extent_tree entry */ 836 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 837 838 /* avoid racing between foreground op and gc */ 839 struct f2fs_rwsem i_gc_rwsem[2]; 840 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 841 842 int i_extra_isize; /* size of extra space located in i_addr */ 843 kprojid_t i_projid; /* id for project quota */ 844 int i_inline_xattr_size; /* inline xattr size */ 845 struct timespec64 i_crtime; /* inode creation time */ 846 struct timespec64 i_disk_time[4];/* inode disk times */ 847 848 /* for file compress */ 849 atomic_t i_compr_blocks; /* # of compressed blocks */ 850 unsigned char i_compress_algorithm; /* algorithm type */ 851 unsigned char i_log_cluster_size; /* log of cluster size */ 852 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 853 unsigned char i_compress_flag; /* compress flag */ 854 unsigned int i_cluster_size; /* cluster size */ 855 856 unsigned int atomic_write_cnt; 857 loff_t original_i_size; /* original i_size before atomic write */ 858 }; 859 860 static inline void get_read_extent_info(struct extent_info *ext, 861 struct f2fs_extent *i_ext) 862 { 863 ext->fofs = le32_to_cpu(i_ext->fofs); 864 ext->blk = le32_to_cpu(i_ext->blk); 865 ext->len = le32_to_cpu(i_ext->len); 866 } 867 868 static inline void set_raw_read_extent(struct extent_info *ext, 869 struct f2fs_extent *i_ext) 870 { 871 i_ext->fofs = cpu_to_le32(ext->fofs); 872 i_ext->blk = cpu_to_le32(ext->blk); 873 i_ext->len = cpu_to_le32(ext->len); 874 } 875 876 static inline bool __is_discard_mergeable(struct discard_info *back, 877 struct discard_info *front, unsigned int max_len) 878 { 879 return (back->lstart + back->len == front->lstart) && 880 (back->len + front->len <= max_len); 881 } 882 883 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 884 struct discard_info *back, unsigned int max_len) 885 { 886 return __is_discard_mergeable(back, cur, max_len); 887 } 888 889 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 890 struct discard_info *front, unsigned int max_len) 891 { 892 return __is_discard_mergeable(cur, front, max_len); 893 } 894 895 /* 896 * For free nid management 897 */ 898 enum nid_state { 899 FREE_NID, /* newly added to free nid list */ 900 PREALLOC_NID, /* it is preallocated */ 901 MAX_NID_STATE, 902 }; 903 904 enum nat_state { 905 TOTAL_NAT, 906 DIRTY_NAT, 907 RECLAIMABLE_NAT, 908 MAX_NAT_STATE, 909 }; 910 911 struct f2fs_nm_info { 912 block_t nat_blkaddr; /* base disk address of NAT */ 913 nid_t max_nid; /* maximum possible node ids */ 914 nid_t available_nids; /* # of available node ids */ 915 nid_t next_scan_nid; /* the next nid to be scanned */ 916 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 917 unsigned int ram_thresh; /* control the memory footprint */ 918 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 919 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 920 921 /* NAT cache management */ 922 struct radix_tree_root nat_root;/* root of the nat entry cache */ 923 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 924 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 925 struct list_head nat_entries; /* cached nat entry list (clean) */ 926 spinlock_t nat_list_lock; /* protect clean nat entry list */ 927 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 928 unsigned int nat_blocks; /* # of nat blocks */ 929 930 /* free node ids management */ 931 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 932 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 933 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 934 spinlock_t nid_list_lock; /* protect nid lists ops */ 935 struct mutex build_lock; /* lock for build free nids */ 936 unsigned char **free_nid_bitmap; 937 unsigned char *nat_block_bitmap; 938 unsigned short *free_nid_count; /* free nid count of NAT block */ 939 940 /* for checkpoint */ 941 char *nat_bitmap; /* NAT bitmap pointer */ 942 943 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 944 unsigned char *nat_bits; /* NAT bits blocks */ 945 unsigned char *full_nat_bits; /* full NAT pages */ 946 unsigned char *empty_nat_bits; /* empty NAT pages */ 947 #ifdef CONFIG_F2FS_CHECK_FS 948 char *nat_bitmap_mir; /* NAT bitmap mirror */ 949 #endif 950 int bitmap_size; /* bitmap size */ 951 }; 952 953 /* 954 * this structure is used as one of function parameters. 955 * all the information are dedicated to a given direct node block determined 956 * by the data offset in a file. 957 */ 958 struct dnode_of_data { 959 struct inode *inode; /* vfs inode pointer */ 960 struct page *inode_page; /* its inode page, NULL is possible */ 961 struct page *node_page; /* cached direct node page */ 962 nid_t nid; /* node id of the direct node block */ 963 unsigned int ofs_in_node; /* data offset in the node page */ 964 bool inode_page_locked; /* inode page is locked or not */ 965 bool node_changed; /* is node block changed */ 966 char cur_level; /* level of hole node page */ 967 char max_level; /* level of current page located */ 968 block_t data_blkaddr; /* block address of the node block */ 969 }; 970 971 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 972 struct page *ipage, struct page *npage, nid_t nid) 973 { 974 memset(dn, 0, sizeof(*dn)); 975 dn->inode = inode; 976 dn->inode_page = ipage; 977 dn->node_page = npage; 978 dn->nid = nid; 979 } 980 981 /* 982 * For SIT manager 983 * 984 * By default, there are 6 active log areas across the whole main area. 985 * When considering hot and cold data separation to reduce cleaning overhead, 986 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 987 * respectively. 988 * In the current design, you should not change the numbers intentionally. 989 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 990 * logs individually according to the underlying devices. (default: 6) 991 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 992 * data and 8 for node logs. 993 */ 994 #define NR_CURSEG_DATA_TYPE (3) 995 #define NR_CURSEG_NODE_TYPE (3) 996 #define NR_CURSEG_INMEM_TYPE (2) 997 #define NR_CURSEG_RO_TYPE (2) 998 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 999 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1000 1001 enum { 1002 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1003 CURSEG_WARM_DATA, /* data blocks */ 1004 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1005 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1006 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1007 CURSEG_COLD_NODE, /* indirect node blocks */ 1008 NR_PERSISTENT_LOG, /* number of persistent log */ 1009 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1010 /* pinned file that needs consecutive block address */ 1011 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1012 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1013 }; 1014 1015 struct flush_cmd { 1016 struct completion wait; 1017 struct llist_node llnode; 1018 nid_t ino; 1019 int ret; 1020 }; 1021 1022 struct flush_cmd_control { 1023 struct task_struct *f2fs_issue_flush; /* flush thread */ 1024 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1025 atomic_t issued_flush; /* # of issued flushes */ 1026 atomic_t queued_flush; /* # of queued flushes */ 1027 struct llist_head issue_list; /* list for command issue */ 1028 struct llist_node *dispatch_list; /* list for command dispatch */ 1029 }; 1030 1031 struct f2fs_sm_info { 1032 struct sit_info *sit_info; /* whole segment information */ 1033 struct free_segmap_info *free_info; /* free segment information */ 1034 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1035 struct curseg_info *curseg_array; /* active segment information */ 1036 1037 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1038 1039 block_t seg0_blkaddr; /* block address of 0'th segment */ 1040 block_t main_blkaddr; /* start block address of main area */ 1041 block_t ssa_blkaddr; /* start block address of SSA area */ 1042 1043 unsigned int segment_count; /* total # of segments */ 1044 unsigned int main_segments; /* # of segments in main area */ 1045 unsigned int reserved_segments; /* # of reserved segments */ 1046 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1047 unsigned int ovp_segments; /* # of overprovision segments */ 1048 1049 /* a threshold to reclaim prefree segments */ 1050 unsigned int rec_prefree_segments; 1051 1052 struct list_head sit_entry_set; /* sit entry set list */ 1053 1054 unsigned int ipu_policy; /* in-place-update policy */ 1055 unsigned int min_ipu_util; /* in-place-update threshold */ 1056 unsigned int min_fsync_blocks; /* threshold for fsync */ 1057 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1058 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1059 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1060 1061 /* for flush command control */ 1062 struct flush_cmd_control *fcc_info; 1063 1064 /* for discard command control */ 1065 struct discard_cmd_control *dcc_info; 1066 }; 1067 1068 /* 1069 * For superblock 1070 */ 1071 /* 1072 * COUNT_TYPE for monitoring 1073 * 1074 * f2fs monitors the number of several block types such as on-writeback, 1075 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1076 */ 1077 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1078 enum count_type { 1079 F2FS_DIRTY_DENTS, 1080 F2FS_DIRTY_DATA, 1081 F2FS_DIRTY_QDATA, 1082 F2FS_DIRTY_NODES, 1083 F2FS_DIRTY_META, 1084 F2FS_DIRTY_IMETA, 1085 F2FS_WB_CP_DATA, 1086 F2FS_WB_DATA, 1087 F2FS_RD_DATA, 1088 F2FS_RD_NODE, 1089 F2FS_RD_META, 1090 F2FS_DIO_WRITE, 1091 F2FS_DIO_READ, 1092 NR_COUNT_TYPE, 1093 }; 1094 1095 /* 1096 * The below are the page types of bios used in submit_bio(). 1097 * The available types are: 1098 * DATA User data pages. It operates as async mode. 1099 * NODE Node pages. It operates as async mode. 1100 * META FS metadata pages such as SIT, NAT, CP. 1101 * NR_PAGE_TYPE The number of page types. 1102 * META_FLUSH Make sure the previous pages are written 1103 * with waiting the bio's completion 1104 * ... Only can be used with META. 1105 */ 1106 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1107 enum page_type { 1108 DATA = 0, 1109 NODE = 1, /* should not change this */ 1110 META, 1111 NR_PAGE_TYPE, 1112 META_FLUSH, 1113 IPU, /* the below types are used by tracepoints only. */ 1114 OPU, 1115 }; 1116 1117 enum temp_type { 1118 HOT = 0, /* must be zero for meta bio */ 1119 WARM, 1120 COLD, 1121 NR_TEMP_TYPE, 1122 }; 1123 1124 enum need_lock_type { 1125 LOCK_REQ = 0, 1126 LOCK_DONE, 1127 LOCK_RETRY, 1128 }; 1129 1130 enum cp_reason_type { 1131 CP_NO_NEEDED, 1132 CP_NON_REGULAR, 1133 CP_COMPRESSED, 1134 CP_HARDLINK, 1135 CP_SB_NEED_CP, 1136 CP_WRONG_PINO, 1137 CP_NO_SPC_ROLL, 1138 CP_NODE_NEED_CP, 1139 CP_FASTBOOT_MODE, 1140 CP_SPEC_LOG_NUM, 1141 CP_RECOVER_DIR, 1142 }; 1143 1144 enum iostat_type { 1145 /* WRITE IO */ 1146 APP_DIRECT_IO, /* app direct write IOs */ 1147 APP_BUFFERED_IO, /* app buffered write IOs */ 1148 APP_WRITE_IO, /* app write IOs */ 1149 APP_MAPPED_IO, /* app mapped IOs */ 1150 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1151 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1152 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1153 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1154 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1155 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1156 FS_GC_DATA_IO, /* data IOs from forground gc */ 1157 FS_GC_NODE_IO, /* node IOs from forground gc */ 1158 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1159 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1160 FS_CP_META_IO, /* meta IOs from checkpoint */ 1161 1162 /* READ IO */ 1163 APP_DIRECT_READ_IO, /* app direct read IOs */ 1164 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1165 APP_READ_IO, /* app read IOs */ 1166 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1167 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1168 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1169 FS_DATA_READ_IO, /* data read IOs */ 1170 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1171 FS_CDATA_READ_IO, /* compressed data read IOs */ 1172 FS_NODE_READ_IO, /* node read IOs */ 1173 FS_META_READ_IO, /* meta read IOs */ 1174 1175 /* other */ 1176 FS_DISCARD_IO, /* discard */ 1177 FS_FLUSH_IO, /* flush */ 1178 NR_IO_TYPE, 1179 }; 1180 1181 struct f2fs_io_info { 1182 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1183 nid_t ino; /* inode number */ 1184 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1185 enum temp_type temp; /* contains HOT/WARM/COLD */ 1186 enum req_op op; /* contains REQ_OP_ */ 1187 blk_opf_t op_flags; /* req_flag_bits */ 1188 block_t new_blkaddr; /* new block address to be written */ 1189 block_t old_blkaddr; /* old block address before Cow */ 1190 struct page *page; /* page to be written */ 1191 struct page *encrypted_page; /* encrypted page */ 1192 struct page *compressed_page; /* compressed page */ 1193 struct list_head list; /* serialize IOs */ 1194 unsigned int compr_blocks; /* # of compressed block addresses */ 1195 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1196 unsigned int version:8; /* version of the node */ 1197 unsigned int submitted:1; /* indicate IO submission */ 1198 unsigned int in_list:1; /* indicate fio is in io_list */ 1199 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1200 unsigned int retry:1; /* need to reallocate block address */ 1201 unsigned int encrypted:1; /* indicate file is encrypted */ 1202 unsigned int post_read:1; /* require post read */ 1203 enum iostat_type io_type; /* io type */ 1204 struct writeback_control *io_wbc; /* writeback control */ 1205 struct bio **bio; /* bio for ipu */ 1206 sector_t *last_block; /* last block number in bio */ 1207 }; 1208 1209 struct bio_entry { 1210 struct bio *bio; 1211 struct list_head list; 1212 }; 1213 1214 #define is_read_io(rw) ((rw) == READ) 1215 struct f2fs_bio_info { 1216 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1217 struct bio *bio; /* bios to merge */ 1218 sector_t last_block_in_bio; /* last block number */ 1219 struct f2fs_io_info fio; /* store buffered io info. */ 1220 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1221 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1222 struct list_head io_list; /* track fios */ 1223 struct list_head bio_list; /* bio entry list head */ 1224 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1225 }; 1226 1227 #define FDEV(i) (sbi->devs[i]) 1228 #define RDEV(i) (raw_super->devs[i]) 1229 struct f2fs_dev_info { 1230 struct block_device *bdev; 1231 char path[MAX_PATH_LEN]; 1232 unsigned int total_segments; 1233 block_t start_blk; 1234 block_t end_blk; 1235 #ifdef CONFIG_BLK_DEV_ZONED 1236 unsigned int nr_blkz; /* Total number of zones */ 1237 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1238 #endif 1239 }; 1240 1241 enum inode_type { 1242 DIR_INODE, /* for dirty dir inode */ 1243 FILE_INODE, /* for dirty regular/symlink inode */ 1244 DIRTY_META, /* for all dirtied inode metadata */ 1245 NR_INODE_TYPE, 1246 }; 1247 1248 /* for inner inode cache management */ 1249 struct inode_management { 1250 struct radix_tree_root ino_root; /* ino entry array */ 1251 spinlock_t ino_lock; /* for ino entry lock */ 1252 struct list_head ino_list; /* inode list head */ 1253 unsigned long ino_num; /* number of entries */ 1254 }; 1255 1256 /* for GC_AT */ 1257 struct atgc_management { 1258 bool atgc_enabled; /* ATGC is enabled or not */ 1259 struct rb_root_cached root; /* root of victim rb-tree */ 1260 struct list_head victim_list; /* linked with all victim entries */ 1261 unsigned int victim_count; /* victim count in rb-tree */ 1262 unsigned int candidate_ratio; /* candidate ratio */ 1263 unsigned int max_candidate_count; /* max candidate count */ 1264 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1265 unsigned long long age_threshold; /* age threshold */ 1266 }; 1267 1268 struct f2fs_gc_control { 1269 unsigned int victim_segno; /* target victim segment number */ 1270 int init_gc_type; /* FG_GC or BG_GC */ 1271 bool no_bg_gc; /* check the space and stop bg_gc */ 1272 bool should_migrate_blocks; /* should migrate blocks */ 1273 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1274 unsigned int nr_free_secs; /* # of free sections to do GC */ 1275 }; 1276 1277 /* 1278 * For s_flag in struct f2fs_sb_info 1279 * Modification on enum should be synchronized with s_flag array 1280 */ 1281 enum { 1282 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1283 SBI_IS_CLOSE, /* specify unmounting */ 1284 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1285 SBI_POR_DOING, /* recovery is doing or not */ 1286 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1287 SBI_NEED_CP, /* need to checkpoint */ 1288 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1289 SBI_IS_RECOVERED, /* recovered orphan/data */ 1290 SBI_CP_DISABLED, /* CP was disabled last mount */ 1291 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1292 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1293 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1294 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1295 SBI_IS_RESIZEFS, /* resizefs is in process */ 1296 SBI_IS_FREEZING, /* freezefs is in process */ 1297 MAX_SBI_FLAG, 1298 }; 1299 1300 enum { 1301 CP_TIME, 1302 REQ_TIME, 1303 DISCARD_TIME, 1304 GC_TIME, 1305 DISABLE_TIME, 1306 UMOUNT_DISCARD_TIMEOUT, 1307 MAX_TIME, 1308 }; 1309 1310 /* Note that you need to keep synchronization with this gc_mode_names array */ 1311 enum { 1312 GC_NORMAL, 1313 GC_IDLE_CB, 1314 GC_IDLE_GREEDY, 1315 GC_IDLE_AT, 1316 GC_URGENT_HIGH, 1317 GC_URGENT_LOW, 1318 GC_URGENT_MID, 1319 MAX_GC_MODE, 1320 }; 1321 1322 enum { 1323 BGGC_MODE_ON, /* background gc is on */ 1324 BGGC_MODE_OFF, /* background gc is off */ 1325 BGGC_MODE_SYNC, /* 1326 * background gc is on, migrating blocks 1327 * like foreground gc 1328 */ 1329 }; 1330 1331 enum { 1332 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1333 FS_MODE_LFS, /* use lfs allocation only */ 1334 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1335 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1336 }; 1337 1338 enum { 1339 ALLOC_MODE_DEFAULT, /* stay default */ 1340 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1341 }; 1342 1343 enum fsync_mode { 1344 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1345 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1346 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1347 }; 1348 1349 enum { 1350 COMPR_MODE_FS, /* 1351 * automatically compress compression 1352 * enabled files 1353 */ 1354 COMPR_MODE_USER, /* 1355 * automatical compression is disabled. 1356 * user can control the file compression 1357 * using ioctls 1358 */ 1359 }; 1360 1361 enum { 1362 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1363 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1364 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1365 }; 1366 1367 enum { 1368 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1369 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1370 }; 1371 1372 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1373 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1374 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1375 1376 /* 1377 * Layout of f2fs page.private: 1378 * 1379 * Layout A: lowest bit should be 1 1380 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1381 * bit 0 PAGE_PRIVATE_NOT_POINTER 1382 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1383 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1384 * bit 3 PAGE_PRIVATE_INLINE_INODE 1385 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1386 * bit 5- f2fs private data 1387 * 1388 * Layout B: lowest bit should be 0 1389 * page.private is a wrapped pointer. 1390 */ 1391 enum { 1392 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1393 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1394 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1395 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1396 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1397 PAGE_PRIVATE_MAX 1398 }; 1399 1400 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1401 static inline bool page_private_##name(struct page *page) \ 1402 { \ 1403 return PagePrivate(page) && \ 1404 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1405 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1406 } 1407 1408 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1409 static inline void set_page_private_##name(struct page *page) \ 1410 { \ 1411 if (!PagePrivate(page)) { \ 1412 get_page(page); \ 1413 SetPagePrivate(page); \ 1414 set_page_private(page, 0); \ 1415 } \ 1416 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1417 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1418 } 1419 1420 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1421 static inline void clear_page_private_##name(struct page *page) \ 1422 { \ 1423 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1424 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) { \ 1425 set_page_private(page, 0); \ 1426 if (PagePrivate(page)) { \ 1427 ClearPagePrivate(page); \ 1428 put_page(page); \ 1429 }\ 1430 } \ 1431 } 1432 1433 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1434 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1435 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1436 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1437 1438 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1439 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1440 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1441 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1442 1443 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1444 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1445 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1446 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1447 1448 static inline unsigned long get_page_private_data(struct page *page) 1449 { 1450 unsigned long data = page_private(page); 1451 1452 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1453 return 0; 1454 return data >> PAGE_PRIVATE_MAX; 1455 } 1456 1457 static inline void set_page_private_data(struct page *page, unsigned long data) 1458 { 1459 if (!PagePrivate(page)) { 1460 get_page(page); 1461 SetPagePrivate(page); 1462 set_page_private(page, 0); 1463 } 1464 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1465 page_private(page) |= data << PAGE_PRIVATE_MAX; 1466 } 1467 1468 static inline void clear_page_private_data(struct page *page) 1469 { 1470 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 1471 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) { 1472 set_page_private(page, 0); 1473 if (PagePrivate(page)) { 1474 ClearPagePrivate(page); 1475 put_page(page); 1476 } 1477 } 1478 } 1479 1480 /* For compression */ 1481 enum compress_algorithm_type { 1482 COMPRESS_LZO, 1483 COMPRESS_LZ4, 1484 COMPRESS_ZSTD, 1485 COMPRESS_LZORLE, 1486 COMPRESS_MAX, 1487 }; 1488 1489 enum compress_flag { 1490 COMPRESS_CHKSUM, 1491 COMPRESS_MAX_FLAG, 1492 }; 1493 1494 #define COMPRESS_WATERMARK 20 1495 #define COMPRESS_PERCENT 20 1496 1497 #define COMPRESS_DATA_RESERVED_SIZE 4 1498 struct compress_data { 1499 __le32 clen; /* compressed data size */ 1500 __le32 chksum; /* compressed data chksum */ 1501 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1502 u8 cdata[]; /* compressed data */ 1503 }; 1504 1505 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1506 1507 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1508 1509 #define COMPRESS_LEVEL_OFFSET 8 1510 1511 /* compress context */ 1512 struct compress_ctx { 1513 struct inode *inode; /* inode the context belong to */ 1514 pgoff_t cluster_idx; /* cluster index number */ 1515 unsigned int cluster_size; /* page count in cluster */ 1516 unsigned int log_cluster_size; /* log of cluster size */ 1517 struct page **rpages; /* pages store raw data in cluster */ 1518 unsigned int nr_rpages; /* total page number in rpages */ 1519 struct page **cpages; /* pages store compressed data in cluster */ 1520 unsigned int nr_cpages; /* total page number in cpages */ 1521 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1522 void *rbuf; /* virtual mapped address on rpages */ 1523 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1524 size_t rlen; /* valid data length in rbuf */ 1525 size_t clen; /* valid data length in cbuf */ 1526 void *private; /* payload buffer for specified compression algorithm */ 1527 void *private2; /* extra payload buffer */ 1528 }; 1529 1530 /* compress context for write IO path */ 1531 struct compress_io_ctx { 1532 u32 magic; /* magic number to indicate page is compressed */ 1533 struct inode *inode; /* inode the context belong to */ 1534 struct page **rpages; /* pages store raw data in cluster */ 1535 unsigned int nr_rpages; /* total page number in rpages */ 1536 atomic_t pending_pages; /* in-flight compressed page count */ 1537 }; 1538 1539 /* Context for decompressing one cluster on the read IO path */ 1540 struct decompress_io_ctx { 1541 u32 magic; /* magic number to indicate page is compressed */ 1542 struct inode *inode; /* inode the context belong to */ 1543 pgoff_t cluster_idx; /* cluster index number */ 1544 unsigned int cluster_size; /* page count in cluster */ 1545 unsigned int log_cluster_size; /* log of cluster size */ 1546 struct page **rpages; /* pages store raw data in cluster */ 1547 unsigned int nr_rpages; /* total page number in rpages */ 1548 struct page **cpages; /* pages store compressed data in cluster */ 1549 unsigned int nr_cpages; /* total page number in cpages */ 1550 struct page **tpages; /* temp pages to pad holes in cluster */ 1551 void *rbuf; /* virtual mapped address on rpages */ 1552 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1553 size_t rlen; /* valid data length in rbuf */ 1554 size_t clen; /* valid data length in cbuf */ 1555 1556 /* 1557 * The number of compressed pages remaining to be read in this cluster. 1558 * This is initially nr_cpages. It is decremented by 1 each time a page 1559 * has been read (or failed to be read). When it reaches 0, the cluster 1560 * is decompressed (or an error is reported). 1561 * 1562 * If an error occurs before all the pages have been submitted for I/O, 1563 * then this will never reach 0. In this case the I/O submitter is 1564 * responsible for calling f2fs_decompress_end_io() instead. 1565 */ 1566 atomic_t remaining_pages; 1567 1568 /* 1569 * Number of references to this decompress_io_ctx. 1570 * 1571 * One reference is held for I/O completion. This reference is dropped 1572 * after the pagecache pages are updated and unlocked -- either after 1573 * decompression (and verity if enabled), or after an error. 1574 * 1575 * In addition, each compressed page holds a reference while it is in a 1576 * bio. These references are necessary prevent compressed pages from 1577 * being freed while they are still in a bio. 1578 */ 1579 refcount_t refcnt; 1580 1581 bool failed; /* IO error occurred before decompression? */ 1582 bool need_verity; /* need fs-verity verification after decompression? */ 1583 void *private; /* payload buffer for specified decompression algorithm */ 1584 void *private2; /* extra payload buffer */ 1585 struct work_struct verity_work; /* work to verify the decompressed pages */ 1586 struct work_struct free_work; /* work for late free this structure itself */ 1587 }; 1588 1589 #define NULL_CLUSTER ((unsigned int)(~0)) 1590 #define MIN_COMPRESS_LOG_SIZE 2 1591 #define MAX_COMPRESS_LOG_SIZE 8 1592 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1593 1594 struct f2fs_sb_info { 1595 struct super_block *sb; /* pointer to VFS super block */ 1596 struct proc_dir_entry *s_proc; /* proc entry */ 1597 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1598 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1599 int valid_super_block; /* valid super block no */ 1600 unsigned long s_flag; /* flags for sbi */ 1601 struct mutex writepages; /* mutex for writepages() */ 1602 1603 #ifdef CONFIG_BLK_DEV_ZONED 1604 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1605 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1606 #endif 1607 1608 /* for node-related operations */ 1609 struct f2fs_nm_info *nm_info; /* node manager */ 1610 struct inode *node_inode; /* cache node blocks */ 1611 1612 /* for segment-related operations */ 1613 struct f2fs_sm_info *sm_info; /* segment manager */ 1614 1615 /* for bio operations */ 1616 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1617 /* keep migration IO order for LFS mode */ 1618 struct f2fs_rwsem io_order_lock; 1619 mempool_t *write_io_dummy; /* Dummy pages */ 1620 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1621 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1622 1623 /* for checkpoint */ 1624 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1625 int cur_cp_pack; /* remain current cp pack */ 1626 spinlock_t cp_lock; /* for flag in ckpt */ 1627 struct inode *meta_inode; /* cache meta blocks */ 1628 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1629 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1630 struct f2fs_rwsem node_write; /* locking node writes */ 1631 struct f2fs_rwsem node_change; /* locking node change */ 1632 wait_queue_head_t cp_wait; 1633 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1634 long interval_time[MAX_TIME]; /* to store thresholds */ 1635 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1636 1637 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1638 1639 spinlock_t fsync_node_lock; /* for node entry lock */ 1640 struct list_head fsync_node_list; /* node list head */ 1641 unsigned int fsync_seg_id; /* sequence id */ 1642 unsigned int fsync_node_num; /* number of node entries */ 1643 1644 /* for orphan inode, use 0'th array */ 1645 unsigned int max_orphans; /* max orphan inodes */ 1646 1647 /* for inode management */ 1648 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1649 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1650 struct mutex flush_lock; /* for flush exclusion */ 1651 1652 /* for extent tree cache */ 1653 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1654 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1655 1656 /* The threshold used for hot and warm data seperation*/ 1657 unsigned int hot_data_age_threshold; 1658 unsigned int warm_data_age_threshold; 1659 unsigned int last_age_weight; 1660 1661 /* basic filesystem units */ 1662 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1663 unsigned int log_blocksize; /* log2 block size */ 1664 unsigned int blocksize; /* block size */ 1665 unsigned int root_ino_num; /* root inode number*/ 1666 unsigned int node_ino_num; /* node inode number*/ 1667 unsigned int meta_ino_num; /* meta inode number*/ 1668 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1669 unsigned int blocks_per_seg; /* blocks per segment */ 1670 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1671 unsigned int segs_per_sec; /* segments per section */ 1672 unsigned int secs_per_zone; /* sections per zone */ 1673 unsigned int total_sections; /* total section count */ 1674 unsigned int total_node_count; /* total node block count */ 1675 unsigned int total_valid_node_count; /* valid node block count */ 1676 int dir_level; /* directory level */ 1677 bool readdir_ra; /* readahead inode in readdir */ 1678 u64 max_io_bytes; /* max io bytes to merge IOs */ 1679 1680 block_t user_block_count; /* # of user blocks */ 1681 block_t total_valid_block_count; /* # of valid blocks */ 1682 block_t discard_blks; /* discard command candidats */ 1683 block_t last_valid_block_count; /* for recovery */ 1684 block_t reserved_blocks; /* configurable reserved blocks */ 1685 block_t current_reserved_blocks; /* current reserved blocks */ 1686 1687 /* Additional tracking for no checkpoint mode */ 1688 block_t unusable_block_count; /* # of blocks saved by last cp */ 1689 1690 unsigned int nquota_files; /* # of quota sysfile */ 1691 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1692 1693 /* # of pages, see count_type */ 1694 atomic_t nr_pages[NR_COUNT_TYPE]; 1695 /* # of allocated blocks */ 1696 struct percpu_counter alloc_valid_block_count; 1697 /* # of node block writes as roll forward recovery */ 1698 struct percpu_counter rf_node_block_count; 1699 1700 /* writeback control */ 1701 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1702 1703 /* valid inode count */ 1704 struct percpu_counter total_valid_inode_count; 1705 1706 struct f2fs_mount_info mount_opt; /* mount options */ 1707 1708 /* for cleaning operations */ 1709 struct f2fs_rwsem gc_lock; /* 1710 * semaphore for GC, avoid 1711 * race between GC and GC or CP 1712 */ 1713 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1714 struct atgc_management am; /* atgc management */ 1715 unsigned int cur_victim_sec; /* current victim section num */ 1716 unsigned int gc_mode; /* current GC state */ 1717 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1718 spinlock_t gc_remaining_trials_lock; 1719 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1720 unsigned int gc_remaining_trials; 1721 1722 /* for skip statistic */ 1723 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1724 1725 /* threshold for gc trials on pinned files */ 1726 u64 gc_pin_file_threshold; 1727 struct f2fs_rwsem pin_sem; 1728 1729 /* maximum # of trials to find a victim segment for SSR and GC */ 1730 unsigned int max_victim_search; 1731 /* migration granularity of garbage collection, unit: segment */ 1732 unsigned int migration_granularity; 1733 1734 /* 1735 * for stat information. 1736 * one is for the LFS mode, and the other is for the SSR mode. 1737 */ 1738 #ifdef CONFIG_F2FS_STAT_FS 1739 struct f2fs_stat_info *stat_info; /* FS status information */ 1740 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1741 unsigned int segment_count[2]; /* # of allocated segments */ 1742 unsigned int block_count[2]; /* # of allocated blocks */ 1743 atomic_t inplace_count; /* # of inplace update */ 1744 /* # of lookup extent cache */ 1745 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1746 /* # of hit rbtree extent node */ 1747 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1748 /* # of hit cached extent node */ 1749 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1750 /* # of hit largest extent node in read extent cache */ 1751 atomic64_t read_hit_largest; 1752 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1753 atomic_t inline_inode; /* # of inline_data inodes */ 1754 atomic_t inline_dir; /* # of inline_dentry inodes */ 1755 atomic_t compr_inode; /* # of compressed inodes */ 1756 atomic64_t compr_blocks; /* # of compressed blocks */ 1757 atomic_t swapfile_inode; /* # of swapfile inodes */ 1758 atomic_t atomic_files; /* # of opened atomic file */ 1759 atomic_t max_aw_cnt; /* max # of atomic writes */ 1760 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1761 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1762 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1763 #endif 1764 spinlock_t stat_lock; /* lock for stat operations */ 1765 1766 /* to attach REQ_META|REQ_FUA flags */ 1767 unsigned int data_io_flag; 1768 unsigned int node_io_flag; 1769 1770 /* For sysfs support */ 1771 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1772 struct completion s_kobj_unregister; 1773 1774 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1775 struct completion s_stat_kobj_unregister; 1776 1777 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1778 struct completion s_feature_list_kobj_unregister; 1779 1780 /* For shrinker support */ 1781 struct list_head s_list; 1782 struct mutex umount_mutex; 1783 unsigned int shrinker_run_no; 1784 1785 /* For multi devices */ 1786 int s_ndevs; /* number of devices */ 1787 struct f2fs_dev_info *devs; /* for device list */ 1788 unsigned int dirty_device; /* for checkpoint data flush */ 1789 spinlock_t dev_lock; /* protect dirty_device */ 1790 bool aligned_blksize; /* all devices has the same logical blksize */ 1791 1792 /* For write statistics */ 1793 u64 sectors_written_start; 1794 u64 kbytes_written; 1795 1796 /* Reference to checksum algorithm driver via cryptoapi */ 1797 struct crypto_shash *s_chksum_driver; 1798 1799 /* Precomputed FS UUID checksum for seeding other checksums */ 1800 __u32 s_chksum_seed; 1801 1802 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1803 1804 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1805 spinlock_t error_lock; /* protect errors array */ 1806 bool error_dirty; /* errors of sb is dirty */ 1807 1808 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1809 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1810 1811 /* For reclaimed segs statistics per each GC mode */ 1812 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1813 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1814 1815 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1816 1817 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1818 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1819 1820 /* For atomic write statistics */ 1821 atomic64_t current_atomic_write; 1822 s64 peak_atomic_write; 1823 u64 committed_atomic_block; 1824 u64 revoked_atomic_block; 1825 1826 #ifdef CONFIG_F2FS_FS_COMPRESSION 1827 struct kmem_cache *page_array_slab; /* page array entry */ 1828 unsigned int page_array_slab_size; /* default page array slab size */ 1829 1830 /* For runtime compression statistics */ 1831 u64 compr_written_block; 1832 u64 compr_saved_block; 1833 u32 compr_new_inode; 1834 1835 /* For compressed block cache */ 1836 struct inode *compress_inode; /* cache compressed blocks */ 1837 unsigned int compress_percent; /* cache page percentage */ 1838 unsigned int compress_watermark; /* cache page watermark */ 1839 atomic_t compress_page_hit; /* cache hit count */ 1840 #endif 1841 1842 #ifdef CONFIG_F2FS_IOSTAT 1843 /* For app/fs IO statistics */ 1844 spinlock_t iostat_lock; 1845 unsigned long long iostat_count[NR_IO_TYPE]; 1846 unsigned long long iostat_bytes[NR_IO_TYPE]; 1847 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1848 bool iostat_enable; 1849 unsigned long iostat_next_period; 1850 unsigned int iostat_period_ms; 1851 1852 /* For io latency related statistics info in one iostat period */ 1853 spinlock_t iostat_lat_lock; 1854 struct iostat_lat_info *iostat_io_lat; 1855 #endif 1856 }; 1857 1858 #ifdef CONFIG_F2FS_FAULT_INJECTION 1859 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1860 __builtin_return_address(0)) 1861 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1862 const char *func, const char *parent_func) 1863 { 1864 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1865 1866 if (!ffi->inject_rate) 1867 return false; 1868 1869 if (!IS_FAULT_SET(ffi, type)) 1870 return false; 1871 1872 atomic_inc(&ffi->inject_ops); 1873 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1874 atomic_set(&ffi->inject_ops, 0); 1875 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", 1876 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type], 1877 func, parent_func); 1878 return true; 1879 } 1880 return false; 1881 } 1882 #else 1883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1884 { 1885 return false; 1886 } 1887 #endif 1888 1889 /* 1890 * Test if the mounted volume is a multi-device volume. 1891 * - For a single regular disk volume, sbi->s_ndevs is 0. 1892 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1893 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1894 */ 1895 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1896 { 1897 return sbi->s_ndevs > 1; 1898 } 1899 1900 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1901 { 1902 unsigned long now = jiffies; 1903 1904 sbi->last_time[type] = now; 1905 1906 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1907 if (type == REQ_TIME) { 1908 sbi->last_time[DISCARD_TIME] = now; 1909 sbi->last_time[GC_TIME] = now; 1910 } 1911 } 1912 1913 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1914 { 1915 unsigned long interval = sbi->interval_time[type] * HZ; 1916 1917 return time_after(jiffies, sbi->last_time[type] + interval); 1918 } 1919 1920 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1921 int type) 1922 { 1923 unsigned long interval = sbi->interval_time[type] * HZ; 1924 unsigned int wait_ms = 0; 1925 long delta; 1926 1927 delta = (sbi->last_time[type] + interval) - jiffies; 1928 if (delta > 0) 1929 wait_ms = jiffies_to_msecs(delta); 1930 1931 return wait_ms; 1932 } 1933 1934 /* 1935 * Inline functions 1936 */ 1937 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1938 const void *address, unsigned int length) 1939 { 1940 struct { 1941 struct shash_desc shash; 1942 char ctx[4]; 1943 } desc; 1944 int err; 1945 1946 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1947 1948 desc.shash.tfm = sbi->s_chksum_driver; 1949 *(u32 *)desc.ctx = crc; 1950 1951 err = crypto_shash_update(&desc.shash, address, length); 1952 BUG_ON(err); 1953 1954 return *(u32 *)desc.ctx; 1955 } 1956 1957 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1958 unsigned int length) 1959 { 1960 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1961 } 1962 1963 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1964 void *buf, size_t buf_size) 1965 { 1966 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1967 } 1968 1969 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1970 const void *address, unsigned int length) 1971 { 1972 return __f2fs_crc32(sbi, crc, address, length); 1973 } 1974 1975 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1976 { 1977 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1978 } 1979 1980 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1981 { 1982 return sb->s_fs_info; 1983 } 1984 1985 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1986 { 1987 return F2FS_SB(inode->i_sb); 1988 } 1989 1990 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1991 { 1992 return F2FS_I_SB(mapping->host); 1993 } 1994 1995 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1996 { 1997 return F2FS_M_SB(page_file_mapping(page)); 1998 } 1999 2000 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 2001 { 2002 return (struct f2fs_super_block *)(sbi->raw_super); 2003 } 2004 2005 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 2006 { 2007 return (struct f2fs_checkpoint *)(sbi->ckpt); 2008 } 2009 2010 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2011 { 2012 return (struct f2fs_node *)page_address(page); 2013 } 2014 2015 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2016 { 2017 return &((struct f2fs_node *)page_address(page))->i; 2018 } 2019 2020 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2021 { 2022 return (struct f2fs_nm_info *)(sbi->nm_info); 2023 } 2024 2025 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2026 { 2027 return (struct f2fs_sm_info *)(sbi->sm_info); 2028 } 2029 2030 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2031 { 2032 return (struct sit_info *)(SM_I(sbi)->sit_info); 2033 } 2034 2035 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2036 { 2037 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2038 } 2039 2040 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2041 { 2042 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2043 } 2044 2045 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2046 { 2047 return sbi->meta_inode->i_mapping; 2048 } 2049 2050 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2051 { 2052 return sbi->node_inode->i_mapping; 2053 } 2054 2055 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2056 { 2057 return test_bit(type, &sbi->s_flag); 2058 } 2059 2060 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2061 { 2062 set_bit(type, &sbi->s_flag); 2063 } 2064 2065 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2066 { 2067 clear_bit(type, &sbi->s_flag); 2068 } 2069 2070 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2071 { 2072 return le64_to_cpu(cp->checkpoint_ver); 2073 } 2074 2075 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2076 { 2077 if (type < F2FS_MAX_QUOTAS) 2078 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2079 return 0; 2080 } 2081 2082 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2083 { 2084 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2085 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2086 } 2087 2088 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2089 { 2090 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2091 2092 return ckpt_flags & f; 2093 } 2094 2095 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2096 { 2097 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2098 } 2099 2100 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2101 { 2102 unsigned int ckpt_flags; 2103 2104 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2105 ckpt_flags |= f; 2106 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2107 } 2108 2109 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2110 { 2111 unsigned long flags; 2112 2113 spin_lock_irqsave(&sbi->cp_lock, flags); 2114 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2115 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2116 } 2117 2118 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2119 { 2120 unsigned int ckpt_flags; 2121 2122 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2123 ckpt_flags &= (~f); 2124 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2125 } 2126 2127 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2128 { 2129 unsigned long flags; 2130 2131 spin_lock_irqsave(&sbi->cp_lock, flags); 2132 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2133 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2134 } 2135 2136 #define init_f2fs_rwsem(sem) \ 2137 do { \ 2138 static struct lock_class_key __key; \ 2139 \ 2140 __init_f2fs_rwsem((sem), #sem, &__key); \ 2141 } while (0) 2142 2143 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2144 const char *sem_name, struct lock_class_key *key) 2145 { 2146 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2147 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2148 init_waitqueue_head(&sem->read_waiters); 2149 #endif 2150 } 2151 2152 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2153 { 2154 return rwsem_is_locked(&sem->internal_rwsem); 2155 } 2156 2157 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2158 { 2159 return rwsem_is_contended(&sem->internal_rwsem); 2160 } 2161 2162 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2163 { 2164 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2165 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2166 #else 2167 down_read(&sem->internal_rwsem); 2168 #endif 2169 } 2170 2171 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2172 { 2173 return down_read_trylock(&sem->internal_rwsem); 2174 } 2175 2176 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2177 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2178 { 2179 down_read_nested(&sem->internal_rwsem, subclass); 2180 } 2181 #else 2182 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2183 #endif 2184 2185 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2186 { 2187 up_read(&sem->internal_rwsem); 2188 } 2189 2190 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2191 { 2192 down_write(&sem->internal_rwsem); 2193 } 2194 2195 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2196 { 2197 return down_write_trylock(&sem->internal_rwsem); 2198 } 2199 2200 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2201 { 2202 up_write(&sem->internal_rwsem); 2203 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2204 wake_up_all(&sem->read_waiters); 2205 #endif 2206 } 2207 2208 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2209 { 2210 f2fs_down_read(&sbi->cp_rwsem); 2211 } 2212 2213 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2214 { 2215 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2216 return 0; 2217 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2218 } 2219 2220 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2221 { 2222 f2fs_up_read(&sbi->cp_rwsem); 2223 } 2224 2225 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2226 { 2227 f2fs_down_write(&sbi->cp_rwsem); 2228 } 2229 2230 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2231 { 2232 f2fs_up_write(&sbi->cp_rwsem); 2233 } 2234 2235 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2236 { 2237 int reason = CP_SYNC; 2238 2239 if (test_opt(sbi, FASTBOOT)) 2240 reason = CP_FASTBOOT; 2241 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2242 reason = CP_UMOUNT; 2243 return reason; 2244 } 2245 2246 static inline bool __remain_node_summaries(int reason) 2247 { 2248 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2249 } 2250 2251 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2252 { 2253 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2254 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2255 } 2256 2257 /* 2258 * Check whether the inode has blocks or not 2259 */ 2260 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2261 { 2262 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2263 2264 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2265 } 2266 2267 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2268 { 2269 return ofs == XATTR_NODE_OFFSET; 2270 } 2271 2272 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2273 struct inode *inode, bool cap) 2274 { 2275 if (!inode) 2276 return true; 2277 if (!test_opt(sbi, RESERVE_ROOT)) 2278 return false; 2279 if (IS_NOQUOTA(inode)) 2280 return true; 2281 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2282 return true; 2283 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2284 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2285 return true; 2286 if (cap && capable(CAP_SYS_RESOURCE)) 2287 return true; 2288 return false; 2289 } 2290 2291 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2292 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2293 struct inode *inode, blkcnt_t *count) 2294 { 2295 blkcnt_t diff = 0, release = 0; 2296 block_t avail_user_block_count; 2297 int ret; 2298 2299 ret = dquot_reserve_block(inode, *count); 2300 if (ret) 2301 return ret; 2302 2303 if (time_to_inject(sbi, FAULT_BLOCK)) { 2304 release = *count; 2305 goto release_quota; 2306 } 2307 2308 /* 2309 * let's increase this in prior to actual block count change in order 2310 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2311 */ 2312 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2313 2314 spin_lock(&sbi->stat_lock); 2315 sbi->total_valid_block_count += (block_t)(*count); 2316 avail_user_block_count = sbi->user_block_count - 2317 sbi->current_reserved_blocks; 2318 2319 if (!__allow_reserved_blocks(sbi, inode, true)) 2320 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2321 2322 if (F2FS_IO_ALIGNED(sbi)) 2323 avail_user_block_count -= sbi->blocks_per_seg * 2324 SM_I(sbi)->additional_reserved_segments; 2325 2326 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2327 if (avail_user_block_count > sbi->unusable_block_count) 2328 avail_user_block_count -= sbi->unusable_block_count; 2329 else 2330 avail_user_block_count = 0; 2331 } 2332 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2333 diff = sbi->total_valid_block_count - avail_user_block_count; 2334 if (diff > *count) 2335 diff = *count; 2336 *count -= diff; 2337 release = diff; 2338 sbi->total_valid_block_count -= diff; 2339 if (!*count) { 2340 spin_unlock(&sbi->stat_lock); 2341 goto enospc; 2342 } 2343 } 2344 spin_unlock(&sbi->stat_lock); 2345 2346 if (unlikely(release)) { 2347 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2348 dquot_release_reservation_block(inode, release); 2349 } 2350 f2fs_i_blocks_write(inode, *count, true, true); 2351 return 0; 2352 2353 enospc: 2354 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2355 release_quota: 2356 dquot_release_reservation_block(inode, release); 2357 return -ENOSPC; 2358 } 2359 2360 __printf(2, 3) 2361 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2362 2363 #define f2fs_err(sbi, fmt, ...) \ 2364 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2365 #define f2fs_warn(sbi, fmt, ...) \ 2366 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2367 #define f2fs_notice(sbi, fmt, ...) \ 2368 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2369 #define f2fs_info(sbi, fmt, ...) \ 2370 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2371 #define f2fs_debug(sbi, fmt, ...) \ 2372 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2373 2374 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2375 struct inode *inode, 2376 block_t count) 2377 { 2378 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2379 2380 spin_lock(&sbi->stat_lock); 2381 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2382 sbi->total_valid_block_count -= (block_t)count; 2383 if (sbi->reserved_blocks && 2384 sbi->current_reserved_blocks < sbi->reserved_blocks) 2385 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2386 sbi->current_reserved_blocks + count); 2387 spin_unlock(&sbi->stat_lock); 2388 if (unlikely(inode->i_blocks < sectors)) { 2389 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2390 inode->i_ino, 2391 (unsigned long long)inode->i_blocks, 2392 (unsigned long long)sectors); 2393 set_sbi_flag(sbi, SBI_NEED_FSCK); 2394 return; 2395 } 2396 f2fs_i_blocks_write(inode, count, false, true); 2397 } 2398 2399 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2400 { 2401 atomic_inc(&sbi->nr_pages[count_type]); 2402 2403 if (count_type == F2FS_DIRTY_DENTS || 2404 count_type == F2FS_DIRTY_NODES || 2405 count_type == F2FS_DIRTY_META || 2406 count_type == F2FS_DIRTY_QDATA || 2407 count_type == F2FS_DIRTY_IMETA) 2408 set_sbi_flag(sbi, SBI_IS_DIRTY); 2409 } 2410 2411 static inline void inode_inc_dirty_pages(struct inode *inode) 2412 { 2413 atomic_inc(&F2FS_I(inode)->dirty_pages); 2414 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2415 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2416 if (IS_NOQUOTA(inode)) 2417 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2418 } 2419 2420 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2421 { 2422 atomic_dec(&sbi->nr_pages[count_type]); 2423 } 2424 2425 static inline void inode_dec_dirty_pages(struct inode *inode) 2426 { 2427 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2428 !S_ISLNK(inode->i_mode)) 2429 return; 2430 2431 atomic_dec(&F2FS_I(inode)->dirty_pages); 2432 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2433 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2434 if (IS_NOQUOTA(inode)) 2435 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2436 } 2437 2438 static inline void inc_atomic_write_cnt(struct inode *inode) 2439 { 2440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2441 struct f2fs_inode_info *fi = F2FS_I(inode); 2442 u64 current_write; 2443 2444 fi->atomic_write_cnt++; 2445 atomic64_inc(&sbi->current_atomic_write); 2446 current_write = atomic64_read(&sbi->current_atomic_write); 2447 if (current_write > sbi->peak_atomic_write) 2448 sbi->peak_atomic_write = current_write; 2449 } 2450 2451 static inline void release_atomic_write_cnt(struct inode *inode) 2452 { 2453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2454 struct f2fs_inode_info *fi = F2FS_I(inode); 2455 2456 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2457 fi->atomic_write_cnt = 0; 2458 } 2459 2460 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2461 { 2462 return atomic_read(&sbi->nr_pages[count_type]); 2463 } 2464 2465 static inline int get_dirty_pages(struct inode *inode) 2466 { 2467 return atomic_read(&F2FS_I(inode)->dirty_pages); 2468 } 2469 2470 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2471 { 2472 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2473 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2474 sbi->log_blocks_per_seg; 2475 2476 return segs / sbi->segs_per_sec; 2477 } 2478 2479 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2480 { 2481 return sbi->total_valid_block_count; 2482 } 2483 2484 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2485 { 2486 return sbi->discard_blks; 2487 } 2488 2489 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2490 { 2491 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2492 2493 /* return NAT or SIT bitmap */ 2494 if (flag == NAT_BITMAP) 2495 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2496 else if (flag == SIT_BITMAP) 2497 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2498 2499 return 0; 2500 } 2501 2502 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2503 { 2504 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2505 } 2506 2507 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2508 { 2509 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2510 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2511 int offset; 2512 2513 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2514 offset = (flag == SIT_BITMAP) ? 2515 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2516 /* 2517 * if large_nat_bitmap feature is enabled, leave checksum 2518 * protection for all nat/sit bitmaps. 2519 */ 2520 return tmp_ptr + offset + sizeof(__le32); 2521 } 2522 2523 if (__cp_payload(sbi) > 0) { 2524 if (flag == NAT_BITMAP) 2525 return tmp_ptr; 2526 else 2527 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2528 } else { 2529 offset = (flag == NAT_BITMAP) ? 2530 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2531 return tmp_ptr + offset; 2532 } 2533 } 2534 2535 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2536 { 2537 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2538 2539 if (sbi->cur_cp_pack == 2) 2540 start_addr += sbi->blocks_per_seg; 2541 return start_addr; 2542 } 2543 2544 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2545 { 2546 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2547 2548 if (sbi->cur_cp_pack == 1) 2549 start_addr += sbi->blocks_per_seg; 2550 return start_addr; 2551 } 2552 2553 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2554 { 2555 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2556 } 2557 2558 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2559 { 2560 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2561 } 2562 2563 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2564 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2565 struct inode *inode, bool is_inode) 2566 { 2567 block_t valid_block_count; 2568 unsigned int valid_node_count, user_block_count; 2569 int err; 2570 2571 if (is_inode) { 2572 if (inode) { 2573 err = dquot_alloc_inode(inode); 2574 if (err) 2575 return err; 2576 } 2577 } else { 2578 err = dquot_reserve_block(inode, 1); 2579 if (err) 2580 return err; 2581 } 2582 2583 if (time_to_inject(sbi, FAULT_BLOCK)) 2584 goto enospc; 2585 2586 spin_lock(&sbi->stat_lock); 2587 2588 valid_block_count = sbi->total_valid_block_count + 2589 sbi->current_reserved_blocks + 1; 2590 2591 if (!__allow_reserved_blocks(sbi, inode, false)) 2592 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2593 2594 if (F2FS_IO_ALIGNED(sbi)) 2595 valid_block_count += sbi->blocks_per_seg * 2596 SM_I(sbi)->additional_reserved_segments; 2597 2598 user_block_count = sbi->user_block_count; 2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2600 user_block_count -= sbi->unusable_block_count; 2601 2602 if (unlikely(valid_block_count > user_block_count)) { 2603 spin_unlock(&sbi->stat_lock); 2604 goto enospc; 2605 } 2606 2607 valid_node_count = sbi->total_valid_node_count + 1; 2608 if (unlikely(valid_node_count > sbi->total_node_count)) { 2609 spin_unlock(&sbi->stat_lock); 2610 goto enospc; 2611 } 2612 2613 sbi->total_valid_node_count++; 2614 sbi->total_valid_block_count++; 2615 spin_unlock(&sbi->stat_lock); 2616 2617 if (inode) { 2618 if (is_inode) 2619 f2fs_mark_inode_dirty_sync(inode, true); 2620 else 2621 f2fs_i_blocks_write(inode, 1, true, true); 2622 } 2623 2624 percpu_counter_inc(&sbi->alloc_valid_block_count); 2625 return 0; 2626 2627 enospc: 2628 if (is_inode) { 2629 if (inode) 2630 dquot_free_inode(inode); 2631 } else { 2632 dquot_release_reservation_block(inode, 1); 2633 } 2634 return -ENOSPC; 2635 } 2636 2637 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2638 struct inode *inode, bool is_inode) 2639 { 2640 spin_lock(&sbi->stat_lock); 2641 2642 if (unlikely(!sbi->total_valid_block_count || 2643 !sbi->total_valid_node_count)) { 2644 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2645 sbi->total_valid_block_count, 2646 sbi->total_valid_node_count); 2647 set_sbi_flag(sbi, SBI_NEED_FSCK); 2648 } else { 2649 sbi->total_valid_block_count--; 2650 sbi->total_valid_node_count--; 2651 } 2652 2653 if (sbi->reserved_blocks && 2654 sbi->current_reserved_blocks < sbi->reserved_blocks) 2655 sbi->current_reserved_blocks++; 2656 2657 spin_unlock(&sbi->stat_lock); 2658 2659 if (is_inode) { 2660 dquot_free_inode(inode); 2661 } else { 2662 if (unlikely(inode->i_blocks == 0)) { 2663 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2664 inode->i_ino, 2665 (unsigned long long)inode->i_blocks); 2666 set_sbi_flag(sbi, SBI_NEED_FSCK); 2667 return; 2668 } 2669 f2fs_i_blocks_write(inode, 1, false, true); 2670 } 2671 } 2672 2673 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2674 { 2675 return sbi->total_valid_node_count; 2676 } 2677 2678 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2679 { 2680 percpu_counter_inc(&sbi->total_valid_inode_count); 2681 } 2682 2683 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2684 { 2685 percpu_counter_dec(&sbi->total_valid_inode_count); 2686 } 2687 2688 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2689 { 2690 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2691 } 2692 2693 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2694 pgoff_t index, bool for_write) 2695 { 2696 struct page *page; 2697 unsigned int flags; 2698 2699 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2700 if (!for_write) 2701 page = find_get_page_flags(mapping, index, 2702 FGP_LOCK | FGP_ACCESSED); 2703 else 2704 page = find_lock_page(mapping, index); 2705 if (page) 2706 return page; 2707 2708 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2709 return NULL; 2710 } 2711 2712 if (!for_write) 2713 return grab_cache_page(mapping, index); 2714 2715 flags = memalloc_nofs_save(); 2716 page = grab_cache_page_write_begin(mapping, index); 2717 memalloc_nofs_restore(flags); 2718 2719 return page; 2720 } 2721 2722 static inline struct page *f2fs_pagecache_get_page( 2723 struct address_space *mapping, pgoff_t index, 2724 int fgp_flags, gfp_t gfp_mask) 2725 { 2726 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2727 return NULL; 2728 2729 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2730 } 2731 2732 static inline void f2fs_put_page(struct page *page, int unlock) 2733 { 2734 if (!page) 2735 return; 2736 2737 if (unlock) { 2738 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2739 unlock_page(page); 2740 } 2741 put_page(page); 2742 } 2743 2744 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2745 { 2746 if (dn->node_page) 2747 f2fs_put_page(dn->node_page, 1); 2748 if (dn->inode_page && dn->node_page != dn->inode_page) 2749 f2fs_put_page(dn->inode_page, 0); 2750 dn->node_page = NULL; 2751 dn->inode_page = NULL; 2752 } 2753 2754 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2755 size_t size) 2756 { 2757 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2758 } 2759 2760 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2761 gfp_t flags) 2762 { 2763 void *entry; 2764 2765 entry = kmem_cache_alloc(cachep, flags); 2766 if (!entry) 2767 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2768 return entry; 2769 } 2770 2771 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2772 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2773 { 2774 if (nofail) 2775 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2776 2777 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2778 return NULL; 2779 2780 return kmem_cache_alloc(cachep, flags); 2781 } 2782 2783 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2784 { 2785 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2786 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2787 get_pages(sbi, F2FS_WB_CP_DATA) || 2788 get_pages(sbi, F2FS_DIO_READ) || 2789 get_pages(sbi, F2FS_DIO_WRITE)) 2790 return true; 2791 2792 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2793 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2794 return true; 2795 2796 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2797 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2798 return true; 2799 return false; 2800 } 2801 2802 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2803 { 2804 if (sbi->gc_mode == GC_URGENT_HIGH) 2805 return true; 2806 2807 if (is_inflight_io(sbi, type)) 2808 return false; 2809 2810 if (sbi->gc_mode == GC_URGENT_MID) 2811 return true; 2812 2813 if (sbi->gc_mode == GC_URGENT_LOW && 2814 (type == DISCARD_TIME || type == GC_TIME)) 2815 return true; 2816 2817 return f2fs_time_over(sbi, type); 2818 } 2819 2820 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2821 unsigned long index, void *item) 2822 { 2823 while (radix_tree_insert(root, index, item)) 2824 cond_resched(); 2825 } 2826 2827 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2828 2829 static inline bool IS_INODE(struct page *page) 2830 { 2831 struct f2fs_node *p = F2FS_NODE(page); 2832 2833 return RAW_IS_INODE(p); 2834 } 2835 2836 static inline int offset_in_addr(struct f2fs_inode *i) 2837 { 2838 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2839 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2840 } 2841 2842 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2843 { 2844 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2845 } 2846 2847 static inline int f2fs_has_extra_attr(struct inode *inode); 2848 static inline block_t data_blkaddr(struct inode *inode, 2849 struct page *node_page, unsigned int offset) 2850 { 2851 struct f2fs_node *raw_node; 2852 __le32 *addr_array; 2853 int base = 0; 2854 bool is_inode = IS_INODE(node_page); 2855 2856 raw_node = F2FS_NODE(node_page); 2857 2858 if (is_inode) { 2859 if (!inode) 2860 /* from GC path only */ 2861 base = offset_in_addr(&raw_node->i); 2862 else if (f2fs_has_extra_attr(inode)) 2863 base = get_extra_isize(inode); 2864 } 2865 2866 addr_array = blkaddr_in_node(raw_node); 2867 return le32_to_cpu(addr_array[base + offset]); 2868 } 2869 2870 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2871 { 2872 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2873 } 2874 2875 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2876 { 2877 int mask; 2878 2879 addr += (nr >> 3); 2880 mask = BIT(7 - (nr & 0x07)); 2881 return mask & *addr; 2882 } 2883 2884 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2885 { 2886 int mask; 2887 2888 addr += (nr >> 3); 2889 mask = BIT(7 - (nr & 0x07)); 2890 *addr |= mask; 2891 } 2892 2893 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2894 { 2895 int mask; 2896 2897 addr += (nr >> 3); 2898 mask = BIT(7 - (nr & 0x07)); 2899 *addr &= ~mask; 2900 } 2901 2902 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2903 { 2904 int mask; 2905 int ret; 2906 2907 addr += (nr >> 3); 2908 mask = BIT(7 - (nr & 0x07)); 2909 ret = mask & *addr; 2910 *addr |= mask; 2911 return ret; 2912 } 2913 2914 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2915 { 2916 int mask; 2917 int ret; 2918 2919 addr += (nr >> 3); 2920 mask = BIT(7 - (nr & 0x07)); 2921 ret = mask & *addr; 2922 *addr &= ~mask; 2923 return ret; 2924 } 2925 2926 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2927 { 2928 int mask; 2929 2930 addr += (nr >> 3); 2931 mask = BIT(7 - (nr & 0x07)); 2932 *addr ^= mask; 2933 } 2934 2935 /* 2936 * On-disk inode flags (f2fs_inode::i_flags) 2937 */ 2938 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2939 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2940 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2941 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2942 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2943 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2944 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2945 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2946 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2947 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2948 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2949 2950 /* Flags that should be inherited by new inodes from their parent. */ 2951 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2952 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2953 F2FS_CASEFOLD_FL) 2954 2955 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2956 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2957 F2FS_CASEFOLD_FL)) 2958 2959 /* Flags that are appropriate for non-directories/regular files. */ 2960 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2961 2962 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2963 { 2964 if (S_ISDIR(mode)) 2965 return flags; 2966 else if (S_ISREG(mode)) 2967 return flags & F2FS_REG_FLMASK; 2968 else 2969 return flags & F2FS_OTHER_FLMASK; 2970 } 2971 2972 static inline void __mark_inode_dirty_flag(struct inode *inode, 2973 int flag, bool set) 2974 { 2975 switch (flag) { 2976 case FI_INLINE_XATTR: 2977 case FI_INLINE_DATA: 2978 case FI_INLINE_DENTRY: 2979 case FI_NEW_INODE: 2980 if (set) 2981 return; 2982 fallthrough; 2983 case FI_DATA_EXIST: 2984 case FI_INLINE_DOTS: 2985 case FI_PIN_FILE: 2986 case FI_COMPRESS_RELEASED: 2987 f2fs_mark_inode_dirty_sync(inode, true); 2988 } 2989 } 2990 2991 static inline void set_inode_flag(struct inode *inode, int flag) 2992 { 2993 set_bit(flag, F2FS_I(inode)->flags); 2994 __mark_inode_dirty_flag(inode, flag, true); 2995 } 2996 2997 static inline int is_inode_flag_set(struct inode *inode, int flag) 2998 { 2999 return test_bit(flag, F2FS_I(inode)->flags); 3000 } 3001 3002 static inline void clear_inode_flag(struct inode *inode, int flag) 3003 { 3004 clear_bit(flag, F2FS_I(inode)->flags); 3005 __mark_inode_dirty_flag(inode, flag, false); 3006 } 3007 3008 static inline bool f2fs_verity_in_progress(struct inode *inode) 3009 { 3010 return IS_ENABLED(CONFIG_FS_VERITY) && 3011 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3012 } 3013 3014 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3015 { 3016 F2FS_I(inode)->i_acl_mode = mode; 3017 set_inode_flag(inode, FI_ACL_MODE); 3018 f2fs_mark_inode_dirty_sync(inode, false); 3019 } 3020 3021 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3022 { 3023 if (inc) 3024 inc_nlink(inode); 3025 else 3026 drop_nlink(inode); 3027 f2fs_mark_inode_dirty_sync(inode, true); 3028 } 3029 3030 static inline void f2fs_i_blocks_write(struct inode *inode, 3031 block_t diff, bool add, bool claim) 3032 { 3033 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3034 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3035 3036 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3037 if (add) { 3038 if (claim) 3039 dquot_claim_block(inode, diff); 3040 else 3041 dquot_alloc_block_nofail(inode, diff); 3042 } else { 3043 dquot_free_block(inode, diff); 3044 } 3045 3046 f2fs_mark_inode_dirty_sync(inode, true); 3047 if (clean || recover) 3048 set_inode_flag(inode, FI_AUTO_RECOVER); 3049 } 3050 3051 static inline bool f2fs_is_atomic_file(struct inode *inode); 3052 3053 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3054 { 3055 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3056 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3057 3058 if (i_size_read(inode) == i_size) 3059 return; 3060 3061 i_size_write(inode, i_size); 3062 3063 if (f2fs_is_atomic_file(inode)) 3064 return; 3065 3066 f2fs_mark_inode_dirty_sync(inode, true); 3067 if (clean || recover) 3068 set_inode_flag(inode, FI_AUTO_RECOVER); 3069 } 3070 3071 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3072 { 3073 F2FS_I(inode)->i_current_depth = depth; 3074 f2fs_mark_inode_dirty_sync(inode, true); 3075 } 3076 3077 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3078 unsigned int count) 3079 { 3080 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3081 f2fs_mark_inode_dirty_sync(inode, true); 3082 } 3083 3084 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3085 { 3086 F2FS_I(inode)->i_xattr_nid = xnid; 3087 f2fs_mark_inode_dirty_sync(inode, true); 3088 } 3089 3090 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3091 { 3092 F2FS_I(inode)->i_pino = pino; 3093 f2fs_mark_inode_dirty_sync(inode, true); 3094 } 3095 3096 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3097 { 3098 struct f2fs_inode_info *fi = F2FS_I(inode); 3099 3100 if (ri->i_inline & F2FS_INLINE_XATTR) 3101 set_bit(FI_INLINE_XATTR, fi->flags); 3102 if (ri->i_inline & F2FS_INLINE_DATA) 3103 set_bit(FI_INLINE_DATA, fi->flags); 3104 if (ri->i_inline & F2FS_INLINE_DENTRY) 3105 set_bit(FI_INLINE_DENTRY, fi->flags); 3106 if (ri->i_inline & F2FS_DATA_EXIST) 3107 set_bit(FI_DATA_EXIST, fi->flags); 3108 if (ri->i_inline & F2FS_INLINE_DOTS) 3109 set_bit(FI_INLINE_DOTS, fi->flags); 3110 if (ri->i_inline & F2FS_EXTRA_ATTR) 3111 set_bit(FI_EXTRA_ATTR, fi->flags); 3112 if (ri->i_inline & F2FS_PIN_FILE) 3113 set_bit(FI_PIN_FILE, fi->flags); 3114 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3115 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3116 } 3117 3118 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3119 { 3120 ri->i_inline = 0; 3121 3122 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3123 ri->i_inline |= F2FS_INLINE_XATTR; 3124 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3125 ri->i_inline |= F2FS_INLINE_DATA; 3126 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3127 ri->i_inline |= F2FS_INLINE_DENTRY; 3128 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3129 ri->i_inline |= F2FS_DATA_EXIST; 3130 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3131 ri->i_inline |= F2FS_INLINE_DOTS; 3132 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3133 ri->i_inline |= F2FS_EXTRA_ATTR; 3134 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3135 ri->i_inline |= F2FS_PIN_FILE; 3136 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3137 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3138 } 3139 3140 static inline int f2fs_has_extra_attr(struct inode *inode) 3141 { 3142 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3143 } 3144 3145 static inline int f2fs_has_inline_xattr(struct inode *inode) 3146 { 3147 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3148 } 3149 3150 static inline int f2fs_compressed_file(struct inode *inode) 3151 { 3152 return S_ISREG(inode->i_mode) && 3153 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3154 } 3155 3156 static inline bool f2fs_need_compress_data(struct inode *inode) 3157 { 3158 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3159 3160 if (!f2fs_compressed_file(inode)) 3161 return false; 3162 3163 if (compress_mode == COMPR_MODE_FS) 3164 return true; 3165 else if (compress_mode == COMPR_MODE_USER && 3166 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 static inline unsigned int addrs_per_inode(struct inode *inode) 3173 { 3174 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3175 get_inline_xattr_addrs(inode); 3176 3177 if (!f2fs_compressed_file(inode)) 3178 return addrs; 3179 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3180 } 3181 3182 static inline unsigned int addrs_per_block(struct inode *inode) 3183 { 3184 if (!f2fs_compressed_file(inode)) 3185 return DEF_ADDRS_PER_BLOCK; 3186 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3187 } 3188 3189 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3190 { 3191 struct f2fs_inode *ri = F2FS_INODE(page); 3192 3193 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3194 get_inline_xattr_addrs(inode)]); 3195 } 3196 3197 static inline int inline_xattr_size(struct inode *inode) 3198 { 3199 if (f2fs_has_inline_xattr(inode)) 3200 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3201 return 0; 3202 } 3203 3204 /* 3205 * Notice: check inline_data flag without inode page lock is unsafe. 3206 * It could change at any time by f2fs_convert_inline_page(). 3207 */ 3208 static inline int f2fs_has_inline_data(struct inode *inode) 3209 { 3210 return is_inode_flag_set(inode, FI_INLINE_DATA); 3211 } 3212 3213 static inline int f2fs_exist_data(struct inode *inode) 3214 { 3215 return is_inode_flag_set(inode, FI_DATA_EXIST); 3216 } 3217 3218 static inline int f2fs_has_inline_dots(struct inode *inode) 3219 { 3220 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3221 } 3222 3223 static inline int f2fs_is_mmap_file(struct inode *inode) 3224 { 3225 return is_inode_flag_set(inode, FI_MMAP_FILE); 3226 } 3227 3228 static inline bool f2fs_is_pinned_file(struct inode *inode) 3229 { 3230 return is_inode_flag_set(inode, FI_PIN_FILE); 3231 } 3232 3233 static inline bool f2fs_is_atomic_file(struct inode *inode) 3234 { 3235 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3236 } 3237 3238 static inline bool f2fs_is_cow_file(struct inode *inode) 3239 { 3240 return is_inode_flag_set(inode, FI_COW_FILE); 3241 } 3242 3243 static inline bool f2fs_is_first_block_written(struct inode *inode) 3244 { 3245 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3246 } 3247 3248 static inline bool f2fs_is_drop_cache(struct inode *inode) 3249 { 3250 return is_inode_flag_set(inode, FI_DROP_CACHE); 3251 } 3252 3253 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3254 { 3255 struct f2fs_inode *ri = F2FS_INODE(page); 3256 int extra_size = get_extra_isize(inode); 3257 3258 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3259 } 3260 3261 static inline int f2fs_has_inline_dentry(struct inode *inode) 3262 { 3263 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3264 } 3265 3266 static inline int is_file(struct inode *inode, int type) 3267 { 3268 return F2FS_I(inode)->i_advise & type; 3269 } 3270 3271 static inline void set_file(struct inode *inode, int type) 3272 { 3273 if (is_file(inode, type)) 3274 return; 3275 F2FS_I(inode)->i_advise |= type; 3276 f2fs_mark_inode_dirty_sync(inode, true); 3277 } 3278 3279 static inline void clear_file(struct inode *inode, int type) 3280 { 3281 if (!is_file(inode, type)) 3282 return; 3283 F2FS_I(inode)->i_advise &= ~type; 3284 f2fs_mark_inode_dirty_sync(inode, true); 3285 } 3286 3287 static inline bool f2fs_is_time_consistent(struct inode *inode) 3288 { 3289 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3290 return false; 3291 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3292 return false; 3293 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3294 return false; 3295 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3296 &F2FS_I(inode)->i_crtime)) 3297 return false; 3298 return true; 3299 } 3300 3301 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3302 { 3303 bool ret; 3304 3305 if (dsync) { 3306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3307 3308 spin_lock(&sbi->inode_lock[DIRTY_META]); 3309 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3310 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3311 return ret; 3312 } 3313 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3314 file_keep_isize(inode) || 3315 i_size_read(inode) & ~PAGE_MASK) 3316 return false; 3317 3318 if (!f2fs_is_time_consistent(inode)) 3319 return false; 3320 3321 spin_lock(&F2FS_I(inode)->i_size_lock); 3322 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3323 spin_unlock(&F2FS_I(inode)->i_size_lock); 3324 3325 return ret; 3326 } 3327 3328 static inline bool f2fs_readonly(struct super_block *sb) 3329 { 3330 return sb_rdonly(sb); 3331 } 3332 3333 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3334 { 3335 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3336 } 3337 3338 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3339 { 3340 if (len == 1 && name[0] == '.') 3341 return true; 3342 3343 if (len == 2 && name[0] == '.' && name[1] == '.') 3344 return true; 3345 3346 return false; 3347 } 3348 3349 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3350 size_t size, gfp_t flags) 3351 { 3352 if (time_to_inject(sbi, FAULT_KMALLOC)) 3353 return NULL; 3354 3355 return kmalloc(size, flags); 3356 } 3357 3358 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3359 size_t size, gfp_t flags) 3360 { 3361 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3362 } 3363 3364 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3365 size_t size, gfp_t flags) 3366 { 3367 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3368 return NULL; 3369 3370 return kvmalloc(size, flags); 3371 } 3372 3373 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3374 size_t size, gfp_t flags) 3375 { 3376 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3377 } 3378 3379 static inline int get_extra_isize(struct inode *inode) 3380 { 3381 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3382 } 3383 3384 static inline int get_inline_xattr_addrs(struct inode *inode) 3385 { 3386 return F2FS_I(inode)->i_inline_xattr_size; 3387 } 3388 3389 #define f2fs_get_inode_mode(i) \ 3390 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3391 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3392 3393 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3394 (offsetof(struct f2fs_inode, i_extra_end) - \ 3395 offsetof(struct f2fs_inode, i_extra_isize)) \ 3396 3397 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3398 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3399 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3400 sizeof((f2fs_inode)->field)) \ 3401 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3402 3403 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3404 3405 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3406 3407 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3408 block_t blkaddr, int type); 3409 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3410 block_t blkaddr, int type) 3411 { 3412 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3413 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3414 blkaddr, type); 3415 f2fs_bug_on(sbi, 1); 3416 } 3417 } 3418 3419 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3420 { 3421 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3422 blkaddr == COMPRESS_ADDR) 3423 return false; 3424 return true; 3425 } 3426 3427 /* 3428 * file.c 3429 */ 3430 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3431 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3432 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3433 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3434 int f2fs_truncate(struct inode *inode); 3435 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3436 struct kstat *stat, u32 request_mask, unsigned int flags); 3437 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3438 struct iattr *attr); 3439 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3440 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3441 int f2fs_precache_extents(struct inode *inode); 3442 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3443 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3444 struct dentry *dentry, struct fileattr *fa); 3445 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3446 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3447 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3448 int f2fs_pin_file_control(struct inode *inode, bool inc); 3449 3450 /* 3451 * inode.c 3452 */ 3453 void f2fs_set_inode_flags(struct inode *inode); 3454 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3455 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3456 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3457 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3458 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3459 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3460 void f2fs_update_inode_page(struct inode *inode); 3461 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3462 void f2fs_evict_inode(struct inode *inode); 3463 void f2fs_handle_failed_inode(struct inode *inode); 3464 3465 /* 3466 * namei.c 3467 */ 3468 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3469 bool hot, bool set); 3470 struct dentry *f2fs_get_parent(struct dentry *child); 3471 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3472 struct inode **new_inode); 3473 3474 /* 3475 * dir.c 3476 */ 3477 int f2fs_init_casefolded_name(const struct inode *dir, 3478 struct f2fs_filename *fname); 3479 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3480 int lookup, struct f2fs_filename *fname); 3481 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3482 struct f2fs_filename *fname); 3483 void f2fs_free_filename(struct f2fs_filename *fname); 3484 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3485 const struct f2fs_filename *fname, int *max_slots); 3486 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3487 unsigned int start_pos, struct fscrypt_str *fstr); 3488 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3489 struct f2fs_dentry_ptr *d); 3490 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3491 const struct f2fs_filename *fname, struct page *dpage); 3492 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3493 unsigned int current_depth); 3494 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3495 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3496 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3497 const struct f2fs_filename *fname, 3498 struct page **res_page); 3499 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3500 const struct qstr *child, struct page **res_page); 3501 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3502 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3503 struct page **page); 3504 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3505 struct page *page, struct inode *inode); 3506 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3507 const struct f2fs_filename *fname); 3508 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3509 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3510 unsigned int bit_pos); 3511 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3512 struct inode *inode, nid_t ino, umode_t mode); 3513 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3514 struct inode *inode, nid_t ino, umode_t mode); 3515 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3516 struct inode *inode, nid_t ino, umode_t mode); 3517 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3518 struct inode *dir, struct inode *inode); 3519 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3520 bool f2fs_empty_dir(struct inode *dir); 3521 3522 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3523 { 3524 if (fscrypt_is_nokey_name(dentry)) 3525 return -ENOKEY; 3526 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3527 inode, inode->i_ino, inode->i_mode); 3528 } 3529 3530 /* 3531 * super.c 3532 */ 3533 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3534 void f2fs_inode_synced(struct inode *inode); 3535 int f2fs_dquot_initialize(struct inode *inode); 3536 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3537 int f2fs_quota_sync(struct super_block *sb, int type); 3538 loff_t max_file_blocks(struct inode *inode); 3539 void f2fs_quota_off_umount(struct super_block *sb); 3540 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason); 3541 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3542 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3543 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3544 int f2fs_sync_fs(struct super_block *sb, int sync); 3545 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3546 3547 /* 3548 * hash.c 3549 */ 3550 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3551 3552 /* 3553 * node.c 3554 */ 3555 struct node_info; 3556 3557 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3558 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3559 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3560 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3561 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3562 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3563 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3564 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3565 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3566 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3567 struct node_info *ni, bool checkpoint_context); 3568 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3569 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3570 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3571 int f2fs_truncate_xattr_node(struct inode *inode); 3572 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3573 unsigned int seq_id); 3574 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3575 int f2fs_remove_inode_page(struct inode *inode); 3576 struct page *f2fs_new_inode_page(struct inode *inode); 3577 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3578 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3579 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3580 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3581 int f2fs_move_node_page(struct page *node_page, int gc_type); 3582 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3583 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3584 struct writeback_control *wbc, bool atomic, 3585 unsigned int *seq_id); 3586 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3587 struct writeback_control *wbc, 3588 bool do_balance, enum iostat_type io_type); 3589 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3590 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3591 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3592 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3593 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3594 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3595 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3596 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3597 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3598 unsigned int segno, struct f2fs_summary_block *sum); 3599 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3600 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3601 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3602 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3603 int __init f2fs_create_node_manager_caches(void); 3604 void f2fs_destroy_node_manager_caches(void); 3605 3606 /* 3607 * segment.c 3608 */ 3609 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3610 int f2fs_commit_atomic_write(struct inode *inode); 3611 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3612 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3613 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3614 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3615 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3616 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3617 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3618 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3619 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3620 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3621 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3622 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3623 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3624 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3625 struct cp_control *cpc); 3626 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3627 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3628 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3629 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3630 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3631 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3632 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3633 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3634 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3635 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3636 unsigned int *newseg, bool new_sec, int dir); 3637 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3638 unsigned int start, unsigned int end); 3639 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3640 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3641 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3642 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3643 struct cp_control *cpc); 3644 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3645 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3646 block_t blk_addr); 3647 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3648 enum iostat_type io_type); 3649 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3650 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3651 struct f2fs_io_info *fio); 3652 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3653 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3654 block_t old_blkaddr, block_t new_blkaddr, 3655 bool recover_curseg, bool recover_newaddr, 3656 bool from_gc); 3657 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3658 block_t old_addr, block_t new_addr, 3659 unsigned char version, bool recover_curseg, 3660 bool recover_newaddr); 3661 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3662 block_t old_blkaddr, block_t *new_blkaddr, 3663 struct f2fs_summary *sum, int type, 3664 struct f2fs_io_info *fio); 3665 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3666 block_t blkaddr, unsigned int blkcnt); 3667 void f2fs_wait_on_page_writeback(struct page *page, 3668 enum page_type type, bool ordered, bool locked); 3669 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3670 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3671 block_t len); 3672 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3673 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3674 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3675 unsigned int val, int alloc); 3676 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3677 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3678 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3679 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3680 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3681 int __init f2fs_create_segment_manager_caches(void); 3682 void f2fs_destroy_segment_manager_caches(void); 3683 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3684 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3685 unsigned int segno); 3686 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3687 unsigned int segno); 3688 3689 #define DEF_FRAGMENT_SIZE 4 3690 #define MIN_FRAGMENT_SIZE 1 3691 #define MAX_FRAGMENT_SIZE 512 3692 3693 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3694 { 3695 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3696 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3697 } 3698 3699 /* 3700 * checkpoint.c 3701 */ 3702 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3703 unsigned char reason); 3704 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3705 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3706 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3707 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3708 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3709 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3710 block_t blkaddr, int type); 3711 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3712 int type, bool sync); 3713 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3714 unsigned int ra_blocks); 3715 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3716 long nr_to_write, enum iostat_type io_type); 3717 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3718 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3719 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3720 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3721 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3722 unsigned int devidx, int type); 3723 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3724 unsigned int devidx, int type); 3725 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3726 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3727 void f2fs_add_orphan_inode(struct inode *inode); 3728 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3729 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3730 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3731 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3732 void f2fs_remove_dirty_inode(struct inode *inode); 3733 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3734 bool from_cp); 3735 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3736 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3737 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3738 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3739 int __init f2fs_create_checkpoint_caches(void); 3740 void f2fs_destroy_checkpoint_caches(void); 3741 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3742 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3743 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3744 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3745 3746 /* 3747 * data.c 3748 */ 3749 int __init f2fs_init_bioset(void); 3750 void f2fs_destroy_bioset(void); 3751 int f2fs_init_bio_entry_cache(void); 3752 void f2fs_destroy_bio_entry_cache(void); 3753 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3754 enum page_type type); 3755 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3756 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3757 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3758 struct inode *inode, struct page *page, 3759 nid_t ino, enum page_type type); 3760 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3761 struct bio **bio, struct page *page); 3762 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3763 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3764 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3765 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3766 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3767 block_t blk_addr, sector_t *sector); 3768 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3769 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3770 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3771 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3772 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3773 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3774 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3775 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3776 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3777 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3778 pgoff_t *next_pgofs); 3779 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3780 bool for_write); 3781 struct page *f2fs_get_new_data_page(struct inode *inode, 3782 struct page *ipage, pgoff_t index, bool new_i_size); 3783 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3784 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3785 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3786 u64 start, u64 len); 3787 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3788 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3789 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3790 int f2fs_write_single_data_page(struct page *page, int *submitted, 3791 struct bio **bio, sector_t *last_block, 3792 struct writeback_control *wbc, 3793 enum iostat_type io_type, 3794 int compr_blocks, bool allow_balance); 3795 void f2fs_write_failed(struct inode *inode, loff_t to); 3796 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3797 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3799 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3800 int f2fs_init_post_read_processing(void); 3801 void f2fs_destroy_post_read_processing(void); 3802 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3803 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3804 extern const struct iomap_ops f2fs_iomap_ops; 3805 3806 /* 3807 * gc.c 3808 */ 3809 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3810 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3811 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3812 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3813 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3814 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3815 int __init f2fs_create_garbage_collection_cache(void); 3816 void f2fs_destroy_garbage_collection_cache(void); 3817 /* victim selection function for cleaning and SSR */ 3818 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3819 int gc_type, int type, char alloc_mode, 3820 unsigned long long age); 3821 3822 /* 3823 * recovery.c 3824 */ 3825 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3826 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3827 int __init f2fs_create_recovery_cache(void); 3828 void f2fs_destroy_recovery_cache(void); 3829 3830 /* 3831 * debug.c 3832 */ 3833 #ifdef CONFIG_F2FS_STAT_FS 3834 struct f2fs_stat_info { 3835 struct list_head stat_list; 3836 struct f2fs_sb_info *sbi; 3837 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3838 int main_area_segs, main_area_sections, main_area_zones; 3839 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3840 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3841 unsigned long long total_ext[NR_EXTENT_CACHES]; 3842 unsigned long long hit_total[NR_EXTENT_CACHES]; 3843 int ext_tree[NR_EXTENT_CACHES]; 3844 int zombie_tree[NR_EXTENT_CACHES]; 3845 int ext_node[NR_EXTENT_CACHES]; 3846 /* to count memory footprint */ 3847 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3848 /* for read extent cache */ 3849 unsigned long long hit_largest; 3850 /* for block age extent cache */ 3851 unsigned long long allocated_data_blocks; 3852 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3853 int ndirty_data, ndirty_qdata; 3854 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3855 int nats, dirty_nats, sits, dirty_sits; 3856 int free_nids, avail_nids, alloc_nids; 3857 int total_count, utilization; 3858 int bg_gc, nr_wb_cp_data, nr_wb_data; 3859 int nr_rd_data, nr_rd_node, nr_rd_meta; 3860 int nr_dio_read, nr_dio_write; 3861 unsigned int io_skip_bggc, other_skip_bggc; 3862 int nr_flushing, nr_flushed, flush_list_empty; 3863 int nr_discarding, nr_discarded; 3864 int nr_discard_cmd; 3865 unsigned int undiscard_blks; 3866 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3867 unsigned int cur_ckpt_time, peak_ckpt_time; 3868 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3869 int compr_inode, swapfile_inode; 3870 unsigned long long compr_blocks; 3871 int aw_cnt, max_aw_cnt; 3872 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3873 unsigned int bimodal, avg_vblocks; 3874 int util_free, util_valid, util_invalid; 3875 int rsvd_segs, overp_segs; 3876 int dirty_count, node_pages, meta_pages, compress_pages; 3877 int compress_page_hit; 3878 int prefree_count, call_count, cp_count, bg_cp_count; 3879 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3880 int bg_node_segs, bg_data_segs; 3881 int tot_blks, data_blks, node_blks; 3882 int bg_data_blks, bg_node_blks; 3883 int curseg[NR_CURSEG_TYPE]; 3884 int cursec[NR_CURSEG_TYPE]; 3885 int curzone[NR_CURSEG_TYPE]; 3886 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3887 unsigned int full_seg[NR_CURSEG_TYPE]; 3888 unsigned int valid_blks[NR_CURSEG_TYPE]; 3889 3890 unsigned int meta_count[META_MAX]; 3891 unsigned int segment_count[2]; 3892 unsigned int block_count[2]; 3893 unsigned int inplace_count; 3894 unsigned long long base_mem, cache_mem, page_mem; 3895 }; 3896 3897 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3898 { 3899 return (struct f2fs_stat_info *)sbi->stat_info; 3900 } 3901 3902 #define stat_inc_cp_count(si) ((si)->cp_count++) 3903 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3904 #define stat_inc_call_count(si) ((si)->call_count++) 3905 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3906 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3907 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3908 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3909 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3910 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3911 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3912 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3913 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3914 #define stat_inc_inline_xattr(inode) \ 3915 do { \ 3916 if (f2fs_has_inline_xattr(inode)) \ 3917 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3918 } while (0) 3919 #define stat_dec_inline_xattr(inode) \ 3920 do { \ 3921 if (f2fs_has_inline_xattr(inode)) \ 3922 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3923 } while (0) 3924 #define stat_inc_inline_inode(inode) \ 3925 do { \ 3926 if (f2fs_has_inline_data(inode)) \ 3927 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3928 } while (0) 3929 #define stat_dec_inline_inode(inode) \ 3930 do { \ 3931 if (f2fs_has_inline_data(inode)) \ 3932 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3933 } while (0) 3934 #define stat_inc_inline_dir(inode) \ 3935 do { \ 3936 if (f2fs_has_inline_dentry(inode)) \ 3937 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3938 } while (0) 3939 #define stat_dec_inline_dir(inode) \ 3940 do { \ 3941 if (f2fs_has_inline_dentry(inode)) \ 3942 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3943 } while (0) 3944 #define stat_inc_compr_inode(inode) \ 3945 do { \ 3946 if (f2fs_compressed_file(inode)) \ 3947 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3948 } while (0) 3949 #define stat_dec_compr_inode(inode) \ 3950 do { \ 3951 if (f2fs_compressed_file(inode)) \ 3952 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3953 } while (0) 3954 #define stat_add_compr_blocks(inode, blocks) \ 3955 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3956 #define stat_sub_compr_blocks(inode, blocks) \ 3957 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3958 #define stat_inc_swapfile_inode(inode) \ 3959 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 3960 #define stat_dec_swapfile_inode(inode) \ 3961 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 3962 #define stat_inc_atomic_inode(inode) \ 3963 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 3964 #define stat_dec_atomic_inode(inode) \ 3965 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 3966 #define stat_inc_meta_count(sbi, blkaddr) \ 3967 do { \ 3968 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3969 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3970 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3971 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3972 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3973 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3974 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3975 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3976 } while (0) 3977 #define stat_inc_seg_type(sbi, curseg) \ 3978 ((sbi)->segment_count[(curseg)->alloc_type]++) 3979 #define stat_inc_block_count(sbi, curseg) \ 3980 ((sbi)->block_count[(curseg)->alloc_type]++) 3981 #define stat_inc_inplace_blocks(sbi) \ 3982 (atomic_inc(&(sbi)->inplace_count)) 3983 #define stat_update_max_atomic_write(inode) \ 3984 do { \ 3985 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 3986 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3987 if (cur > max) \ 3988 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3989 } while (0) 3990 #define stat_inc_seg_count(sbi, type, gc_type) \ 3991 do { \ 3992 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3993 si->tot_segs++; \ 3994 if ((type) == SUM_TYPE_DATA) { \ 3995 si->data_segs++; \ 3996 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3997 } else { \ 3998 si->node_segs++; \ 3999 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 4000 } \ 4001 } while (0) 4002 4003 #define stat_inc_tot_blk_count(si, blks) \ 4004 ((si)->tot_blks += (blks)) 4005 4006 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4007 do { \ 4008 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4009 stat_inc_tot_blk_count(si, blks); \ 4010 si->data_blks += (blks); \ 4011 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4012 } while (0) 4013 4014 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4015 do { \ 4016 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4017 stat_inc_tot_blk_count(si, blks); \ 4018 si->node_blks += (blks); \ 4019 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4020 } while (0) 4021 4022 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4023 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4024 void __init f2fs_create_root_stats(void); 4025 void f2fs_destroy_root_stats(void); 4026 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4027 #else 4028 #define stat_inc_cp_count(si) do { } while (0) 4029 #define stat_inc_bg_cp_count(si) do { } while (0) 4030 #define stat_inc_call_count(si) do { } while (0) 4031 #define stat_inc_bggc_count(si) do { } while (0) 4032 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4033 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4034 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4035 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4036 #define stat_inc_total_hit(sbi, type) do { } while (0) 4037 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4038 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4039 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4040 #define stat_inc_inline_xattr(inode) do { } while (0) 4041 #define stat_dec_inline_xattr(inode) do { } while (0) 4042 #define stat_inc_inline_inode(inode) do { } while (0) 4043 #define stat_dec_inline_inode(inode) do { } while (0) 4044 #define stat_inc_inline_dir(inode) do { } while (0) 4045 #define stat_dec_inline_dir(inode) do { } while (0) 4046 #define stat_inc_compr_inode(inode) do { } while (0) 4047 #define stat_dec_compr_inode(inode) do { } while (0) 4048 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4049 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4050 #define stat_inc_swapfile_inode(inode) do { } while (0) 4051 #define stat_dec_swapfile_inode(inode) do { } while (0) 4052 #define stat_inc_atomic_inode(inode) do { } while (0) 4053 #define stat_dec_atomic_inode(inode) do { } while (0) 4054 #define stat_update_max_atomic_write(inode) do { } while (0) 4055 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4056 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4057 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4058 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4059 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 4060 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4061 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4062 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4063 4064 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4065 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4066 static inline void __init f2fs_create_root_stats(void) { } 4067 static inline void f2fs_destroy_root_stats(void) { } 4068 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4069 #endif 4070 4071 extern const struct file_operations f2fs_dir_operations; 4072 extern const struct file_operations f2fs_file_operations; 4073 extern const struct inode_operations f2fs_file_inode_operations; 4074 extern const struct address_space_operations f2fs_dblock_aops; 4075 extern const struct address_space_operations f2fs_node_aops; 4076 extern const struct address_space_operations f2fs_meta_aops; 4077 extern const struct inode_operations f2fs_dir_inode_operations; 4078 extern const struct inode_operations f2fs_symlink_inode_operations; 4079 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4080 extern const struct inode_operations f2fs_special_inode_operations; 4081 extern struct kmem_cache *f2fs_inode_entry_slab; 4082 4083 /* 4084 * inline.c 4085 */ 4086 bool f2fs_may_inline_data(struct inode *inode); 4087 bool f2fs_sanity_check_inline_data(struct inode *inode); 4088 bool f2fs_may_inline_dentry(struct inode *inode); 4089 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4090 void f2fs_truncate_inline_inode(struct inode *inode, 4091 struct page *ipage, u64 from); 4092 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4093 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4094 int f2fs_convert_inline_inode(struct inode *inode); 4095 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4096 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4097 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4098 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4099 const struct f2fs_filename *fname, 4100 struct page **res_page); 4101 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4102 struct page *ipage); 4103 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4104 struct inode *inode, nid_t ino, umode_t mode); 4105 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4106 struct page *page, struct inode *dir, 4107 struct inode *inode); 4108 bool f2fs_empty_inline_dir(struct inode *dir); 4109 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4110 struct fscrypt_str *fstr); 4111 int f2fs_inline_data_fiemap(struct inode *inode, 4112 struct fiemap_extent_info *fieinfo, 4113 __u64 start, __u64 len); 4114 4115 /* 4116 * shrinker.c 4117 */ 4118 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4119 struct shrink_control *sc); 4120 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4121 struct shrink_control *sc); 4122 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4123 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4124 4125 /* 4126 * extent_cache.c 4127 */ 4128 bool sanity_check_extent_cache(struct inode *inode); 4129 void f2fs_init_extent_tree(struct inode *inode); 4130 void f2fs_drop_extent_tree(struct inode *inode); 4131 void f2fs_destroy_extent_node(struct inode *inode); 4132 void f2fs_destroy_extent_tree(struct inode *inode); 4133 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4134 int __init f2fs_create_extent_cache(void); 4135 void f2fs_destroy_extent_cache(void); 4136 4137 /* read extent cache ops */ 4138 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4139 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4140 struct extent_info *ei); 4141 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4142 block_t *blkaddr); 4143 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4144 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4145 pgoff_t fofs, block_t blkaddr, unsigned int len); 4146 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4147 int nr_shrink); 4148 4149 /* block age extent cache ops */ 4150 void f2fs_init_age_extent_tree(struct inode *inode); 4151 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4152 struct extent_info *ei); 4153 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4154 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4155 pgoff_t fofs, unsigned int len); 4156 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4157 int nr_shrink); 4158 4159 /* 4160 * sysfs.c 4161 */ 4162 #define MIN_RA_MUL 2 4163 #define MAX_RA_MUL 256 4164 4165 int __init f2fs_init_sysfs(void); 4166 void f2fs_exit_sysfs(void); 4167 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4168 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4169 4170 /* verity.c */ 4171 extern const struct fsverity_operations f2fs_verityops; 4172 4173 /* 4174 * crypto support 4175 */ 4176 static inline bool f2fs_encrypted_file(struct inode *inode) 4177 { 4178 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4179 } 4180 4181 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4182 { 4183 #ifdef CONFIG_FS_ENCRYPTION 4184 file_set_encrypt(inode); 4185 f2fs_set_inode_flags(inode); 4186 #endif 4187 } 4188 4189 /* 4190 * Returns true if the reads of the inode's data need to undergo some 4191 * postprocessing step, like decryption or authenticity verification. 4192 */ 4193 static inline bool f2fs_post_read_required(struct inode *inode) 4194 { 4195 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4196 f2fs_compressed_file(inode); 4197 } 4198 4199 /* 4200 * compress.c 4201 */ 4202 #ifdef CONFIG_F2FS_FS_COMPRESSION 4203 bool f2fs_is_compressed_page(struct page *page); 4204 struct page *f2fs_compress_control_page(struct page *page); 4205 int f2fs_prepare_compress_overwrite(struct inode *inode, 4206 struct page **pagep, pgoff_t index, void **fsdata); 4207 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4208 pgoff_t index, unsigned copied); 4209 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4210 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4211 bool f2fs_is_compress_backend_ready(struct inode *inode); 4212 int __init f2fs_init_compress_mempool(void); 4213 void f2fs_destroy_compress_mempool(void); 4214 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4215 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4216 block_t blkaddr, bool in_task); 4217 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4218 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4219 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4220 int index, int nr_pages, bool uptodate); 4221 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4222 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4223 int f2fs_write_multi_pages(struct compress_ctx *cc, 4224 int *submitted, 4225 struct writeback_control *wbc, 4226 enum iostat_type io_type); 4227 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4228 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4229 pgoff_t fofs, block_t blkaddr, 4230 unsigned int llen, unsigned int c_len); 4231 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4232 unsigned nr_pages, sector_t *last_block_in_bio, 4233 bool is_readahead, bool for_write); 4234 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4235 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4236 bool in_task); 4237 void f2fs_put_page_dic(struct page *page, bool in_task); 4238 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4239 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4240 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4241 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4242 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4243 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4244 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4245 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4246 int __init f2fs_init_compress_cache(void); 4247 void f2fs_destroy_compress_cache(void); 4248 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4249 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4250 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4251 nid_t ino, block_t blkaddr); 4252 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4253 block_t blkaddr); 4254 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4255 #define inc_compr_inode_stat(inode) \ 4256 do { \ 4257 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4258 sbi->compr_new_inode++; \ 4259 } while (0) 4260 #define add_compr_block_stat(inode, blocks) \ 4261 do { \ 4262 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4263 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4264 sbi->compr_written_block += blocks; \ 4265 sbi->compr_saved_block += diff; \ 4266 } while (0) 4267 #else 4268 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4269 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4270 { 4271 if (!f2fs_compressed_file(inode)) 4272 return true; 4273 /* not support compression */ 4274 return false; 4275 } 4276 static inline struct page *f2fs_compress_control_page(struct page *page) 4277 { 4278 WARN_ON_ONCE(1); 4279 return ERR_PTR(-EINVAL); 4280 } 4281 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4282 static inline void f2fs_destroy_compress_mempool(void) { } 4283 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4284 bool in_task) { } 4285 static inline void f2fs_end_read_compressed_page(struct page *page, 4286 bool failed, block_t blkaddr, bool in_task) 4287 { 4288 WARN_ON_ONCE(1); 4289 } 4290 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4291 { 4292 WARN_ON_ONCE(1); 4293 } 4294 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4295 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4296 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4297 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4298 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4299 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4300 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4301 static inline void f2fs_destroy_compress_cache(void) { } 4302 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4303 block_t blkaddr) { } 4304 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4305 struct page *page, nid_t ino, block_t blkaddr) { } 4306 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4307 struct page *page, block_t blkaddr) { return false; } 4308 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4309 nid_t ino) { } 4310 #define inc_compr_inode_stat(inode) do { } while (0) 4311 static inline void f2fs_update_read_extent_tree_range_compressed( 4312 struct inode *inode, 4313 pgoff_t fofs, block_t blkaddr, 4314 unsigned int llen, unsigned int c_len) { } 4315 #endif 4316 4317 static inline int set_compress_context(struct inode *inode) 4318 { 4319 #ifdef CONFIG_F2FS_FS_COMPRESSION 4320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4321 4322 F2FS_I(inode)->i_compress_algorithm = 4323 F2FS_OPTION(sbi).compress_algorithm; 4324 F2FS_I(inode)->i_log_cluster_size = 4325 F2FS_OPTION(sbi).compress_log_size; 4326 F2FS_I(inode)->i_compress_flag = 4327 F2FS_OPTION(sbi).compress_chksum ? 4328 BIT(COMPRESS_CHKSUM) : 0; 4329 F2FS_I(inode)->i_cluster_size = 4330 BIT(F2FS_I(inode)->i_log_cluster_size); 4331 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4332 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4333 F2FS_OPTION(sbi).compress_level) 4334 F2FS_I(inode)->i_compress_level = 4335 F2FS_OPTION(sbi).compress_level; 4336 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4337 set_inode_flag(inode, FI_COMPRESSED_FILE); 4338 stat_inc_compr_inode(inode); 4339 inc_compr_inode_stat(inode); 4340 f2fs_mark_inode_dirty_sync(inode, true); 4341 return 0; 4342 #else 4343 return -EOPNOTSUPP; 4344 #endif 4345 } 4346 4347 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4348 { 4349 struct f2fs_inode_info *fi = F2FS_I(inode); 4350 4351 if (!f2fs_compressed_file(inode)) 4352 return true; 4353 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4354 return false; 4355 4356 fi->i_flags &= ~F2FS_COMPR_FL; 4357 stat_dec_compr_inode(inode); 4358 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4359 f2fs_mark_inode_dirty_sync(inode, true); 4360 return true; 4361 } 4362 4363 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4364 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4365 { \ 4366 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4367 } 4368 4369 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4370 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4371 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4372 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4373 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4374 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4375 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4376 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4377 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4378 F2FS_FEATURE_FUNCS(verity, VERITY); 4379 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4380 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4381 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4382 F2FS_FEATURE_FUNCS(readonly, RO); 4383 4384 #ifdef CONFIG_BLK_DEV_ZONED 4385 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4386 block_t blkaddr) 4387 { 4388 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4389 4390 return test_bit(zno, FDEV(devi).blkz_seq); 4391 } 4392 #endif 4393 4394 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4395 { 4396 return f2fs_sb_has_blkzoned(sbi); 4397 } 4398 4399 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4400 { 4401 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4402 } 4403 4404 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4405 { 4406 int i; 4407 4408 if (!f2fs_is_multi_device(sbi)) 4409 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4410 4411 for (i = 0; i < sbi->s_ndevs; i++) 4412 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4413 return true; 4414 return false; 4415 } 4416 4417 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4418 { 4419 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4420 f2fs_hw_should_discard(sbi); 4421 } 4422 4423 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4424 { 4425 int i; 4426 4427 if (!f2fs_is_multi_device(sbi)) 4428 return bdev_read_only(sbi->sb->s_bdev); 4429 4430 for (i = 0; i < sbi->s_ndevs; i++) 4431 if (bdev_read_only(FDEV(i).bdev)) 4432 return true; 4433 return false; 4434 } 4435 4436 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4437 { 4438 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4439 } 4440 4441 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4442 { 4443 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4444 } 4445 4446 static inline bool f2fs_may_compress(struct inode *inode) 4447 { 4448 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4449 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode)) 4450 return false; 4451 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4452 } 4453 4454 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4455 u64 blocks, bool add) 4456 { 4457 struct f2fs_inode_info *fi = F2FS_I(inode); 4458 int diff = fi->i_cluster_size - blocks; 4459 4460 /* don't update i_compr_blocks if saved blocks were released */ 4461 if (!add && !atomic_read(&fi->i_compr_blocks)) 4462 return; 4463 4464 if (add) { 4465 atomic_add(diff, &fi->i_compr_blocks); 4466 stat_add_compr_blocks(inode, diff); 4467 } else { 4468 atomic_sub(diff, &fi->i_compr_blocks); 4469 stat_sub_compr_blocks(inode, diff); 4470 } 4471 f2fs_mark_inode_dirty_sync(inode, true); 4472 } 4473 4474 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4475 int flag) 4476 { 4477 if (!f2fs_is_multi_device(sbi)) 4478 return false; 4479 if (flag != F2FS_GET_BLOCK_DIO) 4480 return false; 4481 return sbi->aligned_blksize; 4482 } 4483 4484 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4485 { 4486 return fsverity_active(inode) && 4487 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4488 } 4489 4490 #ifdef CONFIG_F2FS_FAULT_INJECTION 4491 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4492 unsigned int type); 4493 #else 4494 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4495 #endif 4496 4497 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4498 { 4499 #ifdef CONFIG_QUOTA 4500 if (f2fs_sb_has_quota_ino(sbi)) 4501 return true; 4502 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4503 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4504 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4505 return true; 4506 #endif 4507 return false; 4508 } 4509 4510 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4511 { 4512 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4513 } 4514 4515 static inline void f2fs_io_schedule_timeout(long timeout) 4516 { 4517 set_current_state(TASK_UNINTERRUPTIBLE); 4518 io_schedule_timeout(timeout); 4519 } 4520 4521 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4522 enum page_type type) 4523 { 4524 if (unlikely(f2fs_cp_error(sbi))) 4525 return; 4526 4527 if (ofs == sbi->page_eio_ofs[type]) { 4528 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4529 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4530 } else { 4531 sbi->page_eio_ofs[type] = ofs; 4532 sbi->page_eio_cnt[type] = 0; 4533 } 4534 } 4535 4536 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4537 { 4538 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4539 } 4540 4541 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4542 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4543 4544 #endif /* _LINUX_F2FS_H */ 4545