1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static bool __is_cp_guaranteed(struct page *page) 33 { 34 struct address_space *mapping = page->mapping; 35 struct inode *inode; 36 struct f2fs_sb_info *sbi; 37 38 if (!mapping) 39 return false; 40 41 inode = mapping->host; 42 sbi = F2FS_I_SB(inode); 43 44 if (inode->i_ino == F2FS_META_INO(sbi) || 45 inode->i_ino == F2FS_NODE_INO(sbi) || 46 S_ISDIR(inode->i_mode) || 47 is_cold_data(page)) 48 return true; 49 return false; 50 } 51 52 static void f2fs_read_end_io(struct bio *bio) 53 { 54 struct bio_vec *bvec; 55 int i; 56 57 #ifdef CONFIG_F2FS_FAULT_INJECTION 58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) 59 bio->bi_error = -EIO; 60 #endif 61 62 if (f2fs_bio_encrypted(bio)) { 63 if (bio->bi_error) { 64 fscrypt_release_ctx(bio->bi_private); 65 } else { 66 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 67 return; 68 } 69 } 70 71 bio_for_each_segment_all(bvec, bio, i) { 72 struct page *page = bvec->bv_page; 73 74 if (!bio->bi_error) { 75 if (!PageUptodate(page)) 76 SetPageUptodate(page); 77 } else { 78 ClearPageUptodate(page); 79 SetPageError(page); 80 } 81 unlock_page(page); 82 } 83 bio_put(bio); 84 } 85 86 static void f2fs_write_end_io(struct bio *bio) 87 { 88 struct f2fs_sb_info *sbi = bio->bi_private; 89 struct bio_vec *bvec; 90 int i; 91 92 bio_for_each_segment_all(bvec, bio, i) { 93 struct page *page = bvec->bv_page; 94 enum count_type type = WB_DATA_TYPE(page); 95 96 if (IS_DUMMY_WRITTEN_PAGE(page)) { 97 set_page_private(page, (unsigned long)NULL); 98 ClearPagePrivate(page); 99 unlock_page(page); 100 mempool_free(page, sbi->write_io_dummy); 101 102 if (unlikely(bio->bi_error)) 103 f2fs_stop_checkpoint(sbi, true); 104 continue; 105 } 106 107 fscrypt_pullback_bio_page(&page, true); 108 109 if (unlikely(bio->bi_error)) { 110 mapping_set_error(page->mapping, -EIO); 111 f2fs_stop_checkpoint(sbi, true); 112 } 113 dec_page_count(sbi, type); 114 clear_cold_data(page); 115 end_page_writeback(page); 116 } 117 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 118 wq_has_sleeper(&sbi->cp_wait)) 119 wake_up(&sbi->cp_wait); 120 121 bio_put(bio); 122 } 123 124 /* 125 * Return true, if pre_bio's bdev is same as its target device. 126 */ 127 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 128 block_t blk_addr, struct bio *bio) 129 { 130 struct block_device *bdev = sbi->sb->s_bdev; 131 int i; 132 133 for (i = 0; i < sbi->s_ndevs; i++) { 134 if (FDEV(i).start_blk <= blk_addr && 135 FDEV(i).end_blk >= blk_addr) { 136 blk_addr -= FDEV(i).start_blk; 137 bdev = FDEV(i).bdev; 138 break; 139 } 140 } 141 if (bio) { 142 bio->bi_bdev = bdev; 143 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 144 } 145 return bdev; 146 } 147 148 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 149 { 150 int i; 151 152 for (i = 0; i < sbi->s_ndevs; i++) 153 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 154 return i; 155 return 0; 156 } 157 158 static bool __same_bdev(struct f2fs_sb_info *sbi, 159 block_t blk_addr, struct bio *bio) 160 { 161 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; 162 } 163 164 /* 165 * Low-level block read/write IO operations. 166 */ 167 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 168 int npages, bool is_read) 169 { 170 struct bio *bio; 171 172 bio = f2fs_bio_alloc(npages); 173 174 f2fs_target_device(sbi, blk_addr, bio); 175 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 176 bio->bi_private = is_read ? NULL : sbi; 177 178 return bio; 179 } 180 181 static inline void __submit_bio(struct f2fs_sb_info *sbi, 182 struct bio *bio, enum page_type type) 183 { 184 if (!is_read_io(bio_op(bio))) { 185 unsigned int start; 186 187 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 188 current->plug && (type == DATA || type == NODE)) 189 blk_finish_plug(current->plug); 190 191 if (type != DATA && type != NODE) 192 goto submit_io; 193 194 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 195 start %= F2FS_IO_SIZE(sbi); 196 197 if (start == 0) 198 goto submit_io; 199 200 /* fill dummy pages */ 201 for (; start < F2FS_IO_SIZE(sbi); start++) { 202 struct page *page = 203 mempool_alloc(sbi->write_io_dummy, 204 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 205 f2fs_bug_on(sbi, !page); 206 207 SetPagePrivate(page); 208 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 209 lock_page(page); 210 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 211 f2fs_bug_on(sbi, 1); 212 } 213 /* 214 * In the NODE case, we lose next block address chain. So, we 215 * need to do checkpoint in f2fs_sync_file. 216 */ 217 if (type == NODE) 218 set_sbi_flag(sbi, SBI_NEED_CP); 219 } 220 submit_io: 221 if (is_read_io(bio_op(bio))) 222 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 223 else 224 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 225 submit_bio(bio); 226 } 227 228 static void __submit_merged_bio(struct f2fs_bio_info *io) 229 { 230 struct f2fs_io_info *fio = &io->fio; 231 232 if (!io->bio) 233 return; 234 235 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 236 237 if (is_read_io(fio->op)) 238 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 239 else 240 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 241 242 __submit_bio(io->sbi, io->bio, fio->type); 243 io->bio = NULL; 244 } 245 246 static bool __has_merged_page(struct f2fs_bio_info *io, 247 struct inode *inode, nid_t ino, pgoff_t idx) 248 { 249 struct bio_vec *bvec; 250 struct page *target; 251 int i; 252 253 if (!io->bio) 254 return false; 255 256 if (!inode && !ino) 257 return true; 258 259 bio_for_each_segment_all(bvec, io->bio, i) { 260 261 if (bvec->bv_page->mapping) 262 target = bvec->bv_page; 263 else 264 target = fscrypt_control_page(bvec->bv_page); 265 266 if (idx != target->index) 267 continue; 268 269 if (inode && inode == target->mapping->host) 270 return true; 271 if (ino && ino == ino_of_node(target)) 272 return true; 273 } 274 275 return false; 276 } 277 278 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 279 nid_t ino, pgoff_t idx, enum page_type type) 280 { 281 enum page_type btype = PAGE_TYPE_OF_BIO(type); 282 struct f2fs_bio_info *io = &sbi->write_io[btype]; 283 bool ret; 284 285 down_read(&io->io_rwsem); 286 ret = __has_merged_page(io, inode, ino, idx); 287 up_read(&io->io_rwsem); 288 return ret; 289 } 290 291 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 292 struct inode *inode, nid_t ino, pgoff_t idx, 293 enum page_type type, int rw) 294 { 295 enum page_type btype = PAGE_TYPE_OF_BIO(type); 296 struct f2fs_bio_info *io; 297 298 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 299 300 down_write(&io->io_rwsem); 301 302 if (!__has_merged_page(io, inode, ino, idx)) 303 goto out; 304 305 /* change META to META_FLUSH in the checkpoint procedure */ 306 if (type >= META_FLUSH) { 307 io->fio.type = META_FLUSH; 308 io->fio.op = REQ_OP_WRITE; 309 io->fio.op_flags = REQ_META | REQ_PRIO; 310 if (!test_opt(sbi, NOBARRIER)) 311 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 312 } 313 __submit_merged_bio(io); 314 out: 315 up_write(&io->io_rwsem); 316 } 317 318 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 319 int rw) 320 { 321 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw); 322 } 323 324 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 325 struct inode *inode, nid_t ino, pgoff_t idx, 326 enum page_type type, int rw) 327 { 328 if (has_merged_page(sbi, inode, ino, idx, type)) 329 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw); 330 } 331 332 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 333 { 334 f2fs_submit_merged_bio(sbi, DATA, WRITE); 335 f2fs_submit_merged_bio(sbi, NODE, WRITE); 336 f2fs_submit_merged_bio(sbi, META, WRITE); 337 } 338 339 /* 340 * Fill the locked page with data located in the block address. 341 * Return unlocked page. 342 */ 343 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 344 { 345 struct bio *bio; 346 struct page *page = fio->encrypted_page ? 347 fio->encrypted_page : fio->page; 348 349 trace_f2fs_submit_page_bio(page, fio); 350 f2fs_trace_ios(fio, 0); 351 352 /* Allocate a new bio */ 353 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 354 355 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 356 bio_put(bio); 357 return -EFAULT; 358 } 359 bio_set_op_attrs(bio, fio->op, fio->op_flags); 360 361 __submit_bio(fio->sbi, bio, fio->type); 362 return 0; 363 } 364 365 int f2fs_submit_page_mbio(struct f2fs_io_info *fio) 366 { 367 struct f2fs_sb_info *sbi = fio->sbi; 368 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 369 struct f2fs_bio_info *io; 370 bool is_read = is_read_io(fio->op); 371 struct page *bio_page; 372 int err = 0; 373 374 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 375 376 if (fio->old_blkaddr != NEW_ADDR) 377 verify_block_addr(sbi, fio->old_blkaddr); 378 verify_block_addr(sbi, fio->new_blkaddr); 379 380 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 381 382 /* set submitted = 1 as a return value */ 383 fio->submitted = 1; 384 385 if (!is_read) 386 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 387 388 down_write(&io->io_rwsem); 389 390 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 391 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 392 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 393 __submit_merged_bio(io); 394 alloc_new: 395 if (io->bio == NULL) { 396 if ((fio->type == DATA || fio->type == NODE) && 397 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 398 err = -EAGAIN; 399 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 400 goto out_fail; 401 } 402 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 403 BIO_MAX_PAGES, is_read); 404 io->fio = *fio; 405 } 406 407 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 408 PAGE_SIZE) { 409 __submit_merged_bio(io); 410 goto alloc_new; 411 } 412 413 io->last_block_in_bio = fio->new_blkaddr; 414 f2fs_trace_ios(fio, 0); 415 out_fail: 416 up_write(&io->io_rwsem); 417 trace_f2fs_submit_page_mbio(fio->page, fio); 418 return err; 419 } 420 421 static void __set_data_blkaddr(struct dnode_of_data *dn) 422 { 423 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 424 __le32 *addr_array; 425 426 /* Get physical address of data block */ 427 addr_array = blkaddr_in_node(rn); 428 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 429 } 430 431 /* 432 * Lock ordering for the change of data block address: 433 * ->data_page 434 * ->node_page 435 * update block addresses in the node page 436 */ 437 void set_data_blkaddr(struct dnode_of_data *dn) 438 { 439 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 440 __set_data_blkaddr(dn); 441 if (set_page_dirty(dn->node_page)) 442 dn->node_changed = true; 443 } 444 445 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 446 { 447 dn->data_blkaddr = blkaddr; 448 set_data_blkaddr(dn); 449 f2fs_update_extent_cache(dn); 450 } 451 452 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 453 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 454 { 455 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 456 457 if (!count) 458 return 0; 459 460 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 461 return -EPERM; 462 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 463 return -ENOSPC; 464 465 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 466 dn->ofs_in_node, count); 467 468 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 469 470 for (; count > 0; dn->ofs_in_node++) { 471 block_t blkaddr = 472 datablock_addr(dn->node_page, dn->ofs_in_node); 473 if (blkaddr == NULL_ADDR) { 474 dn->data_blkaddr = NEW_ADDR; 475 __set_data_blkaddr(dn); 476 count--; 477 } 478 } 479 480 if (set_page_dirty(dn->node_page)) 481 dn->node_changed = true; 482 return 0; 483 } 484 485 /* Should keep dn->ofs_in_node unchanged */ 486 int reserve_new_block(struct dnode_of_data *dn) 487 { 488 unsigned int ofs_in_node = dn->ofs_in_node; 489 int ret; 490 491 ret = reserve_new_blocks(dn, 1); 492 dn->ofs_in_node = ofs_in_node; 493 return ret; 494 } 495 496 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 497 { 498 bool need_put = dn->inode_page ? false : true; 499 int err; 500 501 err = get_dnode_of_data(dn, index, ALLOC_NODE); 502 if (err) 503 return err; 504 505 if (dn->data_blkaddr == NULL_ADDR) 506 err = reserve_new_block(dn); 507 if (err || need_put) 508 f2fs_put_dnode(dn); 509 return err; 510 } 511 512 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 513 { 514 struct extent_info ei = {0,0,0}; 515 struct inode *inode = dn->inode; 516 517 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 518 dn->data_blkaddr = ei.blk + index - ei.fofs; 519 return 0; 520 } 521 522 return f2fs_reserve_block(dn, index); 523 } 524 525 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 526 int op_flags, bool for_write) 527 { 528 struct address_space *mapping = inode->i_mapping; 529 struct dnode_of_data dn; 530 struct page *page; 531 struct extent_info ei = {0,0,0}; 532 int err; 533 struct f2fs_io_info fio = { 534 .sbi = F2FS_I_SB(inode), 535 .type = DATA, 536 .op = REQ_OP_READ, 537 .op_flags = op_flags, 538 .encrypted_page = NULL, 539 }; 540 541 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 542 return read_mapping_page(mapping, index, NULL); 543 544 page = f2fs_grab_cache_page(mapping, index, for_write); 545 if (!page) 546 return ERR_PTR(-ENOMEM); 547 548 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 549 dn.data_blkaddr = ei.blk + index - ei.fofs; 550 goto got_it; 551 } 552 553 set_new_dnode(&dn, inode, NULL, NULL, 0); 554 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 555 if (err) 556 goto put_err; 557 f2fs_put_dnode(&dn); 558 559 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 560 err = -ENOENT; 561 goto put_err; 562 } 563 got_it: 564 if (PageUptodate(page)) { 565 unlock_page(page); 566 return page; 567 } 568 569 /* 570 * A new dentry page is allocated but not able to be written, since its 571 * new inode page couldn't be allocated due to -ENOSPC. 572 * In such the case, its blkaddr can be remained as NEW_ADDR. 573 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 574 */ 575 if (dn.data_blkaddr == NEW_ADDR) { 576 zero_user_segment(page, 0, PAGE_SIZE); 577 if (!PageUptodate(page)) 578 SetPageUptodate(page); 579 unlock_page(page); 580 return page; 581 } 582 583 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 584 fio.page = page; 585 err = f2fs_submit_page_bio(&fio); 586 if (err) 587 goto put_err; 588 return page; 589 590 put_err: 591 f2fs_put_page(page, 1); 592 return ERR_PTR(err); 593 } 594 595 struct page *find_data_page(struct inode *inode, pgoff_t index) 596 { 597 struct address_space *mapping = inode->i_mapping; 598 struct page *page; 599 600 page = find_get_page(mapping, index); 601 if (page && PageUptodate(page)) 602 return page; 603 f2fs_put_page(page, 0); 604 605 page = get_read_data_page(inode, index, 0, false); 606 if (IS_ERR(page)) 607 return page; 608 609 if (PageUptodate(page)) 610 return page; 611 612 wait_on_page_locked(page); 613 if (unlikely(!PageUptodate(page))) { 614 f2fs_put_page(page, 0); 615 return ERR_PTR(-EIO); 616 } 617 return page; 618 } 619 620 /* 621 * If it tries to access a hole, return an error. 622 * Because, the callers, functions in dir.c and GC, should be able to know 623 * whether this page exists or not. 624 */ 625 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 626 bool for_write) 627 { 628 struct address_space *mapping = inode->i_mapping; 629 struct page *page; 630 repeat: 631 page = get_read_data_page(inode, index, 0, for_write); 632 if (IS_ERR(page)) 633 return page; 634 635 /* wait for read completion */ 636 lock_page(page); 637 if (unlikely(page->mapping != mapping)) { 638 f2fs_put_page(page, 1); 639 goto repeat; 640 } 641 if (unlikely(!PageUptodate(page))) { 642 f2fs_put_page(page, 1); 643 return ERR_PTR(-EIO); 644 } 645 return page; 646 } 647 648 /* 649 * Caller ensures that this data page is never allocated. 650 * A new zero-filled data page is allocated in the page cache. 651 * 652 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 653 * f2fs_unlock_op(). 654 * Note that, ipage is set only by make_empty_dir, and if any error occur, 655 * ipage should be released by this function. 656 */ 657 struct page *get_new_data_page(struct inode *inode, 658 struct page *ipage, pgoff_t index, bool new_i_size) 659 { 660 struct address_space *mapping = inode->i_mapping; 661 struct page *page; 662 struct dnode_of_data dn; 663 int err; 664 665 page = f2fs_grab_cache_page(mapping, index, true); 666 if (!page) { 667 /* 668 * before exiting, we should make sure ipage will be released 669 * if any error occur. 670 */ 671 f2fs_put_page(ipage, 1); 672 return ERR_PTR(-ENOMEM); 673 } 674 675 set_new_dnode(&dn, inode, ipage, NULL, 0); 676 err = f2fs_reserve_block(&dn, index); 677 if (err) { 678 f2fs_put_page(page, 1); 679 return ERR_PTR(err); 680 } 681 if (!ipage) 682 f2fs_put_dnode(&dn); 683 684 if (PageUptodate(page)) 685 goto got_it; 686 687 if (dn.data_blkaddr == NEW_ADDR) { 688 zero_user_segment(page, 0, PAGE_SIZE); 689 if (!PageUptodate(page)) 690 SetPageUptodate(page); 691 } else { 692 f2fs_put_page(page, 1); 693 694 /* if ipage exists, blkaddr should be NEW_ADDR */ 695 f2fs_bug_on(F2FS_I_SB(inode), ipage); 696 page = get_lock_data_page(inode, index, true); 697 if (IS_ERR(page)) 698 return page; 699 } 700 got_it: 701 if (new_i_size && i_size_read(inode) < 702 ((loff_t)(index + 1) << PAGE_SHIFT)) 703 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 704 return page; 705 } 706 707 static int __allocate_data_block(struct dnode_of_data *dn) 708 { 709 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 710 struct f2fs_summary sum; 711 struct node_info ni; 712 pgoff_t fofs; 713 blkcnt_t count = 1; 714 715 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 716 return -EPERM; 717 718 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 719 if (dn->data_blkaddr == NEW_ADDR) 720 goto alloc; 721 722 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 723 return -ENOSPC; 724 725 alloc: 726 get_node_info(sbi, dn->nid, &ni); 727 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 728 729 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 730 &sum, CURSEG_WARM_DATA); 731 set_data_blkaddr(dn); 732 733 /* update i_size */ 734 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 735 dn->ofs_in_node; 736 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 737 f2fs_i_size_write(dn->inode, 738 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 739 return 0; 740 } 741 742 static inline bool __force_buffered_io(struct inode *inode, int rw) 743 { 744 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || 745 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 746 F2FS_I_SB(inode)->s_ndevs); 747 } 748 749 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 750 { 751 struct inode *inode = file_inode(iocb->ki_filp); 752 struct f2fs_map_blocks map; 753 int err = 0; 754 755 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 756 return 0; 757 758 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 759 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 760 if (map.m_len > map.m_lblk) 761 map.m_len -= map.m_lblk; 762 else 763 map.m_len = 0; 764 765 map.m_next_pgofs = NULL; 766 767 if (iocb->ki_flags & IOCB_DIRECT) { 768 err = f2fs_convert_inline_inode(inode); 769 if (err) 770 return err; 771 return f2fs_map_blocks(inode, &map, 1, 772 __force_buffered_io(inode, WRITE) ? 773 F2FS_GET_BLOCK_PRE_AIO : 774 F2FS_GET_BLOCK_PRE_DIO); 775 } 776 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 777 err = f2fs_convert_inline_inode(inode); 778 if (err) 779 return err; 780 } 781 if (!f2fs_has_inline_data(inode)) 782 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 783 return err; 784 } 785 786 /* 787 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 788 * f2fs_map_blocks structure. 789 * If original data blocks are allocated, then give them to blockdev. 790 * Otherwise, 791 * a. preallocate requested block addresses 792 * b. do not use extent cache for better performance 793 * c. give the block addresses to blockdev 794 */ 795 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 796 int create, int flag) 797 { 798 unsigned int maxblocks = map->m_len; 799 struct dnode_of_data dn; 800 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 801 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 802 pgoff_t pgofs, end_offset, end; 803 int err = 0, ofs = 1; 804 unsigned int ofs_in_node, last_ofs_in_node; 805 blkcnt_t prealloc; 806 struct extent_info ei = {0,0,0}; 807 block_t blkaddr; 808 809 if (!maxblocks) 810 return 0; 811 812 map->m_len = 0; 813 map->m_flags = 0; 814 815 /* it only supports block size == page size */ 816 pgofs = (pgoff_t)map->m_lblk; 817 end = pgofs + maxblocks; 818 819 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 820 map->m_pblk = ei.blk + pgofs - ei.fofs; 821 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 822 map->m_flags = F2FS_MAP_MAPPED; 823 goto out; 824 } 825 826 next_dnode: 827 if (create) 828 f2fs_lock_op(sbi); 829 830 /* When reading holes, we need its node page */ 831 set_new_dnode(&dn, inode, NULL, NULL, 0); 832 err = get_dnode_of_data(&dn, pgofs, mode); 833 if (err) { 834 if (flag == F2FS_GET_BLOCK_BMAP) 835 map->m_pblk = 0; 836 if (err == -ENOENT) { 837 err = 0; 838 if (map->m_next_pgofs) 839 *map->m_next_pgofs = 840 get_next_page_offset(&dn, pgofs); 841 } 842 goto unlock_out; 843 } 844 845 prealloc = 0; 846 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 847 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 848 849 next_block: 850 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 851 852 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 853 if (create) { 854 if (unlikely(f2fs_cp_error(sbi))) { 855 err = -EIO; 856 goto sync_out; 857 } 858 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 859 if (blkaddr == NULL_ADDR) { 860 prealloc++; 861 last_ofs_in_node = dn.ofs_in_node; 862 } 863 } else { 864 err = __allocate_data_block(&dn); 865 if (!err) 866 set_inode_flag(inode, FI_APPEND_WRITE); 867 } 868 if (err) 869 goto sync_out; 870 map->m_flags |= F2FS_MAP_NEW; 871 blkaddr = dn.data_blkaddr; 872 } else { 873 if (flag == F2FS_GET_BLOCK_BMAP) { 874 map->m_pblk = 0; 875 goto sync_out; 876 } 877 if (flag == F2FS_GET_BLOCK_FIEMAP && 878 blkaddr == NULL_ADDR) { 879 if (map->m_next_pgofs) 880 *map->m_next_pgofs = pgofs + 1; 881 } 882 if (flag != F2FS_GET_BLOCK_FIEMAP || 883 blkaddr != NEW_ADDR) 884 goto sync_out; 885 } 886 } 887 888 if (flag == F2FS_GET_BLOCK_PRE_AIO) 889 goto skip; 890 891 if (map->m_len == 0) { 892 /* preallocated unwritten block should be mapped for fiemap. */ 893 if (blkaddr == NEW_ADDR) 894 map->m_flags |= F2FS_MAP_UNWRITTEN; 895 map->m_flags |= F2FS_MAP_MAPPED; 896 897 map->m_pblk = blkaddr; 898 map->m_len = 1; 899 } else if ((map->m_pblk != NEW_ADDR && 900 blkaddr == (map->m_pblk + ofs)) || 901 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 902 flag == F2FS_GET_BLOCK_PRE_DIO) { 903 ofs++; 904 map->m_len++; 905 } else { 906 goto sync_out; 907 } 908 909 skip: 910 dn.ofs_in_node++; 911 pgofs++; 912 913 /* preallocate blocks in batch for one dnode page */ 914 if (flag == F2FS_GET_BLOCK_PRE_AIO && 915 (pgofs == end || dn.ofs_in_node == end_offset)) { 916 917 dn.ofs_in_node = ofs_in_node; 918 err = reserve_new_blocks(&dn, prealloc); 919 if (err) 920 goto sync_out; 921 922 map->m_len += dn.ofs_in_node - ofs_in_node; 923 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 924 err = -ENOSPC; 925 goto sync_out; 926 } 927 dn.ofs_in_node = end_offset; 928 } 929 930 if (pgofs >= end) 931 goto sync_out; 932 else if (dn.ofs_in_node < end_offset) 933 goto next_block; 934 935 f2fs_put_dnode(&dn); 936 937 if (create) { 938 f2fs_unlock_op(sbi); 939 f2fs_balance_fs(sbi, dn.node_changed); 940 } 941 goto next_dnode; 942 943 sync_out: 944 f2fs_put_dnode(&dn); 945 unlock_out: 946 if (create) { 947 f2fs_unlock_op(sbi); 948 f2fs_balance_fs(sbi, dn.node_changed); 949 } 950 out: 951 trace_f2fs_map_blocks(inode, map, err); 952 return err; 953 } 954 955 static int __get_data_block(struct inode *inode, sector_t iblock, 956 struct buffer_head *bh, int create, int flag, 957 pgoff_t *next_pgofs) 958 { 959 struct f2fs_map_blocks map; 960 int err; 961 962 map.m_lblk = iblock; 963 map.m_len = bh->b_size >> inode->i_blkbits; 964 map.m_next_pgofs = next_pgofs; 965 966 err = f2fs_map_blocks(inode, &map, create, flag); 967 if (!err) { 968 map_bh(bh, inode->i_sb, map.m_pblk); 969 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 970 bh->b_size = (u64)map.m_len << inode->i_blkbits; 971 } 972 return err; 973 } 974 975 static int get_data_block(struct inode *inode, sector_t iblock, 976 struct buffer_head *bh_result, int create, int flag, 977 pgoff_t *next_pgofs) 978 { 979 return __get_data_block(inode, iblock, bh_result, create, 980 flag, next_pgofs); 981 } 982 983 static int get_data_block_dio(struct inode *inode, sector_t iblock, 984 struct buffer_head *bh_result, int create) 985 { 986 return __get_data_block(inode, iblock, bh_result, create, 987 F2FS_GET_BLOCK_DIO, NULL); 988 } 989 990 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 991 struct buffer_head *bh_result, int create) 992 { 993 /* Block number less than F2FS MAX BLOCKS */ 994 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 995 return -EFBIG; 996 997 return __get_data_block(inode, iblock, bh_result, create, 998 F2FS_GET_BLOCK_BMAP, NULL); 999 } 1000 1001 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1002 { 1003 return (offset >> inode->i_blkbits); 1004 } 1005 1006 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1007 { 1008 return (blk << inode->i_blkbits); 1009 } 1010 1011 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1012 u64 start, u64 len) 1013 { 1014 struct buffer_head map_bh; 1015 sector_t start_blk, last_blk; 1016 pgoff_t next_pgofs; 1017 u64 logical = 0, phys = 0, size = 0; 1018 u32 flags = 0; 1019 int ret = 0; 1020 1021 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1022 if (ret) 1023 return ret; 1024 1025 if (f2fs_has_inline_data(inode)) { 1026 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1027 if (ret != -EAGAIN) 1028 return ret; 1029 } 1030 1031 inode_lock(inode); 1032 1033 if (logical_to_blk(inode, len) == 0) 1034 len = blk_to_logical(inode, 1); 1035 1036 start_blk = logical_to_blk(inode, start); 1037 last_blk = logical_to_blk(inode, start + len - 1); 1038 1039 next: 1040 memset(&map_bh, 0, sizeof(struct buffer_head)); 1041 map_bh.b_size = len; 1042 1043 ret = get_data_block(inode, start_blk, &map_bh, 0, 1044 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1045 if (ret) 1046 goto out; 1047 1048 /* HOLE */ 1049 if (!buffer_mapped(&map_bh)) { 1050 start_blk = next_pgofs; 1051 1052 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1053 F2FS_I_SB(inode)->max_file_blocks)) 1054 goto prep_next; 1055 1056 flags |= FIEMAP_EXTENT_LAST; 1057 } 1058 1059 if (size) { 1060 if (f2fs_encrypted_inode(inode)) 1061 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1062 1063 ret = fiemap_fill_next_extent(fieinfo, logical, 1064 phys, size, flags); 1065 } 1066 1067 if (start_blk > last_blk || ret) 1068 goto out; 1069 1070 logical = blk_to_logical(inode, start_blk); 1071 phys = blk_to_logical(inode, map_bh.b_blocknr); 1072 size = map_bh.b_size; 1073 flags = 0; 1074 if (buffer_unwritten(&map_bh)) 1075 flags = FIEMAP_EXTENT_UNWRITTEN; 1076 1077 start_blk += logical_to_blk(inode, size); 1078 1079 prep_next: 1080 cond_resched(); 1081 if (fatal_signal_pending(current)) 1082 ret = -EINTR; 1083 else 1084 goto next; 1085 out: 1086 if (ret == 1) 1087 ret = 0; 1088 1089 inode_unlock(inode); 1090 return ret; 1091 } 1092 1093 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 1094 unsigned nr_pages) 1095 { 1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1097 struct fscrypt_ctx *ctx = NULL; 1098 struct bio *bio; 1099 1100 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1101 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1102 if (IS_ERR(ctx)) 1103 return ERR_CAST(ctx); 1104 1105 /* wait the page to be moved by cleaning */ 1106 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1107 } 1108 1109 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 1110 if (!bio) { 1111 if (ctx) 1112 fscrypt_release_ctx(ctx); 1113 return ERR_PTR(-ENOMEM); 1114 } 1115 f2fs_target_device(sbi, blkaddr, bio); 1116 bio->bi_end_io = f2fs_read_end_io; 1117 bio->bi_private = ctx; 1118 1119 return bio; 1120 } 1121 1122 /* 1123 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1124 * Major change was from block_size == page_size in f2fs by default. 1125 */ 1126 static int f2fs_mpage_readpages(struct address_space *mapping, 1127 struct list_head *pages, struct page *page, 1128 unsigned nr_pages) 1129 { 1130 struct bio *bio = NULL; 1131 unsigned page_idx; 1132 sector_t last_block_in_bio = 0; 1133 struct inode *inode = mapping->host; 1134 const unsigned blkbits = inode->i_blkbits; 1135 const unsigned blocksize = 1 << blkbits; 1136 sector_t block_in_file; 1137 sector_t last_block; 1138 sector_t last_block_in_file; 1139 sector_t block_nr; 1140 struct f2fs_map_blocks map; 1141 1142 map.m_pblk = 0; 1143 map.m_lblk = 0; 1144 map.m_len = 0; 1145 map.m_flags = 0; 1146 map.m_next_pgofs = NULL; 1147 1148 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1149 1150 prefetchw(&page->flags); 1151 if (pages) { 1152 page = list_last_entry(pages, struct page, lru); 1153 list_del(&page->lru); 1154 if (add_to_page_cache_lru(page, mapping, 1155 page->index, 1156 readahead_gfp_mask(mapping))) 1157 goto next_page; 1158 } 1159 1160 block_in_file = (sector_t)page->index; 1161 last_block = block_in_file + nr_pages; 1162 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1163 blkbits; 1164 if (last_block > last_block_in_file) 1165 last_block = last_block_in_file; 1166 1167 /* 1168 * Map blocks using the previous result first. 1169 */ 1170 if ((map.m_flags & F2FS_MAP_MAPPED) && 1171 block_in_file > map.m_lblk && 1172 block_in_file < (map.m_lblk + map.m_len)) 1173 goto got_it; 1174 1175 /* 1176 * Then do more f2fs_map_blocks() calls until we are 1177 * done with this page. 1178 */ 1179 map.m_flags = 0; 1180 1181 if (block_in_file < last_block) { 1182 map.m_lblk = block_in_file; 1183 map.m_len = last_block - block_in_file; 1184 1185 if (f2fs_map_blocks(inode, &map, 0, 1186 F2FS_GET_BLOCK_READ)) 1187 goto set_error_page; 1188 } 1189 got_it: 1190 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1191 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1192 SetPageMappedToDisk(page); 1193 1194 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1195 SetPageUptodate(page); 1196 goto confused; 1197 } 1198 } else { 1199 zero_user_segment(page, 0, PAGE_SIZE); 1200 if (!PageUptodate(page)) 1201 SetPageUptodate(page); 1202 unlock_page(page); 1203 goto next_page; 1204 } 1205 1206 /* 1207 * This page will go to BIO. Do we need to send this 1208 * BIO off first? 1209 */ 1210 if (bio && (last_block_in_bio != block_nr - 1 || 1211 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1212 submit_and_realloc: 1213 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1214 bio = NULL; 1215 } 1216 if (bio == NULL) { 1217 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1218 if (IS_ERR(bio)) { 1219 bio = NULL; 1220 goto set_error_page; 1221 } 1222 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1223 } 1224 1225 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1226 goto submit_and_realloc; 1227 1228 last_block_in_bio = block_nr; 1229 goto next_page; 1230 set_error_page: 1231 SetPageError(page); 1232 zero_user_segment(page, 0, PAGE_SIZE); 1233 unlock_page(page); 1234 goto next_page; 1235 confused: 1236 if (bio) { 1237 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1238 bio = NULL; 1239 } 1240 unlock_page(page); 1241 next_page: 1242 if (pages) 1243 put_page(page); 1244 } 1245 BUG_ON(pages && !list_empty(pages)); 1246 if (bio) 1247 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1248 return 0; 1249 } 1250 1251 static int f2fs_read_data_page(struct file *file, struct page *page) 1252 { 1253 struct inode *inode = page->mapping->host; 1254 int ret = -EAGAIN; 1255 1256 trace_f2fs_readpage(page, DATA); 1257 1258 /* If the file has inline data, try to read it directly */ 1259 if (f2fs_has_inline_data(inode)) 1260 ret = f2fs_read_inline_data(inode, page); 1261 if (ret == -EAGAIN) 1262 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1263 return ret; 1264 } 1265 1266 static int f2fs_read_data_pages(struct file *file, 1267 struct address_space *mapping, 1268 struct list_head *pages, unsigned nr_pages) 1269 { 1270 struct inode *inode = file->f_mapping->host; 1271 struct page *page = list_last_entry(pages, struct page, lru); 1272 1273 trace_f2fs_readpages(inode, page, nr_pages); 1274 1275 /* If the file has inline data, skip readpages */ 1276 if (f2fs_has_inline_data(inode)) 1277 return 0; 1278 1279 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1280 } 1281 1282 int do_write_data_page(struct f2fs_io_info *fio) 1283 { 1284 struct page *page = fio->page; 1285 struct inode *inode = page->mapping->host; 1286 struct dnode_of_data dn; 1287 int err = 0; 1288 1289 set_new_dnode(&dn, inode, NULL, NULL, 0); 1290 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1291 if (err) 1292 return err; 1293 1294 fio->old_blkaddr = dn.data_blkaddr; 1295 1296 /* This page is already truncated */ 1297 if (fio->old_blkaddr == NULL_ADDR) { 1298 ClearPageUptodate(page); 1299 goto out_writepage; 1300 } 1301 1302 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1303 gfp_t gfp_flags = GFP_NOFS; 1304 1305 /* wait for GCed encrypted page writeback */ 1306 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1307 fio->old_blkaddr); 1308 retry_encrypt: 1309 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1310 PAGE_SIZE, 0, 1311 fio->page->index, 1312 gfp_flags); 1313 if (IS_ERR(fio->encrypted_page)) { 1314 err = PTR_ERR(fio->encrypted_page); 1315 if (err == -ENOMEM) { 1316 /* flush pending ios and wait for a while */ 1317 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1318 congestion_wait(BLK_RW_ASYNC, HZ/50); 1319 gfp_flags |= __GFP_NOFAIL; 1320 err = 0; 1321 goto retry_encrypt; 1322 } 1323 goto out_writepage; 1324 } 1325 } 1326 1327 set_page_writeback(page); 1328 1329 /* 1330 * If current allocation needs SSR, 1331 * it had better in-place writes for updated data. 1332 */ 1333 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1334 !is_cold_data(page) && 1335 !IS_ATOMIC_WRITTEN_PAGE(page) && 1336 need_inplace_update(inode))) { 1337 rewrite_data_page(fio); 1338 set_inode_flag(inode, FI_UPDATE_WRITE); 1339 trace_f2fs_do_write_data_page(page, IPU); 1340 } else { 1341 write_data_page(&dn, fio); 1342 trace_f2fs_do_write_data_page(page, OPU); 1343 set_inode_flag(inode, FI_APPEND_WRITE); 1344 if (page->index == 0) 1345 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1346 } 1347 out_writepage: 1348 f2fs_put_dnode(&dn); 1349 return err; 1350 } 1351 1352 static int __write_data_page(struct page *page, bool *submitted, 1353 struct writeback_control *wbc) 1354 { 1355 struct inode *inode = page->mapping->host; 1356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1357 loff_t i_size = i_size_read(inode); 1358 const pgoff_t end_index = ((unsigned long long) i_size) 1359 >> PAGE_SHIFT; 1360 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1361 unsigned offset = 0; 1362 bool need_balance_fs = false; 1363 int err = 0; 1364 struct f2fs_io_info fio = { 1365 .sbi = sbi, 1366 .type = DATA, 1367 .op = REQ_OP_WRITE, 1368 .op_flags = wbc_to_write_flags(wbc), 1369 .page = page, 1370 .encrypted_page = NULL, 1371 .submitted = false, 1372 }; 1373 1374 trace_f2fs_writepage(page, DATA); 1375 1376 if (page->index < end_index) 1377 goto write; 1378 1379 /* 1380 * If the offset is out-of-range of file size, 1381 * this page does not have to be written to disk. 1382 */ 1383 offset = i_size & (PAGE_SIZE - 1); 1384 if ((page->index >= end_index + 1) || !offset) 1385 goto out; 1386 1387 zero_user_segment(page, offset, PAGE_SIZE); 1388 write: 1389 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1390 goto redirty_out; 1391 if (f2fs_is_drop_cache(inode)) 1392 goto out; 1393 /* we should not write 0'th page having journal header */ 1394 if (f2fs_is_volatile_file(inode) && (!page->index || 1395 (!wbc->for_reclaim && 1396 available_free_memory(sbi, BASE_CHECK)))) 1397 goto redirty_out; 1398 1399 /* we should bypass data pages to proceed the kworkder jobs */ 1400 if (unlikely(f2fs_cp_error(sbi))) { 1401 mapping_set_error(page->mapping, -EIO); 1402 goto out; 1403 } 1404 1405 /* Dentry blocks are controlled by checkpoint */ 1406 if (S_ISDIR(inode->i_mode)) { 1407 err = do_write_data_page(&fio); 1408 goto done; 1409 } 1410 1411 if (!wbc->for_reclaim) 1412 need_balance_fs = true; 1413 else if (has_not_enough_free_secs(sbi, 0, 0)) 1414 goto redirty_out; 1415 1416 err = -EAGAIN; 1417 if (f2fs_has_inline_data(inode)) { 1418 err = f2fs_write_inline_data(inode, page); 1419 if (!err) 1420 goto out; 1421 } 1422 f2fs_lock_op(sbi); 1423 if (err == -EAGAIN) 1424 err = do_write_data_page(&fio); 1425 if (F2FS_I(inode)->last_disk_size < psize) 1426 F2FS_I(inode)->last_disk_size = psize; 1427 f2fs_unlock_op(sbi); 1428 done: 1429 if (err && err != -ENOENT) 1430 goto redirty_out; 1431 1432 out: 1433 inode_dec_dirty_pages(inode); 1434 if (err) 1435 ClearPageUptodate(page); 1436 1437 if (wbc->for_reclaim) { 1438 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index, 1439 DATA, WRITE); 1440 remove_dirty_inode(inode); 1441 submitted = NULL; 1442 } 1443 1444 unlock_page(page); 1445 f2fs_balance_fs(sbi, need_balance_fs); 1446 1447 if (unlikely(f2fs_cp_error(sbi))) { 1448 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1449 submitted = NULL; 1450 } 1451 1452 if (submitted) 1453 *submitted = fio.submitted; 1454 1455 return 0; 1456 1457 redirty_out: 1458 redirty_page_for_writepage(wbc, page); 1459 if (!err) 1460 return AOP_WRITEPAGE_ACTIVATE; 1461 unlock_page(page); 1462 return err; 1463 } 1464 1465 static int f2fs_write_data_page(struct page *page, 1466 struct writeback_control *wbc) 1467 { 1468 return __write_data_page(page, NULL, wbc); 1469 } 1470 1471 /* 1472 * This function was copied from write_cche_pages from mm/page-writeback.c. 1473 * The major change is making write step of cold data page separately from 1474 * warm/hot data page. 1475 */ 1476 static int f2fs_write_cache_pages(struct address_space *mapping, 1477 struct writeback_control *wbc) 1478 { 1479 int ret = 0; 1480 int done = 0; 1481 struct pagevec pvec; 1482 int nr_pages; 1483 pgoff_t uninitialized_var(writeback_index); 1484 pgoff_t index; 1485 pgoff_t end; /* Inclusive */ 1486 pgoff_t done_index; 1487 pgoff_t last_idx = ULONG_MAX; 1488 int cycled; 1489 int range_whole = 0; 1490 int tag; 1491 1492 pagevec_init(&pvec, 0); 1493 1494 if (wbc->range_cyclic) { 1495 writeback_index = mapping->writeback_index; /* prev offset */ 1496 index = writeback_index; 1497 if (index == 0) 1498 cycled = 1; 1499 else 1500 cycled = 0; 1501 end = -1; 1502 } else { 1503 index = wbc->range_start >> PAGE_SHIFT; 1504 end = wbc->range_end >> PAGE_SHIFT; 1505 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1506 range_whole = 1; 1507 cycled = 1; /* ignore range_cyclic tests */ 1508 } 1509 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1510 tag = PAGECACHE_TAG_TOWRITE; 1511 else 1512 tag = PAGECACHE_TAG_DIRTY; 1513 retry: 1514 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1515 tag_pages_for_writeback(mapping, index, end); 1516 done_index = index; 1517 while (!done && (index <= end)) { 1518 int i; 1519 1520 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1521 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1522 if (nr_pages == 0) 1523 break; 1524 1525 for (i = 0; i < nr_pages; i++) { 1526 struct page *page = pvec.pages[i]; 1527 bool submitted = false; 1528 1529 if (page->index > end) { 1530 done = 1; 1531 break; 1532 } 1533 1534 done_index = page->index; 1535 1536 lock_page(page); 1537 1538 if (unlikely(page->mapping != mapping)) { 1539 continue_unlock: 1540 unlock_page(page); 1541 continue; 1542 } 1543 1544 if (!PageDirty(page)) { 1545 /* someone wrote it for us */ 1546 goto continue_unlock; 1547 } 1548 1549 if (PageWriteback(page)) { 1550 if (wbc->sync_mode != WB_SYNC_NONE) 1551 f2fs_wait_on_page_writeback(page, 1552 DATA, true); 1553 else 1554 goto continue_unlock; 1555 } 1556 1557 BUG_ON(PageWriteback(page)); 1558 if (!clear_page_dirty_for_io(page)) 1559 goto continue_unlock; 1560 1561 ret = __write_data_page(page, &submitted, wbc); 1562 if (unlikely(ret)) { 1563 /* 1564 * keep nr_to_write, since vfs uses this to 1565 * get # of written pages. 1566 */ 1567 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1568 unlock_page(page); 1569 ret = 0; 1570 continue; 1571 } 1572 done_index = page->index + 1; 1573 done = 1; 1574 break; 1575 } else if (submitted) { 1576 last_idx = page->index; 1577 } 1578 1579 if (--wbc->nr_to_write <= 0 && 1580 wbc->sync_mode == WB_SYNC_NONE) { 1581 done = 1; 1582 break; 1583 } 1584 } 1585 pagevec_release(&pvec); 1586 cond_resched(); 1587 } 1588 1589 if (!cycled && !done) { 1590 cycled = 1; 1591 index = 0; 1592 end = writeback_index - 1; 1593 goto retry; 1594 } 1595 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1596 mapping->writeback_index = done_index; 1597 1598 if (last_idx != ULONG_MAX) 1599 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1600 0, last_idx, DATA, WRITE); 1601 1602 return ret; 1603 } 1604 1605 static int f2fs_write_data_pages(struct address_space *mapping, 1606 struct writeback_control *wbc) 1607 { 1608 struct inode *inode = mapping->host; 1609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1610 struct blk_plug plug; 1611 int ret; 1612 1613 /* deal with chardevs and other special file */ 1614 if (!mapping->a_ops->writepage) 1615 return 0; 1616 1617 /* skip writing if there is no dirty page in this inode */ 1618 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1619 return 0; 1620 1621 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1622 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1623 available_free_memory(sbi, DIRTY_DENTS)) 1624 goto skip_write; 1625 1626 /* skip writing during file defragment */ 1627 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1628 goto skip_write; 1629 1630 /* during POR, we don't need to trigger writepage at all. */ 1631 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1632 goto skip_write; 1633 1634 trace_f2fs_writepages(mapping->host, wbc, DATA); 1635 1636 blk_start_plug(&plug); 1637 ret = f2fs_write_cache_pages(mapping, wbc); 1638 blk_finish_plug(&plug); 1639 /* 1640 * if some pages were truncated, we cannot guarantee its mapping->host 1641 * to detect pending bios. 1642 */ 1643 1644 remove_dirty_inode(inode); 1645 return ret; 1646 1647 skip_write: 1648 wbc->pages_skipped += get_dirty_pages(inode); 1649 trace_f2fs_writepages(mapping->host, wbc, DATA); 1650 return 0; 1651 } 1652 1653 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1654 { 1655 struct inode *inode = mapping->host; 1656 loff_t i_size = i_size_read(inode); 1657 1658 if (to > i_size) { 1659 truncate_pagecache(inode, i_size); 1660 truncate_blocks(inode, i_size, true); 1661 } 1662 } 1663 1664 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1665 struct page *page, loff_t pos, unsigned len, 1666 block_t *blk_addr, bool *node_changed) 1667 { 1668 struct inode *inode = page->mapping->host; 1669 pgoff_t index = page->index; 1670 struct dnode_of_data dn; 1671 struct page *ipage; 1672 bool locked = false; 1673 struct extent_info ei = {0,0,0}; 1674 int err = 0; 1675 1676 /* 1677 * we already allocated all the blocks, so we don't need to get 1678 * the block addresses when there is no need to fill the page. 1679 */ 1680 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1681 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1682 return 0; 1683 1684 if (f2fs_has_inline_data(inode) || 1685 (pos & PAGE_MASK) >= i_size_read(inode)) { 1686 f2fs_lock_op(sbi); 1687 locked = true; 1688 } 1689 restart: 1690 /* check inline_data */ 1691 ipage = get_node_page(sbi, inode->i_ino); 1692 if (IS_ERR(ipage)) { 1693 err = PTR_ERR(ipage); 1694 goto unlock_out; 1695 } 1696 1697 set_new_dnode(&dn, inode, ipage, ipage, 0); 1698 1699 if (f2fs_has_inline_data(inode)) { 1700 if (pos + len <= MAX_INLINE_DATA) { 1701 read_inline_data(page, ipage); 1702 set_inode_flag(inode, FI_DATA_EXIST); 1703 if (inode->i_nlink) 1704 set_inline_node(ipage); 1705 } else { 1706 err = f2fs_convert_inline_page(&dn, page); 1707 if (err) 1708 goto out; 1709 if (dn.data_blkaddr == NULL_ADDR) 1710 err = f2fs_get_block(&dn, index); 1711 } 1712 } else if (locked) { 1713 err = f2fs_get_block(&dn, index); 1714 } else { 1715 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1716 dn.data_blkaddr = ei.blk + index - ei.fofs; 1717 } else { 1718 /* hole case */ 1719 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1720 if (err || dn.data_blkaddr == NULL_ADDR) { 1721 f2fs_put_dnode(&dn); 1722 f2fs_lock_op(sbi); 1723 locked = true; 1724 goto restart; 1725 } 1726 } 1727 } 1728 1729 /* convert_inline_page can make node_changed */ 1730 *blk_addr = dn.data_blkaddr; 1731 *node_changed = dn.node_changed; 1732 out: 1733 f2fs_put_dnode(&dn); 1734 unlock_out: 1735 if (locked) 1736 f2fs_unlock_op(sbi); 1737 return err; 1738 } 1739 1740 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1741 loff_t pos, unsigned len, unsigned flags, 1742 struct page **pagep, void **fsdata) 1743 { 1744 struct inode *inode = mapping->host; 1745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1746 struct page *page = NULL; 1747 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1748 bool need_balance = false; 1749 block_t blkaddr = NULL_ADDR; 1750 int err = 0; 1751 1752 trace_f2fs_write_begin(inode, pos, len, flags); 1753 1754 /* 1755 * We should check this at this moment to avoid deadlock on inode page 1756 * and #0 page. The locking rule for inline_data conversion should be: 1757 * lock_page(page #0) -> lock_page(inode_page) 1758 */ 1759 if (index != 0) { 1760 err = f2fs_convert_inline_inode(inode); 1761 if (err) 1762 goto fail; 1763 } 1764 repeat: 1765 /* 1766 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1767 * wait_for_stable_page. Will wait that below with our IO control. 1768 */ 1769 page = pagecache_get_page(mapping, index, 1770 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1771 if (!page) { 1772 err = -ENOMEM; 1773 goto fail; 1774 } 1775 1776 *pagep = page; 1777 1778 err = prepare_write_begin(sbi, page, pos, len, 1779 &blkaddr, &need_balance); 1780 if (err) 1781 goto fail; 1782 1783 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1784 unlock_page(page); 1785 f2fs_balance_fs(sbi, true); 1786 lock_page(page); 1787 if (page->mapping != mapping) { 1788 /* The page got truncated from under us */ 1789 f2fs_put_page(page, 1); 1790 goto repeat; 1791 } 1792 } 1793 1794 f2fs_wait_on_page_writeback(page, DATA, false); 1795 1796 /* wait for GCed encrypted page writeback */ 1797 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1798 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1799 1800 if (len == PAGE_SIZE || PageUptodate(page)) 1801 return 0; 1802 1803 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1804 zero_user_segment(page, len, PAGE_SIZE); 1805 return 0; 1806 } 1807 1808 if (blkaddr == NEW_ADDR) { 1809 zero_user_segment(page, 0, PAGE_SIZE); 1810 SetPageUptodate(page); 1811 } else { 1812 struct bio *bio; 1813 1814 bio = f2fs_grab_bio(inode, blkaddr, 1); 1815 if (IS_ERR(bio)) { 1816 err = PTR_ERR(bio); 1817 goto fail; 1818 } 1819 bio->bi_opf = REQ_OP_READ; 1820 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1821 bio_put(bio); 1822 err = -EFAULT; 1823 goto fail; 1824 } 1825 1826 __submit_bio(sbi, bio, DATA); 1827 1828 lock_page(page); 1829 if (unlikely(page->mapping != mapping)) { 1830 f2fs_put_page(page, 1); 1831 goto repeat; 1832 } 1833 if (unlikely(!PageUptodate(page))) { 1834 err = -EIO; 1835 goto fail; 1836 } 1837 } 1838 return 0; 1839 1840 fail: 1841 f2fs_put_page(page, 1); 1842 f2fs_write_failed(mapping, pos + len); 1843 return err; 1844 } 1845 1846 static int f2fs_write_end(struct file *file, 1847 struct address_space *mapping, 1848 loff_t pos, unsigned len, unsigned copied, 1849 struct page *page, void *fsdata) 1850 { 1851 struct inode *inode = page->mapping->host; 1852 1853 trace_f2fs_write_end(inode, pos, len, copied); 1854 1855 /* 1856 * This should be come from len == PAGE_SIZE, and we expect copied 1857 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1858 * let generic_perform_write() try to copy data again through copied=0. 1859 */ 1860 if (!PageUptodate(page)) { 1861 if (unlikely(copied != len)) 1862 copied = 0; 1863 else 1864 SetPageUptodate(page); 1865 } 1866 if (!copied) 1867 goto unlock_out; 1868 1869 set_page_dirty(page); 1870 1871 if (pos + copied > i_size_read(inode)) 1872 f2fs_i_size_write(inode, pos + copied); 1873 unlock_out: 1874 f2fs_put_page(page, 1); 1875 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1876 return copied; 1877 } 1878 1879 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1880 loff_t offset) 1881 { 1882 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1883 1884 if (offset & blocksize_mask) 1885 return -EINVAL; 1886 1887 if (iov_iter_alignment(iter) & blocksize_mask) 1888 return -EINVAL; 1889 1890 return 0; 1891 } 1892 1893 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1894 { 1895 struct address_space *mapping = iocb->ki_filp->f_mapping; 1896 struct inode *inode = mapping->host; 1897 size_t count = iov_iter_count(iter); 1898 loff_t offset = iocb->ki_pos; 1899 int rw = iov_iter_rw(iter); 1900 int err; 1901 1902 err = check_direct_IO(inode, iter, offset); 1903 if (err) 1904 return err; 1905 1906 if (__force_buffered_io(inode, rw)) 1907 return 0; 1908 1909 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1910 1911 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1912 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1913 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1914 1915 if (rw == WRITE) { 1916 if (err > 0) 1917 set_inode_flag(inode, FI_UPDATE_WRITE); 1918 else if (err < 0) 1919 f2fs_write_failed(mapping, offset + count); 1920 } 1921 1922 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1923 1924 return err; 1925 } 1926 1927 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1928 unsigned int length) 1929 { 1930 struct inode *inode = page->mapping->host; 1931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1932 1933 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1934 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1935 return; 1936 1937 if (PageDirty(page)) { 1938 if (inode->i_ino == F2FS_META_INO(sbi)) { 1939 dec_page_count(sbi, F2FS_DIRTY_META); 1940 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 1941 dec_page_count(sbi, F2FS_DIRTY_NODES); 1942 } else { 1943 inode_dec_dirty_pages(inode); 1944 remove_dirty_inode(inode); 1945 } 1946 } 1947 1948 /* This is atomic written page, keep Private */ 1949 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1950 return; 1951 1952 set_page_private(page, 0); 1953 ClearPagePrivate(page); 1954 } 1955 1956 int f2fs_release_page(struct page *page, gfp_t wait) 1957 { 1958 /* If this is dirty page, keep PagePrivate */ 1959 if (PageDirty(page)) 1960 return 0; 1961 1962 /* This is atomic written page, keep Private */ 1963 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1964 return 0; 1965 1966 set_page_private(page, 0); 1967 ClearPagePrivate(page); 1968 return 1; 1969 } 1970 1971 /* 1972 * This was copied from __set_page_dirty_buffers which gives higher performance 1973 * in very high speed storages. (e.g., pmem) 1974 */ 1975 void f2fs_set_page_dirty_nobuffers(struct page *page) 1976 { 1977 struct address_space *mapping = page->mapping; 1978 unsigned long flags; 1979 1980 if (unlikely(!mapping)) 1981 return; 1982 1983 spin_lock(&mapping->private_lock); 1984 lock_page_memcg(page); 1985 SetPageDirty(page); 1986 spin_unlock(&mapping->private_lock); 1987 1988 spin_lock_irqsave(&mapping->tree_lock, flags); 1989 WARN_ON_ONCE(!PageUptodate(page)); 1990 account_page_dirtied(page, mapping); 1991 radix_tree_tag_set(&mapping->page_tree, 1992 page_index(page), PAGECACHE_TAG_DIRTY); 1993 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1994 unlock_page_memcg(page); 1995 1996 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1997 return; 1998 } 1999 2000 static int f2fs_set_data_page_dirty(struct page *page) 2001 { 2002 struct address_space *mapping = page->mapping; 2003 struct inode *inode = mapping->host; 2004 2005 trace_f2fs_set_page_dirty(page, DATA); 2006 2007 if (!PageUptodate(page)) 2008 SetPageUptodate(page); 2009 2010 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2011 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2012 register_inmem_page(inode, page); 2013 return 1; 2014 } 2015 /* 2016 * Previously, this page has been registered, we just 2017 * return here. 2018 */ 2019 return 0; 2020 } 2021 2022 if (!PageDirty(page)) { 2023 f2fs_set_page_dirty_nobuffers(page); 2024 update_dirty_page(inode, page); 2025 return 1; 2026 } 2027 return 0; 2028 } 2029 2030 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2031 { 2032 struct inode *inode = mapping->host; 2033 2034 if (f2fs_has_inline_data(inode)) 2035 return 0; 2036 2037 /* make sure allocating whole blocks */ 2038 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2039 filemap_write_and_wait(mapping); 2040 2041 return generic_block_bmap(mapping, block, get_data_block_bmap); 2042 } 2043 2044 #ifdef CONFIG_MIGRATION 2045 #include <linux/migrate.h> 2046 2047 int f2fs_migrate_page(struct address_space *mapping, 2048 struct page *newpage, struct page *page, enum migrate_mode mode) 2049 { 2050 int rc, extra_count; 2051 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2052 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2053 2054 BUG_ON(PageWriteback(page)); 2055 2056 /* migrating an atomic written page is safe with the inmem_lock hold */ 2057 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 2058 return -EAGAIN; 2059 2060 /* 2061 * A reference is expected if PagePrivate set when move mapping, 2062 * however F2FS breaks this for maintaining dirty page counts when 2063 * truncating pages. So here adjusting the 'extra_count' make it work. 2064 */ 2065 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2066 rc = migrate_page_move_mapping(mapping, newpage, 2067 page, NULL, mode, extra_count); 2068 if (rc != MIGRATEPAGE_SUCCESS) { 2069 if (atomic_written) 2070 mutex_unlock(&fi->inmem_lock); 2071 return rc; 2072 } 2073 2074 if (atomic_written) { 2075 struct inmem_pages *cur; 2076 list_for_each_entry(cur, &fi->inmem_pages, list) 2077 if (cur->page == page) { 2078 cur->page = newpage; 2079 break; 2080 } 2081 mutex_unlock(&fi->inmem_lock); 2082 put_page(page); 2083 get_page(newpage); 2084 } 2085 2086 if (PagePrivate(page)) 2087 SetPagePrivate(newpage); 2088 set_page_private(newpage, page_private(page)); 2089 2090 migrate_page_copy(newpage, page); 2091 2092 return MIGRATEPAGE_SUCCESS; 2093 } 2094 #endif 2095 2096 const struct address_space_operations f2fs_dblock_aops = { 2097 .readpage = f2fs_read_data_page, 2098 .readpages = f2fs_read_data_pages, 2099 .writepage = f2fs_write_data_page, 2100 .writepages = f2fs_write_data_pages, 2101 .write_begin = f2fs_write_begin, 2102 .write_end = f2fs_write_end, 2103 .set_page_dirty = f2fs_set_data_page_dirty, 2104 .invalidatepage = f2fs_invalidate_page, 2105 .releasepage = f2fs_release_page, 2106 .direct_IO = f2fs_direct_IO, 2107 .bmap = f2fs_bmap, 2108 #ifdef CONFIG_MIGRATION 2109 .migratepage = f2fs_migrate_page, 2110 #endif 2111 }; 2112