xref: /openbmc/linux/fs/f2fs/compress.c (revision a64239d0ef345208d8c15d7841a028a43a34c068)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	cc->valid_nr_cpages = 0;
158 	if (!reuse)
159 		cc->cluster_idx = NULL_CLUSTER;
160 }
161 
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 	unsigned int cluster_ofs;
165 
166 	if (!f2fs_cluster_can_merge_page(cc, page->index))
167 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168 
169 	cluster_ofs = offset_in_cluster(cc, page->index);
170 	cc->rpages[cluster_ofs] = page;
171 	cc->nr_rpages++;
172 	cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174 
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 				LZO1X_MEM_COMPRESS, GFP_NOFS);
180 	if (!cc->private)
181 		return -ENOMEM;
182 
183 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 	return 0;
185 }
186 
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 	kvfree(cc->private);
190 	cc->private = NULL;
191 }
192 
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 	int ret;
196 
197 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 					&cc->clen, cc->private);
199 	if (ret != LZO_E_OK) {
200 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 	int ret;
210 
211 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 						dic->rbuf, &dic->rlen);
213 	if (ret != LZO_E_OK) {
214 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 		return -EIO;
217 	}
218 
219 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 					"expected:%lu\n", KERN_ERR,
222 					F2FS_I_SB(dic->inode)->sb->s_id,
223 					dic->rlen,
224 					PAGE_SIZE << dic->log_cluster_size);
225 		return -EIO;
226 	}
227 	return 0;
228 }
229 
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 	.init_compress_ctx	= lzo_init_compress_ctx,
232 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
233 	.compress_pages		= lzo_compress_pages,
234 	.decompress_pages	= lzo_decompress_pages,
235 };
236 #endif
237 
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 	unsigned int size = LZ4_MEM_COMPRESS;
242 
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245 		size = LZ4HC_MEM_COMPRESS;
246 #endif
247 
248 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 	if (!cc->private)
250 		return -ENOMEM;
251 
252 	/*
253 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 	 * adapt worst compress case, because lz4 compressor can handle
255 	 * output budget properly.
256 	 */
257 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 	return 0;
259 }
260 
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 	kvfree(cc->private);
264 	cc->private = NULL;
265 }
266 
267 #ifdef CONFIG_F2FS_FS_LZ4HC
268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271 						COMPRESS_LEVEL_OFFSET;
272 	int len;
273 
274 	if (level)
275 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 					cc->clen, level, cc->private);
277 	else
278 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 						cc->clen, cc->private);
280 	if (!len)
281 		return -EAGAIN;
282 
283 	cc->clen = len;
284 	return 0;
285 }
286 #endif
287 
288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290 	int len;
291 
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293 	return lz4hc_compress_pages(cc);
294 #endif
295 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296 						cc->clen, cc->private);
297 	if (!len)
298 		return -EAGAIN;
299 
300 	cc->clen = len;
301 	return 0;
302 }
303 
304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306 	int ret;
307 
308 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309 						dic->clen, dic->rlen);
310 	if (ret < 0) {
311 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313 		return -EIO;
314 	}
315 
316 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
317 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
318 					"expected:%lu\n", KERN_ERR,
319 					F2FS_I_SB(dic->inode)->sb->s_id,
320 					dic->rlen,
321 					PAGE_SIZE << dic->log_cluster_size);
322 		return -EIO;
323 	}
324 	return 0;
325 }
326 
327 static const struct f2fs_compress_ops f2fs_lz4_ops = {
328 	.init_compress_ctx	= lz4_init_compress_ctx,
329 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
330 	.compress_pages		= lz4_compress_pages,
331 	.decompress_pages	= lz4_decompress_pages,
332 };
333 #endif
334 
335 #ifdef CONFIG_F2FS_FS_ZSTD
336 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
337 
338 static int zstd_init_compress_ctx(struct compress_ctx *cc)
339 {
340 	zstd_parameters params;
341 	zstd_cstream *stream;
342 	void *workspace;
343 	unsigned int workspace_size;
344 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
345 						COMPRESS_LEVEL_OFFSET;
346 
347 	if (!level)
348 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
349 
350 	params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
351 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
352 
353 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
354 					workspace_size, GFP_NOFS);
355 	if (!workspace)
356 		return -ENOMEM;
357 
358 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
359 	if (!stream) {
360 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
361 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
362 				__func__);
363 		kvfree(workspace);
364 		return -EIO;
365 	}
366 
367 	cc->private = workspace;
368 	cc->private2 = stream;
369 
370 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
371 	return 0;
372 }
373 
374 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
375 {
376 	kvfree(cc->private);
377 	cc->private = NULL;
378 	cc->private2 = NULL;
379 }
380 
381 static int zstd_compress_pages(struct compress_ctx *cc)
382 {
383 	zstd_cstream *stream = cc->private2;
384 	zstd_in_buffer inbuf;
385 	zstd_out_buffer outbuf;
386 	int src_size = cc->rlen;
387 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
388 	int ret;
389 
390 	inbuf.pos = 0;
391 	inbuf.src = cc->rbuf;
392 	inbuf.size = src_size;
393 
394 	outbuf.pos = 0;
395 	outbuf.dst = cc->cbuf->cdata;
396 	outbuf.size = dst_size;
397 
398 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
399 	if (zstd_is_error(ret)) {
400 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
401 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
402 				__func__, zstd_get_error_code(ret));
403 		return -EIO;
404 	}
405 
406 	ret = zstd_end_stream(stream, &outbuf);
407 	if (zstd_is_error(ret)) {
408 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
409 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
410 				__func__, zstd_get_error_code(ret));
411 		return -EIO;
412 	}
413 
414 	/*
415 	 * there is compressed data remained in intermediate buffer due to
416 	 * no more space in cbuf.cdata
417 	 */
418 	if (ret)
419 		return -EAGAIN;
420 
421 	cc->clen = outbuf.pos;
422 	return 0;
423 }
424 
425 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
426 {
427 	zstd_dstream *stream;
428 	void *workspace;
429 	unsigned int workspace_size;
430 	unsigned int max_window_size =
431 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
432 
433 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
434 
435 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
436 					workspace_size, GFP_NOFS);
437 	if (!workspace)
438 		return -ENOMEM;
439 
440 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
441 	if (!stream) {
442 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
443 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
444 				__func__);
445 		kvfree(workspace);
446 		return -EIO;
447 	}
448 
449 	dic->private = workspace;
450 	dic->private2 = stream;
451 
452 	return 0;
453 }
454 
455 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
456 {
457 	kvfree(dic->private);
458 	dic->private = NULL;
459 	dic->private2 = NULL;
460 }
461 
462 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
463 {
464 	zstd_dstream *stream = dic->private2;
465 	zstd_in_buffer inbuf;
466 	zstd_out_buffer outbuf;
467 	int ret;
468 
469 	inbuf.pos = 0;
470 	inbuf.src = dic->cbuf->cdata;
471 	inbuf.size = dic->clen;
472 
473 	outbuf.pos = 0;
474 	outbuf.dst = dic->rbuf;
475 	outbuf.size = dic->rlen;
476 
477 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
478 	if (zstd_is_error(ret)) {
479 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
480 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
481 				__func__, zstd_get_error_code(ret));
482 		return -EIO;
483 	}
484 
485 	if (dic->rlen != outbuf.pos) {
486 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
487 				"expected:%lu\n", KERN_ERR,
488 				F2FS_I_SB(dic->inode)->sb->s_id,
489 				__func__, dic->rlen,
490 				PAGE_SIZE << dic->log_cluster_size);
491 		return -EIO;
492 	}
493 
494 	return 0;
495 }
496 
497 static const struct f2fs_compress_ops f2fs_zstd_ops = {
498 	.init_compress_ctx	= zstd_init_compress_ctx,
499 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
500 	.compress_pages		= zstd_compress_pages,
501 	.init_decompress_ctx	= zstd_init_decompress_ctx,
502 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
503 	.decompress_pages	= zstd_decompress_pages,
504 };
505 #endif
506 
507 #ifdef CONFIG_F2FS_FS_LZO
508 #ifdef CONFIG_F2FS_FS_LZORLE
509 static int lzorle_compress_pages(struct compress_ctx *cc)
510 {
511 	int ret;
512 
513 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
514 					&cc->clen, cc->private);
515 	if (ret != LZO_E_OK) {
516 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
517 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
518 		return -EIO;
519 	}
520 	return 0;
521 }
522 
523 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
524 	.init_compress_ctx	= lzo_init_compress_ctx,
525 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
526 	.compress_pages		= lzorle_compress_pages,
527 	.decompress_pages	= lzo_decompress_pages,
528 };
529 #endif
530 #endif
531 
532 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
533 #ifdef CONFIG_F2FS_FS_LZO
534 	&f2fs_lzo_ops,
535 #else
536 	NULL,
537 #endif
538 #ifdef CONFIG_F2FS_FS_LZ4
539 	&f2fs_lz4_ops,
540 #else
541 	NULL,
542 #endif
543 #ifdef CONFIG_F2FS_FS_ZSTD
544 	&f2fs_zstd_ops,
545 #else
546 	NULL,
547 #endif
548 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
549 	&f2fs_lzorle_ops,
550 #else
551 	NULL,
552 #endif
553 };
554 
555 bool f2fs_is_compress_backend_ready(struct inode *inode)
556 {
557 	if (!f2fs_compressed_file(inode))
558 		return true;
559 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
560 }
561 
562 static mempool_t *compress_page_pool;
563 static int num_compress_pages = 512;
564 module_param(num_compress_pages, uint, 0444);
565 MODULE_PARM_DESC(num_compress_pages,
566 		"Number of intermediate compress pages to preallocate");
567 
568 int f2fs_init_compress_mempool(void)
569 {
570 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
571 	if (!compress_page_pool)
572 		return -ENOMEM;
573 
574 	return 0;
575 }
576 
577 void f2fs_destroy_compress_mempool(void)
578 {
579 	mempool_destroy(compress_page_pool);
580 }
581 
582 static struct page *f2fs_compress_alloc_page(void)
583 {
584 	struct page *page;
585 
586 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
587 	lock_page(page);
588 
589 	return page;
590 }
591 
592 static void f2fs_compress_free_page(struct page *page)
593 {
594 	if (!page)
595 		return;
596 	detach_page_private(page);
597 	page->mapping = NULL;
598 	unlock_page(page);
599 	mempool_free(page, compress_page_pool);
600 }
601 
602 #define MAX_VMAP_RETRIES	3
603 
604 static void *f2fs_vmap(struct page **pages, unsigned int count)
605 {
606 	int i;
607 	void *buf = NULL;
608 
609 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
610 		buf = vm_map_ram(pages, count, -1);
611 		if (buf)
612 			break;
613 		vm_unmap_aliases();
614 	}
615 	return buf;
616 }
617 
618 static int f2fs_compress_pages(struct compress_ctx *cc)
619 {
620 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
621 	const struct f2fs_compress_ops *cops =
622 				f2fs_cops[fi->i_compress_algorithm];
623 	unsigned int max_len, new_nr_cpages;
624 	u32 chksum = 0;
625 	int i, ret;
626 
627 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 				cc->cluster_size, fi->i_compress_algorithm);
629 
630 	if (cops->init_compress_ctx) {
631 		ret = cops->init_compress_ctx(cc);
632 		if (ret)
633 			goto out;
634 	}
635 
636 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638 	cc->valid_nr_cpages = cc->nr_cpages;
639 
640 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
641 	if (!cc->cpages) {
642 		ret = -ENOMEM;
643 		goto destroy_compress_ctx;
644 	}
645 
646 	for (i = 0; i < cc->nr_cpages; i++) {
647 		cc->cpages[i] = f2fs_compress_alloc_page();
648 		if (!cc->cpages[i]) {
649 			ret = -ENOMEM;
650 			goto out_free_cpages;
651 		}
652 	}
653 
654 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
655 	if (!cc->rbuf) {
656 		ret = -ENOMEM;
657 		goto out_free_cpages;
658 	}
659 
660 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
661 	if (!cc->cbuf) {
662 		ret = -ENOMEM;
663 		goto out_vunmap_rbuf;
664 	}
665 
666 	ret = cops->compress_pages(cc);
667 	if (ret)
668 		goto out_vunmap_cbuf;
669 
670 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
671 
672 	if (cc->clen > max_len) {
673 		ret = -EAGAIN;
674 		goto out_vunmap_cbuf;
675 	}
676 
677 	cc->cbuf->clen = cpu_to_le32(cc->clen);
678 
679 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
680 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
681 					cc->cbuf->cdata, cc->clen);
682 	cc->cbuf->chksum = cpu_to_le32(chksum);
683 
684 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
685 		cc->cbuf->reserved[i] = cpu_to_le32(0);
686 
687 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
688 
689 	/* zero out any unused part of the last page */
690 	memset(&cc->cbuf->cdata[cc->clen], 0,
691 			(new_nr_cpages * PAGE_SIZE) -
692 			(cc->clen + COMPRESS_HEADER_SIZE));
693 
694 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
695 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
696 
697 	for (i = 0; i < cc->nr_cpages; i++) {
698 		if (i < new_nr_cpages)
699 			continue;
700 		f2fs_compress_free_page(cc->cpages[i]);
701 		cc->cpages[i] = NULL;
702 	}
703 
704 	if (cops->destroy_compress_ctx)
705 		cops->destroy_compress_ctx(cc);
706 
707 	cc->valid_nr_cpages = new_nr_cpages;
708 
709 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
710 							cc->clen, ret);
711 	return 0;
712 
713 out_vunmap_cbuf:
714 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
715 out_vunmap_rbuf:
716 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
717 out_free_cpages:
718 	for (i = 0; i < cc->nr_cpages; i++) {
719 		if (cc->cpages[i])
720 			f2fs_compress_free_page(cc->cpages[i]);
721 	}
722 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
723 	cc->cpages = NULL;
724 destroy_compress_ctx:
725 	if (cops->destroy_compress_ctx)
726 		cops->destroy_compress_ctx(cc);
727 out:
728 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
729 							cc->clen, ret);
730 	return ret;
731 }
732 
733 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
734 {
735 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
736 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
737 	const struct f2fs_compress_ops *cops =
738 			f2fs_cops[fi->i_compress_algorithm];
739 	int ret;
740 	int i;
741 
742 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
743 				dic->cluster_size, fi->i_compress_algorithm);
744 
745 	if (dic->failed) {
746 		ret = -EIO;
747 		goto out_end_io;
748 	}
749 
750 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
751 	if (!dic->tpages) {
752 		ret = -ENOMEM;
753 		goto out_end_io;
754 	}
755 
756 	for (i = 0; i < dic->cluster_size; i++) {
757 		if (dic->rpages[i]) {
758 			dic->tpages[i] = dic->rpages[i];
759 			continue;
760 		}
761 
762 		dic->tpages[i] = f2fs_compress_alloc_page();
763 		if (!dic->tpages[i]) {
764 			ret = -ENOMEM;
765 			goto out_end_io;
766 		}
767 	}
768 
769 	if (cops->init_decompress_ctx) {
770 		ret = cops->init_decompress_ctx(dic);
771 		if (ret)
772 			goto out_end_io;
773 	}
774 
775 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
776 	if (!dic->rbuf) {
777 		ret = -ENOMEM;
778 		goto out_destroy_decompress_ctx;
779 	}
780 
781 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
782 	if (!dic->cbuf) {
783 		ret = -ENOMEM;
784 		goto out_vunmap_rbuf;
785 	}
786 
787 	dic->clen = le32_to_cpu(dic->cbuf->clen);
788 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
789 
790 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
791 		ret = -EFSCORRUPTED;
792 		goto out_vunmap_cbuf;
793 	}
794 
795 	ret = cops->decompress_pages(dic);
796 
797 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
798 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
799 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
800 
801 		if (provided != calculated) {
802 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
803 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
804 				printk_ratelimited(
805 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
806 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
807 					provided, calculated);
808 			}
809 			set_sbi_flag(sbi, SBI_NEED_FSCK);
810 		}
811 	}
812 
813 out_vunmap_cbuf:
814 	vm_unmap_ram(dic->cbuf, dic->nr_cpages);
815 out_vunmap_rbuf:
816 	vm_unmap_ram(dic->rbuf, dic->cluster_size);
817 out_destroy_decompress_ctx:
818 	if (cops->destroy_decompress_ctx)
819 		cops->destroy_decompress_ctx(dic);
820 out_end_io:
821 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
822 							dic->clen, ret);
823 	f2fs_decompress_end_io(dic, ret);
824 }
825 
826 /*
827  * This is called when a page of a compressed cluster has been read from disk
828  * (or failed to be read from disk).  It checks whether this page was the last
829  * page being waited on in the cluster, and if so, it decompresses the cluster
830  * (or in the case of a failure, cleans up without actually decompressing).
831  */
832 void f2fs_end_read_compressed_page(struct page *page, bool failed,
833 						block_t blkaddr)
834 {
835 	struct decompress_io_ctx *dic =
836 			(struct decompress_io_ctx *)page_private(page);
837 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
838 
839 	dec_page_count(sbi, F2FS_RD_DATA);
840 
841 	if (failed)
842 		WRITE_ONCE(dic->failed, true);
843 	else if (blkaddr)
844 		f2fs_cache_compressed_page(sbi, page,
845 					dic->inode->i_ino, blkaddr);
846 
847 	if (atomic_dec_and_test(&dic->remaining_pages))
848 		f2fs_decompress_cluster(dic);
849 }
850 
851 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
852 {
853 	if (cc->cluster_idx == NULL_CLUSTER)
854 		return true;
855 	return cc->cluster_idx == cluster_idx(cc, index);
856 }
857 
858 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
859 {
860 	return cc->nr_rpages == 0;
861 }
862 
863 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
864 {
865 	return cc->cluster_size == cc->nr_rpages;
866 }
867 
868 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
869 {
870 	if (f2fs_cluster_is_empty(cc))
871 		return true;
872 	return is_page_in_cluster(cc, index);
873 }
874 
875 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
876 				int index, int nr_pages)
877 {
878 	unsigned long pgidx;
879 	int i;
880 
881 	if (nr_pages - index < cc->cluster_size)
882 		return false;
883 
884 	pgidx = pvec->pages[index]->index;
885 
886 	for (i = 1; i < cc->cluster_size; i++) {
887 		if (pvec->pages[index + i]->index != pgidx + i)
888 			return false;
889 	}
890 
891 	return true;
892 }
893 
894 static bool cluster_has_invalid_data(struct compress_ctx *cc)
895 {
896 	loff_t i_size = i_size_read(cc->inode);
897 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
898 	int i;
899 
900 	for (i = 0; i < cc->cluster_size; i++) {
901 		struct page *page = cc->rpages[i];
902 
903 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
904 
905 		/* beyond EOF */
906 		if (page->index >= nr_pages)
907 			return true;
908 	}
909 	return false;
910 }
911 
912 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
913 {
914 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
915 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
916 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
917 	int cluster_end = 0;
918 	int i;
919 	char *reason = "";
920 
921 	if (!compressed)
922 		return false;
923 
924 	/* [..., COMPR_ADDR, ...] */
925 	if (dn->ofs_in_node % cluster_size) {
926 		reason = "[*|C|*|*]";
927 		goto out;
928 	}
929 
930 	for (i = 1; i < cluster_size; i++) {
931 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
932 							dn->ofs_in_node + i);
933 
934 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
935 		if (blkaddr == COMPRESS_ADDR) {
936 			reason = "[C|*|C|*]";
937 			goto out;
938 		}
939 		if (compressed) {
940 			if (!__is_valid_data_blkaddr(blkaddr)) {
941 				if (!cluster_end)
942 					cluster_end = i;
943 				continue;
944 			}
945 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
946 			if (cluster_end) {
947 				reason = "[C|N|N|V]";
948 				goto out;
949 			}
950 		}
951 	}
952 	return false;
953 out:
954 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
955 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
956 	set_sbi_flag(sbi, SBI_NEED_FSCK);
957 	return true;
958 }
959 
960 static int __f2fs_cluster_blocks(struct inode *inode,
961 				unsigned int cluster_idx, bool compr)
962 {
963 	struct dnode_of_data dn;
964 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
965 	unsigned int start_idx = cluster_idx <<
966 				F2FS_I(inode)->i_log_cluster_size;
967 	int ret;
968 
969 	set_new_dnode(&dn, inode, NULL, NULL, 0);
970 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
971 	if (ret) {
972 		if (ret == -ENOENT)
973 			ret = 0;
974 		goto fail;
975 	}
976 
977 	if (f2fs_sanity_check_cluster(&dn)) {
978 		ret = -EFSCORRUPTED;
979 		goto fail;
980 	}
981 
982 	if (dn.data_blkaddr == COMPRESS_ADDR) {
983 		int i;
984 
985 		ret = 1;
986 		for (i = 1; i < cluster_size; i++) {
987 			block_t blkaddr;
988 
989 			blkaddr = data_blkaddr(dn.inode,
990 					dn.node_page, dn.ofs_in_node + i);
991 			if (compr) {
992 				if (__is_valid_data_blkaddr(blkaddr))
993 					ret++;
994 			} else {
995 				if (blkaddr != NULL_ADDR)
996 					ret++;
997 			}
998 		}
999 
1000 		f2fs_bug_on(F2FS_I_SB(inode),
1001 			!compr && ret != cluster_size &&
1002 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
1003 	}
1004 fail:
1005 	f2fs_put_dnode(&dn);
1006 	return ret;
1007 }
1008 
1009 /* return # of compressed blocks in compressed cluster */
1010 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1011 {
1012 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1013 }
1014 
1015 /* return # of valid blocks in compressed cluster */
1016 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1017 {
1018 	return __f2fs_cluster_blocks(inode,
1019 		index >> F2FS_I(inode)->i_log_cluster_size,
1020 		false);
1021 }
1022 
1023 static bool cluster_may_compress(struct compress_ctx *cc)
1024 {
1025 	if (!f2fs_need_compress_data(cc->inode))
1026 		return false;
1027 	if (f2fs_is_atomic_file(cc->inode))
1028 		return false;
1029 	if (!f2fs_cluster_is_full(cc))
1030 		return false;
1031 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1032 		return false;
1033 	return !cluster_has_invalid_data(cc);
1034 }
1035 
1036 static void set_cluster_writeback(struct compress_ctx *cc)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < cc->cluster_size; i++) {
1041 		if (cc->rpages[i])
1042 			set_page_writeback(cc->rpages[i]);
1043 	}
1044 }
1045 
1046 static void set_cluster_dirty(struct compress_ctx *cc)
1047 {
1048 	int i;
1049 
1050 	for (i = 0; i < cc->cluster_size; i++)
1051 		if (cc->rpages[i])
1052 			set_page_dirty(cc->rpages[i]);
1053 }
1054 
1055 static int prepare_compress_overwrite(struct compress_ctx *cc,
1056 		struct page **pagep, pgoff_t index, void **fsdata)
1057 {
1058 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1059 	struct address_space *mapping = cc->inode->i_mapping;
1060 	struct page *page;
1061 	sector_t last_block_in_bio;
1062 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1063 	pgoff_t start_idx = start_idx_of_cluster(cc);
1064 	int i, ret;
1065 
1066 retry:
1067 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1068 	if (ret <= 0)
1069 		return ret;
1070 
1071 	ret = f2fs_init_compress_ctx(cc);
1072 	if (ret)
1073 		return ret;
1074 
1075 	/* keep page reference to avoid page reclaim */
1076 	for (i = 0; i < cc->cluster_size; i++) {
1077 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1078 							fgp_flag, GFP_NOFS);
1079 		if (!page) {
1080 			ret = -ENOMEM;
1081 			goto unlock_pages;
1082 		}
1083 
1084 		if (PageUptodate(page))
1085 			f2fs_put_page(page, 1);
1086 		else
1087 			f2fs_compress_ctx_add_page(cc, page);
1088 	}
1089 
1090 	if (!f2fs_cluster_is_empty(cc)) {
1091 		struct bio *bio = NULL;
1092 
1093 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1094 					&last_block_in_bio, false, true);
1095 		f2fs_put_rpages(cc);
1096 		f2fs_destroy_compress_ctx(cc, true);
1097 		if (ret)
1098 			goto out;
1099 		if (bio)
1100 			f2fs_submit_bio(sbi, bio, DATA);
1101 
1102 		ret = f2fs_init_compress_ctx(cc);
1103 		if (ret)
1104 			goto out;
1105 	}
1106 
1107 	for (i = 0; i < cc->cluster_size; i++) {
1108 		f2fs_bug_on(sbi, cc->rpages[i]);
1109 
1110 		page = find_lock_page(mapping, start_idx + i);
1111 		if (!page) {
1112 			/* page can be truncated */
1113 			goto release_and_retry;
1114 		}
1115 
1116 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1117 		f2fs_compress_ctx_add_page(cc, page);
1118 
1119 		if (!PageUptodate(page)) {
1120 release_and_retry:
1121 			f2fs_put_rpages(cc);
1122 			f2fs_unlock_rpages(cc, i + 1);
1123 			f2fs_destroy_compress_ctx(cc, true);
1124 			goto retry;
1125 		}
1126 	}
1127 
1128 	if (likely(!ret)) {
1129 		*fsdata = cc->rpages;
1130 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1131 		return cc->cluster_size;
1132 	}
1133 
1134 unlock_pages:
1135 	f2fs_put_rpages(cc);
1136 	f2fs_unlock_rpages(cc, i);
1137 	f2fs_destroy_compress_ctx(cc, true);
1138 out:
1139 	return ret;
1140 }
1141 
1142 int f2fs_prepare_compress_overwrite(struct inode *inode,
1143 		struct page **pagep, pgoff_t index, void **fsdata)
1144 {
1145 	struct compress_ctx cc = {
1146 		.inode = inode,
1147 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1148 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1149 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1150 		.rpages = NULL,
1151 		.nr_rpages = 0,
1152 	};
1153 
1154 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1155 }
1156 
1157 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1158 					pgoff_t index, unsigned copied)
1159 
1160 {
1161 	struct compress_ctx cc = {
1162 		.inode = inode,
1163 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1164 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1165 		.rpages = fsdata,
1166 	};
1167 	bool first_index = (index == cc.rpages[0]->index);
1168 
1169 	if (copied)
1170 		set_cluster_dirty(&cc);
1171 
1172 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1173 	f2fs_destroy_compress_ctx(&cc, false);
1174 
1175 	return first_index;
1176 }
1177 
1178 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1179 {
1180 	void *fsdata = NULL;
1181 	struct page *pagep;
1182 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1183 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1184 							log_cluster_size;
1185 	int err;
1186 
1187 	err = f2fs_is_compressed_cluster(inode, start_idx);
1188 	if (err < 0)
1189 		return err;
1190 
1191 	/* truncate normal cluster */
1192 	if (!err)
1193 		return f2fs_do_truncate_blocks(inode, from, lock);
1194 
1195 	/* truncate compressed cluster */
1196 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1197 						start_idx, &fsdata);
1198 
1199 	/* should not be a normal cluster */
1200 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1201 
1202 	if (err <= 0)
1203 		return err;
1204 
1205 	if (err > 0) {
1206 		struct page **rpages = fsdata;
1207 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1208 		int i;
1209 
1210 		for (i = cluster_size - 1; i >= 0; i--) {
1211 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1212 
1213 			if (from <= start) {
1214 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1215 			} else {
1216 				zero_user_segment(rpages[i], from - start,
1217 								PAGE_SIZE);
1218 				break;
1219 			}
1220 		}
1221 
1222 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1223 	}
1224 	return 0;
1225 }
1226 
1227 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1228 					int *submitted,
1229 					struct writeback_control *wbc,
1230 					enum iostat_type io_type)
1231 {
1232 	struct inode *inode = cc->inode;
1233 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1234 	struct f2fs_inode_info *fi = F2FS_I(inode);
1235 	struct f2fs_io_info fio = {
1236 		.sbi = sbi,
1237 		.ino = cc->inode->i_ino,
1238 		.type = DATA,
1239 		.op = REQ_OP_WRITE,
1240 		.op_flags = wbc_to_write_flags(wbc),
1241 		.old_blkaddr = NEW_ADDR,
1242 		.page = NULL,
1243 		.encrypted_page = NULL,
1244 		.compressed_page = NULL,
1245 		.submitted = false,
1246 		.io_type = io_type,
1247 		.io_wbc = wbc,
1248 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1249 	};
1250 	struct dnode_of_data dn;
1251 	struct node_info ni;
1252 	struct compress_io_ctx *cic;
1253 	pgoff_t start_idx = start_idx_of_cluster(cc);
1254 	unsigned int last_index = cc->cluster_size - 1;
1255 	loff_t psize;
1256 	int i, err;
1257 
1258 	/* we should bypass data pages to proceed the kworkder jobs */
1259 	if (unlikely(f2fs_cp_error(sbi))) {
1260 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1261 		goto out_free;
1262 	}
1263 
1264 	if (IS_NOQUOTA(inode)) {
1265 		/*
1266 		 * We need to wait for node_write to avoid block allocation during
1267 		 * checkpoint. This can only happen to quota writes which can cause
1268 		 * the below discard race condition.
1269 		 */
1270 		down_read(&sbi->node_write);
1271 	} else if (!f2fs_trylock_op(sbi)) {
1272 		goto out_free;
1273 	}
1274 
1275 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1276 
1277 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1278 	if (err)
1279 		goto out_unlock_op;
1280 
1281 	for (i = 0; i < cc->cluster_size; i++) {
1282 		if (data_blkaddr(dn.inode, dn.node_page,
1283 					dn.ofs_in_node + i) == NULL_ADDR)
1284 			goto out_put_dnode;
1285 	}
1286 
1287 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1288 
1289 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1290 	if (err)
1291 		goto out_put_dnode;
1292 
1293 	fio.version = ni.version;
1294 
1295 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1296 	if (!cic)
1297 		goto out_put_dnode;
1298 
1299 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1300 	cic->inode = inode;
1301 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1302 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1303 	if (!cic->rpages)
1304 		goto out_put_cic;
1305 
1306 	cic->nr_rpages = cc->cluster_size;
1307 
1308 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1309 		f2fs_set_compressed_page(cc->cpages[i], inode,
1310 					cc->rpages[i + 1]->index, cic);
1311 		fio.compressed_page = cc->cpages[i];
1312 
1313 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1314 						dn.ofs_in_node + i + 1);
1315 
1316 		/* wait for GCed page writeback via META_MAPPING */
1317 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1318 
1319 		if (fio.encrypted) {
1320 			fio.page = cc->rpages[i + 1];
1321 			err = f2fs_encrypt_one_page(&fio);
1322 			if (err)
1323 				goto out_destroy_crypt;
1324 			cc->cpages[i] = fio.encrypted_page;
1325 		}
1326 	}
1327 
1328 	set_cluster_writeback(cc);
1329 
1330 	for (i = 0; i < cc->cluster_size; i++)
1331 		cic->rpages[i] = cc->rpages[i];
1332 
1333 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1334 		block_t blkaddr;
1335 
1336 		blkaddr = f2fs_data_blkaddr(&dn);
1337 		fio.page = cc->rpages[i];
1338 		fio.old_blkaddr = blkaddr;
1339 
1340 		/* cluster header */
1341 		if (i == 0) {
1342 			if (blkaddr == COMPRESS_ADDR)
1343 				fio.compr_blocks++;
1344 			if (__is_valid_data_blkaddr(blkaddr))
1345 				f2fs_invalidate_blocks(sbi, blkaddr);
1346 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1347 			goto unlock_continue;
1348 		}
1349 
1350 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1351 			fio.compr_blocks++;
1352 
1353 		if (i > cc->valid_nr_cpages) {
1354 			if (__is_valid_data_blkaddr(blkaddr)) {
1355 				f2fs_invalidate_blocks(sbi, blkaddr);
1356 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1357 			}
1358 			goto unlock_continue;
1359 		}
1360 
1361 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1362 
1363 		if (fio.encrypted)
1364 			fio.encrypted_page = cc->cpages[i - 1];
1365 		else
1366 			fio.compressed_page = cc->cpages[i - 1];
1367 
1368 		cc->cpages[i - 1] = NULL;
1369 		f2fs_outplace_write_data(&dn, &fio);
1370 		(*submitted)++;
1371 unlock_continue:
1372 		inode_dec_dirty_pages(cc->inode);
1373 		unlock_page(fio.page);
1374 	}
1375 
1376 	if (fio.compr_blocks)
1377 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1378 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1379 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1380 
1381 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1382 	if (cc->cluster_idx == 0)
1383 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1384 
1385 	f2fs_put_dnode(&dn);
1386 	if (IS_NOQUOTA(inode))
1387 		up_read(&sbi->node_write);
1388 	else
1389 		f2fs_unlock_op(sbi);
1390 
1391 	spin_lock(&fi->i_size_lock);
1392 	if (fi->last_disk_size < psize)
1393 		fi->last_disk_size = psize;
1394 	spin_unlock(&fi->i_size_lock);
1395 
1396 	f2fs_put_rpages(cc);
1397 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1398 	cc->cpages = NULL;
1399 	f2fs_destroy_compress_ctx(cc, false);
1400 	return 0;
1401 
1402 out_destroy_crypt:
1403 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1404 
1405 	for (--i; i >= 0; i--)
1406 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1407 out_put_cic:
1408 	kmem_cache_free(cic_entry_slab, cic);
1409 out_put_dnode:
1410 	f2fs_put_dnode(&dn);
1411 out_unlock_op:
1412 	if (IS_NOQUOTA(inode))
1413 		up_read(&sbi->node_write);
1414 	else
1415 		f2fs_unlock_op(sbi);
1416 out_free:
1417 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1418 		f2fs_compress_free_page(cc->cpages[i]);
1419 		cc->cpages[i] = NULL;
1420 	}
1421 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1422 	cc->cpages = NULL;
1423 	return -EAGAIN;
1424 }
1425 
1426 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1427 {
1428 	struct f2fs_sb_info *sbi = bio->bi_private;
1429 	struct compress_io_ctx *cic =
1430 			(struct compress_io_ctx *)page_private(page);
1431 	int i;
1432 
1433 	if (unlikely(bio->bi_status))
1434 		mapping_set_error(cic->inode->i_mapping, -EIO);
1435 
1436 	f2fs_compress_free_page(page);
1437 
1438 	dec_page_count(sbi, F2FS_WB_DATA);
1439 
1440 	if (atomic_dec_return(&cic->pending_pages))
1441 		return;
1442 
1443 	for (i = 0; i < cic->nr_rpages; i++) {
1444 		WARN_ON(!cic->rpages[i]);
1445 		clear_page_private_gcing(cic->rpages[i]);
1446 		end_page_writeback(cic->rpages[i]);
1447 	}
1448 
1449 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1450 	kmem_cache_free(cic_entry_slab, cic);
1451 }
1452 
1453 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1454 					int *submitted,
1455 					struct writeback_control *wbc,
1456 					enum iostat_type io_type)
1457 {
1458 	struct address_space *mapping = cc->inode->i_mapping;
1459 	int _submitted, compr_blocks, ret, i;
1460 
1461 	compr_blocks = f2fs_compressed_blocks(cc);
1462 
1463 	for (i = 0; i < cc->cluster_size; i++) {
1464 		if (!cc->rpages[i])
1465 			continue;
1466 
1467 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1468 		unlock_page(cc->rpages[i]);
1469 	}
1470 
1471 	if (compr_blocks < 0)
1472 		return compr_blocks;
1473 
1474 	for (i = 0; i < cc->cluster_size; i++) {
1475 		if (!cc->rpages[i])
1476 			continue;
1477 retry_write:
1478 		lock_page(cc->rpages[i]);
1479 
1480 		if (cc->rpages[i]->mapping != mapping) {
1481 continue_unlock:
1482 			unlock_page(cc->rpages[i]);
1483 			continue;
1484 		}
1485 
1486 		if (!PageDirty(cc->rpages[i]))
1487 			goto continue_unlock;
1488 
1489 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1490 			goto continue_unlock;
1491 
1492 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1493 						NULL, NULL, wbc, io_type,
1494 						compr_blocks, false);
1495 		if (ret) {
1496 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1497 				unlock_page(cc->rpages[i]);
1498 				ret = 0;
1499 			} else if (ret == -EAGAIN) {
1500 				/*
1501 				 * for quota file, just redirty left pages to
1502 				 * avoid deadlock caused by cluster update race
1503 				 * from foreground operation.
1504 				 */
1505 				if (IS_NOQUOTA(cc->inode))
1506 					return 0;
1507 				ret = 0;
1508 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1509 				goto retry_write;
1510 			}
1511 			return ret;
1512 		}
1513 
1514 		*submitted += _submitted;
1515 	}
1516 
1517 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1518 
1519 	return 0;
1520 }
1521 
1522 int f2fs_write_multi_pages(struct compress_ctx *cc,
1523 					int *submitted,
1524 					struct writeback_control *wbc,
1525 					enum iostat_type io_type)
1526 {
1527 	int err;
1528 
1529 	*submitted = 0;
1530 	if (cluster_may_compress(cc)) {
1531 		err = f2fs_compress_pages(cc);
1532 		if (err == -EAGAIN) {
1533 			add_compr_block_stat(cc->inode, cc->cluster_size);
1534 			goto write;
1535 		} else if (err) {
1536 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1537 			goto destroy_out;
1538 		}
1539 
1540 		err = f2fs_write_compressed_pages(cc, submitted,
1541 							wbc, io_type);
1542 		if (!err)
1543 			return 0;
1544 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1545 	}
1546 write:
1547 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1548 
1549 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1550 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1551 destroy_out:
1552 	f2fs_destroy_compress_ctx(cc, false);
1553 	return err;
1554 }
1555 
1556 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1557 
1558 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1559 {
1560 	struct decompress_io_ctx *dic;
1561 	pgoff_t start_idx = start_idx_of_cluster(cc);
1562 	int i;
1563 
1564 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1565 					false, F2FS_I_SB(cc->inode));
1566 	if (!dic)
1567 		return ERR_PTR(-ENOMEM);
1568 
1569 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1570 	if (!dic->rpages) {
1571 		kmem_cache_free(dic_entry_slab, dic);
1572 		return ERR_PTR(-ENOMEM);
1573 	}
1574 
1575 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1576 	dic->inode = cc->inode;
1577 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1578 	dic->cluster_idx = cc->cluster_idx;
1579 	dic->cluster_size = cc->cluster_size;
1580 	dic->log_cluster_size = cc->log_cluster_size;
1581 	dic->nr_cpages = cc->nr_cpages;
1582 	refcount_set(&dic->refcnt, 1);
1583 	dic->failed = false;
1584 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1585 
1586 	for (i = 0; i < dic->cluster_size; i++)
1587 		dic->rpages[i] = cc->rpages[i];
1588 	dic->nr_rpages = cc->cluster_size;
1589 
1590 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1591 	if (!dic->cpages)
1592 		goto out_free;
1593 
1594 	for (i = 0; i < dic->nr_cpages; i++) {
1595 		struct page *page;
1596 
1597 		page = f2fs_compress_alloc_page();
1598 		if (!page)
1599 			goto out_free;
1600 
1601 		f2fs_set_compressed_page(page, cc->inode,
1602 					start_idx + i + 1, dic);
1603 		dic->cpages[i] = page;
1604 	}
1605 
1606 	return dic;
1607 
1608 out_free:
1609 	f2fs_free_dic(dic);
1610 	return ERR_PTR(-ENOMEM);
1611 }
1612 
1613 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1614 {
1615 	int i;
1616 
1617 	if (dic->tpages) {
1618 		for (i = 0; i < dic->cluster_size; i++) {
1619 			if (dic->rpages[i])
1620 				continue;
1621 			if (!dic->tpages[i])
1622 				continue;
1623 			f2fs_compress_free_page(dic->tpages[i]);
1624 		}
1625 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1626 	}
1627 
1628 	if (dic->cpages) {
1629 		for (i = 0; i < dic->nr_cpages; i++) {
1630 			if (!dic->cpages[i])
1631 				continue;
1632 			f2fs_compress_free_page(dic->cpages[i]);
1633 		}
1634 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1635 	}
1636 
1637 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1638 	kmem_cache_free(dic_entry_slab, dic);
1639 }
1640 
1641 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1642 {
1643 	if (refcount_dec_and_test(&dic->refcnt))
1644 		f2fs_free_dic(dic);
1645 }
1646 
1647 /*
1648  * Update and unlock the cluster's pagecache pages, and release the reference to
1649  * the decompress_io_ctx that was being held for I/O completion.
1650  */
1651 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1652 {
1653 	int i;
1654 
1655 	for (i = 0; i < dic->cluster_size; i++) {
1656 		struct page *rpage = dic->rpages[i];
1657 
1658 		if (!rpage)
1659 			continue;
1660 
1661 		/* PG_error was set if verity failed. */
1662 		if (failed || PageError(rpage)) {
1663 			ClearPageUptodate(rpage);
1664 			/* will re-read again later */
1665 			ClearPageError(rpage);
1666 		} else {
1667 			SetPageUptodate(rpage);
1668 		}
1669 		unlock_page(rpage);
1670 	}
1671 
1672 	f2fs_put_dic(dic);
1673 }
1674 
1675 static void f2fs_verify_cluster(struct work_struct *work)
1676 {
1677 	struct decompress_io_ctx *dic =
1678 		container_of(work, struct decompress_io_ctx, verity_work);
1679 	int i;
1680 
1681 	/* Verify the cluster's decompressed pages with fs-verity. */
1682 	for (i = 0; i < dic->cluster_size; i++) {
1683 		struct page *rpage = dic->rpages[i];
1684 
1685 		if (rpage && !fsverity_verify_page(rpage))
1686 			SetPageError(rpage);
1687 	}
1688 
1689 	__f2fs_decompress_end_io(dic, false);
1690 }
1691 
1692 /*
1693  * This is called when a compressed cluster has been decompressed
1694  * (or failed to be read and/or decompressed).
1695  */
1696 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1697 {
1698 	if (!failed && dic->need_verity) {
1699 		/*
1700 		 * Note that to avoid deadlocks, the verity work can't be done
1701 		 * on the decompression workqueue.  This is because verifying
1702 		 * the data pages can involve reading metadata pages from the
1703 		 * file, and these metadata pages may be compressed.
1704 		 */
1705 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1706 		fsverity_enqueue_verify_work(&dic->verity_work);
1707 	} else {
1708 		__f2fs_decompress_end_io(dic, failed);
1709 	}
1710 }
1711 
1712 /*
1713  * Put a reference to a compressed page's decompress_io_ctx.
1714  *
1715  * This is called when the page is no longer needed and can be freed.
1716  */
1717 void f2fs_put_page_dic(struct page *page)
1718 {
1719 	struct decompress_io_ctx *dic =
1720 			(struct decompress_io_ctx *)page_private(page);
1721 
1722 	f2fs_put_dic(dic);
1723 }
1724 
1725 /*
1726  * check whether cluster blocks are contiguous, and add extent cache entry
1727  * only if cluster blocks are logically and physically contiguous.
1728  */
1729 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1730 {
1731 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1732 	int i = compressed ? 1 : 0;
1733 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1734 						dn->ofs_in_node + i);
1735 
1736 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1737 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1738 						dn->ofs_in_node + i);
1739 
1740 		if (!__is_valid_data_blkaddr(blkaddr))
1741 			break;
1742 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1743 			return 0;
1744 	}
1745 
1746 	return compressed ? i - 1 : i;
1747 }
1748 
1749 const struct address_space_operations f2fs_compress_aops = {
1750 	.releasepage = f2fs_release_page,
1751 	.invalidatepage = f2fs_invalidate_page,
1752 };
1753 
1754 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1755 {
1756 	return sbi->compress_inode->i_mapping;
1757 }
1758 
1759 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1760 {
1761 	if (!sbi->compress_inode)
1762 		return;
1763 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1764 }
1765 
1766 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1767 						nid_t ino, block_t blkaddr)
1768 {
1769 	struct page *cpage;
1770 	int ret;
1771 
1772 	if (!test_opt(sbi, COMPRESS_CACHE))
1773 		return;
1774 
1775 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1776 		return;
1777 
1778 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1779 		return;
1780 
1781 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1782 	if (cpage) {
1783 		f2fs_put_page(cpage, 0);
1784 		return;
1785 	}
1786 
1787 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1788 	if (!cpage)
1789 		return;
1790 
1791 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1792 						blkaddr, GFP_NOFS);
1793 	if (ret) {
1794 		f2fs_put_page(cpage, 0);
1795 		return;
1796 	}
1797 
1798 	set_page_private_data(cpage, ino);
1799 
1800 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1801 		goto out;
1802 
1803 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1804 	SetPageUptodate(cpage);
1805 out:
1806 	f2fs_put_page(cpage, 1);
1807 }
1808 
1809 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1810 								block_t blkaddr)
1811 {
1812 	struct page *cpage;
1813 	bool hitted = false;
1814 
1815 	if (!test_opt(sbi, COMPRESS_CACHE))
1816 		return false;
1817 
1818 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1819 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1820 	if (cpage) {
1821 		if (PageUptodate(cpage)) {
1822 			atomic_inc(&sbi->compress_page_hit);
1823 			memcpy(page_address(page),
1824 				page_address(cpage), PAGE_SIZE);
1825 			hitted = true;
1826 		}
1827 		f2fs_put_page(cpage, 1);
1828 	}
1829 
1830 	return hitted;
1831 }
1832 
1833 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1834 {
1835 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1836 	struct pagevec pvec;
1837 	pgoff_t index = 0;
1838 	pgoff_t end = MAX_BLKADDR(sbi);
1839 
1840 	if (!mapping->nrpages)
1841 		return;
1842 
1843 	pagevec_init(&pvec);
1844 
1845 	do {
1846 		unsigned int nr_pages;
1847 		int i;
1848 
1849 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1850 						&index, end - 1);
1851 		if (!nr_pages)
1852 			break;
1853 
1854 		for (i = 0; i < nr_pages; i++) {
1855 			struct page *page = pvec.pages[i];
1856 
1857 			if (page->index > end)
1858 				break;
1859 
1860 			lock_page(page);
1861 			if (page->mapping != mapping) {
1862 				unlock_page(page);
1863 				continue;
1864 			}
1865 
1866 			if (ino != get_page_private_data(page)) {
1867 				unlock_page(page);
1868 				continue;
1869 			}
1870 
1871 			generic_error_remove_page(mapping, page);
1872 			unlock_page(page);
1873 		}
1874 		pagevec_release(&pvec);
1875 		cond_resched();
1876 	} while (index < end);
1877 }
1878 
1879 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1880 {
1881 	struct inode *inode;
1882 
1883 	if (!test_opt(sbi, COMPRESS_CACHE))
1884 		return 0;
1885 
1886 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1887 	if (IS_ERR(inode))
1888 		return PTR_ERR(inode);
1889 	sbi->compress_inode = inode;
1890 
1891 	sbi->compress_percent = COMPRESS_PERCENT;
1892 	sbi->compress_watermark = COMPRESS_WATERMARK;
1893 
1894 	atomic_set(&sbi->compress_page_hit, 0);
1895 
1896 	return 0;
1897 }
1898 
1899 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1900 {
1901 	if (!sbi->compress_inode)
1902 		return;
1903 	iput(sbi->compress_inode);
1904 	sbi->compress_inode = NULL;
1905 }
1906 
1907 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1908 {
1909 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1910 	char slab_name[32];
1911 
1912 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1913 
1914 	sbi->page_array_slab_size = sizeof(struct page *) <<
1915 					F2FS_OPTION(sbi).compress_log_size;
1916 
1917 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1918 					sbi->page_array_slab_size);
1919 	if (!sbi->page_array_slab)
1920 		return -ENOMEM;
1921 	return 0;
1922 }
1923 
1924 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1925 {
1926 	kmem_cache_destroy(sbi->page_array_slab);
1927 }
1928 
1929 static int __init f2fs_init_cic_cache(void)
1930 {
1931 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1932 					sizeof(struct compress_io_ctx));
1933 	if (!cic_entry_slab)
1934 		return -ENOMEM;
1935 	return 0;
1936 }
1937 
1938 static void f2fs_destroy_cic_cache(void)
1939 {
1940 	kmem_cache_destroy(cic_entry_slab);
1941 }
1942 
1943 static int __init f2fs_init_dic_cache(void)
1944 {
1945 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1946 					sizeof(struct decompress_io_ctx));
1947 	if (!dic_entry_slab)
1948 		return -ENOMEM;
1949 	return 0;
1950 }
1951 
1952 static void f2fs_destroy_dic_cache(void)
1953 {
1954 	kmem_cache_destroy(dic_entry_slab);
1955 }
1956 
1957 int __init f2fs_init_compress_cache(void)
1958 {
1959 	int err;
1960 
1961 	err = f2fs_init_cic_cache();
1962 	if (err)
1963 		goto out;
1964 	err = f2fs_init_dic_cache();
1965 	if (err)
1966 		goto free_cic;
1967 	return 0;
1968 free_cic:
1969 	f2fs_destroy_cic_cache();
1970 out:
1971 	return -ENOMEM;
1972 }
1973 
1974 void f2fs_destroy_compress_cache(void)
1975 {
1976 	f2fs_destroy_dic_cache();
1977 	f2fs_destroy_cic_cache();
1978 }
1979