1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static bool __is_cp_guaranteed(struct page *page) 33 { 34 struct address_space *mapping = page->mapping; 35 struct inode *inode; 36 struct f2fs_sb_info *sbi; 37 38 if (!mapping) 39 return false; 40 41 inode = mapping->host; 42 sbi = F2FS_I_SB(inode); 43 44 if (inode->i_ino == F2FS_META_INO(sbi) || 45 inode->i_ino == F2FS_NODE_INO(sbi) || 46 S_ISDIR(inode->i_mode) || 47 is_cold_data(page)) 48 return true; 49 return false; 50 } 51 52 static void f2fs_read_end_io(struct bio *bio) 53 { 54 struct bio_vec *bvec; 55 int i; 56 57 #ifdef CONFIG_F2FS_FAULT_INJECTION 58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 59 f2fs_show_injection_info(FAULT_IO); 60 bio->bi_error = -EIO; 61 } 62 #endif 63 64 if (f2fs_bio_encrypted(bio)) { 65 if (bio->bi_error) { 66 fscrypt_release_ctx(bio->bi_private); 67 } else { 68 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 69 return; 70 } 71 } 72 73 bio_for_each_segment_all(bvec, bio, i) { 74 struct page *page = bvec->bv_page; 75 76 if (!bio->bi_error) { 77 if (!PageUptodate(page)) 78 SetPageUptodate(page); 79 } else { 80 ClearPageUptodate(page); 81 SetPageError(page); 82 } 83 unlock_page(page); 84 } 85 bio_put(bio); 86 } 87 88 static void f2fs_write_end_io(struct bio *bio) 89 { 90 struct f2fs_sb_info *sbi = bio->bi_private; 91 struct bio_vec *bvec; 92 int i; 93 94 bio_for_each_segment_all(bvec, bio, i) { 95 struct page *page = bvec->bv_page; 96 enum count_type type = WB_DATA_TYPE(page); 97 98 if (IS_DUMMY_WRITTEN_PAGE(page)) { 99 set_page_private(page, (unsigned long)NULL); 100 ClearPagePrivate(page); 101 unlock_page(page); 102 mempool_free(page, sbi->write_io_dummy); 103 104 if (unlikely(bio->bi_error)) 105 f2fs_stop_checkpoint(sbi, true); 106 continue; 107 } 108 109 fscrypt_pullback_bio_page(&page, true); 110 111 if (unlikely(bio->bi_error)) { 112 mapping_set_error(page->mapping, -EIO); 113 f2fs_stop_checkpoint(sbi, true); 114 } 115 dec_page_count(sbi, type); 116 clear_cold_data(page); 117 end_page_writeback(page); 118 } 119 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 120 wq_has_sleeper(&sbi->cp_wait)) 121 wake_up(&sbi->cp_wait); 122 123 bio_put(bio); 124 } 125 126 /* 127 * Return true, if pre_bio's bdev is same as its target device. 128 */ 129 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 130 block_t blk_addr, struct bio *bio) 131 { 132 struct block_device *bdev = sbi->sb->s_bdev; 133 int i; 134 135 for (i = 0; i < sbi->s_ndevs; i++) { 136 if (FDEV(i).start_blk <= blk_addr && 137 FDEV(i).end_blk >= blk_addr) { 138 blk_addr -= FDEV(i).start_blk; 139 bdev = FDEV(i).bdev; 140 break; 141 } 142 } 143 if (bio) { 144 bio->bi_bdev = bdev; 145 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 146 } 147 return bdev; 148 } 149 150 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 151 { 152 int i; 153 154 for (i = 0; i < sbi->s_ndevs; i++) 155 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 156 return i; 157 return 0; 158 } 159 160 static bool __same_bdev(struct f2fs_sb_info *sbi, 161 block_t blk_addr, struct bio *bio) 162 { 163 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; 164 } 165 166 /* 167 * Low-level block read/write IO operations. 168 */ 169 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 170 int npages, bool is_read) 171 { 172 struct bio *bio; 173 174 bio = f2fs_bio_alloc(npages); 175 176 f2fs_target_device(sbi, blk_addr, bio); 177 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 178 bio->bi_private = is_read ? NULL : sbi; 179 180 return bio; 181 } 182 183 static inline void __submit_bio(struct f2fs_sb_info *sbi, 184 struct bio *bio, enum page_type type) 185 { 186 if (!is_read_io(bio_op(bio))) { 187 unsigned int start; 188 189 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 190 current->plug && (type == DATA || type == NODE)) 191 blk_finish_plug(current->plug); 192 193 if (type != DATA && type != NODE) 194 goto submit_io; 195 196 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 197 start %= F2FS_IO_SIZE(sbi); 198 199 if (start == 0) 200 goto submit_io; 201 202 /* fill dummy pages */ 203 for (; start < F2FS_IO_SIZE(sbi); start++) { 204 struct page *page = 205 mempool_alloc(sbi->write_io_dummy, 206 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 207 f2fs_bug_on(sbi, !page); 208 209 SetPagePrivate(page); 210 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 211 lock_page(page); 212 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 213 f2fs_bug_on(sbi, 1); 214 } 215 /* 216 * In the NODE case, we lose next block address chain. So, we 217 * need to do checkpoint in f2fs_sync_file. 218 */ 219 if (type == NODE) 220 set_sbi_flag(sbi, SBI_NEED_CP); 221 } 222 submit_io: 223 if (is_read_io(bio_op(bio))) 224 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 225 else 226 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 227 submit_bio(bio); 228 } 229 230 static void __submit_merged_bio(struct f2fs_bio_info *io) 231 { 232 struct f2fs_io_info *fio = &io->fio; 233 234 if (!io->bio) 235 return; 236 237 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 238 239 if (is_read_io(fio->op)) 240 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 241 else 242 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 243 244 __submit_bio(io->sbi, io->bio, fio->type); 245 io->bio = NULL; 246 } 247 248 static bool __has_merged_page(struct f2fs_bio_info *io, 249 struct inode *inode, nid_t ino, pgoff_t idx) 250 { 251 struct bio_vec *bvec; 252 struct page *target; 253 int i; 254 255 if (!io->bio) 256 return false; 257 258 if (!inode && !ino) 259 return true; 260 261 bio_for_each_segment_all(bvec, io->bio, i) { 262 263 if (bvec->bv_page->mapping) 264 target = bvec->bv_page; 265 else 266 target = fscrypt_control_page(bvec->bv_page); 267 268 if (idx != target->index) 269 continue; 270 271 if (inode && inode == target->mapping->host) 272 return true; 273 if (ino && ino == ino_of_node(target)) 274 return true; 275 } 276 277 return false; 278 } 279 280 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 281 nid_t ino, pgoff_t idx, enum page_type type) 282 { 283 enum page_type btype = PAGE_TYPE_OF_BIO(type); 284 struct f2fs_bio_info *io = &sbi->write_io[btype]; 285 bool ret; 286 287 down_read(&io->io_rwsem); 288 ret = __has_merged_page(io, inode, ino, idx); 289 up_read(&io->io_rwsem); 290 return ret; 291 } 292 293 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 294 struct inode *inode, nid_t ino, pgoff_t idx, 295 enum page_type type, int rw) 296 { 297 enum page_type btype = PAGE_TYPE_OF_BIO(type); 298 struct f2fs_bio_info *io; 299 300 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 301 302 down_write(&io->io_rwsem); 303 304 if (!__has_merged_page(io, inode, ino, idx)) 305 goto out; 306 307 /* change META to META_FLUSH in the checkpoint procedure */ 308 if (type >= META_FLUSH) { 309 io->fio.type = META_FLUSH; 310 io->fio.op = REQ_OP_WRITE; 311 io->fio.op_flags = REQ_META | REQ_PRIO; 312 if (!test_opt(sbi, NOBARRIER)) 313 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 314 } 315 __submit_merged_bio(io); 316 out: 317 up_write(&io->io_rwsem); 318 } 319 320 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 321 int rw) 322 { 323 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw); 324 } 325 326 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 327 struct inode *inode, nid_t ino, pgoff_t idx, 328 enum page_type type, int rw) 329 { 330 if (has_merged_page(sbi, inode, ino, idx, type)) 331 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw); 332 } 333 334 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 335 { 336 f2fs_submit_merged_bio(sbi, DATA, WRITE); 337 f2fs_submit_merged_bio(sbi, NODE, WRITE); 338 f2fs_submit_merged_bio(sbi, META, WRITE); 339 } 340 341 /* 342 * Fill the locked page with data located in the block address. 343 * Return unlocked page. 344 */ 345 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 346 { 347 struct bio *bio; 348 struct page *page = fio->encrypted_page ? 349 fio->encrypted_page : fio->page; 350 351 trace_f2fs_submit_page_bio(page, fio); 352 f2fs_trace_ios(fio, 0); 353 354 /* Allocate a new bio */ 355 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 356 357 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 358 bio_put(bio); 359 return -EFAULT; 360 } 361 bio_set_op_attrs(bio, fio->op, fio->op_flags); 362 363 __submit_bio(fio->sbi, bio, fio->type); 364 return 0; 365 } 366 367 int f2fs_submit_page_mbio(struct f2fs_io_info *fio) 368 { 369 struct f2fs_sb_info *sbi = fio->sbi; 370 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 371 struct f2fs_bio_info *io; 372 bool is_read = is_read_io(fio->op); 373 struct page *bio_page; 374 int err = 0; 375 376 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 377 378 if (fio->old_blkaddr != NEW_ADDR) 379 verify_block_addr(sbi, fio->old_blkaddr); 380 verify_block_addr(sbi, fio->new_blkaddr); 381 382 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 383 384 /* set submitted = 1 as a return value */ 385 fio->submitted = 1; 386 387 if (!is_read) 388 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 389 390 down_write(&io->io_rwsem); 391 392 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 393 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 394 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 395 __submit_merged_bio(io); 396 alloc_new: 397 if (io->bio == NULL) { 398 if ((fio->type == DATA || fio->type == NODE) && 399 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 400 err = -EAGAIN; 401 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 402 goto out_fail; 403 } 404 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 405 BIO_MAX_PAGES, is_read); 406 io->fio = *fio; 407 } 408 409 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 410 PAGE_SIZE) { 411 __submit_merged_bio(io); 412 goto alloc_new; 413 } 414 415 io->last_block_in_bio = fio->new_blkaddr; 416 f2fs_trace_ios(fio, 0); 417 out_fail: 418 up_write(&io->io_rwsem); 419 trace_f2fs_submit_page_mbio(fio->page, fio); 420 return err; 421 } 422 423 static void __set_data_blkaddr(struct dnode_of_data *dn) 424 { 425 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 426 __le32 *addr_array; 427 428 /* Get physical address of data block */ 429 addr_array = blkaddr_in_node(rn); 430 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 431 } 432 433 /* 434 * Lock ordering for the change of data block address: 435 * ->data_page 436 * ->node_page 437 * update block addresses in the node page 438 */ 439 void set_data_blkaddr(struct dnode_of_data *dn) 440 { 441 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 442 __set_data_blkaddr(dn); 443 if (set_page_dirty(dn->node_page)) 444 dn->node_changed = true; 445 } 446 447 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 448 { 449 dn->data_blkaddr = blkaddr; 450 set_data_blkaddr(dn); 451 f2fs_update_extent_cache(dn); 452 } 453 454 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 455 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 456 { 457 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 458 459 if (!count) 460 return 0; 461 462 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 463 return -EPERM; 464 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 465 return -ENOSPC; 466 467 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 468 dn->ofs_in_node, count); 469 470 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 471 472 for (; count > 0; dn->ofs_in_node++) { 473 block_t blkaddr = 474 datablock_addr(dn->node_page, dn->ofs_in_node); 475 if (blkaddr == NULL_ADDR) { 476 dn->data_blkaddr = NEW_ADDR; 477 __set_data_blkaddr(dn); 478 count--; 479 } 480 } 481 482 if (set_page_dirty(dn->node_page)) 483 dn->node_changed = true; 484 return 0; 485 } 486 487 /* Should keep dn->ofs_in_node unchanged */ 488 int reserve_new_block(struct dnode_of_data *dn) 489 { 490 unsigned int ofs_in_node = dn->ofs_in_node; 491 int ret; 492 493 ret = reserve_new_blocks(dn, 1); 494 dn->ofs_in_node = ofs_in_node; 495 return ret; 496 } 497 498 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 499 { 500 bool need_put = dn->inode_page ? false : true; 501 int err; 502 503 err = get_dnode_of_data(dn, index, ALLOC_NODE); 504 if (err) 505 return err; 506 507 if (dn->data_blkaddr == NULL_ADDR) 508 err = reserve_new_block(dn); 509 if (err || need_put) 510 f2fs_put_dnode(dn); 511 return err; 512 } 513 514 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 515 { 516 struct extent_info ei = {0,0,0}; 517 struct inode *inode = dn->inode; 518 519 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 520 dn->data_blkaddr = ei.blk + index - ei.fofs; 521 return 0; 522 } 523 524 return f2fs_reserve_block(dn, index); 525 } 526 527 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 528 int op_flags, bool for_write) 529 { 530 struct address_space *mapping = inode->i_mapping; 531 struct dnode_of_data dn; 532 struct page *page; 533 struct extent_info ei = {0,0,0}; 534 int err; 535 struct f2fs_io_info fio = { 536 .sbi = F2FS_I_SB(inode), 537 .type = DATA, 538 .op = REQ_OP_READ, 539 .op_flags = op_flags, 540 .encrypted_page = NULL, 541 }; 542 543 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 544 return read_mapping_page(mapping, index, NULL); 545 546 page = f2fs_grab_cache_page(mapping, index, for_write); 547 if (!page) 548 return ERR_PTR(-ENOMEM); 549 550 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 551 dn.data_blkaddr = ei.blk + index - ei.fofs; 552 goto got_it; 553 } 554 555 set_new_dnode(&dn, inode, NULL, NULL, 0); 556 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 557 if (err) 558 goto put_err; 559 f2fs_put_dnode(&dn); 560 561 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 562 err = -ENOENT; 563 goto put_err; 564 } 565 got_it: 566 if (PageUptodate(page)) { 567 unlock_page(page); 568 return page; 569 } 570 571 /* 572 * A new dentry page is allocated but not able to be written, since its 573 * new inode page couldn't be allocated due to -ENOSPC. 574 * In such the case, its blkaddr can be remained as NEW_ADDR. 575 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 576 */ 577 if (dn.data_blkaddr == NEW_ADDR) { 578 zero_user_segment(page, 0, PAGE_SIZE); 579 if (!PageUptodate(page)) 580 SetPageUptodate(page); 581 unlock_page(page); 582 return page; 583 } 584 585 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 586 fio.page = page; 587 err = f2fs_submit_page_bio(&fio); 588 if (err) 589 goto put_err; 590 return page; 591 592 put_err: 593 f2fs_put_page(page, 1); 594 return ERR_PTR(err); 595 } 596 597 struct page *find_data_page(struct inode *inode, pgoff_t index) 598 { 599 struct address_space *mapping = inode->i_mapping; 600 struct page *page; 601 602 page = find_get_page(mapping, index); 603 if (page && PageUptodate(page)) 604 return page; 605 f2fs_put_page(page, 0); 606 607 page = get_read_data_page(inode, index, 0, false); 608 if (IS_ERR(page)) 609 return page; 610 611 if (PageUptodate(page)) 612 return page; 613 614 wait_on_page_locked(page); 615 if (unlikely(!PageUptodate(page))) { 616 f2fs_put_page(page, 0); 617 return ERR_PTR(-EIO); 618 } 619 return page; 620 } 621 622 /* 623 * If it tries to access a hole, return an error. 624 * Because, the callers, functions in dir.c and GC, should be able to know 625 * whether this page exists or not. 626 */ 627 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 628 bool for_write) 629 { 630 struct address_space *mapping = inode->i_mapping; 631 struct page *page; 632 repeat: 633 page = get_read_data_page(inode, index, 0, for_write); 634 if (IS_ERR(page)) 635 return page; 636 637 /* wait for read completion */ 638 lock_page(page); 639 if (unlikely(page->mapping != mapping)) { 640 f2fs_put_page(page, 1); 641 goto repeat; 642 } 643 if (unlikely(!PageUptodate(page))) { 644 f2fs_put_page(page, 1); 645 return ERR_PTR(-EIO); 646 } 647 return page; 648 } 649 650 /* 651 * Caller ensures that this data page is never allocated. 652 * A new zero-filled data page is allocated in the page cache. 653 * 654 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 655 * f2fs_unlock_op(). 656 * Note that, ipage is set only by make_empty_dir, and if any error occur, 657 * ipage should be released by this function. 658 */ 659 struct page *get_new_data_page(struct inode *inode, 660 struct page *ipage, pgoff_t index, bool new_i_size) 661 { 662 struct address_space *mapping = inode->i_mapping; 663 struct page *page; 664 struct dnode_of_data dn; 665 int err; 666 667 page = f2fs_grab_cache_page(mapping, index, true); 668 if (!page) { 669 /* 670 * before exiting, we should make sure ipage will be released 671 * if any error occur. 672 */ 673 f2fs_put_page(ipage, 1); 674 return ERR_PTR(-ENOMEM); 675 } 676 677 set_new_dnode(&dn, inode, ipage, NULL, 0); 678 err = f2fs_reserve_block(&dn, index); 679 if (err) { 680 f2fs_put_page(page, 1); 681 return ERR_PTR(err); 682 } 683 if (!ipage) 684 f2fs_put_dnode(&dn); 685 686 if (PageUptodate(page)) 687 goto got_it; 688 689 if (dn.data_blkaddr == NEW_ADDR) { 690 zero_user_segment(page, 0, PAGE_SIZE); 691 if (!PageUptodate(page)) 692 SetPageUptodate(page); 693 } else { 694 f2fs_put_page(page, 1); 695 696 /* if ipage exists, blkaddr should be NEW_ADDR */ 697 f2fs_bug_on(F2FS_I_SB(inode), ipage); 698 page = get_lock_data_page(inode, index, true); 699 if (IS_ERR(page)) 700 return page; 701 } 702 got_it: 703 if (new_i_size && i_size_read(inode) < 704 ((loff_t)(index + 1) << PAGE_SHIFT)) 705 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 706 return page; 707 } 708 709 static int __allocate_data_block(struct dnode_of_data *dn) 710 { 711 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 712 struct f2fs_summary sum; 713 struct node_info ni; 714 pgoff_t fofs; 715 blkcnt_t count = 1; 716 717 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 718 return -EPERM; 719 720 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 721 if (dn->data_blkaddr == NEW_ADDR) 722 goto alloc; 723 724 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 725 return -ENOSPC; 726 727 alloc: 728 get_node_info(sbi, dn->nid, &ni); 729 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 730 731 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 732 &sum, CURSEG_WARM_DATA); 733 set_data_blkaddr(dn); 734 735 /* update i_size */ 736 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 737 dn->ofs_in_node; 738 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 739 f2fs_i_size_write(dn->inode, 740 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 741 return 0; 742 } 743 744 static inline bool __force_buffered_io(struct inode *inode, int rw) 745 { 746 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || 747 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 748 F2FS_I_SB(inode)->s_ndevs); 749 } 750 751 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 752 { 753 struct inode *inode = file_inode(iocb->ki_filp); 754 struct f2fs_map_blocks map; 755 int err = 0; 756 757 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 758 return 0; 759 760 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 761 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 762 if (map.m_len > map.m_lblk) 763 map.m_len -= map.m_lblk; 764 else 765 map.m_len = 0; 766 767 map.m_next_pgofs = NULL; 768 769 if (iocb->ki_flags & IOCB_DIRECT) { 770 err = f2fs_convert_inline_inode(inode); 771 if (err) 772 return err; 773 return f2fs_map_blocks(inode, &map, 1, 774 __force_buffered_io(inode, WRITE) ? 775 F2FS_GET_BLOCK_PRE_AIO : 776 F2FS_GET_BLOCK_PRE_DIO); 777 } 778 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 779 err = f2fs_convert_inline_inode(inode); 780 if (err) 781 return err; 782 } 783 if (!f2fs_has_inline_data(inode)) 784 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 785 return err; 786 } 787 788 /* 789 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 790 * f2fs_map_blocks structure. 791 * If original data blocks are allocated, then give them to blockdev. 792 * Otherwise, 793 * a. preallocate requested block addresses 794 * b. do not use extent cache for better performance 795 * c. give the block addresses to blockdev 796 */ 797 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 798 int create, int flag) 799 { 800 unsigned int maxblocks = map->m_len; 801 struct dnode_of_data dn; 802 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 803 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 804 pgoff_t pgofs, end_offset, end; 805 int err = 0, ofs = 1; 806 unsigned int ofs_in_node, last_ofs_in_node; 807 blkcnt_t prealloc; 808 struct extent_info ei = {0,0,0}; 809 block_t blkaddr; 810 811 if (!maxblocks) 812 return 0; 813 814 map->m_len = 0; 815 map->m_flags = 0; 816 817 /* it only supports block size == page size */ 818 pgofs = (pgoff_t)map->m_lblk; 819 end = pgofs + maxblocks; 820 821 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 822 map->m_pblk = ei.blk + pgofs - ei.fofs; 823 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 824 map->m_flags = F2FS_MAP_MAPPED; 825 goto out; 826 } 827 828 next_dnode: 829 if (create) 830 f2fs_lock_op(sbi); 831 832 /* When reading holes, we need its node page */ 833 set_new_dnode(&dn, inode, NULL, NULL, 0); 834 err = get_dnode_of_data(&dn, pgofs, mode); 835 if (err) { 836 if (flag == F2FS_GET_BLOCK_BMAP) 837 map->m_pblk = 0; 838 if (err == -ENOENT) { 839 err = 0; 840 if (map->m_next_pgofs) 841 *map->m_next_pgofs = 842 get_next_page_offset(&dn, pgofs); 843 } 844 goto unlock_out; 845 } 846 847 prealloc = 0; 848 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 849 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 850 851 next_block: 852 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 853 854 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 855 if (create) { 856 if (unlikely(f2fs_cp_error(sbi))) { 857 err = -EIO; 858 goto sync_out; 859 } 860 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 861 if (blkaddr == NULL_ADDR) { 862 prealloc++; 863 last_ofs_in_node = dn.ofs_in_node; 864 } 865 } else { 866 err = __allocate_data_block(&dn); 867 if (!err) 868 set_inode_flag(inode, FI_APPEND_WRITE); 869 } 870 if (err) 871 goto sync_out; 872 map->m_flags |= F2FS_MAP_NEW; 873 blkaddr = dn.data_blkaddr; 874 } else { 875 if (flag == F2FS_GET_BLOCK_BMAP) { 876 map->m_pblk = 0; 877 goto sync_out; 878 } 879 if (flag == F2FS_GET_BLOCK_FIEMAP && 880 blkaddr == NULL_ADDR) { 881 if (map->m_next_pgofs) 882 *map->m_next_pgofs = pgofs + 1; 883 } 884 if (flag != F2FS_GET_BLOCK_FIEMAP || 885 blkaddr != NEW_ADDR) 886 goto sync_out; 887 } 888 } 889 890 if (flag == F2FS_GET_BLOCK_PRE_AIO) 891 goto skip; 892 893 if (map->m_len == 0) { 894 /* preallocated unwritten block should be mapped for fiemap. */ 895 if (blkaddr == NEW_ADDR) 896 map->m_flags |= F2FS_MAP_UNWRITTEN; 897 map->m_flags |= F2FS_MAP_MAPPED; 898 899 map->m_pblk = blkaddr; 900 map->m_len = 1; 901 } else if ((map->m_pblk != NEW_ADDR && 902 blkaddr == (map->m_pblk + ofs)) || 903 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 904 flag == F2FS_GET_BLOCK_PRE_DIO) { 905 ofs++; 906 map->m_len++; 907 } else { 908 goto sync_out; 909 } 910 911 skip: 912 dn.ofs_in_node++; 913 pgofs++; 914 915 /* preallocate blocks in batch for one dnode page */ 916 if (flag == F2FS_GET_BLOCK_PRE_AIO && 917 (pgofs == end || dn.ofs_in_node == end_offset)) { 918 919 dn.ofs_in_node = ofs_in_node; 920 err = reserve_new_blocks(&dn, prealloc); 921 if (err) 922 goto sync_out; 923 924 map->m_len += dn.ofs_in_node - ofs_in_node; 925 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 926 err = -ENOSPC; 927 goto sync_out; 928 } 929 dn.ofs_in_node = end_offset; 930 } 931 932 if (pgofs >= end) 933 goto sync_out; 934 else if (dn.ofs_in_node < end_offset) 935 goto next_block; 936 937 f2fs_put_dnode(&dn); 938 939 if (create) { 940 f2fs_unlock_op(sbi); 941 f2fs_balance_fs(sbi, dn.node_changed); 942 } 943 goto next_dnode; 944 945 sync_out: 946 f2fs_put_dnode(&dn); 947 unlock_out: 948 if (create) { 949 f2fs_unlock_op(sbi); 950 f2fs_balance_fs(sbi, dn.node_changed); 951 } 952 out: 953 trace_f2fs_map_blocks(inode, map, err); 954 return err; 955 } 956 957 static int __get_data_block(struct inode *inode, sector_t iblock, 958 struct buffer_head *bh, int create, int flag, 959 pgoff_t *next_pgofs) 960 { 961 struct f2fs_map_blocks map; 962 int err; 963 964 map.m_lblk = iblock; 965 map.m_len = bh->b_size >> inode->i_blkbits; 966 map.m_next_pgofs = next_pgofs; 967 968 err = f2fs_map_blocks(inode, &map, create, flag); 969 if (!err) { 970 map_bh(bh, inode->i_sb, map.m_pblk); 971 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 972 bh->b_size = (u64)map.m_len << inode->i_blkbits; 973 } 974 return err; 975 } 976 977 static int get_data_block(struct inode *inode, sector_t iblock, 978 struct buffer_head *bh_result, int create, int flag, 979 pgoff_t *next_pgofs) 980 { 981 return __get_data_block(inode, iblock, bh_result, create, 982 flag, next_pgofs); 983 } 984 985 static int get_data_block_dio(struct inode *inode, sector_t iblock, 986 struct buffer_head *bh_result, int create) 987 { 988 return __get_data_block(inode, iblock, bh_result, create, 989 F2FS_GET_BLOCK_DIO, NULL); 990 } 991 992 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 993 struct buffer_head *bh_result, int create) 994 { 995 /* Block number less than F2FS MAX BLOCKS */ 996 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 997 return -EFBIG; 998 999 return __get_data_block(inode, iblock, bh_result, create, 1000 F2FS_GET_BLOCK_BMAP, NULL); 1001 } 1002 1003 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1004 { 1005 return (offset >> inode->i_blkbits); 1006 } 1007 1008 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1009 { 1010 return (blk << inode->i_blkbits); 1011 } 1012 1013 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1014 u64 start, u64 len) 1015 { 1016 struct buffer_head map_bh; 1017 sector_t start_blk, last_blk; 1018 pgoff_t next_pgofs; 1019 u64 logical = 0, phys = 0, size = 0; 1020 u32 flags = 0; 1021 int ret = 0; 1022 1023 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1024 if (ret) 1025 return ret; 1026 1027 if (f2fs_has_inline_data(inode)) { 1028 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1029 if (ret != -EAGAIN) 1030 return ret; 1031 } 1032 1033 inode_lock(inode); 1034 1035 if (logical_to_blk(inode, len) == 0) 1036 len = blk_to_logical(inode, 1); 1037 1038 start_blk = logical_to_blk(inode, start); 1039 last_blk = logical_to_blk(inode, start + len - 1); 1040 1041 next: 1042 memset(&map_bh, 0, sizeof(struct buffer_head)); 1043 map_bh.b_size = len; 1044 1045 ret = get_data_block(inode, start_blk, &map_bh, 0, 1046 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1047 if (ret) 1048 goto out; 1049 1050 /* HOLE */ 1051 if (!buffer_mapped(&map_bh)) { 1052 start_blk = next_pgofs; 1053 1054 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1055 F2FS_I_SB(inode)->max_file_blocks)) 1056 goto prep_next; 1057 1058 flags |= FIEMAP_EXTENT_LAST; 1059 } 1060 1061 if (size) { 1062 if (f2fs_encrypted_inode(inode)) 1063 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1064 1065 ret = fiemap_fill_next_extent(fieinfo, logical, 1066 phys, size, flags); 1067 } 1068 1069 if (start_blk > last_blk || ret) 1070 goto out; 1071 1072 logical = blk_to_logical(inode, start_blk); 1073 phys = blk_to_logical(inode, map_bh.b_blocknr); 1074 size = map_bh.b_size; 1075 flags = 0; 1076 if (buffer_unwritten(&map_bh)) 1077 flags = FIEMAP_EXTENT_UNWRITTEN; 1078 1079 start_blk += logical_to_blk(inode, size); 1080 1081 prep_next: 1082 cond_resched(); 1083 if (fatal_signal_pending(current)) 1084 ret = -EINTR; 1085 else 1086 goto next; 1087 out: 1088 if (ret == 1) 1089 ret = 0; 1090 1091 inode_unlock(inode); 1092 return ret; 1093 } 1094 1095 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 1096 unsigned nr_pages) 1097 { 1098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1099 struct fscrypt_ctx *ctx = NULL; 1100 struct bio *bio; 1101 1102 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1103 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1104 if (IS_ERR(ctx)) 1105 return ERR_CAST(ctx); 1106 1107 /* wait the page to be moved by cleaning */ 1108 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1109 } 1110 1111 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 1112 if (!bio) { 1113 if (ctx) 1114 fscrypt_release_ctx(ctx); 1115 return ERR_PTR(-ENOMEM); 1116 } 1117 f2fs_target_device(sbi, blkaddr, bio); 1118 bio->bi_end_io = f2fs_read_end_io; 1119 bio->bi_private = ctx; 1120 1121 return bio; 1122 } 1123 1124 /* 1125 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1126 * Major change was from block_size == page_size in f2fs by default. 1127 */ 1128 static int f2fs_mpage_readpages(struct address_space *mapping, 1129 struct list_head *pages, struct page *page, 1130 unsigned nr_pages) 1131 { 1132 struct bio *bio = NULL; 1133 unsigned page_idx; 1134 sector_t last_block_in_bio = 0; 1135 struct inode *inode = mapping->host; 1136 const unsigned blkbits = inode->i_blkbits; 1137 const unsigned blocksize = 1 << blkbits; 1138 sector_t block_in_file; 1139 sector_t last_block; 1140 sector_t last_block_in_file; 1141 sector_t block_nr; 1142 struct f2fs_map_blocks map; 1143 1144 map.m_pblk = 0; 1145 map.m_lblk = 0; 1146 map.m_len = 0; 1147 map.m_flags = 0; 1148 map.m_next_pgofs = NULL; 1149 1150 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1151 1152 prefetchw(&page->flags); 1153 if (pages) { 1154 page = list_last_entry(pages, struct page, lru); 1155 list_del(&page->lru); 1156 if (add_to_page_cache_lru(page, mapping, 1157 page->index, 1158 readahead_gfp_mask(mapping))) 1159 goto next_page; 1160 } 1161 1162 block_in_file = (sector_t)page->index; 1163 last_block = block_in_file + nr_pages; 1164 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1165 blkbits; 1166 if (last_block > last_block_in_file) 1167 last_block = last_block_in_file; 1168 1169 /* 1170 * Map blocks using the previous result first. 1171 */ 1172 if ((map.m_flags & F2FS_MAP_MAPPED) && 1173 block_in_file > map.m_lblk && 1174 block_in_file < (map.m_lblk + map.m_len)) 1175 goto got_it; 1176 1177 /* 1178 * Then do more f2fs_map_blocks() calls until we are 1179 * done with this page. 1180 */ 1181 map.m_flags = 0; 1182 1183 if (block_in_file < last_block) { 1184 map.m_lblk = block_in_file; 1185 map.m_len = last_block - block_in_file; 1186 1187 if (f2fs_map_blocks(inode, &map, 0, 1188 F2FS_GET_BLOCK_READ)) 1189 goto set_error_page; 1190 } 1191 got_it: 1192 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1193 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1194 SetPageMappedToDisk(page); 1195 1196 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1197 SetPageUptodate(page); 1198 goto confused; 1199 } 1200 } else { 1201 zero_user_segment(page, 0, PAGE_SIZE); 1202 if (!PageUptodate(page)) 1203 SetPageUptodate(page); 1204 unlock_page(page); 1205 goto next_page; 1206 } 1207 1208 /* 1209 * This page will go to BIO. Do we need to send this 1210 * BIO off first? 1211 */ 1212 if (bio && (last_block_in_bio != block_nr - 1 || 1213 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1214 submit_and_realloc: 1215 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1216 bio = NULL; 1217 } 1218 if (bio == NULL) { 1219 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1220 if (IS_ERR(bio)) { 1221 bio = NULL; 1222 goto set_error_page; 1223 } 1224 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1225 } 1226 1227 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1228 goto submit_and_realloc; 1229 1230 last_block_in_bio = block_nr; 1231 goto next_page; 1232 set_error_page: 1233 SetPageError(page); 1234 zero_user_segment(page, 0, PAGE_SIZE); 1235 unlock_page(page); 1236 goto next_page; 1237 confused: 1238 if (bio) { 1239 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1240 bio = NULL; 1241 } 1242 unlock_page(page); 1243 next_page: 1244 if (pages) 1245 put_page(page); 1246 } 1247 BUG_ON(pages && !list_empty(pages)); 1248 if (bio) 1249 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1250 return 0; 1251 } 1252 1253 static int f2fs_read_data_page(struct file *file, struct page *page) 1254 { 1255 struct inode *inode = page->mapping->host; 1256 int ret = -EAGAIN; 1257 1258 trace_f2fs_readpage(page, DATA); 1259 1260 /* If the file has inline data, try to read it directly */ 1261 if (f2fs_has_inline_data(inode)) 1262 ret = f2fs_read_inline_data(inode, page); 1263 if (ret == -EAGAIN) 1264 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1265 return ret; 1266 } 1267 1268 static int f2fs_read_data_pages(struct file *file, 1269 struct address_space *mapping, 1270 struct list_head *pages, unsigned nr_pages) 1271 { 1272 struct inode *inode = file->f_mapping->host; 1273 struct page *page = list_last_entry(pages, struct page, lru); 1274 1275 trace_f2fs_readpages(inode, page, nr_pages); 1276 1277 /* If the file has inline data, skip readpages */ 1278 if (f2fs_has_inline_data(inode)) 1279 return 0; 1280 1281 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1282 } 1283 1284 int do_write_data_page(struct f2fs_io_info *fio) 1285 { 1286 struct page *page = fio->page; 1287 struct inode *inode = page->mapping->host; 1288 struct dnode_of_data dn; 1289 int err = 0; 1290 1291 set_new_dnode(&dn, inode, NULL, NULL, 0); 1292 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1293 if (err) 1294 return err; 1295 1296 fio->old_blkaddr = dn.data_blkaddr; 1297 1298 /* This page is already truncated */ 1299 if (fio->old_blkaddr == NULL_ADDR) { 1300 ClearPageUptodate(page); 1301 goto out_writepage; 1302 } 1303 1304 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1305 gfp_t gfp_flags = GFP_NOFS; 1306 1307 /* wait for GCed encrypted page writeback */ 1308 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1309 fio->old_blkaddr); 1310 retry_encrypt: 1311 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1312 PAGE_SIZE, 0, 1313 fio->page->index, 1314 gfp_flags); 1315 if (IS_ERR(fio->encrypted_page)) { 1316 err = PTR_ERR(fio->encrypted_page); 1317 if (err == -ENOMEM) { 1318 /* flush pending ios and wait for a while */ 1319 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1320 congestion_wait(BLK_RW_ASYNC, HZ/50); 1321 gfp_flags |= __GFP_NOFAIL; 1322 err = 0; 1323 goto retry_encrypt; 1324 } 1325 goto out_writepage; 1326 } 1327 } 1328 1329 set_page_writeback(page); 1330 1331 /* 1332 * If current allocation needs SSR, 1333 * it had better in-place writes for updated data. 1334 */ 1335 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1336 !is_cold_data(page) && 1337 !IS_ATOMIC_WRITTEN_PAGE(page) && 1338 need_inplace_update(inode))) { 1339 rewrite_data_page(fio); 1340 set_inode_flag(inode, FI_UPDATE_WRITE); 1341 trace_f2fs_do_write_data_page(page, IPU); 1342 } else { 1343 write_data_page(&dn, fio); 1344 trace_f2fs_do_write_data_page(page, OPU); 1345 set_inode_flag(inode, FI_APPEND_WRITE); 1346 if (page->index == 0) 1347 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1348 } 1349 out_writepage: 1350 f2fs_put_dnode(&dn); 1351 return err; 1352 } 1353 1354 static int __write_data_page(struct page *page, bool *submitted, 1355 struct writeback_control *wbc) 1356 { 1357 struct inode *inode = page->mapping->host; 1358 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1359 loff_t i_size = i_size_read(inode); 1360 const pgoff_t end_index = ((unsigned long long) i_size) 1361 >> PAGE_SHIFT; 1362 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1363 unsigned offset = 0; 1364 bool need_balance_fs = false; 1365 int err = 0; 1366 struct f2fs_io_info fio = { 1367 .sbi = sbi, 1368 .type = DATA, 1369 .op = REQ_OP_WRITE, 1370 .op_flags = wbc_to_write_flags(wbc), 1371 .page = page, 1372 .encrypted_page = NULL, 1373 .submitted = false, 1374 }; 1375 1376 trace_f2fs_writepage(page, DATA); 1377 1378 if (page->index < end_index) 1379 goto write; 1380 1381 /* 1382 * If the offset is out-of-range of file size, 1383 * this page does not have to be written to disk. 1384 */ 1385 offset = i_size & (PAGE_SIZE - 1); 1386 if ((page->index >= end_index + 1) || !offset) 1387 goto out; 1388 1389 zero_user_segment(page, offset, PAGE_SIZE); 1390 write: 1391 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1392 goto redirty_out; 1393 if (f2fs_is_drop_cache(inode)) 1394 goto out; 1395 /* we should not write 0'th page having journal header */ 1396 if (f2fs_is_volatile_file(inode) && (!page->index || 1397 (!wbc->for_reclaim && 1398 available_free_memory(sbi, BASE_CHECK)))) 1399 goto redirty_out; 1400 1401 /* we should bypass data pages to proceed the kworkder jobs */ 1402 if (unlikely(f2fs_cp_error(sbi))) { 1403 mapping_set_error(page->mapping, -EIO); 1404 goto out; 1405 } 1406 1407 /* Dentry blocks are controlled by checkpoint */ 1408 if (S_ISDIR(inode->i_mode)) { 1409 err = do_write_data_page(&fio); 1410 goto done; 1411 } 1412 1413 if (!wbc->for_reclaim) 1414 need_balance_fs = true; 1415 else if (has_not_enough_free_secs(sbi, 0, 0)) 1416 goto redirty_out; 1417 1418 err = -EAGAIN; 1419 if (f2fs_has_inline_data(inode)) { 1420 err = f2fs_write_inline_data(inode, page); 1421 if (!err) 1422 goto out; 1423 } 1424 f2fs_lock_op(sbi); 1425 if (err == -EAGAIN) 1426 err = do_write_data_page(&fio); 1427 if (F2FS_I(inode)->last_disk_size < psize) 1428 F2FS_I(inode)->last_disk_size = psize; 1429 f2fs_unlock_op(sbi); 1430 done: 1431 if (err && err != -ENOENT) 1432 goto redirty_out; 1433 1434 out: 1435 inode_dec_dirty_pages(inode); 1436 if (err) 1437 ClearPageUptodate(page); 1438 1439 if (wbc->for_reclaim) { 1440 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index, 1441 DATA, WRITE); 1442 remove_dirty_inode(inode); 1443 submitted = NULL; 1444 } 1445 1446 unlock_page(page); 1447 f2fs_balance_fs(sbi, need_balance_fs); 1448 1449 if (unlikely(f2fs_cp_error(sbi))) { 1450 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1451 submitted = NULL; 1452 } 1453 1454 if (submitted) 1455 *submitted = fio.submitted; 1456 1457 return 0; 1458 1459 redirty_out: 1460 redirty_page_for_writepage(wbc, page); 1461 if (!err) 1462 return AOP_WRITEPAGE_ACTIVATE; 1463 unlock_page(page); 1464 return err; 1465 } 1466 1467 static int f2fs_write_data_page(struct page *page, 1468 struct writeback_control *wbc) 1469 { 1470 return __write_data_page(page, NULL, wbc); 1471 } 1472 1473 /* 1474 * This function was copied from write_cche_pages from mm/page-writeback.c. 1475 * The major change is making write step of cold data page separately from 1476 * warm/hot data page. 1477 */ 1478 static int f2fs_write_cache_pages(struct address_space *mapping, 1479 struct writeback_control *wbc) 1480 { 1481 int ret = 0; 1482 int done = 0; 1483 struct pagevec pvec; 1484 int nr_pages; 1485 pgoff_t uninitialized_var(writeback_index); 1486 pgoff_t index; 1487 pgoff_t end; /* Inclusive */ 1488 pgoff_t done_index; 1489 pgoff_t last_idx = ULONG_MAX; 1490 int cycled; 1491 int range_whole = 0; 1492 int tag; 1493 1494 pagevec_init(&pvec, 0); 1495 1496 if (wbc->range_cyclic) { 1497 writeback_index = mapping->writeback_index; /* prev offset */ 1498 index = writeback_index; 1499 if (index == 0) 1500 cycled = 1; 1501 else 1502 cycled = 0; 1503 end = -1; 1504 } else { 1505 index = wbc->range_start >> PAGE_SHIFT; 1506 end = wbc->range_end >> PAGE_SHIFT; 1507 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1508 range_whole = 1; 1509 cycled = 1; /* ignore range_cyclic tests */ 1510 } 1511 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1512 tag = PAGECACHE_TAG_TOWRITE; 1513 else 1514 tag = PAGECACHE_TAG_DIRTY; 1515 retry: 1516 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1517 tag_pages_for_writeback(mapping, index, end); 1518 done_index = index; 1519 while (!done && (index <= end)) { 1520 int i; 1521 1522 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1523 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1524 if (nr_pages == 0) 1525 break; 1526 1527 for (i = 0; i < nr_pages; i++) { 1528 struct page *page = pvec.pages[i]; 1529 bool submitted = false; 1530 1531 if (page->index > end) { 1532 done = 1; 1533 break; 1534 } 1535 1536 done_index = page->index; 1537 1538 lock_page(page); 1539 1540 if (unlikely(page->mapping != mapping)) { 1541 continue_unlock: 1542 unlock_page(page); 1543 continue; 1544 } 1545 1546 if (!PageDirty(page)) { 1547 /* someone wrote it for us */ 1548 goto continue_unlock; 1549 } 1550 1551 if (PageWriteback(page)) { 1552 if (wbc->sync_mode != WB_SYNC_NONE) 1553 f2fs_wait_on_page_writeback(page, 1554 DATA, true); 1555 else 1556 goto continue_unlock; 1557 } 1558 1559 BUG_ON(PageWriteback(page)); 1560 if (!clear_page_dirty_for_io(page)) 1561 goto continue_unlock; 1562 1563 ret = __write_data_page(page, &submitted, wbc); 1564 if (unlikely(ret)) { 1565 /* 1566 * keep nr_to_write, since vfs uses this to 1567 * get # of written pages. 1568 */ 1569 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1570 unlock_page(page); 1571 ret = 0; 1572 continue; 1573 } 1574 done_index = page->index + 1; 1575 done = 1; 1576 break; 1577 } else if (submitted) { 1578 last_idx = page->index; 1579 } 1580 1581 if (--wbc->nr_to_write <= 0 && 1582 wbc->sync_mode == WB_SYNC_NONE) { 1583 done = 1; 1584 break; 1585 } 1586 } 1587 pagevec_release(&pvec); 1588 cond_resched(); 1589 } 1590 1591 if (!cycled && !done) { 1592 cycled = 1; 1593 index = 0; 1594 end = writeback_index - 1; 1595 goto retry; 1596 } 1597 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1598 mapping->writeback_index = done_index; 1599 1600 if (last_idx != ULONG_MAX) 1601 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1602 0, last_idx, DATA, WRITE); 1603 1604 return ret; 1605 } 1606 1607 static int f2fs_write_data_pages(struct address_space *mapping, 1608 struct writeback_control *wbc) 1609 { 1610 struct inode *inode = mapping->host; 1611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1612 struct blk_plug plug; 1613 int ret; 1614 1615 /* deal with chardevs and other special file */ 1616 if (!mapping->a_ops->writepage) 1617 return 0; 1618 1619 /* skip writing if there is no dirty page in this inode */ 1620 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1621 return 0; 1622 1623 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1624 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1625 available_free_memory(sbi, DIRTY_DENTS)) 1626 goto skip_write; 1627 1628 /* skip writing during file defragment */ 1629 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1630 goto skip_write; 1631 1632 /* during POR, we don't need to trigger writepage at all. */ 1633 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1634 goto skip_write; 1635 1636 trace_f2fs_writepages(mapping->host, wbc, DATA); 1637 1638 blk_start_plug(&plug); 1639 ret = f2fs_write_cache_pages(mapping, wbc); 1640 blk_finish_plug(&plug); 1641 /* 1642 * if some pages were truncated, we cannot guarantee its mapping->host 1643 * to detect pending bios. 1644 */ 1645 1646 remove_dirty_inode(inode); 1647 return ret; 1648 1649 skip_write: 1650 wbc->pages_skipped += get_dirty_pages(inode); 1651 trace_f2fs_writepages(mapping->host, wbc, DATA); 1652 return 0; 1653 } 1654 1655 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1656 { 1657 struct inode *inode = mapping->host; 1658 loff_t i_size = i_size_read(inode); 1659 1660 if (to > i_size) { 1661 truncate_pagecache(inode, i_size); 1662 truncate_blocks(inode, i_size, true); 1663 } 1664 } 1665 1666 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1667 struct page *page, loff_t pos, unsigned len, 1668 block_t *blk_addr, bool *node_changed) 1669 { 1670 struct inode *inode = page->mapping->host; 1671 pgoff_t index = page->index; 1672 struct dnode_of_data dn; 1673 struct page *ipage; 1674 bool locked = false; 1675 struct extent_info ei = {0,0,0}; 1676 int err = 0; 1677 1678 /* 1679 * we already allocated all the blocks, so we don't need to get 1680 * the block addresses when there is no need to fill the page. 1681 */ 1682 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1683 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1684 return 0; 1685 1686 if (f2fs_has_inline_data(inode) || 1687 (pos & PAGE_MASK) >= i_size_read(inode)) { 1688 f2fs_lock_op(sbi); 1689 locked = true; 1690 } 1691 restart: 1692 /* check inline_data */ 1693 ipage = get_node_page(sbi, inode->i_ino); 1694 if (IS_ERR(ipage)) { 1695 err = PTR_ERR(ipage); 1696 goto unlock_out; 1697 } 1698 1699 set_new_dnode(&dn, inode, ipage, ipage, 0); 1700 1701 if (f2fs_has_inline_data(inode)) { 1702 if (pos + len <= MAX_INLINE_DATA) { 1703 read_inline_data(page, ipage); 1704 set_inode_flag(inode, FI_DATA_EXIST); 1705 if (inode->i_nlink) 1706 set_inline_node(ipage); 1707 } else { 1708 err = f2fs_convert_inline_page(&dn, page); 1709 if (err) 1710 goto out; 1711 if (dn.data_blkaddr == NULL_ADDR) 1712 err = f2fs_get_block(&dn, index); 1713 } 1714 } else if (locked) { 1715 err = f2fs_get_block(&dn, index); 1716 } else { 1717 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1718 dn.data_blkaddr = ei.blk + index - ei.fofs; 1719 } else { 1720 /* hole case */ 1721 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1722 if (err || dn.data_blkaddr == NULL_ADDR) { 1723 f2fs_put_dnode(&dn); 1724 f2fs_lock_op(sbi); 1725 locked = true; 1726 goto restart; 1727 } 1728 } 1729 } 1730 1731 /* convert_inline_page can make node_changed */ 1732 *blk_addr = dn.data_blkaddr; 1733 *node_changed = dn.node_changed; 1734 out: 1735 f2fs_put_dnode(&dn); 1736 unlock_out: 1737 if (locked) 1738 f2fs_unlock_op(sbi); 1739 return err; 1740 } 1741 1742 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1743 loff_t pos, unsigned len, unsigned flags, 1744 struct page **pagep, void **fsdata) 1745 { 1746 struct inode *inode = mapping->host; 1747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1748 struct page *page = NULL; 1749 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1750 bool need_balance = false; 1751 block_t blkaddr = NULL_ADDR; 1752 int err = 0; 1753 1754 trace_f2fs_write_begin(inode, pos, len, flags); 1755 1756 /* 1757 * We should check this at this moment to avoid deadlock on inode page 1758 * and #0 page. The locking rule for inline_data conversion should be: 1759 * lock_page(page #0) -> lock_page(inode_page) 1760 */ 1761 if (index != 0) { 1762 err = f2fs_convert_inline_inode(inode); 1763 if (err) 1764 goto fail; 1765 } 1766 repeat: 1767 /* 1768 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1769 * wait_for_stable_page. Will wait that below with our IO control. 1770 */ 1771 page = pagecache_get_page(mapping, index, 1772 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1773 if (!page) { 1774 err = -ENOMEM; 1775 goto fail; 1776 } 1777 1778 *pagep = page; 1779 1780 err = prepare_write_begin(sbi, page, pos, len, 1781 &blkaddr, &need_balance); 1782 if (err) 1783 goto fail; 1784 1785 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1786 unlock_page(page); 1787 f2fs_balance_fs(sbi, true); 1788 lock_page(page); 1789 if (page->mapping != mapping) { 1790 /* The page got truncated from under us */ 1791 f2fs_put_page(page, 1); 1792 goto repeat; 1793 } 1794 } 1795 1796 f2fs_wait_on_page_writeback(page, DATA, false); 1797 1798 /* wait for GCed encrypted page writeback */ 1799 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1800 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1801 1802 if (len == PAGE_SIZE || PageUptodate(page)) 1803 return 0; 1804 1805 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1806 zero_user_segment(page, len, PAGE_SIZE); 1807 return 0; 1808 } 1809 1810 if (blkaddr == NEW_ADDR) { 1811 zero_user_segment(page, 0, PAGE_SIZE); 1812 SetPageUptodate(page); 1813 } else { 1814 struct bio *bio; 1815 1816 bio = f2fs_grab_bio(inode, blkaddr, 1); 1817 if (IS_ERR(bio)) { 1818 err = PTR_ERR(bio); 1819 goto fail; 1820 } 1821 bio->bi_opf = REQ_OP_READ; 1822 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1823 bio_put(bio); 1824 err = -EFAULT; 1825 goto fail; 1826 } 1827 1828 __submit_bio(sbi, bio, DATA); 1829 1830 lock_page(page); 1831 if (unlikely(page->mapping != mapping)) { 1832 f2fs_put_page(page, 1); 1833 goto repeat; 1834 } 1835 if (unlikely(!PageUptodate(page))) { 1836 err = -EIO; 1837 goto fail; 1838 } 1839 } 1840 return 0; 1841 1842 fail: 1843 f2fs_put_page(page, 1); 1844 f2fs_write_failed(mapping, pos + len); 1845 return err; 1846 } 1847 1848 static int f2fs_write_end(struct file *file, 1849 struct address_space *mapping, 1850 loff_t pos, unsigned len, unsigned copied, 1851 struct page *page, void *fsdata) 1852 { 1853 struct inode *inode = page->mapping->host; 1854 1855 trace_f2fs_write_end(inode, pos, len, copied); 1856 1857 /* 1858 * This should be come from len == PAGE_SIZE, and we expect copied 1859 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1860 * let generic_perform_write() try to copy data again through copied=0. 1861 */ 1862 if (!PageUptodate(page)) { 1863 if (unlikely(copied != len)) 1864 copied = 0; 1865 else 1866 SetPageUptodate(page); 1867 } 1868 if (!copied) 1869 goto unlock_out; 1870 1871 set_page_dirty(page); 1872 1873 if (pos + copied > i_size_read(inode)) 1874 f2fs_i_size_write(inode, pos + copied); 1875 unlock_out: 1876 f2fs_put_page(page, 1); 1877 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1878 return copied; 1879 } 1880 1881 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1882 loff_t offset) 1883 { 1884 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1885 1886 if (offset & blocksize_mask) 1887 return -EINVAL; 1888 1889 if (iov_iter_alignment(iter) & blocksize_mask) 1890 return -EINVAL; 1891 1892 return 0; 1893 } 1894 1895 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1896 { 1897 struct address_space *mapping = iocb->ki_filp->f_mapping; 1898 struct inode *inode = mapping->host; 1899 size_t count = iov_iter_count(iter); 1900 loff_t offset = iocb->ki_pos; 1901 int rw = iov_iter_rw(iter); 1902 int err; 1903 1904 err = check_direct_IO(inode, iter, offset); 1905 if (err) 1906 return err; 1907 1908 if (__force_buffered_io(inode, rw)) 1909 return 0; 1910 1911 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1912 1913 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1914 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1915 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1916 1917 if (rw == WRITE) { 1918 if (err > 0) 1919 set_inode_flag(inode, FI_UPDATE_WRITE); 1920 else if (err < 0) 1921 f2fs_write_failed(mapping, offset + count); 1922 } 1923 1924 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1925 1926 return err; 1927 } 1928 1929 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1930 unsigned int length) 1931 { 1932 struct inode *inode = page->mapping->host; 1933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1934 1935 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1936 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1937 return; 1938 1939 if (PageDirty(page)) { 1940 if (inode->i_ino == F2FS_META_INO(sbi)) { 1941 dec_page_count(sbi, F2FS_DIRTY_META); 1942 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 1943 dec_page_count(sbi, F2FS_DIRTY_NODES); 1944 } else { 1945 inode_dec_dirty_pages(inode); 1946 remove_dirty_inode(inode); 1947 } 1948 } 1949 1950 /* This is atomic written page, keep Private */ 1951 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1952 return; 1953 1954 set_page_private(page, 0); 1955 ClearPagePrivate(page); 1956 } 1957 1958 int f2fs_release_page(struct page *page, gfp_t wait) 1959 { 1960 /* If this is dirty page, keep PagePrivate */ 1961 if (PageDirty(page)) 1962 return 0; 1963 1964 /* This is atomic written page, keep Private */ 1965 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1966 return 0; 1967 1968 set_page_private(page, 0); 1969 ClearPagePrivate(page); 1970 return 1; 1971 } 1972 1973 /* 1974 * This was copied from __set_page_dirty_buffers which gives higher performance 1975 * in very high speed storages. (e.g., pmem) 1976 */ 1977 void f2fs_set_page_dirty_nobuffers(struct page *page) 1978 { 1979 struct address_space *mapping = page->mapping; 1980 unsigned long flags; 1981 1982 if (unlikely(!mapping)) 1983 return; 1984 1985 spin_lock(&mapping->private_lock); 1986 lock_page_memcg(page); 1987 SetPageDirty(page); 1988 spin_unlock(&mapping->private_lock); 1989 1990 spin_lock_irqsave(&mapping->tree_lock, flags); 1991 WARN_ON_ONCE(!PageUptodate(page)); 1992 account_page_dirtied(page, mapping); 1993 radix_tree_tag_set(&mapping->page_tree, 1994 page_index(page), PAGECACHE_TAG_DIRTY); 1995 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1996 unlock_page_memcg(page); 1997 1998 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1999 return; 2000 } 2001 2002 static int f2fs_set_data_page_dirty(struct page *page) 2003 { 2004 struct address_space *mapping = page->mapping; 2005 struct inode *inode = mapping->host; 2006 2007 trace_f2fs_set_page_dirty(page, DATA); 2008 2009 if (!PageUptodate(page)) 2010 SetPageUptodate(page); 2011 2012 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2013 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2014 register_inmem_page(inode, page); 2015 return 1; 2016 } 2017 /* 2018 * Previously, this page has been registered, we just 2019 * return here. 2020 */ 2021 return 0; 2022 } 2023 2024 if (!PageDirty(page)) { 2025 f2fs_set_page_dirty_nobuffers(page); 2026 update_dirty_page(inode, page); 2027 return 1; 2028 } 2029 return 0; 2030 } 2031 2032 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2033 { 2034 struct inode *inode = mapping->host; 2035 2036 if (f2fs_has_inline_data(inode)) 2037 return 0; 2038 2039 /* make sure allocating whole blocks */ 2040 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2041 filemap_write_and_wait(mapping); 2042 2043 return generic_block_bmap(mapping, block, get_data_block_bmap); 2044 } 2045 2046 #ifdef CONFIG_MIGRATION 2047 #include <linux/migrate.h> 2048 2049 int f2fs_migrate_page(struct address_space *mapping, 2050 struct page *newpage, struct page *page, enum migrate_mode mode) 2051 { 2052 int rc, extra_count; 2053 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2054 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2055 2056 BUG_ON(PageWriteback(page)); 2057 2058 /* migrating an atomic written page is safe with the inmem_lock hold */ 2059 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 2060 return -EAGAIN; 2061 2062 /* 2063 * A reference is expected if PagePrivate set when move mapping, 2064 * however F2FS breaks this for maintaining dirty page counts when 2065 * truncating pages. So here adjusting the 'extra_count' make it work. 2066 */ 2067 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2068 rc = migrate_page_move_mapping(mapping, newpage, 2069 page, NULL, mode, extra_count); 2070 if (rc != MIGRATEPAGE_SUCCESS) { 2071 if (atomic_written) 2072 mutex_unlock(&fi->inmem_lock); 2073 return rc; 2074 } 2075 2076 if (atomic_written) { 2077 struct inmem_pages *cur; 2078 list_for_each_entry(cur, &fi->inmem_pages, list) 2079 if (cur->page == page) { 2080 cur->page = newpage; 2081 break; 2082 } 2083 mutex_unlock(&fi->inmem_lock); 2084 put_page(page); 2085 get_page(newpage); 2086 } 2087 2088 if (PagePrivate(page)) 2089 SetPagePrivate(newpage); 2090 set_page_private(newpage, page_private(page)); 2091 2092 migrate_page_copy(newpage, page); 2093 2094 return MIGRATEPAGE_SUCCESS; 2095 } 2096 #endif 2097 2098 const struct address_space_operations f2fs_dblock_aops = { 2099 .readpage = f2fs_read_data_page, 2100 .readpages = f2fs_read_data_pages, 2101 .writepage = f2fs_write_data_page, 2102 .writepages = f2fs_write_data_pages, 2103 .write_begin = f2fs_write_begin, 2104 .write_end = f2fs_write_end, 2105 .set_page_dirty = f2fs_set_data_page_dirty, 2106 .invalidatepage = f2fs_invalidate_page, 2107 .releasepage = f2fs_release_page, 2108 .direct_IO = f2fs_direct_IO, 2109 .bmap = f2fs_bmap, 2110 #ifdef CONFIG_MIGRATION 2111 .migratepage = f2fs_migrate_page, 2112 #endif 2113 }; 2114