xref: /openbmc/linux/fs/f2fs/compress.c (revision 448cc2fb3a7b327823a9afd374808c37b8e6194f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	if (!reuse)
158 		cc->cluster_idx = NULL_CLUSTER;
159 }
160 
161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 	unsigned int cluster_ofs;
164 
165 	if (!f2fs_cluster_can_merge_page(cc, page->index))
166 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167 
168 	cluster_ofs = offset_in_cluster(cc, page->index);
169 	cc->rpages[cluster_ofs] = page;
170 	cc->nr_rpages++;
171 	cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173 
174 #ifdef CONFIG_F2FS_FS_LZO
175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 				LZO1X_MEM_COMPRESS, GFP_NOFS);
179 	if (!cc->private)
180 		return -ENOMEM;
181 
182 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 	return 0;
184 }
185 
186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 	kvfree(cc->private);
189 	cc->private = NULL;
190 }
191 
192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 	int ret;
195 
196 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 					&cc->clen, cc->private);
198 	if (ret != LZO_E_OK) {
199 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 		return -EIO;
202 	}
203 	return 0;
204 }
205 
206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 	int ret;
209 
210 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 						dic->rbuf, &dic->rlen);
212 	if (ret != LZO_E_OK) {
213 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 		return -EIO;
216 	}
217 
218 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 					"expected:%lu\n", KERN_ERR,
221 					F2FS_I_SB(dic->inode)->sb->s_id,
222 					dic->rlen,
223 					PAGE_SIZE << dic->log_cluster_size);
224 		return -EIO;
225 	}
226 	return 0;
227 }
228 
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 	.init_compress_ctx	= lzo_init_compress_ctx,
231 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
232 	.compress_pages		= lzo_compress_pages,
233 	.decompress_pages	= lzo_decompress_pages,
234 };
235 #endif
236 
237 #ifdef CONFIG_F2FS_FS_LZ4
238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 	unsigned int size = LZ4_MEM_COMPRESS;
241 
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
244 		size = LZ4HC_MEM_COMPRESS;
245 #endif
246 
247 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 	if (!cc->private)
249 		return -ENOMEM;
250 
251 	/*
252 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 	 * adapt worst compress case, because lz4 compressor can handle
254 	 * output budget properly.
255 	 */
256 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 	return 0;
258 }
259 
260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 	kvfree(cc->private);
263 	cc->private = NULL;
264 }
265 
266 #ifdef CONFIG_F2FS_FS_LZ4HC
267 static int lz4hc_compress_pages(struct compress_ctx *cc)
268 {
269 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
270 						COMPRESS_LEVEL_OFFSET;
271 	int len;
272 
273 	if (level)
274 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 					cc->clen, level, cc->private);
276 	else
277 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 						cc->clen, cc->private);
279 	if (!len)
280 		return -EAGAIN;
281 
282 	cc->clen = len;
283 	return 0;
284 }
285 #endif
286 
287 static int lz4_compress_pages(struct compress_ctx *cc)
288 {
289 	int len;
290 
291 #ifdef CONFIG_F2FS_FS_LZ4HC
292 	return lz4hc_compress_pages(cc);
293 #endif
294 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
295 						cc->clen, cc->private);
296 	if (!len)
297 		return -EAGAIN;
298 
299 	cc->clen = len;
300 	return 0;
301 }
302 
303 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
304 {
305 	int ret;
306 
307 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
308 						dic->clen, dic->rlen);
309 	if (ret < 0) {
310 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
311 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
312 		return -EIO;
313 	}
314 
315 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
316 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
317 					"expected:%lu\n", KERN_ERR,
318 					F2FS_I_SB(dic->inode)->sb->s_id,
319 					dic->rlen,
320 					PAGE_SIZE << dic->log_cluster_size);
321 		return -EIO;
322 	}
323 	return 0;
324 }
325 
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 	.init_compress_ctx	= lz4_init_compress_ctx,
328 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
329 	.compress_pages		= lz4_compress_pages,
330 	.decompress_pages	= lz4_decompress_pages,
331 };
332 #endif
333 
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
336 
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 	zstd_parameters params;
340 	zstd_cstream *stream;
341 	void *workspace;
342 	unsigned int workspace_size;
343 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 						COMPRESS_LEVEL_OFFSET;
345 
346 	if (!level)
347 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
348 
349 	params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
350 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351 
352 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 					workspace_size, GFP_NOFS);
354 	if (!workspace)
355 		return -ENOMEM;
356 
357 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358 	if (!stream) {
359 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 				__func__);
362 		kvfree(workspace);
363 		return -EIO;
364 	}
365 
366 	cc->private = workspace;
367 	cc->private2 = stream;
368 
369 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 	return 0;
371 }
372 
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 	kvfree(cc->private);
376 	cc->private = NULL;
377 	cc->private2 = NULL;
378 }
379 
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 	zstd_cstream *stream = cc->private2;
383 	zstd_in_buffer inbuf;
384 	zstd_out_buffer outbuf;
385 	int src_size = cc->rlen;
386 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 	int ret;
388 
389 	inbuf.pos = 0;
390 	inbuf.src = cc->rbuf;
391 	inbuf.size = src_size;
392 
393 	outbuf.pos = 0;
394 	outbuf.dst = cc->cbuf->cdata;
395 	outbuf.size = dst_size;
396 
397 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 	if (zstd_is_error(ret)) {
399 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 				__func__, zstd_get_error_code(ret));
402 		return -EIO;
403 	}
404 
405 	ret = zstd_end_stream(stream, &outbuf);
406 	if (zstd_is_error(ret)) {
407 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 				__func__, zstd_get_error_code(ret));
410 		return -EIO;
411 	}
412 
413 	/*
414 	 * there is compressed data remained in intermediate buffer due to
415 	 * no more space in cbuf.cdata
416 	 */
417 	if (ret)
418 		return -EAGAIN;
419 
420 	cc->clen = outbuf.pos;
421 	return 0;
422 }
423 
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 	zstd_dstream *stream;
427 	void *workspace;
428 	unsigned int workspace_size;
429 	unsigned int max_window_size =
430 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431 
432 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
433 
434 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 					workspace_size, GFP_NOFS);
436 	if (!workspace)
437 		return -ENOMEM;
438 
439 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 	if (!stream) {
441 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 				__func__);
444 		kvfree(workspace);
445 		return -EIO;
446 	}
447 
448 	dic->private = workspace;
449 	dic->private2 = stream;
450 
451 	return 0;
452 }
453 
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 	kvfree(dic->private);
457 	dic->private = NULL;
458 	dic->private2 = NULL;
459 }
460 
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 	zstd_dstream *stream = dic->private2;
464 	zstd_in_buffer inbuf;
465 	zstd_out_buffer outbuf;
466 	int ret;
467 
468 	inbuf.pos = 0;
469 	inbuf.src = dic->cbuf->cdata;
470 	inbuf.size = dic->clen;
471 
472 	outbuf.pos = 0;
473 	outbuf.dst = dic->rbuf;
474 	outbuf.size = dic->rlen;
475 
476 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 	if (zstd_is_error(ret)) {
478 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 				__func__, zstd_get_error_code(ret));
481 		return -EIO;
482 	}
483 
484 	if (dic->rlen != outbuf.pos) {
485 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 				"expected:%lu\n", KERN_ERR,
487 				F2FS_I_SB(dic->inode)->sb->s_id,
488 				__func__, dic->rlen,
489 				PAGE_SIZE << dic->log_cluster_size);
490 		return -EIO;
491 	}
492 
493 	return 0;
494 }
495 
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 	.init_compress_ctx	= zstd_init_compress_ctx,
498 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
499 	.compress_pages		= zstd_compress_pages,
500 	.init_decompress_ctx	= zstd_init_decompress_ctx,
501 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
502 	.decompress_pages	= zstd_decompress_pages,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 		"Number of intermediate compress pages to preallocate");
566 
567 int f2fs_init_compress_mempool(void)
568 {
569 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 	if (!compress_page_pool)
571 		return -ENOMEM;
572 
573 	return 0;
574 }
575 
576 void f2fs_destroy_compress_mempool(void)
577 {
578 	mempool_destroy(compress_page_pool);
579 }
580 
581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 	struct page *page;
584 
585 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 	lock_page(page);
587 
588 	return page;
589 }
590 
591 static void f2fs_compress_free_page(struct page *page)
592 {
593 	if (!page)
594 		return;
595 	detach_page_private(page);
596 	page->mapping = NULL;
597 	unlock_page(page);
598 	mempool_free(page, compress_page_pool);
599 }
600 
601 #define MAX_VMAP_RETRIES	3
602 
603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 	int i;
606 	void *buf = NULL;
607 
608 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 		buf = vm_map_ram(pages, count, -1);
610 		if (buf)
611 			break;
612 		vm_unmap_aliases();
613 	}
614 	return buf;
615 }
616 
617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 	const struct f2fs_compress_ops *cops =
621 				f2fs_cops[fi->i_compress_algorithm];
622 	unsigned int max_len, new_nr_cpages;
623 	struct page **new_cpages;
624 	u32 chksum = 0;
625 	int i, ret;
626 
627 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 				cc->cluster_size, fi->i_compress_algorithm);
629 
630 	if (cops->init_compress_ctx) {
631 		ret = cops->init_compress_ctx(cc);
632 		if (ret)
633 			goto out;
634 	}
635 
636 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638 
639 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 	if (!cc->cpages) {
641 		ret = -ENOMEM;
642 		goto destroy_compress_ctx;
643 	}
644 
645 	for (i = 0; i < cc->nr_cpages; i++) {
646 		cc->cpages[i] = f2fs_compress_alloc_page();
647 		if (!cc->cpages[i]) {
648 			ret = -ENOMEM;
649 			goto out_free_cpages;
650 		}
651 	}
652 
653 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 	if (!cc->rbuf) {
655 		ret = -ENOMEM;
656 		goto out_free_cpages;
657 	}
658 
659 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 	if (!cc->cbuf) {
661 		ret = -ENOMEM;
662 		goto out_vunmap_rbuf;
663 	}
664 
665 	ret = cops->compress_pages(cc);
666 	if (ret)
667 		goto out_vunmap_cbuf;
668 
669 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670 
671 	if (cc->clen > max_len) {
672 		ret = -EAGAIN;
673 		goto out_vunmap_cbuf;
674 	}
675 
676 	cc->cbuf->clen = cpu_to_le32(cc->clen);
677 
678 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 					cc->cbuf->cdata, cc->clen);
681 	cc->cbuf->chksum = cpu_to_le32(chksum);
682 
683 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 		cc->cbuf->reserved[i] = cpu_to_le32(0);
685 
686 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687 
688 	/* Now we're going to cut unnecessary tail pages */
689 	new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
690 	if (!new_cpages) {
691 		ret = -ENOMEM;
692 		goto out_vunmap_cbuf;
693 	}
694 
695 	/* zero out any unused part of the last page */
696 	memset(&cc->cbuf->cdata[cc->clen], 0,
697 			(new_nr_cpages * PAGE_SIZE) -
698 			(cc->clen + COMPRESS_HEADER_SIZE));
699 
700 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
701 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
702 
703 	for (i = 0; i < cc->nr_cpages; i++) {
704 		if (i < new_nr_cpages) {
705 			new_cpages[i] = cc->cpages[i];
706 			continue;
707 		}
708 		f2fs_compress_free_page(cc->cpages[i]);
709 		cc->cpages[i] = NULL;
710 	}
711 
712 	if (cops->destroy_compress_ctx)
713 		cops->destroy_compress_ctx(cc);
714 
715 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
716 	cc->cpages = new_cpages;
717 	cc->nr_cpages = new_nr_cpages;
718 
719 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
720 							cc->clen, ret);
721 	return 0;
722 
723 out_vunmap_cbuf:
724 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
725 out_vunmap_rbuf:
726 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
727 out_free_cpages:
728 	for (i = 0; i < cc->nr_cpages; i++) {
729 		if (cc->cpages[i])
730 			f2fs_compress_free_page(cc->cpages[i]);
731 	}
732 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
733 	cc->cpages = NULL;
734 destroy_compress_ctx:
735 	if (cops->destroy_compress_ctx)
736 		cops->destroy_compress_ctx(cc);
737 out:
738 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
739 							cc->clen, ret);
740 	return ret;
741 }
742 
743 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
744 {
745 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
746 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
747 	const struct f2fs_compress_ops *cops =
748 			f2fs_cops[fi->i_compress_algorithm];
749 	int ret;
750 	int i;
751 
752 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
753 				dic->cluster_size, fi->i_compress_algorithm);
754 
755 	if (dic->failed) {
756 		ret = -EIO;
757 		goto out_end_io;
758 	}
759 
760 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
761 	if (!dic->tpages) {
762 		ret = -ENOMEM;
763 		goto out_end_io;
764 	}
765 
766 	for (i = 0; i < dic->cluster_size; i++) {
767 		if (dic->rpages[i]) {
768 			dic->tpages[i] = dic->rpages[i];
769 			continue;
770 		}
771 
772 		dic->tpages[i] = f2fs_compress_alloc_page();
773 		if (!dic->tpages[i]) {
774 			ret = -ENOMEM;
775 			goto out_end_io;
776 		}
777 	}
778 
779 	if (cops->init_decompress_ctx) {
780 		ret = cops->init_decompress_ctx(dic);
781 		if (ret)
782 			goto out_end_io;
783 	}
784 
785 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
786 	if (!dic->rbuf) {
787 		ret = -ENOMEM;
788 		goto out_destroy_decompress_ctx;
789 	}
790 
791 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
792 	if (!dic->cbuf) {
793 		ret = -ENOMEM;
794 		goto out_vunmap_rbuf;
795 	}
796 
797 	dic->clen = le32_to_cpu(dic->cbuf->clen);
798 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
799 
800 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
801 		ret = -EFSCORRUPTED;
802 		goto out_vunmap_cbuf;
803 	}
804 
805 	ret = cops->decompress_pages(dic);
806 
807 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
808 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
809 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
810 
811 		if (provided != calculated) {
812 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
813 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
814 				printk_ratelimited(
815 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
816 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
817 					provided, calculated);
818 			}
819 			set_sbi_flag(sbi, SBI_NEED_FSCK);
820 		}
821 	}
822 
823 out_vunmap_cbuf:
824 	vm_unmap_ram(dic->cbuf, dic->nr_cpages);
825 out_vunmap_rbuf:
826 	vm_unmap_ram(dic->rbuf, dic->cluster_size);
827 out_destroy_decompress_ctx:
828 	if (cops->destroy_decompress_ctx)
829 		cops->destroy_decompress_ctx(dic);
830 out_end_io:
831 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
832 							dic->clen, ret);
833 	f2fs_decompress_end_io(dic, ret);
834 }
835 
836 /*
837  * This is called when a page of a compressed cluster has been read from disk
838  * (or failed to be read from disk).  It checks whether this page was the last
839  * page being waited on in the cluster, and if so, it decompresses the cluster
840  * (or in the case of a failure, cleans up without actually decompressing).
841  */
842 void f2fs_end_read_compressed_page(struct page *page, bool failed,
843 						block_t blkaddr)
844 {
845 	struct decompress_io_ctx *dic =
846 			(struct decompress_io_ctx *)page_private(page);
847 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
848 
849 	dec_page_count(sbi, F2FS_RD_DATA);
850 
851 	if (failed)
852 		WRITE_ONCE(dic->failed, true);
853 	else if (blkaddr)
854 		f2fs_cache_compressed_page(sbi, page,
855 					dic->inode->i_ino, blkaddr);
856 
857 	if (atomic_dec_and_test(&dic->remaining_pages))
858 		f2fs_decompress_cluster(dic);
859 }
860 
861 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
862 {
863 	if (cc->cluster_idx == NULL_CLUSTER)
864 		return true;
865 	return cc->cluster_idx == cluster_idx(cc, index);
866 }
867 
868 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
869 {
870 	return cc->nr_rpages == 0;
871 }
872 
873 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
874 {
875 	return cc->cluster_size == cc->nr_rpages;
876 }
877 
878 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
879 {
880 	if (f2fs_cluster_is_empty(cc))
881 		return true;
882 	return is_page_in_cluster(cc, index);
883 }
884 
885 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
886 				int index, int nr_pages)
887 {
888 	unsigned long pgidx;
889 	int i;
890 
891 	if (nr_pages - index < cc->cluster_size)
892 		return false;
893 
894 	pgidx = pvec->pages[index]->index;
895 
896 	for (i = 1; i < cc->cluster_size; i++) {
897 		if (pvec->pages[index + i]->index != pgidx + i)
898 			return false;
899 	}
900 
901 	return true;
902 }
903 
904 static bool cluster_has_invalid_data(struct compress_ctx *cc)
905 {
906 	loff_t i_size = i_size_read(cc->inode);
907 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
908 	int i;
909 
910 	for (i = 0; i < cc->cluster_size; i++) {
911 		struct page *page = cc->rpages[i];
912 
913 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
914 
915 		/* beyond EOF */
916 		if (page->index >= nr_pages)
917 			return true;
918 	}
919 	return false;
920 }
921 
922 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
923 {
924 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
925 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
926 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
927 	int cluster_end = 0;
928 	int i;
929 	char *reason = "";
930 
931 	if (!compressed)
932 		return false;
933 
934 	/* [..., COMPR_ADDR, ...] */
935 	if (dn->ofs_in_node % cluster_size) {
936 		reason = "[*|C|*|*]";
937 		goto out;
938 	}
939 
940 	for (i = 1; i < cluster_size; i++) {
941 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
942 							dn->ofs_in_node + i);
943 
944 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
945 		if (blkaddr == COMPRESS_ADDR) {
946 			reason = "[C|*|C|*]";
947 			goto out;
948 		}
949 		if (compressed) {
950 			if (!__is_valid_data_blkaddr(blkaddr)) {
951 				if (!cluster_end)
952 					cluster_end = i;
953 				continue;
954 			}
955 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
956 			if (cluster_end) {
957 				reason = "[C|N|N|V]";
958 				goto out;
959 			}
960 		}
961 	}
962 	return false;
963 out:
964 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
965 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
966 	set_sbi_flag(sbi, SBI_NEED_FSCK);
967 	return true;
968 }
969 
970 static int __f2fs_cluster_blocks(struct inode *inode,
971 				unsigned int cluster_idx, bool compr)
972 {
973 	struct dnode_of_data dn;
974 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
975 	unsigned int start_idx = cluster_idx <<
976 				F2FS_I(inode)->i_log_cluster_size;
977 	int ret;
978 
979 	set_new_dnode(&dn, inode, NULL, NULL, 0);
980 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
981 	if (ret) {
982 		if (ret == -ENOENT)
983 			ret = 0;
984 		goto fail;
985 	}
986 
987 	if (f2fs_sanity_check_cluster(&dn)) {
988 		ret = -EFSCORRUPTED;
989 		goto fail;
990 	}
991 
992 	if (dn.data_blkaddr == COMPRESS_ADDR) {
993 		int i;
994 
995 		ret = 1;
996 		for (i = 1; i < cluster_size; i++) {
997 			block_t blkaddr;
998 
999 			blkaddr = data_blkaddr(dn.inode,
1000 					dn.node_page, dn.ofs_in_node + i);
1001 			if (compr) {
1002 				if (__is_valid_data_blkaddr(blkaddr))
1003 					ret++;
1004 			} else {
1005 				if (blkaddr != NULL_ADDR)
1006 					ret++;
1007 			}
1008 		}
1009 
1010 		f2fs_bug_on(F2FS_I_SB(inode),
1011 			!compr && ret != cluster_size &&
1012 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
1013 	}
1014 fail:
1015 	f2fs_put_dnode(&dn);
1016 	return ret;
1017 }
1018 
1019 /* return # of compressed blocks in compressed cluster */
1020 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1021 {
1022 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1023 }
1024 
1025 /* return # of valid blocks in compressed cluster */
1026 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1027 {
1028 	return __f2fs_cluster_blocks(inode,
1029 		index >> F2FS_I(inode)->i_log_cluster_size,
1030 		false);
1031 }
1032 
1033 static bool cluster_may_compress(struct compress_ctx *cc)
1034 {
1035 	if (!f2fs_need_compress_data(cc->inode))
1036 		return false;
1037 	if (f2fs_is_atomic_file(cc->inode))
1038 		return false;
1039 	if (!f2fs_cluster_is_full(cc))
1040 		return false;
1041 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1042 		return false;
1043 	return !cluster_has_invalid_data(cc);
1044 }
1045 
1046 static void set_cluster_writeback(struct compress_ctx *cc)
1047 {
1048 	int i;
1049 
1050 	for (i = 0; i < cc->cluster_size; i++) {
1051 		if (cc->rpages[i])
1052 			set_page_writeback(cc->rpages[i]);
1053 	}
1054 }
1055 
1056 static void set_cluster_dirty(struct compress_ctx *cc)
1057 {
1058 	int i;
1059 
1060 	for (i = 0; i < cc->cluster_size; i++)
1061 		if (cc->rpages[i])
1062 			set_page_dirty(cc->rpages[i]);
1063 }
1064 
1065 static int prepare_compress_overwrite(struct compress_ctx *cc,
1066 		struct page **pagep, pgoff_t index, void **fsdata)
1067 {
1068 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1069 	struct address_space *mapping = cc->inode->i_mapping;
1070 	struct page *page;
1071 	sector_t last_block_in_bio;
1072 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1073 	pgoff_t start_idx = start_idx_of_cluster(cc);
1074 	int i, ret;
1075 
1076 retry:
1077 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1078 	if (ret <= 0)
1079 		return ret;
1080 
1081 	ret = f2fs_init_compress_ctx(cc);
1082 	if (ret)
1083 		return ret;
1084 
1085 	/* keep page reference to avoid page reclaim */
1086 	for (i = 0; i < cc->cluster_size; i++) {
1087 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1088 							fgp_flag, GFP_NOFS);
1089 		if (!page) {
1090 			ret = -ENOMEM;
1091 			goto unlock_pages;
1092 		}
1093 
1094 		if (PageUptodate(page))
1095 			f2fs_put_page(page, 1);
1096 		else
1097 			f2fs_compress_ctx_add_page(cc, page);
1098 	}
1099 
1100 	if (!f2fs_cluster_is_empty(cc)) {
1101 		struct bio *bio = NULL;
1102 
1103 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1104 					&last_block_in_bio, false, true);
1105 		f2fs_put_rpages(cc);
1106 		f2fs_destroy_compress_ctx(cc, true);
1107 		if (ret)
1108 			goto out;
1109 		if (bio)
1110 			f2fs_submit_bio(sbi, bio, DATA);
1111 
1112 		ret = f2fs_init_compress_ctx(cc);
1113 		if (ret)
1114 			goto out;
1115 	}
1116 
1117 	for (i = 0; i < cc->cluster_size; i++) {
1118 		f2fs_bug_on(sbi, cc->rpages[i]);
1119 
1120 		page = find_lock_page(mapping, start_idx + i);
1121 		if (!page) {
1122 			/* page can be truncated */
1123 			goto release_and_retry;
1124 		}
1125 
1126 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1127 		f2fs_compress_ctx_add_page(cc, page);
1128 
1129 		if (!PageUptodate(page)) {
1130 release_and_retry:
1131 			f2fs_put_rpages(cc);
1132 			f2fs_unlock_rpages(cc, i + 1);
1133 			f2fs_destroy_compress_ctx(cc, true);
1134 			goto retry;
1135 		}
1136 	}
1137 
1138 	if (likely(!ret)) {
1139 		*fsdata = cc->rpages;
1140 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1141 		return cc->cluster_size;
1142 	}
1143 
1144 unlock_pages:
1145 	f2fs_put_rpages(cc);
1146 	f2fs_unlock_rpages(cc, i);
1147 	f2fs_destroy_compress_ctx(cc, true);
1148 out:
1149 	return ret;
1150 }
1151 
1152 int f2fs_prepare_compress_overwrite(struct inode *inode,
1153 		struct page **pagep, pgoff_t index, void **fsdata)
1154 {
1155 	struct compress_ctx cc = {
1156 		.inode = inode,
1157 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1158 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1159 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1160 		.rpages = NULL,
1161 		.nr_rpages = 0,
1162 	};
1163 
1164 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1165 }
1166 
1167 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1168 					pgoff_t index, unsigned copied)
1169 
1170 {
1171 	struct compress_ctx cc = {
1172 		.inode = inode,
1173 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1174 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1175 		.rpages = fsdata,
1176 	};
1177 	bool first_index = (index == cc.rpages[0]->index);
1178 
1179 	if (copied)
1180 		set_cluster_dirty(&cc);
1181 
1182 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1183 	f2fs_destroy_compress_ctx(&cc, false);
1184 
1185 	return first_index;
1186 }
1187 
1188 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1189 {
1190 	void *fsdata = NULL;
1191 	struct page *pagep;
1192 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1193 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1194 							log_cluster_size;
1195 	int err;
1196 
1197 	err = f2fs_is_compressed_cluster(inode, start_idx);
1198 	if (err < 0)
1199 		return err;
1200 
1201 	/* truncate normal cluster */
1202 	if (!err)
1203 		return f2fs_do_truncate_blocks(inode, from, lock);
1204 
1205 	/* truncate compressed cluster */
1206 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1207 						start_idx, &fsdata);
1208 
1209 	/* should not be a normal cluster */
1210 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1211 
1212 	if (err <= 0)
1213 		return err;
1214 
1215 	if (err > 0) {
1216 		struct page **rpages = fsdata;
1217 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1218 		int i;
1219 
1220 		for (i = cluster_size - 1; i >= 0; i--) {
1221 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1222 
1223 			if (from <= start) {
1224 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1225 			} else {
1226 				zero_user_segment(rpages[i], from - start,
1227 								PAGE_SIZE);
1228 				break;
1229 			}
1230 		}
1231 
1232 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1233 	}
1234 	return 0;
1235 }
1236 
1237 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1238 					int *submitted,
1239 					struct writeback_control *wbc,
1240 					enum iostat_type io_type)
1241 {
1242 	struct inode *inode = cc->inode;
1243 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1244 	struct f2fs_inode_info *fi = F2FS_I(inode);
1245 	struct f2fs_io_info fio = {
1246 		.sbi = sbi,
1247 		.ino = cc->inode->i_ino,
1248 		.type = DATA,
1249 		.op = REQ_OP_WRITE,
1250 		.op_flags = wbc_to_write_flags(wbc),
1251 		.old_blkaddr = NEW_ADDR,
1252 		.page = NULL,
1253 		.encrypted_page = NULL,
1254 		.compressed_page = NULL,
1255 		.submitted = false,
1256 		.io_type = io_type,
1257 		.io_wbc = wbc,
1258 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1259 	};
1260 	struct dnode_of_data dn;
1261 	struct node_info ni;
1262 	struct compress_io_ctx *cic;
1263 	pgoff_t start_idx = start_idx_of_cluster(cc);
1264 	unsigned int last_index = cc->cluster_size - 1;
1265 	loff_t psize;
1266 	int i, err;
1267 
1268 	/* we should bypass data pages to proceed the kworkder jobs */
1269 	if (unlikely(f2fs_cp_error(sbi))) {
1270 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1271 		goto out_free;
1272 	}
1273 
1274 	if (IS_NOQUOTA(inode)) {
1275 		/*
1276 		 * We need to wait for node_write to avoid block allocation during
1277 		 * checkpoint. This can only happen to quota writes which can cause
1278 		 * the below discard race condition.
1279 		 */
1280 		down_read(&sbi->node_write);
1281 	} else if (!f2fs_trylock_op(sbi)) {
1282 		goto out_free;
1283 	}
1284 
1285 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1286 
1287 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1288 	if (err)
1289 		goto out_unlock_op;
1290 
1291 	for (i = 0; i < cc->cluster_size; i++) {
1292 		if (data_blkaddr(dn.inode, dn.node_page,
1293 					dn.ofs_in_node + i) == NULL_ADDR)
1294 			goto out_put_dnode;
1295 	}
1296 
1297 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1298 
1299 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1300 	if (err)
1301 		goto out_put_dnode;
1302 
1303 	fio.version = ni.version;
1304 
1305 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1306 	if (!cic)
1307 		goto out_put_dnode;
1308 
1309 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1310 	cic->inode = inode;
1311 	atomic_set(&cic->pending_pages, cc->nr_cpages);
1312 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1313 	if (!cic->rpages)
1314 		goto out_put_cic;
1315 
1316 	cic->nr_rpages = cc->cluster_size;
1317 
1318 	for (i = 0; i < cc->nr_cpages; i++) {
1319 		f2fs_set_compressed_page(cc->cpages[i], inode,
1320 					cc->rpages[i + 1]->index, cic);
1321 		fio.compressed_page = cc->cpages[i];
1322 
1323 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1324 						dn.ofs_in_node + i + 1);
1325 
1326 		/* wait for GCed page writeback via META_MAPPING */
1327 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1328 
1329 		if (fio.encrypted) {
1330 			fio.page = cc->rpages[i + 1];
1331 			err = f2fs_encrypt_one_page(&fio);
1332 			if (err)
1333 				goto out_destroy_crypt;
1334 			cc->cpages[i] = fio.encrypted_page;
1335 		}
1336 	}
1337 
1338 	set_cluster_writeback(cc);
1339 
1340 	for (i = 0; i < cc->cluster_size; i++)
1341 		cic->rpages[i] = cc->rpages[i];
1342 
1343 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1344 		block_t blkaddr;
1345 
1346 		blkaddr = f2fs_data_blkaddr(&dn);
1347 		fio.page = cc->rpages[i];
1348 		fio.old_blkaddr = blkaddr;
1349 
1350 		/* cluster header */
1351 		if (i == 0) {
1352 			if (blkaddr == COMPRESS_ADDR)
1353 				fio.compr_blocks++;
1354 			if (__is_valid_data_blkaddr(blkaddr))
1355 				f2fs_invalidate_blocks(sbi, blkaddr);
1356 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1357 			goto unlock_continue;
1358 		}
1359 
1360 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1361 			fio.compr_blocks++;
1362 
1363 		if (i > cc->nr_cpages) {
1364 			if (__is_valid_data_blkaddr(blkaddr)) {
1365 				f2fs_invalidate_blocks(sbi, blkaddr);
1366 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1367 			}
1368 			goto unlock_continue;
1369 		}
1370 
1371 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1372 
1373 		if (fio.encrypted)
1374 			fio.encrypted_page = cc->cpages[i - 1];
1375 		else
1376 			fio.compressed_page = cc->cpages[i - 1];
1377 
1378 		cc->cpages[i - 1] = NULL;
1379 		f2fs_outplace_write_data(&dn, &fio);
1380 		(*submitted)++;
1381 unlock_continue:
1382 		inode_dec_dirty_pages(cc->inode);
1383 		unlock_page(fio.page);
1384 	}
1385 
1386 	if (fio.compr_blocks)
1387 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1388 	f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1389 	add_compr_block_stat(inode, cc->nr_cpages);
1390 
1391 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1392 	if (cc->cluster_idx == 0)
1393 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1394 
1395 	f2fs_put_dnode(&dn);
1396 	if (IS_NOQUOTA(inode))
1397 		up_read(&sbi->node_write);
1398 	else
1399 		f2fs_unlock_op(sbi);
1400 
1401 	spin_lock(&fi->i_size_lock);
1402 	if (fi->last_disk_size < psize)
1403 		fi->last_disk_size = psize;
1404 	spin_unlock(&fi->i_size_lock);
1405 
1406 	f2fs_put_rpages(cc);
1407 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1408 	cc->cpages = NULL;
1409 	f2fs_destroy_compress_ctx(cc, false);
1410 	return 0;
1411 
1412 out_destroy_crypt:
1413 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1414 
1415 	for (--i; i >= 0; i--)
1416 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1417 out_put_cic:
1418 	kmem_cache_free(cic_entry_slab, cic);
1419 out_put_dnode:
1420 	f2fs_put_dnode(&dn);
1421 out_unlock_op:
1422 	if (IS_NOQUOTA(inode))
1423 		up_read(&sbi->node_write);
1424 	else
1425 		f2fs_unlock_op(sbi);
1426 out_free:
1427 	for (i = 0; i < cc->nr_cpages; i++) {
1428 		if (!cc->cpages[i])
1429 			continue;
1430 		f2fs_compress_free_page(cc->cpages[i]);
1431 		cc->cpages[i] = NULL;
1432 	}
1433 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1434 	cc->cpages = NULL;
1435 	return -EAGAIN;
1436 }
1437 
1438 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1439 {
1440 	struct f2fs_sb_info *sbi = bio->bi_private;
1441 	struct compress_io_ctx *cic =
1442 			(struct compress_io_ctx *)page_private(page);
1443 	int i;
1444 
1445 	if (unlikely(bio->bi_status))
1446 		mapping_set_error(cic->inode->i_mapping, -EIO);
1447 
1448 	f2fs_compress_free_page(page);
1449 
1450 	dec_page_count(sbi, F2FS_WB_DATA);
1451 
1452 	if (atomic_dec_return(&cic->pending_pages))
1453 		return;
1454 
1455 	for (i = 0; i < cic->nr_rpages; i++) {
1456 		WARN_ON(!cic->rpages[i]);
1457 		clear_page_private_gcing(cic->rpages[i]);
1458 		end_page_writeback(cic->rpages[i]);
1459 	}
1460 
1461 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1462 	kmem_cache_free(cic_entry_slab, cic);
1463 }
1464 
1465 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1466 					int *submitted,
1467 					struct writeback_control *wbc,
1468 					enum iostat_type io_type)
1469 {
1470 	struct address_space *mapping = cc->inode->i_mapping;
1471 	int _submitted, compr_blocks, ret;
1472 	int i = -1, err = 0;
1473 
1474 	compr_blocks = f2fs_compressed_blocks(cc);
1475 	if (compr_blocks < 0) {
1476 		err = compr_blocks;
1477 		goto out_err;
1478 	}
1479 
1480 	for (i = 0; i < cc->cluster_size; i++) {
1481 		if (!cc->rpages[i])
1482 			continue;
1483 retry_write:
1484 		if (cc->rpages[i]->mapping != mapping) {
1485 			unlock_page(cc->rpages[i]);
1486 			continue;
1487 		}
1488 
1489 		BUG_ON(!PageLocked(cc->rpages[i]));
1490 
1491 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1492 						NULL, NULL, wbc, io_type,
1493 						compr_blocks, false);
1494 		if (ret) {
1495 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1496 				unlock_page(cc->rpages[i]);
1497 				ret = 0;
1498 			} else if (ret == -EAGAIN) {
1499 				/*
1500 				 * for quota file, just redirty left pages to
1501 				 * avoid deadlock caused by cluster update race
1502 				 * from foreground operation.
1503 				 */
1504 				if (IS_NOQUOTA(cc->inode)) {
1505 					err = 0;
1506 					goto out_err;
1507 				}
1508 				ret = 0;
1509 				cond_resched();
1510 				congestion_wait(BLK_RW_ASYNC,
1511 						DEFAULT_IO_TIMEOUT);
1512 				lock_page(cc->rpages[i]);
1513 
1514 				if (!PageDirty(cc->rpages[i])) {
1515 					unlock_page(cc->rpages[i]);
1516 					continue;
1517 				}
1518 
1519 				clear_page_dirty_for_io(cc->rpages[i]);
1520 				goto retry_write;
1521 			}
1522 			err = ret;
1523 			goto out_err;
1524 		}
1525 
1526 		*submitted += _submitted;
1527 	}
1528 
1529 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1530 
1531 	return 0;
1532 out_err:
1533 	for (++i; i < cc->cluster_size; i++) {
1534 		if (!cc->rpages[i])
1535 			continue;
1536 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1537 		unlock_page(cc->rpages[i]);
1538 	}
1539 	return err;
1540 }
1541 
1542 int f2fs_write_multi_pages(struct compress_ctx *cc,
1543 					int *submitted,
1544 					struct writeback_control *wbc,
1545 					enum iostat_type io_type)
1546 {
1547 	int err;
1548 
1549 	*submitted = 0;
1550 	if (cluster_may_compress(cc)) {
1551 		err = f2fs_compress_pages(cc);
1552 		if (err == -EAGAIN) {
1553 			add_compr_block_stat(cc->inode, cc->cluster_size);
1554 			goto write;
1555 		} else if (err) {
1556 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1557 			goto destroy_out;
1558 		}
1559 
1560 		err = f2fs_write_compressed_pages(cc, submitted,
1561 							wbc, io_type);
1562 		if (!err)
1563 			return 0;
1564 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1565 	}
1566 write:
1567 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1568 
1569 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1570 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1571 destroy_out:
1572 	f2fs_destroy_compress_ctx(cc, false);
1573 	return err;
1574 }
1575 
1576 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1577 
1578 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1579 {
1580 	struct decompress_io_ctx *dic;
1581 	pgoff_t start_idx = start_idx_of_cluster(cc);
1582 	int i;
1583 
1584 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1585 					false, F2FS_I_SB(cc->inode));
1586 	if (!dic)
1587 		return ERR_PTR(-ENOMEM);
1588 
1589 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1590 	if (!dic->rpages) {
1591 		kmem_cache_free(dic_entry_slab, dic);
1592 		return ERR_PTR(-ENOMEM);
1593 	}
1594 
1595 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1596 	dic->inode = cc->inode;
1597 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1598 	dic->cluster_idx = cc->cluster_idx;
1599 	dic->cluster_size = cc->cluster_size;
1600 	dic->log_cluster_size = cc->log_cluster_size;
1601 	dic->nr_cpages = cc->nr_cpages;
1602 	refcount_set(&dic->refcnt, 1);
1603 	dic->failed = false;
1604 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1605 
1606 	for (i = 0; i < dic->cluster_size; i++)
1607 		dic->rpages[i] = cc->rpages[i];
1608 	dic->nr_rpages = cc->cluster_size;
1609 
1610 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1611 	if (!dic->cpages)
1612 		goto out_free;
1613 
1614 	for (i = 0; i < dic->nr_cpages; i++) {
1615 		struct page *page;
1616 
1617 		page = f2fs_compress_alloc_page();
1618 		if (!page)
1619 			goto out_free;
1620 
1621 		f2fs_set_compressed_page(page, cc->inode,
1622 					start_idx + i + 1, dic);
1623 		dic->cpages[i] = page;
1624 	}
1625 
1626 	return dic;
1627 
1628 out_free:
1629 	f2fs_free_dic(dic);
1630 	return ERR_PTR(-ENOMEM);
1631 }
1632 
1633 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1634 {
1635 	int i;
1636 
1637 	if (dic->tpages) {
1638 		for (i = 0; i < dic->cluster_size; i++) {
1639 			if (dic->rpages[i])
1640 				continue;
1641 			if (!dic->tpages[i])
1642 				continue;
1643 			f2fs_compress_free_page(dic->tpages[i]);
1644 		}
1645 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1646 	}
1647 
1648 	if (dic->cpages) {
1649 		for (i = 0; i < dic->nr_cpages; i++) {
1650 			if (!dic->cpages[i])
1651 				continue;
1652 			f2fs_compress_free_page(dic->cpages[i]);
1653 		}
1654 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1655 	}
1656 
1657 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1658 	kmem_cache_free(dic_entry_slab, dic);
1659 }
1660 
1661 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1662 {
1663 	if (refcount_dec_and_test(&dic->refcnt))
1664 		f2fs_free_dic(dic);
1665 }
1666 
1667 /*
1668  * Update and unlock the cluster's pagecache pages, and release the reference to
1669  * the decompress_io_ctx that was being held for I/O completion.
1670  */
1671 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1672 {
1673 	int i;
1674 
1675 	for (i = 0; i < dic->cluster_size; i++) {
1676 		struct page *rpage = dic->rpages[i];
1677 
1678 		if (!rpage)
1679 			continue;
1680 
1681 		/* PG_error was set if verity failed. */
1682 		if (failed || PageError(rpage)) {
1683 			ClearPageUptodate(rpage);
1684 			/* will re-read again later */
1685 			ClearPageError(rpage);
1686 		} else {
1687 			SetPageUptodate(rpage);
1688 		}
1689 		unlock_page(rpage);
1690 	}
1691 
1692 	f2fs_put_dic(dic);
1693 }
1694 
1695 static void f2fs_verify_cluster(struct work_struct *work)
1696 {
1697 	struct decompress_io_ctx *dic =
1698 		container_of(work, struct decompress_io_ctx, verity_work);
1699 	int i;
1700 
1701 	/* Verify the cluster's decompressed pages with fs-verity. */
1702 	for (i = 0; i < dic->cluster_size; i++) {
1703 		struct page *rpage = dic->rpages[i];
1704 
1705 		if (rpage && !fsverity_verify_page(rpage))
1706 			SetPageError(rpage);
1707 	}
1708 
1709 	__f2fs_decompress_end_io(dic, false);
1710 }
1711 
1712 /*
1713  * This is called when a compressed cluster has been decompressed
1714  * (or failed to be read and/or decompressed).
1715  */
1716 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1717 {
1718 	if (!failed && dic->need_verity) {
1719 		/*
1720 		 * Note that to avoid deadlocks, the verity work can't be done
1721 		 * on the decompression workqueue.  This is because verifying
1722 		 * the data pages can involve reading metadata pages from the
1723 		 * file, and these metadata pages may be compressed.
1724 		 */
1725 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1726 		fsverity_enqueue_verify_work(&dic->verity_work);
1727 	} else {
1728 		__f2fs_decompress_end_io(dic, failed);
1729 	}
1730 }
1731 
1732 /*
1733  * Put a reference to a compressed page's decompress_io_ctx.
1734  *
1735  * This is called when the page is no longer needed and can be freed.
1736  */
1737 void f2fs_put_page_dic(struct page *page)
1738 {
1739 	struct decompress_io_ctx *dic =
1740 			(struct decompress_io_ctx *)page_private(page);
1741 
1742 	f2fs_put_dic(dic);
1743 }
1744 
1745 /*
1746  * check whether cluster blocks are contiguous, and add extent cache entry
1747  * only if cluster blocks are logically and physically contiguous.
1748  */
1749 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1750 {
1751 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1752 	int i = compressed ? 1 : 0;
1753 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1754 						dn->ofs_in_node + i);
1755 
1756 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1757 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1758 						dn->ofs_in_node + i);
1759 
1760 		if (!__is_valid_data_blkaddr(blkaddr))
1761 			break;
1762 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1763 			return 0;
1764 	}
1765 
1766 	return compressed ? i - 1 : i;
1767 }
1768 
1769 const struct address_space_operations f2fs_compress_aops = {
1770 	.releasepage = f2fs_release_page,
1771 	.invalidatepage = f2fs_invalidate_page,
1772 };
1773 
1774 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1775 {
1776 	return sbi->compress_inode->i_mapping;
1777 }
1778 
1779 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1780 {
1781 	if (!sbi->compress_inode)
1782 		return;
1783 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1784 }
1785 
1786 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1787 						nid_t ino, block_t blkaddr)
1788 {
1789 	struct page *cpage;
1790 	int ret;
1791 
1792 	if (!test_opt(sbi, COMPRESS_CACHE))
1793 		return;
1794 
1795 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1796 		return;
1797 
1798 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1799 		return;
1800 
1801 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1802 	if (cpage) {
1803 		f2fs_put_page(cpage, 0);
1804 		return;
1805 	}
1806 
1807 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1808 	if (!cpage)
1809 		return;
1810 
1811 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1812 						blkaddr, GFP_NOFS);
1813 	if (ret) {
1814 		f2fs_put_page(cpage, 0);
1815 		return;
1816 	}
1817 
1818 	set_page_private_data(cpage, ino);
1819 
1820 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1821 		goto out;
1822 
1823 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1824 	SetPageUptodate(cpage);
1825 out:
1826 	f2fs_put_page(cpage, 1);
1827 }
1828 
1829 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1830 								block_t blkaddr)
1831 {
1832 	struct page *cpage;
1833 	bool hitted = false;
1834 
1835 	if (!test_opt(sbi, COMPRESS_CACHE))
1836 		return false;
1837 
1838 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1839 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1840 	if (cpage) {
1841 		if (PageUptodate(cpage)) {
1842 			atomic_inc(&sbi->compress_page_hit);
1843 			memcpy(page_address(page),
1844 				page_address(cpage), PAGE_SIZE);
1845 			hitted = true;
1846 		}
1847 		f2fs_put_page(cpage, 1);
1848 	}
1849 
1850 	return hitted;
1851 }
1852 
1853 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1854 {
1855 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1856 	struct pagevec pvec;
1857 	pgoff_t index = 0;
1858 	pgoff_t end = MAX_BLKADDR(sbi);
1859 
1860 	if (!mapping->nrpages)
1861 		return;
1862 
1863 	pagevec_init(&pvec);
1864 
1865 	do {
1866 		unsigned int nr_pages;
1867 		int i;
1868 
1869 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1870 						&index, end - 1);
1871 		if (!nr_pages)
1872 			break;
1873 
1874 		for (i = 0; i < nr_pages; i++) {
1875 			struct page *page = pvec.pages[i];
1876 
1877 			if (page->index > end)
1878 				break;
1879 
1880 			lock_page(page);
1881 			if (page->mapping != mapping) {
1882 				unlock_page(page);
1883 				continue;
1884 			}
1885 
1886 			if (ino != get_page_private_data(page)) {
1887 				unlock_page(page);
1888 				continue;
1889 			}
1890 
1891 			generic_error_remove_page(mapping, page);
1892 			unlock_page(page);
1893 		}
1894 		pagevec_release(&pvec);
1895 		cond_resched();
1896 	} while (index < end);
1897 }
1898 
1899 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1900 {
1901 	struct inode *inode;
1902 
1903 	if (!test_opt(sbi, COMPRESS_CACHE))
1904 		return 0;
1905 
1906 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1907 	if (IS_ERR(inode))
1908 		return PTR_ERR(inode);
1909 	sbi->compress_inode = inode;
1910 
1911 	sbi->compress_percent = COMPRESS_PERCENT;
1912 	sbi->compress_watermark = COMPRESS_WATERMARK;
1913 
1914 	atomic_set(&sbi->compress_page_hit, 0);
1915 
1916 	return 0;
1917 }
1918 
1919 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1920 {
1921 	if (!sbi->compress_inode)
1922 		return;
1923 	iput(sbi->compress_inode);
1924 	sbi->compress_inode = NULL;
1925 }
1926 
1927 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1928 {
1929 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1930 	char slab_name[32];
1931 
1932 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1933 
1934 	sbi->page_array_slab_size = sizeof(struct page *) <<
1935 					F2FS_OPTION(sbi).compress_log_size;
1936 
1937 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1938 					sbi->page_array_slab_size);
1939 	if (!sbi->page_array_slab)
1940 		return -ENOMEM;
1941 	return 0;
1942 }
1943 
1944 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1945 {
1946 	kmem_cache_destroy(sbi->page_array_slab);
1947 }
1948 
1949 static int __init f2fs_init_cic_cache(void)
1950 {
1951 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1952 					sizeof(struct compress_io_ctx));
1953 	if (!cic_entry_slab)
1954 		return -ENOMEM;
1955 	return 0;
1956 }
1957 
1958 static void f2fs_destroy_cic_cache(void)
1959 {
1960 	kmem_cache_destroy(cic_entry_slab);
1961 }
1962 
1963 static int __init f2fs_init_dic_cache(void)
1964 {
1965 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1966 					sizeof(struct decompress_io_ctx));
1967 	if (!dic_entry_slab)
1968 		return -ENOMEM;
1969 	return 0;
1970 }
1971 
1972 static void f2fs_destroy_dic_cache(void)
1973 {
1974 	kmem_cache_destroy(dic_entry_slab);
1975 }
1976 
1977 int __init f2fs_init_compress_cache(void)
1978 {
1979 	int err;
1980 
1981 	err = f2fs_init_cic_cache();
1982 	if (err)
1983 		goto out;
1984 	err = f2fs_init_dic_cache();
1985 	if (err)
1986 		goto free_cic;
1987 	return 0;
1988 free_cic:
1989 	f2fs_destroy_cic_cache();
1990 out:
1991 	return -ENOMEM;
1992 }
1993 
1994 void f2fs_destroy_compress_cache(void)
1995 {
1996 	f2fs_destroy_dic_cache();
1997 	f2fs_destroy_cic_cache();
1998 }
1999