1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_status = BLK_STS_IOERR; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_status) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_status) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_status)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_status)) { 113 mapping_set_error(page->mapping, -EIO); 114 if (type == F2FS_WB_CP_DATA) 115 f2fs_stop_checkpoint(sbi, true); 116 } 117 118 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 119 page->index != nid_of_node(page)); 120 121 dec_page_count(sbi, type); 122 clear_cold_data(page); 123 end_page_writeback(page); 124 } 125 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 126 wq_has_sleeper(&sbi->cp_wait)) 127 wake_up(&sbi->cp_wait); 128 129 bio_put(bio); 130 } 131 132 /* 133 * Return true, if pre_bio's bdev is same as its target device. 134 */ 135 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 136 block_t blk_addr, struct bio *bio) 137 { 138 struct block_device *bdev = sbi->sb->s_bdev; 139 int i; 140 141 for (i = 0; i < sbi->s_ndevs; i++) { 142 if (FDEV(i).start_blk <= blk_addr && 143 FDEV(i).end_blk >= blk_addr) { 144 blk_addr -= FDEV(i).start_blk; 145 bdev = FDEV(i).bdev; 146 break; 147 } 148 } 149 if (bio) { 150 bio_set_dev(bio, bdev); 151 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 152 } 153 return bdev; 154 } 155 156 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 157 { 158 int i; 159 160 for (i = 0; i < sbi->s_ndevs; i++) 161 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 162 return i; 163 return 0; 164 } 165 166 static bool __same_bdev(struct f2fs_sb_info *sbi, 167 block_t blk_addr, struct bio *bio) 168 { 169 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 170 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 171 } 172 173 /* 174 * Low-level block read/write IO operations. 175 */ 176 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 177 struct writeback_control *wbc, 178 int npages, bool is_read) 179 { 180 struct bio *bio; 181 182 bio = f2fs_bio_alloc(sbi, npages, true); 183 184 f2fs_target_device(sbi, blk_addr, bio); 185 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 186 bio->bi_private = is_read ? NULL : sbi; 187 if (wbc) 188 wbc_init_bio(wbc, bio); 189 190 return bio; 191 } 192 193 static inline void __submit_bio(struct f2fs_sb_info *sbi, 194 struct bio *bio, enum page_type type) 195 { 196 if (!is_read_io(bio_op(bio))) { 197 unsigned int start; 198 199 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 200 current->plug && (type == DATA || type == NODE)) 201 blk_finish_plug(current->plug); 202 203 if (type != DATA && type != NODE) 204 goto submit_io; 205 206 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 207 start %= F2FS_IO_SIZE(sbi); 208 209 if (start == 0) 210 goto submit_io; 211 212 /* fill dummy pages */ 213 for (; start < F2FS_IO_SIZE(sbi); start++) { 214 struct page *page = 215 mempool_alloc(sbi->write_io_dummy, 216 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 217 f2fs_bug_on(sbi, !page); 218 219 SetPagePrivate(page); 220 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 221 lock_page(page); 222 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 223 f2fs_bug_on(sbi, 1); 224 } 225 /* 226 * In the NODE case, we lose next block address chain. So, we 227 * need to do checkpoint in f2fs_sync_file. 228 */ 229 if (type == NODE) 230 set_sbi_flag(sbi, SBI_NEED_CP); 231 } 232 submit_io: 233 if (is_read_io(bio_op(bio))) 234 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 235 else 236 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 237 submit_bio(bio); 238 } 239 240 static void __submit_merged_bio(struct f2fs_bio_info *io) 241 { 242 struct f2fs_io_info *fio = &io->fio; 243 244 if (!io->bio) 245 return; 246 247 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 248 249 if (is_read_io(fio->op)) 250 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 251 else 252 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 253 254 __submit_bio(io->sbi, io->bio, fio->type); 255 io->bio = NULL; 256 } 257 258 static bool __has_merged_page(struct f2fs_bio_info *io, 259 struct inode *inode, nid_t ino, pgoff_t idx) 260 { 261 struct bio_vec *bvec; 262 struct page *target; 263 int i; 264 265 if (!io->bio) 266 return false; 267 268 if (!inode && !ino) 269 return true; 270 271 bio_for_each_segment_all(bvec, io->bio, i) { 272 273 if (bvec->bv_page->mapping) 274 target = bvec->bv_page; 275 else 276 target = fscrypt_control_page(bvec->bv_page); 277 278 if (idx != target->index) 279 continue; 280 281 if (inode && inode == target->mapping->host) 282 return true; 283 if (ino && ino == ino_of_node(target)) 284 return true; 285 } 286 287 return false; 288 } 289 290 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 291 nid_t ino, pgoff_t idx, enum page_type type) 292 { 293 enum page_type btype = PAGE_TYPE_OF_BIO(type); 294 enum temp_type temp; 295 struct f2fs_bio_info *io; 296 bool ret = false; 297 298 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 299 io = sbi->write_io[btype] + temp; 300 301 down_read(&io->io_rwsem); 302 ret = __has_merged_page(io, inode, ino, idx); 303 up_read(&io->io_rwsem); 304 305 /* TODO: use HOT temp only for meta pages now. */ 306 if (ret || btype == META) 307 break; 308 } 309 return ret; 310 } 311 312 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 313 enum page_type type, enum temp_type temp) 314 { 315 enum page_type btype = PAGE_TYPE_OF_BIO(type); 316 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 317 318 down_write(&io->io_rwsem); 319 320 /* change META to META_FLUSH in the checkpoint procedure */ 321 if (type >= META_FLUSH) { 322 io->fio.type = META_FLUSH; 323 io->fio.op = REQ_OP_WRITE; 324 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 325 if (!test_opt(sbi, NOBARRIER)) 326 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 327 } 328 __submit_merged_bio(io); 329 up_write(&io->io_rwsem); 330 } 331 332 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 333 struct inode *inode, nid_t ino, pgoff_t idx, 334 enum page_type type, bool force) 335 { 336 enum temp_type temp; 337 338 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 339 return; 340 341 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 342 343 __f2fs_submit_merged_write(sbi, type, temp); 344 345 /* TODO: use HOT temp only for meta pages now. */ 346 if (type >= META) 347 break; 348 } 349 } 350 351 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 352 { 353 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 354 } 355 356 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 357 struct inode *inode, nid_t ino, pgoff_t idx, 358 enum page_type type) 359 { 360 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 361 } 362 363 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 364 { 365 f2fs_submit_merged_write(sbi, DATA); 366 f2fs_submit_merged_write(sbi, NODE); 367 f2fs_submit_merged_write(sbi, META); 368 } 369 370 /* 371 * Fill the locked page with data located in the block address. 372 * A caller needs to unlock the page on failure. 373 */ 374 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 375 { 376 struct bio *bio; 377 struct page *page = fio->encrypted_page ? 378 fio->encrypted_page : fio->page; 379 380 trace_f2fs_submit_page_bio(page, fio); 381 f2fs_trace_ios(fio, 0); 382 383 /* Allocate a new bio */ 384 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 385 1, is_read_io(fio->op)); 386 387 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 388 bio_put(bio); 389 return -EFAULT; 390 } 391 bio_set_op_attrs(bio, fio->op, fio->op_flags); 392 393 __submit_bio(fio->sbi, bio, fio->type); 394 395 if (!is_read_io(fio->op)) 396 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 397 return 0; 398 } 399 400 int f2fs_submit_page_write(struct f2fs_io_info *fio) 401 { 402 struct f2fs_sb_info *sbi = fio->sbi; 403 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 404 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 405 struct page *bio_page; 406 int err = 0; 407 408 f2fs_bug_on(sbi, is_read_io(fio->op)); 409 410 down_write(&io->io_rwsem); 411 next: 412 if (fio->in_list) { 413 spin_lock(&io->io_lock); 414 if (list_empty(&io->io_list)) { 415 spin_unlock(&io->io_lock); 416 goto out_fail; 417 } 418 fio = list_first_entry(&io->io_list, 419 struct f2fs_io_info, list); 420 list_del(&fio->list); 421 spin_unlock(&io->io_lock); 422 } 423 424 if (fio->old_blkaddr != NEW_ADDR) 425 verify_block_addr(sbi, fio->old_blkaddr); 426 verify_block_addr(sbi, fio->new_blkaddr); 427 428 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 429 430 /* set submitted = true as a return value */ 431 fio->submitted = true; 432 433 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 434 435 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 436 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 437 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 438 __submit_merged_bio(io); 439 alloc_new: 440 if (io->bio == NULL) { 441 if ((fio->type == DATA || fio->type == NODE) && 442 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 443 err = -EAGAIN; 444 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 445 goto out_fail; 446 } 447 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 448 BIO_MAX_PAGES, false); 449 io->fio = *fio; 450 } 451 452 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 453 __submit_merged_bio(io); 454 goto alloc_new; 455 } 456 457 if (fio->io_wbc) 458 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 459 460 io->last_block_in_bio = fio->new_blkaddr; 461 f2fs_trace_ios(fio, 0); 462 463 trace_f2fs_submit_page_write(fio->page, fio); 464 465 if (fio->in_list) 466 goto next; 467 out_fail: 468 up_write(&io->io_rwsem); 469 return err; 470 } 471 472 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 473 unsigned nr_pages) 474 { 475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 476 struct fscrypt_ctx *ctx = NULL; 477 struct bio *bio; 478 479 if (f2fs_encrypted_file(inode)) { 480 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 481 if (IS_ERR(ctx)) 482 return ERR_CAST(ctx); 483 484 /* wait the page to be moved by cleaning */ 485 f2fs_wait_on_block_writeback(sbi, blkaddr); 486 } 487 488 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 489 if (!bio) { 490 if (ctx) 491 fscrypt_release_ctx(ctx); 492 return ERR_PTR(-ENOMEM); 493 } 494 f2fs_target_device(sbi, blkaddr, bio); 495 bio->bi_end_io = f2fs_read_end_io; 496 bio->bi_private = ctx; 497 bio_set_op_attrs(bio, REQ_OP_READ, 0); 498 499 return bio; 500 } 501 502 /* This can handle encryption stuffs */ 503 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 504 block_t blkaddr) 505 { 506 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1); 507 508 if (IS_ERR(bio)) 509 return PTR_ERR(bio); 510 511 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 512 bio_put(bio); 513 return -EFAULT; 514 } 515 __submit_bio(F2FS_I_SB(inode), bio, DATA); 516 return 0; 517 } 518 519 static void __set_data_blkaddr(struct dnode_of_data *dn) 520 { 521 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 522 __le32 *addr_array; 523 int base = 0; 524 525 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 526 base = get_extra_isize(dn->inode); 527 528 /* Get physical address of data block */ 529 addr_array = blkaddr_in_node(rn); 530 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 531 } 532 533 /* 534 * Lock ordering for the change of data block address: 535 * ->data_page 536 * ->node_page 537 * update block addresses in the node page 538 */ 539 void set_data_blkaddr(struct dnode_of_data *dn) 540 { 541 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 542 __set_data_blkaddr(dn); 543 if (set_page_dirty(dn->node_page)) 544 dn->node_changed = true; 545 } 546 547 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 548 { 549 dn->data_blkaddr = blkaddr; 550 set_data_blkaddr(dn); 551 f2fs_update_extent_cache(dn); 552 } 553 554 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 555 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 556 { 557 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 558 int err; 559 560 if (!count) 561 return 0; 562 563 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 564 return -EPERM; 565 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 566 return err; 567 568 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 569 dn->ofs_in_node, count); 570 571 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 572 573 for (; count > 0; dn->ofs_in_node++) { 574 block_t blkaddr = datablock_addr(dn->inode, 575 dn->node_page, dn->ofs_in_node); 576 if (blkaddr == NULL_ADDR) { 577 dn->data_blkaddr = NEW_ADDR; 578 __set_data_blkaddr(dn); 579 count--; 580 } 581 } 582 583 if (set_page_dirty(dn->node_page)) 584 dn->node_changed = true; 585 return 0; 586 } 587 588 /* Should keep dn->ofs_in_node unchanged */ 589 int reserve_new_block(struct dnode_of_data *dn) 590 { 591 unsigned int ofs_in_node = dn->ofs_in_node; 592 int ret; 593 594 ret = reserve_new_blocks(dn, 1); 595 dn->ofs_in_node = ofs_in_node; 596 return ret; 597 } 598 599 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 600 { 601 bool need_put = dn->inode_page ? false : true; 602 int err; 603 604 err = get_dnode_of_data(dn, index, ALLOC_NODE); 605 if (err) 606 return err; 607 608 if (dn->data_blkaddr == NULL_ADDR) 609 err = reserve_new_block(dn); 610 if (err || need_put) 611 f2fs_put_dnode(dn); 612 return err; 613 } 614 615 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 616 { 617 struct extent_info ei = {0,0,0}; 618 struct inode *inode = dn->inode; 619 620 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 621 dn->data_blkaddr = ei.blk + index - ei.fofs; 622 return 0; 623 } 624 625 return f2fs_reserve_block(dn, index); 626 } 627 628 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 629 int op_flags, bool for_write) 630 { 631 struct address_space *mapping = inode->i_mapping; 632 struct dnode_of_data dn; 633 struct page *page; 634 struct extent_info ei = {0,0,0}; 635 int err; 636 637 page = f2fs_grab_cache_page(mapping, index, for_write); 638 if (!page) 639 return ERR_PTR(-ENOMEM); 640 641 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 642 dn.data_blkaddr = ei.blk + index - ei.fofs; 643 goto got_it; 644 } 645 646 set_new_dnode(&dn, inode, NULL, NULL, 0); 647 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 648 if (err) 649 goto put_err; 650 f2fs_put_dnode(&dn); 651 652 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 653 err = -ENOENT; 654 goto put_err; 655 } 656 got_it: 657 if (PageUptodate(page)) { 658 unlock_page(page); 659 return page; 660 } 661 662 /* 663 * A new dentry page is allocated but not able to be written, since its 664 * new inode page couldn't be allocated due to -ENOSPC. 665 * In such the case, its blkaddr can be remained as NEW_ADDR. 666 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 667 */ 668 if (dn.data_blkaddr == NEW_ADDR) { 669 zero_user_segment(page, 0, PAGE_SIZE); 670 if (!PageUptodate(page)) 671 SetPageUptodate(page); 672 unlock_page(page); 673 return page; 674 } 675 676 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 677 if (err) 678 goto put_err; 679 return page; 680 681 put_err: 682 f2fs_put_page(page, 1); 683 return ERR_PTR(err); 684 } 685 686 struct page *find_data_page(struct inode *inode, pgoff_t index) 687 { 688 struct address_space *mapping = inode->i_mapping; 689 struct page *page; 690 691 page = find_get_page(mapping, index); 692 if (page && PageUptodate(page)) 693 return page; 694 f2fs_put_page(page, 0); 695 696 page = get_read_data_page(inode, index, 0, false); 697 if (IS_ERR(page)) 698 return page; 699 700 if (PageUptodate(page)) 701 return page; 702 703 wait_on_page_locked(page); 704 if (unlikely(!PageUptodate(page))) { 705 f2fs_put_page(page, 0); 706 return ERR_PTR(-EIO); 707 } 708 return page; 709 } 710 711 /* 712 * If it tries to access a hole, return an error. 713 * Because, the callers, functions in dir.c and GC, should be able to know 714 * whether this page exists or not. 715 */ 716 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 717 bool for_write) 718 { 719 struct address_space *mapping = inode->i_mapping; 720 struct page *page; 721 repeat: 722 page = get_read_data_page(inode, index, 0, for_write); 723 if (IS_ERR(page)) 724 return page; 725 726 /* wait for read completion */ 727 lock_page(page); 728 if (unlikely(page->mapping != mapping)) { 729 f2fs_put_page(page, 1); 730 goto repeat; 731 } 732 if (unlikely(!PageUptodate(page))) { 733 f2fs_put_page(page, 1); 734 return ERR_PTR(-EIO); 735 } 736 return page; 737 } 738 739 /* 740 * Caller ensures that this data page is never allocated. 741 * A new zero-filled data page is allocated in the page cache. 742 * 743 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 744 * f2fs_unlock_op(). 745 * Note that, ipage is set only by make_empty_dir, and if any error occur, 746 * ipage should be released by this function. 747 */ 748 struct page *get_new_data_page(struct inode *inode, 749 struct page *ipage, pgoff_t index, bool new_i_size) 750 { 751 struct address_space *mapping = inode->i_mapping; 752 struct page *page; 753 struct dnode_of_data dn; 754 int err; 755 756 page = f2fs_grab_cache_page(mapping, index, true); 757 if (!page) { 758 /* 759 * before exiting, we should make sure ipage will be released 760 * if any error occur. 761 */ 762 f2fs_put_page(ipage, 1); 763 return ERR_PTR(-ENOMEM); 764 } 765 766 set_new_dnode(&dn, inode, ipage, NULL, 0); 767 err = f2fs_reserve_block(&dn, index); 768 if (err) { 769 f2fs_put_page(page, 1); 770 return ERR_PTR(err); 771 } 772 if (!ipage) 773 f2fs_put_dnode(&dn); 774 775 if (PageUptodate(page)) 776 goto got_it; 777 778 if (dn.data_blkaddr == NEW_ADDR) { 779 zero_user_segment(page, 0, PAGE_SIZE); 780 if (!PageUptodate(page)) 781 SetPageUptodate(page); 782 } else { 783 f2fs_put_page(page, 1); 784 785 /* if ipage exists, blkaddr should be NEW_ADDR */ 786 f2fs_bug_on(F2FS_I_SB(inode), ipage); 787 page = get_lock_data_page(inode, index, true); 788 if (IS_ERR(page)) 789 return page; 790 } 791 got_it: 792 if (new_i_size && i_size_read(inode) < 793 ((loff_t)(index + 1) << PAGE_SHIFT)) 794 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 795 return page; 796 } 797 798 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 799 { 800 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 801 struct f2fs_summary sum; 802 struct node_info ni; 803 pgoff_t fofs; 804 blkcnt_t count = 1; 805 int err; 806 807 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 808 return -EPERM; 809 810 dn->data_blkaddr = datablock_addr(dn->inode, 811 dn->node_page, dn->ofs_in_node); 812 if (dn->data_blkaddr == NEW_ADDR) 813 goto alloc; 814 815 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 816 return err; 817 818 alloc: 819 get_node_info(sbi, dn->nid, &ni); 820 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 821 822 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 823 &sum, seg_type, NULL, false); 824 set_data_blkaddr(dn); 825 826 /* update i_size */ 827 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 828 dn->ofs_in_node; 829 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 830 f2fs_i_size_write(dn->inode, 831 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 832 return 0; 833 } 834 835 static inline bool __force_buffered_io(struct inode *inode, int rw) 836 { 837 return (f2fs_encrypted_file(inode) || 838 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 839 F2FS_I_SB(inode)->s_ndevs); 840 } 841 842 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 843 { 844 struct inode *inode = file_inode(iocb->ki_filp); 845 struct f2fs_map_blocks map; 846 int flag; 847 int err = 0; 848 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 849 850 /* convert inline data for Direct I/O*/ 851 if (direct_io) { 852 err = f2fs_convert_inline_inode(inode); 853 if (err) 854 return err; 855 } 856 857 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 858 return 0; 859 860 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 861 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 862 if (map.m_len > map.m_lblk) 863 map.m_len -= map.m_lblk; 864 else 865 map.m_len = 0; 866 867 map.m_next_pgofs = NULL; 868 map.m_next_extent = NULL; 869 map.m_seg_type = NO_CHECK_TYPE; 870 871 if (direct_io) { 872 map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint); 873 flag = __force_buffered_io(inode, WRITE) ? 874 F2FS_GET_BLOCK_PRE_AIO : 875 F2FS_GET_BLOCK_PRE_DIO; 876 goto map_blocks; 877 } 878 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 879 err = f2fs_convert_inline_inode(inode); 880 if (err) 881 return err; 882 } 883 if (f2fs_has_inline_data(inode)) 884 return err; 885 886 flag = F2FS_GET_BLOCK_PRE_AIO; 887 888 map_blocks: 889 err = f2fs_map_blocks(inode, &map, 1, flag); 890 if (map.m_len > 0 && err == -ENOSPC) { 891 if (!direct_io) 892 set_inode_flag(inode, FI_NO_PREALLOC); 893 err = 0; 894 } 895 return err; 896 } 897 898 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 899 { 900 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 901 if (lock) 902 down_read(&sbi->node_change); 903 else 904 up_read(&sbi->node_change); 905 } else { 906 if (lock) 907 f2fs_lock_op(sbi); 908 else 909 f2fs_unlock_op(sbi); 910 } 911 } 912 913 /* 914 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 915 * f2fs_map_blocks structure. 916 * If original data blocks are allocated, then give them to blockdev. 917 * Otherwise, 918 * a. preallocate requested block addresses 919 * b. do not use extent cache for better performance 920 * c. give the block addresses to blockdev 921 */ 922 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 923 int create, int flag) 924 { 925 unsigned int maxblocks = map->m_len; 926 struct dnode_of_data dn; 927 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 928 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 929 pgoff_t pgofs, end_offset, end; 930 int err = 0, ofs = 1; 931 unsigned int ofs_in_node, last_ofs_in_node; 932 blkcnt_t prealloc; 933 struct extent_info ei = {0,0,0}; 934 block_t blkaddr; 935 unsigned int start_pgofs; 936 937 if (!maxblocks) 938 return 0; 939 940 map->m_len = 0; 941 map->m_flags = 0; 942 943 /* it only supports block size == page size */ 944 pgofs = (pgoff_t)map->m_lblk; 945 end = pgofs + maxblocks; 946 947 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 948 map->m_pblk = ei.blk + pgofs - ei.fofs; 949 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 950 map->m_flags = F2FS_MAP_MAPPED; 951 if (map->m_next_extent) 952 *map->m_next_extent = pgofs + map->m_len; 953 goto out; 954 } 955 956 next_dnode: 957 if (create) 958 __do_map_lock(sbi, flag, true); 959 960 /* When reading holes, we need its node page */ 961 set_new_dnode(&dn, inode, NULL, NULL, 0); 962 err = get_dnode_of_data(&dn, pgofs, mode); 963 if (err) { 964 if (flag == F2FS_GET_BLOCK_BMAP) 965 map->m_pblk = 0; 966 if (err == -ENOENT) { 967 err = 0; 968 if (map->m_next_pgofs) 969 *map->m_next_pgofs = 970 get_next_page_offset(&dn, pgofs); 971 if (map->m_next_extent) 972 *map->m_next_extent = 973 get_next_page_offset(&dn, pgofs); 974 } 975 goto unlock_out; 976 } 977 978 start_pgofs = pgofs; 979 prealloc = 0; 980 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 981 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 982 983 next_block: 984 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 985 986 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 987 if (create) { 988 if (unlikely(f2fs_cp_error(sbi))) { 989 err = -EIO; 990 goto sync_out; 991 } 992 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 993 if (blkaddr == NULL_ADDR) { 994 prealloc++; 995 last_ofs_in_node = dn.ofs_in_node; 996 } 997 } else { 998 err = __allocate_data_block(&dn, 999 map->m_seg_type); 1000 if (!err) 1001 set_inode_flag(inode, FI_APPEND_WRITE); 1002 } 1003 if (err) 1004 goto sync_out; 1005 map->m_flags |= F2FS_MAP_NEW; 1006 blkaddr = dn.data_blkaddr; 1007 } else { 1008 if (flag == F2FS_GET_BLOCK_BMAP) { 1009 map->m_pblk = 0; 1010 goto sync_out; 1011 } 1012 if (flag == F2FS_GET_BLOCK_PRECACHE) 1013 goto sync_out; 1014 if (flag == F2FS_GET_BLOCK_FIEMAP && 1015 blkaddr == NULL_ADDR) { 1016 if (map->m_next_pgofs) 1017 *map->m_next_pgofs = pgofs + 1; 1018 goto sync_out; 1019 } 1020 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1021 /* for defragment case */ 1022 if (map->m_next_pgofs) 1023 *map->m_next_pgofs = pgofs + 1; 1024 goto sync_out; 1025 } 1026 } 1027 } 1028 1029 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1030 goto skip; 1031 1032 if (map->m_len == 0) { 1033 /* preallocated unwritten block should be mapped for fiemap. */ 1034 if (blkaddr == NEW_ADDR) 1035 map->m_flags |= F2FS_MAP_UNWRITTEN; 1036 map->m_flags |= F2FS_MAP_MAPPED; 1037 1038 map->m_pblk = blkaddr; 1039 map->m_len = 1; 1040 } else if ((map->m_pblk != NEW_ADDR && 1041 blkaddr == (map->m_pblk + ofs)) || 1042 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1043 flag == F2FS_GET_BLOCK_PRE_DIO) { 1044 ofs++; 1045 map->m_len++; 1046 } else { 1047 goto sync_out; 1048 } 1049 1050 skip: 1051 dn.ofs_in_node++; 1052 pgofs++; 1053 1054 /* preallocate blocks in batch for one dnode page */ 1055 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1056 (pgofs == end || dn.ofs_in_node == end_offset)) { 1057 1058 dn.ofs_in_node = ofs_in_node; 1059 err = reserve_new_blocks(&dn, prealloc); 1060 if (err) 1061 goto sync_out; 1062 1063 map->m_len += dn.ofs_in_node - ofs_in_node; 1064 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1065 err = -ENOSPC; 1066 goto sync_out; 1067 } 1068 dn.ofs_in_node = end_offset; 1069 } 1070 1071 if (pgofs >= end) 1072 goto sync_out; 1073 else if (dn.ofs_in_node < end_offset) 1074 goto next_block; 1075 1076 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1077 if (map->m_flags & F2FS_MAP_MAPPED) { 1078 unsigned int ofs = start_pgofs - map->m_lblk; 1079 1080 f2fs_update_extent_cache_range(&dn, 1081 start_pgofs, map->m_pblk + ofs, 1082 map->m_len - ofs); 1083 } 1084 } 1085 1086 f2fs_put_dnode(&dn); 1087 1088 if (create) { 1089 __do_map_lock(sbi, flag, false); 1090 f2fs_balance_fs(sbi, dn.node_changed); 1091 } 1092 goto next_dnode; 1093 1094 sync_out: 1095 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1096 if (map->m_flags & F2FS_MAP_MAPPED) { 1097 unsigned int ofs = start_pgofs - map->m_lblk; 1098 1099 f2fs_update_extent_cache_range(&dn, 1100 start_pgofs, map->m_pblk + ofs, 1101 map->m_len - ofs); 1102 } 1103 if (map->m_next_extent) 1104 *map->m_next_extent = pgofs + 1; 1105 } 1106 f2fs_put_dnode(&dn); 1107 unlock_out: 1108 if (create) { 1109 __do_map_lock(sbi, flag, false); 1110 f2fs_balance_fs(sbi, dn.node_changed); 1111 } 1112 out: 1113 trace_f2fs_map_blocks(inode, map, err); 1114 return err; 1115 } 1116 1117 static int __get_data_block(struct inode *inode, sector_t iblock, 1118 struct buffer_head *bh, int create, int flag, 1119 pgoff_t *next_pgofs, int seg_type) 1120 { 1121 struct f2fs_map_blocks map; 1122 int err; 1123 1124 map.m_lblk = iblock; 1125 map.m_len = bh->b_size >> inode->i_blkbits; 1126 map.m_next_pgofs = next_pgofs; 1127 map.m_next_extent = NULL; 1128 map.m_seg_type = seg_type; 1129 1130 err = f2fs_map_blocks(inode, &map, create, flag); 1131 if (!err) { 1132 map_bh(bh, inode->i_sb, map.m_pblk); 1133 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1134 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1135 } 1136 return err; 1137 } 1138 1139 static int get_data_block(struct inode *inode, sector_t iblock, 1140 struct buffer_head *bh_result, int create, int flag, 1141 pgoff_t *next_pgofs) 1142 { 1143 return __get_data_block(inode, iblock, bh_result, create, 1144 flag, next_pgofs, 1145 NO_CHECK_TYPE); 1146 } 1147 1148 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1149 struct buffer_head *bh_result, int create) 1150 { 1151 return __get_data_block(inode, iblock, bh_result, create, 1152 F2FS_GET_BLOCK_DEFAULT, NULL, 1153 rw_hint_to_seg_type( 1154 inode->i_write_hint)); 1155 } 1156 1157 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1158 struct buffer_head *bh_result, int create) 1159 { 1160 /* Block number less than F2FS MAX BLOCKS */ 1161 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1162 return -EFBIG; 1163 1164 return __get_data_block(inode, iblock, bh_result, create, 1165 F2FS_GET_BLOCK_BMAP, NULL, 1166 NO_CHECK_TYPE); 1167 } 1168 1169 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1170 { 1171 return (offset >> inode->i_blkbits); 1172 } 1173 1174 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1175 { 1176 return (blk << inode->i_blkbits); 1177 } 1178 1179 static int f2fs_xattr_fiemap(struct inode *inode, 1180 struct fiemap_extent_info *fieinfo) 1181 { 1182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1183 struct page *page; 1184 struct node_info ni; 1185 __u64 phys = 0, len; 1186 __u32 flags; 1187 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1188 int err = 0; 1189 1190 if (f2fs_has_inline_xattr(inode)) { 1191 int offset; 1192 1193 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1194 inode->i_ino, false); 1195 if (!page) 1196 return -ENOMEM; 1197 1198 get_node_info(sbi, inode->i_ino, &ni); 1199 1200 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1201 offset = offsetof(struct f2fs_inode, i_addr) + 1202 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1203 get_inline_xattr_addrs(inode)); 1204 1205 phys += offset; 1206 len = inline_xattr_size(inode); 1207 1208 f2fs_put_page(page, 1); 1209 1210 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1211 1212 if (!xnid) 1213 flags |= FIEMAP_EXTENT_LAST; 1214 1215 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1216 if (err || err == 1) 1217 return err; 1218 } 1219 1220 if (xnid) { 1221 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1222 if (!page) 1223 return -ENOMEM; 1224 1225 get_node_info(sbi, xnid, &ni); 1226 1227 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1228 len = inode->i_sb->s_blocksize; 1229 1230 f2fs_put_page(page, 1); 1231 1232 flags = FIEMAP_EXTENT_LAST; 1233 } 1234 1235 if (phys) 1236 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1237 1238 return (err < 0 ? err : 0); 1239 } 1240 1241 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1242 u64 start, u64 len) 1243 { 1244 struct buffer_head map_bh; 1245 sector_t start_blk, last_blk; 1246 pgoff_t next_pgofs; 1247 u64 logical = 0, phys = 0, size = 0; 1248 u32 flags = 0; 1249 int ret = 0; 1250 1251 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1252 ret = f2fs_precache_extents(inode); 1253 if (ret) 1254 return ret; 1255 } 1256 1257 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1258 if (ret) 1259 return ret; 1260 1261 inode_lock(inode); 1262 1263 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1264 ret = f2fs_xattr_fiemap(inode, fieinfo); 1265 goto out; 1266 } 1267 1268 if (f2fs_has_inline_data(inode)) { 1269 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1270 if (ret != -EAGAIN) 1271 goto out; 1272 } 1273 1274 if (logical_to_blk(inode, len) == 0) 1275 len = blk_to_logical(inode, 1); 1276 1277 start_blk = logical_to_blk(inode, start); 1278 last_blk = logical_to_blk(inode, start + len - 1); 1279 1280 next: 1281 memset(&map_bh, 0, sizeof(struct buffer_head)); 1282 map_bh.b_size = len; 1283 1284 ret = get_data_block(inode, start_blk, &map_bh, 0, 1285 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1286 if (ret) 1287 goto out; 1288 1289 /* HOLE */ 1290 if (!buffer_mapped(&map_bh)) { 1291 start_blk = next_pgofs; 1292 1293 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1294 F2FS_I_SB(inode)->max_file_blocks)) 1295 goto prep_next; 1296 1297 flags |= FIEMAP_EXTENT_LAST; 1298 } 1299 1300 if (size) { 1301 if (f2fs_encrypted_inode(inode)) 1302 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1303 1304 ret = fiemap_fill_next_extent(fieinfo, logical, 1305 phys, size, flags); 1306 } 1307 1308 if (start_blk > last_blk || ret) 1309 goto out; 1310 1311 logical = blk_to_logical(inode, start_blk); 1312 phys = blk_to_logical(inode, map_bh.b_blocknr); 1313 size = map_bh.b_size; 1314 flags = 0; 1315 if (buffer_unwritten(&map_bh)) 1316 flags = FIEMAP_EXTENT_UNWRITTEN; 1317 1318 start_blk += logical_to_blk(inode, size); 1319 1320 prep_next: 1321 cond_resched(); 1322 if (fatal_signal_pending(current)) 1323 ret = -EINTR; 1324 else 1325 goto next; 1326 out: 1327 if (ret == 1) 1328 ret = 0; 1329 1330 inode_unlock(inode); 1331 return ret; 1332 } 1333 1334 /* 1335 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1336 * Major change was from block_size == page_size in f2fs by default. 1337 */ 1338 static int f2fs_mpage_readpages(struct address_space *mapping, 1339 struct list_head *pages, struct page *page, 1340 unsigned nr_pages) 1341 { 1342 struct bio *bio = NULL; 1343 sector_t last_block_in_bio = 0; 1344 struct inode *inode = mapping->host; 1345 const unsigned blkbits = inode->i_blkbits; 1346 const unsigned blocksize = 1 << blkbits; 1347 sector_t block_in_file; 1348 sector_t last_block; 1349 sector_t last_block_in_file; 1350 sector_t block_nr; 1351 struct f2fs_map_blocks map; 1352 1353 map.m_pblk = 0; 1354 map.m_lblk = 0; 1355 map.m_len = 0; 1356 map.m_flags = 0; 1357 map.m_next_pgofs = NULL; 1358 map.m_next_extent = NULL; 1359 map.m_seg_type = NO_CHECK_TYPE; 1360 1361 for (; nr_pages; nr_pages--) { 1362 if (pages) { 1363 page = list_last_entry(pages, struct page, lru); 1364 1365 prefetchw(&page->flags); 1366 list_del(&page->lru); 1367 if (add_to_page_cache_lru(page, mapping, 1368 page->index, 1369 readahead_gfp_mask(mapping))) 1370 goto next_page; 1371 } 1372 1373 block_in_file = (sector_t)page->index; 1374 last_block = block_in_file + nr_pages; 1375 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1376 blkbits; 1377 if (last_block > last_block_in_file) 1378 last_block = last_block_in_file; 1379 1380 /* 1381 * Map blocks using the previous result first. 1382 */ 1383 if ((map.m_flags & F2FS_MAP_MAPPED) && 1384 block_in_file > map.m_lblk && 1385 block_in_file < (map.m_lblk + map.m_len)) 1386 goto got_it; 1387 1388 /* 1389 * Then do more f2fs_map_blocks() calls until we are 1390 * done with this page. 1391 */ 1392 map.m_flags = 0; 1393 1394 if (block_in_file < last_block) { 1395 map.m_lblk = block_in_file; 1396 map.m_len = last_block - block_in_file; 1397 1398 if (f2fs_map_blocks(inode, &map, 0, 1399 F2FS_GET_BLOCK_DEFAULT)) 1400 goto set_error_page; 1401 } 1402 got_it: 1403 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1404 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1405 SetPageMappedToDisk(page); 1406 1407 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1408 SetPageUptodate(page); 1409 goto confused; 1410 } 1411 } else { 1412 zero_user_segment(page, 0, PAGE_SIZE); 1413 if (!PageUptodate(page)) 1414 SetPageUptodate(page); 1415 unlock_page(page); 1416 goto next_page; 1417 } 1418 1419 /* 1420 * This page will go to BIO. Do we need to send this 1421 * BIO off first? 1422 */ 1423 if (bio && (last_block_in_bio != block_nr - 1 || 1424 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1425 submit_and_realloc: 1426 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1427 bio = NULL; 1428 } 1429 if (bio == NULL) { 1430 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages); 1431 if (IS_ERR(bio)) { 1432 bio = NULL; 1433 goto set_error_page; 1434 } 1435 } 1436 1437 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1438 goto submit_and_realloc; 1439 1440 last_block_in_bio = block_nr; 1441 goto next_page; 1442 set_error_page: 1443 SetPageError(page); 1444 zero_user_segment(page, 0, PAGE_SIZE); 1445 unlock_page(page); 1446 goto next_page; 1447 confused: 1448 if (bio) { 1449 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1450 bio = NULL; 1451 } 1452 unlock_page(page); 1453 next_page: 1454 if (pages) 1455 put_page(page); 1456 } 1457 BUG_ON(pages && !list_empty(pages)); 1458 if (bio) 1459 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1460 return 0; 1461 } 1462 1463 static int f2fs_read_data_page(struct file *file, struct page *page) 1464 { 1465 struct inode *inode = page->mapping->host; 1466 int ret = -EAGAIN; 1467 1468 trace_f2fs_readpage(page, DATA); 1469 1470 /* If the file has inline data, try to read it directly */ 1471 if (f2fs_has_inline_data(inode)) 1472 ret = f2fs_read_inline_data(inode, page); 1473 if (ret == -EAGAIN) 1474 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1475 return ret; 1476 } 1477 1478 static int f2fs_read_data_pages(struct file *file, 1479 struct address_space *mapping, 1480 struct list_head *pages, unsigned nr_pages) 1481 { 1482 struct inode *inode = mapping->host; 1483 struct page *page = list_last_entry(pages, struct page, lru); 1484 1485 trace_f2fs_readpages(inode, page, nr_pages); 1486 1487 /* If the file has inline data, skip readpages */ 1488 if (f2fs_has_inline_data(inode)) 1489 return 0; 1490 1491 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1492 } 1493 1494 static int encrypt_one_page(struct f2fs_io_info *fio) 1495 { 1496 struct inode *inode = fio->page->mapping->host; 1497 gfp_t gfp_flags = GFP_NOFS; 1498 1499 if (!f2fs_encrypted_file(inode)) 1500 return 0; 1501 1502 /* wait for GCed encrypted page writeback */ 1503 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr); 1504 1505 retry_encrypt: 1506 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1507 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1508 if (!IS_ERR(fio->encrypted_page)) 1509 return 0; 1510 1511 /* flush pending IOs and wait for a while in the ENOMEM case */ 1512 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1513 f2fs_flush_merged_writes(fio->sbi); 1514 congestion_wait(BLK_RW_ASYNC, HZ/50); 1515 gfp_flags |= __GFP_NOFAIL; 1516 goto retry_encrypt; 1517 } 1518 return PTR_ERR(fio->encrypted_page); 1519 } 1520 1521 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1522 { 1523 struct inode *inode = fio->page->mapping->host; 1524 1525 if (f2fs_is_pinned_file(inode)) 1526 return true; 1527 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 1528 return false; 1529 if (is_cold_data(fio->page)) 1530 return false; 1531 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1532 return false; 1533 1534 return need_inplace_update_policy(inode, fio); 1535 } 1536 1537 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio) 1538 { 1539 if (fio->old_blkaddr == NEW_ADDR) 1540 return false; 1541 if (fio->old_blkaddr == NULL_ADDR) 1542 return false; 1543 return true; 1544 } 1545 1546 int do_write_data_page(struct f2fs_io_info *fio) 1547 { 1548 struct page *page = fio->page; 1549 struct inode *inode = page->mapping->host; 1550 struct dnode_of_data dn; 1551 struct extent_info ei = {0,0,0}; 1552 bool ipu_force = false; 1553 int err = 0; 1554 1555 set_new_dnode(&dn, inode, NULL, NULL, 0); 1556 if (need_inplace_update(fio) && 1557 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1558 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1559 1560 if (valid_ipu_blkaddr(fio)) { 1561 ipu_force = true; 1562 fio->need_lock = LOCK_DONE; 1563 goto got_it; 1564 } 1565 } 1566 1567 /* Deadlock due to between page->lock and f2fs_lock_op */ 1568 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1569 return -EAGAIN; 1570 1571 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1572 if (err) 1573 goto out; 1574 1575 fio->old_blkaddr = dn.data_blkaddr; 1576 1577 /* This page is already truncated */ 1578 if (fio->old_blkaddr == NULL_ADDR) { 1579 ClearPageUptodate(page); 1580 goto out_writepage; 1581 } 1582 got_it: 1583 /* 1584 * If current allocation needs SSR, 1585 * it had better in-place writes for updated data. 1586 */ 1587 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) { 1588 err = encrypt_one_page(fio); 1589 if (err) 1590 goto out_writepage; 1591 1592 set_page_writeback(page); 1593 f2fs_put_dnode(&dn); 1594 if (fio->need_lock == LOCK_REQ) 1595 f2fs_unlock_op(fio->sbi); 1596 err = rewrite_data_page(fio); 1597 trace_f2fs_do_write_data_page(fio->page, IPU); 1598 set_inode_flag(inode, FI_UPDATE_WRITE); 1599 return err; 1600 } 1601 1602 if (fio->need_lock == LOCK_RETRY) { 1603 if (!f2fs_trylock_op(fio->sbi)) { 1604 err = -EAGAIN; 1605 goto out_writepage; 1606 } 1607 fio->need_lock = LOCK_REQ; 1608 } 1609 1610 err = encrypt_one_page(fio); 1611 if (err) 1612 goto out_writepage; 1613 1614 set_page_writeback(page); 1615 1616 /* LFS mode write path */ 1617 write_data_page(&dn, fio); 1618 trace_f2fs_do_write_data_page(page, OPU); 1619 set_inode_flag(inode, FI_APPEND_WRITE); 1620 if (page->index == 0) 1621 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1622 out_writepage: 1623 f2fs_put_dnode(&dn); 1624 out: 1625 if (fio->need_lock == LOCK_REQ) 1626 f2fs_unlock_op(fio->sbi); 1627 return err; 1628 } 1629 1630 static int __write_data_page(struct page *page, bool *submitted, 1631 struct writeback_control *wbc, 1632 enum iostat_type io_type) 1633 { 1634 struct inode *inode = page->mapping->host; 1635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1636 loff_t i_size = i_size_read(inode); 1637 const pgoff_t end_index = ((unsigned long long) i_size) 1638 >> PAGE_SHIFT; 1639 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1640 unsigned offset = 0; 1641 bool need_balance_fs = false; 1642 int err = 0; 1643 struct f2fs_io_info fio = { 1644 .sbi = sbi, 1645 .ino = inode->i_ino, 1646 .type = DATA, 1647 .op = REQ_OP_WRITE, 1648 .op_flags = wbc_to_write_flags(wbc), 1649 .old_blkaddr = NULL_ADDR, 1650 .page = page, 1651 .encrypted_page = NULL, 1652 .submitted = false, 1653 .need_lock = LOCK_RETRY, 1654 .io_type = io_type, 1655 .io_wbc = wbc, 1656 }; 1657 1658 trace_f2fs_writepage(page, DATA); 1659 1660 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1661 goto redirty_out; 1662 1663 if (page->index < end_index) 1664 goto write; 1665 1666 /* 1667 * If the offset is out-of-range of file size, 1668 * this page does not have to be written to disk. 1669 */ 1670 offset = i_size & (PAGE_SIZE - 1); 1671 if ((page->index >= end_index + 1) || !offset) 1672 goto out; 1673 1674 zero_user_segment(page, offset, PAGE_SIZE); 1675 write: 1676 if (f2fs_is_drop_cache(inode)) 1677 goto out; 1678 /* we should not write 0'th page having journal header */ 1679 if (f2fs_is_volatile_file(inode) && (!page->index || 1680 (!wbc->for_reclaim && 1681 available_free_memory(sbi, BASE_CHECK)))) 1682 goto redirty_out; 1683 1684 /* we should bypass data pages to proceed the kworkder jobs */ 1685 if (unlikely(f2fs_cp_error(sbi))) { 1686 mapping_set_error(page->mapping, -EIO); 1687 goto out; 1688 } 1689 1690 /* Dentry blocks are controlled by checkpoint */ 1691 if (S_ISDIR(inode->i_mode)) { 1692 fio.need_lock = LOCK_DONE; 1693 err = do_write_data_page(&fio); 1694 goto done; 1695 } 1696 1697 if (!wbc->for_reclaim) 1698 need_balance_fs = true; 1699 else if (has_not_enough_free_secs(sbi, 0, 0)) 1700 goto redirty_out; 1701 else 1702 set_inode_flag(inode, FI_HOT_DATA); 1703 1704 err = -EAGAIN; 1705 if (f2fs_has_inline_data(inode)) { 1706 err = f2fs_write_inline_data(inode, page); 1707 if (!err) 1708 goto out; 1709 } 1710 1711 if (err == -EAGAIN) { 1712 err = do_write_data_page(&fio); 1713 if (err == -EAGAIN) { 1714 fio.need_lock = LOCK_REQ; 1715 err = do_write_data_page(&fio); 1716 } 1717 } 1718 1719 down_write(&F2FS_I(inode)->i_sem); 1720 if (F2FS_I(inode)->last_disk_size < psize) 1721 F2FS_I(inode)->last_disk_size = psize; 1722 up_write(&F2FS_I(inode)->i_sem); 1723 1724 done: 1725 if (err && err != -ENOENT) 1726 goto redirty_out; 1727 1728 out: 1729 inode_dec_dirty_pages(inode); 1730 if (err) 1731 ClearPageUptodate(page); 1732 1733 if (wbc->for_reclaim) { 1734 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1735 clear_inode_flag(inode, FI_HOT_DATA); 1736 remove_dirty_inode(inode); 1737 submitted = NULL; 1738 } 1739 1740 unlock_page(page); 1741 if (!S_ISDIR(inode->i_mode)) 1742 f2fs_balance_fs(sbi, need_balance_fs); 1743 1744 if (unlikely(f2fs_cp_error(sbi))) { 1745 f2fs_submit_merged_write(sbi, DATA); 1746 submitted = NULL; 1747 } 1748 1749 if (submitted) 1750 *submitted = fio.submitted; 1751 1752 return 0; 1753 1754 redirty_out: 1755 redirty_page_for_writepage(wbc, page); 1756 if (!err) 1757 return AOP_WRITEPAGE_ACTIVATE; 1758 unlock_page(page); 1759 return err; 1760 } 1761 1762 static int f2fs_write_data_page(struct page *page, 1763 struct writeback_control *wbc) 1764 { 1765 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 1766 } 1767 1768 /* 1769 * This function was copied from write_cche_pages from mm/page-writeback.c. 1770 * The major change is making write step of cold data page separately from 1771 * warm/hot data page. 1772 */ 1773 static int f2fs_write_cache_pages(struct address_space *mapping, 1774 struct writeback_control *wbc, 1775 enum iostat_type io_type) 1776 { 1777 int ret = 0; 1778 int done = 0; 1779 struct pagevec pvec; 1780 int nr_pages; 1781 pgoff_t uninitialized_var(writeback_index); 1782 pgoff_t index; 1783 pgoff_t end; /* Inclusive */ 1784 pgoff_t done_index; 1785 pgoff_t last_idx = ULONG_MAX; 1786 int cycled; 1787 int range_whole = 0; 1788 int tag; 1789 1790 pagevec_init(&pvec); 1791 1792 if (get_dirty_pages(mapping->host) <= 1793 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 1794 set_inode_flag(mapping->host, FI_HOT_DATA); 1795 else 1796 clear_inode_flag(mapping->host, FI_HOT_DATA); 1797 1798 if (wbc->range_cyclic) { 1799 writeback_index = mapping->writeback_index; /* prev offset */ 1800 index = writeback_index; 1801 if (index == 0) 1802 cycled = 1; 1803 else 1804 cycled = 0; 1805 end = -1; 1806 } else { 1807 index = wbc->range_start >> PAGE_SHIFT; 1808 end = wbc->range_end >> PAGE_SHIFT; 1809 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1810 range_whole = 1; 1811 cycled = 1; /* ignore range_cyclic tests */ 1812 } 1813 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1814 tag = PAGECACHE_TAG_TOWRITE; 1815 else 1816 tag = PAGECACHE_TAG_DIRTY; 1817 retry: 1818 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1819 tag_pages_for_writeback(mapping, index, end); 1820 done_index = index; 1821 while (!done && (index <= end)) { 1822 int i; 1823 1824 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 1825 tag); 1826 if (nr_pages == 0) 1827 break; 1828 1829 for (i = 0; i < nr_pages; i++) { 1830 struct page *page = pvec.pages[i]; 1831 bool submitted = false; 1832 1833 done_index = page->index; 1834 retry_write: 1835 lock_page(page); 1836 1837 if (unlikely(page->mapping != mapping)) { 1838 continue_unlock: 1839 unlock_page(page); 1840 continue; 1841 } 1842 1843 if (!PageDirty(page)) { 1844 /* someone wrote it for us */ 1845 goto continue_unlock; 1846 } 1847 1848 if (PageWriteback(page)) { 1849 if (wbc->sync_mode != WB_SYNC_NONE) 1850 f2fs_wait_on_page_writeback(page, 1851 DATA, true); 1852 else 1853 goto continue_unlock; 1854 } 1855 1856 BUG_ON(PageWriteback(page)); 1857 if (!clear_page_dirty_for_io(page)) 1858 goto continue_unlock; 1859 1860 ret = __write_data_page(page, &submitted, wbc, io_type); 1861 if (unlikely(ret)) { 1862 /* 1863 * keep nr_to_write, since vfs uses this to 1864 * get # of written pages. 1865 */ 1866 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1867 unlock_page(page); 1868 ret = 0; 1869 continue; 1870 } else if (ret == -EAGAIN) { 1871 ret = 0; 1872 if (wbc->sync_mode == WB_SYNC_ALL) { 1873 cond_resched(); 1874 congestion_wait(BLK_RW_ASYNC, 1875 HZ/50); 1876 goto retry_write; 1877 } 1878 continue; 1879 } 1880 done_index = page->index + 1; 1881 done = 1; 1882 break; 1883 } else if (submitted) { 1884 last_idx = page->index; 1885 } 1886 1887 /* give a priority to WB_SYNC threads */ 1888 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) || 1889 --wbc->nr_to_write <= 0) && 1890 wbc->sync_mode == WB_SYNC_NONE) { 1891 done = 1; 1892 break; 1893 } 1894 } 1895 pagevec_release(&pvec); 1896 cond_resched(); 1897 } 1898 1899 if (!cycled && !done) { 1900 cycled = 1; 1901 index = 0; 1902 end = writeback_index - 1; 1903 goto retry; 1904 } 1905 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1906 mapping->writeback_index = done_index; 1907 1908 if (last_idx != ULONG_MAX) 1909 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 1910 0, last_idx, DATA); 1911 1912 return ret; 1913 } 1914 1915 int __f2fs_write_data_pages(struct address_space *mapping, 1916 struct writeback_control *wbc, 1917 enum iostat_type io_type) 1918 { 1919 struct inode *inode = mapping->host; 1920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1921 struct blk_plug plug; 1922 int ret; 1923 1924 /* deal with chardevs and other special file */ 1925 if (!mapping->a_ops->writepage) 1926 return 0; 1927 1928 /* skip writing if there is no dirty page in this inode */ 1929 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1930 return 0; 1931 1932 /* during POR, we don't need to trigger writepage at all. */ 1933 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1934 goto skip_write; 1935 1936 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1937 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1938 available_free_memory(sbi, DIRTY_DENTS)) 1939 goto skip_write; 1940 1941 /* skip writing during file defragment */ 1942 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1943 goto skip_write; 1944 1945 trace_f2fs_writepages(mapping->host, wbc, DATA); 1946 1947 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 1948 if (wbc->sync_mode == WB_SYNC_ALL) 1949 atomic_inc(&sbi->wb_sync_req); 1950 else if (atomic_read(&sbi->wb_sync_req)) 1951 goto skip_write; 1952 1953 blk_start_plug(&plug); 1954 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 1955 blk_finish_plug(&plug); 1956 1957 if (wbc->sync_mode == WB_SYNC_ALL) 1958 atomic_dec(&sbi->wb_sync_req); 1959 /* 1960 * if some pages were truncated, we cannot guarantee its mapping->host 1961 * to detect pending bios. 1962 */ 1963 1964 remove_dirty_inode(inode); 1965 return ret; 1966 1967 skip_write: 1968 wbc->pages_skipped += get_dirty_pages(inode); 1969 trace_f2fs_writepages(mapping->host, wbc, DATA); 1970 return 0; 1971 } 1972 1973 static int f2fs_write_data_pages(struct address_space *mapping, 1974 struct writeback_control *wbc) 1975 { 1976 struct inode *inode = mapping->host; 1977 1978 return __f2fs_write_data_pages(mapping, wbc, 1979 F2FS_I(inode)->cp_task == current ? 1980 FS_CP_DATA_IO : FS_DATA_IO); 1981 } 1982 1983 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1984 { 1985 struct inode *inode = mapping->host; 1986 loff_t i_size = i_size_read(inode); 1987 1988 if (to > i_size) { 1989 down_write(&F2FS_I(inode)->i_mmap_sem); 1990 truncate_pagecache(inode, i_size); 1991 truncate_blocks(inode, i_size, true); 1992 up_write(&F2FS_I(inode)->i_mmap_sem); 1993 } 1994 } 1995 1996 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1997 struct page *page, loff_t pos, unsigned len, 1998 block_t *blk_addr, bool *node_changed) 1999 { 2000 struct inode *inode = page->mapping->host; 2001 pgoff_t index = page->index; 2002 struct dnode_of_data dn; 2003 struct page *ipage; 2004 bool locked = false; 2005 struct extent_info ei = {0,0,0}; 2006 int err = 0; 2007 2008 /* 2009 * we already allocated all the blocks, so we don't need to get 2010 * the block addresses when there is no need to fill the page. 2011 */ 2012 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2013 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2014 return 0; 2015 2016 if (f2fs_has_inline_data(inode) || 2017 (pos & PAGE_MASK) >= i_size_read(inode)) { 2018 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 2019 locked = true; 2020 } 2021 restart: 2022 /* check inline_data */ 2023 ipage = get_node_page(sbi, inode->i_ino); 2024 if (IS_ERR(ipage)) { 2025 err = PTR_ERR(ipage); 2026 goto unlock_out; 2027 } 2028 2029 set_new_dnode(&dn, inode, ipage, ipage, 0); 2030 2031 if (f2fs_has_inline_data(inode)) { 2032 if (pos + len <= MAX_INLINE_DATA(inode)) { 2033 read_inline_data(page, ipage); 2034 set_inode_flag(inode, FI_DATA_EXIST); 2035 if (inode->i_nlink) 2036 set_inline_node(ipage); 2037 } else { 2038 err = f2fs_convert_inline_page(&dn, page); 2039 if (err) 2040 goto out; 2041 if (dn.data_blkaddr == NULL_ADDR) 2042 err = f2fs_get_block(&dn, index); 2043 } 2044 } else if (locked) { 2045 err = f2fs_get_block(&dn, index); 2046 } else { 2047 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2048 dn.data_blkaddr = ei.blk + index - ei.fofs; 2049 } else { 2050 /* hole case */ 2051 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 2052 if (err || dn.data_blkaddr == NULL_ADDR) { 2053 f2fs_put_dnode(&dn); 2054 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2055 true); 2056 locked = true; 2057 goto restart; 2058 } 2059 } 2060 } 2061 2062 /* convert_inline_page can make node_changed */ 2063 *blk_addr = dn.data_blkaddr; 2064 *node_changed = dn.node_changed; 2065 out: 2066 f2fs_put_dnode(&dn); 2067 unlock_out: 2068 if (locked) 2069 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 2070 return err; 2071 } 2072 2073 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2074 loff_t pos, unsigned len, unsigned flags, 2075 struct page **pagep, void **fsdata) 2076 { 2077 struct inode *inode = mapping->host; 2078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2079 struct page *page = NULL; 2080 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2081 bool need_balance = false, drop_atomic = false; 2082 block_t blkaddr = NULL_ADDR; 2083 int err = 0; 2084 2085 trace_f2fs_write_begin(inode, pos, len, flags); 2086 2087 if (f2fs_is_atomic_file(inode) && 2088 !available_free_memory(sbi, INMEM_PAGES)) { 2089 err = -ENOMEM; 2090 drop_atomic = true; 2091 goto fail; 2092 } 2093 2094 /* 2095 * We should check this at this moment to avoid deadlock on inode page 2096 * and #0 page. The locking rule for inline_data conversion should be: 2097 * lock_page(page #0) -> lock_page(inode_page) 2098 */ 2099 if (index != 0) { 2100 err = f2fs_convert_inline_inode(inode); 2101 if (err) 2102 goto fail; 2103 } 2104 repeat: 2105 /* 2106 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2107 * wait_for_stable_page. Will wait that below with our IO control. 2108 */ 2109 page = f2fs_pagecache_get_page(mapping, index, 2110 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2111 if (!page) { 2112 err = -ENOMEM; 2113 goto fail; 2114 } 2115 2116 *pagep = page; 2117 2118 err = prepare_write_begin(sbi, page, pos, len, 2119 &blkaddr, &need_balance); 2120 if (err) 2121 goto fail; 2122 2123 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 2124 unlock_page(page); 2125 f2fs_balance_fs(sbi, true); 2126 lock_page(page); 2127 if (page->mapping != mapping) { 2128 /* The page got truncated from under us */ 2129 f2fs_put_page(page, 1); 2130 goto repeat; 2131 } 2132 } 2133 2134 f2fs_wait_on_page_writeback(page, DATA, false); 2135 2136 /* wait for GCed encrypted page writeback */ 2137 if (f2fs_encrypted_file(inode)) 2138 f2fs_wait_on_block_writeback(sbi, blkaddr); 2139 2140 if (len == PAGE_SIZE || PageUptodate(page)) 2141 return 0; 2142 2143 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2144 zero_user_segment(page, len, PAGE_SIZE); 2145 return 0; 2146 } 2147 2148 if (blkaddr == NEW_ADDR) { 2149 zero_user_segment(page, 0, PAGE_SIZE); 2150 SetPageUptodate(page); 2151 } else { 2152 err = f2fs_submit_page_read(inode, page, blkaddr); 2153 if (err) 2154 goto fail; 2155 2156 lock_page(page); 2157 if (unlikely(page->mapping != mapping)) { 2158 f2fs_put_page(page, 1); 2159 goto repeat; 2160 } 2161 if (unlikely(!PageUptodate(page))) { 2162 err = -EIO; 2163 goto fail; 2164 } 2165 } 2166 return 0; 2167 2168 fail: 2169 f2fs_put_page(page, 1); 2170 f2fs_write_failed(mapping, pos + len); 2171 if (drop_atomic) 2172 drop_inmem_pages_all(sbi); 2173 return err; 2174 } 2175 2176 static int f2fs_write_end(struct file *file, 2177 struct address_space *mapping, 2178 loff_t pos, unsigned len, unsigned copied, 2179 struct page *page, void *fsdata) 2180 { 2181 struct inode *inode = page->mapping->host; 2182 2183 trace_f2fs_write_end(inode, pos, len, copied); 2184 2185 /* 2186 * This should be come from len == PAGE_SIZE, and we expect copied 2187 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2188 * let generic_perform_write() try to copy data again through copied=0. 2189 */ 2190 if (!PageUptodate(page)) { 2191 if (unlikely(copied != len)) 2192 copied = 0; 2193 else 2194 SetPageUptodate(page); 2195 } 2196 if (!copied) 2197 goto unlock_out; 2198 2199 set_page_dirty(page); 2200 2201 if (pos + copied > i_size_read(inode)) 2202 f2fs_i_size_write(inode, pos + copied); 2203 unlock_out: 2204 f2fs_put_page(page, 1); 2205 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2206 return copied; 2207 } 2208 2209 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2210 loff_t offset) 2211 { 2212 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 2213 2214 if (offset & blocksize_mask) 2215 return -EINVAL; 2216 2217 if (iov_iter_alignment(iter) & blocksize_mask) 2218 return -EINVAL; 2219 2220 return 0; 2221 } 2222 2223 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2224 { 2225 struct address_space *mapping = iocb->ki_filp->f_mapping; 2226 struct inode *inode = mapping->host; 2227 size_t count = iov_iter_count(iter); 2228 loff_t offset = iocb->ki_pos; 2229 int rw = iov_iter_rw(iter); 2230 int err; 2231 2232 err = check_direct_IO(inode, iter, offset); 2233 if (err) 2234 return err; 2235 2236 if (__force_buffered_io(inode, rw)) 2237 return 0; 2238 2239 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2240 2241 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 2242 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2243 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 2244 2245 if (rw == WRITE) { 2246 if (err > 0) { 2247 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2248 err); 2249 set_inode_flag(inode, FI_UPDATE_WRITE); 2250 } else if (err < 0) { 2251 f2fs_write_failed(mapping, offset + count); 2252 } 2253 } 2254 2255 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2256 2257 return err; 2258 } 2259 2260 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2261 unsigned int length) 2262 { 2263 struct inode *inode = page->mapping->host; 2264 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2265 2266 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2267 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2268 return; 2269 2270 if (PageDirty(page)) { 2271 if (inode->i_ino == F2FS_META_INO(sbi)) { 2272 dec_page_count(sbi, F2FS_DIRTY_META); 2273 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2274 dec_page_count(sbi, F2FS_DIRTY_NODES); 2275 } else { 2276 inode_dec_dirty_pages(inode); 2277 remove_dirty_inode(inode); 2278 } 2279 } 2280 2281 /* This is atomic written page, keep Private */ 2282 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2283 return drop_inmem_page(inode, page); 2284 2285 set_page_private(page, 0); 2286 ClearPagePrivate(page); 2287 } 2288 2289 int f2fs_release_page(struct page *page, gfp_t wait) 2290 { 2291 /* If this is dirty page, keep PagePrivate */ 2292 if (PageDirty(page)) 2293 return 0; 2294 2295 /* This is atomic written page, keep Private */ 2296 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2297 return 0; 2298 2299 set_page_private(page, 0); 2300 ClearPagePrivate(page); 2301 return 1; 2302 } 2303 2304 /* 2305 * This was copied from __set_page_dirty_buffers which gives higher performance 2306 * in very high speed storages. (e.g., pmem) 2307 */ 2308 void f2fs_set_page_dirty_nobuffers(struct page *page) 2309 { 2310 struct address_space *mapping = page->mapping; 2311 unsigned long flags; 2312 2313 if (unlikely(!mapping)) 2314 return; 2315 2316 spin_lock(&mapping->private_lock); 2317 lock_page_memcg(page); 2318 SetPageDirty(page); 2319 spin_unlock(&mapping->private_lock); 2320 2321 spin_lock_irqsave(&mapping->tree_lock, flags); 2322 WARN_ON_ONCE(!PageUptodate(page)); 2323 account_page_dirtied(page, mapping); 2324 radix_tree_tag_set(&mapping->page_tree, 2325 page_index(page), PAGECACHE_TAG_DIRTY); 2326 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2327 unlock_page_memcg(page); 2328 2329 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2330 return; 2331 } 2332 2333 static int f2fs_set_data_page_dirty(struct page *page) 2334 { 2335 struct address_space *mapping = page->mapping; 2336 struct inode *inode = mapping->host; 2337 2338 trace_f2fs_set_page_dirty(page, DATA); 2339 2340 if (!PageUptodate(page)) 2341 SetPageUptodate(page); 2342 2343 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2344 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2345 register_inmem_page(inode, page); 2346 return 1; 2347 } 2348 /* 2349 * Previously, this page has been registered, we just 2350 * return here. 2351 */ 2352 return 0; 2353 } 2354 2355 if (!PageDirty(page)) { 2356 f2fs_set_page_dirty_nobuffers(page); 2357 update_dirty_page(inode, page); 2358 return 1; 2359 } 2360 return 0; 2361 } 2362 2363 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2364 { 2365 struct inode *inode = mapping->host; 2366 2367 if (f2fs_has_inline_data(inode)) 2368 return 0; 2369 2370 /* make sure allocating whole blocks */ 2371 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2372 filemap_write_and_wait(mapping); 2373 2374 return generic_block_bmap(mapping, block, get_data_block_bmap); 2375 } 2376 2377 #ifdef CONFIG_MIGRATION 2378 #include <linux/migrate.h> 2379 2380 int f2fs_migrate_page(struct address_space *mapping, 2381 struct page *newpage, struct page *page, enum migrate_mode mode) 2382 { 2383 int rc, extra_count; 2384 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2385 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2386 2387 BUG_ON(PageWriteback(page)); 2388 2389 /* migrating an atomic written page is safe with the inmem_lock hold */ 2390 if (atomic_written) { 2391 if (mode != MIGRATE_SYNC) 2392 return -EBUSY; 2393 if (!mutex_trylock(&fi->inmem_lock)) 2394 return -EAGAIN; 2395 } 2396 2397 /* 2398 * A reference is expected if PagePrivate set when move mapping, 2399 * however F2FS breaks this for maintaining dirty page counts when 2400 * truncating pages. So here adjusting the 'extra_count' make it work. 2401 */ 2402 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2403 rc = migrate_page_move_mapping(mapping, newpage, 2404 page, NULL, mode, extra_count); 2405 if (rc != MIGRATEPAGE_SUCCESS) { 2406 if (atomic_written) 2407 mutex_unlock(&fi->inmem_lock); 2408 return rc; 2409 } 2410 2411 if (atomic_written) { 2412 struct inmem_pages *cur; 2413 list_for_each_entry(cur, &fi->inmem_pages, list) 2414 if (cur->page == page) { 2415 cur->page = newpage; 2416 break; 2417 } 2418 mutex_unlock(&fi->inmem_lock); 2419 put_page(page); 2420 get_page(newpage); 2421 } 2422 2423 if (PagePrivate(page)) 2424 SetPagePrivate(newpage); 2425 set_page_private(newpage, page_private(page)); 2426 2427 if (mode != MIGRATE_SYNC_NO_COPY) 2428 migrate_page_copy(newpage, page); 2429 else 2430 migrate_page_states(newpage, page); 2431 2432 return MIGRATEPAGE_SUCCESS; 2433 } 2434 #endif 2435 2436 const struct address_space_operations f2fs_dblock_aops = { 2437 .readpage = f2fs_read_data_page, 2438 .readpages = f2fs_read_data_pages, 2439 .writepage = f2fs_write_data_page, 2440 .writepages = f2fs_write_data_pages, 2441 .write_begin = f2fs_write_begin, 2442 .write_end = f2fs_write_end, 2443 .set_page_dirty = f2fs_set_data_page_dirty, 2444 .invalidatepage = f2fs_invalidate_page, 2445 .releasepage = f2fs_release_page, 2446 .direct_IO = f2fs_direct_IO, 2447 .bmap = f2fs_bmap, 2448 #ifdef CONFIG_MIGRATION 2449 .migratepage = f2fs_migrate_page, 2450 #endif 2451 }; 2452