1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS)) 43 return -ENOMEM; 44 return 0; 45 } 46 47 void f2fs_destroy_bioset(void) 48 { 49 bioset_exit(&f2fs_bioset); 50 } 51 52 static bool __is_cp_guaranteed(struct page *page) 53 { 54 struct address_space *mapping = page->mapping; 55 struct inode *inode; 56 struct f2fs_sb_info *sbi; 57 58 if (!mapping) 59 return false; 60 61 inode = mapping->host; 62 sbi = F2FS_I_SB(inode); 63 64 if (inode->i_ino == F2FS_META_INO(sbi) || 65 inode->i_ino == F2FS_NODE_INO(sbi) || 66 S_ISDIR(inode->i_mode)) 67 return true; 68 69 if (f2fs_is_compressed_page(page)) 70 return false; 71 if ((S_ISREG(inode->i_mode) && 72 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 73 page_private_gcing(page)) 74 return true; 75 return false; 76 } 77 78 static enum count_type __read_io_type(struct page *page) 79 { 80 struct address_space *mapping = page_file_mapping(page); 81 82 if (mapping) { 83 struct inode *inode = mapping->host; 84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 85 86 if (inode->i_ino == F2FS_META_INO(sbi)) 87 return F2FS_RD_META; 88 89 if (inode->i_ino == F2FS_NODE_INO(sbi)) 90 return F2FS_RD_NODE; 91 } 92 return F2FS_RD_DATA; 93 } 94 95 /* postprocessing steps for read bios */ 96 enum bio_post_read_step { 97 #ifdef CONFIG_FS_ENCRYPTION 98 STEP_DECRYPT = 1 << 0, 99 #else 100 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 101 #endif 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 STEP_DECOMPRESS = 1 << 1, 104 #else 105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 106 #endif 107 #ifdef CONFIG_FS_VERITY 108 STEP_VERITY = 1 << 2, 109 #else 110 STEP_VERITY = 0, /* compile out the verity-related code */ 111 #endif 112 }; 113 114 struct bio_post_read_ctx { 115 struct bio *bio; 116 struct f2fs_sb_info *sbi; 117 struct work_struct work; 118 unsigned int enabled_steps; 119 }; 120 121 static void f2fs_finish_read_bio(struct bio *bio) 122 { 123 struct bio_vec *bv; 124 struct bvec_iter_all iter_all; 125 126 /* 127 * Update and unlock the bio's pagecache pages, and put the 128 * decompression context for any compressed pages. 129 */ 130 bio_for_each_segment_all(bv, bio, iter_all) { 131 struct page *page = bv->bv_page; 132 133 if (f2fs_is_compressed_page(page)) { 134 if (bio->bi_status) 135 f2fs_end_read_compressed_page(page, true, 0); 136 f2fs_put_page_dic(page); 137 continue; 138 } 139 140 /* PG_error was set if decryption or verity failed. */ 141 if (bio->bi_status || PageError(page)) { 142 ClearPageUptodate(page); 143 /* will re-read again later */ 144 ClearPageError(page); 145 } else { 146 SetPageUptodate(page); 147 } 148 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 149 unlock_page(page); 150 } 151 152 if (bio->bi_private) 153 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 154 bio_put(bio); 155 } 156 157 static void f2fs_verify_bio(struct work_struct *work) 158 { 159 struct bio_post_read_ctx *ctx = 160 container_of(work, struct bio_post_read_ctx, work); 161 struct bio *bio = ctx->bio; 162 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 163 164 /* 165 * fsverity_verify_bio() may call readpages() again, and while verity 166 * will be disabled for this, decryption and/or decompression may still 167 * be needed, resulting in another bio_post_read_ctx being allocated. 168 * So to prevent deadlocks we need to release the current ctx to the 169 * mempool first. This assumes that verity is the last post-read step. 170 */ 171 mempool_free(ctx, bio_post_read_ctx_pool); 172 bio->bi_private = NULL; 173 174 /* 175 * Verify the bio's pages with fs-verity. Exclude compressed pages, 176 * as those were handled separately by f2fs_end_read_compressed_page(). 177 */ 178 if (may_have_compressed_pages) { 179 struct bio_vec *bv; 180 struct bvec_iter_all iter_all; 181 182 bio_for_each_segment_all(bv, bio, iter_all) { 183 struct page *page = bv->bv_page; 184 185 if (!f2fs_is_compressed_page(page) && 186 !PageError(page) && !fsverity_verify_page(page)) 187 SetPageError(page); 188 } 189 } else { 190 fsverity_verify_bio(bio); 191 } 192 193 f2fs_finish_read_bio(bio); 194 } 195 196 /* 197 * If the bio's data needs to be verified with fs-verity, then enqueue the 198 * verity work for the bio. Otherwise finish the bio now. 199 * 200 * Note that to avoid deadlocks, the verity work can't be done on the 201 * decryption/decompression workqueue. This is because verifying the data pages 202 * can involve reading verity metadata pages from the file, and these verity 203 * metadata pages may be encrypted and/or compressed. 204 */ 205 static void f2fs_verify_and_finish_bio(struct bio *bio) 206 { 207 struct bio_post_read_ctx *ctx = bio->bi_private; 208 209 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 210 INIT_WORK(&ctx->work, f2fs_verify_bio); 211 fsverity_enqueue_verify_work(&ctx->work); 212 } else { 213 f2fs_finish_read_bio(bio); 214 } 215 } 216 217 /* 218 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 219 * remaining page was read by @ctx->bio. 220 * 221 * Note that a bio may span clusters (even a mix of compressed and uncompressed 222 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 223 * that the bio includes at least one compressed page. The actual decompression 224 * is done on a per-cluster basis, not a per-bio basis. 225 */ 226 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 227 { 228 struct bio_vec *bv; 229 struct bvec_iter_all iter_all; 230 bool all_compressed = true; 231 block_t blkaddr = SECTOR_TO_BLOCK(ctx->bio->bi_iter.bi_sector); 232 233 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 234 struct page *page = bv->bv_page; 235 236 /* PG_error was set if decryption failed. */ 237 if (f2fs_is_compressed_page(page)) 238 f2fs_end_read_compressed_page(page, PageError(page), 239 blkaddr); 240 else 241 all_compressed = false; 242 243 blkaddr++; 244 } 245 246 /* 247 * Optimization: if all the bio's pages are compressed, then scheduling 248 * the per-bio verity work is unnecessary, as verity will be fully 249 * handled at the compression cluster level. 250 */ 251 if (all_compressed) 252 ctx->enabled_steps &= ~STEP_VERITY; 253 } 254 255 static void f2fs_post_read_work(struct work_struct *work) 256 { 257 struct bio_post_read_ctx *ctx = 258 container_of(work, struct bio_post_read_ctx, work); 259 260 if (ctx->enabled_steps & STEP_DECRYPT) 261 fscrypt_decrypt_bio(ctx->bio); 262 263 if (ctx->enabled_steps & STEP_DECOMPRESS) 264 f2fs_handle_step_decompress(ctx); 265 266 f2fs_verify_and_finish_bio(ctx->bio); 267 } 268 269 static void f2fs_read_end_io(struct bio *bio) 270 { 271 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 272 struct bio_post_read_ctx *ctx = bio->bi_private; 273 274 if (time_to_inject(sbi, FAULT_READ_IO)) { 275 f2fs_show_injection_info(sbi, FAULT_READ_IO); 276 bio->bi_status = BLK_STS_IOERR; 277 } 278 279 if (bio->bi_status) { 280 f2fs_finish_read_bio(bio); 281 return; 282 } 283 284 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 285 INIT_WORK(&ctx->work, f2fs_post_read_work); 286 queue_work(ctx->sbi->post_read_wq, &ctx->work); 287 } else { 288 f2fs_verify_and_finish_bio(bio); 289 } 290 } 291 292 static void f2fs_write_end_io(struct bio *bio) 293 { 294 struct f2fs_sb_info *sbi = bio->bi_private; 295 struct bio_vec *bvec; 296 struct bvec_iter_all iter_all; 297 298 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 299 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 300 bio->bi_status = BLK_STS_IOERR; 301 } 302 303 bio_for_each_segment_all(bvec, bio, iter_all) { 304 struct page *page = bvec->bv_page; 305 enum count_type type = WB_DATA_TYPE(page); 306 307 if (page_private_dummy(page)) { 308 clear_page_private_dummy(page); 309 unlock_page(page); 310 mempool_free(page, sbi->write_io_dummy); 311 312 if (unlikely(bio->bi_status)) 313 f2fs_stop_checkpoint(sbi, true); 314 continue; 315 } 316 317 fscrypt_finalize_bounce_page(&page); 318 319 #ifdef CONFIG_F2FS_FS_COMPRESSION 320 if (f2fs_is_compressed_page(page)) { 321 f2fs_compress_write_end_io(bio, page); 322 continue; 323 } 324 #endif 325 326 if (unlikely(bio->bi_status)) { 327 mapping_set_error(page->mapping, -EIO); 328 if (type == F2FS_WB_CP_DATA) 329 f2fs_stop_checkpoint(sbi, true); 330 } 331 332 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 333 page->index != nid_of_node(page)); 334 335 dec_page_count(sbi, type); 336 if (f2fs_in_warm_node_list(sbi, page)) 337 f2fs_del_fsync_node_entry(sbi, page); 338 clear_page_private_gcing(page); 339 end_page_writeback(page); 340 } 341 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 342 wq_has_sleeper(&sbi->cp_wait)) 343 wake_up(&sbi->cp_wait); 344 345 bio_put(bio); 346 } 347 348 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 349 block_t blk_addr, struct bio *bio) 350 { 351 struct block_device *bdev = sbi->sb->s_bdev; 352 int i; 353 354 if (f2fs_is_multi_device(sbi)) { 355 for (i = 0; i < sbi->s_ndevs; i++) { 356 if (FDEV(i).start_blk <= blk_addr && 357 FDEV(i).end_blk >= blk_addr) { 358 blk_addr -= FDEV(i).start_blk; 359 bdev = FDEV(i).bdev; 360 break; 361 } 362 } 363 } 364 if (bio) { 365 bio_set_dev(bio, bdev); 366 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 367 } 368 return bdev; 369 } 370 371 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 372 { 373 int i; 374 375 if (!f2fs_is_multi_device(sbi)) 376 return 0; 377 378 for (i = 0; i < sbi->s_ndevs; i++) 379 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 380 return i; 381 return 0; 382 } 383 384 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 385 { 386 struct f2fs_sb_info *sbi = fio->sbi; 387 struct bio *bio; 388 389 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 390 391 f2fs_target_device(sbi, fio->new_blkaddr, bio); 392 if (is_read_io(fio->op)) { 393 bio->bi_end_io = f2fs_read_end_io; 394 bio->bi_private = NULL; 395 } else { 396 bio->bi_end_io = f2fs_write_end_io; 397 bio->bi_private = sbi; 398 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 399 fio->type, fio->temp); 400 } 401 if (fio->io_wbc) 402 wbc_init_bio(fio->io_wbc, bio); 403 404 return bio; 405 } 406 407 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 408 pgoff_t first_idx, 409 const struct f2fs_io_info *fio, 410 gfp_t gfp_mask) 411 { 412 /* 413 * The f2fs garbage collector sets ->encrypted_page when it wants to 414 * read/write raw data without encryption. 415 */ 416 if (!fio || !fio->encrypted_page) 417 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 418 } 419 420 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 421 pgoff_t next_idx, 422 const struct f2fs_io_info *fio) 423 { 424 /* 425 * The f2fs garbage collector sets ->encrypted_page when it wants to 426 * read/write raw data without encryption. 427 */ 428 if (fio && fio->encrypted_page) 429 return !bio_has_crypt_ctx(bio); 430 431 return fscrypt_mergeable_bio(bio, inode, next_idx); 432 } 433 434 static inline void __submit_bio(struct f2fs_sb_info *sbi, 435 struct bio *bio, enum page_type type) 436 { 437 if (!is_read_io(bio_op(bio))) { 438 unsigned int start; 439 440 if (type != DATA && type != NODE) 441 goto submit_io; 442 443 if (f2fs_lfs_mode(sbi) && current->plug) 444 blk_finish_plug(current->plug); 445 446 if (!F2FS_IO_ALIGNED(sbi)) 447 goto submit_io; 448 449 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 450 start %= F2FS_IO_SIZE(sbi); 451 452 if (start == 0) 453 goto submit_io; 454 455 /* fill dummy pages */ 456 for (; start < F2FS_IO_SIZE(sbi); start++) { 457 struct page *page = 458 mempool_alloc(sbi->write_io_dummy, 459 GFP_NOIO | __GFP_NOFAIL); 460 f2fs_bug_on(sbi, !page); 461 462 lock_page(page); 463 464 zero_user_segment(page, 0, PAGE_SIZE); 465 set_page_private_dummy(page); 466 467 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 468 f2fs_bug_on(sbi, 1); 469 } 470 /* 471 * In the NODE case, we lose next block address chain. So, we 472 * need to do checkpoint in f2fs_sync_file. 473 */ 474 if (type == NODE) 475 set_sbi_flag(sbi, SBI_NEED_CP); 476 } 477 submit_io: 478 if (is_read_io(bio_op(bio))) 479 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 480 else 481 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 482 submit_bio(bio); 483 } 484 485 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 486 struct bio *bio, enum page_type type) 487 { 488 __submit_bio(sbi, bio, type); 489 } 490 491 static void __attach_io_flag(struct f2fs_io_info *fio) 492 { 493 struct f2fs_sb_info *sbi = fio->sbi; 494 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 495 unsigned int io_flag, fua_flag, meta_flag; 496 497 if (fio->type == DATA) 498 io_flag = sbi->data_io_flag; 499 else if (fio->type == NODE) 500 io_flag = sbi->node_io_flag; 501 else 502 return; 503 504 fua_flag = io_flag & temp_mask; 505 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 506 507 /* 508 * data/node io flag bits per temp: 509 * REQ_META | REQ_FUA | 510 * 5 | 4 | 3 | 2 | 1 | 0 | 511 * Cold | Warm | Hot | Cold | Warm | Hot | 512 */ 513 if ((1 << fio->temp) & meta_flag) 514 fio->op_flags |= REQ_META; 515 if ((1 << fio->temp) & fua_flag) 516 fio->op_flags |= REQ_FUA; 517 } 518 519 static void __submit_merged_bio(struct f2fs_bio_info *io) 520 { 521 struct f2fs_io_info *fio = &io->fio; 522 523 if (!io->bio) 524 return; 525 526 __attach_io_flag(fio); 527 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 528 529 if (is_read_io(fio->op)) 530 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 531 else 532 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 533 534 __submit_bio(io->sbi, io->bio, fio->type); 535 io->bio = NULL; 536 } 537 538 static bool __has_merged_page(struct bio *bio, struct inode *inode, 539 struct page *page, nid_t ino) 540 { 541 struct bio_vec *bvec; 542 struct bvec_iter_all iter_all; 543 544 if (!bio) 545 return false; 546 547 if (!inode && !page && !ino) 548 return true; 549 550 bio_for_each_segment_all(bvec, bio, iter_all) { 551 struct page *target = bvec->bv_page; 552 553 if (fscrypt_is_bounce_page(target)) { 554 target = fscrypt_pagecache_page(target); 555 if (IS_ERR(target)) 556 continue; 557 } 558 if (f2fs_is_compressed_page(target)) { 559 target = f2fs_compress_control_page(target); 560 if (IS_ERR(target)) 561 continue; 562 } 563 564 if (inode && inode == target->mapping->host) 565 return true; 566 if (page && page == target) 567 return true; 568 if (ino && ino == ino_of_node(target)) 569 return true; 570 } 571 572 return false; 573 } 574 575 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 576 enum page_type type, enum temp_type temp) 577 { 578 enum page_type btype = PAGE_TYPE_OF_BIO(type); 579 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 580 581 down_write(&io->io_rwsem); 582 583 /* change META to META_FLUSH in the checkpoint procedure */ 584 if (type >= META_FLUSH) { 585 io->fio.type = META_FLUSH; 586 io->fio.op = REQ_OP_WRITE; 587 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 588 if (!test_opt(sbi, NOBARRIER)) 589 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 590 } 591 __submit_merged_bio(io); 592 up_write(&io->io_rwsem); 593 } 594 595 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 596 struct inode *inode, struct page *page, 597 nid_t ino, enum page_type type, bool force) 598 { 599 enum temp_type temp; 600 bool ret = true; 601 602 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 603 if (!force) { 604 enum page_type btype = PAGE_TYPE_OF_BIO(type); 605 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 606 607 down_read(&io->io_rwsem); 608 ret = __has_merged_page(io->bio, inode, page, ino); 609 up_read(&io->io_rwsem); 610 } 611 if (ret) 612 __f2fs_submit_merged_write(sbi, type, temp); 613 614 /* TODO: use HOT temp only for meta pages now. */ 615 if (type >= META) 616 break; 617 } 618 } 619 620 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 621 { 622 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 623 } 624 625 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 626 struct inode *inode, struct page *page, 627 nid_t ino, enum page_type type) 628 { 629 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 630 } 631 632 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 633 { 634 f2fs_submit_merged_write(sbi, DATA); 635 f2fs_submit_merged_write(sbi, NODE); 636 f2fs_submit_merged_write(sbi, META); 637 } 638 639 /* 640 * Fill the locked page with data located in the block address. 641 * A caller needs to unlock the page on failure. 642 */ 643 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 644 { 645 struct bio *bio; 646 struct page *page = fio->encrypted_page ? 647 fio->encrypted_page : fio->page; 648 649 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 650 fio->is_por ? META_POR : (__is_meta_io(fio) ? 651 META_GENERIC : DATA_GENERIC_ENHANCE))) 652 return -EFSCORRUPTED; 653 654 trace_f2fs_submit_page_bio(page, fio); 655 656 /* Allocate a new bio */ 657 bio = __bio_alloc(fio, 1); 658 659 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 660 fio->page->index, fio, GFP_NOIO); 661 662 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 663 bio_put(bio); 664 return -EFAULT; 665 } 666 667 if (fio->io_wbc && !is_read_io(fio->op)) 668 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 669 670 __attach_io_flag(fio); 671 bio_set_op_attrs(bio, fio->op, fio->op_flags); 672 673 inc_page_count(fio->sbi, is_read_io(fio->op) ? 674 __read_io_type(page): WB_DATA_TYPE(fio->page)); 675 676 __submit_bio(fio->sbi, bio, fio->type); 677 return 0; 678 } 679 680 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 681 block_t last_blkaddr, block_t cur_blkaddr) 682 { 683 if (unlikely(sbi->max_io_bytes && 684 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 685 return false; 686 if (last_blkaddr + 1 != cur_blkaddr) 687 return false; 688 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 689 } 690 691 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 692 struct f2fs_io_info *fio) 693 { 694 if (io->fio.op != fio->op) 695 return false; 696 return io->fio.op_flags == fio->op_flags; 697 } 698 699 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 700 struct f2fs_bio_info *io, 701 struct f2fs_io_info *fio, 702 block_t last_blkaddr, 703 block_t cur_blkaddr) 704 { 705 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 706 unsigned int filled_blocks = 707 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 708 unsigned int io_size = F2FS_IO_SIZE(sbi); 709 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 710 711 /* IOs in bio is aligned and left space of vectors is not enough */ 712 if (!(filled_blocks % io_size) && left_vecs < io_size) 713 return false; 714 } 715 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 716 return false; 717 return io_type_is_mergeable(io, fio); 718 } 719 720 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 721 struct page *page, enum temp_type temp) 722 { 723 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 724 struct bio_entry *be; 725 726 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 727 be->bio = bio; 728 bio_get(bio); 729 730 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 731 f2fs_bug_on(sbi, 1); 732 733 down_write(&io->bio_list_lock); 734 list_add_tail(&be->list, &io->bio_list); 735 up_write(&io->bio_list_lock); 736 } 737 738 static void del_bio_entry(struct bio_entry *be) 739 { 740 list_del(&be->list); 741 kmem_cache_free(bio_entry_slab, be); 742 } 743 744 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 745 struct page *page) 746 { 747 struct f2fs_sb_info *sbi = fio->sbi; 748 enum temp_type temp; 749 bool found = false; 750 int ret = -EAGAIN; 751 752 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 753 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 754 struct list_head *head = &io->bio_list; 755 struct bio_entry *be; 756 757 down_write(&io->bio_list_lock); 758 list_for_each_entry(be, head, list) { 759 if (be->bio != *bio) 760 continue; 761 762 found = true; 763 764 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 765 *fio->last_block, 766 fio->new_blkaddr)); 767 if (f2fs_crypt_mergeable_bio(*bio, 768 fio->page->mapping->host, 769 fio->page->index, fio) && 770 bio_add_page(*bio, page, PAGE_SIZE, 0) == 771 PAGE_SIZE) { 772 ret = 0; 773 break; 774 } 775 776 /* page can't be merged into bio; submit the bio */ 777 del_bio_entry(be); 778 __submit_bio(sbi, *bio, DATA); 779 break; 780 } 781 up_write(&io->bio_list_lock); 782 } 783 784 if (ret) { 785 bio_put(*bio); 786 *bio = NULL; 787 } 788 789 return ret; 790 } 791 792 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 793 struct bio **bio, struct page *page) 794 { 795 enum temp_type temp; 796 bool found = false; 797 struct bio *target = bio ? *bio : NULL; 798 799 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 800 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 801 struct list_head *head = &io->bio_list; 802 struct bio_entry *be; 803 804 if (list_empty(head)) 805 continue; 806 807 down_read(&io->bio_list_lock); 808 list_for_each_entry(be, head, list) { 809 if (target) 810 found = (target == be->bio); 811 else 812 found = __has_merged_page(be->bio, NULL, 813 page, 0); 814 if (found) 815 break; 816 } 817 up_read(&io->bio_list_lock); 818 819 if (!found) 820 continue; 821 822 found = false; 823 824 down_write(&io->bio_list_lock); 825 list_for_each_entry(be, head, list) { 826 if (target) 827 found = (target == be->bio); 828 else 829 found = __has_merged_page(be->bio, NULL, 830 page, 0); 831 if (found) { 832 target = be->bio; 833 del_bio_entry(be); 834 break; 835 } 836 } 837 up_write(&io->bio_list_lock); 838 } 839 840 if (found) 841 __submit_bio(sbi, target, DATA); 842 if (bio && *bio) { 843 bio_put(*bio); 844 *bio = NULL; 845 } 846 } 847 848 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 849 { 850 struct bio *bio = *fio->bio; 851 struct page *page = fio->encrypted_page ? 852 fio->encrypted_page : fio->page; 853 854 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 855 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 856 return -EFSCORRUPTED; 857 858 trace_f2fs_submit_page_bio(page, fio); 859 860 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 861 fio->new_blkaddr)) 862 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 863 alloc_new: 864 if (!bio) { 865 bio = __bio_alloc(fio, BIO_MAX_VECS); 866 __attach_io_flag(fio); 867 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 868 fio->page->index, fio, GFP_NOIO); 869 bio_set_op_attrs(bio, fio->op, fio->op_flags); 870 871 add_bio_entry(fio->sbi, bio, page, fio->temp); 872 } else { 873 if (add_ipu_page(fio, &bio, page)) 874 goto alloc_new; 875 } 876 877 if (fio->io_wbc) 878 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 879 880 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 881 882 *fio->last_block = fio->new_blkaddr; 883 *fio->bio = bio; 884 885 return 0; 886 } 887 888 void f2fs_submit_page_write(struct f2fs_io_info *fio) 889 { 890 struct f2fs_sb_info *sbi = fio->sbi; 891 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 892 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 893 struct page *bio_page; 894 895 f2fs_bug_on(sbi, is_read_io(fio->op)); 896 897 down_write(&io->io_rwsem); 898 next: 899 if (fio->in_list) { 900 spin_lock(&io->io_lock); 901 if (list_empty(&io->io_list)) { 902 spin_unlock(&io->io_lock); 903 goto out; 904 } 905 fio = list_first_entry(&io->io_list, 906 struct f2fs_io_info, list); 907 list_del(&fio->list); 908 spin_unlock(&io->io_lock); 909 } 910 911 verify_fio_blkaddr(fio); 912 913 if (fio->encrypted_page) 914 bio_page = fio->encrypted_page; 915 else if (fio->compressed_page) 916 bio_page = fio->compressed_page; 917 else 918 bio_page = fio->page; 919 920 /* set submitted = true as a return value */ 921 fio->submitted = true; 922 923 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 924 925 if (io->bio && 926 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 927 fio->new_blkaddr) || 928 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 929 bio_page->index, fio))) 930 __submit_merged_bio(io); 931 alloc_new: 932 if (io->bio == NULL) { 933 if (F2FS_IO_ALIGNED(sbi) && 934 (fio->type == DATA || fio->type == NODE) && 935 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 936 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 937 fio->retry = true; 938 goto skip; 939 } 940 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 941 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 942 bio_page->index, fio, GFP_NOIO); 943 io->fio = *fio; 944 } 945 946 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 947 __submit_merged_bio(io); 948 goto alloc_new; 949 } 950 951 if (fio->io_wbc) 952 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 953 954 io->last_block_in_bio = fio->new_blkaddr; 955 956 trace_f2fs_submit_page_write(fio->page, fio); 957 skip: 958 if (fio->in_list) 959 goto next; 960 out: 961 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 962 !f2fs_is_checkpoint_ready(sbi)) 963 __submit_merged_bio(io); 964 up_write(&io->io_rwsem); 965 } 966 967 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 968 unsigned nr_pages, unsigned op_flag, 969 pgoff_t first_idx, bool for_write) 970 { 971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 972 struct bio *bio; 973 struct bio_post_read_ctx *ctx; 974 unsigned int post_read_steps = 0; 975 976 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 977 bio_max_segs(nr_pages), &f2fs_bioset); 978 if (!bio) 979 return ERR_PTR(-ENOMEM); 980 981 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 982 983 f2fs_target_device(sbi, blkaddr, bio); 984 bio->bi_end_io = f2fs_read_end_io; 985 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 986 987 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 988 post_read_steps |= STEP_DECRYPT; 989 990 if (f2fs_need_verity(inode, first_idx)) 991 post_read_steps |= STEP_VERITY; 992 993 /* 994 * STEP_DECOMPRESS is handled specially, since a compressed file might 995 * contain both compressed and uncompressed clusters. We'll allocate a 996 * bio_post_read_ctx if the file is compressed, but the caller is 997 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 998 */ 999 1000 if (post_read_steps || f2fs_compressed_file(inode)) { 1001 /* Due to the mempool, this never fails. */ 1002 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1003 ctx->bio = bio; 1004 ctx->sbi = sbi; 1005 ctx->enabled_steps = post_read_steps; 1006 bio->bi_private = ctx; 1007 } 1008 1009 return bio; 1010 } 1011 1012 /* This can handle encryption stuffs */ 1013 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1014 block_t blkaddr, int op_flags, bool for_write) 1015 { 1016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1017 struct bio *bio; 1018 1019 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1020 page->index, for_write); 1021 if (IS_ERR(bio)) 1022 return PTR_ERR(bio); 1023 1024 /* wait for GCed page writeback via META_MAPPING */ 1025 f2fs_wait_on_block_writeback(inode, blkaddr); 1026 1027 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1028 bio_put(bio); 1029 return -EFAULT; 1030 } 1031 ClearPageError(page); 1032 inc_page_count(sbi, F2FS_RD_DATA); 1033 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1034 __submit_bio(sbi, bio, DATA); 1035 return 0; 1036 } 1037 1038 static void __set_data_blkaddr(struct dnode_of_data *dn) 1039 { 1040 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1041 __le32 *addr_array; 1042 int base = 0; 1043 1044 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1045 base = get_extra_isize(dn->inode); 1046 1047 /* Get physical address of data block */ 1048 addr_array = blkaddr_in_node(rn); 1049 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1050 } 1051 1052 /* 1053 * Lock ordering for the change of data block address: 1054 * ->data_page 1055 * ->node_page 1056 * update block addresses in the node page 1057 */ 1058 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1059 { 1060 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1061 __set_data_blkaddr(dn); 1062 if (set_page_dirty(dn->node_page)) 1063 dn->node_changed = true; 1064 } 1065 1066 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1067 { 1068 dn->data_blkaddr = blkaddr; 1069 f2fs_set_data_blkaddr(dn); 1070 f2fs_update_extent_cache(dn); 1071 } 1072 1073 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1074 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1075 { 1076 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1077 int err; 1078 1079 if (!count) 1080 return 0; 1081 1082 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1083 return -EPERM; 1084 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1085 return err; 1086 1087 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1088 dn->ofs_in_node, count); 1089 1090 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1091 1092 for (; count > 0; dn->ofs_in_node++) { 1093 block_t blkaddr = f2fs_data_blkaddr(dn); 1094 1095 if (blkaddr == NULL_ADDR) { 1096 dn->data_blkaddr = NEW_ADDR; 1097 __set_data_blkaddr(dn); 1098 count--; 1099 } 1100 } 1101 1102 if (set_page_dirty(dn->node_page)) 1103 dn->node_changed = true; 1104 return 0; 1105 } 1106 1107 /* Should keep dn->ofs_in_node unchanged */ 1108 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1109 { 1110 unsigned int ofs_in_node = dn->ofs_in_node; 1111 int ret; 1112 1113 ret = f2fs_reserve_new_blocks(dn, 1); 1114 dn->ofs_in_node = ofs_in_node; 1115 return ret; 1116 } 1117 1118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1119 { 1120 bool need_put = dn->inode_page ? false : true; 1121 int err; 1122 1123 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1124 if (err) 1125 return err; 1126 1127 if (dn->data_blkaddr == NULL_ADDR) 1128 err = f2fs_reserve_new_block(dn); 1129 if (err || need_put) 1130 f2fs_put_dnode(dn); 1131 return err; 1132 } 1133 1134 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1135 { 1136 struct extent_info ei = {0, 0, 0}; 1137 struct inode *inode = dn->inode; 1138 1139 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1140 dn->data_blkaddr = ei.blk + index - ei.fofs; 1141 return 0; 1142 } 1143 1144 return f2fs_reserve_block(dn, index); 1145 } 1146 1147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1148 int op_flags, bool for_write) 1149 { 1150 struct address_space *mapping = inode->i_mapping; 1151 struct dnode_of_data dn; 1152 struct page *page; 1153 struct extent_info ei = {0,0,0}; 1154 int err; 1155 1156 page = f2fs_grab_cache_page(mapping, index, for_write); 1157 if (!page) 1158 return ERR_PTR(-ENOMEM); 1159 1160 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1161 dn.data_blkaddr = ei.blk + index - ei.fofs; 1162 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1163 DATA_GENERIC_ENHANCE_READ)) { 1164 err = -EFSCORRUPTED; 1165 goto put_err; 1166 } 1167 goto got_it; 1168 } 1169 1170 set_new_dnode(&dn, inode, NULL, NULL, 0); 1171 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1172 if (err) 1173 goto put_err; 1174 f2fs_put_dnode(&dn); 1175 1176 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1177 err = -ENOENT; 1178 goto put_err; 1179 } 1180 if (dn.data_blkaddr != NEW_ADDR && 1181 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1182 dn.data_blkaddr, 1183 DATA_GENERIC_ENHANCE)) { 1184 err = -EFSCORRUPTED; 1185 goto put_err; 1186 } 1187 got_it: 1188 if (PageUptodate(page)) { 1189 unlock_page(page); 1190 return page; 1191 } 1192 1193 /* 1194 * A new dentry page is allocated but not able to be written, since its 1195 * new inode page couldn't be allocated due to -ENOSPC. 1196 * In such the case, its blkaddr can be remained as NEW_ADDR. 1197 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1198 * f2fs_init_inode_metadata. 1199 */ 1200 if (dn.data_blkaddr == NEW_ADDR) { 1201 zero_user_segment(page, 0, PAGE_SIZE); 1202 if (!PageUptodate(page)) 1203 SetPageUptodate(page); 1204 unlock_page(page); 1205 return page; 1206 } 1207 1208 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1209 op_flags, for_write); 1210 if (err) 1211 goto put_err; 1212 return page; 1213 1214 put_err: 1215 f2fs_put_page(page, 1); 1216 return ERR_PTR(err); 1217 } 1218 1219 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1220 { 1221 struct address_space *mapping = inode->i_mapping; 1222 struct page *page; 1223 1224 page = find_get_page(mapping, index); 1225 if (page && PageUptodate(page)) 1226 return page; 1227 f2fs_put_page(page, 0); 1228 1229 page = f2fs_get_read_data_page(inode, index, 0, false); 1230 if (IS_ERR(page)) 1231 return page; 1232 1233 if (PageUptodate(page)) 1234 return page; 1235 1236 wait_on_page_locked(page); 1237 if (unlikely(!PageUptodate(page))) { 1238 f2fs_put_page(page, 0); 1239 return ERR_PTR(-EIO); 1240 } 1241 return page; 1242 } 1243 1244 /* 1245 * If it tries to access a hole, return an error. 1246 * Because, the callers, functions in dir.c and GC, should be able to know 1247 * whether this page exists or not. 1248 */ 1249 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1250 bool for_write) 1251 { 1252 struct address_space *mapping = inode->i_mapping; 1253 struct page *page; 1254 repeat: 1255 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1256 if (IS_ERR(page)) 1257 return page; 1258 1259 /* wait for read completion */ 1260 lock_page(page); 1261 if (unlikely(page->mapping != mapping)) { 1262 f2fs_put_page(page, 1); 1263 goto repeat; 1264 } 1265 if (unlikely(!PageUptodate(page))) { 1266 f2fs_put_page(page, 1); 1267 return ERR_PTR(-EIO); 1268 } 1269 return page; 1270 } 1271 1272 /* 1273 * Caller ensures that this data page is never allocated. 1274 * A new zero-filled data page is allocated in the page cache. 1275 * 1276 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1277 * f2fs_unlock_op(). 1278 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1279 * ipage should be released by this function. 1280 */ 1281 struct page *f2fs_get_new_data_page(struct inode *inode, 1282 struct page *ipage, pgoff_t index, bool new_i_size) 1283 { 1284 struct address_space *mapping = inode->i_mapping; 1285 struct page *page; 1286 struct dnode_of_data dn; 1287 int err; 1288 1289 page = f2fs_grab_cache_page(mapping, index, true); 1290 if (!page) { 1291 /* 1292 * before exiting, we should make sure ipage will be released 1293 * if any error occur. 1294 */ 1295 f2fs_put_page(ipage, 1); 1296 return ERR_PTR(-ENOMEM); 1297 } 1298 1299 set_new_dnode(&dn, inode, ipage, NULL, 0); 1300 err = f2fs_reserve_block(&dn, index); 1301 if (err) { 1302 f2fs_put_page(page, 1); 1303 return ERR_PTR(err); 1304 } 1305 if (!ipage) 1306 f2fs_put_dnode(&dn); 1307 1308 if (PageUptodate(page)) 1309 goto got_it; 1310 1311 if (dn.data_blkaddr == NEW_ADDR) { 1312 zero_user_segment(page, 0, PAGE_SIZE); 1313 if (!PageUptodate(page)) 1314 SetPageUptodate(page); 1315 } else { 1316 f2fs_put_page(page, 1); 1317 1318 /* if ipage exists, blkaddr should be NEW_ADDR */ 1319 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1320 page = f2fs_get_lock_data_page(inode, index, true); 1321 if (IS_ERR(page)) 1322 return page; 1323 } 1324 got_it: 1325 if (new_i_size && i_size_read(inode) < 1326 ((loff_t)(index + 1) << PAGE_SHIFT)) 1327 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1328 return page; 1329 } 1330 1331 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1332 { 1333 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1334 struct f2fs_summary sum; 1335 struct node_info ni; 1336 block_t old_blkaddr; 1337 blkcnt_t count = 1; 1338 int err; 1339 1340 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1341 return -EPERM; 1342 1343 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1344 if (err) 1345 return err; 1346 1347 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1348 if (dn->data_blkaddr != NULL_ADDR) 1349 goto alloc; 1350 1351 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1352 return err; 1353 1354 alloc: 1355 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1356 old_blkaddr = dn->data_blkaddr; 1357 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1358 &sum, seg_type, NULL); 1359 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1360 invalidate_mapping_pages(META_MAPPING(sbi), 1361 old_blkaddr, old_blkaddr); 1362 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1363 } 1364 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1365 1366 /* 1367 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1368 * data from unwritten block via dio_read. 1369 */ 1370 return 0; 1371 } 1372 1373 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1374 { 1375 struct inode *inode = file_inode(iocb->ki_filp); 1376 struct f2fs_map_blocks map; 1377 int flag; 1378 int err = 0; 1379 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1380 1381 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1382 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1383 if (map.m_len > map.m_lblk) 1384 map.m_len -= map.m_lblk; 1385 else 1386 map.m_len = 0; 1387 1388 map.m_next_pgofs = NULL; 1389 map.m_next_extent = NULL; 1390 map.m_seg_type = NO_CHECK_TYPE; 1391 map.m_may_create = true; 1392 1393 if (direct_io) { 1394 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1395 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1396 F2FS_GET_BLOCK_PRE_AIO : 1397 F2FS_GET_BLOCK_PRE_DIO; 1398 goto map_blocks; 1399 } 1400 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1401 err = f2fs_convert_inline_inode(inode); 1402 if (err) 1403 return err; 1404 } 1405 if (f2fs_has_inline_data(inode)) 1406 return err; 1407 1408 flag = F2FS_GET_BLOCK_PRE_AIO; 1409 1410 map_blocks: 1411 err = f2fs_map_blocks(inode, &map, 1, flag); 1412 if (map.m_len > 0 && err == -ENOSPC) { 1413 if (!direct_io) 1414 set_inode_flag(inode, FI_NO_PREALLOC); 1415 err = 0; 1416 } 1417 return err; 1418 } 1419 1420 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1421 { 1422 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1423 if (lock) 1424 down_read(&sbi->node_change); 1425 else 1426 up_read(&sbi->node_change); 1427 } else { 1428 if (lock) 1429 f2fs_lock_op(sbi); 1430 else 1431 f2fs_unlock_op(sbi); 1432 } 1433 } 1434 1435 /* 1436 * f2fs_map_blocks() tries to find or build mapping relationship which 1437 * maps continuous logical blocks to physical blocks, and return such 1438 * info via f2fs_map_blocks structure. 1439 */ 1440 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1441 int create, int flag) 1442 { 1443 unsigned int maxblocks = map->m_len; 1444 struct dnode_of_data dn; 1445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1446 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1447 pgoff_t pgofs, end_offset, end; 1448 int err = 0, ofs = 1; 1449 unsigned int ofs_in_node, last_ofs_in_node; 1450 blkcnt_t prealloc; 1451 struct extent_info ei = {0,0,0}; 1452 block_t blkaddr; 1453 unsigned int start_pgofs; 1454 1455 if (!maxblocks) 1456 return 0; 1457 1458 map->m_len = 0; 1459 map->m_flags = 0; 1460 1461 /* it only supports block size == page size */ 1462 pgofs = (pgoff_t)map->m_lblk; 1463 end = pgofs + maxblocks; 1464 1465 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1466 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1467 map->m_may_create) 1468 goto next_dnode; 1469 1470 map->m_pblk = ei.blk + pgofs - ei.fofs; 1471 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1472 map->m_flags = F2FS_MAP_MAPPED; 1473 if (map->m_next_extent) 1474 *map->m_next_extent = pgofs + map->m_len; 1475 1476 /* for hardware encryption, but to avoid potential issue in future */ 1477 if (flag == F2FS_GET_BLOCK_DIO) 1478 f2fs_wait_on_block_writeback_range(inode, 1479 map->m_pblk, map->m_len); 1480 goto out; 1481 } 1482 1483 next_dnode: 1484 if (map->m_may_create) 1485 f2fs_do_map_lock(sbi, flag, true); 1486 1487 /* When reading holes, we need its node page */ 1488 set_new_dnode(&dn, inode, NULL, NULL, 0); 1489 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1490 if (err) { 1491 if (flag == F2FS_GET_BLOCK_BMAP) 1492 map->m_pblk = 0; 1493 if (err == -ENOENT) { 1494 err = 0; 1495 if (map->m_next_pgofs) 1496 *map->m_next_pgofs = 1497 f2fs_get_next_page_offset(&dn, pgofs); 1498 if (map->m_next_extent) 1499 *map->m_next_extent = 1500 f2fs_get_next_page_offset(&dn, pgofs); 1501 } 1502 goto unlock_out; 1503 } 1504 1505 start_pgofs = pgofs; 1506 prealloc = 0; 1507 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1508 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1509 1510 next_block: 1511 blkaddr = f2fs_data_blkaddr(&dn); 1512 1513 if (__is_valid_data_blkaddr(blkaddr) && 1514 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1515 err = -EFSCORRUPTED; 1516 goto sync_out; 1517 } 1518 1519 if (__is_valid_data_blkaddr(blkaddr)) { 1520 /* use out-place-update for driect IO under LFS mode */ 1521 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1522 map->m_may_create) { 1523 err = __allocate_data_block(&dn, map->m_seg_type); 1524 if (err) 1525 goto sync_out; 1526 blkaddr = dn.data_blkaddr; 1527 set_inode_flag(inode, FI_APPEND_WRITE); 1528 } 1529 } else { 1530 if (create) { 1531 if (unlikely(f2fs_cp_error(sbi))) { 1532 err = -EIO; 1533 goto sync_out; 1534 } 1535 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1536 if (blkaddr == NULL_ADDR) { 1537 prealloc++; 1538 last_ofs_in_node = dn.ofs_in_node; 1539 } 1540 } else { 1541 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1542 flag != F2FS_GET_BLOCK_DIO); 1543 err = __allocate_data_block(&dn, 1544 map->m_seg_type); 1545 if (!err) 1546 set_inode_flag(inode, FI_APPEND_WRITE); 1547 } 1548 if (err) 1549 goto sync_out; 1550 map->m_flags |= F2FS_MAP_NEW; 1551 blkaddr = dn.data_blkaddr; 1552 } else { 1553 if (flag == F2FS_GET_BLOCK_BMAP) { 1554 map->m_pblk = 0; 1555 goto sync_out; 1556 } 1557 if (flag == F2FS_GET_BLOCK_PRECACHE) 1558 goto sync_out; 1559 if (flag == F2FS_GET_BLOCK_FIEMAP && 1560 blkaddr == NULL_ADDR) { 1561 if (map->m_next_pgofs) 1562 *map->m_next_pgofs = pgofs + 1; 1563 goto sync_out; 1564 } 1565 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1566 /* for defragment case */ 1567 if (map->m_next_pgofs) 1568 *map->m_next_pgofs = pgofs + 1; 1569 goto sync_out; 1570 } 1571 } 1572 } 1573 1574 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1575 goto skip; 1576 1577 if (map->m_len == 0) { 1578 /* preallocated unwritten block should be mapped for fiemap. */ 1579 if (blkaddr == NEW_ADDR) 1580 map->m_flags |= F2FS_MAP_UNWRITTEN; 1581 map->m_flags |= F2FS_MAP_MAPPED; 1582 1583 map->m_pblk = blkaddr; 1584 map->m_len = 1; 1585 } else if ((map->m_pblk != NEW_ADDR && 1586 blkaddr == (map->m_pblk + ofs)) || 1587 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1588 flag == F2FS_GET_BLOCK_PRE_DIO) { 1589 ofs++; 1590 map->m_len++; 1591 } else { 1592 goto sync_out; 1593 } 1594 1595 skip: 1596 dn.ofs_in_node++; 1597 pgofs++; 1598 1599 /* preallocate blocks in batch for one dnode page */ 1600 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1601 (pgofs == end || dn.ofs_in_node == end_offset)) { 1602 1603 dn.ofs_in_node = ofs_in_node; 1604 err = f2fs_reserve_new_blocks(&dn, prealloc); 1605 if (err) 1606 goto sync_out; 1607 1608 map->m_len += dn.ofs_in_node - ofs_in_node; 1609 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1610 err = -ENOSPC; 1611 goto sync_out; 1612 } 1613 dn.ofs_in_node = end_offset; 1614 } 1615 1616 if (pgofs >= end) 1617 goto sync_out; 1618 else if (dn.ofs_in_node < end_offset) 1619 goto next_block; 1620 1621 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1622 if (map->m_flags & F2FS_MAP_MAPPED) { 1623 unsigned int ofs = start_pgofs - map->m_lblk; 1624 1625 f2fs_update_extent_cache_range(&dn, 1626 start_pgofs, map->m_pblk + ofs, 1627 map->m_len - ofs); 1628 } 1629 } 1630 1631 f2fs_put_dnode(&dn); 1632 1633 if (map->m_may_create) { 1634 f2fs_do_map_lock(sbi, flag, false); 1635 f2fs_balance_fs(sbi, dn.node_changed); 1636 } 1637 goto next_dnode; 1638 1639 sync_out: 1640 1641 /* for hardware encryption, but to avoid potential issue in future */ 1642 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1643 f2fs_wait_on_block_writeback_range(inode, 1644 map->m_pblk, map->m_len); 1645 1646 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1647 if (map->m_flags & F2FS_MAP_MAPPED) { 1648 unsigned int ofs = start_pgofs - map->m_lblk; 1649 1650 f2fs_update_extent_cache_range(&dn, 1651 start_pgofs, map->m_pblk + ofs, 1652 map->m_len - ofs); 1653 } 1654 if (map->m_next_extent) 1655 *map->m_next_extent = pgofs + 1; 1656 } 1657 f2fs_put_dnode(&dn); 1658 unlock_out: 1659 if (map->m_may_create) { 1660 f2fs_do_map_lock(sbi, flag, false); 1661 f2fs_balance_fs(sbi, dn.node_changed); 1662 } 1663 out: 1664 trace_f2fs_map_blocks(inode, map, err); 1665 return err; 1666 } 1667 1668 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1669 { 1670 struct f2fs_map_blocks map; 1671 block_t last_lblk; 1672 int err; 1673 1674 if (pos + len > i_size_read(inode)) 1675 return false; 1676 1677 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1678 map.m_next_pgofs = NULL; 1679 map.m_next_extent = NULL; 1680 map.m_seg_type = NO_CHECK_TYPE; 1681 map.m_may_create = false; 1682 last_lblk = F2FS_BLK_ALIGN(pos + len); 1683 1684 while (map.m_lblk < last_lblk) { 1685 map.m_len = last_lblk - map.m_lblk; 1686 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1687 if (err || map.m_len == 0) 1688 return false; 1689 map.m_lblk += map.m_len; 1690 } 1691 return true; 1692 } 1693 1694 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1695 { 1696 return (bytes >> inode->i_blkbits); 1697 } 1698 1699 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1700 { 1701 return (blks << inode->i_blkbits); 1702 } 1703 1704 static int __get_data_block(struct inode *inode, sector_t iblock, 1705 struct buffer_head *bh, int create, int flag, 1706 pgoff_t *next_pgofs, int seg_type, bool may_write) 1707 { 1708 struct f2fs_map_blocks map; 1709 int err; 1710 1711 map.m_lblk = iblock; 1712 map.m_len = bytes_to_blks(inode, bh->b_size); 1713 map.m_next_pgofs = next_pgofs; 1714 map.m_next_extent = NULL; 1715 map.m_seg_type = seg_type; 1716 map.m_may_create = may_write; 1717 1718 err = f2fs_map_blocks(inode, &map, create, flag); 1719 if (!err) { 1720 map_bh(bh, inode->i_sb, map.m_pblk); 1721 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1722 bh->b_size = blks_to_bytes(inode, map.m_len); 1723 } 1724 return err; 1725 } 1726 1727 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1728 struct buffer_head *bh_result, int create) 1729 { 1730 return __get_data_block(inode, iblock, bh_result, create, 1731 F2FS_GET_BLOCK_DIO, NULL, 1732 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1733 true); 1734 } 1735 1736 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1737 struct buffer_head *bh_result, int create) 1738 { 1739 return __get_data_block(inode, iblock, bh_result, create, 1740 F2FS_GET_BLOCK_DIO, NULL, 1741 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1742 false); 1743 } 1744 1745 static int f2fs_xattr_fiemap(struct inode *inode, 1746 struct fiemap_extent_info *fieinfo) 1747 { 1748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1749 struct page *page; 1750 struct node_info ni; 1751 __u64 phys = 0, len; 1752 __u32 flags; 1753 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1754 int err = 0; 1755 1756 if (f2fs_has_inline_xattr(inode)) { 1757 int offset; 1758 1759 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1760 inode->i_ino, false); 1761 if (!page) 1762 return -ENOMEM; 1763 1764 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1765 if (err) { 1766 f2fs_put_page(page, 1); 1767 return err; 1768 } 1769 1770 phys = blks_to_bytes(inode, ni.blk_addr); 1771 offset = offsetof(struct f2fs_inode, i_addr) + 1772 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1773 get_inline_xattr_addrs(inode)); 1774 1775 phys += offset; 1776 len = inline_xattr_size(inode); 1777 1778 f2fs_put_page(page, 1); 1779 1780 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1781 1782 if (!xnid) 1783 flags |= FIEMAP_EXTENT_LAST; 1784 1785 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1786 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1787 if (err || err == 1) 1788 return err; 1789 } 1790 1791 if (xnid) { 1792 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1793 if (!page) 1794 return -ENOMEM; 1795 1796 err = f2fs_get_node_info(sbi, xnid, &ni); 1797 if (err) { 1798 f2fs_put_page(page, 1); 1799 return err; 1800 } 1801 1802 phys = blks_to_bytes(inode, ni.blk_addr); 1803 len = inode->i_sb->s_blocksize; 1804 1805 f2fs_put_page(page, 1); 1806 1807 flags = FIEMAP_EXTENT_LAST; 1808 } 1809 1810 if (phys) { 1811 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1812 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1813 } 1814 1815 return (err < 0 ? err : 0); 1816 } 1817 1818 static loff_t max_inode_blocks(struct inode *inode) 1819 { 1820 loff_t result = ADDRS_PER_INODE(inode); 1821 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1822 1823 /* two direct node blocks */ 1824 result += (leaf_count * 2); 1825 1826 /* two indirect node blocks */ 1827 leaf_count *= NIDS_PER_BLOCK; 1828 result += (leaf_count * 2); 1829 1830 /* one double indirect node block */ 1831 leaf_count *= NIDS_PER_BLOCK; 1832 result += leaf_count; 1833 1834 return result; 1835 } 1836 1837 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1838 u64 start, u64 len) 1839 { 1840 struct f2fs_map_blocks map; 1841 sector_t start_blk, last_blk; 1842 pgoff_t next_pgofs; 1843 u64 logical = 0, phys = 0, size = 0; 1844 u32 flags = 0; 1845 int ret = 0; 1846 bool compr_cluster = false; 1847 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1848 loff_t maxbytes; 1849 1850 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1851 ret = f2fs_precache_extents(inode); 1852 if (ret) 1853 return ret; 1854 } 1855 1856 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1857 if (ret) 1858 return ret; 1859 1860 inode_lock(inode); 1861 1862 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1863 if (start > maxbytes) { 1864 ret = -EFBIG; 1865 goto out; 1866 } 1867 1868 if (len > maxbytes || (maxbytes - len) < start) 1869 len = maxbytes - start; 1870 1871 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1872 ret = f2fs_xattr_fiemap(inode, fieinfo); 1873 goto out; 1874 } 1875 1876 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1877 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1878 if (ret != -EAGAIN) 1879 goto out; 1880 } 1881 1882 if (bytes_to_blks(inode, len) == 0) 1883 len = blks_to_bytes(inode, 1); 1884 1885 start_blk = bytes_to_blks(inode, start); 1886 last_blk = bytes_to_blks(inode, start + len - 1); 1887 1888 next: 1889 memset(&map, 0, sizeof(map)); 1890 map.m_lblk = start_blk; 1891 map.m_len = bytes_to_blks(inode, len); 1892 map.m_next_pgofs = &next_pgofs; 1893 map.m_seg_type = NO_CHECK_TYPE; 1894 1895 if (compr_cluster) 1896 map.m_len = cluster_size - 1; 1897 1898 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1899 if (ret) 1900 goto out; 1901 1902 /* HOLE */ 1903 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1904 start_blk = next_pgofs; 1905 1906 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1907 max_inode_blocks(inode))) 1908 goto prep_next; 1909 1910 flags |= FIEMAP_EXTENT_LAST; 1911 } 1912 1913 if (size) { 1914 flags |= FIEMAP_EXTENT_MERGED; 1915 if (IS_ENCRYPTED(inode)) 1916 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1917 1918 ret = fiemap_fill_next_extent(fieinfo, logical, 1919 phys, size, flags); 1920 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1921 if (ret) 1922 goto out; 1923 size = 0; 1924 } 1925 1926 if (start_blk > last_blk) 1927 goto out; 1928 1929 if (compr_cluster) { 1930 compr_cluster = false; 1931 1932 1933 logical = blks_to_bytes(inode, start_blk - 1); 1934 phys = blks_to_bytes(inode, map.m_pblk); 1935 size = blks_to_bytes(inode, cluster_size); 1936 1937 flags |= FIEMAP_EXTENT_ENCODED; 1938 1939 start_blk += cluster_size - 1; 1940 1941 if (start_blk > last_blk) 1942 goto out; 1943 1944 goto prep_next; 1945 } 1946 1947 if (map.m_pblk == COMPRESS_ADDR) { 1948 compr_cluster = true; 1949 start_blk++; 1950 goto prep_next; 1951 } 1952 1953 logical = blks_to_bytes(inode, start_blk); 1954 phys = blks_to_bytes(inode, map.m_pblk); 1955 size = blks_to_bytes(inode, map.m_len); 1956 flags = 0; 1957 if (map.m_flags & F2FS_MAP_UNWRITTEN) 1958 flags = FIEMAP_EXTENT_UNWRITTEN; 1959 1960 start_blk += bytes_to_blks(inode, size); 1961 1962 prep_next: 1963 cond_resched(); 1964 if (fatal_signal_pending(current)) 1965 ret = -EINTR; 1966 else 1967 goto next; 1968 out: 1969 if (ret == 1) 1970 ret = 0; 1971 1972 inode_unlock(inode); 1973 return ret; 1974 } 1975 1976 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1977 { 1978 if (IS_ENABLED(CONFIG_FS_VERITY) && 1979 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1980 return inode->i_sb->s_maxbytes; 1981 1982 return i_size_read(inode); 1983 } 1984 1985 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1986 unsigned nr_pages, 1987 struct f2fs_map_blocks *map, 1988 struct bio **bio_ret, 1989 sector_t *last_block_in_bio, 1990 bool is_readahead) 1991 { 1992 struct bio *bio = *bio_ret; 1993 const unsigned blocksize = blks_to_bytes(inode, 1); 1994 sector_t block_in_file; 1995 sector_t last_block; 1996 sector_t last_block_in_file; 1997 sector_t block_nr; 1998 int ret = 0; 1999 2000 block_in_file = (sector_t)page_index(page); 2001 last_block = block_in_file + nr_pages; 2002 last_block_in_file = bytes_to_blks(inode, 2003 f2fs_readpage_limit(inode) + blocksize - 1); 2004 if (last_block > last_block_in_file) 2005 last_block = last_block_in_file; 2006 2007 /* just zeroing out page which is beyond EOF */ 2008 if (block_in_file >= last_block) 2009 goto zero_out; 2010 /* 2011 * Map blocks using the previous result first. 2012 */ 2013 if ((map->m_flags & F2FS_MAP_MAPPED) && 2014 block_in_file > map->m_lblk && 2015 block_in_file < (map->m_lblk + map->m_len)) 2016 goto got_it; 2017 2018 /* 2019 * Then do more f2fs_map_blocks() calls until we are 2020 * done with this page. 2021 */ 2022 map->m_lblk = block_in_file; 2023 map->m_len = last_block - block_in_file; 2024 2025 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2026 if (ret) 2027 goto out; 2028 got_it: 2029 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2030 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2031 SetPageMappedToDisk(page); 2032 2033 if (!PageUptodate(page) && (!PageSwapCache(page) && 2034 !cleancache_get_page(page))) { 2035 SetPageUptodate(page); 2036 goto confused; 2037 } 2038 2039 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2040 DATA_GENERIC_ENHANCE_READ)) { 2041 ret = -EFSCORRUPTED; 2042 goto out; 2043 } 2044 } else { 2045 zero_out: 2046 zero_user_segment(page, 0, PAGE_SIZE); 2047 if (f2fs_need_verity(inode, page->index) && 2048 !fsverity_verify_page(page)) { 2049 ret = -EIO; 2050 goto out; 2051 } 2052 if (!PageUptodate(page)) 2053 SetPageUptodate(page); 2054 unlock_page(page); 2055 goto out; 2056 } 2057 2058 /* 2059 * This page will go to BIO. Do we need to send this 2060 * BIO off first? 2061 */ 2062 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2063 *last_block_in_bio, block_nr) || 2064 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2065 submit_and_realloc: 2066 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2067 bio = NULL; 2068 } 2069 if (bio == NULL) { 2070 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2071 is_readahead ? REQ_RAHEAD : 0, page->index, 2072 false); 2073 if (IS_ERR(bio)) { 2074 ret = PTR_ERR(bio); 2075 bio = NULL; 2076 goto out; 2077 } 2078 } 2079 2080 /* 2081 * If the page is under writeback, we need to wait for 2082 * its completion to see the correct decrypted data. 2083 */ 2084 f2fs_wait_on_block_writeback(inode, block_nr); 2085 2086 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2087 goto submit_and_realloc; 2088 2089 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2090 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2091 ClearPageError(page); 2092 *last_block_in_bio = block_nr; 2093 goto out; 2094 confused: 2095 if (bio) { 2096 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2097 bio = NULL; 2098 } 2099 unlock_page(page); 2100 out: 2101 *bio_ret = bio; 2102 return ret; 2103 } 2104 2105 #ifdef CONFIG_F2FS_FS_COMPRESSION 2106 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2107 unsigned nr_pages, sector_t *last_block_in_bio, 2108 bool is_readahead, bool for_write) 2109 { 2110 struct dnode_of_data dn; 2111 struct inode *inode = cc->inode; 2112 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2113 struct bio *bio = *bio_ret; 2114 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2115 sector_t last_block_in_file; 2116 const unsigned blocksize = blks_to_bytes(inode, 1); 2117 struct decompress_io_ctx *dic = NULL; 2118 int i; 2119 int ret = 0; 2120 2121 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2122 2123 last_block_in_file = bytes_to_blks(inode, 2124 f2fs_readpage_limit(inode) + blocksize - 1); 2125 2126 /* get rid of pages beyond EOF */ 2127 for (i = 0; i < cc->cluster_size; i++) { 2128 struct page *page = cc->rpages[i]; 2129 2130 if (!page) 2131 continue; 2132 if ((sector_t)page->index >= last_block_in_file) { 2133 zero_user_segment(page, 0, PAGE_SIZE); 2134 if (!PageUptodate(page)) 2135 SetPageUptodate(page); 2136 } else if (!PageUptodate(page)) { 2137 continue; 2138 } 2139 unlock_page(page); 2140 cc->rpages[i] = NULL; 2141 cc->nr_rpages--; 2142 } 2143 2144 /* we are done since all pages are beyond EOF */ 2145 if (f2fs_cluster_is_empty(cc)) 2146 goto out; 2147 2148 set_new_dnode(&dn, inode, NULL, NULL, 0); 2149 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2150 if (ret) 2151 goto out; 2152 2153 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2154 2155 for (i = 1; i < cc->cluster_size; i++) { 2156 block_t blkaddr; 2157 2158 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2159 dn.ofs_in_node + i); 2160 2161 if (!__is_valid_data_blkaddr(blkaddr)) 2162 break; 2163 2164 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2165 ret = -EFAULT; 2166 goto out_put_dnode; 2167 } 2168 cc->nr_cpages++; 2169 } 2170 2171 /* nothing to decompress */ 2172 if (cc->nr_cpages == 0) { 2173 ret = 0; 2174 goto out_put_dnode; 2175 } 2176 2177 dic = f2fs_alloc_dic(cc); 2178 if (IS_ERR(dic)) { 2179 ret = PTR_ERR(dic); 2180 goto out_put_dnode; 2181 } 2182 2183 for (i = 0; i < cc->nr_cpages; i++) { 2184 struct page *page = dic->cpages[i]; 2185 block_t blkaddr; 2186 struct bio_post_read_ctx *ctx; 2187 2188 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2189 dn.ofs_in_node + i + 1); 2190 2191 f2fs_wait_on_block_writeback(inode, blkaddr); 2192 2193 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2194 if (atomic_dec_and_test(&dic->remaining_pages)) 2195 f2fs_decompress_cluster(dic); 2196 continue; 2197 } 2198 2199 if (bio && (!page_is_mergeable(sbi, bio, 2200 *last_block_in_bio, blkaddr) || 2201 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2202 submit_and_realloc: 2203 __submit_bio(sbi, bio, DATA); 2204 bio = NULL; 2205 } 2206 2207 if (!bio) { 2208 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2209 is_readahead ? REQ_RAHEAD : 0, 2210 page->index, for_write); 2211 if (IS_ERR(bio)) { 2212 ret = PTR_ERR(bio); 2213 f2fs_decompress_end_io(dic, ret); 2214 f2fs_put_dnode(&dn); 2215 *bio_ret = NULL; 2216 return ret; 2217 } 2218 } 2219 2220 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2221 goto submit_and_realloc; 2222 2223 ctx = bio->bi_private; 2224 ctx->enabled_steps |= STEP_DECOMPRESS; 2225 refcount_inc(&dic->refcnt); 2226 2227 inc_page_count(sbi, F2FS_RD_DATA); 2228 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2229 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2230 ClearPageError(page); 2231 *last_block_in_bio = blkaddr; 2232 } 2233 2234 f2fs_put_dnode(&dn); 2235 2236 *bio_ret = bio; 2237 return 0; 2238 2239 out_put_dnode: 2240 f2fs_put_dnode(&dn); 2241 out: 2242 for (i = 0; i < cc->cluster_size; i++) { 2243 if (cc->rpages[i]) { 2244 ClearPageUptodate(cc->rpages[i]); 2245 ClearPageError(cc->rpages[i]); 2246 unlock_page(cc->rpages[i]); 2247 } 2248 } 2249 *bio_ret = bio; 2250 return ret; 2251 } 2252 #endif 2253 2254 /* 2255 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2256 * Major change was from block_size == page_size in f2fs by default. 2257 */ 2258 static int f2fs_mpage_readpages(struct inode *inode, 2259 struct readahead_control *rac, struct page *page) 2260 { 2261 struct bio *bio = NULL; 2262 sector_t last_block_in_bio = 0; 2263 struct f2fs_map_blocks map; 2264 #ifdef CONFIG_F2FS_FS_COMPRESSION 2265 struct compress_ctx cc = { 2266 .inode = inode, 2267 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2268 .cluster_size = F2FS_I(inode)->i_cluster_size, 2269 .cluster_idx = NULL_CLUSTER, 2270 .rpages = NULL, 2271 .cpages = NULL, 2272 .nr_rpages = 0, 2273 .nr_cpages = 0, 2274 }; 2275 #endif 2276 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2277 unsigned max_nr_pages = nr_pages; 2278 int ret = 0; 2279 2280 map.m_pblk = 0; 2281 map.m_lblk = 0; 2282 map.m_len = 0; 2283 map.m_flags = 0; 2284 map.m_next_pgofs = NULL; 2285 map.m_next_extent = NULL; 2286 map.m_seg_type = NO_CHECK_TYPE; 2287 map.m_may_create = false; 2288 2289 for (; nr_pages; nr_pages--) { 2290 if (rac) { 2291 page = readahead_page(rac); 2292 prefetchw(&page->flags); 2293 } 2294 2295 #ifdef CONFIG_F2FS_FS_COMPRESSION 2296 if (f2fs_compressed_file(inode)) { 2297 /* there are remained comressed pages, submit them */ 2298 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2299 ret = f2fs_read_multi_pages(&cc, &bio, 2300 max_nr_pages, 2301 &last_block_in_bio, 2302 rac != NULL, false); 2303 f2fs_destroy_compress_ctx(&cc, false); 2304 if (ret) 2305 goto set_error_page; 2306 } 2307 ret = f2fs_is_compressed_cluster(inode, page->index); 2308 if (ret < 0) 2309 goto set_error_page; 2310 else if (!ret) 2311 goto read_single_page; 2312 2313 ret = f2fs_init_compress_ctx(&cc); 2314 if (ret) 2315 goto set_error_page; 2316 2317 f2fs_compress_ctx_add_page(&cc, page); 2318 2319 goto next_page; 2320 } 2321 read_single_page: 2322 #endif 2323 2324 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2325 &bio, &last_block_in_bio, rac); 2326 if (ret) { 2327 #ifdef CONFIG_F2FS_FS_COMPRESSION 2328 set_error_page: 2329 #endif 2330 SetPageError(page); 2331 zero_user_segment(page, 0, PAGE_SIZE); 2332 unlock_page(page); 2333 } 2334 #ifdef CONFIG_F2FS_FS_COMPRESSION 2335 next_page: 2336 #endif 2337 if (rac) 2338 put_page(page); 2339 2340 #ifdef CONFIG_F2FS_FS_COMPRESSION 2341 if (f2fs_compressed_file(inode)) { 2342 /* last page */ 2343 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2344 ret = f2fs_read_multi_pages(&cc, &bio, 2345 max_nr_pages, 2346 &last_block_in_bio, 2347 rac != NULL, false); 2348 f2fs_destroy_compress_ctx(&cc, false); 2349 } 2350 } 2351 #endif 2352 } 2353 if (bio) 2354 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2355 return ret; 2356 } 2357 2358 static int f2fs_read_data_page(struct file *file, struct page *page) 2359 { 2360 struct inode *inode = page_file_mapping(page)->host; 2361 int ret = -EAGAIN; 2362 2363 trace_f2fs_readpage(page, DATA); 2364 2365 if (!f2fs_is_compress_backend_ready(inode)) { 2366 unlock_page(page); 2367 return -EOPNOTSUPP; 2368 } 2369 2370 /* If the file has inline data, try to read it directly */ 2371 if (f2fs_has_inline_data(inode)) 2372 ret = f2fs_read_inline_data(inode, page); 2373 if (ret == -EAGAIN) 2374 ret = f2fs_mpage_readpages(inode, NULL, page); 2375 return ret; 2376 } 2377 2378 static void f2fs_readahead(struct readahead_control *rac) 2379 { 2380 struct inode *inode = rac->mapping->host; 2381 2382 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2383 2384 if (!f2fs_is_compress_backend_ready(inode)) 2385 return; 2386 2387 /* If the file has inline data, skip readpages */ 2388 if (f2fs_has_inline_data(inode)) 2389 return; 2390 2391 f2fs_mpage_readpages(inode, rac, NULL); 2392 } 2393 2394 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2395 { 2396 struct inode *inode = fio->page->mapping->host; 2397 struct page *mpage, *page; 2398 gfp_t gfp_flags = GFP_NOFS; 2399 2400 if (!f2fs_encrypted_file(inode)) 2401 return 0; 2402 2403 page = fio->compressed_page ? fio->compressed_page : fio->page; 2404 2405 /* wait for GCed page writeback via META_MAPPING */ 2406 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2407 2408 if (fscrypt_inode_uses_inline_crypto(inode)) 2409 return 0; 2410 2411 retry_encrypt: 2412 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2413 PAGE_SIZE, 0, gfp_flags); 2414 if (IS_ERR(fio->encrypted_page)) { 2415 /* flush pending IOs and wait for a while in the ENOMEM case */ 2416 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2417 f2fs_flush_merged_writes(fio->sbi); 2418 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2419 gfp_flags |= __GFP_NOFAIL; 2420 goto retry_encrypt; 2421 } 2422 return PTR_ERR(fio->encrypted_page); 2423 } 2424 2425 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2426 if (mpage) { 2427 if (PageUptodate(mpage)) 2428 memcpy(page_address(mpage), 2429 page_address(fio->encrypted_page), PAGE_SIZE); 2430 f2fs_put_page(mpage, 1); 2431 } 2432 return 0; 2433 } 2434 2435 static inline bool check_inplace_update_policy(struct inode *inode, 2436 struct f2fs_io_info *fio) 2437 { 2438 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2439 unsigned int policy = SM_I(sbi)->ipu_policy; 2440 2441 if (policy & (0x1 << F2FS_IPU_FORCE)) 2442 return true; 2443 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2444 return true; 2445 if (policy & (0x1 << F2FS_IPU_UTIL) && 2446 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2447 return true; 2448 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2449 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2450 return true; 2451 2452 /* 2453 * IPU for rewrite async pages 2454 */ 2455 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2456 fio && fio->op == REQ_OP_WRITE && 2457 !(fio->op_flags & REQ_SYNC) && 2458 !IS_ENCRYPTED(inode)) 2459 return true; 2460 2461 /* this is only set during fdatasync */ 2462 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2463 is_inode_flag_set(inode, FI_NEED_IPU)) 2464 return true; 2465 2466 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2467 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2468 return true; 2469 2470 return false; 2471 } 2472 2473 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2474 { 2475 if (f2fs_is_pinned_file(inode)) 2476 return true; 2477 2478 /* if this is cold file, we should overwrite to avoid fragmentation */ 2479 if (file_is_cold(inode)) 2480 return true; 2481 2482 return check_inplace_update_policy(inode, fio); 2483 } 2484 2485 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2486 { 2487 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2488 2489 if (f2fs_lfs_mode(sbi)) 2490 return true; 2491 if (S_ISDIR(inode->i_mode)) 2492 return true; 2493 if (IS_NOQUOTA(inode)) 2494 return true; 2495 if (f2fs_is_atomic_file(inode)) 2496 return true; 2497 if (fio) { 2498 if (page_private_gcing(fio->page)) 2499 return true; 2500 if (page_private_dummy(fio->page)) 2501 return true; 2502 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2503 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2504 return true; 2505 } 2506 return false; 2507 } 2508 2509 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2510 { 2511 struct inode *inode = fio->page->mapping->host; 2512 2513 if (f2fs_should_update_outplace(inode, fio)) 2514 return false; 2515 2516 return f2fs_should_update_inplace(inode, fio); 2517 } 2518 2519 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2520 { 2521 struct page *page = fio->page; 2522 struct inode *inode = page->mapping->host; 2523 struct dnode_of_data dn; 2524 struct extent_info ei = {0,0,0}; 2525 struct node_info ni; 2526 bool ipu_force = false; 2527 int err = 0; 2528 2529 set_new_dnode(&dn, inode, NULL, NULL, 0); 2530 if (need_inplace_update(fio) && 2531 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2532 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2533 2534 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2535 DATA_GENERIC_ENHANCE)) 2536 return -EFSCORRUPTED; 2537 2538 ipu_force = true; 2539 fio->need_lock = LOCK_DONE; 2540 goto got_it; 2541 } 2542 2543 /* Deadlock due to between page->lock and f2fs_lock_op */ 2544 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2545 return -EAGAIN; 2546 2547 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2548 if (err) 2549 goto out; 2550 2551 fio->old_blkaddr = dn.data_blkaddr; 2552 2553 /* This page is already truncated */ 2554 if (fio->old_blkaddr == NULL_ADDR) { 2555 ClearPageUptodate(page); 2556 clear_page_private_gcing(page); 2557 goto out_writepage; 2558 } 2559 got_it: 2560 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2561 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2562 DATA_GENERIC_ENHANCE)) { 2563 err = -EFSCORRUPTED; 2564 goto out_writepage; 2565 } 2566 /* 2567 * If current allocation needs SSR, 2568 * it had better in-place writes for updated data. 2569 */ 2570 if (ipu_force || 2571 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2572 need_inplace_update(fio))) { 2573 err = f2fs_encrypt_one_page(fio); 2574 if (err) 2575 goto out_writepage; 2576 2577 set_page_writeback(page); 2578 ClearPageError(page); 2579 f2fs_put_dnode(&dn); 2580 if (fio->need_lock == LOCK_REQ) 2581 f2fs_unlock_op(fio->sbi); 2582 err = f2fs_inplace_write_data(fio); 2583 if (err) { 2584 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2585 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2586 if (PageWriteback(page)) 2587 end_page_writeback(page); 2588 } else { 2589 set_inode_flag(inode, FI_UPDATE_WRITE); 2590 } 2591 trace_f2fs_do_write_data_page(fio->page, IPU); 2592 return err; 2593 } 2594 2595 if (fio->need_lock == LOCK_RETRY) { 2596 if (!f2fs_trylock_op(fio->sbi)) { 2597 err = -EAGAIN; 2598 goto out_writepage; 2599 } 2600 fio->need_lock = LOCK_REQ; 2601 } 2602 2603 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2604 if (err) 2605 goto out_writepage; 2606 2607 fio->version = ni.version; 2608 2609 err = f2fs_encrypt_one_page(fio); 2610 if (err) 2611 goto out_writepage; 2612 2613 set_page_writeback(page); 2614 ClearPageError(page); 2615 2616 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2617 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2618 2619 /* LFS mode write path */ 2620 f2fs_outplace_write_data(&dn, fio); 2621 trace_f2fs_do_write_data_page(page, OPU); 2622 set_inode_flag(inode, FI_APPEND_WRITE); 2623 if (page->index == 0) 2624 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2625 out_writepage: 2626 f2fs_put_dnode(&dn); 2627 out: 2628 if (fio->need_lock == LOCK_REQ) 2629 f2fs_unlock_op(fio->sbi); 2630 return err; 2631 } 2632 2633 int f2fs_write_single_data_page(struct page *page, int *submitted, 2634 struct bio **bio, 2635 sector_t *last_block, 2636 struct writeback_control *wbc, 2637 enum iostat_type io_type, 2638 int compr_blocks, 2639 bool allow_balance) 2640 { 2641 struct inode *inode = page->mapping->host; 2642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2643 loff_t i_size = i_size_read(inode); 2644 const pgoff_t end_index = ((unsigned long long)i_size) 2645 >> PAGE_SHIFT; 2646 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2647 unsigned offset = 0; 2648 bool need_balance_fs = false; 2649 int err = 0; 2650 struct f2fs_io_info fio = { 2651 .sbi = sbi, 2652 .ino = inode->i_ino, 2653 .type = DATA, 2654 .op = REQ_OP_WRITE, 2655 .op_flags = wbc_to_write_flags(wbc), 2656 .old_blkaddr = NULL_ADDR, 2657 .page = page, 2658 .encrypted_page = NULL, 2659 .submitted = false, 2660 .compr_blocks = compr_blocks, 2661 .need_lock = LOCK_RETRY, 2662 .io_type = io_type, 2663 .io_wbc = wbc, 2664 .bio = bio, 2665 .last_block = last_block, 2666 }; 2667 2668 trace_f2fs_writepage(page, DATA); 2669 2670 /* we should bypass data pages to proceed the kworkder jobs */ 2671 if (unlikely(f2fs_cp_error(sbi))) { 2672 mapping_set_error(page->mapping, -EIO); 2673 /* 2674 * don't drop any dirty dentry pages for keeping lastest 2675 * directory structure. 2676 */ 2677 if (S_ISDIR(inode->i_mode)) 2678 goto redirty_out; 2679 goto out; 2680 } 2681 2682 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2683 goto redirty_out; 2684 2685 if (page->index < end_index || 2686 f2fs_verity_in_progress(inode) || 2687 compr_blocks) 2688 goto write; 2689 2690 /* 2691 * If the offset is out-of-range of file size, 2692 * this page does not have to be written to disk. 2693 */ 2694 offset = i_size & (PAGE_SIZE - 1); 2695 if ((page->index >= end_index + 1) || !offset) 2696 goto out; 2697 2698 zero_user_segment(page, offset, PAGE_SIZE); 2699 write: 2700 if (f2fs_is_drop_cache(inode)) 2701 goto out; 2702 /* we should not write 0'th page having journal header */ 2703 if (f2fs_is_volatile_file(inode) && (!page->index || 2704 (!wbc->for_reclaim && 2705 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2706 goto redirty_out; 2707 2708 /* Dentry/quota blocks are controlled by checkpoint */ 2709 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2710 /* 2711 * We need to wait for node_write to avoid block allocation during 2712 * checkpoint. This can only happen to quota writes which can cause 2713 * the below discard race condition. 2714 */ 2715 if (IS_NOQUOTA(inode)) 2716 down_read(&sbi->node_write); 2717 2718 fio.need_lock = LOCK_DONE; 2719 err = f2fs_do_write_data_page(&fio); 2720 2721 if (IS_NOQUOTA(inode)) 2722 up_read(&sbi->node_write); 2723 2724 goto done; 2725 } 2726 2727 if (!wbc->for_reclaim) 2728 need_balance_fs = true; 2729 else if (has_not_enough_free_secs(sbi, 0, 0)) 2730 goto redirty_out; 2731 else 2732 set_inode_flag(inode, FI_HOT_DATA); 2733 2734 err = -EAGAIN; 2735 if (f2fs_has_inline_data(inode)) { 2736 err = f2fs_write_inline_data(inode, page); 2737 if (!err) 2738 goto out; 2739 } 2740 2741 if (err == -EAGAIN) { 2742 err = f2fs_do_write_data_page(&fio); 2743 if (err == -EAGAIN) { 2744 fio.need_lock = LOCK_REQ; 2745 err = f2fs_do_write_data_page(&fio); 2746 } 2747 } 2748 2749 if (err) { 2750 file_set_keep_isize(inode); 2751 } else { 2752 spin_lock(&F2FS_I(inode)->i_size_lock); 2753 if (F2FS_I(inode)->last_disk_size < psize) 2754 F2FS_I(inode)->last_disk_size = psize; 2755 spin_unlock(&F2FS_I(inode)->i_size_lock); 2756 } 2757 2758 done: 2759 if (err && err != -ENOENT) 2760 goto redirty_out; 2761 2762 out: 2763 inode_dec_dirty_pages(inode); 2764 if (err) { 2765 ClearPageUptodate(page); 2766 clear_page_private_gcing(page); 2767 } 2768 2769 if (wbc->for_reclaim) { 2770 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2771 clear_inode_flag(inode, FI_HOT_DATA); 2772 f2fs_remove_dirty_inode(inode); 2773 submitted = NULL; 2774 } 2775 unlock_page(page); 2776 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2777 !F2FS_I(inode)->cp_task && allow_balance) 2778 f2fs_balance_fs(sbi, need_balance_fs); 2779 2780 if (unlikely(f2fs_cp_error(sbi))) { 2781 f2fs_submit_merged_write(sbi, DATA); 2782 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2783 submitted = NULL; 2784 } 2785 2786 if (submitted) 2787 *submitted = fio.submitted ? 1 : 0; 2788 2789 return 0; 2790 2791 redirty_out: 2792 redirty_page_for_writepage(wbc, page); 2793 /* 2794 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2795 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2796 * file_write_and_wait_range() will see EIO error, which is critical 2797 * to return value of fsync() followed by atomic_write failure to user. 2798 */ 2799 if (!err || wbc->for_reclaim) 2800 return AOP_WRITEPAGE_ACTIVATE; 2801 unlock_page(page); 2802 return err; 2803 } 2804 2805 static int f2fs_write_data_page(struct page *page, 2806 struct writeback_control *wbc) 2807 { 2808 #ifdef CONFIG_F2FS_FS_COMPRESSION 2809 struct inode *inode = page->mapping->host; 2810 2811 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2812 goto out; 2813 2814 if (f2fs_compressed_file(inode)) { 2815 if (f2fs_is_compressed_cluster(inode, page->index)) { 2816 redirty_page_for_writepage(wbc, page); 2817 return AOP_WRITEPAGE_ACTIVATE; 2818 } 2819 } 2820 out: 2821 #endif 2822 2823 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2824 wbc, FS_DATA_IO, 0, true); 2825 } 2826 2827 /* 2828 * This function was copied from write_cche_pages from mm/page-writeback.c. 2829 * The major change is making write step of cold data page separately from 2830 * warm/hot data page. 2831 */ 2832 static int f2fs_write_cache_pages(struct address_space *mapping, 2833 struct writeback_control *wbc, 2834 enum iostat_type io_type) 2835 { 2836 int ret = 0; 2837 int done = 0, retry = 0; 2838 struct pagevec pvec; 2839 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2840 struct bio *bio = NULL; 2841 sector_t last_block; 2842 #ifdef CONFIG_F2FS_FS_COMPRESSION 2843 struct inode *inode = mapping->host; 2844 struct compress_ctx cc = { 2845 .inode = inode, 2846 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2847 .cluster_size = F2FS_I(inode)->i_cluster_size, 2848 .cluster_idx = NULL_CLUSTER, 2849 .rpages = NULL, 2850 .nr_rpages = 0, 2851 .cpages = NULL, 2852 .rbuf = NULL, 2853 .cbuf = NULL, 2854 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2855 .private = NULL, 2856 }; 2857 #endif 2858 int nr_pages; 2859 pgoff_t index; 2860 pgoff_t end; /* Inclusive */ 2861 pgoff_t done_index; 2862 int range_whole = 0; 2863 xa_mark_t tag; 2864 int nwritten = 0; 2865 int submitted = 0; 2866 int i; 2867 2868 pagevec_init(&pvec); 2869 2870 if (get_dirty_pages(mapping->host) <= 2871 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2872 set_inode_flag(mapping->host, FI_HOT_DATA); 2873 else 2874 clear_inode_flag(mapping->host, FI_HOT_DATA); 2875 2876 if (wbc->range_cyclic) { 2877 index = mapping->writeback_index; /* prev offset */ 2878 end = -1; 2879 } else { 2880 index = wbc->range_start >> PAGE_SHIFT; 2881 end = wbc->range_end >> PAGE_SHIFT; 2882 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2883 range_whole = 1; 2884 } 2885 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2886 tag = PAGECACHE_TAG_TOWRITE; 2887 else 2888 tag = PAGECACHE_TAG_DIRTY; 2889 retry: 2890 retry = 0; 2891 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2892 tag_pages_for_writeback(mapping, index, end); 2893 done_index = index; 2894 while (!done && !retry && (index <= end)) { 2895 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2896 tag); 2897 if (nr_pages == 0) 2898 break; 2899 2900 for (i = 0; i < nr_pages; i++) { 2901 struct page *page = pvec.pages[i]; 2902 bool need_readd; 2903 readd: 2904 need_readd = false; 2905 #ifdef CONFIG_F2FS_FS_COMPRESSION 2906 if (f2fs_compressed_file(inode)) { 2907 ret = f2fs_init_compress_ctx(&cc); 2908 if (ret) { 2909 done = 1; 2910 break; 2911 } 2912 2913 if (!f2fs_cluster_can_merge_page(&cc, 2914 page->index)) { 2915 ret = f2fs_write_multi_pages(&cc, 2916 &submitted, wbc, io_type); 2917 if (!ret) 2918 need_readd = true; 2919 goto result; 2920 } 2921 2922 if (unlikely(f2fs_cp_error(sbi))) 2923 goto lock_page; 2924 2925 if (f2fs_cluster_is_empty(&cc)) { 2926 void *fsdata = NULL; 2927 struct page *pagep; 2928 int ret2; 2929 2930 ret2 = f2fs_prepare_compress_overwrite( 2931 inode, &pagep, 2932 page->index, &fsdata); 2933 if (ret2 < 0) { 2934 ret = ret2; 2935 done = 1; 2936 break; 2937 } else if (ret2 && 2938 !f2fs_compress_write_end(inode, 2939 fsdata, page->index, 2940 1)) { 2941 retry = 1; 2942 break; 2943 } 2944 } else { 2945 goto lock_page; 2946 } 2947 } 2948 #endif 2949 /* give a priority to WB_SYNC threads */ 2950 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2951 wbc->sync_mode == WB_SYNC_NONE) { 2952 done = 1; 2953 break; 2954 } 2955 #ifdef CONFIG_F2FS_FS_COMPRESSION 2956 lock_page: 2957 #endif 2958 done_index = page->index; 2959 retry_write: 2960 lock_page(page); 2961 2962 if (unlikely(page->mapping != mapping)) { 2963 continue_unlock: 2964 unlock_page(page); 2965 continue; 2966 } 2967 2968 if (!PageDirty(page)) { 2969 /* someone wrote it for us */ 2970 goto continue_unlock; 2971 } 2972 2973 if (PageWriteback(page)) { 2974 if (wbc->sync_mode != WB_SYNC_NONE) 2975 f2fs_wait_on_page_writeback(page, 2976 DATA, true, true); 2977 else 2978 goto continue_unlock; 2979 } 2980 2981 if (!clear_page_dirty_for_io(page)) 2982 goto continue_unlock; 2983 2984 #ifdef CONFIG_F2FS_FS_COMPRESSION 2985 if (f2fs_compressed_file(inode)) { 2986 get_page(page); 2987 f2fs_compress_ctx_add_page(&cc, page); 2988 continue; 2989 } 2990 #endif 2991 ret = f2fs_write_single_data_page(page, &submitted, 2992 &bio, &last_block, wbc, io_type, 2993 0, true); 2994 if (ret == AOP_WRITEPAGE_ACTIVATE) 2995 unlock_page(page); 2996 #ifdef CONFIG_F2FS_FS_COMPRESSION 2997 result: 2998 #endif 2999 nwritten += submitted; 3000 wbc->nr_to_write -= submitted; 3001 3002 if (unlikely(ret)) { 3003 /* 3004 * keep nr_to_write, since vfs uses this to 3005 * get # of written pages. 3006 */ 3007 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3008 ret = 0; 3009 goto next; 3010 } else if (ret == -EAGAIN) { 3011 ret = 0; 3012 if (wbc->sync_mode == WB_SYNC_ALL) { 3013 cond_resched(); 3014 congestion_wait(BLK_RW_ASYNC, 3015 DEFAULT_IO_TIMEOUT); 3016 goto retry_write; 3017 } 3018 goto next; 3019 } 3020 done_index = page->index + 1; 3021 done = 1; 3022 break; 3023 } 3024 3025 if (wbc->nr_to_write <= 0 && 3026 wbc->sync_mode == WB_SYNC_NONE) { 3027 done = 1; 3028 break; 3029 } 3030 next: 3031 if (need_readd) 3032 goto readd; 3033 } 3034 pagevec_release(&pvec); 3035 cond_resched(); 3036 } 3037 #ifdef CONFIG_F2FS_FS_COMPRESSION 3038 /* flush remained pages in compress cluster */ 3039 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3040 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3041 nwritten += submitted; 3042 wbc->nr_to_write -= submitted; 3043 if (ret) { 3044 done = 1; 3045 retry = 0; 3046 } 3047 } 3048 if (f2fs_compressed_file(inode)) 3049 f2fs_destroy_compress_ctx(&cc, false); 3050 #endif 3051 if (retry) { 3052 index = 0; 3053 end = -1; 3054 goto retry; 3055 } 3056 if (wbc->range_cyclic && !done) 3057 done_index = 0; 3058 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3059 mapping->writeback_index = done_index; 3060 3061 if (nwritten) 3062 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3063 NULL, 0, DATA); 3064 /* submit cached bio of IPU write */ 3065 if (bio) 3066 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3067 3068 return ret; 3069 } 3070 3071 static inline bool __should_serialize_io(struct inode *inode, 3072 struct writeback_control *wbc) 3073 { 3074 /* to avoid deadlock in path of data flush */ 3075 if (F2FS_I(inode)->cp_task) 3076 return false; 3077 3078 if (!S_ISREG(inode->i_mode)) 3079 return false; 3080 if (IS_NOQUOTA(inode)) 3081 return false; 3082 3083 if (f2fs_need_compress_data(inode)) 3084 return true; 3085 if (wbc->sync_mode != WB_SYNC_ALL) 3086 return true; 3087 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3088 return true; 3089 return false; 3090 } 3091 3092 static int __f2fs_write_data_pages(struct address_space *mapping, 3093 struct writeback_control *wbc, 3094 enum iostat_type io_type) 3095 { 3096 struct inode *inode = mapping->host; 3097 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3098 struct blk_plug plug; 3099 int ret; 3100 bool locked = false; 3101 3102 /* deal with chardevs and other special file */ 3103 if (!mapping->a_ops->writepage) 3104 return 0; 3105 3106 /* skip writing if there is no dirty page in this inode */ 3107 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3108 return 0; 3109 3110 /* during POR, we don't need to trigger writepage at all. */ 3111 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3112 goto skip_write; 3113 3114 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3115 wbc->sync_mode == WB_SYNC_NONE && 3116 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3117 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3118 goto skip_write; 3119 3120 /* skip writing during file defragment */ 3121 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3122 goto skip_write; 3123 3124 trace_f2fs_writepages(mapping->host, wbc, DATA); 3125 3126 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3127 if (wbc->sync_mode == WB_SYNC_ALL) 3128 atomic_inc(&sbi->wb_sync_req[DATA]); 3129 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3130 goto skip_write; 3131 3132 if (__should_serialize_io(inode, wbc)) { 3133 mutex_lock(&sbi->writepages); 3134 locked = true; 3135 } 3136 3137 blk_start_plug(&plug); 3138 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3139 blk_finish_plug(&plug); 3140 3141 if (locked) 3142 mutex_unlock(&sbi->writepages); 3143 3144 if (wbc->sync_mode == WB_SYNC_ALL) 3145 atomic_dec(&sbi->wb_sync_req[DATA]); 3146 /* 3147 * if some pages were truncated, we cannot guarantee its mapping->host 3148 * to detect pending bios. 3149 */ 3150 3151 f2fs_remove_dirty_inode(inode); 3152 return ret; 3153 3154 skip_write: 3155 wbc->pages_skipped += get_dirty_pages(inode); 3156 trace_f2fs_writepages(mapping->host, wbc, DATA); 3157 return 0; 3158 } 3159 3160 static int f2fs_write_data_pages(struct address_space *mapping, 3161 struct writeback_control *wbc) 3162 { 3163 struct inode *inode = mapping->host; 3164 3165 return __f2fs_write_data_pages(mapping, wbc, 3166 F2FS_I(inode)->cp_task == current ? 3167 FS_CP_DATA_IO : FS_DATA_IO); 3168 } 3169 3170 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 3171 { 3172 struct inode *inode = mapping->host; 3173 loff_t i_size = i_size_read(inode); 3174 3175 if (IS_NOQUOTA(inode)) 3176 return; 3177 3178 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3179 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3180 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3181 down_write(&F2FS_I(inode)->i_mmap_sem); 3182 3183 truncate_pagecache(inode, i_size); 3184 f2fs_truncate_blocks(inode, i_size, true); 3185 3186 up_write(&F2FS_I(inode)->i_mmap_sem); 3187 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3188 } 3189 } 3190 3191 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3192 struct page *page, loff_t pos, unsigned len, 3193 block_t *blk_addr, bool *node_changed) 3194 { 3195 struct inode *inode = page->mapping->host; 3196 pgoff_t index = page->index; 3197 struct dnode_of_data dn; 3198 struct page *ipage; 3199 bool locked = false; 3200 struct extent_info ei = {0,0,0}; 3201 int err = 0; 3202 int flag; 3203 3204 /* 3205 * we already allocated all the blocks, so we don't need to get 3206 * the block addresses when there is no need to fill the page. 3207 */ 3208 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3209 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3210 !f2fs_verity_in_progress(inode)) 3211 return 0; 3212 3213 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3214 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3215 flag = F2FS_GET_BLOCK_DEFAULT; 3216 else 3217 flag = F2FS_GET_BLOCK_PRE_AIO; 3218 3219 if (f2fs_has_inline_data(inode) || 3220 (pos & PAGE_MASK) >= i_size_read(inode)) { 3221 f2fs_do_map_lock(sbi, flag, true); 3222 locked = true; 3223 } 3224 3225 restart: 3226 /* check inline_data */ 3227 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3228 if (IS_ERR(ipage)) { 3229 err = PTR_ERR(ipage); 3230 goto unlock_out; 3231 } 3232 3233 set_new_dnode(&dn, inode, ipage, ipage, 0); 3234 3235 if (f2fs_has_inline_data(inode)) { 3236 if (pos + len <= MAX_INLINE_DATA(inode)) { 3237 f2fs_do_read_inline_data(page, ipage); 3238 set_inode_flag(inode, FI_DATA_EXIST); 3239 if (inode->i_nlink) 3240 set_page_private_inline(ipage); 3241 } else { 3242 err = f2fs_convert_inline_page(&dn, page); 3243 if (err) 3244 goto out; 3245 if (dn.data_blkaddr == NULL_ADDR) 3246 err = f2fs_get_block(&dn, index); 3247 } 3248 } else if (locked) { 3249 err = f2fs_get_block(&dn, index); 3250 } else { 3251 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3252 dn.data_blkaddr = ei.blk + index - ei.fofs; 3253 } else { 3254 /* hole case */ 3255 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3256 if (err || dn.data_blkaddr == NULL_ADDR) { 3257 f2fs_put_dnode(&dn); 3258 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3259 true); 3260 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3261 locked = true; 3262 goto restart; 3263 } 3264 } 3265 } 3266 3267 /* convert_inline_page can make node_changed */ 3268 *blk_addr = dn.data_blkaddr; 3269 *node_changed = dn.node_changed; 3270 out: 3271 f2fs_put_dnode(&dn); 3272 unlock_out: 3273 if (locked) 3274 f2fs_do_map_lock(sbi, flag, false); 3275 return err; 3276 } 3277 3278 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3279 loff_t pos, unsigned len, unsigned flags, 3280 struct page **pagep, void **fsdata) 3281 { 3282 struct inode *inode = mapping->host; 3283 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3284 struct page *page = NULL; 3285 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3286 bool need_balance = false, drop_atomic = false; 3287 block_t blkaddr = NULL_ADDR; 3288 int err = 0; 3289 3290 trace_f2fs_write_begin(inode, pos, len, flags); 3291 3292 if (!f2fs_is_checkpoint_ready(sbi)) { 3293 err = -ENOSPC; 3294 goto fail; 3295 } 3296 3297 if ((f2fs_is_atomic_file(inode) && 3298 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3299 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3300 err = -ENOMEM; 3301 drop_atomic = true; 3302 goto fail; 3303 } 3304 3305 /* 3306 * We should check this at this moment to avoid deadlock on inode page 3307 * and #0 page. The locking rule for inline_data conversion should be: 3308 * lock_page(page #0) -> lock_page(inode_page) 3309 */ 3310 if (index != 0) { 3311 err = f2fs_convert_inline_inode(inode); 3312 if (err) 3313 goto fail; 3314 } 3315 3316 #ifdef CONFIG_F2FS_FS_COMPRESSION 3317 if (f2fs_compressed_file(inode)) { 3318 int ret; 3319 3320 *fsdata = NULL; 3321 3322 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3323 index, fsdata); 3324 if (ret < 0) { 3325 err = ret; 3326 goto fail; 3327 } else if (ret) { 3328 return 0; 3329 } 3330 } 3331 #endif 3332 3333 repeat: 3334 /* 3335 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3336 * wait_for_stable_page. Will wait that below with our IO control. 3337 */ 3338 page = f2fs_pagecache_get_page(mapping, index, 3339 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3340 if (!page) { 3341 err = -ENOMEM; 3342 goto fail; 3343 } 3344 3345 /* TODO: cluster can be compressed due to race with .writepage */ 3346 3347 *pagep = page; 3348 3349 err = prepare_write_begin(sbi, page, pos, len, 3350 &blkaddr, &need_balance); 3351 if (err) 3352 goto fail; 3353 3354 if (need_balance && !IS_NOQUOTA(inode) && 3355 has_not_enough_free_secs(sbi, 0, 0)) { 3356 unlock_page(page); 3357 f2fs_balance_fs(sbi, true); 3358 lock_page(page); 3359 if (page->mapping != mapping) { 3360 /* The page got truncated from under us */ 3361 f2fs_put_page(page, 1); 3362 goto repeat; 3363 } 3364 } 3365 3366 f2fs_wait_on_page_writeback(page, DATA, false, true); 3367 3368 if (len == PAGE_SIZE || PageUptodate(page)) 3369 return 0; 3370 3371 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3372 !f2fs_verity_in_progress(inode)) { 3373 zero_user_segment(page, len, PAGE_SIZE); 3374 return 0; 3375 } 3376 3377 if (blkaddr == NEW_ADDR) { 3378 zero_user_segment(page, 0, PAGE_SIZE); 3379 SetPageUptodate(page); 3380 } else { 3381 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3382 DATA_GENERIC_ENHANCE_READ)) { 3383 err = -EFSCORRUPTED; 3384 goto fail; 3385 } 3386 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3387 if (err) 3388 goto fail; 3389 3390 lock_page(page); 3391 if (unlikely(page->mapping != mapping)) { 3392 f2fs_put_page(page, 1); 3393 goto repeat; 3394 } 3395 if (unlikely(!PageUptodate(page))) { 3396 err = -EIO; 3397 goto fail; 3398 } 3399 } 3400 return 0; 3401 3402 fail: 3403 f2fs_put_page(page, 1); 3404 f2fs_write_failed(mapping, pos + len); 3405 if (drop_atomic) 3406 f2fs_drop_inmem_pages_all(sbi, false); 3407 return err; 3408 } 3409 3410 static int f2fs_write_end(struct file *file, 3411 struct address_space *mapping, 3412 loff_t pos, unsigned len, unsigned copied, 3413 struct page *page, void *fsdata) 3414 { 3415 struct inode *inode = page->mapping->host; 3416 3417 trace_f2fs_write_end(inode, pos, len, copied); 3418 3419 /* 3420 * This should be come from len == PAGE_SIZE, and we expect copied 3421 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3422 * let generic_perform_write() try to copy data again through copied=0. 3423 */ 3424 if (!PageUptodate(page)) { 3425 if (unlikely(copied != len)) 3426 copied = 0; 3427 else 3428 SetPageUptodate(page); 3429 } 3430 3431 #ifdef CONFIG_F2FS_FS_COMPRESSION 3432 /* overwrite compressed file */ 3433 if (f2fs_compressed_file(inode) && fsdata) { 3434 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3435 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3436 3437 if (pos + copied > i_size_read(inode) && 3438 !f2fs_verity_in_progress(inode)) 3439 f2fs_i_size_write(inode, pos + copied); 3440 return copied; 3441 } 3442 #endif 3443 3444 if (!copied) 3445 goto unlock_out; 3446 3447 set_page_dirty(page); 3448 3449 if (pos + copied > i_size_read(inode) && 3450 !f2fs_verity_in_progress(inode)) 3451 f2fs_i_size_write(inode, pos + copied); 3452 unlock_out: 3453 f2fs_put_page(page, 1); 3454 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3455 return copied; 3456 } 3457 3458 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3459 loff_t offset) 3460 { 3461 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3462 unsigned blkbits = i_blkbits; 3463 unsigned blocksize_mask = (1 << blkbits) - 1; 3464 unsigned long align = offset | iov_iter_alignment(iter); 3465 struct block_device *bdev = inode->i_sb->s_bdev; 3466 3467 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3468 return 1; 3469 3470 if (align & blocksize_mask) { 3471 if (bdev) 3472 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3473 blocksize_mask = (1 << blkbits) - 1; 3474 if (align & blocksize_mask) 3475 return -EINVAL; 3476 return 1; 3477 } 3478 return 0; 3479 } 3480 3481 static void f2fs_dio_end_io(struct bio *bio) 3482 { 3483 struct f2fs_private_dio *dio = bio->bi_private; 3484 3485 dec_page_count(F2FS_I_SB(dio->inode), 3486 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3487 3488 bio->bi_private = dio->orig_private; 3489 bio->bi_end_io = dio->orig_end_io; 3490 3491 kfree(dio); 3492 3493 bio_endio(bio); 3494 } 3495 3496 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3497 loff_t file_offset) 3498 { 3499 struct f2fs_private_dio *dio; 3500 bool write = (bio_op(bio) == REQ_OP_WRITE); 3501 3502 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3503 sizeof(struct f2fs_private_dio), GFP_NOFS); 3504 if (!dio) 3505 goto out; 3506 3507 dio->inode = inode; 3508 dio->orig_end_io = bio->bi_end_io; 3509 dio->orig_private = bio->bi_private; 3510 dio->write = write; 3511 3512 bio->bi_end_io = f2fs_dio_end_io; 3513 bio->bi_private = dio; 3514 3515 inc_page_count(F2FS_I_SB(inode), 3516 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3517 3518 submit_bio(bio); 3519 return; 3520 out: 3521 bio->bi_status = BLK_STS_IOERR; 3522 bio_endio(bio); 3523 } 3524 3525 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3526 { 3527 struct address_space *mapping = iocb->ki_filp->f_mapping; 3528 struct inode *inode = mapping->host; 3529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3530 struct f2fs_inode_info *fi = F2FS_I(inode); 3531 size_t count = iov_iter_count(iter); 3532 loff_t offset = iocb->ki_pos; 3533 int rw = iov_iter_rw(iter); 3534 int err; 3535 enum rw_hint hint = iocb->ki_hint; 3536 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3537 bool do_opu; 3538 3539 err = check_direct_IO(inode, iter, offset); 3540 if (err) 3541 return err < 0 ? err : 0; 3542 3543 if (f2fs_force_buffered_io(inode, iocb, iter)) 3544 return 0; 3545 3546 do_opu = allow_outplace_dio(inode, iocb, iter); 3547 3548 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3549 3550 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3551 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3552 3553 if (iocb->ki_flags & IOCB_NOWAIT) { 3554 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3555 iocb->ki_hint = hint; 3556 err = -EAGAIN; 3557 goto out; 3558 } 3559 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3560 up_read(&fi->i_gc_rwsem[rw]); 3561 iocb->ki_hint = hint; 3562 err = -EAGAIN; 3563 goto out; 3564 } 3565 } else { 3566 down_read(&fi->i_gc_rwsem[rw]); 3567 if (do_opu) 3568 down_read(&fi->i_gc_rwsem[READ]); 3569 } 3570 3571 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3572 iter, rw == WRITE ? get_data_block_dio_write : 3573 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3574 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3575 DIO_SKIP_HOLES); 3576 3577 if (do_opu) 3578 up_read(&fi->i_gc_rwsem[READ]); 3579 3580 up_read(&fi->i_gc_rwsem[rw]); 3581 3582 if (rw == WRITE) { 3583 if (whint_mode == WHINT_MODE_OFF) 3584 iocb->ki_hint = hint; 3585 if (err > 0) { 3586 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3587 err); 3588 if (!do_opu) 3589 set_inode_flag(inode, FI_UPDATE_WRITE); 3590 } else if (err == -EIOCBQUEUED) { 3591 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3592 count - iov_iter_count(iter)); 3593 } else if (err < 0) { 3594 f2fs_write_failed(mapping, offset + count); 3595 } 3596 } else { 3597 if (err > 0) 3598 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3599 else if (err == -EIOCBQUEUED) 3600 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3601 count - iov_iter_count(iter)); 3602 } 3603 3604 out: 3605 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3606 3607 return err; 3608 } 3609 3610 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3611 unsigned int length) 3612 { 3613 struct inode *inode = page->mapping->host; 3614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3615 3616 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3617 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3618 return; 3619 3620 if (PageDirty(page)) { 3621 if (inode->i_ino == F2FS_META_INO(sbi)) { 3622 dec_page_count(sbi, F2FS_DIRTY_META); 3623 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3624 dec_page_count(sbi, F2FS_DIRTY_NODES); 3625 } else { 3626 inode_dec_dirty_pages(inode); 3627 f2fs_remove_dirty_inode(inode); 3628 } 3629 } 3630 3631 clear_page_private_gcing(page); 3632 3633 if (test_opt(sbi, COMPRESS_CACHE)) { 3634 if (f2fs_compressed_file(inode)) 3635 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3636 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3637 clear_page_private_data(page); 3638 } 3639 3640 if (page_private_atomic(page)) 3641 return f2fs_drop_inmem_page(inode, page); 3642 3643 detach_page_private(page); 3644 set_page_private(page, 0); 3645 } 3646 3647 int f2fs_release_page(struct page *page, gfp_t wait) 3648 { 3649 /* If this is dirty page, keep PagePrivate */ 3650 if (PageDirty(page)) 3651 return 0; 3652 3653 /* This is atomic written page, keep Private */ 3654 if (page_private_atomic(page)) 3655 return 0; 3656 3657 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3658 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3659 struct inode *inode = page->mapping->host; 3660 3661 if (f2fs_compressed_file(inode)) 3662 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3663 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3664 clear_page_private_data(page); 3665 } 3666 3667 clear_page_private_gcing(page); 3668 3669 detach_page_private(page); 3670 set_page_private(page, 0); 3671 return 1; 3672 } 3673 3674 static int f2fs_set_data_page_dirty(struct page *page) 3675 { 3676 struct inode *inode = page_file_mapping(page)->host; 3677 3678 trace_f2fs_set_page_dirty(page, DATA); 3679 3680 if (!PageUptodate(page)) 3681 SetPageUptodate(page); 3682 if (PageSwapCache(page)) 3683 return __set_page_dirty_nobuffers(page); 3684 3685 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3686 if (!page_private_atomic(page)) { 3687 f2fs_register_inmem_page(inode, page); 3688 return 1; 3689 } 3690 /* 3691 * Previously, this page has been registered, we just 3692 * return here. 3693 */ 3694 return 0; 3695 } 3696 3697 if (!PageDirty(page)) { 3698 __set_page_dirty_nobuffers(page); 3699 f2fs_update_dirty_page(inode, page); 3700 return 1; 3701 } 3702 return 0; 3703 } 3704 3705 3706 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3707 { 3708 #ifdef CONFIG_F2FS_FS_COMPRESSION 3709 struct dnode_of_data dn; 3710 sector_t start_idx, blknr = 0; 3711 int ret; 3712 3713 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3714 3715 set_new_dnode(&dn, inode, NULL, NULL, 0); 3716 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3717 if (ret) 3718 return 0; 3719 3720 if (dn.data_blkaddr != COMPRESS_ADDR) { 3721 dn.ofs_in_node += block - start_idx; 3722 blknr = f2fs_data_blkaddr(&dn); 3723 if (!__is_valid_data_blkaddr(blknr)) 3724 blknr = 0; 3725 } 3726 3727 f2fs_put_dnode(&dn); 3728 return blknr; 3729 #else 3730 return 0; 3731 #endif 3732 } 3733 3734 3735 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3736 { 3737 struct inode *inode = mapping->host; 3738 sector_t blknr = 0; 3739 3740 if (f2fs_has_inline_data(inode)) 3741 goto out; 3742 3743 /* make sure allocating whole blocks */ 3744 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3745 filemap_write_and_wait(mapping); 3746 3747 /* Block number less than F2FS MAX BLOCKS */ 3748 if (unlikely(block >= max_file_blocks(inode))) 3749 goto out; 3750 3751 if (f2fs_compressed_file(inode)) { 3752 blknr = f2fs_bmap_compress(inode, block); 3753 } else { 3754 struct f2fs_map_blocks map; 3755 3756 memset(&map, 0, sizeof(map)); 3757 map.m_lblk = block; 3758 map.m_len = 1; 3759 map.m_next_pgofs = NULL; 3760 map.m_seg_type = NO_CHECK_TYPE; 3761 3762 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3763 blknr = map.m_pblk; 3764 } 3765 out: 3766 trace_f2fs_bmap(inode, block, blknr); 3767 return blknr; 3768 } 3769 3770 #ifdef CONFIG_MIGRATION 3771 #include <linux/migrate.h> 3772 3773 int f2fs_migrate_page(struct address_space *mapping, 3774 struct page *newpage, struct page *page, enum migrate_mode mode) 3775 { 3776 int rc, extra_count; 3777 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3778 bool atomic_written = page_private_atomic(page); 3779 3780 BUG_ON(PageWriteback(page)); 3781 3782 /* migrating an atomic written page is safe with the inmem_lock hold */ 3783 if (atomic_written) { 3784 if (mode != MIGRATE_SYNC) 3785 return -EBUSY; 3786 if (!mutex_trylock(&fi->inmem_lock)) 3787 return -EAGAIN; 3788 } 3789 3790 /* one extra reference was held for atomic_write page */ 3791 extra_count = atomic_written ? 1 : 0; 3792 rc = migrate_page_move_mapping(mapping, newpage, 3793 page, extra_count); 3794 if (rc != MIGRATEPAGE_SUCCESS) { 3795 if (atomic_written) 3796 mutex_unlock(&fi->inmem_lock); 3797 return rc; 3798 } 3799 3800 if (atomic_written) { 3801 struct inmem_pages *cur; 3802 3803 list_for_each_entry(cur, &fi->inmem_pages, list) 3804 if (cur->page == page) { 3805 cur->page = newpage; 3806 break; 3807 } 3808 mutex_unlock(&fi->inmem_lock); 3809 put_page(page); 3810 get_page(newpage); 3811 } 3812 3813 if (PagePrivate(page)) { 3814 set_page_private(newpage, page_private(page)); 3815 SetPagePrivate(newpage); 3816 get_page(newpage); 3817 3818 set_page_private(page, 0); 3819 ClearPagePrivate(page); 3820 put_page(page); 3821 } 3822 3823 if (mode != MIGRATE_SYNC_NO_COPY) 3824 migrate_page_copy(newpage, page); 3825 else 3826 migrate_page_states(newpage, page); 3827 3828 return MIGRATEPAGE_SUCCESS; 3829 } 3830 #endif 3831 3832 #ifdef CONFIG_SWAP 3833 static int check_swap_activate(struct swap_info_struct *sis, 3834 struct file *swap_file, sector_t *span) 3835 { 3836 struct address_space *mapping = swap_file->f_mapping; 3837 struct inode *inode = mapping->host; 3838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3839 sector_t cur_lblock; 3840 sector_t last_lblock; 3841 sector_t pblock; 3842 sector_t lowest_pblock = -1; 3843 sector_t highest_pblock = 0; 3844 int nr_extents = 0; 3845 unsigned long nr_pblocks; 3846 unsigned int blocks_per_sec = BLKS_PER_SEC(sbi); 3847 unsigned int not_aligned = 0; 3848 int ret = 0; 3849 3850 /* 3851 * Map all the blocks into the extent list. This code doesn't try 3852 * to be very smart. 3853 */ 3854 cur_lblock = 0; 3855 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3856 3857 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3858 struct f2fs_map_blocks map; 3859 3860 cond_resched(); 3861 3862 memset(&map, 0, sizeof(map)); 3863 map.m_lblk = cur_lblock; 3864 map.m_len = last_lblock - cur_lblock; 3865 map.m_next_pgofs = NULL; 3866 map.m_next_extent = NULL; 3867 map.m_seg_type = NO_CHECK_TYPE; 3868 map.m_may_create = false; 3869 3870 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3871 if (ret) 3872 goto out; 3873 3874 /* hole */ 3875 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3876 f2fs_err(sbi, "Swapfile has holes"); 3877 ret = -EINVAL; 3878 goto out; 3879 } 3880 3881 pblock = map.m_pblk; 3882 nr_pblocks = map.m_len; 3883 3884 if ((pblock - SM_I(sbi)->main_blkaddr) & (blocks_per_sec - 1) || 3885 nr_pblocks & (blocks_per_sec - 1)) { 3886 if (f2fs_is_pinned_file(inode)) { 3887 f2fs_err(sbi, "Swapfile does not align to section"); 3888 ret = -EINVAL; 3889 goto out; 3890 } 3891 not_aligned++; 3892 } 3893 3894 if (cur_lblock + nr_pblocks >= sis->max) 3895 nr_pblocks = sis->max - cur_lblock; 3896 3897 if (cur_lblock) { /* exclude the header page */ 3898 if (pblock < lowest_pblock) 3899 lowest_pblock = pblock; 3900 if (pblock + nr_pblocks - 1 > highest_pblock) 3901 highest_pblock = pblock + nr_pblocks - 1; 3902 } 3903 3904 /* 3905 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3906 */ 3907 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3908 if (ret < 0) 3909 goto out; 3910 nr_extents += ret; 3911 cur_lblock += nr_pblocks; 3912 } 3913 ret = nr_extents; 3914 *span = 1 + highest_pblock - lowest_pblock; 3915 if (cur_lblock == 0) 3916 cur_lblock = 1; /* force Empty message */ 3917 sis->max = cur_lblock; 3918 sis->pages = cur_lblock - 1; 3919 sis->highest_bit = cur_lblock - 1; 3920 3921 if (not_aligned) 3922 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate()", 3923 not_aligned); 3924 out: 3925 return ret; 3926 } 3927 3928 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3929 sector_t *span) 3930 { 3931 struct inode *inode = file_inode(file); 3932 int ret; 3933 3934 if (!S_ISREG(inode->i_mode)) 3935 return -EINVAL; 3936 3937 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3938 return -EROFS; 3939 3940 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3941 f2fs_err(F2FS_I_SB(inode), 3942 "Swapfile not supported in LFS mode"); 3943 return -EINVAL; 3944 } 3945 3946 ret = f2fs_convert_inline_inode(inode); 3947 if (ret) 3948 return ret; 3949 3950 if (!f2fs_disable_compressed_file(inode)) 3951 return -EINVAL; 3952 3953 f2fs_precache_extents(inode); 3954 3955 ret = check_swap_activate(sis, file, span); 3956 if (ret < 0) 3957 return ret; 3958 3959 set_inode_flag(inode, FI_PIN_FILE); 3960 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3961 return ret; 3962 } 3963 3964 static void f2fs_swap_deactivate(struct file *file) 3965 { 3966 struct inode *inode = file_inode(file); 3967 3968 clear_inode_flag(inode, FI_PIN_FILE); 3969 } 3970 #else 3971 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3972 sector_t *span) 3973 { 3974 return -EOPNOTSUPP; 3975 } 3976 3977 static void f2fs_swap_deactivate(struct file *file) 3978 { 3979 } 3980 #endif 3981 3982 const struct address_space_operations f2fs_dblock_aops = { 3983 .readpage = f2fs_read_data_page, 3984 .readahead = f2fs_readahead, 3985 .writepage = f2fs_write_data_page, 3986 .writepages = f2fs_write_data_pages, 3987 .write_begin = f2fs_write_begin, 3988 .write_end = f2fs_write_end, 3989 .set_page_dirty = f2fs_set_data_page_dirty, 3990 .invalidatepage = f2fs_invalidate_page, 3991 .releasepage = f2fs_release_page, 3992 .direct_IO = f2fs_direct_IO, 3993 .bmap = f2fs_bmap, 3994 .swap_activate = f2fs_swap_activate, 3995 .swap_deactivate = f2fs_swap_deactivate, 3996 #ifdef CONFIG_MIGRATION 3997 .migratepage = f2fs_migrate_page, 3998 #endif 3999 }; 4000 4001 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4002 { 4003 struct address_space *mapping = page_mapping(page); 4004 unsigned long flags; 4005 4006 xa_lock_irqsave(&mapping->i_pages, flags); 4007 __xa_clear_mark(&mapping->i_pages, page_index(page), 4008 PAGECACHE_TAG_DIRTY); 4009 xa_unlock_irqrestore(&mapping->i_pages, flags); 4010 } 4011 4012 int __init f2fs_init_post_read_processing(void) 4013 { 4014 bio_post_read_ctx_cache = 4015 kmem_cache_create("f2fs_bio_post_read_ctx", 4016 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4017 if (!bio_post_read_ctx_cache) 4018 goto fail; 4019 bio_post_read_ctx_pool = 4020 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4021 bio_post_read_ctx_cache); 4022 if (!bio_post_read_ctx_pool) 4023 goto fail_free_cache; 4024 return 0; 4025 4026 fail_free_cache: 4027 kmem_cache_destroy(bio_post_read_ctx_cache); 4028 fail: 4029 return -ENOMEM; 4030 } 4031 4032 void f2fs_destroy_post_read_processing(void) 4033 { 4034 mempool_destroy(bio_post_read_ctx_pool); 4035 kmem_cache_destroy(bio_post_read_ctx_cache); 4036 } 4037 4038 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4039 { 4040 if (!f2fs_sb_has_encrypt(sbi) && 4041 !f2fs_sb_has_verity(sbi) && 4042 !f2fs_sb_has_compression(sbi)) 4043 return 0; 4044 4045 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4046 WQ_UNBOUND | WQ_HIGHPRI, 4047 num_online_cpus()); 4048 if (!sbi->post_read_wq) 4049 return -ENOMEM; 4050 return 0; 4051 } 4052 4053 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4054 { 4055 if (sbi->post_read_wq) 4056 destroy_workqueue(sbi->post_read_wq); 4057 } 4058 4059 int __init f2fs_init_bio_entry_cache(void) 4060 { 4061 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4062 sizeof(struct bio_entry)); 4063 if (!bio_entry_slab) 4064 return -ENOMEM; 4065 return 0; 4066 } 4067 4068 void f2fs_destroy_bio_entry_cache(void) 4069 { 4070 kmem_cache_destroy(bio_entry_slab); 4071 } 4072