1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/prefetch.h> 18 #include <linux/uio.h> 19 #include <linux/cleancache.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "node.h" 24 #include "segment.h" 25 #include "trace.h" 26 #include <trace/events/f2fs.h> 27 28 #define NUM_PREALLOC_POST_READ_CTXS 128 29 30 static struct kmem_cache *bio_post_read_ctx_cache; 31 static mempool_t *bio_post_read_ctx_pool; 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 (S_ISREG(inode->i_mode) && 49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 50 is_cold_data(page)) 51 return true; 52 return false; 53 } 54 55 static enum count_type __read_io_type(struct page *page) 56 { 57 struct address_space *mapping = page->mapping; 58 59 if (mapping) { 60 struct inode *inode = mapping->host; 61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi)) 64 return F2FS_RD_META; 65 66 if (inode->i_ino == F2FS_NODE_INO(sbi)) 67 return F2FS_RD_NODE; 68 } 69 return F2FS_RD_DATA; 70 } 71 72 /* postprocessing steps for read bios */ 73 enum bio_post_read_step { 74 STEP_INITIAL = 0, 75 STEP_DECRYPT, 76 }; 77 78 struct bio_post_read_ctx { 79 struct bio *bio; 80 struct work_struct work; 81 unsigned int cur_step; 82 unsigned int enabled_steps; 83 }; 84 85 static void __read_end_io(struct bio *bio) 86 { 87 struct page *page; 88 struct bio_vec *bv; 89 int i; 90 91 bio_for_each_segment_all(bv, bio, i) { 92 page = bv->bv_page; 93 94 /* PG_error was set if any post_read step failed */ 95 if (bio->bi_status || PageError(page)) { 96 ClearPageUptodate(page); 97 /* will re-read again later */ 98 ClearPageError(page); 99 } else { 100 SetPageUptodate(page); 101 } 102 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 103 unlock_page(page); 104 } 105 if (bio->bi_private) 106 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 107 bio_put(bio); 108 } 109 110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 111 112 static void decrypt_work(struct work_struct *work) 113 { 114 struct bio_post_read_ctx *ctx = 115 container_of(work, struct bio_post_read_ctx, work); 116 117 fscrypt_decrypt_bio(ctx->bio); 118 119 bio_post_read_processing(ctx); 120 } 121 122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 123 { 124 switch (++ctx->cur_step) { 125 case STEP_DECRYPT: 126 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 127 INIT_WORK(&ctx->work, decrypt_work); 128 fscrypt_enqueue_decrypt_work(&ctx->work); 129 return; 130 } 131 ctx->cur_step++; 132 /* fall-through */ 133 default: 134 __read_end_io(ctx->bio); 135 } 136 } 137 138 static bool f2fs_bio_post_read_required(struct bio *bio) 139 { 140 return bio->bi_private && !bio->bi_status; 141 } 142 143 static void f2fs_read_end_io(struct bio *bio) 144 { 145 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 146 FAULT_READ_IO)) { 147 f2fs_show_injection_info(FAULT_READ_IO); 148 bio->bi_status = BLK_STS_IOERR; 149 } 150 151 if (f2fs_bio_post_read_required(bio)) { 152 struct bio_post_read_ctx *ctx = bio->bi_private; 153 154 ctx->cur_step = STEP_INITIAL; 155 bio_post_read_processing(ctx); 156 return; 157 } 158 159 __read_end_io(bio); 160 } 161 162 static void f2fs_write_end_io(struct bio *bio) 163 { 164 struct f2fs_sb_info *sbi = bio->bi_private; 165 struct bio_vec *bvec; 166 int i; 167 168 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 169 f2fs_show_injection_info(FAULT_WRITE_IO); 170 bio->bi_status = BLK_STS_IOERR; 171 } 172 173 bio_for_each_segment_all(bvec, bio, i) { 174 struct page *page = bvec->bv_page; 175 enum count_type type = WB_DATA_TYPE(page); 176 177 if (IS_DUMMY_WRITTEN_PAGE(page)) { 178 set_page_private(page, (unsigned long)NULL); 179 ClearPagePrivate(page); 180 unlock_page(page); 181 mempool_free(page, sbi->write_io_dummy); 182 183 if (unlikely(bio->bi_status)) 184 f2fs_stop_checkpoint(sbi, true); 185 continue; 186 } 187 188 fscrypt_pullback_bio_page(&page, true); 189 190 if (unlikely(bio->bi_status)) { 191 mapping_set_error(page->mapping, -EIO); 192 if (type == F2FS_WB_CP_DATA) 193 f2fs_stop_checkpoint(sbi, true); 194 } 195 196 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 197 page->index != nid_of_node(page)); 198 199 dec_page_count(sbi, type); 200 if (f2fs_in_warm_node_list(sbi, page)) 201 f2fs_del_fsync_node_entry(sbi, page); 202 clear_cold_data(page); 203 end_page_writeback(page); 204 } 205 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 206 wq_has_sleeper(&sbi->cp_wait)) 207 wake_up(&sbi->cp_wait); 208 209 bio_put(bio); 210 } 211 212 /* 213 * Return true, if pre_bio's bdev is same as its target device. 214 */ 215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 216 block_t blk_addr, struct bio *bio) 217 { 218 struct block_device *bdev = sbi->sb->s_bdev; 219 int i; 220 221 for (i = 0; i < sbi->s_ndevs; i++) { 222 if (FDEV(i).start_blk <= blk_addr && 223 FDEV(i).end_blk >= blk_addr) { 224 blk_addr -= FDEV(i).start_blk; 225 bdev = FDEV(i).bdev; 226 break; 227 } 228 } 229 if (bio) { 230 bio_set_dev(bio, bdev); 231 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 232 } 233 return bdev; 234 } 235 236 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 237 { 238 int i; 239 240 for (i = 0; i < sbi->s_ndevs; i++) 241 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 242 return i; 243 return 0; 244 } 245 246 static bool __same_bdev(struct f2fs_sb_info *sbi, 247 block_t blk_addr, struct bio *bio) 248 { 249 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 250 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 251 } 252 253 /* 254 * Low-level block read/write IO operations. 255 */ 256 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 257 struct writeback_control *wbc, 258 int npages, bool is_read, 259 enum page_type type, enum temp_type temp) 260 { 261 struct bio *bio; 262 263 bio = f2fs_bio_alloc(sbi, npages, true); 264 265 f2fs_target_device(sbi, blk_addr, bio); 266 if (is_read) { 267 bio->bi_end_io = f2fs_read_end_io; 268 bio->bi_private = NULL; 269 } else { 270 bio->bi_end_io = f2fs_write_end_io; 271 bio->bi_private = sbi; 272 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 273 } 274 if (wbc) 275 wbc_init_bio(wbc, bio); 276 277 return bio; 278 } 279 280 static inline void __submit_bio(struct f2fs_sb_info *sbi, 281 struct bio *bio, enum page_type type) 282 { 283 if (!is_read_io(bio_op(bio))) { 284 unsigned int start; 285 286 if (type != DATA && type != NODE) 287 goto submit_io; 288 289 if (test_opt(sbi, LFS) && current->plug) 290 blk_finish_plug(current->plug); 291 292 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 293 start %= F2FS_IO_SIZE(sbi); 294 295 if (start == 0) 296 goto submit_io; 297 298 /* fill dummy pages */ 299 for (; start < F2FS_IO_SIZE(sbi); start++) { 300 struct page *page = 301 mempool_alloc(sbi->write_io_dummy, 302 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 303 f2fs_bug_on(sbi, !page); 304 305 SetPagePrivate(page); 306 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 307 lock_page(page); 308 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 309 f2fs_bug_on(sbi, 1); 310 } 311 /* 312 * In the NODE case, we lose next block address chain. So, we 313 * need to do checkpoint in f2fs_sync_file. 314 */ 315 if (type == NODE) 316 set_sbi_flag(sbi, SBI_NEED_CP); 317 } 318 submit_io: 319 if (is_read_io(bio_op(bio))) 320 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 321 else 322 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 323 submit_bio(bio); 324 } 325 326 static void __submit_merged_bio(struct f2fs_bio_info *io) 327 { 328 struct f2fs_io_info *fio = &io->fio; 329 330 if (!io->bio) 331 return; 332 333 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 334 335 if (is_read_io(fio->op)) 336 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 337 else 338 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 339 340 __submit_bio(io->sbi, io->bio, fio->type); 341 io->bio = NULL; 342 } 343 344 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 345 struct page *page, nid_t ino) 346 { 347 struct bio_vec *bvec; 348 struct page *target; 349 int i; 350 351 if (!io->bio) 352 return false; 353 354 if (!inode && !page && !ino) 355 return true; 356 357 bio_for_each_segment_all(bvec, io->bio, i) { 358 359 if (bvec->bv_page->mapping) 360 target = bvec->bv_page; 361 else 362 target = fscrypt_control_page(bvec->bv_page); 363 364 if (inode && inode == target->mapping->host) 365 return true; 366 if (page && page == target) 367 return true; 368 if (ino && ino == ino_of_node(target)) 369 return true; 370 } 371 372 return false; 373 } 374 375 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 376 struct page *page, nid_t ino, 377 enum page_type type) 378 { 379 enum page_type btype = PAGE_TYPE_OF_BIO(type); 380 enum temp_type temp; 381 struct f2fs_bio_info *io; 382 bool ret = false; 383 384 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 385 io = sbi->write_io[btype] + temp; 386 387 down_read(&io->io_rwsem); 388 ret = __has_merged_page(io, inode, page, ino); 389 up_read(&io->io_rwsem); 390 391 /* TODO: use HOT temp only for meta pages now. */ 392 if (ret || btype == META) 393 break; 394 } 395 return ret; 396 } 397 398 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 399 enum page_type type, enum temp_type temp) 400 { 401 enum page_type btype = PAGE_TYPE_OF_BIO(type); 402 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 403 404 down_write(&io->io_rwsem); 405 406 /* change META to META_FLUSH in the checkpoint procedure */ 407 if (type >= META_FLUSH) { 408 io->fio.type = META_FLUSH; 409 io->fio.op = REQ_OP_WRITE; 410 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 411 if (!test_opt(sbi, NOBARRIER)) 412 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 413 } 414 __submit_merged_bio(io); 415 up_write(&io->io_rwsem); 416 } 417 418 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 419 struct inode *inode, struct page *page, 420 nid_t ino, enum page_type type, bool force) 421 { 422 enum temp_type temp; 423 424 if (!force && !has_merged_page(sbi, inode, page, ino, type)) 425 return; 426 427 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 428 429 __f2fs_submit_merged_write(sbi, type, temp); 430 431 /* TODO: use HOT temp only for meta pages now. */ 432 if (type >= META) 433 break; 434 } 435 } 436 437 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 438 { 439 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 440 } 441 442 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 443 struct inode *inode, struct page *page, 444 nid_t ino, enum page_type type) 445 { 446 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 447 } 448 449 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 450 { 451 f2fs_submit_merged_write(sbi, DATA); 452 f2fs_submit_merged_write(sbi, NODE); 453 f2fs_submit_merged_write(sbi, META); 454 } 455 456 /* 457 * Fill the locked page with data located in the block address. 458 * A caller needs to unlock the page on failure. 459 */ 460 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 461 { 462 struct bio *bio; 463 struct page *page = fio->encrypted_page ? 464 fio->encrypted_page : fio->page; 465 466 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 467 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 468 return -EFAULT; 469 470 trace_f2fs_submit_page_bio(page, fio); 471 f2fs_trace_ios(fio, 0); 472 473 /* Allocate a new bio */ 474 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 475 1, is_read_io(fio->op), fio->type, fio->temp); 476 477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 478 bio_put(bio); 479 return -EFAULT; 480 } 481 482 if (fio->io_wbc && !is_read_io(fio->op)) 483 wbc_account_io(fio->io_wbc, page, PAGE_SIZE); 484 485 bio_set_op_attrs(bio, fio->op, fio->op_flags); 486 487 inc_page_count(fio->sbi, is_read_io(fio->op) ? 488 __read_io_type(page): WB_DATA_TYPE(fio->page)); 489 490 __submit_bio(fio->sbi, bio, fio->type); 491 return 0; 492 } 493 494 void f2fs_submit_page_write(struct f2fs_io_info *fio) 495 { 496 struct f2fs_sb_info *sbi = fio->sbi; 497 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 498 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 499 struct page *bio_page; 500 501 f2fs_bug_on(sbi, is_read_io(fio->op)); 502 503 down_write(&io->io_rwsem); 504 next: 505 if (fio->in_list) { 506 spin_lock(&io->io_lock); 507 if (list_empty(&io->io_list)) { 508 spin_unlock(&io->io_lock); 509 goto out; 510 } 511 fio = list_first_entry(&io->io_list, 512 struct f2fs_io_info, list); 513 list_del(&fio->list); 514 spin_unlock(&io->io_lock); 515 } 516 517 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 518 verify_block_addr(fio, fio->old_blkaddr); 519 verify_block_addr(fio, fio->new_blkaddr); 520 521 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 522 523 /* set submitted = true as a return value */ 524 fio->submitted = true; 525 526 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 527 528 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 529 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 530 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 531 __submit_merged_bio(io); 532 alloc_new: 533 if (io->bio == NULL) { 534 if ((fio->type == DATA || fio->type == NODE) && 535 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 536 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 537 fio->retry = true; 538 goto skip; 539 } 540 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 541 BIO_MAX_PAGES, false, 542 fio->type, fio->temp); 543 io->fio = *fio; 544 } 545 546 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 547 __submit_merged_bio(io); 548 goto alloc_new; 549 } 550 551 if (fio->io_wbc) 552 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 553 554 io->last_block_in_bio = fio->new_blkaddr; 555 f2fs_trace_ios(fio, 0); 556 557 trace_f2fs_submit_page_write(fio->page, fio); 558 skip: 559 if (fio->in_list) 560 goto next; 561 out: 562 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 563 f2fs_is_checkpoint_ready(sbi)) 564 __submit_merged_bio(io); 565 up_write(&io->io_rwsem); 566 } 567 568 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 569 unsigned nr_pages, unsigned op_flag) 570 { 571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 572 struct bio *bio; 573 struct bio_post_read_ctx *ctx; 574 unsigned int post_read_steps = 0; 575 576 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) 577 return ERR_PTR(-EFAULT); 578 579 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 580 if (!bio) 581 return ERR_PTR(-ENOMEM); 582 f2fs_target_device(sbi, blkaddr, bio); 583 bio->bi_end_io = f2fs_read_end_io; 584 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 585 586 if (f2fs_encrypted_file(inode)) 587 post_read_steps |= 1 << STEP_DECRYPT; 588 if (post_read_steps) { 589 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 590 if (!ctx) { 591 bio_put(bio); 592 return ERR_PTR(-ENOMEM); 593 } 594 ctx->bio = bio; 595 ctx->enabled_steps = post_read_steps; 596 bio->bi_private = ctx; 597 } 598 599 return bio; 600 } 601 602 /* This can handle encryption stuffs */ 603 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 604 block_t blkaddr) 605 { 606 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0); 607 608 if (IS_ERR(bio)) 609 return PTR_ERR(bio); 610 611 /* wait for GCed page writeback via META_MAPPING */ 612 f2fs_wait_on_block_writeback(inode, blkaddr); 613 614 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 615 bio_put(bio); 616 return -EFAULT; 617 } 618 ClearPageError(page); 619 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 620 __submit_bio(F2FS_I_SB(inode), bio, DATA); 621 return 0; 622 } 623 624 static void __set_data_blkaddr(struct dnode_of_data *dn) 625 { 626 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 627 __le32 *addr_array; 628 int base = 0; 629 630 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 631 base = get_extra_isize(dn->inode); 632 633 /* Get physical address of data block */ 634 addr_array = blkaddr_in_node(rn); 635 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 636 } 637 638 /* 639 * Lock ordering for the change of data block address: 640 * ->data_page 641 * ->node_page 642 * update block addresses in the node page 643 */ 644 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 645 { 646 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 647 __set_data_blkaddr(dn); 648 if (set_page_dirty(dn->node_page)) 649 dn->node_changed = true; 650 } 651 652 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 653 { 654 dn->data_blkaddr = blkaddr; 655 f2fs_set_data_blkaddr(dn); 656 f2fs_update_extent_cache(dn); 657 } 658 659 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 660 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 661 { 662 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 663 int err; 664 665 if (!count) 666 return 0; 667 668 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 669 return -EPERM; 670 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 671 return err; 672 673 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 674 dn->ofs_in_node, count); 675 676 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 677 678 for (; count > 0; dn->ofs_in_node++) { 679 block_t blkaddr = datablock_addr(dn->inode, 680 dn->node_page, dn->ofs_in_node); 681 if (blkaddr == NULL_ADDR) { 682 dn->data_blkaddr = NEW_ADDR; 683 __set_data_blkaddr(dn); 684 count--; 685 } 686 } 687 688 if (set_page_dirty(dn->node_page)) 689 dn->node_changed = true; 690 return 0; 691 } 692 693 /* Should keep dn->ofs_in_node unchanged */ 694 int f2fs_reserve_new_block(struct dnode_of_data *dn) 695 { 696 unsigned int ofs_in_node = dn->ofs_in_node; 697 int ret; 698 699 ret = f2fs_reserve_new_blocks(dn, 1); 700 dn->ofs_in_node = ofs_in_node; 701 return ret; 702 } 703 704 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 705 { 706 bool need_put = dn->inode_page ? false : true; 707 int err; 708 709 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 710 if (err) 711 return err; 712 713 if (dn->data_blkaddr == NULL_ADDR) 714 err = f2fs_reserve_new_block(dn); 715 if (err || need_put) 716 f2fs_put_dnode(dn); 717 return err; 718 } 719 720 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 721 { 722 struct extent_info ei = {0,0,0}; 723 struct inode *inode = dn->inode; 724 725 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 726 dn->data_blkaddr = ei.blk + index - ei.fofs; 727 return 0; 728 } 729 730 return f2fs_reserve_block(dn, index); 731 } 732 733 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 734 int op_flags, bool for_write) 735 { 736 struct address_space *mapping = inode->i_mapping; 737 struct dnode_of_data dn; 738 struct page *page; 739 struct extent_info ei = {0,0,0}; 740 int err; 741 742 page = f2fs_grab_cache_page(mapping, index, for_write); 743 if (!page) 744 return ERR_PTR(-ENOMEM); 745 746 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 747 dn.data_blkaddr = ei.blk + index - ei.fofs; 748 goto got_it; 749 } 750 751 set_new_dnode(&dn, inode, NULL, NULL, 0); 752 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 753 if (err) 754 goto put_err; 755 f2fs_put_dnode(&dn); 756 757 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 758 err = -ENOENT; 759 goto put_err; 760 } 761 got_it: 762 if (PageUptodate(page)) { 763 unlock_page(page); 764 return page; 765 } 766 767 /* 768 * A new dentry page is allocated but not able to be written, since its 769 * new inode page couldn't be allocated due to -ENOSPC. 770 * In such the case, its blkaddr can be remained as NEW_ADDR. 771 * see, f2fs_add_link -> f2fs_get_new_data_page -> 772 * f2fs_init_inode_metadata. 773 */ 774 if (dn.data_blkaddr == NEW_ADDR) { 775 zero_user_segment(page, 0, PAGE_SIZE); 776 if (!PageUptodate(page)) 777 SetPageUptodate(page); 778 unlock_page(page); 779 return page; 780 } 781 782 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 783 if (err) 784 goto put_err; 785 return page; 786 787 put_err: 788 f2fs_put_page(page, 1); 789 return ERR_PTR(err); 790 } 791 792 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 793 { 794 struct address_space *mapping = inode->i_mapping; 795 struct page *page; 796 797 page = find_get_page(mapping, index); 798 if (page && PageUptodate(page)) 799 return page; 800 f2fs_put_page(page, 0); 801 802 page = f2fs_get_read_data_page(inode, index, 0, false); 803 if (IS_ERR(page)) 804 return page; 805 806 if (PageUptodate(page)) 807 return page; 808 809 wait_on_page_locked(page); 810 if (unlikely(!PageUptodate(page))) { 811 f2fs_put_page(page, 0); 812 return ERR_PTR(-EIO); 813 } 814 return page; 815 } 816 817 /* 818 * If it tries to access a hole, return an error. 819 * Because, the callers, functions in dir.c and GC, should be able to know 820 * whether this page exists or not. 821 */ 822 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 823 bool for_write) 824 { 825 struct address_space *mapping = inode->i_mapping; 826 struct page *page; 827 repeat: 828 page = f2fs_get_read_data_page(inode, index, 0, for_write); 829 if (IS_ERR(page)) 830 return page; 831 832 /* wait for read completion */ 833 lock_page(page); 834 if (unlikely(page->mapping != mapping)) { 835 f2fs_put_page(page, 1); 836 goto repeat; 837 } 838 if (unlikely(!PageUptodate(page))) { 839 f2fs_put_page(page, 1); 840 return ERR_PTR(-EIO); 841 } 842 return page; 843 } 844 845 /* 846 * Caller ensures that this data page is never allocated. 847 * A new zero-filled data page is allocated in the page cache. 848 * 849 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 850 * f2fs_unlock_op(). 851 * Note that, ipage is set only by make_empty_dir, and if any error occur, 852 * ipage should be released by this function. 853 */ 854 struct page *f2fs_get_new_data_page(struct inode *inode, 855 struct page *ipage, pgoff_t index, bool new_i_size) 856 { 857 struct address_space *mapping = inode->i_mapping; 858 struct page *page; 859 struct dnode_of_data dn; 860 int err; 861 862 page = f2fs_grab_cache_page(mapping, index, true); 863 if (!page) { 864 /* 865 * before exiting, we should make sure ipage will be released 866 * if any error occur. 867 */ 868 f2fs_put_page(ipage, 1); 869 return ERR_PTR(-ENOMEM); 870 } 871 872 set_new_dnode(&dn, inode, ipage, NULL, 0); 873 err = f2fs_reserve_block(&dn, index); 874 if (err) { 875 f2fs_put_page(page, 1); 876 return ERR_PTR(err); 877 } 878 if (!ipage) 879 f2fs_put_dnode(&dn); 880 881 if (PageUptodate(page)) 882 goto got_it; 883 884 if (dn.data_blkaddr == NEW_ADDR) { 885 zero_user_segment(page, 0, PAGE_SIZE); 886 if (!PageUptodate(page)) 887 SetPageUptodate(page); 888 } else { 889 f2fs_put_page(page, 1); 890 891 /* if ipage exists, blkaddr should be NEW_ADDR */ 892 f2fs_bug_on(F2FS_I_SB(inode), ipage); 893 page = f2fs_get_lock_data_page(inode, index, true); 894 if (IS_ERR(page)) 895 return page; 896 } 897 got_it: 898 if (new_i_size && i_size_read(inode) < 899 ((loff_t)(index + 1) << PAGE_SHIFT)) 900 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 901 return page; 902 } 903 904 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 905 { 906 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 907 struct f2fs_summary sum; 908 struct node_info ni; 909 block_t old_blkaddr; 910 blkcnt_t count = 1; 911 int err; 912 913 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 914 return -EPERM; 915 916 err = f2fs_get_node_info(sbi, dn->nid, &ni); 917 if (err) 918 return err; 919 920 dn->data_blkaddr = datablock_addr(dn->inode, 921 dn->node_page, dn->ofs_in_node); 922 if (dn->data_blkaddr != NULL_ADDR) 923 goto alloc; 924 925 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 926 return err; 927 928 alloc: 929 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 930 old_blkaddr = dn->data_blkaddr; 931 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 932 &sum, seg_type, NULL, false); 933 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 934 invalidate_mapping_pages(META_MAPPING(sbi), 935 old_blkaddr, old_blkaddr); 936 f2fs_set_data_blkaddr(dn); 937 938 /* 939 * i_size will be updated by direct_IO. Otherwise, we'll get stale 940 * data from unwritten block via dio_read. 941 */ 942 return 0; 943 } 944 945 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 946 { 947 struct inode *inode = file_inode(iocb->ki_filp); 948 struct f2fs_map_blocks map; 949 int flag; 950 int err = 0; 951 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 952 953 /* convert inline data for Direct I/O*/ 954 if (direct_io) { 955 err = f2fs_convert_inline_inode(inode); 956 if (err) 957 return err; 958 } 959 960 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 961 return 0; 962 963 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 964 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 965 if (map.m_len > map.m_lblk) 966 map.m_len -= map.m_lblk; 967 else 968 map.m_len = 0; 969 970 map.m_next_pgofs = NULL; 971 map.m_next_extent = NULL; 972 map.m_seg_type = NO_CHECK_TYPE; 973 974 if (direct_io) { 975 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 976 flag = f2fs_force_buffered_io(inode, iocb, from) ? 977 F2FS_GET_BLOCK_PRE_AIO : 978 F2FS_GET_BLOCK_PRE_DIO; 979 goto map_blocks; 980 } 981 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 982 err = f2fs_convert_inline_inode(inode); 983 if (err) 984 return err; 985 } 986 if (f2fs_has_inline_data(inode)) 987 return err; 988 989 flag = F2FS_GET_BLOCK_PRE_AIO; 990 991 map_blocks: 992 err = f2fs_map_blocks(inode, &map, 1, flag); 993 if (map.m_len > 0 && err == -ENOSPC) { 994 if (!direct_io) 995 set_inode_flag(inode, FI_NO_PREALLOC); 996 err = 0; 997 } 998 return err; 999 } 1000 1001 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1002 { 1003 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1004 if (lock) 1005 down_read(&sbi->node_change); 1006 else 1007 up_read(&sbi->node_change); 1008 } else { 1009 if (lock) 1010 f2fs_lock_op(sbi); 1011 else 1012 f2fs_unlock_op(sbi); 1013 } 1014 } 1015 1016 /* 1017 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1018 * f2fs_map_blocks structure. 1019 * If original data blocks are allocated, then give them to blockdev. 1020 * Otherwise, 1021 * a. preallocate requested block addresses 1022 * b. do not use extent cache for better performance 1023 * c. give the block addresses to blockdev 1024 */ 1025 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1026 int create, int flag) 1027 { 1028 unsigned int maxblocks = map->m_len; 1029 struct dnode_of_data dn; 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1031 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 1032 pgoff_t pgofs, end_offset, end; 1033 int err = 0, ofs = 1; 1034 unsigned int ofs_in_node, last_ofs_in_node; 1035 blkcnt_t prealloc; 1036 struct extent_info ei = {0,0,0}; 1037 block_t blkaddr; 1038 unsigned int start_pgofs; 1039 1040 if (!maxblocks) 1041 return 0; 1042 1043 map->m_len = 0; 1044 map->m_flags = 0; 1045 1046 /* it only supports block size == page size */ 1047 pgofs = (pgoff_t)map->m_lblk; 1048 end = pgofs + maxblocks; 1049 1050 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1051 map->m_pblk = ei.blk + pgofs - ei.fofs; 1052 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1053 map->m_flags = F2FS_MAP_MAPPED; 1054 if (map->m_next_extent) 1055 *map->m_next_extent = pgofs + map->m_len; 1056 1057 /* for hardware encryption, but to avoid potential issue in future */ 1058 if (flag == F2FS_GET_BLOCK_DIO) 1059 f2fs_wait_on_block_writeback_range(inode, 1060 map->m_pblk, map->m_len); 1061 goto out; 1062 } 1063 1064 next_dnode: 1065 if (create) 1066 __do_map_lock(sbi, flag, true); 1067 1068 /* When reading holes, we need its node page */ 1069 set_new_dnode(&dn, inode, NULL, NULL, 0); 1070 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1071 if (err) { 1072 if (flag == F2FS_GET_BLOCK_BMAP) 1073 map->m_pblk = 0; 1074 if (err == -ENOENT) { 1075 err = 0; 1076 if (map->m_next_pgofs) 1077 *map->m_next_pgofs = 1078 f2fs_get_next_page_offset(&dn, pgofs); 1079 if (map->m_next_extent) 1080 *map->m_next_extent = 1081 f2fs_get_next_page_offset(&dn, pgofs); 1082 } 1083 goto unlock_out; 1084 } 1085 1086 start_pgofs = pgofs; 1087 prealloc = 0; 1088 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1089 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1090 1091 next_block: 1092 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1093 1094 if (__is_valid_data_blkaddr(blkaddr) && 1095 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 1096 err = -EFAULT; 1097 goto sync_out; 1098 } 1099 1100 if (is_valid_data_blkaddr(sbi, blkaddr)) { 1101 /* use out-place-update for driect IO under LFS mode */ 1102 if (test_opt(sbi, LFS) && create && 1103 flag == F2FS_GET_BLOCK_DIO) { 1104 err = __allocate_data_block(&dn, map->m_seg_type); 1105 if (!err) 1106 set_inode_flag(inode, FI_APPEND_WRITE); 1107 } 1108 } else { 1109 if (create) { 1110 if (unlikely(f2fs_cp_error(sbi))) { 1111 err = -EIO; 1112 goto sync_out; 1113 } 1114 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1115 if (blkaddr == NULL_ADDR) { 1116 prealloc++; 1117 last_ofs_in_node = dn.ofs_in_node; 1118 } 1119 } else { 1120 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1121 flag != F2FS_GET_BLOCK_DIO); 1122 err = __allocate_data_block(&dn, 1123 map->m_seg_type); 1124 if (!err) 1125 set_inode_flag(inode, FI_APPEND_WRITE); 1126 } 1127 if (err) 1128 goto sync_out; 1129 map->m_flags |= F2FS_MAP_NEW; 1130 blkaddr = dn.data_blkaddr; 1131 } else { 1132 if (flag == F2FS_GET_BLOCK_BMAP) { 1133 map->m_pblk = 0; 1134 goto sync_out; 1135 } 1136 if (flag == F2FS_GET_BLOCK_PRECACHE) 1137 goto sync_out; 1138 if (flag == F2FS_GET_BLOCK_FIEMAP && 1139 blkaddr == NULL_ADDR) { 1140 if (map->m_next_pgofs) 1141 *map->m_next_pgofs = pgofs + 1; 1142 goto sync_out; 1143 } 1144 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1145 /* for defragment case */ 1146 if (map->m_next_pgofs) 1147 *map->m_next_pgofs = pgofs + 1; 1148 goto sync_out; 1149 } 1150 } 1151 } 1152 1153 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1154 goto skip; 1155 1156 if (map->m_len == 0) { 1157 /* preallocated unwritten block should be mapped for fiemap. */ 1158 if (blkaddr == NEW_ADDR) 1159 map->m_flags |= F2FS_MAP_UNWRITTEN; 1160 map->m_flags |= F2FS_MAP_MAPPED; 1161 1162 map->m_pblk = blkaddr; 1163 map->m_len = 1; 1164 } else if ((map->m_pblk != NEW_ADDR && 1165 blkaddr == (map->m_pblk + ofs)) || 1166 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1167 flag == F2FS_GET_BLOCK_PRE_DIO) { 1168 ofs++; 1169 map->m_len++; 1170 } else { 1171 goto sync_out; 1172 } 1173 1174 skip: 1175 dn.ofs_in_node++; 1176 pgofs++; 1177 1178 /* preallocate blocks in batch for one dnode page */ 1179 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1180 (pgofs == end || dn.ofs_in_node == end_offset)) { 1181 1182 dn.ofs_in_node = ofs_in_node; 1183 err = f2fs_reserve_new_blocks(&dn, prealloc); 1184 if (err) 1185 goto sync_out; 1186 1187 map->m_len += dn.ofs_in_node - ofs_in_node; 1188 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1189 err = -ENOSPC; 1190 goto sync_out; 1191 } 1192 dn.ofs_in_node = end_offset; 1193 } 1194 1195 if (pgofs >= end) 1196 goto sync_out; 1197 else if (dn.ofs_in_node < end_offset) 1198 goto next_block; 1199 1200 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1201 if (map->m_flags & F2FS_MAP_MAPPED) { 1202 unsigned int ofs = start_pgofs - map->m_lblk; 1203 1204 f2fs_update_extent_cache_range(&dn, 1205 start_pgofs, map->m_pblk + ofs, 1206 map->m_len - ofs); 1207 } 1208 } 1209 1210 f2fs_put_dnode(&dn); 1211 1212 if (create) { 1213 __do_map_lock(sbi, flag, false); 1214 f2fs_balance_fs(sbi, dn.node_changed); 1215 } 1216 goto next_dnode; 1217 1218 sync_out: 1219 1220 /* for hardware encryption, but to avoid potential issue in future */ 1221 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1222 f2fs_wait_on_block_writeback_range(inode, 1223 map->m_pblk, map->m_len); 1224 1225 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1226 if (map->m_flags & F2FS_MAP_MAPPED) { 1227 unsigned int ofs = start_pgofs - map->m_lblk; 1228 1229 f2fs_update_extent_cache_range(&dn, 1230 start_pgofs, map->m_pblk + ofs, 1231 map->m_len - ofs); 1232 } 1233 if (map->m_next_extent) 1234 *map->m_next_extent = pgofs + 1; 1235 } 1236 f2fs_put_dnode(&dn); 1237 unlock_out: 1238 if (create) { 1239 __do_map_lock(sbi, flag, false); 1240 f2fs_balance_fs(sbi, dn.node_changed); 1241 } 1242 out: 1243 trace_f2fs_map_blocks(inode, map, err); 1244 return err; 1245 } 1246 1247 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1248 { 1249 struct f2fs_map_blocks map; 1250 block_t last_lblk; 1251 int err; 1252 1253 if (pos + len > i_size_read(inode)) 1254 return false; 1255 1256 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1257 map.m_next_pgofs = NULL; 1258 map.m_next_extent = NULL; 1259 map.m_seg_type = NO_CHECK_TYPE; 1260 last_lblk = F2FS_BLK_ALIGN(pos + len); 1261 1262 while (map.m_lblk < last_lblk) { 1263 map.m_len = last_lblk - map.m_lblk; 1264 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1265 if (err || map.m_len == 0) 1266 return false; 1267 map.m_lblk += map.m_len; 1268 } 1269 return true; 1270 } 1271 1272 static int __get_data_block(struct inode *inode, sector_t iblock, 1273 struct buffer_head *bh, int create, int flag, 1274 pgoff_t *next_pgofs, int seg_type) 1275 { 1276 struct f2fs_map_blocks map; 1277 int err; 1278 1279 map.m_lblk = iblock; 1280 map.m_len = bh->b_size >> inode->i_blkbits; 1281 map.m_next_pgofs = next_pgofs; 1282 map.m_next_extent = NULL; 1283 map.m_seg_type = seg_type; 1284 1285 err = f2fs_map_blocks(inode, &map, create, flag); 1286 if (!err) { 1287 map_bh(bh, inode->i_sb, map.m_pblk); 1288 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1289 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1290 } 1291 return err; 1292 } 1293 1294 static int get_data_block(struct inode *inode, sector_t iblock, 1295 struct buffer_head *bh_result, int create, int flag, 1296 pgoff_t *next_pgofs) 1297 { 1298 return __get_data_block(inode, iblock, bh_result, create, 1299 flag, next_pgofs, 1300 NO_CHECK_TYPE); 1301 } 1302 1303 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1304 struct buffer_head *bh_result, int create) 1305 { 1306 return __get_data_block(inode, iblock, bh_result, create, 1307 F2FS_GET_BLOCK_DIO, NULL, 1308 f2fs_rw_hint_to_seg_type( 1309 inode->i_write_hint)); 1310 } 1311 1312 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1313 struct buffer_head *bh_result, int create) 1314 { 1315 /* Block number less than F2FS MAX BLOCKS */ 1316 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1317 return -EFBIG; 1318 1319 return __get_data_block(inode, iblock, bh_result, create, 1320 F2FS_GET_BLOCK_BMAP, NULL, 1321 NO_CHECK_TYPE); 1322 } 1323 1324 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1325 { 1326 return (offset >> inode->i_blkbits); 1327 } 1328 1329 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1330 { 1331 return (blk << inode->i_blkbits); 1332 } 1333 1334 static int f2fs_xattr_fiemap(struct inode *inode, 1335 struct fiemap_extent_info *fieinfo) 1336 { 1337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1338 struct page *page; 1339 struct node_info ni; 1340 __u64 phys = 0, len; 1341 __u32 flags; 1342 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1343 int err = 0; 1344 1345 if (f2fs_has_inline_xattr(inode)) { 1346 int offset; 1347 1348 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1349 inode->i_ino, false); 1350 if (!page) 1351 return -ENOMEM; 1352 1353 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1354 if (err) { 1355 f2fs_put_page(page, 1); 1356 return err; 1357 } 1358 1359 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1360 offset = offsetof(struct f2fs_inode, i_addr) + 1361 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1362 get_inline_xattr_addrs(inode)); 1363 1364 phys += offset; 1365 len = inline_xattr_size(inode); 1366 1367 f2fs_put_page(page, 1); 1368 1369 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1370 1371 if (!xnid) 1372 flags |= FIEMAP_EXTENT_LAST; 1373 1374 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1375 if (err || err == 1) 1376 return err; 1377 } 1378 1379 if (xnid) { 1380 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1381 if (!page) 1382 return -ENOMEM; 1383 1384 err = f2fs_get_node_info(sbi, xnid, &ni); 1385 if (err) { 1386 f2fs_put_page(page, 1); 1387 return err; 1388 } 1389 1390 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1391 len = inode->i_sb->s_blocksize; 1392 1393 f2fs_put_page(page, 1); 1394 1395 flags = FIEMAP_EXTENT_LAST; 1396 } 1397 1398 if (phys) 1399 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1400 1401 return (err < 0 ? err : 0); 1402 } 1403 1404 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1405 u64 start, u64 len) 1406 { 1407 struct buffer_head map_bh; 1408 sector_t start_blk, last_blk; 1409 pgoff_t next_pgofs; 1410 u64 logical = 0, phys = 0, size = 0; 1411 u32 flags = 0; 1412 int ret = 0; 1413 1414 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1415 ret = f2fs_precache_extents(inode); 1416 if (ret) 1417 return ret; 1418 } 1419 1420 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1421 if (ret) 1422 return ret; 1423 1424 inode_lock(inode); 1425 1426 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1427 ret = f2fs_xattr_fiemap(inode, fieinfo); 1428 goto out; 1429 } 1430 1431 if (f2fs_has_inline_data(inode)) { 1432 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1433 if (ret != -EAGAIN) 1434 goto out; 1435 } 1436 1437 if (logical_to_blk(inode, len) == 0) 1438 len = blk_to_logical(inode, 1); 1439 1440 start_blk = logical_to_blk(inode, start); 1441 last_blk = logical_to_blk(inode, start + len - 1); 1442 1443 next: 1444 memset(&map_bh, 0, sizeof(struct buffer_head)); 1445 map_bh.b_size = len; 1446 1447 ret = get_data_block(inode, start_blk, &map_bh, 0, 1448 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1449 if (ret) 1450 goto out; 1451 1452 /* HOLE */ 1453 if (!buffer_mapped(&map_bh)) { 1454 start_blk = next_pgofs; 1455 1456 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1457 F2FS_I_SB(inode)->max_file_blocks)) 1458 goto prep_next; 1459 1460 flags |= FIEMAP_EXTENT_LAST; 1461 } 1462 1463 if (size) { 1464 if (f2fs_encrypted_inode(inode)) 1465 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1466 1467 ret = fiemap_fill_next_extent(fieinfo, logical, 1468 phys, size, flags); 1469 } 1470 1471 if (start_blk > last_blk || ret) 1472 goto out; 1473 1474 logical = blk_to_logical(inode, start_blk); 1475 phys = blk_to_logical(inode, map_bh.b_blocknr); 1476 size = map_bh.b_size; 1477 flags = 0; 1478 if (buffer_unwritten(&map_bh)) 1479 flags = FIEMAP_EXTENT_UNWRITTEN; 1480 1481 start_blk += logical_to_blk(inode, size); 1482 1483 prep_next: 1484 cond_resched(); 1485 if (fatal_signal_pending(current)) 1486 ret = -EINTR; 1487 else 1488 goto next; 1489 out: 1490 if (ret == 1) 1491 ret = 0; 1492 1493 inode_unlock(inode); 1494 return ret; 1495 } 1496 1497 /* 1498 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1499 * Major change was from block_size == page_size in f2fs by default. 1500 * 1501 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1502 * this function ever deviates from doing just read-ahead, it should either 1503 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1504 * from read-ahead. 1505 */ 1506 static int f2fs_mpage_readpages(struct address_space *mapping, 1507 struct list_head *pages, struct page *page, 1508 unsigned nr_pages, bool is_readahead) 1509 { 1510 struct bio *bio = NULL; 1511 sector_t last_block_in_bio = 0; 1512 struct inode *inode = mapping->host; 1513 const unsigned blkbits = inode->i_blkbits; 1514 const unsigned blocksize = 1 << blkbits; 1515 sector_t block_in_file; 1516 sector_t last_block; 1517 sector_t last_block_in_file; 1518 sector_t block_nr; 1519 struct f2fs_map_blocks map; 1520 1521 map.m_pblk = 0; 1522 map.m_lblk = 0; 1523 map.m_len = 0; 1524 map.m_flags = 0; 1525 map.m_next_pgofs = NULL; 1526 map.m_next_extent = NULL; 1527 map.m_seg_type = NO_CHECK_TYPE; 1528 1529 for (; nr_pages; nr_pages--) { 1530 if (pages) { 1531 page = list_last_entry(pages, struct page, lru); 1532 1533 prefetchw(&page->flags); 1534 list_del(&page->lru); 1535 if (add_to_page_cache_lru(page, mapping, 1536 page->index, 1537 readahead_gfp_mask(mapping))) 1538 goto next_page; 1539 } 1540 1541 block_in_file = (sector_t)page->index; 1542 last_block = block_in_file + nr_pages; 1543 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1544 blkbits; 1545 if (last_block > last_block_in_file) 1546 last_block = last_block_in_file; 1547 1548 /* 1549 * Map blocks using the previous result first. 1550 */ 1551 if ((map.m_flags & F2FS_MAP_MAPPED) && 1552 block_in_file > map.m_lblk && 1553 block_in_file < (map.m_lblk + map.m_len)) 1554 goto got_it; 1555 1556 /* 1557 * Then do more f2fs_map_blocks() calls until we are 1558 * done with this page. 1559 */ 1560 map.m_flags = 0; 1561 1562 if (block_in_file < last_block) { 1563 map.m_lblk = block_in_file; 1564 map.m_len = last_block - block_in_file; 1565 1566 if (f2fs_map_blocks(inode, &map, 0, 1567 F2FS_GET_BLOCK_DEFAULT)) 1568 goto set_error_page; 1569 } 1570 got_it: 1571 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1572 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1573 SetPageMappedToDisk(page); 1574 1575 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1576 SetPageUptodate(page); 1577 goto confused; 1578 } 1579 1580 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1581 DATA_GENERIC)) 1582 goto set_error_page; 1583 } else { 1584 zero_user_segment(page, 0, PAGE_SIZE); 1585 if (!PageUptodate(page)) 1586 SetPageUptodate(page); 1587 unlock_page(page); 1588 goto next_page; 1589 } 1590 1591 /* 1592 * This page will go to BIO. Do we need to send this 1593 * BIO off first? 1594 */ 1595 if (bio && (last_block_in_bio != block_nr - 1 || 1596 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1597 submit_and_realloc: 1598 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1599 bio = NULL; 1600 } 1601 if (bio == NULL) { 1602 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1603 is_readahead ? REQ_RAHEAD : 0); 1604 if (IS_ERR(bio)) { 1605 bio = NULL; 1606 goto set_error_page; 1607 } 1608 } 1609 1610 /* 1611 * If the page is under writeback, we need to wait for 1612 * its completion to see the correct decrypted data. 1613 */ 1614 f2fs_wait_on_block_writeback(inode, block_nr); 1615 1616 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1617 goto submit_and_realloc; 1618 1619 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1620 ClearPageError(page); 1621 last_block_in_bio = block_nr; 1622 goto next_page; 1623 set_error_page: 1624 SetPageError(page); 1625 zero_user_segment(page, 0, PAGE_SIZE); 1626 unlock_page(page); 1627 goto next_page; 1628 confused: 1629 if (bio) { 1630 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1631 bio = NULL; 1632 } 1633 unlock_page(page); 1634 next_page: 1635 if (pages) 1636 put_page(page); 1637 } 1638 BUG_ON(pages && !list_empty(pages)); 1639 if (bio) 1640 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1641 return 0; 1642 } 1643 1644 static int f2fs_read_data_page(struct file *file, struct page *page) 1645 { 1646 struct inode *inode = page->mapping->host; 1647 int ret = -EAGAIN; 1648 1649 trace_f2fs_readpage(page, DATA); 1650 1651 /* If the file has inline data, try to read it directly */ 1652 if (f2fs_has_inline_data(inode)) 1653 ret = f2fs_read_inline_data(inode, page); 1654 if (ret == -EAGAIN) 1655 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false); 1656 return ret; 1657 } 1658 1659 static int f2fs_read_data_pages(struct file *file, 1660 struct address_space *mapping, 1661 struct list_head *pages, unsigned nr_pages) 1662 { 1663 struct inode *inode = mapping->host; 1664 struct page *page = list_last_entry(pages, struct page, lru); 1665 1666 trace_f2fs_readpages(inode, page, nr_pages); 1667 1668 /* If the file has inline data, skip readpages */ 1669 if (f2fs_has_inline_data(inode)) 1670 return 0; 1671 1672 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1673 } 1674 1675 static int encrypt_one_page(struct f2fs_io_info *fio) 1676 { 1677 struct inode *inode = fio->page->mapping->host; 1678 struct page *mpage; 1679 gfp_t gfp_flags = GFP_NOFS; 1680 1681 if (!f2fs_encrypted_file(inode)) 1682 return 0; 1683 1684 /* wait for GCed page writeback via META_MAPPING */ 1685 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1686 1687 retry_encrypt: 1688 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1689 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1690 if (IS_ERR(fio->encrypted_page)) { 1691 /* flush pending IOs and wait for a while in the ENOMEM case */ 1692 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1693 f2fs_flush_merged_writes(fio->sbi); 1694 congestion_wait(BLK_RW_ASYNC, HZ/50); 1695 gfp_flags |= __GFP_NOFAIL; 1696 goto retry_encrypt; 1697 } 1698 return PTR_ERR(fio->encrypted_page); 1699 } 1700 1701 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1702 if (mpage) { 1703 if (PageUptodate(mpage)) 1704 memcpy(page_address(mpage), 1705 page_address(fio->encrypted_page), PAGE_SIZE); 1706 f2fs_put_page(mpage, 1); 1707 } 1708 return 0; 1709 } 1710 1711 static inline bool check_inplace_update_policy(struct inode *inode, 1712 struct f2fs_io_info *fio) 1713 { 1714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1715 unsigned int policy = SM_I(sbi)->ipu_policy; 1716 1717 if (policy & (0x1 << F2FS_IPU_FORCE)) 1718 return true; 1719 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1720 return true; 1721 if (policy & (0x1 << F2FS_IPU_UTIL) && 1722 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1723 return true; 1724 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1725 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1726 return true; 1727 1728 /* 1729 * IPU for rewrite async pages 1730 */ 1731 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1732 fio && fio->op == REQ_OP_WRITE && 1733 !(fio->op_flags & REQ_SYNC) && 1734 !f2fs_encrypted_inode(inode)) 1735 return true; 1736 1737 /* this is only set during fdatasync */ 1738 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1739 is_inode_flag_set(inode, FI_NEED_IPU)) 1740 return true; 1741 1742 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1743 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1744 return true; 1745 1746 return false; 1747 } 1748 1749 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1750 { 1751 if (f2fs_is_pinned_file(inode)) 1752 return true; 1753 1754 /* if this is cold file, we should overwrite to avoid fragmentation */ 1755 if (file_is_cold(inode)) 1756 return true; 1757 1758 return check_inplace_update_policy(inode, fio); 1759 } 1760 1761 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1762 { 1763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1764 1765 if (test_opt(sbi, LFS)) 1766 return true; 1767 if (S_ISDIR(inode->i_mode)) 1768 return true; 1769 if (IS_NOQUOTA(inode)) 1770 return true; 1771 if (f2fs_is_atomic_file(inode)) 1772 return true; 1773 if (fio) { 1774 if (is_cold_data(fio->page)) 1775 return true; 1776 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1777 return true; 1778 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1779 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1780 return true; 1781 } 1782 return false; 1783 } 1784 1785 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1786 { 1787 struct inode *inode = fio->page->mapping->host; 1788 1789 if (f2fs_should_update_outplace(inode, fio)) 1790 return false; 1791 1792 return f2fs_should_update_inplace(inode, fio); 1793 } 1794 1795 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1796 { 1797 struct page *page = fio->page; 1798 struct inode *inode = page->mapping->host; 1799 struct dnode_of_data dn; 1800 struct extent_info ei = {0,0,0}; 1801 struct node_info ni; 1802 bool ipu_force = false; 1803 int err = 0; 1804 1805 set_new_dnode(&dn, inode, NULL, NULL, 0); 1806 if (need_inplace_update(fio) && 1807 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1808 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1809 1810 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1811 DATA_GENERIC)) 1812 return -EFAULT; 1813 1814 ipu_force = true; 1815 fio->need_lock = LOCK_DONE; 1816 goto got_it; 1817 } 1818 1819 /* Deadlock due to between page->lock and f2fs_lock_op */ 1820 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1821 return -EAGAIN; 1822 1823 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1824 if (err) 1825 goto out; 1826 1827 fio->old_blkaddr = dn.data_blkaddr; 1828 1829 /* This page is already truncated */ 1830 if (fio->old_blkaddr == NULL_ADDR) { 1831 ClearPageUptodate(page); 1832 clear_cold_data(page); 1833 goto out_writepage; 1834 } 1835 got_it: 1836 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1837 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1838 DATA_GENERIC)) { 1839 err = -EFAULT; 1840 goto out_writepage; 1841 } 1842 /* 1843 * If current allocation needs SSR, 1844 * it had better in-place writes for updated data. 1845 */ 1846 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) && 1847 need_inplace_update(fio))) { 1848 err = encrypt_one_page(fio); 1849 if (err) 1850 goto out_writepage; 1851 1852 set_page_writeback(page); 1853 ClearPageError(page); 1854 f2fs_put_dnode(&dn); 1855 if (fio->need_lock == LOCK_REQ) 1856 f2fs_unlock_op(fio->sbi); 1857 err = f2fs_inplace_write_data(fio); 1858 trace_f2fs_do_write_data_page(fio->page, IPU); 1859 set_inode_flag(inode, FI_UPDATE_WRITE); 1860 return err; 1861 } 1862 1863 if (fio->need_lock == LOCK_RETRY) { 1864 if (!f2fs_trylock_op(fio->sbi)) { 1865 err = -EAGAIN; 1866 goto out_writepage; 1867 } 1868 fio->need_lock = LOCK_REQ; 1869 } 1870 1871 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 1872 if (err) 1873 goto out_writepage; 1874 1875 fio->version = ni.version; 1876 1877 err = encrypt_one_page(fio); 1878 if (err) 1879 goto out_writepage; 1880 1881 set_page_writeback(page); 1882 ClearPageError(page); 1883 1884 /* LFS mode write path */ 1885 f2fs_outplace_write_data(&dn, fio); 1886 trace_f2fs_do_write_data_page(page, OPU); 1887 set_inode_flag(inode, FI_APPEND_WRITE); 1888 if (page->index == 0) 1889 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1890 out_writepage: 1891 f2fs_put_dnode(&dn); 1892 out: 1893 if (fio->need_lock == LOCK_REQ) 1894 f2fs_unlock_op(fio->sbi); 1895 return err; 1896 } 1897 1898 static int __write_data_page(struct page *page, bool *submitted, 1899 struct writeback_control *wbc, 1900 enum iostat_type io_type) 1901 { 1902 struct inode *inode = page->mapping->host; 1903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1904 loff_t i_size = i_size_read(inode); 1905 const pgoff_t end_index = ((unsigned long long) i_size) 1906 >> PAGE_SHIFT; 1907 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1908 unsigned offset = 0; 1909 bool need_balance_fs = false; 1910 int err = 0; 1911 struct f2fs_io_info fio = { 1912 .sbi = sbi, 1913 .ino = inode->i_ino, 1914 .type = DATA, 1915 .op = REQ_OP_WRITE, 1916 .op_flags = wbc_to_write_flags(wbc), 1917 .old_blkaddr = NULL_ADDR, 1918 .page = page, 1919 .encrypted_page = NULL, 1920 .submitted = false, 1921 .need_lock = LOCK_RETRY, 1922 .io_type = io_type, 1923 .io_wbc = wbc, 1924 }; 1925 1926 trace_f2fs_writepage(page, DATA); 1927 1928 /* we should bypass data pages to proceed the kworkder jobs */ 1929 if (unlikely(f2fs_cp_error(sbi))) { 1930 mapping_set_error(page->mapping, -EIO); 1931 /* 1932 * don't drop any dirty dentry pages for keeping lastest 1933 * directory structure. 1934 */ 1935 if (S_ISDIR(inode->i_mode)) 1936 goto redirty_out; 1937 goto out; 1938 } 1939 1940 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1941 goto redirty_out; 1942 1943 if (page->index < end_index) 1944 goto write; 1945 1946 /* 1947 * If the offset is out-of-range of file size, 1948 * this page does not have to be written to disk. 1949 */ 1950 offset = i_size & (PAGE_SIZE - 1); 1951 if ((page->index >= end_index + 1) || !offset) 1952 goto out; 1953 1954 zero_user_segment(page, offset, PAGE_SIZE); 1955 write: 1956 if (f2fs_is_drop_cache(inode)) 1957 goto out; 1958 /* we should not write 0'th page having journal header */ 1959 if (f2fs_is_volatile_file(inode) && (!page->index || 1960 (!wbc->for_reclaim && 1961 f2fs_available_free_memory(sbi, BASE_CHECK)))) 1962 goto redirty_out; 1963 1964 /* Dentry blocks are controlled by checkpoint */ 1965 if (S_ISDIR(inode->i_mode)) { 1966 fio.need_lock = LOCK_DONE; 1967 err = f2fs_do_write_data_page(&fio); 1968 goto done; 1969 } 1970 1971 if (!wbc->for_reclaim) 1972 need_balance_fs = true; 1973 else if (has_not_enough_free_secs(sbi, 0, 0)) 1974 goto redirty_out; 1975 else 1976 set_inode_flag(inode, FI_HOT_DATA); 1977 1978 err = -EAGAIN; 1979 if (f2fs_has_inline_data(inode)) { 1980 err = f2fs_write_inline_data(inode, page); 1981 if (!err) 1982 goto out; 1983 } 1984 1985 if (err == -EAGAIN) { 1986 err = f2fs_do_write_data_page(&fio); 1987 if (err == -EAGAIN) { 1988 fio.need_lock = LOCK_REQ; 1989 err = f2fs_do_write_data_page(&fio); 1990 } 1991 } 1992 1993 if (err) { 1994 file_set_keep_isize(inode); 1995 } else { 1996 down_write(&F2FS_I(inode)->i_sem); 1997 if (F2FS_I(inode)->last_disk_size < psize) 1998 F2FS_I(inode)->last_disk_size = psize; 1999 up_write(&F2FS_I(inode)->i_sem); 2000 } 2001 2002 done: 2003 if (err && err != -ENOENT) 2004 goto redirty_out; 2005 2006 out: 2007 inode_dec_dirty_pages(inode); 2008 if (err) { 2009 ClearPageUptodate(page); 2010 clear_cold_data(page); 2011 } 2012 2013 if (wbc->for_reclaim) { 2014 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2015 clear_inode_flag(inode, FI_HOT_DATA); 2016 f2fs_remove_dirty_inode(inode); 2017 submitted = NULL; 2018 } 2019 2020 unlock_page(page); 2021 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode)) 2022 f2fs_balance_fs(sbi, need_balance_fs); 2023 2024 if (unlikely(f2fs_cp_error(sbi))) { 2025 f2fs_submit_merged_write(sbi, DATA); 2026 submitted = NULL; 2027 } 2028 2029 if (submitted) 2030 *submitted = fio.submitted; 2031 2032 return 0; 2033 2034 redirty_out: 2035 redirty_page_for_writepage(wbc, page); 2036 /* 2037 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2038 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2039 * file_write_and_wait_range() will see EIO error, which is critical 2040 * to return value of fsync() followed by atomic_write failure to user. 2041 */ 2042 if (!err || wbc->for_reclaim) 2043 return AOP_WRITEPAGE_ACTIVATE; 2044 unlock_page(page); 2045 return err; 2046 } 2047 2048 static int f2fs_write_data_page(struct page *page, 2049 struct writeback_control *wbc) 2050 { 2051 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 2052 } 2053 2054 /* 2055 * This function was copied from write_cche_pages from mm/page-writeback.c. 2056 * The major change is making write step of cold data page separately from 2057 * warm/hot data page. 2058 */ 2059 static int f2fs_write_cache_pages(struct address_space *mapping, 2060 struct writeback_control *wbc, 2061 enum iostat_type io_type) 2062 { 2063 int ret = 0; 2064 int done = 0; 2065 struct pagevec pvec; 2066 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2067 int nr_pages; 2068 pgoff_t uninitialized_var(writeback_index); 2069 pgoff_t index; 2070 pgoff_t end; /* Inclusive */ 2071 pgoff_t done_index; 2072 int cycled; 2073 int range_whole = 0; 2074 xa_mark_t tag; 2075 int nwritten = 0; 2076 2077 pagevec_init(&pvec); 2078 2079 if (get_dirty_pages(mapping->host) <= 2080 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2081 set_inode_flag(mapping->host, FI_HOT_DATA); 2082 else 2083 clear_inode_flag(mapping->host, FI_HOT_DATA); 2084 2085 if (wbc->range_cyclic) { 2086 writeback_index = mapping->writeback_index; /* prev offset */ 2087 index = writeback_index; 2088 if (index == 0) 2089 cycled = 1; 2090 else 2091 cycled = 0; 2092 end = -1; 2093 } else { 2094 index = wbc->range_start >> PAGE_SHIFT; 2095 end = wbc->range_end >> PAGE_SHIFT; 2096 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2097 range_whole = 1; 2098 cycled = 1; /* ignore range_cyclic tests */ 2099 } 2100 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2101 tag = PAGECACHE_TAG_TOWRITE; 2102 else 2103 tag = PAGECACHE_TAG_DIRTY; 2104 retry: 2105 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2106 tag_pages_for_writeback(mapping, index, end); 2107 done_index = index; 2108 while (!done && (index <= end)) { 2109 int i; 2110 2111 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2112 tag); 2113 if (nr_pages == 0) 2114 break; 2115 2116 for (i = 0; i < nr_pages; i++) { 2117 struct page *page = pvec.pages[i]; 2118 bool submitted = false; 2119 2120 /* give a priority to WB_SYNC threads */ 2121 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2122 wbc->sync_mode == WB_SYNC_NONE) { 2123 done = 1; 2124 break; 2125 } 2126 2127 done_index = page->index; 2128 retry_write: 2129 lock_page(page); 2130 2131 if (unlikely(page->mapping != mapping)) { 2132 continue_unlock: 2133 unlock_page(page); 2134 continue; 2135 } 2136 2137 if (!PageDirty(page)) { 2138 /* someone wrote it for us */ 2139 goto continue_unlock; 2140 } 2141 2142 if (PageWriteback(page)) { 2143 if (wbc->sync_mode != WB_SYNC_NONE) 2144 f2fs_wait_on_page_writeback(page, 2145 DATA, true); 2146 else 2147 goto continue_unlock; 2148 } 2149 2150 BUG_ON(PageWriteback(page)); 2151 if (!clear_page_dirty_for_io(page)) 2152 goto continue_unlock; 2153 2154 ret = __write_data_page(page, &submitted, wbc, io_type); 2155 if (unlikely(ret)) { 2156 /* 2157 * keep nr_to_write, since vfs uses this to 2158 * get # of written pages. 2159 */ 2160 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2161 unlock_page(page); 2162 ret = 0; 2163 continue; 2164 } else if (ret == -EAGAIN) { 2165 ret = 0; 2166 if (wbc->sync_mode == WB_SYNC_ALL) { 2167 cond_resched(); 2168 congestion_wait(BLK_RW_ASYNC, 2169 HZ/50); 2170 goto retry_write; 2171 } 2172 continue; 2173 } 2174 done_index = page->index + 1; 2175 done = 1; 2176 break; 2177 } else if (submitted) { 2178 nwritten++; 2179 } 2180 2181 if (--wbc->nr_to_write <= 0 && 2182 wbc->sync_mode == WB_SYNC_NONE) { 2183 done = 1; 2184 break; 2185 } 2186 } 2187 pagevec_release(&pvec); 2188 cond_resched(); 2189 } 2190 2191 if (!cycled && !done) { 2192 cycled = 1; 2193 index = 0; 2194 end = writeback_index - 1; 2195 goto retry; 2196 } 2197 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2198 mapping->writeback_index = done_index; 2199 2200 if (nwritten) 2201 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2202 NULL, 0, DATA); 2203 2204 return ret; 2205 } 2206 2207 static inline bool __should_serialize_io(struct inode *inode, 2208 struct writeback_control *wbc) 2209 { 2210 if (!S_ISREG(inode->i_mode)) 2211 return false; 2212 if (IS_NOQUOTA(inode)) 2213 return false; 2214 if (wbc->sync_mode != WB_SYNC_ALL) 2215 return true; 2216 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2217 return true; 2218 return false; 2219 } 2220 2221 static int __f2fs_write_data_pages(struct address_space *mapping, 2222 struct writeback_control *wbc, 2223 enum iostat_type io_type) 2224 { 2225 struct inode *inode = mapping->host; 2226 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2227 struct blk_plug plug; 2228 int ret; 2229 bool locked = false; 2230 2231 /* deal with chardevs and other special file */ 2232 if (!mapping->a_ops->writepage) 2233 return 0; 2234 2235 /* skip writing if there is no dirty page in this inode */ 2236 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2237 return 0; 2238 2239 /* during POR, we don't need to trigger writepage at all. */ 2240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2241 goto skip_write; 2242 2243 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2244 wbc->sync_mode == WB_SYNC_NONE && 2245 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2246 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2247 goto skip_write; 2248 2249 /* skip writing during file defragment */ 2250 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2251 goto skip_write; 2252 2253 trace_f2fs_writepages(mapping->host, wbc, DATA); 2254 2255 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2256 if (wbc->sync_mode == WB_SYNC_ALL) 2257 atomic_inc(&sbi->wb_sync_req[DATA]); 2258 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2259 goto skip_write; 2260 2261 if (__should_serialize_io(inode, wbc)) { 2262 mutex_lock(&sbi->writepages); 2263 locked = true; 2264 } 2265 2266 blk_start_plug(&plug); 2267 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2268 blk_finish_plug(&plug); 2269 2270 if (locked) 2271 mutex_unlock(&sbi->writepages); 2272 2273 if (wbc->sync_mode == WB_SYNC_ALL) 2274 atomic_dec(&sbi->wb_sync_req[DATA]); 2275 /* 2276 * if some pages were truncated, we cannot guarantee its mapping->host 2277 * to detect pending bios. 2278 */ 2279 2280 f2fs_remove_dirty_inode(inode); 2281 return ret; 2282 2283 skip_write: 2284 wbc->pages_skipped += get_dirty_pages(inode); 2285 trace_f2fs_writepages(mapping->host, wbc, DATA); 2286 return 0; 2287 } 2288 2289 static int f2fs_write_data_pages(struct address_space *mapping, 2290 struct writeback_control *wbc) 2291 { 2292 struct inode *inode = mapping->host; 2293 2294 return __f2fs_write_data_pages(mapping, wbc, 2295 F2FS_I(inode)->cp_task == current ? 2296 FS_CP_DATA_IO : FS_DATA_IO); 2297 } 2298 2299 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2300 { 2301 struct inode *inode = mapping->host; 2302 loff_t i_size = i_size_read(inode); 2303 2304 if (to > i_size) { 2305 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2306 down_write(&F2FS_I(inode)->i_mmap_sem); 2307 2308 truncate_pagecache(inode, i_size); 2309 f2fs_truncate_blocks(inode, i_size, true, true); 2310 2311 up_write(&F2FS_I(inode)->i_mmap_sem); 2312 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2313 } 2314 } 2315 2316 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2317 struct page *page, loff_t pos, unsigned len, 2318 block_t *blk_addr, bool *node_changed) 2319 { 2320 struct inode *inode = page->mapping->host; 2321 pgoff_t index = page->index; 2322 struct dnode_of_data dn; 2323 struct page *ipage; 2324 bool locked = false; 2325 struct extent_info ei = {0,0,0}; 2326 int err = 0; 2327 2328 /* 2329 * we already allocated all the blocks, so we don't need to get 2330 * the block addresses when there is no need to fill the page. 2331 */ 2332 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2333 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2334 return 0; 2335 2336 if (f2fs_has_inline_data(inode) || 2337 (pos & PAGE_MASK) >= i_size_read(inode)) { 2338 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 2339 locked = true; 2340 } 2341 restart: 2342 /* check inline_data */ 2343 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2344 if (IS_ERR(ipage)) { 2345 err = PTR_ERR(ipage); 2346 goto unlock_out; 2347 } 2348 2349 set_new_dnode(&dn, inode, ipage, ipage, 0); 2350 2351 if (f2fs_has_inline_data(inode)) { 2352 if (pos + len <= MAX_INLINE_DATA(inode)) { 2353 f2fs_do_read_inline_data(page, ipage); 2354 set_inode_flag(inode, FI_DATA_EXIST); 2355 if (inode->i_nlink) 2356 set_inline_node(ipage); 2357 } else { 2358 err = f2fs_convert_inline_page(&dn, page); 2359 if (err) 2360 goto out; 2361 if (dn.data_blkaddr == NULL_ADDR) 2362 err = f2fs_get_block(&dn, index); 2363 } 2364 } else if (locked) { 2365 err = f2fs_get_block(&dn, index); 2366 } else { 2367 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2368 dn.data_blkaddr = ei.blk + index - ei.fofs; 2369 } else { 2370 /* hole case */ 2371 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2372 if (err || dn.data_blkaddr == NULL_ADDR) { 2373 f2fs_put_dnode(&dn); 2374 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2375 true); 2376 locked = true; 2377 goto restart; 2378 } 2379 } 2380 } 2381 2382 /* convert_inline_page can make node_changed */ 2383 *blk_addr = dn.data_blkaddr; 2384 *node_changed = dn.node_changed; 2385 out: 2386 f2fs_put_dnode(&dn); 2387 unlock_out: 2388 if (locked) 2389 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 2390 return err; 2391 } 2392 2393 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2394 loff_t pos, unsigned len, unsigned flags, 2395 struct page **pagep, void **fsdata) 2396 { 2397 struct inode *inode = mapping->host; 2398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2399 struct page *page = NULL; 2400 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2401 bool need_balance = false, drop_atomic = false; 2402 block_t blkaddr = NULL_ADDR; 2403 int err = 0; 2404 2405 trace_f2fs_write_begin(inode, pos, len, flags); 2406 2407 err = f2fs_is_checkpoint_ready(sbi); 2408 if (err) 2409 goto fail; 2410 2411 if ((f2fs_is_atomic_file(inode) && 2412 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2413 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2414 err = -ENOMEM; 2415 drop_atomic = true; 2416 goto fail; 2417 } 2418 2419 /* 2420 * We should check this at this moment to avoid deadlock on inode page 2421 * and #0 page. The locking rule for inline_data conversion should be: 2422 * lock_page(page #0) -> lock_page(inode_page) 2423 */ 2424 if (index != 0) { 2425 err = f2fs_convert_inline_inode(inode); 2426 if (err) 2427 goto fail; 2428 } 2429 repeat: 2430 /* 2431 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2432 * wait_for_stable_page. Will wait that below with our IO control. 2433 */ 2434 page = f2fs_pagecache_get_page(mapping, index, 2435 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2436 if (!page) { 2437 err = -ENOMEM; 2438 goto fail; 2439 } 2440 2441 *pagep = page; 2442 2443 err = prepare_write_begin(sbi, page, pos, len, 2444 &blkaddr, &need_balance); 2445 if (err) 2446 goto fail; 2447 2448 if (need_balance && !IS_NOQUOTA(inode) && 2449 has_not_enough_free_secs(sbi, 0, 0)) { 2450 unlock_page(page); 2451 f2fs_balance_fs(sbi, true); 2452 lock_page(page); 2453 if (page->mapping != mapping) { 2454 /* The page got truncated from under us */ 2455 f2fs_put_page(page, 1); 2456 goto repeat; 2457 } 2458 } 2459 2460 f2fs_wait_on_page_writeback(page, DATA, false); 2461 2462 if (len == PAGE_SIZE || PageUptodate(page)) 2463 return 0; 2464 2465 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2466 zero_user_segment(page, len, PAGE_SIZE); 2467 return 0; 2468 } 2469 2470 if (blkaddr == NEW_ADDR) { 2471 zero_user_segment(page, 0, PAGE_SIZE); 2472 SetPageUptodate(page); 2473 } else { 2474 err = f2fs_submit_page_read(inode, page, blkaddr); 2475 if (err) 2476 goto fail; 2477 2478 lock_page(page); 2479 if (unlikely(page->mapping != mapping)) { 2480 f2fs_put_page(page, 1); 2481 goto repeat; 2482 } 2483 if (unlikely(!PageUptodate(page))) { 2484 err = -EIO; 2485 goto fail; 2486 } 2487 } 2488 return 0; 2489 2490 fail: 2491 f2fs_put_page(page, 1); 2492 f2fs_write_failed(mapping, pos + len); 2493 if (drop_atomic) 2494 f2fs_drop_inmem_pages_all(sbi, false); 2495 return err; 2496 } 2497 2498 static int f2fs_write_end(struct file *file, 2499 struct address_space *mapping, 2500 loff_t pos, unsigned len, unsigned copied, 2501 struct page *page, void *fsdata) 2502 { 2503 struct inode *inode = page->mapping->host; 2504 2505 trace_f2fs_write_end(inode, pos, len, copied); 2506 2507 /* 2508 * This should be come from len == PAGE_SIZE, and we expect copied 2509 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2510 * let generic_perform_write() try to copy data again through copied=0. 2511 */ 2512 if (!PageUptodate(page)) { 2513 if (unlikely(copied != len)) 2514 copied = 0; 2515 else 2516 SetPageUptodate(page); 2517 } 2518 if (!copied) 2519 goto unlock_out; 2520 2521 set_page_dirty(page); 2522 2523 if (pos + copied > i_size_read(inode)) 2524 f2fs_i_size_write(inode, pos + copied); 2525 unlock_out: 2526 f2fs_put_page(page, 1); 2527 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2528 return copied; 2529 } 2530 2531 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2532 loff_t offset) 2533 { 2534 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2535 unsigned blkbits = i_blkbits; 2536 unsigned blocksize_mask = (1 << blkbits) - 1; 2537 unsigned long align = offset | iov_iter_alignment(iter); 2538 struct block_device *bdev = inode->i_sb->s_bdev; 2539 2540 if (align & blocksize_mask) { 2541 if (bdev) 2542 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2543 blocksize_mask = (1 << blkbits) - 1; 2544 if (align & blocksize_mask) 2545 return -EINVAL; 2546 return 1; 2547 } 2548 return 0; 2549 } 2550 2551 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2552 { 2553 struct address_space *mapping = iocb->ki_filp->f_mapping; 2554 struct inode *inode = mapping->host; 2555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2556 struct f2fs_inode_info *fi = F2FS_I(inode); 2557 size_t count = iov_iter_count(iter); 2558 loff_t offset = iocb->ki_pos; 2559 int rw = iov_iter_rw(iter); 2560 int err; 2561 enum rw_hint hint = iocb->ki_hint; 2562 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2563 bool do_opu; 2564 2565 err = check_direct_IO(inode, iter, offset); 2566 if (err) 2567 return err < 0 ? err : 0; 2568 2569 if (f2fs_force_buffered_io(inode, iocb, iter)) 2570 return 0; 2571 2572 do_opu = allow_outplace_dio(inode, iocb, iter); 2573 2574 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2575 2576 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2577 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2578 2579 if (iocb->ki_flags & IOCB_NOWAIT) { 2580 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2581 iocb->ki_hint = hint; 2582 err = -EAGAIN; 2583 goto out; 2584 } 2585 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2586 up_read(&fi->i_gc_rwsem[rw]); 2587 iocb->ki_hint = hint; 2588 err = -EAGAIN; 2589 goto out; 2590 } 2591 } else { 2592 down_read(&fi->i_gc_rwsem[rw]); 2593 if (do_opu) 2594 down_read(&fi->i_gc_rwsem[READ]); 2595 } 2596 2597 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2598 2599 if (do_opu) 2600 up_read(&fi->i_gc_rwsem[READ]); 2601 2602 up_read(&fi->i_gc_rwsem[rw]); 2603 2604 if (rw == WRITE) { 2605 if (whint_mode == WHINT_MODE_OFF) 2606 iocb->ki_hint = hint; 2607 if (err > 0) { 2608 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2609 err); 2610 if (!do_opu) 2611 set_inode_flag(inode, FI_UPDATE_WRITE); 2612 } else if (err < 0) { 2613 f2fs_write_failed(mapping, offset + count); 2614 } 2615 } 2616 2617 out: 2618 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2619 2620 return err; 2621 } 2622 2623 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2624 unsigned int length) 2625 { 2626 struct inode *inode = page->mapping->host; 2627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2628 2629 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2630 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2631 return; 2632 2633 if (PageDirty(page)) { 2634 if (inode->i_ino == F2FS_META_INO(sbi)) { 2635 dec_page_count(sbi, F2FS_DIRTY_META); 2636 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2637 dec_page_count(sbi, F2FS_DIRTY_NODES); 2638 } else { 2639 inode_dec_dirty_pages(inode); 2640 f2fs_remove_dirty_inode(inode); 2641 } 2642 } 2643 2644 clear_cold_data(page); 2645 2646 /* This is atomic written page, keep Private */ 2647 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2648 return f2fs_drop_inmem_page(inode, page); 2649 2650 set_page_private(page, 0); 2651 ClearPagePrivate(page); 2652 } 2653 2654 int f2fs_release_page(struct page *page, gfp_t wait) 2655 { 2656 /* If this is dirty page, keep PagePrivate */ 2657 if (PageDirty(page)) 2658 return 0; 2659 2660 /* This is atomic written page, keep Private */ 2661 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2662 return 0; 2663 2664 clear_cold_data(page); 2665 set_page_private(page, 0); 2666 ClearPagePrivate(page); 2667 return 1; 2668 } 2669 2670 static int f2fs_set_data_page_dirty(struct page *page) 2671 { 2672 struct address_space *mapping = page->mapping; 2673 struct inode *inode = mapping->host; 2674 2675 trace_f2fs_set_page_dirty(page, DATA); 2676 2677 if (!PageUptodate(page)) 2678 SetPageUptodate(page); 2679 2680 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2681 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2682 f2fs_register_inmem_page(inode, page); 2683 return 1; 2684 } 2685 /* 2686 * Previously, this page has been registered, we just 2687 * return here. 2688 */ 2689 return 0; 2690 } 2691 2692 if (!PageDirty(page)) { 2693 __set_page_dirty_nobuffers(page); 2694 f2fs_update_dirty_page(inode, page); 2695 return 1; 2696 } 2697 return 0; 2698 } 2699 2700 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2701 { 2702 struct inode *inode = mapping->host; 2703 2704 if (f2fs_has_inline_data(inode)) 2705 return 0; 2706 2707 /* make sure allocating whole blocks */ 2708 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2709 filemap_write_and_wait(mapping); 2710 2711 return generic_block_bmap(mapping, block, get_data_block_bmap); 2712 } 2713 2714 #ifdef CONFIG_MIGRATION 2715 #include <linux/migrate.h> 2716 2717 int f2fs_migrate_page(struct address_space *mapping, 2718 struct page *newpage, struct page *page, enum migrate_mode mode) 2719 { 2720 int rc, extra_count; 2721 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2722 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2723 2724 BUG_ON(PageWriteback(page)); 2725 2726 /* migrating an atomic written page is safe with the inmem_lock hold */ 2727 if (atomic_written) { 2728 if (mode != MIGRATE_SYNC) 2729 return -EBUSY; 2730 if (!mutex_trylock(&fi->inmem_lock)) 2731 return -EAGAIN; 2732 } 2733 2734 /* 2735 * A reference is expected if PagePrivate set when move mapping, 2736 * however F2FS breaks this for maintaining dirty page counts when 2737 * truncating pages. So here adjusting the 'extra_count' make it work. 2738 */ 2739 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2740 rc = migrate_page_move_mapping(mapping, newpage, 2741 page, NULL, mode, extra_count); 2742 if (rc != MIGRATEPAGE_SUCCESS) { 2743 if (atomic_written) 2744 mutex_unlock(&fi->inmem_lock); 2745 return rc; 2746 } 2747 2748 if (atomic_written) { 2749 struct inmem_pages *cur; 2750 list_for_each_entry(cur, &fi->inmem_pages, list) 2751 if (cur->page == page) { 2752 cur->page = newpage; 2753 break; 2754 } 2755 mutex_unlock(&fi->inmem_lock); 2756 put_page(page); 2757 get_page(newpage); 2758 } 2759 2760 if (PagePrivate(page)) 2761 SetPagePrivate(newpage); 2762 set_page_private(newpage, page_private(page)); 2763 2764 if (mode != MIGRATE_SYNC_NO_COPY) 2765 migrate_page_copy(newpage, page); 2766 else 2767 migrate_page_states(newpage, page); 2768 2769 return MIGRATEPAGE_SUCCESS; 2770 } 2771 #endif 2772 2773 const struct address_space_operations f2fs_dblock_aops = { 2774 .readpage = f2fs_read_data_page, 2775 .readpages = f2fs_read_data_pages, 2776 .writepage = f2fs_write_data_page, 2777 .writepages = f2fs_write_data_pages, 2778 .write_begin = f2fs_write_begin, 2779 .write_end = f2fs_write_end, 2780 .set_page_dirty = f2fs_set_data_page_dirty, 2781 .invalidatepage = f2fs_invalidate_page, 2782 .releasepage = f2fs_release_page, 2783 .direct_IO = f2fs_direct_IO, 2784 .bmap = f2fs_bmap, 2785 #ifdef CONFIG_MIGRATION 2786 .migratepage = f2fs_migrate_page, 2787 #endif 2788 }; 2789 2790 void f2fs_clear_page_cache_dirty_tag(struct page *page) 2791 { 2792 struct address_space *mapping = page_mapping(page); 2793 unsigned long flags; 2794 2795 xa_lock_irqsave(&mapping->i_pages, flags); 2796 __xa_clear_mark(&mapping->i_pages, page_index(page), 2797 PAGECACHE_TAG_DIRTY); 2798 xa_unlock_irqrestore(&mapping->i_pages, flags); 2799 } 2800 2801 int __init f2fs_init_post_read_processing(void) 2802 { 2803 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0); 2804 if (!bio_post_read_ctx_cache) 2805 goto fail; 2806 bio_post_read_ctx_pool = 2807 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 2808 bio_post_read_ctx_cache); 2809 if (!bio_post_read_ctx_pool) 2810 goto fail_free_cache; 2811 return 0; 2812 2813 fail_free_cache: 2814 kmem_cache_destroy(bio_post_read_ctx_cache); 2815 fail: 2816 return -ENOMEM; 2817 } 2818 2819 void __exit f2fs_destroy_post_read_processing(void) 2820 { 2821 mempool_destroy(bio_post_read_ctx_pool); 2822 kmem_cache_destroy(bio_post_read_ctx_cache); 2823 } 2824