xref: /openbmc/linux/fs/f2fs/compress.c (revision e41d12f539f7c8bac9b0897031fee6cc9158a6be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	if (!reuse)
158 		cc->cluster_idx = NULL_CLUSTER;
159 }
160 
161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 	unsigned int cluster_ofs;
164 
165 	if (!f2fs_cluster_can_merge_page(cc, page->index))
166 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167 
168 	cluster_ofs = offset_in_cluster(cc, page->index);
169 	cc->rpages[cluster_ofs] = page;
170 	cc->nr_rpages++;
171 	cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173 
174 #ifdef CONFIG_F2FS_FS_LZO
175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 				LZO1X_MEM_COMPRESS, GFP_NOFS);
179 	if (!cc->private)
180 		return -ENOMEM;
181 
182 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 	return 0;
184 }
185 
186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 	kvfree(cc->private);
189 	cc->private = NULL;
190 }
191 
192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 	int ret;
195 
196 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 					&cc->clen, cc->private);
198 	if (ret != LZO_E_OK) {
199 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 		return -EIO;
202 	}
203 	return 0;
204 }
205 
206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 	int ret;
209 
210 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 						dic->rbuf, &dic->rlen);
212 	if (ret != LZO_E_OK) {
213 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 		return -EIO;
216 	}
217 
218 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 					"expected:%lu\n", KERN_ERR,
221 					F2FS_I_SB(dic->inode)->sb->s_id,
222 					dic->rlen,
223 					PAGE_SIZE << dic->log_cluster_size);
224 		return -EIO;
225 	}
226 	return 0;
227 }
228 
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 	.init_compress_ctx	= lzo_init_compress_ctx,
231 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
232 	.compress_pages		= lzo_compress_pages,
233 	.decompress_pages	= lzo_decompress_pages,
234 };
235 #endif
236 
237 #ifdef CONFIG_F2FS_FS_LZ4
238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 	unsigned int size = LZ4_MEM_COMPRESS;
241 
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
244 		size = LZ4HC_MEM_COMPRESS;
245 #endif
246 
247 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 	if (!cc->private)
249 		return -ENOMEM;
250 
251 	/*
252 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 	 * adapt worst compress case, because lz4 compressor can handle
254 	 * output budget properly.
255 	 */
256 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 	return 0;
258 }
259 
260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 	kvfree(cc->private);
263 	cc->private = NULL;
264 }
265 
266 #ifdef CONFIG_F2FS_FS_LZ4HC
267 static int lz4hc_compress_pages(struct compress_ctx *cc)
268 {
269 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
270 						COMPRESS_LEVEL_OFFSET;
271 	int len;
272 
273 	if (level)
274 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 					cc->clen, level, cc->private);
276 	else
277 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 						cc->clen, cc->private);
279 	if (!len)
280 		return -EAGAIN;
281 
282 	cc->clen = len;
283 	return 0;
284 }
285 #endif
286 
287 static int lz4_compress_pages(struct compress_ctx *cc)
288 {
289 	int len;
290 
291 #ifdef CONFIG_F2FS_FS_LZ4HC
292 	return lz4hc_compress_pages(cc);
293 #endif
294 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
295 						cc->clen, cc->private);
296 	if (!len)
297 		return -EAGAIN;
298 
299 	cc->clen = len;
300 	return 0;
301 }
302 
303 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
304 {
305 	int ret;
306 
307 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
308 						dic->clen, dic->rlen);
309 	if (ret < 0) {
310 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
311 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
312 		return -EIO;
313 	}
314 
315 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
316 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
317 					"expected:%lu\n", KERN_ERR,
318 					F2FS_I_SB(dic->inode)->sb->s_id,
319 					dic->rlen,
320 					PAGE_SIZE << dic->log_cluster_size);
321 		return -EIO;
322 	}
323 	return 0;
324 }
325 
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 	.init_compress_ctx	= lz4_init_compress_ctx,
328 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
329 	.compress_pages		= lz4_compress_pages,
330 	.decompress_pages	= lz4_decompress_pages,
331 };
332 #endif
333 
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
336 
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 	ZSTD_parameters params;
340 	ZSTD_CStream *stream;
341 	void *workspace;
342 	unsigned int workspace_size;
343 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 						COMPRESS_LEVEL_OFFSET;
345 
346 	if (!level)
347 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
348 
349 	params = ZSTD_getParams(level, cc->rlen, 0);
350 	workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
351 
352 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 					workspace_size, GFP_NOFS);
354 	if (!workspace)
355 		return -ENOMEM;
356 
357 	stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
358 	if (!stream) {
359 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
360 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 				__func__);
362 		kvfree(workspace);
363 		return -EIO;
364 	}
365 
366 	cc->private = workspace;
367 	cc->private2 = stream;
368 
369 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 	return 0;
371 }
372 
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 	kvfree(cc->private);
376 	cc->private = NULL;
377 	cc->private2 = NULL;
378 }
379 
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 	ZSTD_CStream *stream = cc->private2;
383 	ZSTD_inBuffer inbuf;
384 	ZSTD_outBuffer outbuf;
385 	int src_size = cc->rlen;
386 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 	int ret;
388 
389 	inbuf.pos = 0;
390 	inbuf.src = cc->rbuf;
391 	inbuf.size = src_size;
392 
393 	outbuf.pos = 0;
394 	outbuf.dst = cc->cbuf->cdata;
395 	outbuf.size = dst_size;
396 
397 	ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
398 	if (ZSTD_isError(ret)) {
399 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
400 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 				__func__, ZSTD_getErrorCode(ret));
402 		return -EIO;
403 	}
404 
405 	ret = ZSTD_endStream(stream, &outbuf);
406 	if (ZSTD_isError(ret)) {
407 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
408 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 				__func__, ZSTD_getErrorCode(ret));
410 		return -EIO;
411 	}
412 
413 	/*
414 	 * there is compressed data remained in intermediate buffer due to
415 	 * no more space in cbuf.cdata
416 	 */
417 	if (ret)
418 		return -EAGAIN;
419 
420 	cc->clen = outbuf.pos;
421 	return 0;
422 }
423 
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 	ZSTD_DStream *stream;
427 	void *workspace;
428 	unsigned int workspace_size;
429 	unsigned int max_window_size =
430 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431 
432 	workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
433 
434 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 					workspace_size, GFP_NOFS);
436 	if (!workspace)
437 		return -ENOMEM;
438 
439 	stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
440 	if (!stream) {
441 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
442 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 				__func__);
444 		kvfree(workspace);
445 		return -EIO;
446 	}
447 
448 	dic->private = workspace;
449 	dic->private2 = stream;
450 
451 	return 0;
452 }
453 
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 	kvfree(dic->private);
457 	dic->private = NULL;
458 	dic->private2 = NULL;
459 }
460 
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 	ZSTD_DStream *stream = dic->private2;
464 	ZSTD_inBuffer inbuf;
465 	ZSTD_outBuffer outbuf;
466 	int ret;
467 
468 	inbuf.pos = 0;
469 	inbuf.src = dic->cbuf->cdata;
470 	inbuf.size = dic->clen;
471 
472 	outbuf.pos = 0;
473 	outbuf.dst = dic->rbuf;
474 	outbuf.size = dic->rlen;
475 
476 	ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
477 	if (ZSTD_isError(ret)) {
478 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
479 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 				__func__, ZSTD_getErrorCode(ret));
481 		return -EIO;
482 	}
483 
484 	if (dic->rlen != outbuf.pos) {
485 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 				"expected:%lu\n", KERN_ERR,
487 				F2FS_I_SB(dic->inode)->sb->s_id,
488 				__func__, dic->rlen,
489 				PAGE_SIZE << dic->log_cluster_size);
490 		return -EIO;
491 	}
492 
493 	return 0;
494 }
495 
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 	.init_compress_ctx	= zstd_init_compress_ctx,
498 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
499 	.compress_pages		= zstd_compress_pages,
500 	.init_decompress_ctx	= zstd_init_decompress_ctx,
501 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
502 	.decompress_pages	= zstd_decompress_pages,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 		"Number of intermediate compress pages to preallocate");
566 
567 int f2fs_init_compress_mempool(void)
568 {
569 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 	if (!compress_page_pool)
571 		return -ENOMEM;
572 
573 	return 0;
574 }
575 
576 void f2fs_destroy_compress_mempool(void)
577 {
578 	mempool_destroy(compress_page_pool);
579 }
580 
581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 	struct page *page;
584 
585 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 	lock_page(page);
587 
588 	return page;
589 }
590 
591 static void f2fs_compress_free_page(struct page *page)
592 {
593 	if (!page)
594 		return;
595 	detach_page_private(page);
596 	page->mapping = NULL;
597 	unlock_page(page);
598 	mempool_free(page, compress_page_pool);
599 }
600 
601 #define MAX_VMAP_RETRIES	3
602 
603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 	int i;
606 	void *buf = NULL;
607 
608 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 		buf = vm_map_ram(pages, count, -1);
610 		if (buf)
611 			break;
612 		vm_unmap_aliases();
613 	}
614 	return buf;
615 }
616 
617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 	const struct f2fs_compress_ops *cops =
621 				f2fs_cops[fi->i_compress_algorithm];
622 	unsigned int max_len, new_nr_cpages;
623 	struct page **new_cpages;
624 	u32 chksum = 0;
625 	int i, ret;
626 
627 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 				cc->cluster_size, fi->i_compress_algorithm);
629 
630 	if (cops->init_compress_ctx) {
631 		ret = cops->init_compress_ctx(cc);
632 		if (ret)
633 			goto out;
634 	}
635 
636 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638 
639 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 	if (!cc->cpages) {
641 		ret = -ENOMEM;
642 		goto destroy_compress_ctx;
643 	}
644 
645 	for (i = 0; i < cc->nr_cpages; i++) {
646 		cc->cpages[i] = f2fs_compress_alloc_page();
647 		if (!cc->cpages[i]) {
648 			ret = -ENOMEM;
649 			goto out_free_cpages;
650 		}
651 	}
652 
653 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 	if (!cc->rbuf) {
655 		ret = -ENOMEM;
656 		goto out_free_cpages;
657 	}
658 
659 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 	if (!cc->cbuf) {
661 		ret = -ENOMEM;
662 		goto out_vunmap_rbuf;
663 	}
664 
665 	ret = cops->compress_pages(cc);
666 	if (ret)
667 		goto out_vunmap_cbuf;
668 
669 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670 
671 	if (cc->clen > max_len) {
672 		ret = -EAGAIN;
673 		goto out_vunmap_cbuf;
674 	}
675 
676 	cc->cbuf->clen = cpu_to_le32(cc->clen);
677 
678 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 					cc->cbuf->cdata, cc->clen);
681 	cc->cbuf->chksum = cpu_to_le32(chksum);
682 
683 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 		cc->cbuf->reserved[i] = cpu_to_le32(0);
685 
686 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687 
688 	/* Now we're going to cut unnecessary tail pages */
689 	new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
690 	if (!new_cpages) {
691 		ret = -ENOMEM;
692 		goto out_vunmap_cbuf;
693 	}
694 
695 	/* zero out any unused part of the last page */
696 	memset(&cc->cbuf->cdata[cc->clen], 0,
697 			(new_nr_cpages * PAGE_SIZE) -
698 			(cc->clen + COMPRESS_HEADER_SIZE));
699 
700 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
701 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
702 
703 	for (i = 0; i < cc->nr_cpages; i++) {
704 		if (i < new_nr_cpages) {
705 			new_cpages[i] = cc->cpages[i];
706 			continue;
707 		}
708 		f2fs_compress_free_page(cc->cpages[i]);
709 		cc->cpages[i] = NULL;
710 	}
711 
712 	if (cops->destroy_compress_ctx)
713 		cops->destroy_compress_ctx(cc);
714 
715 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
716 	cc->cpages = new_cpages;
717 	cc->nr_cpages = new_nr_cpages;
718 
719 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
720 							cc->clen, ret);
721 	return 0;
722 
723 out_vunmap_cbuf:
724 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
725 out_vunmap_rbuf:
726 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
727 out_free_cpages:
728 	for (i = 0; i < cc->nr_cpages; i++) {
729 		if (cc->cpages[i])
730 			f2fs_compress_free_page(cc->cpages[i]);
731 	}
732 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
733 	cc->cpages = NULL;
734 destroy_compress_ctx:
735 	if (cops->destroy_compress_ctx)
736 		cops->destroy_compress_ctx(cc);
737 out:
738 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
739 							cc->clen, ret);
740 	return ret;
741 }
742 
743 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
744 {
745 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
746 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
747 	const struct f2fs_compress_ops *cops =
748 			f2fs_cops[fi->i_compress_algorithm];
749 	int ret;
750 	int i;
751 
752 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
753 				dic->cluster_size, fi->i_compress_algorithm);
754 
755 	if (dic->failed) {
756 		ret = -EIO;
757 		goto out_end_io;
758 	}
759 
760 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
761 	if (!dic->tpages) {
762 		ret = -ENOMEM;
763 		goto out_end_io;
764 	}
765 
766 	for (i = 0; i < dic->cluster_size; i++) {
767 		if (dic->rpages[i]) {
768 			dic->tpages[i] = dic->rpages[i];
769 			continue;
770 		}
771 
772 		dic->tpages[i] = f2fs_compress_alloc_page();
773 		if (!dic->tpages[i]) {
774 			ret = -ENOMEM;
775 			goto out_end_io;
776 		}
777 	}
778 
779 	if (cops->init_decompress_ctx) {
780 		ret = cops->init_decompress_ctx(dic);
781 		if (ret)
782 			goto out_end_io;
783 	}
784 
785 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
786 	if (!dic->rbuf) {
787 		ret = -ENOMEM;
788 		goto out_destroy_decompress_ctx;
789 	}
790 
791 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
792 	if (!dic->cbuf) {
793 		ret = -ENOMEM;
794 		goto out_vunmap_rbuf;
795 	}
796 
797 	dic->clen = le32_to_cpu(dic->cbuf->clen);
798 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
799 
800 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
801 		ret = -EFSCORRUPTED;
802 		goto out_vunmap_cbuf;
803 	}
804 
805 	ret = cops->decompress_pages(dic);
806 
807 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
808 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
809 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
810 
811 		if (provided != calculated) {
812 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
813 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
814 				printk_ratelimited(
815 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
816 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
817 					provided, calculated);
818 			}
819 			set_sbi_flag(sbi, SBI_NEED_FSCK);
820 		}
821 	}
822 
823 out_vunmap_cbuf:
824 	vm_unmap_ram(dic->cbuf, dic->nr_cpages);
825 out_vunmap_rbuf:
826 	vm_unmap_ram(dic->rbuf, dic->cluster_size);
827 out_destroy_decompress_ctx:
828 	if (cops->destroy_decompress_ctx)
829 		cops->destroy_decompress_ctx(dic);
830 out_end_io:
831 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
832 							dic->clen, ret);
833 	f2fs_decompress_end_io(dic, ret);
834 }
835 
836 /*
837  * This is called when a page of a compressed cluster has been read from disk
838  * (or failed to be read from disk).  It checks whether this page was the last
839  * page being waited on in the cluster, and if so, it decompresses the cluster
840  * (or in the case of a failure, cleans up without actually decompressing).
841  */
842 void f2fs_end_read_compressed_page(struct page *page, bool failed,
843 						block_t blkaddr)
844 {
845 	struct decompress_io_ctx *dic =
846 			(struct decompress_io_ctx *)page_private(page);
847 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
848 
849 	dec_page_count(sbi, F2FS_RD_DATA);
850 
851 	if (failed)
852 		WRITE_ONCE(dic->failed, true);
853 	else if (blkaddr)
854 		f2fs_cache_compressed_page(sbi, page,
855 					dic->inode->i_ino, blkaddr);
856 
857 	if (atomic_dec_and_test(&dic->remaining_pages))
858 		f2fs_decompress_cluster(dic);
859 }
860 
861 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
862 {
863 	if (cc->cluster_idx == NULL_CLUSTER)
864 		return true;
865 	return cc->cluster_idx == cluster_idx(cc, index);
866 }
867 
868 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
869 {
870 	return cc->nr_rpages == 0;
871 }
872 
873 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
874 {
875 	return cc->cluster_size == cc->nr_rpages;
876 }
877 
878 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
879 {
880 	if (f2fs_cluster_is_empty(cc))
881 		return true;
882 	return is_page_in_cluster(cc, index);
883 }
884 
885 static bool cluster_has_invalid_data(struct compress_ctx *cc)
886 {
887 	loff_t i_size = i_size_read(cc->inode);
888 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
889 	int i;
890 
891 	for (i = 0; i < cc->cluster_size; i++) {
892 		struct page *page = cc->rpages[i];
893 
894 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
895 
896 		/* beyond EOF */
897 		if (page->index >= nr_pages)
898 			return true;
899 	}
900 	return false;
901 }
902 
903 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
904 {
905 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
906 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
907 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
908 	int cluster_end = 0;
909 	int i;
910 	char *reason = "";
911 
912 	if (!compressed)
913 		return false;
914 
915 	/* [..., COMPR_ADDR, ...] */
916 	if (dn->ofs_in_node % cluster_size) {
917 		reason = "[*|C|*|*]";
918 		goto out;
919 	}
920 
921 	for (i = 1; i < cluster_size; i++) {
922 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
923 							dn->ofs_in_node + i);
924 
925 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
926 		if (blkaddr == COMPRESS_ADDR) {
927 			reason = "[C|*|C|*]";
928 			goto out;
929 		}
930 		if (compressed) {
931 			if (!__is_valid_data_blkaddr(blkaddr)) {
932 				if (!cluster_end)
933 					cluster_end = i;
934 				continue;
935 			}
936 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
937 			if (cluster_end) {
938 				reason = "[C|N|N|V]";
939 				goto out;
940 			}
941 		}
942 	}
943 	return false;
944 out:
945 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
946 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
947 	set_sbi_flag(sbi, SBI_NEED_FSCK);
948 	return true;
949 }
950 
951 static int __f2fs_cluster_blocks(struct inode *inode,
952 				unsigned int cluster_idx, bool compr)
953 {
954 	struct dnode_of_data dn;
955 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
956 	unsigned int start_idx = cluster_idx <<
957 				F2FS_I(inode)->i_log_cluster_size;
958 	int ret;
959 
960 	set_new_dnode(&dn, inode, NULL, NULL, 0);
961 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
962 	if (ret) {
963 		if (ret == -ENOENT)
964 			ret = 0;
965 		goto fail;
966 	}
967 
968 	if (f2fs_sanity_check_cluster(&dn)) {
969 		ret = -EFSCORRUPTED;
970 		goto fail;
971 	}
972 
973 	if (dn.data_blkaddr == COMPRESS_ADDR) {
974 		int i;
975 
976 		ret = 1;
977 		for (i = 1; i < cluster_size; i++) {
978 			block_t blkaddr;
979 
980 			blkaddr = data_blkaddr(dn.inode,
981 					dn.node_page, dn.ofs_in_node + i);
982 			if (compr) {
983 				if (__is_valid_data_blkaddr(blkaddr))
984 					ret++;
985 			} else {
986 				if (blkaddr != NULL_ADDR)
987 					ret++;
988 			}
989 		}
990 
991 		f2fs_bug_on(F2FS_I_SB(inode),
992 			!compr && ret != cluster_size &&
993 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
994 	}
995 fail:
996 	f2fs_put_dnode(&dn);
997 	return ret;
998 }
999 
1000 /* return # of compressed blocks in compressed cluster */
1001 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1002 {
1003 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1004 }
1005 
1006 /* return # of valid blocks in compressed cluster */
1007 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1008 {
1009 	return __f2fs_cluster_blocks(inode,
1010 		index >> F2FS_I(inode)->i_log_cluster_size,
1011 		false);
1012 }
1013 
1014 static bool cluster_may_compress(struct compress_ctx *cc)
1015 {
1016 	if (!f2fs_need_compress_data(cc->inode))
1017 		return false;
1018 	if (f2fs_is_atomic_file(cc->inode))
1019 		return false;
1020 	if (!f2fs_cluster_is_full(cc))
1021 		return false;
1022 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1023 		return false;
1024 	return !cluster_has_invalid_data(cc);
1025 }
1026 
1027 static void set_cluster_writeback(struct compress_ctx *cc)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < cc->cluster_size; i++) {
1032 		if (cc->rpages[i])
1033 			set_page_writeback(cc->rpages[i]);
1034 	}
1035 }
1036 
1037 static void set_cluster_dirty(struct compress_ctx *cc)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < cc->cluster_size; i++)
1042 		if (cc->rpages[i])
1043 			set_page_dirty(cc->rpages[i]);
1044 }
1045 
1046 static int prepare_compress_overwrite(struct compress_ctx *cc,
1047 		struct page **pagep, pgoff_t index, void **fsdata)
1048 {
1049 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1050 	struct address_space *mapping = cc->inode->i_mapping;
1051 	struct page *page;
1052 	sector_t last_block_in_bio;
1053 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1054 	pgoff_t start_idx = start_idx_of_cluster(cc);
1055 	int i, ret;
1056 
1057 retry:
1058 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1059 	if (ret <= 0)
1060 		return ret;
1061 
1062 	ret = f2fs_init_compress_ctx(cc);
1063 	if (ret)
1064 		return ret;
1065 
1066 	/* keep page reference to avoid page reclaim */
1067 	for (i = 0; i < cc->cluster_size; i++) {
1068 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1069 							fgp_flag, GFP_NOFS);
1070 		if (!page) {
1071 			ret = -ENOMEM;
1072 			goto unlock_pages;
1073 		}
1074 
1075 		if (PageUptodate(page))
1076 			f2fs_put_page(page, 1);
1077 		else
1078 			f2fs_compress_ctx_add_page(cc, page);
1079 	}
1080 
1081 	if (!f2fs_cluster_is_empty(cc)) {
1082 		struct bio *bio = NULL;
1083 
1084 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1085 					&last_block_in_bio, false, true);
1086 		f2fs_put_rpages(cc);
1087 		f2fs_destroy_compress_ctx(cc, true);
1088 		if (ret)
1089 			goto out;
1090 		if (bio)
1091 			f2fs_submit_bio(sbi, bio, DATA);
1092 
1093 		ret = f2fs_init_compress_ctx(cc);
1094 		if (ret)
1095 			goto out;
1096 	}
1097 
1098 	for (i = 0; i < cc->cluster_size; i++) {
1099 		f2fs_bug_on(sbi, cc->rpages[i]);
1100 
1101 		page = find_lock_page(mapping, start_idx + i);
1102 		if (!page) {
1103 			/* page can be truncated */
1104 			goto release_and_retry;
1105 		}
1106 
1107 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1108 		f2fs_compress_ctx_add_page(cc, page);
1109 
1110 		if (!PageUptodate(page)) {
1111 release_and_retry:
1112 			f2fs_put_rpages(cc);
1113 			f2fs_unlock_rpages(cc, i + 1);
1114 			f2fs_destroy_compress_ctx(cc, true);
1115 			goto retry;
1116 		}
1117 	}
1118 
1119 	if (likely(!ret)) {
1120 		*fsdata = cc->rpages;
1121 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1122 		return cc->cluster_size;
1123 	}
1124 
1125 unlock_pages:
1126 	f2fs_put_rpages(cc);
1127 	f2fs_unlock_rpages(cc, i);
1128 	f2fs_destroy_compress_ctx(cc, true);
1129 out:
1130 	return ret;
1131 }
1132 
1133 int f2fs_prepare_compress_overwrite(struct inode *inode,
1134 		struct page **pagep, pgoff_t index, void **fsdata)
1135 {
1136 	struct compress_ctx cc = {
1137 		.inode = inode,
1138 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1139 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1140 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1141 		.rpages = NULL,
1142 		.nr_rpages = 0,
1143 	};
1144 
1145 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1146 }
1147 
1148 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1149 					pgoff_t index, unsigned copied)
1150 
1151 {
1152 	struct compress_ctx cc = {
1153 		.inode = inode,
1154 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1155 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1156 		.rpages = fsdata,
1157 	};
1158 	bool first_index = (index == cc.rpages[0]->index);
1159 
1160 	if (copied)
1161 		set_cluster_dirty(&cc);
1162 
1163 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1164 	f2fs_destroy_compress_ctx(&cc, false);
1165 
1166 	return first_index;
1167 }
1168 
1169 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1170 {
1171 	void *fsdata = NULL;
1172 	struct page *pagep;
1173 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1174 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1175 							log_cluster_size;
1176 	int err;
1177 
1178 	err = f2fs_is_compressed_cluster(inode, start_idx);
1179 	if (err < 0)
1180 		return err;
1181 
1182 	/* truncate normal cluster */
1183 	if (!err)
1184 		return f2fs_do_truncate_blocks(inode, from, lock);
1185 
1186 	/* truncate compressed cluster */
1187 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1188 						start_idx, &fsdata);
1189 
1190 	/* should not be a normal cluster */
1191 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1192 
1193 	if (err <= 0)
1194 		return err;
1195 
1196 	if (err > 0) {
1197 		struct page **rpages = fsdata;
1198 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1199 		int i;
1200 
1201 		for (i = cluster_size - 1; i >= 0; i--) {
1202 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1203 
1204 			if (from <= start) {
1205 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1206 			} else {
1207 				zero_user_segment(rpages[i], from - start,
1208 								PAGE_SIZE);
1209 				break;
1210 			}
1211 		}
1212 
1213 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1214 	}
1215 	return 0;
1216 }
1217 
1218 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1219 					int *submitted,
1220 					struct writeback_control *wbc,
1221 					enum iostat_type io_type)
1222 {
1223 	struct inode *inode = cc->inode;
1224 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225 	struct f2fs_inode_info *fi = F2FS_I(inode);
1226 	struct f2fs_io_info fio = {
1227 		.sbi = sbi,
1228 		.ino = cc->inode->i_ino,
1229 		.type = DATA,
1230 		.op = REQ_OP_WRITE,
1231 		.op_flags = wbc_to_write_flags(wbc),
1232 		.old_blkaddr = NEW_ADDR,
1233 		.page = NULL,
1234 		.encrypted_page = NULL,
1235 		.compressed_page = NULL,
1236 		.submitted = false,
1237 		.io_type = io_type,
1238 		.io_wbc = wbc,
1239 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1240 	};
1241 	struct dnode_of_data dn;
1242 	struct node_info ni;
1243 	struct compress_io_ctx *cic;
1244 	pgoff_t start_idx = start_idx_of_cluster(cc);
1245 	unsigned int last_index = cc->cluster_size - 1;
1246 	loff_t psize;
1247 	int i, err;
1248 
1249 	/* we should bypass data pages to proceed the kworkder jobs */
1250 	if (unlikely(f2fs_cp_error(sbi))) {
1251 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1252 		goto out_free;
1253 	}
1254 
1255 	if (IS_NOQUOTA(inode)) {
1256 		/*
1257 		 * We need to wait for node_write to avoid block allocation during
1258 		 * checkpoint. This can only happen to quota writes which can cause
1259 		 * the below discard race condition.
1260 		 */
1261 		down_read(&sbi->node_write);
1262 	} else if (!f2fs_trylock_op(sbi)) {
1263 		goto out_free;
1264 	}
1265 
1266 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1267 
1268 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1269 	if (err)
1270 		goto out_unlock_op;
1271 
1272 	for (i = 0; i < cc->cluster_size; i++) {
1273 		if (data_blkaddr(dn.inode, dn.node_page,
1274 					dn.ofs_in_node + i) == NULL_ADDR)
1275 			goto out_put_dnode;
1276 	}
1277 
1278 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1279 
1280 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1281 	if (err)
1282 		goto out_put_dnode;
1283 
1284 	fio.version = ni.version;
1285 
1286 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1287 	if (!cic)
1288 		goto out_put_dnode;
1289 
1290 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1291 	cic->inode = inode;
1292 	atomic_set(&cic->pending_pages, cc->nr_cpages);
1293 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1294 	if (!cic->rpages)
1295 		goto out_put_cic;
1296 
1297 	cic->nr_rpages = cc->cluster_size;
1298 
1299 	for (i = 0; i < cc->nr_cpages; i++) {
1300 		f2fs_set_compressed_page(cc->cpages[i], inode,
1301 					cc->rpages[i + 1]->index, cic);
1302 		fio.compressed_page = cc->cpages[i];
1303 
1304 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1305 						dn.ofs_in_node + i + 1);
1306 
1307 		/* wait for GCed page writeback via META_MAPPING */
1308 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1309 
1310 		if (fio.encrypted) {
1311 			fio.page = cc->rpages[i + 1];
1312 			err = f2fs_encrypt_one_page(&fio);
1313 			if (err)
1314 				goto out_destroy_crypt;
1315 			cc->cpages[i] = fio.encrypted_page;
1316 		}
1317 	}
1318 
1319 	set_cluster_writeback(cc);
1320 
1321 	for (i = 0; i < cc->cluster_size; i++)
1322 		cic->rpages[i] = cc->rpages[i];
1323 
1324 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1325 		block_t blkaddr;
1326 
1327 		blkaddr = f2fs_data_blkaddr(&dn);
1328 		fio.page = cc->rpages[i];
1329 		fio.old_blkaddr = blkaddr;
1330 
1331 		/* cluster header */
1332 		if (i == 0) {
1333 			if (blkaddr == COMPRESS_ADDR)
1334 				fio.compr_blocks++;
1335 			if (__is_valid_data_blkaddr(blkaddr))
1336 				f2fs_invalidate_blocks(sbi, blkaddr);
1337 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1338 			goto unlock_continue;
1339 		}
1340 
1341 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1342 			fio.compr_blocks++;
1343 
1344 		if (i > cc->nr_cpages) {
1345 			if (__is_valid_data_blkaddr(blkaddr)) {
1346 				f2fs_invalidate_blocks(sbi, blkaddr);
1347 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1348 			}
1349 			goto unlock_continue;
1350 		}
1351 
1352 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1353 
1354 		if (fio.encrypted)
1355 			fio.encrypted_page = cc->cpages[i - 1];
1356 		else
1357 			fio.compressed_page = cc->cpages[i - 1];
1358 
1359 		cc->cpages[i - 1] = NULL;
1360 		f2fs_outplace_write_data(&dn, &fio);
1361 		(*submitted)++;
1362 unlock_continue:
1363 		inode_dec_dirty_pages(cc->inode);
1364 		unlock_page(fio.page);
1365 	}
1366 
1367 	if (fio.compr_blocks)
1368 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1369 	f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1370 	add_compr_block_stat(inode, cc->nr_cpages);
1371 
1372 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1373 	if (cc->cluster_idx == 0)
1374 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1375 
1376 	f2fs_put_dnode(&dn);
1377 	if (IS_NOQUOTA(inode))
1378 		up_read(&sbi->node_write);
1379 	else
1380 		f2fs_unlock_op(sbi);
1381 
1382 	spin_lock(&fi->i_size_lock);
1383 	if (fi->last_disk_size < psize)
1384 		fi->last_disk_size = psize;
1385 	spin_unlock(&fi->i_size_lock);
1386 
1387 	f2fs_put_rpages(cc);
1388 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1389 	cc->cpages = NULL;
1390 	f2fs_destroy_compress_ctx(cc, false);
1391 	return 0;
1392 
1393 out_destroy_crypt:
1394 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1395 
1396 	for (--i; i >= 0; i--)
1397 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1398 out_put_cic:
1399 	kmem_cache_free(cic_entry_slab, cic);
1400 out_put_dnode:
1401 	f2fs_put_dnode(&dn);
1402 out_unlock_op:
1403 	if (IS_NOQUOTA(inode))
1404 		up_read(&sbi->node_write);
1405 	else
1406 		f2fs_unlock_op(sbi);
1407 out_free:
1408 	for (i = 0; i < cc->nr_cpages; i++) {
1409 		if (!cc->cpages[i])
1410 			continue;
1411 		f2fs_compress_free_page(cc->cpages[i]);
1412 		cc->cpages[i] = NULL;
1413 	}
1414 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1415 	cc->cpages = NULL;
1416 	return -EAGAIN;
1417 }
1418 
1419 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1420 {
1421 	struct f2fs_sb_info *sbi = bio->bi_private;
1422 	struct compress_io_ctx *cic =
1423 			(struct compress_io_ctx *)page_private(page);
1424 	int i;
1425 
1426 	if (unlikely(bio->bi_status))
1427 		mapping_set_error(cic->inode->i_mapping, -EIO);
1428 
1429 	f2fs_compress_free_page(page);
1430 
1431 	dec_page_count(sbi, F2FS_WB_DATA);
1432 
1433 	if (atomic_dec_return(&cic->pending_pages))
1434 		return;
1435 
1436 	for (i = 0; i < cic->nr_rpages; i++) {
1437 		WARN_ON(!cic->rpages[i]);
1438 		clear_page_private_gcing(cic->rpages[i]);
1439 		end_page_writeback(cic->rpages[i]);
1440 	}
1441 
1442 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1443 	kmem_cache_free(cic_entry_slab, cic);
1444 }
1445 
1446 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1447 					int *submitted,
1448 					struct writeback_control *wbc,
1449 					enum iostat_type io_type)
1450 {
1451 	struct address_space *mapping = cc->inode->i_mapping;
1452 	int _submitted, compr_blocks, ret;
1453 	int i = -1, err = 0;
1454 
1455 	compr_blocks = f2fs_compressed_blocks(cc);
1456 	if (compr_blocks < 0) {
1457 		err = compr_blocks;
1458 		goto out_err;
1459 	}
1460 
1461 	for (i = 0; i < cc->cluster_size; i++) {
1462 		if (!cc->rpages[i])
1463 			continue;
1464 retry_write:
1465 		if (cc->rpages[i]->mapping != mapping) {
1466 			unlock_page(cc->rpages[i]);
1467 			continue;
1468 		}
1469 
1470 		BUG_ON(!PageLocked(cc->rpages[i]));
1471 
1472 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1473 						NULL, NULL, wbc, io_type,
1474 						compr_blocks, false);
1475 		if (ret) {
1476 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1477 				unlock_page(cc->rpages[i]);
1478 				ret = 0;
1479 			} else if (ret == -EAGAIN) {
1480 				/*
1481 				 * for quota file, just redirty left pages to
1482 				 * avoid deadlock caused by cluster update race
1483 				 * from foreground operation.
1484 				 */
1485 				if (IS_NOQUOTA(cc->inode)) {
1486 					err = 0;
1487 					goto out_err;
1488 				}
1489 				ret = 0;
1490 				cond_resched();
1491 				congestion_wait(BLK_RW_ASYNC,
1492 						DEFAULT_IO_TIMEOUT);
1493 				lock_page(cc->rpages[i]);
1494 
1495 				if (!PageDirty(cc->rpages[i])) {
1496 					unlock_page(cc->rpages[i]);
1497 					continue;
1498 				}
1499 
1500 				clear_page_dirty_for_io(cc->rpages[i]);
1501 				goto retry_write;
1502 			}
1503 			err = ret;
1504 			goto out_err;
1505 		}
1506 
1507 		*submitted += _submitted;
1508 	}
1509 
1510 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1511 
1512 	return 0;
1513 out_err:
1514 	for (++i; i < cc->cluster_size; i++) {
1515 		if (!cc->rpages[i])
1516 			continue;
1517 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1518 		unlock_page(cc->rpages[i]);
1519 	}
1520 	return err;
1521 }
1522 
1523 int f2fs_write_multi_pages(struct compress_ctx *cc,
1524 					int *submitted,
1525 					struct writeback_control *wbc,
1526 					enum iostat_type io_type)
1527 {
1528 	int err;
1529 
1530 	*submitted = 0;
1531 	if (cluster_may_compress(cc)) {
1532 		err = f2fs_compress_pages(cc);
1533 		if (err == -EAGAIN) {
1534 			goto write;
1535 		} else if (err) {
1536 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1537 			goto destroy_out;
1538 		}
1539 
1540 		err = f2fs_write_compressed_pages(cc, submitted,
1541 							wbc, io_type);
1542 		if (!err)
1543 			return 0;
1544 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1545 	}
1546 write:
1547 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1548 
1549 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1550 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1551 destroy_out:
1552 	f2fs_destroy_compress_ctx(cc, false);
1553 	return err;
1554 }
1555 
1556 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1557 
1558 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1559 {
1560 	struct decompress_io_ctx *dic;
1561 	pgoff_t start_idx = start_idx_of_cluster(cc);
1562 	int i;
1563 
1564 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1565 					false, F2FS_I_SB(cc->inode));
1566 	if (!dic)
1567 		return ERR_PTR(-ENOMEM);
1568 
1569 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1570 	if (!dic->rpages) {
1571 		kmem_cache_free(dic_entry_slab, dic);
1572 		return ERR_PTR(-ENOMEM);
1573 	}
1574 
1575 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1576 	dic->inode = cc->inode;
1577 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1578 	dic->cluster_idx = cc->cluster_idx;
1579 	dic->cluster_size = cc->cluster_size;
1580 	dic->log_cluster_size = cc->log_cluster_size;
1581 	dic->nr_cpages = cc->nr_cpages;
1582 	refcount_set(&dic->refcnt, 1);
1583 	dic->failed = false;
1584 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1585 
1586 	for (i = 0; i < dic->cluster_size; i++)
1587 		dic->rpages[i] = cc->rpages[i];
1588 	dic->nr_rpages = cc->cluster_size;
1589 
1590 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1591 	if (!dic->cpages)
1592 		goto out_free;
1593 
1594 	for (i = 0; i < dic->nr_cpages; i++) {
1595 		struct page *page;
1596 
1597 		page = f2fs_compress_alloc_page();
1598 		if (!page)
1599 			goto out_free;
1600 
1601 		f2fs_set_compressed_page(page, cc->inode,
1602 					start_idx + i + 1, dic);
1603 		dic->cpages[i] = page;
1604 	}
1605 
1606 	return dic;
1607 
1608 out_free:
1609 	f2fs_free_dic(dic);
1610 	return ERR_PTR(-ENOMEM);
1611 }
1612 
1613 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1614 {
1615 	int i;
1616 
1617 	if (dic->tpages) {
1618 		for (i = 0; i < dic->cluster_size; i++) {
1619 			if (dic->rpages[i])
1620 				continue;
1621 			if (!dic->tpages[i])
1622 				continue;
1623 			f2fs_compress_free_page(dic->tpages[i]);
1624 		}
1625 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1626 	}
1627 
1628 	if (dic->cpages) {
1629 		for (i = 0; i < dic->nr_cpages; i++) {
1630 			if (!dic->cpages[i])
1631 				continue;
1632 			f2fs_compress_free_page(dic->cpages[i]);
1633 		}
1634 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1635 	}
1636 
1637 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1638 	kmem_cache_free(dic_entry_slab, dic);
1639 }
1640 
1641 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1642 {
1643 	if (refcount_dec_and_test(&dic->refcnt))
1644 		f2fs_free_dic(dic);
1645 }
1646 
1647 /*
1648  * Update and unlock the cluster's pagecache pages, and release the reference to
1649  * the decompress_io_ctx that was being held for I/O completion.
1650  */
1651 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1652 {
1653 	int i;
1654 
1655 	for (i = 0; i < dic->cluster_size; i++) {
1656 		struct page *rpage = dic->rpages[i];
1657 
1658 		if (!rpage)
1659 			continue;
1660 
1661 		/* PG_error was set if verity failed. */
1662 		if (failed || PageError(rpage)) {
1663 			ClearPageUptodate(rpage);
1664 			/* will re-read again later */
1665 			ClearPageError(rpage);
1666 		} else {
1667 			SetPageUptodate(rpage);
1668 		}
1669 		unlock_page(rpage);
1670 	}
1671 
1672 	f2fs_put_dic(dic);
1673 }
1674 
1675 static void f2fs_verify_cluster(struct work_struct *work)
1676 {
1677 	struct decompress_io_ctx *dic =
1678 		container_of(work, struct decompress_io_ctx, verity_work);
1679 	int i;
1680 
1681 	/* Verify the cluster's decompressed pages with fs-verity. */
1682 	for (i = 0; i < dic->cluster_size; i++) {
1683 		struct page *rpage = dic->rpages[i];
1684 
1685 		if (rpage && !fsverity_verify_page(rpage))
1686 			SetPageError(rpage);
1687 	}
1688 
1689 	__f2fs_decompress_end_io(dic, false);
1690 }
1691 
1692 /*
1693  * This is called when a compressed cluster has been decompressed
1694  * (or failed to be read and/or decompressed).
1695  */
1696 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1697 {
1698 	if (!failed && dic->need_verity) {
1699 		/*
1700 		 * Note that to avoid deadlocks, the verity work can't be done
1701 		 * on the decompression workqueue.  This is because verifying
1702 		 * the data pages can involve reading metadata pages from the
1703 		 * file, and these metadata pages may be compressed.
1704 		 */
1705 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1706 		fsverity_enqueue_verify_work(&dic->verity_work);
1707 	} else {
1708 		__f2fs_decompress_end_io(dic, failed);
1709 	}
1710 }
1711 
1712 /*
1713  * Put a reference to a compressed page's decompress_io_ctx.
1714  *
1715  * This is called when the page is no longer needed and can be freed.
1716  */
1717 void f2fs_put_page_dic(struct page *page)
1718 {
1719 	struct decompress_io_ctx *dic =
1720 			(struct decompress_io_ctx *)page_private(page);
1721 
1722 	f2fs_put_dic(dic);
1723 }
1724 
1725 /*
1726  * check whether cluster blocks are contiguous, and add extent cache entry
1727  * only if cluster blocks are logically and physically contiguous.
1728  */
1729 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1730 {
1731 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1732 	int i = compressed ? 1 : 0;
1733 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1734 						dn->ofs_in_node + i);
1735 
1736 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1737 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1738 						dn->ofs_in_node + i);
1739 
1740 		if (!__is_valid_data_blkaddr(blkaddr))
1741 			break;
1742 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1743 			return 0;
1744 	}
1745 
1746 	return compressed ? i - 1 : i;
1747 }
1748 
1749 const struct address_space_operations f2fs_compress_aops = {
1750 	.releasepage = f2fs_release_page,
1751 	.invalidatepage = f2fs_invalidate_page,
1752 };
1753 
1754 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1755 {
1756 	return sbi->compress_inode->i_mapping;
1757 }
1758 
1759 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1760 {
1761 	if (!sbi->compress_inode)
1762 		return;
1763 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1764 }
1765 
1766 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1767 						nid_t ino, block_t blkaddr)
1768 {
1769 	struct page *cpage;
1770 	int ret;
1771 
1772 	if (!test_opt(sbi, COMPRESS_CACHE))
1773 		return;
1774 
1775 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1776 		return;
1777 
1778 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1779 		return;
1780 
1781 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1782 	if (cpage) {
1783 		f2fs_put_page(cpage, 0);
1784 		return;
1785 	}
1786 
1787 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1788 	if (!cpage)
1789 		return;
1790 
1791 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1792 						blkaddr, GFP_NOFS);
1793 	if (ret) {
1794 		f2fs_put_page(cpage, 0);
1795 		return;
1796 	}
1797 
1798 	set_page_private_data(cpage, ino);
1799 
1800 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1801 		goto out;
1802 
1803 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1804 	SetPageUptodate(cpage);
1805 out:
1806 	f2fs_put_page(cpage, 1);
1807 }
1808 
1809 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1810 								block_t blkaddr)
1811 {
1812 	struct page *cpage;
1813 	bool hitted = false;
1814 
1815 	if (!test_opt(sbi, COMPRESS_CACHE))
1816 		return false;
1817 
1818 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1819 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1820 	if (cpage) {
1821 		if (PageUptodate(cpage)) {
1822 			atomic_inc(&sbi->compress_page_hit);
1823 			memcpy(page_address(page),
1824 				page_address(cpage), PAGE_SIZE);
1825 			hitted = true;
1826 		}
1827 		f2fs_put_page(cpage, 1);
1828 	}
1829 
1830 	return hitted;
1831 }
1832 
1833 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1834 {
1835 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1836 	struct pagevec pvec;
1837 	pgoff_t index = 0;
1838 	pgoff_t end = MAX_BLKADDR(sbi);
1839 
1840 	if (!mapping->nrpages)
1841 		return;
1842 
1843 	pagevec_init(&pvec);
1844 
1845 	do {
1846 		unsigned int nr_pages;
1847 		int i;
1848 
1849 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1850 						&index, end - 1);
1851 		if (!nr_pages)
1852 			break;
1853 
1854 		for (i = 0; i < nr_pages; i++) {
1855 			struct page *page = pvec.pages[i];
1856 
1857 			if (page->index > end)
1858 				break;
1859 
1860 			lock_page(page);
1861 			if (page->mapping != mapping) {
1862 				unlock_page(page);
1863 				continue;
1864 			}
1865 
1866 			if (ino != get_page_private_data(page)) {
1867 				unlock_page(page);
1868 				continue;
1869 			}
1870 
1871 			generic_error_remove_page(mapping, page);
1872 			unlock_page(page);
1873 		}
1874 		pagevec_release(&pvec);
1875 		cond_resched();
1876 	} while (index < end);
1877 }
1878 
1879 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1880 {
1881 	struct inode *inode;
1882 
1883 	if (!test_opt(sbi, COMPRESS_CACHE))
1884 		return 0;
1885 
1886 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1887 	if (IS_ERR(inode))
1888 		return PTR_ERR(inode);
1889 	sbi->compress_inode = inode;
1890 
1891 	sbi->compress_percent = COMPRESS_PERCENT;
1892 	sbi->compress_watermark = COMPRESS_WATERMARK;
1893 
1894 	atomic_set(&sbi->compress_page_hit, 0);
1895 
1896 	return 0;
1897 }
1898 
1899 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1900 {
1901 	if (!sbi->compress_inode)
1902 		return;
1903 	iput(sbi->compress_inode);
1904 	sbi->compress_inode = NULL;
1905 }
1906 
1907 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1908 {
1909 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1910 	char slab_name[32];
1911 
1912 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1913 
1914 	sbi->page_array_slab_size = sizeof(struct page *) <<
1915 					F2FS_OPTION(sbi).compress_log_size;
1916 
1917 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1918 					sbi->page_array_slab_size);
1919 	if (!sbi->page_array_slab)
1920 		return -ENOMEM;
1921 	return 0;
1922 }
1923 
1924 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1925 {
1926 	kmem_cache_destroy(sbi->page_array_slab);
1927 }
1928 
1929 static int __init f2fs_init_cic_cache(void)
1930 {
1931 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1932 					sizeof(struct compress_io_ctx));
1933 	if (!cic_entry_slab)
1934 		return -ENOMEM;
1935 	return 0;
1936 }
1937 
1938 static void f2fs_destroy_cic_cache(void)
1939 {
1940 	kmem_cache_destroy(cic_entry_slab);
1941 }
1942 
1943 static int __init f2fs_init_dic_cache(void)
1944 {
1945 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1946 					sizeof(struct decompress_io_ctx));
1947 	if (!dic_entry_slab)
1948 		return -ENOMEM;
1949 	return 0;
1950 }
1951 
1952 static void f2fs_destroy_dic_cache(void)
1953 {
1954 	kmem_cache_destroy(dic_entry_slab);
1955 }
1956 
1957 int __init f2fs_init_compress_cache(void)
1958 {
1959 	int err;
1960 
1961 	err = f2fs_init_cic_cache();
1962 	if (err)
1963 		goto out;
1964 	err = f2fs_init_dic_cache();
1965 	if (err)
1966 		goto free_cic;
1967 	return 0;
1968 free_cic:
1969 	f2fs_destroy_cic_cache();
1970 out:
1971 	return -ENOMEM;
1972 }
1973 
1974 void f2fs_destroy_compress_cache(void)
1975 {
1976 	f2fs_destroy_dic_cache();
1977 	f2fs_destroy_cic_cache();
1978 }
1979