xref: /openbmc/linux/fs/f2fs/data.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS))
43 		return -ENOMEM;
44 	return 0;
45 }
46 
47 void f2fs_destroy_bioset(void)
48 {
49 	bioset_exit(&f2fs_bioset);
50 }
51 
52 static bool __is_cp_guaranteed(struct page *page)
53 {
54 	struct address_space *mapping = page->mapping;
55 	struct inode *inode;
56 	struct f2fs_sb_info *sbi;
57 
58 	if (!mapping)
59 		return false;
60 
61 	if (f2fs_is_compressed_page(page))
62 		return false;
63 
64 	inode = mapping->host;
65 	sbi = F2FS_I_SB(inode);
66 
67 	if (inode->i_ino == F2FS_META_INO(sbi) ||
68 			inode->i_ino == F2FS_NODE_INO(sbi) ||
69 			S_ISDIR(inode->i_mode) ||
70 			(S_ISREG(inode->i_mode) &&
71 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
72 			is_cold_data(page))
73 		return true;
74 	return false;
75 }
76 
77 static enum count_type __read_io_type(struct page *page)
78 {
79 	struct address_space *mapping = page_file_mapping(page);
80 
81 	if (mapping) {
82 		struct inode *inode = mapping->host;
83 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84 
85 		if (inode->i_ino == F2FS_META_INO(sbi))
86 			return F2FS_RD_META;
87 
88 		if (inode->i_ino == F2FS_NODE_INO(sbi))
89 			return F2FS_RD_NODE;
90 	}
91 	return F2FS_RD_DATA;
92 }
93 
94 /* postprocessing steps for read bios */
95 enum bio_post_read_step {
96 #ifdef CONFIG_FS_ENCRYPTION
97 	STEP_DECRYPT	= 1 << 0,
98 #else
99 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
100 #endif
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102 	STEP_DECOMPRESS	= 1 << 1,
103 #else
104 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
105 #endif
106 #ifdef CONFIG_FS_VERITY
107 	STEP_VERITY	= 1 << 2,
108 #else
109 	STEP_VERITY	= 0,	/* compile out the verity-related code */
110 #endif
111 };
112 
113 struct bio_post_read_ctx {
114 	struct bio *bio;
115 	struct f2fs_sb_info *sbi;
116 	struct work_struct work;
117 	unsigned int enabled_steps;
118 };
119 
120 static void f2fs_finish_read_bio(struct bio *bio)
121 {
122 	struct bio_vec *bv;
123 	struct bvec_iter_all iter_all;
124 
125 	/*
126 	 * Update and unlock the bio's pagecache pages, and put the
127 	 * decompression context for any compressed pages.
128 	 */
129 	bio_for_each_segment_all(bv, bio, iter_all) {
130 		struct page *page = bv->bv_page;
131 
132 		if (f2fs_is_compressed_page(page)) {
133 			if (bio->bi_status)
134 				f2fs_end_read_compressed_page(page, true);
135 			f2fs_put_page_dic(page);
136 			continue;
137 		}
138 
139 		/* PG_error was set if decryption or verity failed. */
140 		if (bio->bi_status || PageError(page)) {
141 			ClearPageUptodate(page);
142 			/* will re-read again later */
143 			ClearPageError(page);
144 		} else {
145 			SetPageUptodate(page);
146 		}
147 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
148 		unlock_page(page);
149 	}
150 
151 	if (bio->bi_private)
152 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
153 	bio_put(bio);
154 }
155 
156 static void f2fs_verify_bio(struct work_struct *work)
157 {
158 	struct bio_post_read_ctx *ctx =
159 		container_of(work, struct bio_post_read_ctx, work);
160 	struct bio *bio = ctx->bio;
161 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
162 
163 	/*
164 	 * fsverity_verify_bio() may call readpages() again, and while verity
165 	 * will be disabled for this, decryption and/or decompression may still
166 	 * be needed, resulting in another bio_post_read_ctx being allocated.
167 	 * So to prevent deadlocks we need to release the current ctx to the
168 	 * mempool first.  This assumes that verity is the last post-read step.
169 	 */
170 	mempool_free(ctx, bio_post_read_ctx_pool);
171 	bio->bi_private = NULL;
172 
173 	/*
174 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
175 	 * as those were handled separately by f2fs_end_read_compressed_page().
176 	 */
177 	if (may_have_compressed_pages) {
178 		struct bio_vec *bv;
179 		struct bvec_iter_all iter_all;
180 
181 		bio_for_each_segment_all(bv, bio, iter_all) {
182 			struct page *page = bv->bv_page;
183 
184 			if (!f2fs_is_compressed_page(page) &&
185 			    !PageError(page) && !fsverity_verify_page(page))
186 				SetPageError(page);
187 		}
188 	} else {
189 		fsverity_verify_bio(bio);
190 	}
191 
192 	f2fs_finish_read_bio(bio);
193 }
194 
195 /*
196  * If the bio's data needs to be verified with fs-verity, then enqueue the
197  * verity work for the bio.  Otherwise finish the bio now.
198  *
199  * Note that to avoid deadlocks, the verity work can't be done on the
200  * decryption/decompression workqueue.  This is because verifying the data pages
201  * can involve reading verity metadata pages from the file, and these verity
202  * metadata pages may be encrypted and/or compressed.
203  */
204 static void f2fs_verify_and_finish_bio(struct bio *bio)
205 {
206 	struct bio_post_read_ctx *ctx = bio->bi_private;
207 
208 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
209 		INIT_WORK(&ctx->work, f2fs_verify_bio);
210 		fsverity_enqueue_verify_work(&ctx->work);
211 	} else {
212 		f2fs_finish_read_bio(bio);
213 	}
214 }
215 
216 /*
217  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
218  * remaining page was read by @ctx->bio.
219  *
220  * Note that a bio may span clusters (even a mix of compressed and uncompressed
221  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
222  * that the bio includes at least one compressed page.  The actual decompression
223  * is done on a per-cluster basis, not a per-bio basis.
224  */
225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
226 {
227 	struct bio_vec *bv;
228 	struct bvec_iter_all iter_all;
229 	bool all_compressed = true;
230 
231 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
232 		struct page *page = bv->bv_page;
233 
234 		/* PG_error was set if decryption failed. */
235 		if (f2fs_is_compressed_page(page))
236 			f2fs_end_read_compressed_page(page, PageError(page));
237 		else
238 			all_compressed = false;
239 	}
240 
241 	/*
242 	 * Optimization: if all the bio's pages are compressed, then scheduling
243 	 * the per-bio verity work is unnecessary, as verity will be fully
244 	 * handled at the compression cluster level.
245 	 */
246 	if (all_compressed)
247 		ctx->enabled_steps &= ~STEP_VERITY;
248 }
249 
250 static void f2fs_post_read_work(struct work_struct *work)
251 {
252 	struct bio_post_read_ctx *ctx =
253 		container_of(work, struct bio_post_read_ctx, work);
254 
255 	if (ctx->enabled_steps & STEP_DECRYPT)
256 		fscrypt_decrypt_bio(ctx->bio);
257 
258 	if (ctx->enabled_steps & STEP_DECOMPRESS)
259 		f2fs_handle_step_decompress(ctx);
260 
261 	f2fs_verify_and_finish_bio(ctx->bio);
262 }
263 
264 static void f2fs_read_end_io(struct bio *bio)
265 {
266 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
267 	struct bio_post_read_ctx *ctx = bio->bi_private;
268 
269 	if (time_to_inject(sbi, FAULT_READ_IO)) {
270 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
271 		bio->bi_status = BLK_STS_IOERR;
272 	}
273 
274 	if (bio->bi_status) {
275 		f2fs_finish_read_bio(bio);
276 		return;
277 	}
278 
279 	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
280 		INIT_WORK(&ctx->work, f2fs_post_read_work);
281 		queue_work(ctx->sbi->post_read_wq, &ctx->work);
282 	} else {
283 		f2fs_verify_and_finish_bio(bio);
284 	}
285 }
286 
287 static void f2fs_write_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = bio->bi_private;
290 	struct bio_vec *bvec;
291 	struct bvec_iter_all iter_all;
292 
293 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
294 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
295 		bio->bi_status = BLK_STS_IOERR;
296 	}
297 
298 	bio_for_each_segment_all(bvec, bio, iter_all) {
299 		struct page *page = bvec->bv_page;
300 		enum count_type type = WB_DATA_TYPE(page);
301 
302 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
303 			set_page_private(page, (unsigned long)NULL);
304 			ClearPagePrivate(page);
305 			unlock_page(page);
306 			mempool_free(page, sbi->write_io_dummy);
307 
308 			if (unlikely(bio->bi_status))
309 				f2fs_stop_checkpoint(sbi, true);
310 			continue;
311 		}
312 
313 		fscrypt_finalize_bounce_page(&page);
314 
315 #ifdef CONFIG_F2FS_FS_COMPRESSION
316 		if (f2fs_is_compressed_page(page)) {
317 			f2fs_compress_write_end_io(bio, page);
318 			continue;
319 		}
320 #endif
321 
322 		if (unlikely(bio->bi_status)) {
323 			mapping_set_error(page->mapping, -EIO);
324 			if (type == F2FS_WB_CP_DATA)
325 				f2fs_stop_checkpoint(sbi, true);
326 		}
327 
328 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
329 					page->index != nid_of_node(page));
330 
331 		dec_page_count(sbi, type);
332 		if (f2fs_in_warm_node_list(sbi, page))
333 			f2fs_del_fsync_node_entry(sbi, page);
334 		clear_cold_data(page);
335 		end_page_writeback(page);
336 	}
337 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
338 				wq_has_sleeper(&sbi->cp_wait))
339 		wake_up(&sbi->cp_wait);
340 
341 	bio_put(bio);
342 }
343 
344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
345 				block_t blk_addr, struct bio *bio)
346 {
347 	struct block_device *bdev = sbi->sb->s_bdev;
348 	int i;
349 
350 	if (f2fs_is_multi_device(sbi)) {
351 		for (i = 0; i < sbi->s_ndevs; i++) {
352 			if (FDEV(i).start_blk <= blk_addr &&
353 			    FDEV(i).end_blk >= blk_addr) {
354 				blk_addr -= FDEV(i).start_blk;
355 				bdev = FDEV(i).bdev;
356 				break;
357 			}
358 		}
359 	}
360 	if (bio) {
361 		bio_set_dev(bio, bdev);
362 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
363 	}
364 	return bdev;
365 }
366 
367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
368 {
369 	int i;
370 
371 	if (!f2fs_is_multi_device(sbi))
372 		return 0;
373 
374 	for (i = 0; i < sbi->s_ndevs; i++)
375 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
376 			return i;
377 	return 0;
378 }
379 
380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
381 {
382 	struct f2fs_sb_info *sbi = fio->sbi;
383 	struct bio *bio;
384 
385 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
386 
387 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
388 	if (is_read_io(fio->op)) {
389 		bio->bi_end_io = f2fs_read_end_io;
390 		bio->bi_private = NULL;
391 	} else {
392 		bio->bi_end_io = f2fs_write_end_io;
393 		bio->bi_private = sbi;
394 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
395 						fio->type, fio->temp);
396 	}
397 	if (fio->io_wbc)
398 		wbc_init_bio(fio->io_wbc, bio);
399 
400 	return bio;
401 }
402 
403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
404 				  pgoff_t first_idx,
405 				  const struct f2fs_io_info *fio,
406 				  gfp_t gfp_mask)
407 {
408 	/*
409 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
410 	 * read/write raw data without encryption.
411 	 */
412 	if (!fio || !fio->encrypted_page)
413 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
414 }
415 
416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
417 				     pgoff_t next_idx,
418 				     const struct f2fs_io_info *fio)
419 {
420 	/*
421 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
422 	 * read/write raw data without encryption.
423 	 */
424 	if (fio && fio->encrypted_page)
425 		return !bio_has_crypt_ctx(bio);
426 
427 	return fscrypt_mergeable_bio(bio, inode, next_idx);
428 }
429 
430 static inline void __submit_bio(struct f2fs_sb_info *sbi,
431 				struct bio *bio, enum page_type type)
432 {
433 	if (!is_read_io(bio_op(bio))) {
434 		unsigned int start;
435 
436 		if (type != DATA && type != NODE)
437 			goto submit_io;
438 
439 		if (f2fs_lfs_mode(sbi) && current->plug)
440 			blk_finish_plug(current->plug);
441 
442 		if (!F2FS_IO_ALIGNED(sbi))
443 			goto submit_io;
444 
445 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
446 		start %= F2FS_IO_SIZE(sbi);
447 
448 		if (start == 0)
449 			goto submit_io;
450 
451 		/* fill dummy pages */
452 		for (; start < F2FS_IO_SIZE(sbi); start++) {
453 			struct page *page =
454 				mempool_alloc(sbi->write_io_dummy,
455 					      GFP_NOIO | __GFP_NOFAIL);
456 			f2fs_bug_on(sbi, !page);
457 
458 			zero_user_segment(page, 0, PAGE_SIZE);
459 			SetPagePrivate(page);
460 			set_page_private(page, DUMMY_WRITTEN_PAGE);
461 			lock_page(page);
462 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
463 				f2fs_bug_on(sbi, 1);
464 		}
465 		/*
466 		 * In the NODE case, we lose next block address chain. So, we
467 		 * need to do checkpoint in f2fs_sync_file.
468 		 */
469 		if (type == NODE)
470 			set_sbi_flag(sbi, SBI_NEED_CP);
471 	}
472 submit_io:
473 	if (is_read_io(bio_op(bio)))
474 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
475 	else
476 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
477 	submit_bio(bio);
478 }
479 
480 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
481 				struct bio *bio, enum page_type type)
482 {
483 	__submit_bio(sbi, bio, type);
484 }
485 
486 static void __attach_io_flag(struct f2fs_io_info *fio)
487 {
488 	struct f2fs_sb_info *sbi = fio->sbi;
489 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
490 	unsigned int io_flag, fua_flag, meta_flag;
491 
492 	if (fio->type == DATA)
493 		io_flag = sbi->data_io_flag;
494 	else if (fio->type == NODE)
495 		io_flag = sbi->node_io_flag;
496 	else
497 		return;
498 
499 	fua_flag = io_flag & temp_mask;
500 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
501 
502 	/*
503 	 * data/node io flag bits per temp:
504 	 *      REQ_META     |      REQ_FUA      |
505 	 *    5 |    4 |   3 |    2 |    1 |   0 |
506 	 * Cold | Warm | Hot | Cold | Warm | Hot |
507 	 */
508 	if ((1 << fio->temp) & meta_flag)
509 		fio->op_flags |= REQ_META;
510 	if ((1 << fio->temp) & fua_flag)
511 		fio->op_flags |= REQ_FUA;
512 }
513 
514 static void __submit_merged_bio(struct f2fs_bio_info *io)
515 {
516 	struct f2fs_io_info *fio = &io->fio;
517 
518 	if (!io->bio)
519 		return;
520 
521 	__attach_io_flag(fio);
522 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
523 
524 	if (is_read_io(fio->op))
525 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
526 	else
527 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
528 
529 	__submit_bio(io->sbi, io->bio, fio->type);
530 	io->bio = NULL;
531 }
532 
533 static bool __has_merged_page(struct bio *bio, struct inode *inode,
534 						struct page *page, nid_t ino)
535 {
536 	struct bio_vec *bvec;
537 	struct bvec_iter_all iter_all;
538 
539 	if (!bio)
540 		return false;
541 
542 	if (!inode && !page && !ino)
543 		return true;
544 
545 	bio_for_each_segment_all(bvec, bio, iter_all) {
546 		struct page *target = bvec->bv_page;
547 
548 		if (fscrypt_is_bounce_page(target)) {
549 			target = fscrypt_pagecache_page(target);
550 			if (IS_ERR(target))
551 				continue;
552 		}
553 		if (f2fs_is_compressed_page(target)) {
554 			target = f2fs_compress_control_page(target);
555 			if (IS_ERR(target))
556 				continue;
557 		}
558 
559 		if (inode && inode == target->mapping->host)
560 			return true;
561 		if (page && page == target)
562 			return true;
563 		if (ino && ino == ino_of_node(target))
564 			return true;
565 	}
566 
567 	return false;
568 }
569 
570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
571 				enum page_type type, enum temp_type temp)
572 {
573 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
574 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
575 
576 	down_write(&io->io_rwsem);
577 
578 	/* change META to META_FLUSH in the checkpoint procedure */
579 	if (type >= META_FLUSH) {
580 		io->fio.type = META_FLUSH;
581 		io->fio.op = REQ_OP_WRITE;
582 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
583 		if (!test_opt(sbi, NOBARRIER))
584 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
585 	}
586 	__submit_merged_bio(io);
587 	up_write(&io->io_rwsem);
588 }
589 
590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
591 				struct inode *inode, struct page *page,
592 				nid_t ino, enum page_type type, bool force)
593 {
594 	enum temp_type temp;
595 	bool ret = true;
596 
597 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
598 		if (!force)	{
599 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
600 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
601 
602 			down_read(&io->io_rwsem);
603 			ret = __has_merged_page(io->bio, inode, page, ino);
604 			up_read(&io->io_rwsem);
605 		}
606 		if (ret)
607 			__f2fs_submit_merged_write(sbi, type, temp);
608 
609 		/* TODO: use HOT temp only for meta pages now. */
610 		if (type >= META)
611 			break;
612 	}
613 }
614 
615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
616 {
617 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
618 }
619 
620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
621 				struct inode *inode, struct page *page,
622 				nid_t ino, enum page_type type)
623 {
624 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
625 }
626 
627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
628 {
629 	f2fs_submit_merged_write(sbi, DATA);
630 	f2fs_submit_merged_write(sbi, NODE);
631 	f2fs_submit_merged_write(sbi, META);
632 }
633 
634 /*
635  * Fill the locked page with data located in the block address.
636  * A caller needs to unlock the page on failure.
637  */
638 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
639 {
640 	struct bio *bio;
641 	struct page *page = fio->encrypted_page ?
642 			fio->encrypted_page : fio->page;
643 
644 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
645 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
646 			META_GENERIC : DATA_GENERIC_ENHANCE)))
647 		return -EFSCORRUPTED;
648 
649 	trace_f2fs_submit_page_bio(page, fio);
650 
651 	/* Allocate a new bio */
652 	bio = __bio_alloc(fio, 1);
653 
654 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
655 			       fio->page->index, fio, GFP_NOIO);
656 
657 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
658 		bio_put(bio);
659 		return -EFAULT;
660 	}
661 
662 	if (fio->io_wbc && !is_read_io(fio->op))
663 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
664 
665 	__attach_io_flag(fio);
666 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
667 
668 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
669 			__read_io_type(page): WB_DATA_TYPE(fio->page));
670 
671 	__submit_bio(fio->sbi, bio, fio->type);
672 	return 0;
673 }
674 
675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
676 				block_t last_blkaddr, block_t cur_blkaddr)
677 {
678 	if (unlikely(sbi->max_io_bytes &&
679 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
680 		return false;
681 	if (last_blkaddr + 1 != cur_blkaddr)
682 		return false;
683 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
684 }
685 
686 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
687 						struct f2fs_io_info *fio)
688 {
689 	if (io->fio.op != fio->op)
690 		return false;
691 	return io->fio.op_flags == fio->op_flags;
692 }
693 
694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
695 					struct f2fs_bio_info *io,
696 					struct f2fs_io_info *fio,
697 					block_t last_blkaddr,
698 					block_t cur_blkaddr)
699 {
700 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
701 		unsigned int filled_blocks =
702 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
703 		unsigned int io_size = F2FS_IO_SIZE(sbi);
704 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
705 
706 		/* IOs in bio is aligned and left space of vectors is not enough */
707 		if (!(filled_blocks % io_size) && left_vecs < io_size)
708 			return false;
709 	}
710 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
711 		return false;
712 	return io_type_is_mergeable(io, fio);
713 }
714 
715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
716 				struct page *page, enum temp_type temp)
717 {
718 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
719 	struct bio_entry *be;
720 
721 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
722 	be->bio = bio;
723 	bio_get(bio);
724 
725 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
726 		f2fs_bug_on(sbi, 1);
727 
728 	down_write(&io->bio_list_lock);
729 	list_add_tail(&be->list, &io->bio_list);
730 	up_write(&io->bio_list_lock);
731 }
732 
733 static void del_bio_entry(struct bio_entry *be)
734 {
735 	list_del(&be->list);
736 	kmem_cache_free(bio_entry_slab, be);
737 }
738 
739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
740 							struct page *page)
741 {
742 	struct f2fs_sb_info *sbi = fio->sbi;
743 	enum temp_type temp;
744 	bool found = false;
745 	int ret = -EAGAIN;
746 
747 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
748 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
749 		struct list_head *head = &io->bio_list;
750 		struct bio_entry *be;
751 
752 		down_write(&io->bio_list_lock);
753 		list_for_each_entry(be, head, list) {
754 			if (be->bio != *bio)
755 				continue;
756 
757 			found = true;
758 
759 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
760 							    *fio->last_block,
761 							    fio->new_blkaddr));
762 			if (f2fs_crypt_mergeable_bio(*bio,
763 					fio->page->mapping->host,
764 					fio->page->index, fio) &&
765 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
766 					PAGE_SIZE) {
767 				ret = 0;
768 				break;
769 			}
770 
771 			/* page can't be merged into bio; submit the bio */
772 			del_bio_entry(be);
773 			__submit_bio(sbi, *bio, DATA);
774 			break;
775 		}
776 		up_write(&io->bio_list_lock);
777 	}
778 
779 	if (ret) {
780 		bio_put(*bio);
781 		*bio = NULL;
782 	}
783 
784 	return ret;
785 }
786 
787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
788 					struct bio **bio, struct page *page)
789 {
790 	enum temp_type temp;
791 	bool found = false;
792 	struct bio *target = bio ? *bio : NULL;
793 
794 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
795 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
796 		struct list_head *head = &io->bio_list;
797 		struct bio_entry *be;
798 
799 		if (list_empty(head))
800 			continue;
801 
802 		down_read(&io->bio_list_lock);
803 		list_for_each_entry(be, head, list) {
804 			if (target)
805 				found = (target == be->bio);
806 			else
807 				found = __has_merged_page(be->bio, NULL,
808 								page, 0);
809 			if (found)
810 				break;
811 		}
812 		up_read(&io->bio_list_lock);
813 
814 		if (!found)
815 			continue;
816 
817 		found = false;
818 
819 		down_write(&io->bio_list_lock);
820 		list_for_each_entry(be, head, list) {
821 			if (target)
822 				found = (target == be->bio);
823 			else
824 				found = __has_merged_page(be->bio, NULL,
825 								page, 0);
826 			if (found) {
827 				target = be->bio;
828 				del_bio_entry(be);
829 				break;
830 			}
831 		}
832 		up_write(&io->bio_list_lock);
833 	}
834 
835 	if (found)
836 		__submit_bio(sbi, target, DATA);
837 	if (bio && *bio) {
838 		bio_put(*bio);
839 		*bio = NULL;
840 	}
841 }
842 
843 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
844 {
845 	struct bio *bio = *fio->bio;
846 	struct page *page = fio->encrypted_page ?
847 			fio->encrypted_page : fio->page;
848 
849 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
850 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
851 		return -EFSCORRUPTED;
852 
853 	trace_f2fs_submit_page_bio(page, fio);
854 
855 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
856 						fio->new_blkaddr))
857 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
858 alloc_new:
859 	if (!bio) {
860 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
861 		__attach_io_flag(fio);
862 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
863 				       fio->page->index, fio, GFP_NOIO);
864 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
865 
866 		add_bio_entry(fio->sbi, bio, page, fio->temp);
867 	} else {
868 		if (add_ipu_page(fio, &bio, page))
869 			goto alloc_new;
870 	}
871 
872 	if (fio->io_wbc)
873 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
874 
875 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
876 
877 	*fio->last_block = fio->new_blkaddr;
878 	*fio->bio = bio;
879 
880 	return 0;
881 }
882 
883 void f2fs_submit_page_write(struct f2fs_io_info *fio)
884 {
885 	struct f2fs_sb_info *sbi = fio->sbi;
886 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
887 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
888 	struct page *bio_page;
889 
890 	f2fs_bug_on(sbi, is_read_io(fio->op));
891 
892 	down_write(&io->io_rwsem);
893 next:
894 	if (fio->in_list) {
895 		spin_lock(&io->io_lock);
896 		if (list_empty(&io->io_list)) {
897 			spin_unlock(&io->io_lock);
898 			goto out;
899 		}
900 		fio = list_first_entry(&io->io_list,
901 						struct f2fs_io_info, list);
902 		list_del(&fio->list);
903 		spin_unlock(&io->io_lock);
904 	}
905 
906 	verify_fio_blkaddr(fio);
907 
908 	if (fio->encrypted_page)
909 		bio_page = fio->encrypted_page;
910 	else if (fio->compressed_page)
911 		bio_page = fio->compressed_page;
912 	else
913 		bio_page = fio->page;
914 
915 	/* set submitted = true as a return value */
916 	fio->submitted = true;
917 
918 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
919 
920 	if (io->bio &&
921 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
922 			      fio->new_blkaddr) ||
923 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
924 				       bio_page->index, fio)))
925 		__submit_merged_bio(io);
926 alloc_new:
927 	if (io->bio == NULL) {
928 		if (F2FS_IO_ALIGNED(sbi) &&
929 				(fio->type == DATA || fio->type == NODE) &&
930 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
931 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
932 			fio->retry = true;
933 			goto skip;
934 		}
935 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
936 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
937 				       bio_page->index, fio, GFP_NOIO);
938 		io->fio = *fio;
939 	}
940 
941 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
942 		__submit_merged_bio(io);
943 		goto alloc_new;
944 	}
945 
946 	if (fio->io_wbc)
947 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
948 
949 	io->last_block_in_bio = fio->new_blkaddr;
950 
951 	trace_f2fs_submit_page_write(fio->page, fio);
952 skip:
953 	if (fio->in_list)
954 		goto next;
955 out:
956 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
957 				!f2fs_is_checkpoint_ready(sbi))
958 		__submit_merged_bio(io);
959 	up_write(&io->io_rwsem);
960 }
961 
962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
963 				      unsigned nr_pages, unsigned op_flag,
964 				      pgoff_t first_idx, bool for_write)
965 {
966 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967 	struct bio *bio;
968 	struct bio_post_read_ctx *ctx;
969 	unsigned int post_read_steps = 0;
970 
971 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
972 			       min_t(int, nr_pages, BIO_MAX_PAGES),
973 			       &f2fs_bioset);
974 	if (!bio)
975 		return ERR_PTR(-ENOMEM);
976 
977 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
978 
979 	f2fs_target_device(sbi, blkaddr, bio);
980 	bio->bi_end_io = f2fs_read_end_io;
981 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
982 
983 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
984 		post_read_steps |= STEP_DECRYPT;
985 
986 	if (f2fs_need_verity(inode, first_idx))
987 		post_read_steps |= STEP_VERITY;
988 
989 	/*
990 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
991 	 * contain both compressed and uncompressed clusters.  We'll allocate a
992 	 * bio_post_read_ctx if the file is compressed, but the caller is
993 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
994 	 */
995 
996 	if (post_read_steps || f2fs_compressed_file(inode)) {
997 		/* Due to the mempool, this never fails. */
998 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
999 		ctx->bio = bio;
1000 		ctx->sbi = sbi;
1001 		ctx->enabled_steps = post_read_steps;
1002 		bio->bi_private = ctx;
1003 	}
1004 
1005 	return bio;
1006 }
1007 
1008 /* This can handle encryption stuffs */
1009 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1010 				 block_t blkaddr, int op_flags, bool for_write)
1011 {
1012 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1013 	struct bio *bio;
1014 
1015 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1016 					page->index, for_write);
1017 	if (IS_ERR(bio))
1018 		return PTR_ERR(bio);
1019 
1020 	/* wait for GCed page writeback via META_MAPPING */
1021 	f2fs_wait_on_block_writeback(inode, blkaddr);
1022 
1023 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1024 		bio_put(bio);
1025 		return -EFAULT;
1026 	}
1027 	ClearPageError(page);
1028 	inc_page_count(sbi, F2FS_RD_DATA);
1029 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1030 	__submit_bio(sbi, bio, DATA);
1031 	return 0;
1032 }
1033 
1034 static void __set_data_blkaddr(struct dnode_of_data *dn)
1035 {
1036 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1037 	__le32 *addr_array;
1038 	int base = 0;
1039 
1040 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1041 		base = get_extra_isize(dn->inode);
1042 
1043 	/* Get physical address of data block */
1044 	addr_array = blkaddr_in_node(rn);
1045 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1046 }
1047 
1048 /*
1049  * Lock ordering for the change of data block address:
1050  * ->data_page
1051  *  ->node_page
1052  *    update block addresses in the node page
1053  */
1054 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1055 {
1056 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1057 	__set_data_blkaddr(dn);
1058 	if (set_page_dirty(dn->node_page))
1059 		dn->node_changed = true;
1060 }
1061 
1062 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1063 {
1064 	dn->data_blkaddr = blkaddr;
1065 	f2fs_set_data_blkaddr(dn);
1066 	f2fs_update_extent_cache(dn);
1067 }
1068 
1069 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1070 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1071 {
1072 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073 	int err;
1074 
1075 	if (!count)
1076 		return 0;
1077 
1078 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1079 		return -EPERM;
1080 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1081 		return err;
1082 
1083 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1084 						dn->ofs_in_node, count);
1085 
1086 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1087 
1088 	for (; count > 0; dn->ofs_in_node++) {
1089 		block_t blkaddr = f2fs_data_blkaddr(dn);
1090 		if (blkaddr == NULL_ADDR) {
1091 			dn->data_blkaddr = NEW_ADDR;
1092 			__set_data_blkaddr(dn);
1093 			count--;
1094 		}
1095 	}
1096 
1097 	if (set_page_dirty(dn->node_page))
1098 		dn->node_changed = true;
1099 	return 0;
1100 }
1101 
1102 /* Should keep dn->ofs_in_node unchanged */
1103 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1104 {
1105 	unsigned int ofs_in_node = dn->ofs_in_node;
1106 	int ret;
1107 
1108 	ret = f2fs_reserve_new_blocks(dn, 1);
1109 	dn->ofs_in_node = ofs_in_node;
1110 	return ret;
1111 }
1112 
1113 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1114 {
1115 	bool need_put = dn->inode_page ? false : true;
1116 	int err;
1117 
1118 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1119 	if (err)
1120 		return err;
1121 
1122 	if (dn->data_blkaddr == NULL_ADDR)
1123 		err = f2fs_reserve_new_block(dn);
1124 	if (err || need_put)
1125 		f2fs_put_dnode(dn);
1126 	return err;
1127 }
1128 
1129 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1130 {
1131 	struct extent_info ei = {0, 0, 0};
1132 	struct inode *inode = dn->inode;
1133 
1134 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1135 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1136 		return 0;
1137 	}
1138 
1139 	return f2fs_reserve_block(dn, index);
1140 }
1141 
1142 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1143 						int op_flags, bool for_write)
1144 {
1145 	struct address_space *mapping = inode->i_mapping;
1146 	struct dnode_of_data dn;
1147 	struct page *page;
1148 	struct extent_info ei = {0,0,0};
1149 	int err;
1150 
1151 	page = f2fs_grab_cache_page(mapping, index, for_write);
1152 	if (!page)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1156 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1157 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1158 						DATA_GENERIC_ENHANCE_READ)) {
1159 			err = -EFSCORRUPTED;
1160 			goto put_err;
1161 		}
1162 		goto got_it;
1163 	}
1164 
1165 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1166 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1167 	if (err)
1168 		goto put_err;
1169 	f2fs_put_dnode(&dn);
1170 
1171 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1172 		err = -ENOENT;
1173 		goto put_err;
1174 	}
1175 	if (dn.data_blkaddr != NEW_ADDR &&
1176 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1177 						dn.data_blkaddr,
1178 						DATA_GENERIC_ENHANCE)) {
1179 		err = -EFSCORRUPTED;
1180 		goto put_err;
1181 	}
1182 got_it:
1183 	if (PageUptodate(page)) {
1184 		unlock_page(page);
1185 		return page;
1186 	}
1187 
1188 	/*
1189 	 * A new dentry page is allocated but not able to be written, since its
1190 	 * new inode page couldn't be allocated due to -ENOSPC.
1191 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1192 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1193 	 * f2fs_init_inode_metadata.
1194 	 */
1195 	if (dn.data_blkaddr == NEW_ADDR) {
1196 		zero_user_segment(page, 0, PAGE_SIZE);
1197 		if (!PageUptodate(page))
1198 			SetPageUptodate(page);
1199 		unlock_page(page);
1200 		return page;
1201 	}
1202 
1203 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1204 						op_flags, for_write);
1205 	if (err)
1206 		goto put_err;
1207 	return page;
1208 
1209 put_err:
1210 	f2fs_put_page(page, 1);
1211 	return ERR_PTR(err);
1212 }
1213 
1214 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1215 {
1216 	struct address_space *mapping = inode->i_mapping;
1217 	struct page *page;
1218 
1219 	page = find_get_page(mapping, index);
1220 	if (page && PageUptodate(page))
1221 		return page;
1222 	f2fs_put_page(page, 0);
1223 
1224 	page = f2fs_get_read_data_page(inode, index, 0, false);
1225 	if (IS_ERR(page))
1226 		return page;
1227 
1228 	if (PageUptodate(page))
1229 		return page;
1230 
1231 	wait_on_page_locked(page);
1232 	if (unlikely(!PageUptodate(page))) {
1233 		f2fs_put_page(page, 0);
1234 		return ERR_PTR(-EIO);
1235 	}
1236 	return page;
1237 }
1238 
1239 /*
1240  * If it tries to access a hole, return an error.
1241  * Because, the callers, functions in dir.c and GC, should be able to know
1242  * whether this page exists or not.
1243  */
1244 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1245 							bool for_write)
1246 {
1247 	struct address_space *mapping = inode->i_mapping;
1248 	struct page *page;
1249 repeat:
1250 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1251 	if (IS_ERR(page))
1252 		return page;
1253 
1254 	/* wait for read completion */
1255 	lock_page(page);
1256 	if (unlikely(page->mapping != mapping)) {
1257 		f2fs_put_page(page, 1);
1258 		goto repeat;
1259 	}
1260 	if (unlikely(!PageUptodate(page))) {
1261 		f2fs_put_page(page, 1);
1262 		return ERR_PTR(-EIO);
1263 	}
1264 	return page;
1265 }
1266 
1267 /*
1268  * Caller ensures that this data page is never allocated.
1269  * A new zero-filled data page is allocated in the page cache.
1270  *
1271  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1272  * f2fs_unlock_op().
1273  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1274  * ipage should be released by this function.
1275  */
1276 struct page *f2fs_get_new_data_page(struct inode *inode,
1277 		struct page *ipage, pgoff_t index, bool new_i_size)
1278 {
1279 	struct address_space *mapping = inode->i_mapping;
1280 	struct page *page;
1281 	struct dnode_of_data dn;
1282 	int err;
1283 
1284 	page = f2fs_grab_cache_page(mapping, index, true);
1285 	if (!page) {
1286 		/*
1287 		 * before exiting, we should make sure ipage will be released
1288 		 * if any error occur.
1289 		 */
1290 		f2fs_put_page(ipage, 1);
1291 		return ERR_PTR(-ENOMEM);
1292 	}
1293 
1294 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1295 	err = f2fs_reserve_block(&dn, index);
1296 	if (err) {
1297 		f2fs_put_page(page, 1);
1298 		return ERR_PTR(err);
1299 	}
1300 	if (!ipage)
1301 		f2fs_put_dnode(&dn);
1302 
1303 	if (PageUptodate(page))
1304 		goto got_it;
1305 
1306 	if (dn.data_blkaddr == NEW_ADDR) {
1307 		zero_user_segment(page, 0, PAGE_SIZE);
1308 		if (!PageUptodate(page))
1309 			SetPageUptodate(page);
1310 	} else {
1311 		f2fs_put_page(page, 1);
1312 
1313 		/* if ipage exists, blkaddr should be NEW_ADDR */
1314 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1315 		page = f2fs_get_lock_data_page(inode, index, true);
1316 		if (IS_ERR(page))
1317 			return page;
1318 	}
1319 got_it:
1320 	if (new_i_size && i_size_read(inode) <
1321 				((loff_t)(index + 1) << PAGE_SHIFT))
1322 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1323 	return page;
1324 }
1325 
1326 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1327 {
1328 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1329 	struct f2fs_summary sum;
1330 	struct node_info ni;
1331 	block_t old_blkaddr;
1332 	blkcnt_t count = 1;
1333 	int err;
1334 
1335 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1336 		return -EPERM;
1337 
1338 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1339 	if (err)
1340 		return err;
1341 
1342 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1343 	if (dn->data_blkaddr != NULL_ADDR)
1344 		goto alloc;
1345 
1346 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1347 		return err;
1348 
1349 alloc:
1350 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1351 	old_blkaddr = dn->data_blkaddr;
1352 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1353 				&sum, seg_type, NULL);
1354 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1355 		invalidate_mapping_pages(META_MAPPING(sbi),
1356 					old_blkaddr, old_blkaddr);
1357 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1358 
1359 	/*
1360 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1361 	 * data from unwritten block via dio_read.
1362 	 */
1363 	return 0;
1364 }
1365 
1366 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1367 {
1368 	struct inode *inode = file_inode(iocb->ki_filp);
1369 	struct f2fs_map_blocks map;
1370 	int flag;
1371 	int err = 0;
1372 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1373 
1374 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1375 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1376 	if (map.m_len > map.m_lblk)
1377 		map.m_len -= map.m_lblk;
1378 	else
1379 		map.m_len = 0;
1380 
1381 	map.m_next_pgofs = NULL;
1382 	map.m_next_extent = NULL;
1383 	map.m_seg_type = NO_CHECK_TYPE;
1384 	map.m_may_create = true;
1385 
1386 	if (direct_io) {
1387 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1388 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1389 					F2FS_GET_BLOCK_PRE_AIO :
1390 					F2FS_GET_BLOCK_PRE_DIO;
1391 		goto map_blocks;
1392 	}
1393 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1394 		err = f2fs_convert_inline_inode(inode);
1395 		if (err)
1396 			return err;
1397 	}
1398 	if (f2fs_has_inline_data(inode))
1399 		return err;
1400 
1401 	flag = F2FS_GET_BLOCK_PRE_AIO;
1402 
1403 map_blocks:
1404 	err = f2fs_map_blocks(inode, &map, 1, flag);
1405 	if (map.m_len > 0 && err == -ENOSPC) {
1406 		if (!direct_io)
1407 			set_inode_flag(inode, FI_NO_PREALLOC);
1408 		err = 0;
1409 	}
1410 	return err;
1411 }
1412 
1413 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1414 {
1415 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1416 		if (lock)
1417 			down_read(&sbi->node_change);
1418 		else
1419 			up_read(&sbi->node_change);
1420 	} else {
1421 		if (lock)
1422 			f2fs_lock_op(sbi);
1423 		else
1424 			f2fs_unlock_op(sbi);
1425 	}
1426 }
1427 
1428 /*
1429  * f2fs_map_blocks() tries to find or build mapping relationship which
1430  * maps continuous logical blocks to physical blocks, and return such
1431  * info via f2fs_map_blocks structure.
1432  */
1433 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1434 						int create, int flag)
1435 {
1436 	unsigned int maxblocks = map->m_len;
1437 	struct dnode_of_data dn;
1438 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1439 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1440 	pgoff_t pgofs, end_offset, end;
1441 	int err = 0, ofs = 1;
1442 	unsigned int ofs_in_node, last_ofs_in_node;
1443 	blkcnt_t prealloc;
1444 	struct extent_info ei = {0,0,0};
1445 	block_t blkaddr;
1446 	unsigned int start_pgofs;
1447 
1448 	if (!maxblocks)
1449 		return 0;
1450 
1451 	map->m_len = 0;
1452 	map->m_flags = 0;
1453 
1454 	/* it only supports block size == page size */
1455 	pgofs =	(pgoff_t)map->m_lblk;
1456 	end = pgofs + maxblocks;
1457 
1458 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1459 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1460 							map->m_may_create)
1461 			goto next_dnode;
1462 
1463 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1464 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1465 		map->m_flags = F2FS_MAP_MAPPED;
1466 		if (map->m_next_extent)
1467 			*map->m_next_extent = pgofs + map->m_len;
1468 
1469 		/* for hardware encryption, but to avoid potential issue in future */
1470 		if (flag == F2FS_GET_BLOCK_DIO)
1471 			f2fs_wait_on_block_writeback_range(inode,
1472 						map->m_pblk, map->m_len);
1473 		goto out;
1474 	}
1475 
1476 next_dnode:
1477 	if (map->m_may_create)
1478 		f2fs_do_map_lock(sbi, flag, true);
1479 
1480 	/* When reading holes, we need its node page */
1481 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1482 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1483 	if (err) {
1484 		if (flag == F2FS_GET_BLOCK_BMAP)
1485 			map->m_pblk = 0;
1486 		if (err == -ENOENT) {
1487 			err = 0;
1488 			if (map->m_next_pgofs)
1489 				*map->m_next_pgofs =
1490 					f2fs_get_next_page_offset(&dn, pgofs);
1491 			if (map->m_next_extent)
1492 				*map->m_next_extent =
1493 					f2fs_get_next_page_offset(&dn, pgofs);
1494 		}
1495 		goto unlock_out;
1496 	}
1497 
1498 	start_pgofs = pgofs;
1499 	prealloc = 0;
1500 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1501 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1502 
1503 next_block:
1504 	blkaddr = f2fs_data_blkaddr(&dn);
1505 
1506 	if (__is_valid_data_blkaddr(blkaddr) &&
1507 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1508 		err = -EFSCORRUPTED;
1509 		goto sync_out;
1510 	}
1511 
1512 	if (__is_valid_data_blkaddr(blkaddr)) {
1513 		/* use out-place-update for driect IO under LFS mode */
1514 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1515 							map->m_may_create) {
1516 			err = __allocate_data_block(&dn, map->m_seg_type);
1517 			if (err)
1518 				goto sync_out;
1519 			blkaddr = dn.data_blkaddr;
1520 			set_inode_flag(inode, FI_APPEND_WRITE);
1521 		}
1522 	} else {
1523 		if (create) {
1524 			if (unlikely(f2fs_cp_error(sbi))) {
1525 				err = -EIO;
1526 				goto sync_out;
1527 			}
1528 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1529 				if (blkaddr == NULL_ADDR) {
1530 					prealloc++;
1531 					last_ofs_in_node = dn.ofs_in_node;
1532 				}
1533 			} else {
1534 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1535 					flag != F2FS_GET_BLOCK_DIO);
1536 				err = __allocate_data_block(&dn,
1537 							map->m_seg_type);
1538 				if (!err)
1539 					set_inode_flag(inode, FI_APPEND_WRITE);
1540 			}
1541 			if (err)
1542 				goto sync_out;
1543 			map->m_flags |= F2FS_MAP_NEW;
1544 			blkaddr = dn.data_blkaddr;
1545 		} else {
1546 			if (flag == F2FS_GET_BLOCK_BMAP) {
1547 				map->m_pblk = 0;
1548 				goto sync_out;
1549 			}
1550 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1551 				goto sync_out;
1552 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1553 						blkaddr == NULL_ADDR) {
1554 				if (map->m_next_pgofs)
1555 					*map->m_next_pgofs = pgofs + 1;
1556 				goto sync_out;
1557 			}
1558 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1559 				/* for defragment case */
1560 				if (map->m_next_pgofs)
1561 					*map->m_next_pgofs = pgofs + 1;
1562 				goto sync_out;
1563 			}
1564 		}
1565 	}
1566 
1567 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1568 		goto skip;
1569 
1570 	if (map->m_len == 0) {
1571 		/* preallocated unwritten block should be mapped for fiemap. */
1572 		if (blkaddr == NEW_ADDR)
1573 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1574 		map->m_flags |= F2FS_MAP_MAPPED;
1575 
1576 		map->m_pblk = blkaddr;
1577 		map->m_len = 1;
1578 	} else if ((map->m_pblk != NEW_ADDR &&
1579 			blkaddr == (map->m_pblk + ofs)) ||
1580 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1581 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1582 		ofs++;
1583 		map->m_len++;
1584 	} else {
1585 		goto sync_out;
1586 	}
1587 
1588 skip:
1589 	dn.ofs_in_node++;
1590 	pgofs++;
1591 
1592 	/* preallocate blocks in batch for one dnode page */
1593 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1594 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1595 
1596 		dn.ofs_in_node = ofs_in_node;
1597 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1598 		if (err)
1599 			goto sync_out;
1600 
1601 		map->m_len += dn.ofs_in_node - ofs_in_node;
1602 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1603 			err = -ENOSPC;
1604 			goto sync_out;
1605 		}
1606 		dn.ofs_in_node = end_offset;
1607 	}
1608 
1609 	if (pgofs >= end)
1610 		goto sync_out;
1611 	else if (dn.ofs_in_node < end_offset)
1612 		goto next_block;
1613 
1614 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1615 		if (map->m_flags & F2FS_MAP_MAPPED) {
1616 			unsigned int ofs = start_pgofs - map->m_lblk;
1617 
1618 			f2fs_update_extent_cache_range(&dn,
1619 				start_pgofs, map->m_pblk + ofs,
1620 				map->m_len - ofs);
1621 		}
1622 	}
1623 
1624 	f2fs_put_dnode(&dn);
1625 
1626 	if (map->m_may_create) {
1627 		f2fs_do_map_lock(sbi, flag, false);
1628 		f2fs_balance_fs(sbi, dn.node_changed);
1629 	}
1630 	goto next_dnode;
1631 
1632 sync_out:
1633 
1634 	/* for hardware encryption, but to avoid potential issue in future */
1635 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1636 		f2fs_wait_on_block_writeback_range(inode,
1637 						map->m_pblk, map->m_len);
1638 
1639 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1640 		if (map->m_flags & F2FS_MAP_MAPPED) {
1641 			unsigned int ofs = start_pgofs - map->m_lblk;
1642 
1643 			f2fs_update_extent_cache_range(&dn,
1644 				start_pgofs, map->m_pblk + ofs,
1645 				map->m_len - ofs);
1646 		}
1647 		if (map->m_next_extent)
1648 			*map->m_next_extent = pgofs + 1;
1649 	}
1650 	f2fs_put_dnode(&dn);
1651 unlock_out:
1652 	if (map->m_may_create) {
1653 		f2fs_do_map_lock(sbi, flag, false);
1654 		f2fs_balance_fs(sbi, dn.node_changed);
1655 	}
1656 out:
1657 	trace_f2fs_map_blocks(inode, map, err);
1658 	return err;
1659 }
1660 
1661 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1662 {
1663 	struct f2fs_map_blocks map;
1664 	block_t last_lblk;
1665 	int err;
1666 
1667 	if (pos + len > i_size_read(inode))
1668 		return false;
1669 
1670 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1671 	map.m_next_pgofs = NULL;
1672 	map.m_next_extent = NULL;
1673 	map.m_seg_type = NO_CHECK_TYPE;
1674 	map.m_may_create = false;
1675 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1676 
1677 	while (map.m_lblk < last_lblk) {
1678 		map.m_len = last_lblk - map.m_lblk;
1679 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1680 		if (err || map.m_len == 0)
1681 			return false;
1682 		map.m_lblk += map.m_len;
1683 	}
1684 	return true;
1685 }
1686 
1687 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1688 {
1689 	return (bytes >> inode->i_blkbits);
1690 }
1691 
1692 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1693 {
1694 	return (blks << inode->i_blkbits);
1695 }
1696 
1697 static int __get_data_block(struct inode *inode, sector_t iblock,
1698 			struct buffer_head *bh, int create, int flag,
1699 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1700 {
1701 	struct f2fs_map_blocks map;
1702 	int err;
1703 
1704 	map.m_lblk = iblock;
1705 	map.m_len = bytes_to_blks(inode, bh->b_size);
1706 	map.m_next_pgofs = next_pgofs;
1707 	map.m_next_extent = NULL;
1708 	map.m_seg_type = seg_type;
1709 	map.m_may_create = may_write;
1710 
1711 	err = f2fs_map_blocks(inode, &map, create, flag);
1712 	if (!err) {
1713 		map_bh(bh, inode->i_sb, map.m_pblk);
1714 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1715 		bh->b_size = blks_to_bytes(inode, map.m_len);
1716 	}
1717 	return err;
1718 }
1719 
1720 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1721 			struct buffer_head *bh_result, int create)
1722 {
1723 	return __get_data_block(inode, iblock, bh_result, create,
1724 				F2FS_GET_BLOCK_DIO, NULL,
1725 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1726 				IS_SWAPFILE(inode) ? false : true);
1727 }
1728 
1729 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1730 			struct buffer_head *bh_result, int create)
1731 {
1732 	return __get_data_block(inode, iblock, bh_result, create,
1733 				F2FS_GET_BLOCK_DIO, NULL,
1734 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1735 				false);
1736 }
1737 
1738 static int f2fs_xattr_fiemap(struct inode *inode,
1739 				struct fiemap_extent_info *fieinfo)
1740 {
1741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1742 	struct page *page;
1743 	struct node_info ni;
1744 	__u64 phys = 0, len;
1745 	__u32 flags;
1746 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1747 	int err = 0;
1748 
1749 	if (f2fs_has_inline_xattr(inode)) {
1750 		int offset;
1751 
1752 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1753 						inode->i_ino, false);
1754 		if (!page)
1755 			return -ENOMEM;
1756 
1757 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1758 		if (err) {
1759 			f2fs_put_page(page, 1);
1760 			return err;
1761 		}
1762 
1763 		phys = blks_to_bytes(inode, ni.blk_addr);
1764 		offset = offsetof(struct f2fs_inode, i_addr) +
1765 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1766 					get_inline_xattr_addrs(inode));
1767 
1768 		phys += offset;
1769 		len = inline_xattr_size(inode);
1770 
1771 		f2fs_put_page(page, 1);
1772 
1773 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1774 
1775 		if (!xnid)
1776 			flags |= FIEMAP_EXTENT_LAST;
1777 
1778 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1779 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1780 		if (err || err == 1)
1781 			return err;
1782 	}
1783 
1784 	if (xnid) {
1785 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1786 		if (!page)
1787 			return -ENOMEM;
1788 
1789 		err = f2fs_get_node_info(sbi, xnid, &ni);
1790 		if (err) {
1791 			f2fs_put_page(page, 1);
1792 			return err;
1793 		}
1794 
1795 		phys = blks_to_bytes(inode, ni.blk_addr);
1796 		len = inode->i_sb->s_blocksize;
1797 
1798 		f2fs_put_page(page, 1);
1799 
1800 		flags = FIEMAP_EXTENT_LAST;
1801 	}
1802 
1803 	if (phys) {
1804 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1805 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1806 	}
1807 
1808 	return (err < 0 ? err : 0);
1809 }
1810 
1811 static loff_t max_inode_blocks(struct inode *inode)
1812 {
1813 	loff_t result = ADDRS_PER_INODE(inode);
1814 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1815 
1816 	/* two direct node blocks */
1817 	result += (leaf_count * 2);
1818 
1819 	/* two indirect node blocks */
1820 	leaf_count *= NIDS_PER_BLOCK;
1821 	result += (leaf_count * 2);
1822 
1823 	/* one double indirect node block */
1824 	leaf_count *= NIDS_PER_BLOCK;
1825 	result += leaf_count;
1826 
1827 	return result;
1828 }
1829 
1830 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1831 		u64 start, u64 len)
1832 {
1833 	struct f2fs_map_blocks map;
1834 	sector_t start_blk, last_blk;
1835 	pgoff_t next_pgofs;
1836 	u64 logical = 0, phys = 0, size = 0;
1837 	u32 flags = 0;
1838 	int ret = 0;
1839 	bool compr_cluster = false;
1840 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1841 
1842 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1843 		ret = f2fs_precache_extents(inode);
1844 		if (ret)
1845 			return ret;
1846 	}
1847 
1848 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1849 	if (ret)
1850 		return ret;
1851 
1852 	inode_lock(inode);
1853 
1854 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1855 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1856 		goto out;
1857 	}
1858 
1859 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1860 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1861 		if (ret != -EAGAIN)
1862 			goto out;
1863 	}
1864 
1865 	if (bytes_to_blks(inode, len) == 0)
1866 		len = blks_to_bytes(inode, 1);
1867 
1868 	start_blk = bytes_to_blks(inode, start);
1869 	last_blk = bytes_to_blks(inode, start + len - 1);
1870 
1871 next:
1872 	memset(&map, 0, sizeof(map));
1873 	map.m_lblk = start_blk;
1874 	map.m_len = bytes_to_blks(inode, len);
1875 	map.m_next_pgofs = &next_pgofs;
1876 	map.m_seg_type = NO_CHECK_TYPE;
1877 
1878 	if (compr_cluster)
1879 		map.m_len = cluster_size - 1;
1880 
1881 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1882 	if (ret)
1883 		goto out;
1884 
1885 	/* HOLE */
1886 	if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1887 		start_blk = next_pgofs;
1888 
1889 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1890 						max_inode_blocks(inode)))
1891 			goto prep_next;
1892 
1893 		flags |= FIEMAP_EXTENT_LAST;
1894 	}
1895 
1896 	if (size) {
1897 		flags |= FIEMAP_EXTENT_MERGED;
1898 		if (IS_ENCRYPTED(inode))
1899 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1900 
1901 		ret = fiemap_fill_next_extent(fieinfo, logical,
1902 				phys, size, flags);
1903 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1904 		if (ret)
1905 			goto out;
1906 		size = 0;
1907 	}
1908 
1909 	if (start_blk > last_blk)
1910 		goto out;
1911 
1912 	if (compr_cluster) {
1913 		compr_cluster = false;
1914 
1915 
1916 		logical = blks_to_bytes(inode, start_blk - 1);
1917 		phys = blks_to_bytes(inode, map.m_pblk);
1918 		size = blks_to_bytes(inode, cluster_size);
1919 
1920 		flags |= FIEMAP_EXTENT_ENCODED;
1921 
1922 		start_blk += cluster_size - 1;
1923 
1924 		if (start_blk > last_blk)
1925 			goto out;
1926 
1927 		goto prep_next;
1928 	}
1929 
1930 	if (map.m_pblk == COMPRESS_ADDR) {
1931 		compr_cluster = true;
1932 		start_blk++;
1933 		goto prep_next;
1934 	}
1935 
1936 	logical = blks_to_bytes(inode, start_blk);
1937 	phys = blks_to_bytes(inode, map.m_pblk);
1938 	size = blks_to_bytes(inode, map.m_len);
1939 	flags = 0;
1940 	if (map.m_flags & F2FS_MAP_UNWRITTEN)
1941 		flags = FIEMAP_EXTENT_UNWRITTEN;
1942 
1943 	start_blk += bytes_to_blks(inode, size);
1944 
1945 prep_next:
1946 	cond_resched();
1947 	if (fatal_signal_pending(current))
1948 		ret = -EINTR;
1949 	else
1950 		goto next;
1951 out:
1952 	if (ret == 1)
1953 		ret = 0;
1954 
1955 	inode_unlock(inode);
1956 	return ret;
1957 }
1958 
1959 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1960 {
1961 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1962 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1963 		return inode->i_sb->s_maxbytes;
1964 
1965 	return i_size_read(inode);
1966 }
1967 
1968 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1969 					unsigned nr_pages,
1970 					struct f2fs_map_blocks *map,
1971 					struct bio **bio_ret,
1972 					sector_t *last_block_in_bio,
1973 					bool is_readahead)
1974 {
1975 	struct bio *bio = *bio_ret;
1976 	const unsigned blocksize = blks_to_bytes(inode, 1);
1977 	sector_t block_in_file;
1978 	sector_t last_block;
1979 	sector_t last_block_in_file;
1980 	sector_t block_nr;
1981 	int ret = 0;
1982 
1983 	block_in_file = (sector_t)page_index(page);
1984 	last_block = block_in_file + nr_pages;
1985 	last_block_in_file = bytes_to_blks(inode,
1986 			f2fs_readpage_limit(inode) + blocksize - 1);
1987 	if (last_block > last_block_in_file)
1988 		last_block = last_block_in_file;
1989 
1990 	/* just zeroing out page which is beyond EOF */
1991 	if (block_in_file >= last_block)
1992 		goto zero_out;
1993 	/*
1994 	 * Map blocks using the previous result first.
1995 	 */
1996 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1997 			block_in_file > map->m_lblk &&
1998 			block_in_file < (map->m_lblk + map->m_len))
1999 		goto got_it;
2000 
2001 	/*
2002 	 * Then do more f2fs_map_blocks() calls until we are
2003 	 * done with this page.
2004 	 */
2005 	map->m_lblk = block_in_file;
2006 	map->m_len = last_block - block_in_file;
2007 
2008 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2009 	if (ret)
2010 		goto out;
2011 got_it:
2012 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2013 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2014 		SetPageMappedToDisk(page);
2015 
2016 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2017 					!cleancache_get_page(page))) {
2018 			SetPageUptodate(page);
2019 			goto confused;
2020 		}
2021 
2022 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2023 						DATA_GENERIC_ENHANCE_READ)) {
2024 			ret = -EFSCORRUPTED;
2025 			goto out;
2026 		}
2027 	} else {
2028 zero_out:
2029 		zero_user_segment(page, 0, PAGE_SIZE);
2030 		if (f2fs_need_verity(inode, page->index) &&
2031 		    !fsverity_verify_page(page)) {
2032 			ret = -EIO;
2033 			goto out;
2034 		}
2035 		if (!PageUptodate(page))
2036 			SetPageUptodate(page);
2037 		unlock_page(page);
2038 		goto out;
2039 	}
2040 
2041 	/*
2042 	 * This page will go to BIO.  Do we need to send this
2043 	 * BIO off first?
2044 	 */
2045 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2046 				       *last_block_in_bio, block_nr) ||
2047 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2048 submit_and_realloc:
2049 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2050 		bio = NULL;
2051 	}
2052 	if (bio == NULL) {
2053 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2054 				is_readahead ? REQ_RAHEAD : 0, page->index,
2055 				false);
2056 		if (IS_ERR(bio)) {
2057 			ret = PTR_ERR(bio);
2058 			bio = NULL;
2059 			goto out;
2060 		}
2061 	}
2062 
2063 	/*
2064 	 * If the page is under writeback, we need to wait for
2065 	 * its completion to see the correct decrypted data.
2066 	 */
2067 	f2fs_wait_on_block_writeback(inode, block_nr);
2068 
2069 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2070 		goto submit_and_realloc;
2071 
2072 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2073 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2074 	ClearPageError(page);
2075 	*last_block_in_bio = block_nr;
2076 	goto out;
2077 confused:
2078 	if (bio) {
2079 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2080 		bio = NULL;
2081 	}
2082 	unlock_page(page);
2083 out:
2084 	*bio_ret = bio;
2085 	return ret;
2086 }
2087 
2088 #ifdef CONFIG_F2FS_FS_COMPRESSION
2089 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2090 				unsigned nr_pages, sector_t *last_block_in_bio,
2091 				bool is_readahead, bool for_write)
2092 {
2093 	struct dnode_of_data dn;
2094 	struct inode *inode = cc->inode;
2095 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2096 	struct bio *bio = *bio_ret;
2097 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2098 	sector_t last_block_in_file;
2099 	const unsigned blocksize = blks_to_bytes(inode, 1);
2100 	struct decompress_io_ctx *dic = NULL;
2101 	int i;
2102 	int ret = 0;
2103 
2104 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2105 
2106 	last_block_in_file = bytes_to_blks(inode,
2107 			f2fs_readpage_limit(inode) + blocksize - 1);
2108 
2109 	/* get rid of pages beyond EOF */
2110 	for (i = 0; i < cc->cluster_size; i++) {
2111 		struct page *page = cc->rpages[i];
2112 
2113 		if (!page)
2114 			continue;
2115 		if ((sector_t)page->index >= last_block_in_file) {
2116 			zero_user_segment(page, 0, PAGE_SIZE);
2117 			if (!PageUptodate(page))
2118 				SetPageUptodate(page);
2119 		} else if (!PageUptodate(page)) {
2120 			continue;
2121 		}
2122 		unlock_page(page);
2123 		cc->rpages[i] = NULL;
2124 		cc->nr_rpages--;
2125 	}
2126 
2127 	/* we are done since all pages are beyond EOF */
2128 	if (f2fs_cluster_is_empty(cc))
2129 		goto out;
2130 
2131 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2132 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2133 	if (ret)
2134 		goto out;
2135 
2136 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2137 
2138 	for (i = 1; i < cc->cluster_size; i++) {
2139 		block_t blkaddr;
2140 
2141 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2142 						dn.ofs_in_node + i);
2143 
2144 		if (!__is_valid_data_blkaddr(blkaddr))
2145 			break;
2146 
2147 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2148 			ret = -EFAULT;
2149 			goto out_put_dnode;
2150 		}
2151 		cc->nr_cpages++;
2152 	}
2153 
2154 	/* nothing to decompress */
2155 	if (cc->nr_cpages == 0) {
2156 		ret = 0;
2157 		goto out_put_dnode;
2158 	}
2159 
2160 	dic = f2fs_alloc_dic(cc);
2161 	if (IS_ERR(dic)) {
2162 		ret = PTR_ERR(dic);
2163 		goto out_put_dnode;
2164 	}
2165 
2166 	for (i = 0; i < dic->nr_cpages; i++) {
2167 		struct page *page = dic->cpages[i];
2168 		block_t blkaddr;
2169 		struct bio_post_read_ctx *ctx;
2170 
2171 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2172 						dn.ofs_in_node + i + 1);
2173 
2174 		if (bio && (!page_is_mergeable(sbi, bio,
2175 					*last_block_in_bio, blkaddr) ||
2176 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2177 submit_and_realloc:
2178 			__submit_bio(sbi, bio, DATA);
2179 			bio = NULL;
2180 		}
2181 
2182 		if (!bio) {
2183 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2184 					is_readahead ? REQ_RAHEAD : 0,
2185 					page->index, for_write);
2186 			if (IS_ERR(bio)) {
2187 				ret = PTR_ERR(bio);
2188 				f2fs_decompress_end_io(dic, ret);
2189 				f2fs_put_dnode(&dn);
2190 				*bio_ret = NULL;
2191 				return ret;
2192 			}
2193 		}
2194 
2195 		f2fs_wait_on_block_writeback(inode, blkaddr);
2196 
2197 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2198 			goto submit_and_realloc;
2199 
2200 		ctx = bio->bi_private;
2201 		ctx->enabled_steps |= STEP_DECOMPRESS;
2202 		refcount_inc(&dic->refcnt);
2203 
2204 		inc_page_count(sbi, F2FS_RD_DATA);
2205 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2206 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2207 		ClearPageError(page);
2208 		*last_block_in_bio = blkaddr;
2209 	}
2210 
2211 	f2fs_put_dnode(&dn);
2212 
2213 	*bio_ret = bio;
2214 	return 0;
2215 
2216 out_put_dnode:
2217 	f2fs_put_dnode(&dn);
2218 out:
2219 	for (i = 0; i < cc->cluster_size; i++) {
2220 		if (cc->rpages[i]) {
2221 			ClearPageUptodate(cc->rpages[i]);
2222 			ClearPageError(cc->rpages[i]);
2223 			unlock_page(cc->rpages[i]);
2224 		}
2225 	}
2226 	*bio_ret = bio;
2227 	return ret;
2228 }
2229 #endif
2230 
2231 /*
2232  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2233  * Major change was from block_size == page_size in f2fs by default.
2234  */
2235 static int f2fs_mpage_readpages(struct inode *inode,
2236 		struct readahead_control *rac, struct page *page)
2237 {
2238 	struct bio *bio = NULL;
2239 	sector_t last_block_in_bio = 0;
2240 	struct f2fs_map_blocks map;
2241 #ifdef CONFIG_F2FS_FS_COMPRESSION
2242 	struct compress_ctx cc = {
2243 		.inode = inode,
2244 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2245 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2246 		.cluster_idx = NULL_CLUSTER,
2247 		.rpages = NULL,
2248 		.cpages = NULL,
2249 		.nr_rpages = 0,
2250 		.nr_cpages = 0,
2251 	};
2252 #endif
2253 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2254 	unsigned max_nr_pages = nr_pages;
2255 	int ret = 0;
2256 
2257 	map.m_pblk = 0;
2258 	map.m_lblk = 0;
2259 	map.m_len = 0;
2260 	map.m_flags = 0;
2261 	map.m_next_pgofs = NULL;
2262 	map.m_next_extent = NULL;
2263 	map.m_seg_type = NO_CHECK_TYPE;
2264 	map.m_may_create = false;
2265 
2266 	for (; nr_pages; nr_pages--) {
2267 		if (rac) {
2268 			page = readahead_page(rac);
2269 			prefetchw(&page->flags);
2270 		}
2271 
2272 #ifdef CONFIG_F2FS_FS_COMPRESSION
2273 		if (f2fs_compressed_file(inode)) {
2274 			/* there are remained comressed pages, submit them */
2275 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2276 				ret = f2fs_read_multi_pages(&cc, &bio,
2277 							max_nr_pages,
2278 							&last_block_in_bio,
2279 							rac != NULL, false);
2280 				f2fs_destroy_compress_ctx(&cc);
2281 				if (ret)
2282 					goto set_error_page;
2283 			}
2284 			ret = f2fs_is_compressed_cluster(inode, page->index);
2285 			if (ret < 0)
2286 				goto set_error_page;
2287 			else if (!ret)
2288 				goto read_single_page;
2289 
2290 			ret = f2fs_init_compress_ctx(&cc);
2291 			if (ret)
2292 				goto set_error_page;
2293 
2294 			f2fs_compress_ctx_add_page(&cc, page);
2295 
2296 			goto next_page;
2297 		}
2298 read_single_page:
2299 #endif
2300 
2301 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2302 					&bio, &last_block_in_bio, rac);
2303 		if (ret) {
2304 #ifdef CONFIG_F2FS_FS_COMPRESSION
2305 set_error_page:
2306 #endif
2307 			SetPageError(page);
2308 			zero_user_segment(page, 0, PAGE_SIZE);
2309 			unlock_page(page);
2310 		}
2311 #ifdef CONFIG_F2FS_FS_COMPRESSION
2312 next_page:
2313 #endif
2314 		if (rac)
2315 			put_page(page);
2316 
2317 #ifdef CONFIG_F2FS_FS_COMPRESSION
2318 		if (f2fs_compressed_file(inode)) {
2319 			/* last page */
2320 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2321 				ret = f2fs_read_multi_pages(&cc, &bio,
2322 							max_nr_pages,
2323 							&last_block_in_bio,
2324 							rac != NULL, false);
2325 				f2fs_destroy_compress_ctx(&cc);
2326 			}
2327 		}
2328 #endif
2329 	}
2330 	if (bio)
2331 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2332 	return ret;
2333 }
2334 
2335 static int f2fs_read_data_page(struct file *file, struct page *page)
2336 {
2337 	struct inode *inode = page_file_mapping(page)->host;
2338 	int ret = -EAGAIN;
2339 
2340 	trace_f2fs_readpage(page, DATA);
2341 
2342 	if (!f2fs_is_compress_backend_ready(inode)) {
2343 		unlock_page(page);
2344 		return -EOPNOTSUPP;
2345 	}
2346 
2347 	/* If the file has inline data, try to read it directly */
2348 	if (f2fs_has_inline_data(inode))
2349 		ret = f2fs_read_inline_data(inode, page);
2350 	if (ret == -EAGAIN)
2351 		ret = f2fs_mpage_readpages(inode, NULL, page);
2352 	return ret;
2353 }
2354 
2355 static void f2fs_readahead(struct readahead_control *rac)
2356 {
2357 	struct inode *inode = rac->mapping->host;
2358 
2359 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2360 
2361 	if (!f2fs_is_compress_backend_ready(inode))
2362 		return;
2363 
2364 	/* If the file has inline data, skip readpages */
2365 	if (f2fs_has_inline_data(inode))
2366 		return;
2367 
2368 	f2fs_mpage_readpages(inode, rac, NULL);
2369 }
2370 
2371 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2372 {
2373 	struct inode *inode = fio->page->mapping->host;
2374 	struct page *mpage, *page;
2375 	gfp_t gfp_flags = GFP_NOFS;
2376 
2377 	if (!f2fs_encrypted_file(inode))
2378 		return 0;
2379 
2380 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2381 
2382 	/* wait for GCed page writeback via META_MAPPING */
2383 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2384 
2385 	if (fscrypt_inode_uses_inline_crypto(inode))
2386 		return 0;
2387 
2388 retry_encrypt:
2389 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2390 					PAGE_SIZE, 0, gfp_flags);
2391 	if (IS_ERR(fio->encrypted_page)) {
2392 		/* flush pending IOs and wait for a while in the ENOMEM case */
2393 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2394 			f2fs_flush_merged_writes(fio->sbi);
2395 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2396 			gfp_flags |= __GFP_NOFAIL;
2397 			goto retry_encrypt;
2398 		}
2399 		return PTR_ERR(fio->encrypted_page);
2400 	}
2401 
2402 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2403 	if (mpage) {
2404 		if (PageUptodate(mpage))
2405 			memcpy(page_address(mpage),
2406 				page_address(fio->encrypted_page), PAGE_SIZE);
2407 		f2fs_put_page(mpage, 1);
2408 	}
2409 	return 0;
2410 }
2411 
2412 static inline bool check_inplace_update_policy(struct inode *inode,
2413 				struct f2fs_io_info *fio)
2414 {
2415 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2416 	unsigned int policy = SM_I(sbi)->ipu_policy;
2417 
2418 	if (policy & (0x1 << F2FS_IPU_FORCE))
2419 		return true;
2420 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2421 		return true;
2422 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2423 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2424 		return true;
2425 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2426 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2427 		return true;
2428 
2429 	/*
2430 	 * IPU for rewrite async pages
2431 	 */
2432 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2433 			fio && fio->op == REQ_OP_WRITE &&
2434 			!(fio->op_flags & REQ_SYNC) &&
2435 			!IS_ENCRYPTED(inode))
2436 		return true;
2437 
2438 	/* this is only set during fdatasync */
2439 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2440 			is_inode_flag_set(inode, FI_NEED_IPU))
2441 		return true;
2442 
2443 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2444 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2445 		return true;
2446 
2447 	return false;
2448 }
2449 
2450 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2451 {
2452 	if (f2fs_is_pinned_file(inode))
2453 		return true;
2454 
2455 	/* if this is cold file, we should overwrite to avoid fragmentation */
2456 	if (file_is_cold(inode))
2457 		return true;
2458 
2459 	return check_inplace_update_policy(inode, fio);
2460 }
2461 
2462 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2463 {
2464 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2465 
2466 	if (f2fs_lfs_mode(sbi))
2467 		return true;
2468 	if (S_ISDIR(inode->i_mode))
2469 		return true;
2470 	if (IS_NOQUOTA(inode))
2471 		return true;
2472 	if (f2fs_is_atomic_file(inode))
2473 		return true;
2474 	if (fio) {
2475 		if (is_cold_data(fio->page))
2476 			return true;
2477 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2478 			return true;
2479 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2480 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2481 			return true;
2482 	}
2483 	return false;
2484 }
2485 
2486 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2487 {
2488 	struct inode *inode = fio->page->mapping->host;
2489 
2490 	if (f2fs_should_update_outplace(inode, fio))
2491 		return false;
2492 
2493 	return f2fs_should_update_inplace(inode, fio);
2494 }
2495 
2496 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2497 {
2498 	struct page *page = fio->page;
2499 	struct inode *inode = page->mapping->host;
2500 	struct dnode_of_data dn;
2501 	struct extent_info ei = {0,0,0};
2502 	struct node_info ni;
2503 	bool ipu_force = false;
2504 	int err = 0;
2505 
2506 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2507 	if (need_inplace_update(fio) &&
2508 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2509 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2510 
2511 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2512 						DATA_GENERIC_ENHANCE))
2513 			return -EFSCORRUPTED;
2514 
2515 		ipu_force = true;
2516 		fio->need_lock = LOCK_DONE;
2517 		goto got_it;
2518 	}
2519 
2520 	/* Deadlock due to between page->lock and f2fs_lock_op */
2521 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2522 		return -EAGAIN;
2523 
2524 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2525 	if (err)
2526 		goto out;
2527 
2528 	fio->old_blkaddr = dn.data_blkaddr;
2529 
2530 	/* This page is already truncated */
2531 	if (fio->old_blkaddr == NULL_ADDR) {
2532 		ClearPageUptodate(page);
2533 		clear_cold_data(page);
2534 		goto out_writepage;
2535 	}
2536 got_it:
2537 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2538 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2539 						DATA_GENERIC_ENHANCE)) {
2540 		err = -EFSCORRUPTED;
2541 		goto out_writepage;
2542 	}
2543 	/*
2544 	 * If current allocation needs SSR,
2545 	 * it had better in-place writes for updated data.
2546 	 */
2547 	if (ipu_force ||
2548 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2549 					need_inplace_update(fio))) {
2550 		err = f2fs_encrypt_one_page(fio);
2551 		if (err)
2552 			goto out_writepage;
2553 
2554 		set_page_writeback(page);
2555 		ClearPageError(page);
2556 		f2fs_put_dnode(&dn);
2557 		if (fio->need_lock == LOCK_REQ)
2558 			f2fs_unlock_op(fio->sbi);
2559 		err = f2fs_inplace_write_data(fio);
2560 		if (err) {
2561 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2562 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2563 			if (PageWriteback(page))
2564 				end_page_writeback(page);
2565 		} else {
2566 			set_inode_flag(inode, FI_UPDATE_WRITE);
2567 		}
2568 		trace_f2fs_do_write_data_page(fio->page, IPU);
2569 		return err;
2570 	}
2571 
2572 	if (fio->need_lock == LOCK_RETRY) {
2573 		if (!f2fs_trylock_op(fio->sbi)) {
2574 			err = -EAGAIN;
2575 			goto out_writepage;
2576 		}
2577 		fio->need_lock = LOCK_REQ;
2578 	}
2579 
2580 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2581 	if (err)
2582 		goto out_writepage;
2583 
2584 	fio->version = ni.version;
2585 
2586 	err = f2fs_encrypt_one_page(fio);
2587 	if (err)
2588 		goto out_writepage;
2589 
2590 	set_page_writeback(page);
2591 	ClearPageError(page);
2592 
2593 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2594 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2595 
2596 	/* LFS mode write path */
2597 	f2fs_outplace_write_data(&dn, fio);
2598 	trace_f2fs_do_write_data_page(page, OPU);
2599 	set_inode_flag(inode, FI_APPEND_WRITE);
2600 	if (page->index == 0)
2601 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2602 out_writepage:
2603 	f2fs_put_dnode(&dn);
2604 out:
2605 	if (fio->need_lock == LOCK_REQ)
2606 		f2fs_unlock_op(fio->sbi);
2607 	return err;
2608 }
2609 
2610 int f2fs_write_single_data_page(struct page *page, int *submitted,
2611 				struct bio **bio,
2612 				sector_t *last_block,
2613 				struct writeback_control *wbc,
2614 				enum iostat_type io_type,
2615 				int compr_blocks,
2616 				bool allow_balance)
2617 {
2618 	struct inode *inode = page->mapping->host;
2619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620 	loff_t i_size = i_size_read(inode);
2621 	const pgoff_t end_index = ((unsigned long long)i_size)
2622 							>> PAGE_SHIFT;
2623 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2624 	unsigned offset = 0;
2625 	bool need_balance_fs = false;
2626 	int err = 0;
2627 	struct f2fs_io_info fio = {
2628 		.sbi = sbi,
2629 		.ino = inode->i_ino,
2630 		.type = DATA,
2631 		.op = REQ_OP_WRITE,
2632 		.op_flags = wbc_to_write_flags(wbc),
2633 		.old_blkaddr = NULL_ADDR,
2634 		.page = page,
2635 		.encrypted_page = NULL,
2636 		.submitted = false,
2637 		.compr_blocks = compr_blocks,
2638 		.need_lock = LOCK_RETRY,
2639 		.io_type = io_type,
2640 		.io_wbc = wbc,
2641 		.bio = bio,
2642 		.last_block = last_block,
2643 	};
2644 
2645 	trace_f2fs_writepage(page, DATA);
2646 
2647 	/* we should bypass data pages to proceed the kworkder jobs */
2648 	if (unlikely(f2fs_cp_error(sbi))) {
2649 		mapping_set_error(page->mapping, -EIO);
2650 		/*
2651 		 * don't drop any dirty dentry pages for keeping lastest
2652 		 * directory structure.
2653 		 */
2654 		if (S_ISDIR(inode->i_mode))
2655 			goto redirty_out;
2656 		goto out;
2657 	}
2658 
2659 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2660 		goto redirty_out;
2661 
2662 	if (page->index < end_index ||
2663 			f2fs_verity_in_progress(inode) ||
2664 			compr_blocks)
2665 		goto write;
2666 
2667 	/*
2668 	 * If the offset is out-of-range of file size,
2669 	 * this page does not have to be written to disk.
2670 	 */
2671 	offset = i_size & (PAGE_SIZE - 1);
2672 	if ((page->index >= end_index + 1) || !offset)
2673 		goto out;
2674 
2675 	zero_user_segment(page, offset, PAGE_SIZE);
2676 write:
2677 	if (f2fs_is_drop_cache(inode))
2678 		goto out;
2679 	/* we should not write 0'th page having journal header */
2680 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2681 			(!wbc->for_reclaim &&
2682 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2683 		goto redirty_out;
2684 
2685 	/* Dentry/quota blocks are controlled by checkpoint */
2686 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2687 		/*
2688 		 * We need to wait for node_write to avoid block allocation during
2689 		 * checkpoint. This can only happen to quota writes which can cause
2690 		 * the below discard race condition.
2691 		 */
2692 		if (IS_NOQUOTA(inode))
2693 			down_read(&sbi->node_write);
2694 
2695 		fio.need_lock = LOCK_DONE;
2696 		err = f2fs_do_write_data_page(&fio);
2697 
2698 		if (IS_NOQUOTA(inode))
2699 			up_read(&sbi->node_write);
2700 
2701 		goto done;
2702 	}
2703 
2704 	if (!wbc->for_reclaim)
2705 		need_balance_fs = true;
2706 	else if (has_not_enough_free_secs(sbi, 0, 0))
2707 		goto redirty_out;
2708 	else
2709 		set_inode_flag(inode, FI_HOT_DATA);
2710 
2711 	err = -EAGAIN;
2712 	if (f2fs_has_inline_data(inode)) {
2713 		err = f2fs_write_inline_data(inode, page);
2714 		if (!err)
2715 			goto out;
2716 	}
2717 
2718 	if (err == -EAGAIN) {
2719 		err = f2fs_do_write_data_page(&fio);
2720 		if (err == -EAGAIN) {
2721 			fio.need_lock = LOCK_REQ;
2722 			err = f2fs_do_write_data_page(&fio);
2723 		}
2724 	}
2725 
2726 	if (err) {
2727 		file_set_keep_isize(inode);
2728 	} else {
2729 		spin_lock(&F2FS_I(inode)->i_size_lock);
2730 		if (F2FS_I(inode)->last_disk_size < psize)
2731 			F2FS_I(inode)->last_disk_size = psize;
2732 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2733 	}
2734 
2735 done:
2736 	if (err && err != -ENOENT)
2737 		goto redirty_out;
2738 
2739 out:
2740 	inode_dec_dirty_pages(inode);
2741 	if (err) {
2742 		ClearPageUptodate(page);
2743 		clear_cold_data(page);
2744 	}
2745 
2746 	if (wbc->for_reclaim) {
2747 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2748 		clear_inode_flag(inode, FI_HOT_DATA);
2749 		f2fs_remove_dirty_inode(inode);
2750 		submitted = NULL;
2751 	}
2752 	unlock_page(page);
2753 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2754 			!F2FS_I(inode)->cp_task && allow_balance)
2755 		f2fs_balance_fs(sbi, need_balance_fs);
2756 
2757 	if (unlikely(f2fs_cp_error(sbi))) {
2758 		f2fs_submit_merged_write(sbi, DATA);
2759 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2760 		submitted = NULL;
2761 	}
2762 
2763 	if (submitted)
2764 		*submitted = fio.submitted ? 1 : 0;
2765 
2766 	return 0;
2767 
2768 redirty_out:
2769 	redirty_page_for_writepage(wbc, page);
2770 	/*
2771 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2772 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2773 	 * file_write_and_wait_range() will see EIO error, which is critical
2774 	 * to return value of fsync() followed by atomic_write failure to user.
2775 	 */
2776 	if (!err || wbc->for_reclaim)
2777 		return AOP_WRITEPAGE_ACTIVATE;
2778 	unlock_page(page);
2779 	return err;
2780 }
2781 
2782 static int f2fs_write_data_page(struct page *page,
2783 					struct writeback_control *wbc)
2784 {
2785 #ifdef CONFIG_F2FS_FS_COMPRESSION
2786 	struct inode *inode = page->mapping->host;
2787 
2788 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2789 		goto out;
2790 
2791 	if (f2fs_compressed_file(inode)) {
2792 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2793 			redirty_page_for_writepage(wbc, page);
2794 			return AOP_WRITEPAGE_ACTIVATE;
2795 		}
2796 	}
2797 out:
2798 #endif
2799 
2800 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2801 						wbc, FS_DATA_IO, 0, true);
2802 }
2803 
2804 /*
2805  * This function was copied from write_cche_pages from mm/page-writeback.c.
2806  * The major change is making write step of cold data page separately from
2807  * warm/hot data page.
2808  */
2809 static int f2fs_write_cache_pages(struct address_space *mapping,
2810 					struct writeback_control *wbc,
2811 					enum iostat_type io_type)
2812 {
2813 	int ret = 0;
2814 	int done = 0, retry = 0;
2815 	struct pagevec pvec;
2816 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2817 	struct bio *bio = NULL;
2818 	sector_t last_block;
2819 #ifdef CONFIG_F2FS_FS_COMPRESSION
2820 	struct inode *inode = mapping->host;
2821 	struct compress_ctx cc = {
2822 		.inode = inode,
2823 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2824 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2825 		.cluster_idx = NULL_CLUSTER,
2826 		.rpages = NULL,
2827 		.nr_rpages = 0,
2828 		.cpages = NULL,
2829 		.rbuf = NULL,
2830 		.cbuf = NULL,
2831 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2832 		.private = NULL,
2833 	};
2834 #endif
2835 	int nr_pages;
2836 	pgoff_t index;
2837 	pgoff_t end;		/* Inclusive */
2838 	pgoff_t done_index;
2839 	int range_whole = 0;
2840 	xa_mark_t tag;
2841 	int nwritten = 0;
2842 	int submitted = 0;
2843 	int i;
2844 
2845 	pagevec_init(&pvec);
2846 
2847 	if (get_dirty_pages(mapping->host) <=
2848 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2849 		set_inode_flag(mapping->host, FI_HOT_DATA);
2850 	else
2851 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2852 
2853 	if (wbc->range_cyclic) {
2854 		index = mapping->writeback_index; /* prev offset */
2855 		end = -1;
2856 	} else {
2857 		index = wbc->range_start >> PAGE_SHIFT;
2858 		end = wbc->range_end >> PAGE_SHIFT;
2859 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2860 			range_whole = 1;
2861 	}
2862 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2863 		tag = PAGECACHE_TAG_TOWRITE;
2864 	else
2865 		tag = PAGECACHE_TAG_DIRTY;
2866 retry:
2867 	retry = 0;
2868 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2869 		tag_pages_for_writeback(mapping, index, end);
2870 	done_index = index;
2871 	while (!done && !retry && (index <= end)) {
2872 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2873 				tag);
2874 		if (nr_pages == 0)
2875 			break;
2876 
2877 		for (i = 0; i < nr_pages; i++) {
2878 			struct page *page = pvec.pages[i];
2879 			bool need_readd;
2880 readd:
2881 			need_readd = false;
2882 #ifdef CONFIG_F2FS_FS_COMPRESSION
2883 			if (f2fs_compressed_file(inode)) {
2884 				ret = f2fs_init_compress_ctx(&cc);
2885 				if (ret) {
2886 					done = 1;
2887 					break;
2888 				}
2889 
2890 				if (!f2fs_cluster_can_merge_page(&cc,
2891 								page->index)) {
2892 					ret = f2fs_write_multi_pages(&cc,
2893 						&submitted, wbc, io_type);
2894 					if (!ret)
2895 						need_readd = true;
2896 					goto result;
2897 				}
2898 
2899 				if (unlikely(f2fs_cp_error(sbi)))
2900 					goto lock_page;
2901 
2902 				if (f2fs_cluster_is_empty(&cc)) {
2903 					void *fsdata = NULL;
2904 					struct page *pagep;
2905 					int ret2;
2906 
2907 					ret2 = f2fs_prepare_compress_overwrite(
2908 							inode, &pagep,
2909 							page->index, &fsdata);
2910 					if (ret2 < 0) {
2911 						ret = ret2;
2912 						done = 1;
2913 						break;
2914 					} else if (ret2 &&
2915 						!f2fs_compress_write_end(inode,
2916 								fsdata, page->index,
2917 								1)) {
2918 						retry = 1;
2919 						break;
2920 					}
2921 				} else {
2922 					goto lock_page;
2923 				}
2924 			}
2925 #endif
2926 			/* give a priority to WB_SYNC threads */
2927 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2928 					wbc->sync_mode == WB_SYNC_NONE) {
2929 				done = 1;
2930 				break;
2931 			}
2932 #ifdef CONFIG_F2FS_FS_COMPRESSION
2933 lock_page:
2934 #endif
2935 			done_index = page->index;
2936 retry_write:
2937 			lock_page(page);
2938 
2939 			if (unlikely(page->mapping != mapping)) {
2940 continue_unlock:
2941 				unlock_page(page);
2942 				continue;
2943 			}
2944 
2945 			if (!PageDirty(page)) {
2946 				/* someone wrote it for us */
2947 				goto continue_unlock;
2948 			}
2949 
2950 			if (PageWriteback(page)) {
2951 				if (wbc->sync_mode != WB_SYNC_NONE)
2952 					f2fs_wait_on_page_writeback(page,
2953 							DATA, true, true);
2954 				else
2955 					goto continue_unlock;
2956 			}
2957 
2958 			if (!clear_page_dirty_for_io(page))
2959 				goto continue_unlock;
2960 
2961 #ifdef CONFIG_F2FS_FS_COMPRESSION
2962 			if (f2fs_compressed_file(inode)) {
2963 				get_page(page);
2964 				f2fs_compress_ctx_add_page(&cc, page);
2965 				continue;
2966 			}
2967 #endif
2968 			ret = f2fs_write_single_data_page(page, &submitted,
2969 					&bio, &last_block, wbc, io_type,
2970 					0, true);
2971 			if (ret == AOP_WRITEPAGE_ACTIVATE)
2972 				unlock_page(page);
2973 #ifdef CONFIG_F2FS_FS_COMPRESSION
2974 result:
2975 #endif
2976 			nwritten += submitted;
2977 			wbc->nr_to_write -= submitted;
2978 
2979 			if (unlikely(ret)) {
2980 				/*
2981 				 * keep nr_to_write, since vfs uses this to
2982 				 * get # of written pages.
2983 				 */
2984 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2985 					ret = 0;
2986 					goto next;
2987 				} else if (ret == -EAGAIN) {
2988 					ret = 0;
2989 					if (wbc->sync_mode == WB_SYNC_ALL) {
2990 						cond_resched();
2991 						congestion_wait(BLK_RW_ASYNC,
2992 							DEFAULT_IO_TIMEOUT);
2993 						goto retry_write;
2994 					}
2995 					goto next;
2996 				}
2997 				done_index = page->index + 1;
2998 				done = 1;
2999 				break;
3000 			}
3001 
3002 			if (wbc->nr_to_write <= 0 &&
3003 					wbc->sync_mode == WB_SYNC_NONE) {
3004 				done = 1;
3005 				break;
3006 			}
3007 next:
3008 			if (need_readd)
3009 				goto readd;
3010 		}
3011 		pagevec_release(&pvec);
3012 		cond_resched();
3013 	}
3014 #ifdef CONFIG_F2FS_FS_COMPRESSION
3015 	/* flush remained pages in compress cluster */
3016 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3017 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3018 		nwritten += submitted;
3019 		wbc->nr_to_write -= submitted;
3020 		if (ret) {
3021 			done = 1;
3022 			retry = 0;
3023 		}
3024 	}
3025 	if (f2fs_compressed_file(inode))
3026 		f2fs_destroy_compress_ctx(&cc);
3027 #endif
3028 	if (retry) {
3029 		index = 0;
3030 		end = -1;
3031 		goto retry;
3032 	}
3033 	if (wbc->range_cyclic && !done)
3034 		done_index = 0;
3035 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3036 		mapping->writeback_index = done_index;
3037 
3038 	if (nwritten)
3039 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3040 								NULL, 0, DATA);
3041 	/* submit cached bio of IPU write */
3042 	if (bio)
3043 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3044 
3045 	return ret;
3046 }
3047 
3048 static inline bool __should_serialize_io(struct inode *inode,
3049 					struct writeback_control *wbc)
3050 {
3051 	/* to avoid deadlock in path of data flush */
3052 	if (F2FS_I(inode)->cp_task)
3053 		return false;
3054 
3055 	if (!S_ISREG(inode->i_mode))
3056 		return false;
3057 	if (IS_NOQUOTA(inode))
3058 		return false;
3059 
3060 	if (f2fs_need_compress_data(inode))
3061 		return true;
3062 	if (wbc->sync_mode != WB_SYNC_ALL)
3063 		return true;
3064 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3065 		return true;
3066 	return false;
3067 }
3068 
3069 static int __f2fs_write_data_pages(struct address_space *mapping,
3070 						struct writeback_control *wbc,
3071 						enum iostat_type io_type)
3072 {
3073 	struct inode *inode = mapping->host;
3074 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3075 	struct blk_plug plug;
3076 	int ret;
3077 	bool locked = false;
3078 
3079 	/* deal with chardevs and other special file */
3080 	if (!mapping->a_ops->writepage)
3081 		return 0;
3082 
3083 	/* skip writing if there is no dirty page in this inode */
3084 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3085 		return 0;
3086 
3087 	/* during POR, we don't need to trigger writepage at all. */
3088 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3089 		goto skip_write;
3090 
3091 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3092 			wbc->sync_mode == WB_SYNC_NONE &&
3093 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3094 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3095 		goto skip_write;
3096 
3097 	/* skip writing during file defragment */
3098 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3099 		goto skip_write;
3100 
3101 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3102 
3103 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3104 	if (wbc->sync_mode == WB_SYNC_ALL)
3105 		atomic_inc(&sbi->wb_sync_req[DATA]);
3106 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3107 		goto skip_write;
3108 
3109 	if (__should_serialize_io(inode, wbc)) {
3110 		mutex_lock(&sbi->writepages);
3111 		locked = true;
3112 	}
3113 
3114 	blk_start_plug(&plug);
3115 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3116 	blk_finish_plug(&plug);
3117 
3118 	if (locked)
3119 		mutex_unlock(&sbi->writepages);
3120 
3121 	if (wbc->sync_mode == WB_SYNC_ALL)
3122 		atomic_dec(&sbi->wb_sync_req[DATA]);
3123 	/*
3124 	 * if some pages were truncated, we cannot guarantee its mapping->host
3125 	 * to detect pending bios.
3126 	 */
3127 
3128 	f2fs_remove_dirty_inode(inode);
3129 	return ret;
3130 
3131 skip_write:
3132 	wbc->pages_skipped += get_dirty_pages(inode);
3133 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3134 	return 0;
3135 }
3136 
3137 static int f2fs_write_data_pages(struct address_space *mapping,
3138 			    struct writeback_control *wbc)
3139 {
3140 	struct inode *inode = mapping->host;
3141 
3142 	return __f2fs_write_data_pages(mapping, wbc,
3143 			F2FS_I(inode)->cp_task == current ?
3144 			FS_CP_DATA_IO : FS_DATA_IO);
3145 }
3146 
3147 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3148 {
3149 	struct inode *inode = mapping->host;
3150 	loff_t i_size = i_size_read(inode);
3151 
3152 	if (IS_NOQUOTA(inode))
3153 		return;
3154 
3155 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3156 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3157 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3158 		down_write(&F2FS_I(inode)->i_mmap_sem);
3159 
3160 		truncate_pagecache(inode, i_size);
3161 		f2fs_truncate_blocks(inode, i_size, true);
3162 
3163 		up_write(&F2FS_I(inode)->i_mmap_sem);
3164 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3165 	}
3166 }
3167 
3168 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3169 			struct page *page, loff_t pos, unsigned len,
3170 			block_t *blk_addr, bool *node_changed)
3171 {
3172 	struct inode *inode = page->mapping->host;
3173 	pgoff_t index = page->index;
3174 	struct dnode_of_data dn;
3175 	struct page *ipage;
3176 	bool locked = false;
3177 	struct extent_info ei = {0,0,0};
3178 	int err = 0;
3179 	int flag;
3180 
3181 	/*
3182 	 * we already allocated all the blocks, so we don't need to get
3183 	 * the block addresses when there is no need to fill the page.
3184 	 */
3185 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3186 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3187 	    !f2fs_verity_in_progress(inode))
3188 		return 0;
3189 
3190 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3191 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3192 		flag = F2FS_GET_BLOCK_DEFAULT;
3193 	else
3194 		flag = F2FS_GET_BLOCK_PRE_AIO;
3195 
3196 	if (f2fs_has_inline_data(inode) ||
3197 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3198 		f2fs_do_map_lock(sbi, flag, true);
3199 		locked = true;
3200 	}
3201 
3202 restart:
3203 	/* check inline_data */
3204 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3205 	if (IS_ERR(ipage)) {
3206 		err = PTR_ERR(ipage);
3207 		goto unlock_out;
3208 	}
3209 
3210 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3211 
3212 	if (f2fs_has_inline_data(inode)) {
3213 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3214 			f2fs_do_read_inline_data(page, ipage);
3215 			set_inode_flag(inode, FI_DATA_EXIST);
3216 			if (inode->i_nlink)
3217 				set_inline_node(ipage);
3218 		} else {
3219 			err = f2fs_convert_inline_page(&dn, page);
3220 			if (err)
3221 				goto out;
3222 			if (dn.data_blkaddr == NULL_ADDR)
3223 				err = f2fs_get_block(&dn, index);
3224 		}
3225 	} else if (locked) {
3226 		err = f2fs_get_block(&dn, index);
3227 	} else {
3228 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3229 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3230 		} else {
3231 			/* hole case */
3232 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3233 			if (err || dn.data_blkaddr == NULL_ADDR) {
3234 				f2fs_put_dnode(&dn);
3235 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3236 								true);
3237 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3238 				locked = true;
3239 				goto restart;
3240 			}
3241 		}
3242 	}
3243 
3244 	/* convert_inline_page can make node_changed */
3245 	*blk_addr = dn.data_blkaddr;
3246 	*node_changed = dn.node_changed;
3247 out:
3248 	f2fs_put_dnode(&dn);
3249 unlock_out:
3250 	if (locked)
3251 		f2fs_do_map_lock(sbi, flag, false);
3252 	return err;
3253 }
3254 
3255 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3256 		loff_t pos, unsigned len, unsigned flags,
3257 		struct page **pagep, void **fsdata)
3258 {
3259 	struct inode *inode = mapping->host;
3260 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3261 	struct page *page = NULL;
3262 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3263 	bool need_balance = false, drop_atomic = false;
3264 	block_t blkaddr = NULL_ADDR;
3265 	int err = 0;
3266 
3267 	trace_f2fs_write_begin(inode, pos, len, flags);
3268 
3269 	if (!f2fs_is_checkpoint_ready(sbi)) {
3270 		err = -ENOSPC;
3271 		goto fail;
3272 	}
3273 
3274 	if ((f2fs_is_atomic_file(inode) &&
3275 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3276 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3277 		err = -ENOMEM;
3278 		drop_atomic = true;
3279 		goto fail;
3280 	}
3281 
3282 	/*
3283 	 * We should check this at this moment to avoid deadlock on inode page
3284 	 * and #0 page. The locking rule for inline_data conversion should be:
3285 	 * lock_page(page #0) -> lock_page(inode_page)
3286 	 */
3287 	if (index != 0) {
3288 		err = f2fs_convert_inline_inode(inode);
3289 		if (err)
3290 			goto fail;
3291 	}
3292 
3293 #ifdef CONFIG_F2FS_FS_COMPRESSION
3294 	if (f2fs_compressed_file(inode)) {
3295 		int ret;
3296 
3297 		*fsdata = NULL;
3298 
3299 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3300 							index, fsdata);
3301 		if (ret < 0) {
3302 			err = ret;
3303 			goto fail;
3304 		} else if (ret) {
3305 			return 0;
3306 		}
3307 	}
3308 #endif
3309 
3310 repeat:
3311 	/*
3312 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3313 	 * wait_for_stable_page. Will wait that below with our IO control.
3314 	 */
3315 	page = f2fs_pagecache_get_page(mapping, index,
3316 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3317 	if (!page) {
3318 		err = -ENOMEM;
3319 		goto fail;
3320 	}
3321 
3322 	/* TODO: cluster can be compressed due to race with .writepage */
3323 
3324 	*pagep = page;
3325 
3326 	err = prepare_write_begin(sbi, page, pos, len,
3327 					&blkaddr, &need_balance);
3328 	if (err)
3329 		goto fail;
3330 
3331 	if (need_balance && !IS_NOQUOTA(inode) &&
3332 			has_not_enough_free_secs(sbi, 0, 0)) {
3333 		unlock_page(page);
3334 		f2fs_balance_fs(sbi, true);
3335 		lock_page(page);
3336 		if (page->mapping != mapping) {
3337 			/* The page got truncated from under us */
3338 			f2fs_put_page(page, 1);
3339 			goto repeat;
3340 		}
3341 	}
3342 
3343 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3344 
3345 	if (len == PAGE_SIZE || PageUptodate(page))
3346 		return 0;
3347 
3348 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3349 	    !f2fs_verity_in_progress(inode)) {
3350 		zero_user_segment(page, len, PAGE_SIZE);
3351 		return 0;
3352 	}
3353 
3354 	if (blkaddr == NEW_ADDR) {
3355 		zero_user_segment(page, 0, PAGE_SIZE);
3356 		SetPageUptodate(page);
3357 	} else {
3358 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3359 				DATA_GENERIC_ENHANCE_READ)) {
3360 			err = -EFSCORRUPTED;
3361 			goto fail;
3362 		}
3363 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3364 		if (err)
3365 			goto fail;
3366 
3367 		lock_page(page);
3368 		if (unlikely(page->mapping != mapping)) {
3369 			f2fs_put_page(page, 1);
3370 			goto repeat;
3371 		}
3372 		if (unlikely(!PageUptodate(page))) {
3373 			err = -EIO;
3374 			goto fail;
3375 		}
3376 	}
3377 	return 0;
3378 
3379 fail:
3380 	f2fs_put_page(page, 1);
3381 	f2fs_write_failed(mapping, pos + len);
3382 	if (drop_atomic)
3383 		f2fs_drop_inmem_pages_all(sbi, false);
3384 	return err;
3385 }
3386 
3387 static int f2fs_write_end(struct file *file,
3388 			struct address_space *mapping,
3389 			loff_t pos, unsigned len, unsigned copied,
3390 			struct page *page, void *fsdata)
3391 {
3392 	struct inode *inode = page->mapping->host;
3393 
3394 	trace_f2fs_write_end(inode, pos, len, copied);
3395 
3396 	/*
3397 	 * This should be come from len == PAGE_SIZE, and we expect copied
3398 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3399 	 * let generic_perform_write() try to copy data again through copied=0.
3400 	 */
3401 	if (!PageUptodate(page)) {
3402 		if (unlikely(copied != len))
3403 			copied = 0;
3404 		else
3405 			SetPageUptodate(page);
3406 	}
3407 
3408 #ifdef CONFIG_F2FS_FS_COMPRESSION
3409 	/* overwrite compressed file */
3410 	if (f2fs_compressed_file(inode) && fsdata) {
3411 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3412 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3413 
3414 		if (pos + copied > i_size_read(inode) &&
3415 				!f2fs_verity_in_progress(inode))
3416 			f2fs_i_size_write(inode, pos + copied);
3417 		return copied;
3418 	}
3419 #endif
3420 
3421 	if (!copied)
3422 		goto unlock_out;
3423 
3424 	set_page_dirty(page);
3425 
3426 	if (pos + copied > i_size_read(inode) &&
3427 	    !f2fs_verity_in_progress(inode))
3428 		f2fs_i_size_write(inode, pos + copied);
3429 unlock_out:
3430 	f2fs_put_page(page, 1);
3431 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3432 	return copied;
3433 }
3434 
3435 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3436 			   loff_t offset)
3437 {
3438 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3439 	unsigned blkbits = i_blkbits;
3440 	unsigned blocksize_mask = (1 << blkbits) - 1;
3441 	unsigned long align = offset | iov_iter_alignment(iter);
3442 	struct block_device *bdev = inode->i_sb->s_bdev;
3443 
3444 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3445 		return 1;
3446 
3447 	if (align & blocksize_mask) {
3448 		if (bdev)
3449 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3450 		blocksize_mask = (1 << blkbits) - 1;
3451 		if (align & blocksize_mask)
3452 			return -EINVAL;
3453 		return 1;
3454 	}
3455 	return 0;
3456 }
3457 
3458 static void f2fs_dio_end_io(struct bio *bio)
3459 {
3460 	struct f2fs_private_dio *dio = bio->bi_private;
3461 
3462 	dec_page_count(F2FS_I_SB(dio->inode),
3463 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3464 
3465 	bio->bi_private = dio->orig_private;
3466 	bio->bi_end_io = dio->orig_end_io;
3467 
3468 	kfree(dio);
3469 
3470 	bio_endio(bio);
3471 }
3472 
3473 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3474 							loff_t file_offset)
3475 {
3476 	struct f2fs_private_dio *dio;
3477 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3478 
3479 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3480 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3481 	if (!dio)
3482 		goto out;
3483 
3484 	dio->inode = inode;
3485 	dio->orig_end_io = bio->bi_end_io;
3486 	dio->orig_private = bio->bi_private;
3487 	dio->write = write;
3488 
3489 	bio->bi_end_io = f2fs_dio_end_io;
3490 	bio->bi_private = dio;
3491 
3492 	inc_page_count(F2FS_I_SB(inode),
3493 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3494 
3495 	submit_bio(bio);
3496 	return;
3497 out:
3498 	bio->bi_status = BLK_STS_IOERR;
3499 	bio_endio(bio);
3500 }
3501 
3502 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3503 {
3504 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3505 	struct inode *inode = mapping->host;
3506 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3507 	struct f2fs_inode_info *fi = F2FS_I(inode);
3508 	size_t count = iov_iter_count(iter);
3509 	loff_t offset = iocb->ki_pos;
3510 	int rw = iov_iter_rw(iter);
3511 	int err;
3512 	enum rw_hint hint = iocb->ki_hint;
3513 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3514 	bool do_opu;
3515 
3516 	err = check_direct_IO(inode, iter, offset);
3517 	if (err)
3518 		return err < 0 ? err : 0;
3519 
3520 	if (f2fs_force_buffered_io(inode, iocb, iter))
3521 		return 0;
3522 
3523 	do_opu = allow_outplace_dio(inode, iocb, iter);
3524 
3525 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3526 
3527 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3528 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3529 
3530 	if (iocb->ki_flags & IOCB_NOWAIT) {
3531 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3532 			iocb->ki_hint = hint;
3533 			err = -EAGAIN;
3534 			goto out;
3535 		}
3536 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3537 			up_read(&fi->i_gc_rwsem[rw]);
3538 			iocb->ki_hint = hint;
3539 			err = -EAGAIN;
3540 			goto out;
3541 		}
3542 	} else {
3543 		down_read(&fi->i_gc_rwsem[rw]);
3544 		if (do_opu)
3545 			down_read(&fi->i_gc_rwsem[READ]);
3546 	}
3547 
3548 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3549 			iter, rw == WRITE ? get_data_block_dio_write :
3550 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3551 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3552 			DIO_SKIP_HOLES);
3553 
3554 	if (do_opu)
3555 		up_read(&fi->i_gc_rwsem[READ]);
3556 
3557 	up_read(&fi->i_gc_rwsem[rw]);
3558 
3559 	if (rw == WRITE) {
3560 		if (whint_mode == WHINT_MODE_OFF)
3561 			iocb->ki_hint = hint;
3562 		if (err > 0) {
3563 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3564 									err);
3565 			if (!do_opu)
3566 				set_inode_flag(inode, FI_UPDATE_WRITE);
3567 		} else if (err == -EIOCBQUEUED) {
3568 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3569 						count - iov_iter_count(iter));
3570 		} else if (err < 0) {
3571 			f2fs_write_failed(mapping, offset + count);
3572 		}
3573 	} else {
3574 		if (err > 0)
3575 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3576 		else if (err == -EIOCBQUEUED)
3577 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3578 						count - iov_iter_count(iter));
3579 	}
3580 
3581 out:
3582 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3583 
3584 	return err;
3585 }
3586 
3587 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3588 							unsigned int length)
3589 {
3590 	struct inode *inode = page->mapping->host;
3591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592 
3593 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3594 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3595 		return;
3596 
3597 	if (PageDirty(page)) {
3598 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3599 			dec_page_count(sbi, F2FS_DIRTY_META);
3600 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3601 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3602 		} else {
3603 			inode_dec_dirty_pages(inode);
3604 			f2fs_remove_dirty_inode(inode);
3605 		}
3606 	}
3607 
3608 	clear_cold_data(page);
3609 
3610 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3611 		return f2fs_drop_inmem_page(inode, page);
3612 
3613 	f2fs_clear_page_private(page);
3614 }
3615 
3616 int f2fs_release_page(struct page *page, gfp_t wait)
3617 {
3618 	/* If this is dirty page, keep PagePrivate */
3619 	if (PageDirty(page))
3620 		return 0;
3621 
3622 	/* This is atomic written page, keep Private */
3623 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3624 		return 0;
3625 
3626 	clear_cold_data(page);
3627 	f2fs_clear_page_private(page);
3628 	return 1;
3629 }
3630 
3631 static int f2fs_set_data_page_dirty(struct page *page)
3632 {
3633 	struct inode *inode = page_file_mapping(page)->host;
3634 
3635 	trace_f2fs_set_page_dirty(page, DATA);
3636 
3637 	if (!PageUptodate(page))
3638 		SetPageUptodate(page);
3639 	if (PageSwapCache(page))
3640 		return __set_page_dirty_nobuffers(page);
3641 
3642 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3643 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3644 			f2fs_register_inmem_page(inode, page);
3645 			return 1;
3646 		}
3647 		/*
3648 		 * Previously, this page has been registered, we just
3649 		 * return here.
3650 		 */
3651 		return 0;
3652 	}
3653 
3654 	if (!PageDirty(page)) {
3655 		__set_page_dirty_nobuffers(page);
3656 		f2fs_update_dirty_page(inode, page);
3657 		return 1;
3658 	}
3659 	return 0;
3660 }
3661 
3662 
3663 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3664 {
3665 #ifdef CONFIG_F2FS_FS_COMPRESSION
3666 	struct dnode_of_data dn;
3667 	sector_t start_idx, blknr = 0;
3668 	int ret;
3669 
3670 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3671 
3672 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3673 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3674 	if (ret)
3675 		return 0;
3676 
3677 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3678 		dn.ofs_in_node += block - start_idx;
3679 		blknr = f2fs_data_blkaddr(&dn);
3680 		if (!__is_valid_data_blkaddr(blknr))
3681 			blknr = 0;
3682 	}
3683 
3684 	f2fs_put_dnode(&dn);
3685 	return blknr;
3686 #else
3687 	return 0;
3688 #endif
3689 }
3690 
3691 
3692 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3693 {
3694 	struct inode *inode = mapping->host;
3695 	sector_t blknr = 0;
3696 
3697 	if (f2fs_has_inline_data(inode))
3698 		goto out;
3699 
3700 	/* make sure allocating whole blocks */
3701 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3702 		filemap_write_and_wait(mapping);
3703 
3704 	/* Block number less than F2FS MAX BLOCKS */
3705 	if (unlikely(block >= max_file_blocks(inode)))
3706 		goto out;
3707 
3708 	if (f2fs_compressed_file(inode)) {
3709 		blknr = f2fs_bmap_compress(inode, block);
3710 	} else {
3711 		struct f2fs_map_blocks map;
3712 
3713 		memset(&map, 0, sizeof(map));
3714 		map.m_lblk = block;
3715 		map.m_len = 1;
3716 		map.m_next_pgofs = NULL;
3717 		map.m_seg_type = NO_CHECK_TYPE;
3718 
3719 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3720 			blknr = map.m_pblk;
3721 	}
3722 out:
3723 	trace_f2fs_bmap(inode, block, blknr);
3724 	return blknr;
3725 }
3726 
3727 #ifdef CONFIG_MIGRATION
3728 #include <linux/migrate.h>
3729 
3730 int f2fs_migrate_page(struct address_space *mapping,
3731 		struct page *newpage, struct page *page, enum migrate_mode mode)
3732 {
3733 	int rc, extra_count;
3734 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3735 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3736 
3737 	BUG_ON(PageWriteback(page));
3738 
3739 	/* migrating an atomic written page is safe with the inmem_lock hold */
3740 	if (atomic_written) {
3741 		if (mode != MIGRATE_SYNC)
3742 			return -EBUSY;
3743 		if (!mutex_trylock(&fi->inmem_lock))
3744 			return -EAGAIN;
3745 	}
3746 
3747 	/* one extra reference was held for atomic_write page */
3748 	extra_count = atomic_written ? 1 : 0;
3749 	rc = migrate_page_move_mapping(mapping, newpage,
3750 				page, extra_count);
3751 	if (rc != MIGRATEPAGE_SUCCESS) {
3752 		if (atomic_written)
3753 			mutex_unlock(&fi->inmem_lock);
3754 		return rc;
3755 	}
3756 
3757 	if (atomic_written) {
3758 		struct inmem_pages *cur;
3759 		list_for_each_entry(cur, &fi->inmem_pages, list)
3760 			if (cur->page == page) {
3761 				cur->page = newpage;
3762 				break;
3763 			}
3764 		mutex_unlock(&fi->inmem_lock);
3765 		put_page(page);
3766 		get_page(newpage);
3767 	}
3768 
3769 	if (PagePrivate(page)) {
3770 		f2fs_set_page_private(newpage, page_private(page));
3771 		f2fs_clear_page_private(page);
3772 	}
3773 
3774 	if (mode != MIGRATE_SYNC_NO_COPY)
3775 		migrate_page_copy(newpage, page);
3776 	else
3777 		migrate_page_states(newpage, page);
3778 
3779 	return MIGRATEPAGE_SUCCESS;
3780 }
3781 #endif
3782 
3783 #ifdef CONFIG_SWAP
3784 static int check_swap_activate_fast(struct swap_info_struct *sis,
3785 				struct file *swap_file, sector_t *span)
3786 {
3787 	struct address_space *mapping = swap_file->f_mapping;
3788 	struct inode *inode = mapping->host;
3789 	sector_t cur_lblock;
3790 	sector_t last_lblock;
3791 	sector_t pblock;
3792 	sector_t lowest_pblock = -1;
3793 	sector_t highest_pblock = 0;
3794 	int nr_extents = 0;
3795 	unsigned long nr_pblocks;
3796 	u64 len;
3797 	int ret;
3798 
3799 	/*
3800 	 * Map all the blocks into the extent list.  This code doesn't try
3801 	 * to be very smart.
3802 	 */
3803 	cur_lblock = 0;
3804 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3805 	len = i_size_read(inode);
3806 
3807 	while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3808 		struct f2fs_map_blocks map;
3809 		pgoff_t next_pgofs;
3810 
3811 		cond_resched();
3812 
3813 		memset(&map, 0, sizeof(map));
3814 		map.m_lblk = cur_lblock;
3815 		map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3816 		map.m_next_pgofs = &next_pgofs;
3817 		map.m_seg_type = NO_CHECK_TYPE;
3818 
3819 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3820 		if (ret)
3821 			goto err_out;
3822 
3823 		/* hole */
3824 		if (!(map.m_flags & F2FS_MAP_FLAGS))
3825 			goto err_out;
3826 
3827 		pblock = map.m_pblk;
3828 		nr_pblocks = map.m_len;
3829 
3830 		if (cur_lblock + nr_pblocks >= sis->max)
3831 			nr_pblocks = sis->max - cur_lblock;
3832 
3833 		if (cur_lblock) {	/* exclude the header page */
3834 			if (pblock < lowest_pblock)
3835 				lowest_pblock = pblock;
3836 			if (pblock + nr_pblocks - 1 > highest_pblock)
3837 				highest_pblock = pblock + nr_pblocks - 1;
3838 		}
3839 
3840 		/*
3841 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3842 		 */
3843 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3844 		if (ret < 0)
3845 			goto out;
3846 		nr_extents += ret;
3847 		cur_lblock += nr_pblocks;
3848 	}
3849 	ret = nr_extents;
3850 	*span = 1 + highest_pblock - lowest_pblock;
3851 	if (cur_lblock == 0)
3852 		cur_lblock = 1;	/* force Empty message */
3853 	sis->max = cur_lblock;
3854 	sis->pages = cur_lblock - 1;
3855 	sis->highest_bit = cur_lblock - 1;
3856 out:
3857 	return ret;
3858 err_out:
3859 	pr_err("swapon: swapfile has holes\n");
3860 	return -EINVAL;
3861 }
3862 
3863 /* Copied from generic_swapfile_activate() to check any holes */
3864 static int check_swap_activate(struct swap_info_struct *sis,
3865 				struct file *swap_file, sector_t *span)
3866 {
3867 	struct address_space *mapping = swap_file->f_mapping;
3868 	struct inode *inode = mapping->host;
3869 	unsigned blocks_per_page;
3870 	unsigned long page_no;
3871 	sector_t probe_block;
3872 	sector_t last_block;
3873 	sector_t lowest_block = -1;
3874 	sector_t highest_block = 0;
3875 	int nr_extents = 0;
3876 	int ret;
3877 
3878 	if (PAGE_SIZE == F2FS_BLKSIZE)
3879 		return check_swap_activate_fast(sis, swap_file, span);
3880 
3881 	blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
3882 
3883 	/*
3884 	 * Map all the blocks into the extent list.  This code doesn't try
3885 	 * to be very smart.
3886 	 */
3887 	probe_block = 0;
3888 	page_no = 0;
3889 	last_block = bytes_to_blks(inode, i_size_read(inode));
3890 	while ((probe_block + blocks_per_page) <= last_block &&
3891 			page_no < sis->max) {
3892 		unsigned block_in_page;
3893 		sector_t first_block;
3894 		sector_t block = 0;
3895 		int	 err = 0;
3896 
3897 		cond_resched();
3898 
3899 		block = probe_block;
3900 		err = bmap(inode, &block);
3901 		if (err || !block)
3902 			goto bad_bmap;
3903 		first_block = block;
3904 
3905 		/*
3906 		 * It must be PAGE_SIZE aligned on-disk
3907 		 */
3908 		if (first_block & (blocks_per_page - 1)) {
3909 			probe_block++;
3910 			goto reprobe;
3911 		}
3912 
3913 		for (block_in_page = 1; block_in_page < blocks_per_page;
3914 					block_in_page++) {
3915 
3916 			block = probe_block + block_in_page;
3917 			err = bmap(inode, &block);
3918 
3919 			if (err || !block)
3920 				goto bad_bmap;
3921 
3922 			if (block != first_block + block_in_page) {
3923 				/* Discontiguity */
3924 				probe_block++;
3925 				goto reprobe;
3926 			}
3927 		}
3928 
3929 		first_block >>= (PAGE_SHIFT - inode->i_blkbits);
3930 		if (page_no) {	/* exclude the header page */
3931 			if (first_block < lowest_block)
3932 				lowest_block = first_block;
3933 			if (first_block > highest_block)
3934 				highest_block = first_block;
3935 		}
3936 
3937 		/*
3938 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3939 		 */
3940 		ret = add_swap_extent(sis, page_no, 1, first_block);
3941 		if (ret < 0)
3942 			goto out;
3943 		nr_extents += ret;
3944 		page_no++;
3945 		probe_block += blocks_per_page;
3946 reprobe:
3947 		continue;
3948 	}
3949 	ret = nr_extents;
3950 	*span = 1 + highest_block - lowest_block;
3951 	if (page_no == 0)
3952 		page_no = 1;	/* force Empty message */
3953 	sis->max = page_no;
3954 	sis->pages = page_no - 1;
3955 	sis->highest_bit = page_no - 1;
3956 out:
3957 	return ret;
3958 bad_bmap:
3959 	pr_err("swapon: swapfile has holes\n");
3960 	return -EINVAL;
3961 }
3962 
3963 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3964 				sector_t *span)
3965 {
3966 	struct inode *inode = file_inode(file);
3967 	int ret;
3968 
3969 	if (!S_ISREG(inode->i_mode))
3970 		return -EINVAL;
3971 
3972 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3973 		return -EROFS;
3974 
3975 	ret = f2fs_convert_inline_inode(inode);
3976 	if (ret)
3977 		return ret;
3978 
3979 	if (!f2fs_disable_compressed_file(inode))
3980 		return -EINVAL;
3981 
3982 	f2fs_precache_extents(inode);
3983 
3984 	ret = check_swap_activate(sis, file, span);
3985 	if (ret < 0)
3986 		return ret;
3987 
3988 	set_inode_flag(inode, FI_PIN_FILE);
3989 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3990 	return ret;
3991 }
3992 
3993 static void f2fs_swap_deactivate(struct file *file)
3994 {
3995 	struct inode *inode = file_inode(file);
3996 
3997 	clear_inode_flag(inode, FI_PIN_FILE);
3998 }
3999 #else
4000 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4001 				sector_t *span)
4002 {
4003 	return -EOPNOTSUPP;
4004 }
4005 
4006 static void f2fs_swap_deactivate(struct file *file)
4007 {
4008 }
4009 #endif
4010 
4011 const struct address_space_operations f2fs_dblock_aops = {
4012 	.readpage	= f2fs_read_data_page,
4013 	.readahead	= f2fs_readahead,
4014 	.writepage	= f2fs_write_data_page,
4015 	.writepages	= f2fs_write_data_pages,
4016 	.write_begin	= f2fs_write_begin,
4017 	.write_end	= f2fs_write_end,
4018 	.set_page_dirty	= f2fs_set_data_page_dirty,
4019 	.invalidatepage	= f2fs_invalidate_page,
4020 	.releasepage	= f2fs_release_page,
4021 	.direct_IO	= f2fs_direct_IO,
4022 	.bmap		= f2fs_bmap,
4023 	.swap_activate  = f2fs_swap_activate,
4024 	.swap_deactivate = f2fs_swap_deactivate,
4025 #ifdef CONFIG_MIGRATION
4026 	.migratepage    = f2fs_migrate_page,
4027 #endif
4028 };
4029 
4030 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4031 {
4032 	struct address_space *mapping = page_mapping(page);
4033 	unsigned long flags;
4034 
4035 	xa_lock_irqsave(&mapping->i_pages, flags);
4036 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4037 						PAGECACHE_TAG_DIRTY);
4038 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4039 }
4040 
4041 int __init f2fs_init_post_read_processing(void)
4042 {
4043 	bio_post_read_ctx_cache =
4044 		kmem_cache_create("f2fs_bio_post_read_ctx",
4045 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4046 	if (!bio_post_read_ctx_cache)
4047 		goto fail;
4048 	bio_post_read_ctx_pool =
4049 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4050 					 bio_post_read_ctx_cache);
4051 	if (!bio_post_read_ctx_pool)
4052 		goto fail_free_cache;
4053 	return 0;
4054 
4055 fail_free_cache:
4056 	kmem_cache_destroy(bio_post_read_ctx_cache);
4057 fail:
4058 	return -ENOMEM;
4059 }
4060 
4061 void f2fs_destroy_post_read_processing(void)
4062 {
4063 	mempool_destroy(bio_post_read_ctx_pool);
4064 	kmem_cache_destroy(bio_post_read_ctx_cache);
4065 }
4066 
4067 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4068 {
4069 	if (!f2fs_sb_has_encrypt(sbi) &&
4070 		!f2fs_sb_has_verity(sbi) &&
4071 		!f2fs_sb_has_compression(sbi))
4072 		return 0;
4073 
4074 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4075 						 WQ_UNBOUND | WQ_HIGHPRI,
4076 						 num_online_cpus());
4077 	if (!sbi->post_read_wq)
4078 		return -ENOMEM;
4079 	return 0;
4080 }
4081 
4082 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4083 {
4084 	if (sbi->post_read_wq)
4085 		destroy_workqueue(sbi->post_read_wq);
4086 }
4087 
4088 int __init f2fs_init_bio_entry_cache(void)
4089 {
4090 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4091 			sizeof(struct bio_entry));
4092 	if (!bio_entry_slab)
4093 		return -ENOMEM;
4094 	return 0;
4095 }
4096 
4097 void f2fs_destroy_bio_entry_cache(void)
4098 {
4099 	kmem_cache_destroy(bio_entry_slab);
4100 }
4101