1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static void f2fs_read_end_io(struct bio *bio) 33 { 34 struct bio_vec *bvec; 35 int i; 36 37 #ifdef CONFIG_F2FS_FAULT_INJECTION 38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) 39 bio->bi_error = -EIO; 40 #endif 41 42 if (f2fs_bio_encrypted(bio)) { 43 if (bio->bi_error) { 44 fscrypt_release_ctx(bio->bi_private); 45 } else { 46 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 47 return; 48 } 49 } 50 51 bio_for_each_segment_all(bvec, bio, i) { 52 struct page *page = bvec->bv_page; 53 54 if (!bio->bi_error) { 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 } else { 58 ClearPageUptodate(page); 59 SetPageError(page); 60 } 61 unlock_page(page); 62 } 63 bio_put(bio); 64 } 65 66 static void f2fs_write_end_io(struct bio *bio) 67 { 68 struct f2fs_sb_info *sbi = bio->bi_private; 69 struct bio_vec *bvec; 70 int i; 71 72 bio_for_each_segment_all(bvec, bio, i) { 73 struct page *page = bvec->bv_page; 74 75 fscrypt_pullback_bio_page(&page, true); 76 77 if (unlikely(bio->bi_error)) { 78 mapping_set_error(page->mapping, -EIO); 79 f2fs_stop_checkpoint(sbi, true); 80 } 81 end_page_writeback(page); 82 } 83 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 84 wq_has_sleeper(&sbi->cp_wait)) 85 wake_up(&sbi->cp_wait); 86 87 bio_put(bio); 88 } 89 90 /* 91 * Low-level block read/write IO operations. 92 */ 93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 94 int npages, bool is_read) 95 { 96 struct bio *bio; 97 98 bio = f2fs_bio_alloc(npages); 99 100 bio->bi_bdev = sbi->sb->s_bdev; 101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 103 bio->bi_private = is_read ? NULL : sbi; 104 105 return bio; 106 } 107 108 static inline void __submit_bio(struct f2fs_sb_info *sbi, 109 struct bio *bio, enum page_type type) 110 { 111 if (!is_read_io(bio_op(bio))) { 112 atomic_inc(&sbi->nr_wb_bios); 113 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 114 current->plug && (type == DATA || type == NODE)) 115 blk_finish_plug(current->plug); 116 } 117 submit_bio(bio); 118 } 119 120 static void __submit_merged_bio(struct f2fs_bio_info *io) 121 { 122 struct f2fs_io_info *fio = &io->fio; 123 124 if (!io->bio) 125 return; 126 127 if (is_read_io(fio->op)) 128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 129 else 130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 131 132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 133 134 __submit_bio(io->sbi, io->bio, fio->type); 135 io->bio = NULL; 136 } 137 138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 139 struct page *page, nid_t ino) 140 { 141 struct bio_vec *bvec; 142 struct page *target; 143 int i; 144 145 if (!io->bio) 146 return false; 147 148 if (!inode && !page && !ino) 149 return true; 150 151 bio_for_each_segment_all(bvec, io->bio, i) { 152 153 if (bvec->bv_page->mapping) 154 target = bvec->bv_page; 155 else 156 target = fscrypt_control_page(bvec->bv_page); 157 158 if (inode && inode == target->mapping->host) 159 return true; 160 if (page && page == target) 161 return true; 162 if (ino && ino == ino_of_node(target)) 163 return true; 164 } 165 166 return false; 167 } 168 169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 170 struct page *page, nid_t ino, 171 enum page_type type) 172 { 173 enum page_type btype = PAGE_TYPE_OF_BIO(type); 174 struct f2fs_bio_info *io = &sbi->write_io[btype]; 175 bool ret; 176 177 down_read(&io->io_rwsem); 178 ret = __has_merged_page(io, inode, page, ino); 179 up_read(&io->io_rwsem); 180 return ret; 181 } 182 183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 184 struct inode *inode, struct page *page, 185 nid_t ino, enum page_type type, int rw) 186 { 187 enum page_type btype = PAGE_TYPE_OF_BIO(type); 188 struct f2fs_bio_info *io; 189 190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 191 192 down_write(&io->io_rwsem); 193 194 if (!__has_merged_page(io, inode, page, ino)) 195 goto out; 196 197 /* change META to META_FLUSH in the checkpoint procedure */ 198 if (type >= META_FLUSH) { 199 io->fio.type = META_FLUSH; 200 io->fio.op = REQ_OP_WRITE; 201 if (test_opt(sbi, NOBARRIER)) 202 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO; 203 else 204 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META | 205 REQ_PRIO; 206 } 207 __submit_merged_bio(io); 208 out: 209 up_write(&io->io_rwsem); 210 } 211 212 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 213 int rw) 214 { 215 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 216 } 217 218 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 219 struct inode *inode, struct page *page, 220 nid_t ino, enum page_type type, int rw) 221 { 222 if (has_merged_page(sbi, inode, page, ino, type)) 223 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 224 } 225 226 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 227 { 228 f2fs_submit_merged_bio(sbi, DATA, WRITE); 229 f2fs_submit_merged_bio(sbi, NODE, WRITE); 230 f2fs_submit_merged_bio(sbi, META, WRITE); 231 } 232 233 /* 234 * Fill the locked page with data located in the block address. 235 * Return unlocked page. 236 */ 237 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 238 { 239 struct bio *bio; 240 struct page *page = fio->encrypted_page ? 241 fio->encrypted_page : fio->page; 242 243 trace_f2fs_submit_page_bio(page, fio); 244 f2fs_trace_ios(fio, 0); 245 246 /* Allocate a new bio */ 247 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 248 249 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 250 bio_put(bio); 251 return -EFAULT; 252 } 253 bio_set_op_attrs(bio, fio->op, fio->op_flags); 254 255 __submit_bio(fio->sbi, bio, fio->type); 256 return 0; 257 } 258 259 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 260 { 261 struct f2fs_sb_info *sbi = fio->sbi; 262 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 263 struct f2fs_bio_info *io; 264 bool is_read = is_read_io(fio->op); 265 struct page *bio_page; 266 267 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 268 269 if (fio->old_blkaddr != NEW_ADDR) 270 verify_block_addr(sbi, fio->old_blkaddr); 271 verify_block_addr(sbi, fio->new_blkaddr); 272 273 down_write(&io->io_rwsem); 274 275 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 276 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags))) 277 __submit_merged_bio(io); 278 alloc_new: 279 if (io->bio == NULL) { 280 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 281 BIO_MAX_PAGES, is_read); 282 io->fio = *fio; 283 } 284 285 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 286 287 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 288 PAGE_SIZE) { 289 __submit_merged_bio(io); 290 goto alloc_new; 291 } 292 293 io->last_block_in_bio = fio->new_blkaddr; 294 f2fs_trace_ios(fio, 0); 295 296 up_write(&io->io_rwsem); 297 trace_f2fs_submit_page_mbio(fio->page, fio); 298 } 299 300 static void __set_data_blkaddr(struct dnode_of_data *dn) 301 { 302 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 303 __le32 *addr_array; 304 305 /* Get physical address of data block */ 306 addr_array = blkaddr_in_node(rn); 307 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 308 } 309 310 /* 311 * Lock ordering for the change of data block address: 312 * ->data_page 313 * ->node_page 314 * update block addresses in the node page 315 */ 316 void set_data_blkaddr(struct dnode_of_data *dn) 317 { 318 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 319 __set_data_blkaddr(dn); 320 if (set_page_dirty(dn->node_page)) 321 dn->node_changed = true; 322 } 323 324 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 325 { 326 dn->data_blkaddr = blkaddr; 327 set_data_blkaddr(dn); 328 f2fs_update_extent_cache(dn); 329 } 330 331 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 332 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 333 { 334 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 335 336 if (!count) 337 return 0; 338 339 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 340 return -EPERM; 341 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 342 return -ENOSPC; 343 344 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 345 dn->ofs_in_node, count); 346 347 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 348 349 for (; count > 0; dn->ofs_in_node++) { 350 block_t blkaddr = 351 datablock_addr(dn->node_page, dn->ofs_in_node); 352 if (blkaddr == NULL_ADDR) { 353 dn->data_blkaddr = NEW_ADDR; 354 __set_data_blkaddr(dn); 355 count--; 356 } 357 } 358 359 if (set_page_dirty(dn->node_page)) 360 dn->node_changed = true; 361 return 0; 362 } 363 364 /* Should keep dn->ofs_in_node unchanged */ 365 int reserve_new_block(struct dnode_of_data *dn) 366 { 367 unsigned int ofs_in_node = dn->ofs_in_node; 368 int ret; 369 370 ret = reserve_new_blocks(dn, 1); 371 dn->ofs_in_node = ofs_in_node; 372 return ret; 373 } 374 375 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 376 { 377 bool need_put = dn->inode_page ? false : true; 378 int err; 379 380 err = get_dnode_of_data(dn, index, ALLOC_NODE); 381 if (err) 382 return err; 383 384 if (dn->data_blkaddr == NULL_ADDR) 385 err = reserve_new_block(dn); 386 if (err || need_put) 387 f2fs_put_dnode(dn); 388 return err; 389 } 390 391 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 392 { 393 struct extent_info ei; 394 struct inode *inode = dn->inode; 395 396 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 397 dn->data_blkaddr = ei.blk + index - ei.fofs; 398 return 0; 399 } 400 401 return f2fs_reserve_block(dn, index); 402 } 403 404 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 405 int op_flags, bool for_write) 406 { 407 struct address_space *mapping = inode->i_mapping; 408 struct dnode_of_data dn; 409 struct page *page; 410 struct extent_info ei; 411 int err; 412 struct f2fs_io_info fio = { 413 .sbi = F2FS_I_SB(inode), 414 .type = DATA, 415 .op = REQ_OP_READ, 416 .op_flags = op_flags, 417 .encrypted_page = NULL, 418 }; 419 420 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 421 return read_mapping_page(mapping, index, NULL); 422 423 page = f2fs_grab_cache_page(mapping, index, for_write); 424 if (!page) 425 return ERR_PTR(-ENOMEM); 426 427 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 428 dn.data_blkaddr = ei.blk + index - ei.fofs; 429 goto got_it; 430 } 431 432 set_new_dnode(&dn, inode, NULL, NULL, 0); 433 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 434 if (err) 435 goto put_err; 436 f2fs_put_dnode(&dn); 437 438 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 439 err = -ENOENT; 440 goto put_err; 441 } 442 got_it: 443 if (PageUptodate(page)) { 444 unlock_page(page); 445 return page; 446 } 447 448 /* 449 * A new dentry page is allocated but not able to be written, since its 450 * new inode page couldn't be allocated due to -ENOSPC. 451 * In such the case, its blkaddr can be remained as NEW_ADDR. 452 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 453 */ 454 if (dn.data_blkaddr == NEW_ADDR) { 455 zero_user_segment(page, 0, PAGE_SIZE); 456 if (!PageUptodate(page)) 457 SetPageUptodate(page); 458 unlock_page(page); 459 return page; 460 } 461 462 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 463 fio.page = page; 464 err = f2fs_submit_page_bio(&fio); 465 if (err) 466 goto put_err; 467 return page; 468 469 put_err: 470 f2fs_put_page(page, 1); 471 return ERR_PTR(err); 472 } 473 474 struct page *find_data_page(struct inode *inode, pgoff_t index) 475 { 476 struct address_space *mapping = inode->i_mapping; 477 struct page *page; 478 479 page = find_get_page(mapping, index); 480 if (page && PageUptodate(page)) 481 return page; 482 f2fs_put_page(page, 0); 483 484 page = get_read_data_page(inode, index, READ_SYNC, false); 485 if (IS_ERR(page)) 486 return page; 487 488 if (PageUptodate(page)) 489 return page; 490 491 wait_on_page_locked(page); 492 if (unlikely(!PageUptodate(page))) { 493 f2fs_put_page(page, 0); 494 return ERR_PTR(-EIO); 495 } 496 return page; 497 } 498 499 /* 500 * If it tries to access a hole, return an error. 501 * Because, the callers, functions in dir.c and GC, should be able to know 502 * whether this page exists or not. 503 */ 504 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 505 bool for_write) 506 { 507 struct address_space *mapping = inode->i_mapping; 508 struct page *page; 509 repeat: 510 page = get_read_data_page(inode, index, READ_SYNC, for_write); 511 if (IS_ERR(page)) 512 return page; 513 514 /* wait for read completion */ 515 lock_page(page); 516 if (unlikely(page->mapping != mapping)) { 517 f2fs_put_page(page, 1); 518 goto repeat; 519 } 520 if (unlikely(!PageUptodate(page))) { 521 f2fs_put_page(page, 1); 522 return ERR_PTR(-EIO); 523 } 524 return page; 525 } 526 527 /* 528 * Caller ensures that this data page is never allocated. 529 * A new zero-filled data page is allocated in the page cache. 530 * 531 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 532 * f2fs_unlock_op(). 533 * Note that, ipage is set only by make_empty_dir, and if any error occur, 534 * ipage should be released by this function. 535 */ 536 struct page *get_new_data_page(struct inode *inode, 537 struct page *ipage, pgoff_t index, bool new_i_size) 538 { 539 struct address_space *mapping = inode->i_mapping; 540 struct page *page; 541 struct dnode_of_data dn; 542 int err; 543 544 page = f2fs_grab_cache_page(mapping, index, true); 545 if (!page) { 546 /* 547 * before exiting, we should make sure ipage will be released 548 * if any error occur. 549 */ 550 f2fs_put_page(ipage, 1); 551 return ERR_PTR(-ENOMEM); 552 } 553 554 set_new_dnode(&dn, inode, ipage, NULL, 0); 555 err = f2fs_reserve_block(&dn, index); 556 if (err) { 557 f2fs_put_page(page, 1); 558 return ERR_PTR(err); 559 } 560 if (!ipage) 561 f2fs_put_dnode(&dn); 562 563 if (PageUptodate(page)) 564 goto got_it; 565 566 if (dn.data_blkaddr == NEW_ADDR) { 567 zero_user_segment(page, 0, PAGE_SIZE); 568 if (!PageUptodate(page)) 569 SetPageUptodate(page); 570 } else { 571 f2fs_put_page(page, 1); 572 573 /* if ipage exists, blkaddr should be NEW_ADDR */ 574 f2fs_bug_on(F2FS_I_SB(inode), ipage); 575 page = get_lock_data_page(inode, index, true); 576 if (IS_ERR(page)) 577 return page; 578 } 579 got_it: 580 if (new_i_size && i_size_read(inode) < 581 ((loff_t)(index + 1) << PAGE_SHIFT)) 582 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 583 return page; 584 } 585 586 static int __allocate_data_block(struct dnode_of_data *dn) 587 { 588 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 589 struct f2fs_summary sum; 590 struct node_info ni; 591 pgoff_t fofs; 592 blkcnt_t count = 1; 593 594 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 595 return -EPERM; 596 597 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 598 if (dn->data_blkaddr == NEW_ADDR) 599 goto alloc; 600 601 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 602 return -ENOSPC; 603 604 alloc: 605 get_node_info(sbi, dn->nid, &ni); 606 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 607 608 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 609 &sum, CURSEG_WARM_DATA); 610 set_data_blkaddr(dn); 611 612 /* update i_size */ 613 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 614 dn->ofs_in_node; 615 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 616 f2fs_i_size_write(dn->inode, 617 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 618 return 0; 619 } 620 621 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 622 { 623 struct inode *inode = file_inode(iocb->ki_filp); 624 struct f2fs_map_blocks map; 625 ssize_t ret = 0; 626 627 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 628 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 629 if (map.m_len > map.m_lblk) 630 map.m_len -= map.m_lblk; 631 else 632 map.m_len = 0; 633 634 map.m_next_pgofs = NULL; 635 636 if (iocb->ki_flags & IOCB_DIRECT) { 637 ret = f2fs_convert_inline_inode(inode); 638 if (ret) 639 return ret; 640 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 641 } 642 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 643 ret = f2fs_convert_inline_inode(inode); 644 if (ret) 645 return ret; 646 } 647 if (!f2fs_has_inline_data(inode)) 648 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 649 return ret; 650 } 651 652 /* 653 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 654 * f2fs_map_blocks structure. 655 * If original data blocks are allocated, then give them to blockdev. 656 * Otherwise, 657 * a. preallocate requested block addresses 658 * b. do not use extent cache for better performance 659 * c. give the block addresses to blockdev 660 */ 661 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 662 int create, int flag) 663 { 664 unsigned int maxblocks = map->m_len; 665 struct dnode_of_data dn; 666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 667 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 668 pgoff_t pgofs, end_offset, end; 669 int err = 0, ofs = 1; 670 unsigned int ofs_in_node, last_ofs_in_node; 671 blkcnt_t prealloc; 672 struct extent_info ei; 673 block_t blkaddr; 674 675 if (!maxblocks) 676 return 0; 677 678 map->m_len = 0; 679 map->m_flags = 0; 680 681 /* it only supports block size == page size */ 682 pgofs = (pgoff_t)map->m_lblk; 683 end = pgofs + maxblocks; 684 685 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 686 map->m_pblk = ei.blk + pgofs - ei.fofs; 687 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 688 map->m_flags = F2FS_MAP_MAPPED; 689 goto out; 690 } 691 692 next_dnode: 693 if (create) 694 f2fs_lock_op(sbi); 695 696 /* When reading holes, we need its node page */ 697 set_new_dnode(&dn, inode, NULL, NULL, 0); 698 err = get_dnode_of_data(&dn, pgofs, mode); 699 if (err) { 700 if (flag == F2FS_GET_BLOCK_BMAP) 701 map->m_pblk = 0; 702 if (err == -ENOENT) { 703 err = 0; 704 if (map->m_next_pgofs) 705 *map->m_next_pgofs = 706 get_next_page_offset(&dn, pgofs); 707 } 708 goto unlock_out; 709 } 710 711 prealloc = 0; 712 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 713 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 714 715 next_block: 716 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 717 718 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 719 if (create) { 720 if (unlikely(f2fs_cp_error(sbi))) { 721 err = -EIO; 722 goto sync_out; 723 } 724 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 725 if (blkaddr == NULL_ADDR) { 726 prealloc++; 727 last_ofs_in_node = dn.ofs_in_node; 728 } 729 } else { 730 err = __allocate_data_block(&dn); 731 if (!err) 732 set_inode_flag(inode, FI_APPEND_WRITE); 733 } 734 if (err) 735 goto sync_out; 736 map->m_flags = F2FS_MAP_NEW; 737 blkaddr = dn.data_blkaddr; 738 } else { 739 if (flag == F2FS_GET_BLOCK_BMAP) { 740 map->m_pblk = 0; 741 goto sync_out; 742 } 743 if (flag == F2FS_GET_BLOCK_FIEMAP && 744 blkaddr == NULL_ADDR) { 745 if (map->m_next_pgofs) 746 *map->m_next_pgofs = pgofs + 1; 747 } 748 if (flag != F2FS_GET_BLOCK_FIEMAP || 749 blkaddr != NEW_ADDR) 750 goto sync_out; 751 } 752 } 753 754 if (flag == F2FS_GET_BLOCK_PRE_AIO) 755 goto skip; 756 757 if (map->m_len == 0) { 758 /* preallocated unwritten block should be mapped for fiemap. */ 759 if (blkaddr == NEW_ADDR) 760 map->m_flags |= F2FS_MAP_UNWRITTEN; 761 map->m_flags |= F2FS_MAP_MAPPED; 762 763 map->m_pblk = blkaddr; 764 map->m_len = 1; 765 } else if ((map->m_pblk != NEW_ADDR && 766 blkaddr == (map->m_pblk + ofs)) || 767 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 768 flag == F2FS_GET_BLOCK_PRE_DIO) { 769 ofs++; 770 map->m_len++; 771 } else { 772 goto sync_out; 773 } 774 775 skip: 776 dn.ofs_in_node++; 777 pgofs++; 778 779 /* preallocate blocks in batch for one dnode page */ 780 if (flag == F2FS_GET_BLOCK_PRE_AIO && 781 (pgofs == end || dn.ofs_in_node == end_offset)) { 782 783 dn.ofs_in_node = ofs_in_node; 784 err = reserve_new_blocks(&dn, prealloc); 785 if (err) 786 goto sync_out; 787 788 map->m_len += dn.ofs_in_node - ofs_in_node; 789 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 790 err = -ENOSPC; 791 goto sync_out; 792 } 793 dn.ofs_in_node = end_offset; 794 } 795 796 if (pgofs >= end) 797 goto sync_out; 798 else if (dn.ofs_in_node < end_offset) 799 goto next_block; 800 801 f2fs_put_dnode(&dn); 802 803 if (create) { 804 f2fs_unlock_op(sbi); 805 f2fs_balance_fs(sbi, dn.node_changed); 806 } 807 goto next_dnode; 808 809 sync_out: 810 f2fs_put_dnode(&dn); 811 unlock_out: 812 if (create) { 813 f2fs_unlock_op(sbi); 814 f2fs_balance_fs(sbi, dn.node_changed); 815 } 816 out: 817 trace_f2fs_map_blocks(inode, map, err); 818 return err; 819 } 820 821 static int __get_data_block(struct inode *inode, sector_t iblock, 822 struct buffer_head *bh, int create, int flag, 823 pgoff_t *next_pgofs) 824 { 825 struct f2fs_map_blocks map; 826 int ret; 827 828 map.m_lblk = iblock; 829 map.m_len = bh->b_size >> inode->i_blkbits; 830 map.m_next_pgofs = next_pgofs; 831 832 ret = f2fs_map_blocks(inode, &map, create, flag); 833 if (!ret) { 834 map_bh(bh, inode->i_sb, map.m_pblk); 835 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 836 bh->b_size = map.m_len << inode->i_blkbits; 837 } 838 return ret; 839 } 840 841 static int get_data_block(struct inode *inode, sector_t iblock, 842 struct buffer_head *bh_result, int create, int flag, 843 pgoff_t *next_pgofs) 844 { 845 return __get_data_block(inode, iblock, bh_result, create, 846 flag, next_pgofs); 847 } 848 849 static int get_data_block_dio(struct inode *inode, sector_t iblock, 850 struct buffer_head *bh_result, int create) 851 { 852 return __get_data_block(inode, iblock, bh_result, create, 853 F2FS_GET_BLOCK_DIO, NULL); 854 } 855 856 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 857 struct buffer_head *bh_result, int create) 858 { 859 /* Block number less than F2FS MAX BLOCKS */ 860 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 861 return -EFBIG; 862 863 return __get_data_block(inode, iblock, bh_result, create, 864 F2FS_GET_BLOCK_BMAP, NULL); 865 } 866 867 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 868 { 869 return (offset >> inode->i_blkbits); 870 } 871 872 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 873 { 874 return (blk << inode->i_blkbits); 875 } 876 877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 878 u64 start, u64 len) 879 { 880 struct buffer_head map_bh; 881 sector_t start_blk, last_blk; 882 pgoff_t next_pgofs; 883 u64 logical = 0, phys = 0, size = 0; 884 u32 flags = 0; 885 int ret = 0; 886 887 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 888 if (ret) 889 return ret; 890 891 if (f2fs_has_inline_data(inode)) { 892 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 893 if (ret != -EAGAIN) 894 return ret; 895 } 896 897 inode_lock(inode); 898 899 if (logical_to_blk(inode, len) == 0) 900 len = blk_to_logical(inode, 1); 901 902 start_blk = logical_to_blk(inode, start); 903 last_blk = logical_to_blk(inode, start + len - 1); 904 905 next: 906 memset(&map_bh, 0, sizeof(struct buffer_head)); 907 map_bh.b_size = len; 908 909 ret = get_data_block(inode, start_blk, &map_bh, 0, 910 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 911 if (ret) 912 goto out; 913 914 /* HOLE */ 915 if (!buffer_mapped(&map_bh)) { 916 start_blk = next_pgofs; 917 918 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 919 F2FS_I_SB(inode)->max_file_blocks)) 920 goto prep_next; 921 922 flags |= FIEMAP_EXTENT_LAST; 923 } 924 925 if (size) { 926 if (f2fs_encrypted_inode(inode)) 927 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 928 929 ret = fiemap_fill_next_extent(fieinfo, logical, 930 phys, size, flags); 931 } 932 933 if (start_blk > last_blk || ret) 934 goto out; 935 936 logical = blk_to_logical(inode, start_blk); 937 phys = blk_to_logical(inode, map_bh.b_blocknr); 938 size = map_bh.b_size; 939 flags = 0; 940 if (buffer_unwritten(&map_bh)) 941 flags = FIEMAP_EXTENT_UNWRITTEN; 942 943 start_blk += logical_to_blk(inode, size); 944 945 prep_next: 946 cond_resched(); 947 if (fatal_signal_pending(current)) 948 ret = -EINTR; 949 else 950 goto next; 951 out: 952 if (ret == 1) 953 ret = 0; 954 955 inode_unlock(inode); 956 return ret; 957 } 958 959 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 960 unsigned nr_pages) 961 { 962 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 963 struct fscrypt_ctx *ctx = NULL; 964 struct block_device *bdev = sbi->sb->s_bdev; 965 struct bio *bio; 966 967 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 968 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 969 if (IS_ERR(ctx)) 970 return ERR_CAST(ctx); 971 972 /* wait the page to be moved by cleaning */ 973 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 974 } 975 976 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 977 if (!bio) { 978 if (ctx) 979 fscrypt_release_ctx(ctx); 980 return ERR_PTR(-ENOMEM); 981 } 982 bio->bi_bdev = bdev; 983 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr); 984 bio->bi_end_io = f2fs_read_end_io; 985 bio->bi_private = ctx; 986 987 return bio; 988 } 989 990 /* 991 * This function was originally taken from fs/mpage.c, and customized for f2fs. 992 * Major change was from block_size == page_size in f2fs by default. 993 */ 994 static int f2fs_mpage_readpages(struct address_space *mapping, 995 struct list_head *pages, struct page *page, 996 unsigned nr_pages) 997 { 998 struct bio *bio = NULL; 999 unsigned page_idx; 1000 sector_t last_block_in_bio = 0; 1001 struct inode *inode = mapping->host; 1002 const unsigned blkbits = inode->i_blkbits; 1003 const unsigned blocksize = 1 << blkbits; 1004 sector_t block_in_file; 1005 sector_t last_block; 1006 sector_t last_block_in_file; 1007 sector_t block_nr; 1008 struct f2fs_map_blocks map; 1009 1010 map.m_pblk = 0; 1011 map.m_lblk = 0; 1012 map.m_len = 0; 1013 map.m_flags = 0; 1014 map.m_next_pgofs = NULL; 1015 1016 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1017 1018 prefetchw(&page->flags); 1019 if (pages) { 1020 page = list_entry(pages->prev, struct page, lru); 1021 list_del(&page->lru); 1022 if (add_to_page_cache_lru(page, mapping, 1023 page->index, 1024 readahead_gfp_mask(mapping))) 1025 goto next_page; 1026 } 1027 1028 block_in_file = (sector_t)page->index; 1029 last_block = block_in_file + nr_pages; 1030 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1031 blkbits; 1032 if (last_block > last_block_in_file) 1033 last_block = last_block_in_file; 1034 1035 /* 1036 * Map blocks using the previous result first. 1037 */ 1038 if ((map.m_flags & F2FS_MAP_MAPPED) && 1039 block_in_file > map.m_lblk && 1040 block_in_file < (map.m_lblk + map.m_len)) 1041 goto got_it; 1042 1043 /* 1044 * Then do more f2fs_map_blocks() calls until we are 1045 * done with this page. 1046 */ 1047 map.m_flags = 0; 1048 1049 if (block_in_file < last_block) { 1050 map.m_lblk = block_in_file; 1051 map.m_len = last_block - block_in_file; 1052 1053 if (f2fs_map_blocks(inode, &map, 0, 1054 F2FS_GET_BLOCK_READ)) 1055 goto set_error_page; 1056 } 1057 got_it: 1058 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1059 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1060 SetPageMappedToDisk(page); 1061 1062 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1063 SetPageUptodate(page); 1064 goto confused; 1065 } 1066 } else { 1067 zero_user_segment(page, 0, PAGE_SIZE); 1068 if (!PageUptodate(page)) 1069 SetPageUptodate(page); 1070 unlock_page(page); 1071 goto next_page; 1072 } 1073 1074 /* 1075 * This page will go to BIO. Do we need to send this 1076 * BIO off first? 1077 */ 1078 if (bio && (last_block_in_bio != block_nr - 1)) { 1079 submit_and_realloc: 1080 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1081 bio = NULL; 1082 } 1083 if (bio == NULL) { 1084 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1085 if (IS_ERR(bio)) { 1086 bio = NULL; 1087 goto set_error_page; 1088 } 1089 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1090 } 1091 1092 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1093 goto submit_and_realloc; 1094 1095 last_block_in_bio = block_nr; 1096 goto next_page; 1097 set_error_page: 1098 SetPageError(page); 1099 zero_user_segment(page, 0, PAGE_SIZE); 1100 unlock_page(page); 1101 goto next_page; 1102 confused: 1103 if (bio) { 1104 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1105 bio = NULL; 1106 } 1107 unlock_page(page); 1108 next_page: 1109 if (pages) 1110 put_page(page); 1111 } 1112 BUG_ON(pages && !list_empty(pages)); 1113 if (bio) 1114 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1115 return 0; 1116 } 1117 1118 static int f2fs_read_data_page(struct file *file, struct page *page) 1119 { 1120 struct inode *inode = page->mapping->host; 1121 int ret = -EAGAIN; 1122 1123 trace_f2fs_readpage(page, DATA); 1124 1125 /* If the file has inline data, try to read it directly */ 1126 if (f2fs_has_inline_data(inode)) 1127 ret = f2fs_read_inline_data(inode, page); 1128 if (ret == -EAGAIN) 1129 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1130 return ret; 1131 } 1132 1133 static int f2fs_read_data_pages(struct file *file, 1134 struct address_space *mapping, 1135 struct list_head *pages, unsigned nr_pages) 1136 { 1137 struct inode *inode = file->f_mapping->host; 1138 struct page *page = list_entry(pages->prev, struct page, lru); 1139 1140 trace_f2fs_readpages(inode, page, nr_pages); 1141 1142 /* If the file has inline data, skip readpages */ 1143 if (f2fs_has_inline_data(inode)) 1144 return 0; 1145 1146 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1147 } 1148 1149 int do_write_data_page(struct f2fs_io_info *fio) 1150 { 1151 struct page *page = fio->page; 1152 struct inode *inode = page->mapping->host; 1153 struct dnode_of_data dn; 1154 int err = 0; 1155 1156 set_new_dnode(&dn, inode, NULL, NULL, 0); 1157 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1158 if (err) 1159 return err; 1160 1161 fio->old_blkaddr = dn.data_blkaddr; 1162 1163 /* This page is already truncated */ 1164 if (fio->old_blkaddr == NULL_ADDR) { 1165 ClearPageUptodate(page); 1166 goto out_writepage; 1167 } 1168 1169 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1170 gfp_t gfp_flags = GFP_NOFS; 1171 1172 /* wait for GCed encrypted page writeback */ 1173 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1174 fio->old_blkaddr); 1175 retry_encrypt: 1176 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1177 gfp_flags); 1178 if (IS_ERR(fio->encrypted_page)) { 1179 err = PTR_ERR(fio->encrypted_page); 1180 if (err == -ENOMEM) { 1181 /* flush pending ios and wait for a while */ 1182 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1183 congestion_wait(BLK_RW_ASYNC, HZ/50); 1184 gfp_flags |= __GFP_NOFAIL; 1185 err = 0; 1186 goto retry_encrypt; 1187 } 1188 goto out_writepage; 1189 } 1190 } 1191 1192 set_page_writeback(page); 1193 1194 /* 1195 * If current allocation needs SSR, 1196 * it had better in-place writes for updated data. 1197 */ 1198 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1199 !is_cold_data(page) && 1200 !IS_ATOMIC_WRITTEN_PAGE(page) && 1201 need_inplace_update(inode))) { 1202 rewrite_data_page(fio); 1203 set_inode_flag(inode, FI_UPDATE_WRITE); 1204 trace_f2fs_do_write_data_page(page, IPU); 1205 } else { 1206 write_data_page(&dn, fio); 1207 trace_f2fs_do_write_data_page(page, OPU); 1208 set_inode_flag(inode, FI_APPEND_WRITE); 1209 if (page->index == 0) 1210 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1211 } 1212 out_writepage: 1213 f2fs_put_dnode(&dn); 1214 return err; 1215 } 1216 1217 static int f2fs_write_data_page(struct page *page, 1218 struct writeback_control *wbc) 1219 { 1220 struct inode *inode = page->mapping->host; 1221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1222 loff_t i_size = i_size_read(inode); 1223 const pgoff_t end_index = ((unsigned long long) i_size) 1224 >> PAGE_SHIFT; 1225 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1226 unsigned offset = 0; 1227 bool need_balance_fs = false; 1228 int err = 0; 1229 struct f2fs_io_info fio = { 1230 .sbi = sbi, 1231 .type = DATA, 1232 .op = REQ_OP_WRITE, 1233 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0, 1234 .page = page, 1235 .encrypted_page = NULL, 1236 }; 1237 1238 trace_f2fs_writepage(page, DATA); 1239 1240 if (page->index < end_index) 1241 goto write; 1242 1243 /* 1244 * If the offset is out-of-range of file size, 1245 * this page does not have to be written to disk. 1246 */ 1247 offset = i_size & (PAGE_SIZE - 1); 1248 if ((page->index >= end_index + 1) || !offset) 1249 goto out; 1250 1251 zero_user_segment(page, offset, PAGE_SIZE); 1252 write: 1253 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1254 goto redirty_out; 1255 if (f2fs_is_drop_cache(inode)) 1256 goto out; 1257 /* we should not write 0'th page having journal header */ 1258 if (f2fs_is_volatile_file(inode) && (!page->index || 1259 (!wbc->for_reclaim && 1260 available_free_memory(sbi, BASE_CHECK)))) 1261 goto redirty_out; 1262 1263 /* we should bypass data pages to proceed the kworkder jobs */ 1264 if (unlikely(f2fs_cp_error(sbi))) { 1265 mapping_set_error(page->mapping, -EIO); 1266 goto out; 1267 } 1268 1269 /* Dentry blocks are controlled by checkpoint */ 1270 if (S_ISDIR(inode->i_mode)) { 1271 err = do_write_data_page(&fio); 1272 goto done; 1273 } 1274 1275 if (!wbc->for_reclaim) 1276 need_balance_fs = true; 1277 else if (has_not_enough_free_secs(sbi, 0, 0)) 1278 goto redirty_out; 1279 1280 err = -EAGAIN; 1281 f2fs_lock_op(sbi); 1282 if (f2fs_has_inline_data(inode)) 1283 err = f2fs_write_inline_data(inode, page); 1284 if (err == -EAGAIN) 1285 err = do_write_data_page(&fio); 1286 if (F2FS_I(inode)->last_disk_size < psize) 1287 F2FS_I(inode)->last_disk_size = psize; 1288 f2fs_unlock_op(sbi); 1289 done: 1290 if (err && err != -ENOENT) 1291 goto redirty_out; 1292 1293 clear_cold_data(page); 1294 out: 1295 inode_dec_dirty_pages(inode); 1296 if (err) 1297 ClearPageUptodate(page); 1298 1299 if (wbc->for_reclaim) { 1300 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1301 remove_dirty_inode(inode); 1302 } 1303 1304 unlock_page(page); 1305 f2fs_balance_fs(sbi, need_balance_fs); 1306 1307 if (unlikely(f2fs_cp_error(sbi))) 1308 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1309 1310 return 0; 1311 1312 redirty_out: 1313 redirty_page_for_writepage(wbc, page); 1314 unlock_page(page); 1315 return err; 1316 } 1317 1318 /* 1319 * This function was copied from write_cche_pages from mm/page-writeback.c. 1320 * The major change is making write step of cold data page separately from 1321 * warm/hot data page. 1322 */ 1323 static int f2fs_write_cache_pages(struct address_space *mapping, 1324 struct writeback_control *wbc) 1325 { 1326 int ret = 0; 1327 int done = 0; 1328 struct pagevec pvec; 1329 int nr_pages; 1330 pgoff_t uninitialized_var(writeback_index); 1331 pgoff_t index; 1332 pgoff_t end; /* Inclusive */ 1333 pgoff_t done_index; 1334 int cycled; 1335 int range_whole = 0; 1336 int tag; 1337 int nwritten = 0; 1338 1339 pagevec_init(&pvec, 0); 1340 1341 if (wbc->range_cyclic) { 1342 writeback_index = mapping->writeback_index; /* prev offset */ 1343 index = writeback_index; 1344 if (index == 0) 1345 cycled = 1; 1346 else 1347 cycled = 0; 1348 end = -1; 1349 } else { 1350 index = wbc->range_start >> PAGE_SHIFT; 1351 end = wbc->range_end >> PAGE_SHIFT; 1352 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1353 range_whole = 1; 1354 cycled = 1; /* ignore range_cyclic tests */ 1355 } 1356 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1357 tag = PAGECACHE_TAG_TOWRITE; 1358 else 1359 tag = PAGECACHE_TAG_DIRTY; 1360 retry: 1361 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1362 tag_pages_for_writeback(mapping, index, end); 1363 done_index = index; 1364 while (!done && (index <= end)) { 1365 int i; 1366 1367 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1368 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1369 if (nr_pages == 0) 1370 break; 1371 1372 for (i = 0; i < nr_pages; i++) { 1373 struct page *page = pvec.pages[i]; 1374 1375 if (page->index > end) { 1376 done = 1; 1377 break; 1378 } 1379 1380 done_index = page->index; 1381 1382 lock_page(page); 1383 1384 if (unlikely(page->mapping != mapping)) { 1385 continue_unlock: 1386 unlock_page(page); 1387 continue; 1388 } 1389 1390 if (!PageDirty(page)) { 1391 /* someone wrote it for us */ 1392 goto continue_unlock; 1393 } 1394 1395 if (PageWriteback(page)) { 1396 if (wbc->sync_mode != WB_SYNC_NONE) 1397 f2fs_wait_on_page_writeback(page, 1398 DATA, true); 1399 else 1400 goto continue_unlock; 1401 } 1402 1403 BUG_ON(PageWriteback(page)); 1404 if (!clear_page_dirty_for_io(page)) 1405 goto continue_unlock; 1406 1407 ret = mapping->a_ops->writepage(page, wbc); 1408 if (unlikely(ret)) { 1409 done_index = page->index + 1; 1410 done = 1; 1411 break; 1412 } else { 1413 nwritten++; 1414 } 1415 1416 if (--wbc->nr_to_write <= 0 && 1417 wbc->sync_mode == WB_SYNC_NONE) { 1418 done = 1; 1419 break; 1420 } 1421 } 1422 pagevec_release(&pvec); 1423 cond_resched(); 1424 } 1425 1426 if (!cycled && !done) { 1427 cycled = 1; 1428 index = 0; 1429 end = writeback_index - 1; 1430 goto retry; 1431 } 1432 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1433 mapping->writeback_index = done_index; 1434 1435 if (nwritten) 1436 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1437 NULL, 0, DATA, WRITE); 1438 1439 return ret; 1440 } 1441 1442 static int f2fs_write_data_pages(struct address_space *mapping, 1443 struct writeback_control *wbc) 1444 { 1445 struct inode *inode = mapping->host; 1446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1447 struct blk_plug plug; 1448 int ret; 1449 1450 /* deal with chardevs and other special file */ 1451 if (!mapping->a_ops->writepage) 1452 return 0; 1453 1454 /* skip writing if there is no dirty page in this inode */ 1455 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1456 return 0; 1457 1458 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1459 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1460 available_free_memory(sbi, DIRTY_DENTS)) 1461 goto skip_write; 1462 1463 /* skip writing during file defragment */ 1464 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1465 goto skip_write; 1466 1467 /* during POR, we don't need to trigger writepage at all. */ 1468 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1469 goto skip_write; 1470 1471 trace_f2fs_writepages(mapping->host, wbc, DATA); 1472 1473 blk_start_plug(&plug); 1474 ret = f2fs_write_cache_pages(mapping, wbc); 1475 blk_finish_plug(&plug); 1476 /* 1477 * if some pages were truncated, we cannot guarantee its mapping->host 1478 * to detect pending bios. 1479 */ 1480 1481 remove_dirty_inode(inode); 1482 return ret; 1483 1484 skip_write: 1485 wbc->pages_skipped += get_dirty_pages(inode); 1486 trace_f2fs_writepages(mapping->host, wbc, DATA); 1487 return 0; 1488 } 1489 1490 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1491 { 1492 struct inode *inode = mapping->host; 1493 loff_t i_size = i_size_read(inode); 1494 1495 if (to > i_size) { 1496 truncate_pagecache(inode, i_size); 1497 truncate_blocks(inode, i_size, true); 1498 } 1499 } 1500 1501 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1502 struct page *page, loff_t pos, unsigned len, 1503 block_t *blk_addr, bool *node_changed) 1504 { 1505 struct inode *inode = page->mapping->host; 1506 pgoff_t index = page->index; 1507 struct dnode_of_data dn; 1508 struct page *ipage; 1509 bool locked = false; 1510 struct extent_info ei; 1511 int err = 0; 1512 1513 /* 1514 * we already allocated all the blocks, so we don't need to get 1515 * the block addresses when there is no need to fill the page. 1516 */ 1517 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE) 1518 return 0; 1519 1520 if (f2fs_has_inline_data(inode) || 1521 (pos & PAGE_MASK) >= i_size_read(inode)) { 1522 f2fs_lock_op(sbi); 1523 locked = true; 1524 } 1525 restart: 1526 /* check inline_data */ 1527 ipage = get_node_page(sbi, inode->i_ino); 1528 if (IS_ERR(ipage)) { 1529 err = PTR_ERR(ipage); 1530 goto unlock_out; 1531 } 1532 1533 set_new_dnode(&dn, inode, ipage, ipage, 0); 1534 1535 if (f2fs_has_inline_data(inode)) { 1536 if (pos + len <= MAX_INLINE_DATA) { 1537 read_inline_data(page, ipage); 1538 set_inode_flag(inode, FI_DATA_EXIST); 1539 if (inode->i_nlink) 1540 set_inline_node(ipage); 1541 } else { 1542 err = f2fs_convert_inline_page(&dn, page); 1543 if (err) 1544 goto out; 1545 if (dn.data_blkaddr == NULL_ADDR) 1546 err = f2fs_get_block(&dn, index); 1547 } 1548 } else if (locked) { 1549 err = f2fs_get_block(&dn, index); 1550 } else { 1551 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1552 dn.data_blkaddr = ei.blk + index - ei.fofs; 1553 } else { 1554 /* hole case */ 1555 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1556 if (err || dn.data_blkaddr == NULL_ADDR) { 1557 f2fs_put_dnode(&dn); 1558 f2fs_lock_op(sbi); 1559 locked = true; 1560 goto restart; 1561 } 1562 } 1563 } 1564 1565 /* convert_inline_page can make node_changed */ 1566 *blk_addr = dn.data_blkaddr; 1567 *node_changed = dn.node_changed; 1568 out: 1569 f2fs_put_dnode(&dn); 1570 unlock_out: 1571 if (locked) 1572 f2fs_unlock_op(sbi); 1573 return err; 1574 } 1575 1576 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1577 loff_t pos, unsigned len, unsigned flags, 1578 struct page **pagep, void **fsdata) 1579 { 1580 struct inode *inode = mapping->host; 1581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1582 struct page *page = NULL; 1583 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1584 bool need_balance = false; 1585 block_t blkaddr = NULL_ADDR; 1586 int err = 0; 1587 1588 trace_f2fs_write_begin(inode, pos, len, flags); 1589 1590 /* 1591 * We should check this at this moment to avoid deadlock on inode page 1592 * and #0 page. The locking rule for inline_data conversion should be: 1593 * lock_page(page #0) -> lock_page(inode_page) 1594 */ 1595 if (index != 0) { 1596 err = f2fs_convert_inline_inode(inode); 1597 if (err) 1598 goto fail; 1599 } 1600 repeat: 1601 page = grab_cache_page_write_begin(mapping, index, flags); 1602 if (!page) { 1603 err = -ENOMEM; 1604 goto fail; 1605 } 1606 1607 *pagep = page; 1608 1609 err = prepare_write_begin(sbi, page, pos, len, 1610 &blkaddr, &need_balance); 1611 if (err) 1612 goto fail; 1613 1614 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1615 unlock_page(page); 1616 f2fs_balance_fs(sbi, true); 1617 lock_page(page); 1618 if (page->mapping != mapping) { 1619 /* The page got truncated from under us */ 1620 f2fs_put_page(page, 1); 1621 goto repeat; 1622 } 1623 } 1624 1625 f2fs_wait_on_page_writeback(page, DATA, false); 1626 1627 /* wait for GCed encrypted page writeback */ 1628 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1629 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1630 1631 if (len == PAGE_SIZE || PageUptodate(page)) 1632 return 0; 1633 1634 if (blkaddr == NEW_ADDR) { 1635 zero_user_segment(page, 0, PAGE_SIZE); 1636 SetPageUptodate(page); 1637 } else { 1638 struct bio *bio; 1639 1640 bio = f2fs_grab_bio(inode, blkaddr, 1); 1641 if (IS_ERR(bio)) { 1642 err = PTR_ERR(bio); 1643 goto fail; 1644 } 1645 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC); 1646 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1647 bio_put(bio); 1648 err = -EFAULT; 1649 goto fail; 1650 } 1651 1652 __submit_bio(sbi, bio, DATA); 1653 1654 lock_page(page); 1655 if (unlikely(page->mapping != mapping)) { 1656 f2fs_put_page(page, 1); 1657 goto repeat; 1658 } 1659 if (unlikely(!PageUptodate(page))) { 1660 err = -EIO; 1661 goto fail; 1662 } 1663 } 1664 return 0; 1665 1666 fail: 1667 f2fs_put_page(page, 1); 1668 f2fs_write_failed(mapping, pos + len); 1669 return err; 1670 } 1671 1672 static int f2fs_write_end(struct file *file, 1673 struct address_space *mapping, 1674 loff_t pos, unsigned len, unsigned copied, 1675 struct page *page, void *fsdata) 1676 { 1677 struct inode *inode = page->mapping->host; 1678 1679 trace_f2fs_write_end(inode, pos, len, copied); 1680 1681 /* 1682 * This should be come from len == PAGE_SIZE, and we expect copied 1683 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1684 * let generic_perform_write() try to copy data again through copied=0. 1685 */ 1686 if (!PageUptodate(page)) { 1687 if (unlikely(copied != PAGE_SIZE)) 1688 copied = 0; 1689 else 1690 SetPageUptodate(page); 1691 } 1692 if (!copied) 1693 goto unlock_out; 1694 1695 set_page_dirty(page); 1696 clear_cold_data(page); 1697 1698 if (pos + copied > i_size_read(inode)) 1699 f2fs_i_size_write(inode, pos + copied); 1700 unlock_out: 1701 f2fs_put_page(page, 1); 1702 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1703 return copied; 1704 } 1705 1706 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1707 loff_t offset) 1708 { 1709 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1710 1711 if (offset & blocksize_mask) 1712 return -EINVAL; 1713 1714 if (iov_iter_alignment(iter) & blocksize_mask) 1715 return -EINVAL; 1716 1717 return 0; 1718 } 1719 1720 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1721 { 1722 struct address_space *mapping = iocb->ki_filp->f_mapping; 1723 struct inode *inode = mapping->host; 1724 size_t count = iov_iter_count(iter); 1725 loff_t offset = iocb->ki_pos; 1726 int rw = iov_iter_rw(iter); 1727 int err; 1728 1729 err = check_direct_IO(inode, iter, offset); 1730 if (err) 1731 return err; 1732 1733 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1734 return 0; 1735 if (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) 1736 return 0; 1737 1738 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1739 1740 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1741 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1742 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1743 1744 if (rw == WRITE) { 1745 if (err > 0) 1746 set_inode_flag(inode, FI_UPDATE_WRITE); 1747 else if (err < 0) 1748 f2fs_write_failed(mapping, offset + count); 1749 } 1750 1751 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1752 1753 return err; 1754 } 1755 1756 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1757 unsigned int length) 1758 { 1759 struct inode *inode = page->mapping->host; 1760 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1761 1762 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1763 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1764 return; 1765 1766 if (PageDirty(page)) { 1767 if (inode->i_ino == F2FS_META_INO(sbi)) { 1768 dec_page_count(sbi, F2FS_DIRTY_META); 1769 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 1770 dec_page_count(sbi, F2FS_DIRTY_NODES); 1771 } else { 1772 inode_dec_dirty_pages(inode); 1773 remove_dirty_inode(inode); 1774 } 1775 } 1776 1777 /* This is atomic written page, keep Private */ 1778 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1779 return; 1780 1781 set_page_private(page, 0); 1782 ClearPagePrivate(page); 1783 } 1784 1785 int f2fs_release_page(struct page *page, gfp_t wait) 1786 { 1787 /* If this is dirty page, keep PagePrivate */ 1788 if (PageDirty(page)) 1789 return 0; 1790 1791 /* This is atomic written page, keep Private */ 1792 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1793 return 0; 1794 1795 set_page_private(page, 0); 1796 ClearPagePrivate(page); 1797 return 1; 1798 } 1799 1800 /* 1801 * This was copied from __set_page_dirty_buffers which gives higher performance 1802 * in very high speed storages. (e.g., pmem) 1803 */ 1804 void f2fs_set_page_dirty_nobuffers(struct page *page) 1805 { 1806 struct address_space *mapping = page->mapping; 1807 unsigned long flags; 1808 1809 if (unlikely(!mapping)) 1810 return; 1811 1812 spin_lock(&mapping->private_lock); 1813 lock_page_memcg(page); 1814 SetPageDirty(page); 1815 spin_unlock(&mapping->private_lock); 1816 1817 spin_lock_irqsave(&mapping->tree_lock, flags); 1818 WARN_ON_ONCE(!PageUptodate(page)); 1819 account_page_dirtied(page, mapping); 1820 radix_tree_tag_set(&mapping->page_tree, 1821 page_index(page), PAGECACHE_TAG_DIRTY); 1822 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1823 unlock_page_memcg(page); 1824 1825 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1826 return; 1827 } 1828 1829 static int f2fs_set_data_page_dirty(struct page *page) 1830 { 1831 struct address_space *mapping = page->mapping; 1832 struct inode *inode = mapping->host; 1833 1834 trace_f2fs_set_page_dirty(page, DATA); 1835 1836 if (!PageUptodate(page)) 1837 SetPageUptodate(page); 1838 1839 if (f2fs_is_atomic_file(inode)) { 1840 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1841 register_inmem_page(inode, page); 1842 return 1; 1843 } 1844 /* 1845 * Previously, this page has been registered, we just 1846 * return here. 1847 */ 1848 return 0; 1849 } 1850 1851 if (!PageDirty(page)) { 1852 f2fs_set_page_dirty_nobuffers(page); 1853 update_dirty_page(inode, page); 1854 return 1; 1855 } 1856 return 0; 1857 } 1858 1859 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1860 { 1861 struct inode *inode = mapping->host; 1862 1863 if (f2fs_has_inline_data(inode)) 1864 return 0; 1865 1866 /* make sure allocating whole blocks */ 1867 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1868 filemap_write_and_wait(mapping); 1869 1870 return generic_block_bmap(mapping, block, get_data_block_bmap); 1871 } 1872 1873 #ifdef CONFIG_MIGRATION 1874 #include <linux/migrate.h> 1875 1876 int f2fs_migrate_page(struct address_space *mapping, 1877 struct page *newpage, struct page *page, enum migrate_mode mode) 1878 { 1879 int rc, extra_count; 1880 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 1881 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 1882 1883 BUG_ON(PageWriteback(page)); 1884 1885 /* migrating an atomic written page is safe with the inmem_lock hold */ 1886 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 1887 return -EAGAIN; 1888 1889 /* 1890 * A reference is expected if PagePrivate set when move mapping, 1891 * however F2FS breaks this for maintaining dirty page counts when 1892 * truncating pages. So here adjusting the 'extra_count' make it work. 1893 */ 1894 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 1895 rc = migrate_page_move_mapping(mapping, newpage, 1896 page, NULL, mode, extra_count); 1897 if (rc != MIGRATEPAGE_SUCCESS) { 1898 if (atomic_written) 1899 mutex_unlock(&fi->inmem_lock); 1900 return rc; 1901 } 1902 1903 if (atomic_written) { 1904 struct inmem_pages *cur; 1905 list_for_each_entry(cur, &fi->inmem_pages, list) 1906 if (cur->page == page) { 1907 cur->page = newpage; 1908 break; 1909 } 1910 mutex_unlock(&fi->inmem_lock); 1911 put_page(page); 1912 get_page(newpage); 1913 } 1914 1915 if (PagePrivate(page)) 1916 SetPagePrivate(newpage); 1917 set_page_private(newpage, page_private(page)); 1918 1919 migrate_page_copy(newpage, page); 1920 1921 return MIGRATEPAGE_SUCCESS; 1922 } 1923 #endif 1924 1925 const struct address_space_operations f2fs_dblock_aops = { 1926 .readpage = f2fs_read_data_page, 1927 .readpages = f2fs_read_data_pages, 1928 .writepage = f2fs_write_data_page, 1929 .writepages = f2fs_write_data_pages, 1930 .write_begin = f2fs_write_begin, 1931 .write_end = f2fs_write_end, 1932 .set_page_dirty = f2fs_set_data_page_dirty, 1933 .invalidatepage = f2fs_invalidate_page, 1934 .releasepage = f2fs_release_page, 1935 .direct_IO = f2fs_direct_IO, 1936 .bmap = f2fs_bmap, 1937 #ifdef CONFIG_MIGRATION 1938 .migratepage = f2fs_migrate_page, 1939 #endif 1940 }; 1941