1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 222 "expected:%lu\n", KERN_ERR, 223 F2FS_I_SB(dic->inode)->sb->s_id, 224 dic->rlen, 225 PAGE_SIZE << dic->log_cluster_size); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 static const struct f2fs_compress_ops f2fs_lzo_ops = { 232 .init_compress_ctx = lzo_init_compress_ctx, 233 .destroy_compress_ctx = lzo_destroy_compress_ctx, 234 .compress_pages = lzo_compress_pages, 235 .decompress_pages = lzo_decompress_pages, 236 }; 237 #endif 238 239 #ifdef CONFIG_F2FS_FS_LZ4 240 static int lz4_init_compress_ctx(struct compress_ctx *cc) 241 { 242 unsigned int size = LZ4_MEM_COMPRESS; 243 244 #ifdef CONFIG_F2FS_FS_LZ4HC 245 if (F2FS_I(cc->inode)->i_compress_level) 246 size = LZ4HC_MEM_COMPRESS; 247 #endif 248 249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 250 if (!cc->private) 251 return -ENOMEM; 252 253 /* 254 * we do not change cc->clen to LZ4_compressBound(inputsize) to 255 * adapt worst compress case, because lz4 compressor can handle 256 * output budget properly. 257 */ 258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 259 return 0; 260 } 261 262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 263 { 264 kvfree(cc->private); 265 cc->private = NULL; 266 } 267 268 static int lz4_compress_pages(struct compress_ctx *cc) 269 { 270 int len = -EINVAL; 271 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 272 273 if (!level) 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 #ifdef CONFIG_F2FS_FS_LZ4HC 277 else 278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, level, cc->private); 280 #endif 281 if (len < 0) 282 return len; 283 if (!len) 284 return -EAGAIN; 285 286 cc->clen = len; 287 return 0; 288 } 289 290 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 291 { 292 int ret; 293 294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 295 dic->clen, dic->rlen); 296 if (ret < 0) { 297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 299 return -EIO; 300 } 301 302 if (ret != PAGE_SIZE << dic->log_cluster_size) { 303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 304 "expected:%lu\n", KERN_ERR, 305 F2FS_I_SB(dic->inode)->sb->s_id, ret, 306 PAGE_SIZE << dic->log_cluster_size); 307 return -EIO; 308 } 309 return 0; 310 } 311 312 static bool lz4_is_level_valid(int lvl) 313 { 314 #ifdef CONFIG_F2FS_FS_LZ4HC 315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 316 #else 317 return lvl == 0; 318 #endif 319 } 320 321 static const struct f2fs_compress_ops f2fs_lz4_ops = { 322 .init_compress_ctx = lz4_init_compress_ctx, 323 .destroy_compress_ctx = lz4_destroy_compress_ctx, 324 .compress_pages = lz4_compress_pages, 325 .decompress_pages = lz4_decompress_pages, 326 .is_level_valid = lz4_is_level_valid, 327 }; 328 #endif 329 330 #ifdef CONFIG_F2FS_FS_ZSTD 331 static int zstd_init_compress_ctx(struct compress_ctx *cc) 332 { 333 zstd_parameters params; 334 zstd_cstream *stream; 335 void *workspace; 336 unsigned int workspace_size; 337 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 338 339 /* Need to remain this for backward compatibility */ 340 if (!level) 341 level = F2FS_ZSTD_DEFAULT_CLEVEL; 342 343 params = zstd_get_params(level, cc->rlen); 344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 345 346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 347 workspace_size, GFP_NOFS); 348 if (!workspace) 349 return -ENOMEM; 350 351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 352 if (!stream) { 353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 355 __func__); 356 kvfree(workspace); 357 return -EIO; 358 } 359 360 cc->private = workspace; 361 cc->private2 = stream; 362 363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 364 return 0; 365 } 366 367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 368 { 369 kvfree(cc->private); 370 cc->private = NULL; 371 cc->private2 = NULL; 372 } 373 374 static int zstd_compress_pages(struct compress_ctx *cc) 375 { 376 zstd_cstream *stream = cc->private2; 377 zstd_in_buffer inbuf; 378 zstd_out_buffer outbuf; 379 int src_size = cc->rlen; 380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 381 int ret; 382 383 inbuf.pos = 0; 384 inbuf.src = cc->rbuf; 385 inbuf.size = src_size; 386 387 outbuf.pos = 0; 388 outbuf.dst = cc->cbuf->cdata; 389 outbuf.size = dst_size; 390 391 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 392 if (zstd_is_error(ret)) { 393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 395 __func__, zstd_get_error_code(ret)); 396 return -EIO; 397 } 398 399 ret = zstd_end_stream(stream, &outbuf); 400 if (zstd_is_error(ret)) { 401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 403 __func__, zstd_get_error_code(ret)); 404 return -EIO; 405 } 406 407 /* 408 * there is compressed data remained in intermediate buffer due to 409 * no more space in cbuf.cdata 410 */ 411 if (ret) 412 return -EAGAIN; 413 414 cc->clen = outbuf.pos; 415 return 0; 416 } 417 418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 419 { 420 zstd_dstream *stream; 421 void *workspace; 422 unsigned int workspace_size; 423 unsigned int max_window_size = 424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 425 426 workspace_size = zstd_dstream_workspace_bound(max_window_size); 427 428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 429 workspace_size, GFP_NOFS); 430 if (!workspace) 431 return -ENOMEM; 432 433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 434 if (!stream) { 435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 437 __func__); 438 kvfree(workspace); 439 return -EIO; 440 } 441 442 dic->private = workspace; 443 dic->private2 = stream; 444 445 return 0; 446 } 447 448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 449 { 450 kvfree(dic->private); 451 dic->private = NULL; 452 dic->private2 = NULL; 453 } 454 455 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 456 { 457 zstd_dstream *stream = dic->private2; 458 zstd_in_buffer inbuf; 459 zstd_out_buffer outbuf; 460 int ret; 461 462 inbuf.pos = 0; 463 inbuf.src = dic->cbuf->cdata; 464 inbuf.size = dic->clen; 465 466 outbuf.pos = 0; 467 outbuf.dst = dic->rbuf; 468 outbuf.size = dic->rlen; 469 470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 471 if (zstd_is_error(ret)) { 472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 474 __func__, zstd_get_error_code(ret)); 475 return -EIO; 476 } 477 478 if (dic->rlen != outbuf.pos) { 479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 480 "expected:%lu\n", KERN_ERR, 481 F2FS_I_SB(dic->inode)->sb->s_id, 482 __func__, dic->rlen, 483 PAGE_SIZE << dic->log_cluster_size); 484 return -EIO; 485 } 486 487 return 0; 488 } 489 490 static bool zstd_is_level_valid(int lvl) 491 { 492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 493 } 494 495 static const struct f2fs_compress_ops f2fs_zstd_ops = { 496 .init_compress_ctx = zstd_init_compress_ctx, 497 .destroy_compress_ctx = zstd_destroy_compress_ctx, 498 .compress_pages = zstd_compress_pages, 499 .init_decompress_ctx = zstd_init_decompress_ctx, 500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 501 .decompress_pages = zstd_decompress_pages, 502 .is_level_valid = zstd_is_level_valid, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 516 "lzo-rle compress failed, ret:%d", ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 bool f2fs_is_compress_level_valid(int alg, int lvl) 562 { 563 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 564 565 if (cops->is_level_valid) 566 return cops->is_level_valid(lvl); 567 568 return lvl == 0; 569 } 570 571 static mempool_t *compress_page_pool; 572 static int num_compress_pages = 512; 573 module_param(num_compress_pages, uint, 0444); 574 MODULE_PARM_DESC(num_compress_pages, 575 "Number of intermediate compress pages to preallocate"); 576 577 int __init f2fs_init_compress_mempool(void) 578 { 579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 580 return compress_page_pool ? 0 : -ENOMEM; 581 } 582 583 void f2fs_destroy_compress_mempool(void) 584 { 585 mempool_destroy(compress_page_pool); 586 } 587 588 static struct page *f2fs_compress_alloc_page(void) 589 { 590 struct page *page; 591 592 page = mempool_alloc(compress_page_pool, GFP_NOFS); 593 lock_page(page); 594 595 return page; 596 } 597 598 static void f2fs_compress_free_page(struct page *page) 599 { 600 if (!page) 601 return; 602 detach_page_private(page); 603 page->mapping = NULL; 604 unlock_page(page); 605 mempool_free(page, compress_page_pool); 606 } 607 608 #define MAX_VMAP_RETRIES 3 609 610 static void *f2fs_vmap(struct page **pages, unsigned int count) 611 { 612 int i; 613 void *buf = NULL; 614 615 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 616 buf = vm_map_ram(pages, count, -1); 617 if (buf) 618 break; 619 vm_unmap_aliases(); 620 } 621 return buf; 622 } 623 624 static int f2fs_compress_pages(struct compress_ctx *cc) 625 { 626 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 627 const struct f2fs_compress_ops *cops = 628 f2fs_cops[fi->i_compress_algorithm]; 629 unsigned int max_len, new_nr_cpages; 630 u32 chksum = 0; 631 int i, ret; 632 633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 634 cc->cluster_size, fi->i_compress_algorithm); 635 636 if (cops->init_compress_ctx) { 637 ret = cops->init_compress_ctx(cc); 638 if (ret) 639 goto out; 640 } 641 642 max_len = COMPRESS_HEADER_SIZE + cc->clen; 643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 644 cc->valid_nr_cpages = cc->nr_cpages; 645 646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 647 if (!cc->cpages) { 648 ret = -ENOMEM; 649 goto destroy_compress_ctx; 650 } 651 652 for (i = 0; i < cc->nr_cpages; i++) 653 cc->cpages[i] = f2fs_compress_alloc_page(); 654 655 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 656 if (!cc->rbuf) { 657 ret = -ENOMEM; 658 goto out_free_cpages; 659 } 660 661 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 662 if (!cc->cbuf) { 663 ret = -ENOMEM; 664 goto out_vunmap_rbuf; 665 } 666 667 ret = cops->compress_pages(cc); 668 if (ret) 669 goto out_vunmap_cbuf; 670 671 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 672 673 if (cc->clen > max_len) { 674 ret = -EAGAIN; 675 goto out_vunmap_cbuf; 676 } 677 678 cc->cbuf->clen = cpu_to_le32(cc->clen); 679 680 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 681 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 682 cc->cbuf->cdata, cc->clen); 683 cc->cbuf->chksum = cpu_to_le32(chksum); 684 685 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 686 cc->cbuf->reserved[i] = cpu_to_le32(0); 687 688 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 689 690 /* zero out any unused part of the last page */ 691 memset(&cc->cbuf->cdata[cc->clen], 0, 692 (new_nr_cpages * PAGE_SIZE) - 693 (cc->clen + COMPRESS_HEADER_SIZE)); 694 695 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 696 vm_unmap_ram(cc->rbuf, cc->cluster_size); 697 698 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 699 f2fs_compress_free_page(cc->cpages[i]); 700 cc->cpages[i] = NULL; 701 } 702 703 if (cops->destroy_compress_ctx) 704 cops->destroy_compress_ctx(cc); 705 706 cc->valid_nr_cpages = new_nr_cpages; 707 708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 709 cc->clen, ret); 710 return 0; 711 712 out_vunmap_cbuf: 713 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 714 out_vunmap_rbuf: 715 vm_unmap_ram(cc->rbuf, cc->cluster_size); 716 out_free_cpages: 717 for (i = 0; i < cc->nr_cpages; i++) { 718 if (cc->cpages[i]) 719 f2fs_compress_free_page(cc->cpages[i]); 720 } 721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 722 cc->cpages = NULL; 723 destroy_compress_ctx: 724 if (cops->destroy_compress_ctx) 725 cops->destroy_compress_ctx(cc); 726 out: 727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 728 cc->clen, ret); 729 return ret; 730 } 731 732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 733 bool pre_alloc); 734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 735 bool bypass_destroy_callback, bool pre_alloc); 736 737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 738 { 739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 740 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 741 const struct f2fs_compress_ops *cops = 742 f2fs_cops[fi->i_compress_algorithm]; 743 bool bypass_callback = false; 744 int ret; 745 746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 747 dic->cluster_size, fi->i_compress_algorithm); 748 749 if (dic->failed) { 750 ret = -EIO; 751 goto out_end_io; 752 } 753 754 ret = f2fs_prepare_decomp_mem(dic, false); 755 if (ret) { 756 bypass_callback = true; 757 goto out_release; 758 } 759 760 dic->clen = le32_to_cpu(dic->cbuf->clen); 761 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 762 763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 764 ret = -EFSCORRUPTED; 765 766 /* Avoid f2fs_commit_super in irq context */ 767 if (!in_task) 768 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 769 else 770 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 771 goto out_release; 772 } 773 774 ret = cops->decompress_pages(dic); 775 776 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 777 u32 provided = le32_to_cpu(dic->cbuf->chksum); 778 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 779 780 if (provided != calculated) { 781 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 782 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 783 f2fs_info_ratelimited(sbi, 784 "checksum invalid, nid = %lu, %x vs %x", 785 dic->inode->i_ino, 786 provided, calculated); 787 } 788 set_sbi_flag(sbi, SBI_NEED_FSCK); 789 } 790 } 791 792 out_release: 793 f2fs_release_decomp_mem(dic, bypass_callback, false); 794 795 out_end_io: 796 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 797 dic->clen, ret); 798 f2fs_decompress_end_io(dic, ret, in_task); 799 } 800 801 /* 802 * This is called when a page of a compressed cluster has been read from disk 803 * (or failed to be read from disk). It checks whether this page was the last 804 * page being waited on in the cluster, and if so, it decompresses the cluster 805 * (or in the case of a failure, cleans up without actually decompressing). 806 */ 807 void f2fs_end_read_compressed_page(struct page *page, bool failed, 808 block_t blkaddr, bool in_task) 809 { 810 struct decompress_io_ctx *dic = 811 (struct decompress_io_ctx *)page_private(page); 812 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 813 814 dec_page_count(sbi, F2FS_RD_DATA); 815 816 if (failed) 817 WRITE_ONCE(dic->failed, true); 818 else if (blkaddr && in_task) 819 f2fs_cache_compressed_page(sbi, page, 820 dic->inode->i_ino, blkaddr); 821 822 if (atomic_dec_and_test(&dic->remaining_pages)) 823 f2fs_decompress_cluster(dic, in_task); 824 } 825 826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 827 { 828 if (cc->cluster_idx == NULL_CLUSTER) 829 return true; 830 return cc->cluster_idx == cluster_idx(cc, index); 831 } 832 833 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 834 { 835 return cc->nr_rpages == 0; 836 } 837 838 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 839 { 840 return cc->cluster_size == cc->nr_rpages; 841 } 842 843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 844 { 845 if (f2fs_cluster_is_empty(cc)) 846 return true; 847 return is_page_in_cluster(cc, index); 848 } 849 850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 851 int index, int nr_pages, bool uptodate) 852 { 853 unsigned long pgidx = pages[index]->index; 854 int i = uptodate ? 0 : 1; 855 856 /* 857 * when uptodate set to true, try to check all pages in cluster is 858 * uptodate or not. 859 */ 860 if (uptodate && (pgidx % cc->cluster_size)) 861 return false; 862 863 if (nr_pages - index < cc->cluster_size) 864 return false; 865 866 for (; i < cc->cluster_size; i++) { 867 if (pages[index + i]->index != pgidx + i) 868 return false; 869 if (uptodate && !PageUptodate(pages[index + i])) 870 return false; 871 } 872 873 return true; 874 } 875 876 static bool cluster_has_invalid_data(struct compress_ctx *cc) 877 { 878 loff_t i_size = i_size_read(cc->inode); 879 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 880 int i; 881 882 for (i = 0; i < cc->cluster_size; i++) { 883 struct page *page = cc->rpages[i]; 884 885 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 886 887 /* beyond EOF */ 888 if (page->index >= nr_pages) 889 return true; 890 } 891 return false; 892 } 893 894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 895 { 896 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 897 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 898 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 899 int cluster_end = 0; 900 int i; 901 char *reason = ""; 902 903 if (!compressed) 904 return false; 905 906 /* [..., COMPR_ADDR, ...] */ 907 if (dn->ofs_in_node % cluster_size) { 908 reason = "[*|C|*|*]"; 909 goto out; 910 } 911 912 for (i = 1; i < cluster_size; i++) { 913 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 914 dn->ofs_in_node + i); 915 916 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 917 if (blkaddr == COMPRESS_ADDR) { 918 reason = "[C|*|C|*]"; 919 goto out; 920 } 921 if (!__is_valid_data_blkaddr(blkaddr)) { 922 if (!cluster_end) 923 cluster_end = i; 924 continue; 925 } 926 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 927 if (cluster_end) { 928 reason = "[C|N|N|V]"; 929 goto out; 930 } 931 } 932 return false; 933 out: 934 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 935 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 936 set_sbi_flag(sbi, SBI_NEED_FSCK); 937 return true; 938 } 939 940 static int __f2fs_cluster_blocks(struct inode *inode, 941 unsigned int cluster_idx, bool compr) 942 { 943 struct dnode_of_data dn; 944 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 945 unsigned int start_idx = cluster_idx << 946 F2FS_I(inode)->i_log_cluster_size; 947 int ret; 948 949 set_new_dnode(&dn, inode, NULL, NULL, 0); 950 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 951 if (ret) { 952 if (ret == -ENOENT) 953 ret = 0; 954 goto fail; 955 } 956 957 if (f2fs_sanity_check_cluster(&dn)) { 958 ret = -EFSCORRUPTED; 959 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 960 goto fail; 961 } 962 963 if (dn.data_blkaddr == COMPRESS_ADDR) { 964 int i; 965 966 ret = 1; 967 for (i = 1; i < cluster_size; i++) { 968 block_t blkaddr; 969 970 blkaddr = data_blkaddr(dn.inode, 971 dn.node_page, dn.ofs_in_node + i); 972 if (compr) { 973 if (__is_valid_data_blkaddr(blkaddr)) 974 ret++; 975 } else { 976 if (blkaddr != NULL_ADDR) 977 ret++; 978 } 979 } 980 981 f2fs_bug_on(F2FS_I_SB(inode), 982 !compr && ret != cluster_size && 983 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 984 } 985 fail: 986 f2fs_put_dnode(&dn); 987 return ret; 988 } 989 990 /* return # of compressed blocks in compressed cluster */ 991 static int f2fs_compressed_blocks(struct compress_ctx *cc) 992 { 993 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 994 } 995 996 /* return # of valid blocks in compressed cluster */ 997 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 998 { 999 return __f2fs_cluster_blocks(inode, 1000 index >> F2FS_I(inode)->i_log_cluster_size, 1001 false); 1002 } 1003 1004 static bool cluster_may_compress(struct compress_ctx *cc) 1005 { 1006 if (!f2fs_need_compress_data(cc->inode)) 1007 return false; 1008 if (f2fs_is_atomic_file(cc->inode)) 1009 return false; 1010 if (!f2fs_cluster_is_full(cc)) 1011 return false; 1012 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1013 return false; 1014 return !cluster_has_invalid_data(cc); 1015 } 1016 1017 static void set_cluster_writeback(struct compress_ctx *cc) 1018 { 1019 int i; 1020 1021 for (i = 0; i < cc->cluster_size; i++) { 1022 if (cc->rpages[i]) 1023 set_page_writeback(cc->rpages[i]); 1024 } 1025 } 1026 1027 static void set_cluster_dirty(struct compress_ctx *cc) 1028 { 1029 int i; 1030 1031 for (i = 0; i < cc->cluster_size; i++) 1032 if (cc->rpages[i]) { 1033 set_page_dirty(cc->rpages[i]); 1034 set_page_private_gcing(cc->rpages[i]); 1035 } 1036 } 1037 1038 static int prepare_compress_overwrite(struct compress_ctx *cc, 1039 struct page **pagep, pgoff_t index, void **fsdata) 1040 { 1041 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1042 struct address_space *mapping = cc->inode->i_mapping; 1043 struct page *page; 1044 sector_t last_block_in_bio; 1045 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1046 pgoff_t start_idx = start_idx_of_cluster(cc); 1047 int i, ret; 1048 1049 retry: 1050 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1051 if (ret <= 0) 1052 return ret; 1053 1054 ret = f2fs_init_compress_ctx(cc); 1055 if (ret) 1056 return ret; 1057 1058 /* keep page reference to avoid page reclaim */ 1059 for (i = 0; i < cc->cluster_size; i++) { 1060 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1061 fgp_flag, GFP_NOFS); 1062 if (!page) { 1063 ret = -ENOMEM; 1064 goto unlock_pages; 1065 } 1066 1067 if (PageUptodate(page)) 1068 f2fs_put_page(page, 1); 1069 else 1070 f2fs_compress_ctx_add_page(cc, page); 1071 } 1072 1073 if (!f2fs_cluster_is_empty(cc)) { 1074 struct bio *bio = NULL; 1075 1076 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1077 &last_block_in_bio, false, true); 1078 f2fs_put_rpages(cc); 1079 f2fs_destroy_compress_ctx(cc, true); 1080 if (ret) 1081 goto out; 1082 if (bio) 1083 f2fs_submit_read_bio(sbi, bio, DATA); 1084 1085 ret = f2fs_init_compress_ctx(cc); 1086 if (ret) 1087 goto out; 1088 } 1089 1090 for (i = 0; i < cc->cluster_size; i++) { 1091 f2fs_bug_on(sbi, cc->rpages[i]); 1092 1093 page = find_lock_page(mapping, start_idx + i); 1094 if (!page) { 1095 /* page can be truncated */ 1096 goto release_and_retry; 1097 } 1098 1099 f2fs_wait_on_page_writeback(page, DATA, true, true); 1100 f2fs_compress_ctx_add_page(cc, page); 1101 1102 if (!PageUptodate(page)) { 1103 release_and_retry: 1104 f2fs_put_rpages(cc); 1105 f2fs_unlock_rpages(cc, i + 1); 1106 f2fs_destroy_compress_ctx(cc, true); 1107 goto retry; 1108 } 1109 } 1110 1111 if (likely(!ret)) { 1112 *fsdata = cc->rpages; 1113 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1114 return cc->cluster_size; 1115 } 1116 1117 unlock_pages: 1118 f2fs_put_rpages(cc); 1119 f2fs_unlock_rpages(cc, i); 1120 f2fs_destroy_compress_ctx(cc, true); 1121 out: 1122 return ret; 1123 } 1124 1125 int f2fs_prepare_compress_overwrite(struct inode *inode, 1126 struct page **pagep, pgoff_t index, void **fsdata) 1127 { 1128 struct compress_ctx cc = { 1129 .inode = inode, 1130 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1131 .cluster_size = F2FS_I(inode)->i_cluster_size, 1132 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1133 .rpages = NULL, 1134 .nr_rpages = 0, 1135 }; 1136 1137 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1138 } 1139 1140 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1141 pgoff_t index, unsigned copied) 1142 1143 { 1144 struct compress_ctx cc = { 1145 .inode = inode, 1146 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1147 .cluster_size = F2FS_I(inode)->i_cluster_size, 1148 .rpages = fsdata, 1149 }; 1150 bool first_index = (index == cc.rpages[0]->index); 1151 1152 if (copied) 1153 set_cluster_dirty(&cc); 1154 1155 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1156 f2fs_destroy_compress_ctx(&cc, false); 1157 1158 return first_index; 1159 } 1160 1161 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1162 { 1163 void *fsdata = NULL; 1164 struct page *pagep; 1165 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1166 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1167 log_cluster_size; 1168 int err; 1169 1170 err = f2fs_is_compressed_cluster(inode, start_idx); 1171 if (err < 0) 1172 return err; 1173 1174 /* truncate normal cluster */ 1175 if (!err) 1176 return f2fs_do_truncate_blocks(inode, from, lock); 1177 1178 /* truncate compressed cluster */ 1179 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1180 start_idx, &fsdata); 1181 1182 /* should not be a normal cluster */ 1183 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1184 1185 if (err <= 0) 1186 return err; 1187 1188 if (err > 0) { 1189 struct page **rpages = fsdata; 1190 int cluster_size = F2FS_I(inode)->i_cluster_size; 1191 int i; 1192 1193 for (i = cluster_size - 1; i >= 0; i--) { 1194 loff_t start = rpages[i]->index << PAGE_SHIFT; 1195 1196 if (from <= start) { 1197 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1198 } else { 1199 zero_user_segment(rpages[i], from - start, 1200 PAGE_SIZE); 1201 break; 1202 } 1203 } 1204 1205 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1206 } 1207 return 0; 1208 } 1209 1210 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1211 int *submitted, 1212 struct writeback_control *wbc, 1213 enum iostat_type io_type) 1214 { 1215 struct inode *inode = cc->inode; 1216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1217 struct f2fs_inode_info *fi = F2FS_I(inode); 1218 struct f2fs_io_info fio = { 1219 .sbi = sbi, 1220 .ino = cc->inode->i_ino, 1221 .type = DATA, 1222 .op = REQ_OP_WRITE, 1223 .op_flags = wbc_to_write_flags(wbc), 1224 .old_blkaddr = NEW_ADDR, 1225 .page = NULL, 1226 .encrypted_page = NULL, 1227 .compressed_page = NULL, 1228 .submitted = 0, 1229 .io_type = io_type, 1230 .io_wbc = wbc, 1231 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1232 1 : 0, 1233 }; 1234 struct dnode_of_data dn; 1235 struct node_info ni; 1236 struct compress_io_ctx *cic; 1237 pgoff_t start_idx = start_idx_of_cluster(cc); 1238 unsigned int last_index = cc->cluster_size - 1; 1239 loff_t psize; 1240 int i, err; 1241 bool quota_inode = IS_NOQUOTA(inode); 1242 1243 /* we should bypass data pages to proceed the kworker jobs */ 1244 if (unlikely(f2fs_cp_error(sbi))) { 1245 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1246 goto out_free; 1247 } 1248 1249 if (quota_inode) { 1250 /* 1251 * We need to wait for node_write to avoid block allocation during 1252 * checkpoint. This can only happen to quota writes which can cause 1253 * the below discard race condition. 1254 */ 1255 f2fs_down_read(&sbi->node_write); 1256 } else if (!f2fs_trylock_op(sbi)) { 1257 goto out_free; 1258 } 1259 1260 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1261 1262 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1263 if (err) 1264 goto out_unlock_op; 1265 1266 for (i = 0; i < cc->cluster_size; i++) { 1267 if (data_blkaddr(dn.inode, dn.node_page, 1268 dn.ofs_in_node + i) == NULL_ADDR) 1269 goto out_put_dnode; 1270 } 1271 1272 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1273 1274 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1275 if (err) 1276 goto out_put_dnode; 1277 1278 fio.version = ni.version; 1279 1280 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1281 if (!cic) 1282 goto out_put_dnode; 1283 1284 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1285 cic->inode = inode; 1286 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1287 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1288 if (!cic->rpages) 1289 goto out_put_cic; 1290 1291 cic->nr_rpages = cc->cluster_size; 1292 1293 for (i = 0; i < cc->valid_nr_cpages; i++) { 1294 f2fs_set_compressed_page(cc->cpages[i], inode, 1295 cc->rpages[i + 1]->index, cic); 1296 fio.compressed_page = cc->cpages[i]; 1297 1298 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1299 dn.ofs_in_node + i + 1); 1300 1301 /* wait for GCed page writeback via META_MAPPING */ 1302 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1303 1304 if (fio.encrypted) { 1305 fio.page = cc->rpages[i + 1]; 1306 err = f2fs_encrypt_one_page(&fio); 1307 if (err) 1308 goto out_destroy_crypt; 1309 cc->cpages[i] = fio.encrypted_page; 1310 } 1311 } 1312 1313 set_cluster_writeback(cc); 1314 1315 for (i = 0; i < cc->cluster_size; i++) 1316 cic->rpages[i] = cc->rpages[i]; 1317 1318 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1319 block_t blkaddr; 1320 1321 blkaddr = f2fs_data_blkaddr(&dn); 1322 fio.page = cc->rpages[i]; 1323 fio.old_blkaddr = blkaddr; 1324 1325 /* cluster header */ 1326 if (i == 0) { 1327 if (blkaddr == COMPRESS_ADDR) 1328 fio.compr_blocks++; 1329 if (__is_valid_data_blkaddr(blkaddr)) 1330 f2fs_invalidate_blocks(sbi, blkaddr); 1331 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1332 goto unlock_continue; 1333 } 1334 1335 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1336 fio.compr_blocks++; 1337 1338 if (i > cc->valid_nr_cpages) { 1339 if (__is_valid_data_blkaddr(blkaddr)) { 1340 f2fs_invalidate_blocks(sbi, blkaddr); 1341 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1342 } 1343 goto unlock_continue; 1344 } 1345 1346 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1347 1348 if (fio.encrypted) 1349 fio.encrypted_page = cc->cpages[i - 1]; 1350 else 1351 fio.compressed_page = cc->cpages[i - 1]; 1352 1353 cc->cpages[i - 1] = NULL; 1354 f2fs_outplace_write_data(&dn, &fio); 1355 (*submitted)++; 1356 unlock_continue: 1357 inode_dec_dirty_pages(cc->inode); 1358 unlock_page(fio.page); 1359 } 1360 1361 if (fio.compr_blocks) 1362 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1363 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1364 add_compr_block_stat(inode, cc->valid_nr_cpages); 1365 1366 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1367 1368 f2fs_put_dnode(&dn); 1369 if (quota_inode) 1370 f2fs_up_read(&sbi->node_write); 1371 else 1372 f2fs_unlock_op(sbi); 1373 1374 spin_lock(&fi->i_size_lock); 1375 if (fi->last_disk_size < psize) 1376 fi->last_disk_size = psize; 1377 spin_unlock(&fi->i_size_lock); 1378 1379 f2fs_put_rpages(cc); 1380 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1381 cc->cpages = NULL; 1382 f2fs_destroy_compress_ctx(cc, false); 1383 return 0; 1384 1385 out_destroy_crypt: 1386 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1387 1388 for (--i; i >= 0; i--) 1389 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1390 out_put_cic: 1391 kmem_cache_free(cic_entry_slab, cic); 1392 out_put_dnode: 1393 f2fs_put_dnode(&dn); 1394 out_unlock_op: 1395 if (quota_inode) 1396 f2fs_up_read(&sbi->node_write); 1397 else 1398 f2fs_unlock_op(sbi); 1399 out_free: 1400 for (i = 0; i < cc->valid_nr_cpages; i++) { 1401 f2fs_compress_free_page(cc->cpages[i]); 1402 cc->cpages[i] = NULL; 1403 } 1404 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1405 cc->cpages = NULL; 1406 return -EAGAIN; 1407 } 1408 1409 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1410 { 1411 struct f2fs_sb_info *sbi = bio->bi_private; 1412 struct compress_io_ctx *cic = 1413 (struct compress_io_ctx *)page_private(page); 1414 enum count_type type = WB_DATA_TYPE(page, 1415 f2fs_is_compressed_page(page)); 1416 int i; 1417 1418 if (unlikely(bio->bi_status)) 1419 mapping_set_error(cic->inode->i_mapping, -EIO); 1420 1421 f2fs_compress_free_page(page); 1422 1423 dec_page_count(sbi, type); 1424 1425 if (atomic_dec_return(&cic->pending_pages)) 1426 return; 1427 1428 for (i = 0; i < cic->nr_rpages; i++) { 1429 WARN_ON(!cic->rpages[i]); 1430 clear_page_private_gcing(cic->rpages[i]); 1431 end_page_writeback(cic->rpages[i]); 1432 } 1433 1434 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1435 kmem_cache_free(cic_entry_slab, cic); 1436 } 1437 1438 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1439 int *submitted_p, 1440 struct writeback_control *wbc, 1441 enum iostat_type io_type) 1442 { 1443 struct address_space *mapping = cc->inode->i_mapping; 1444 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1445 int submitted, compr_blocks, i; 1446 int ret = 0; 1447 1448 compr_blocks = f2fs_compressed_blocks(cc); 1449 1450 for (i = 0; i < cc->cluster_size; i++) { 1451 if (!cc->rpages[i]) 1452 continue; 1453 1454 redirty_page_for_writepage(wbc, cc->rpages[i]); 1455 unlock_page(cc->rpages[i]); 1456 } 1457 1458 if (compr_blocks < 0) 1459 return compr_blocks; 1460 1461 /* overwrite compressed cluster w/ normal cluster */ 1462 if (compr_blocks > 0) 1463 f2fs_lock_op(sbi); 1464 1465 for (i = 0; i < cc->cluster_size; i++) { 1466 if (!cc->rpages[i]) 1467 continue; 1468 retry_write: 1469 lock_page(cc->rpages[i]); 1470 1471 if (cc->rpages[i]->mapping != mapping) { 1472 continue_unlock: 1473 unlock_page(cc->rpages[i]); 1474 continue; 1475 } 1476 1477 if (!PageDirty(cc->rpages[i])) 1478 goto continue_unlock; 1479 1480 if (PageWriteback(cc->rpages[i])) { 1481 if (wbc->sync_mode == WB_SYNC_NONE) 1482 goto continue_unlock; 1483 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1484 } 1485 1486 if (!clear_page_dirty_for_io(cc->rpages[i])) 1487 goto continue_unlock; 1488 1489 ret = f2fs_write_single_data_page(cc->rpages[i], &submitted, 1490 NULL, NULL, wbc, io_type, 1491 compr_blocks, false); 1492 if (ret) { 1493 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1494 unlock_page(cc->rpages[i]); 1495 ret = 0; 1496 } else if (ret == -EAGAIN) { 1497 ret = 0; 1498 /* 1499 * for quota file, just redirty left pages to 1500 * avoid deadlock caused by cluster update race 1501 * from foreground operation. 1502 */ 1503 if (IS_NOQUOTA(cc->inode)) 1504 goto out; 1505 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1506 goto retry_write; 1507 } 1508 goto out; 1509 } 1510 1511 *submitted_p += submitted; 1512 } 1513 1514 out: 1515 if (compr_blocks > 0) 1516 f2fs_unlock_op(sbi); 1517 1518 f2fs_balance_fs(sbi, true); 1519 return ret; 1520 } 1521 1522 int f2fs_write_multi_pages(struct compress_ctx *cc, 1523 int *submitted, 1524 struct writeback_control *wbc, 1525 enum iostat_type io_type) 1526 { 1527 int err; 1528 1529 *submitted = 0; 1530 if (cluster_may_compress(cc)) { 1531 err = f2fs_compress_pages(cc); 1532 if (err == -EAGAIN) { 1533 add_compr_block_stat(cc->inode, cc->cluster_size); 1534 goto write; 1535 } else if (err) { 1536 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1537 goto destroy_out; 1538 } 1539 1540 err = f2fs_write_compressed_pages(cc, submitted, 1541 wbc, io_type); 1542 if (!err) 1543 return 0; 1544 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1545 } 1546 write: 1547 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1548 1549 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1550 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1551 destroy_out: 1552 f2fs_destroy_compress_ctx(cc, false); 1553 return err; 1554 } 1555 1556 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1557 bool pre_alloc) 1558 { 1559 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1560 } 1561 1562 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1563 bool pre_alloc) 1564 { 1565 const struct f2fs_compress_ops *cops = 1566 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1567 int i; 1568 1569 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1570 return 0; 1571 1572 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1573 if (!dic->tpages) 1574 return -ENOMEM; 1575 1576 for (i = 0; i < dic->cluster_size; i++) { 1577 if (dic->rpages[i]) { 1578 dic->tpages[i] = dic->rpages[i]; 1579 continue; 1580 } 1581 1582 dic->tpages[i] = f2fs_compress_alloc_page(); 1583 } 1584 1585 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1586 if (!dic->rbuf) 1587 return -ENOMEM; 1588 1589 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1590 if (!dic->cbuf) 1591 return -ENOMEM; 1592 1593 if (cops->init_decompress_ctx) 1594 return cops->init_decompress_ctx(dic); 1595 1596 return 0; 1597 } 1598 1599 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1600 bool bypass_destroy_callback, bool pre_alloc) 1601 { 1602 const struct f2fs_compress_ops *cops = 1603 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1604 1605 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1606 return; 1607 1608 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1609 cops->destroy_decompress_ctx(dic); 1610 1611 if (dic->cbuf) 1612 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1613 1614 if (dic->rbuf) 1615 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1616 } 1617 1618 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1619 bool bypass_destroy_callback); 1620 1621 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1622 { 1623 struct decompress_io_ctx *dic; 1624 pgoff_t start_idx = start_idx_of_cluster(cc); 1625 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1626 int i, ret; 1627 1628 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1629 if (!dic) 1630 return ERR_PTR(-ENOMEM); 1631 1632 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1633 if (!dic->rpages) { 1634 kmem_cache_free(dic_entry_slab, dic); 1635 return ERR_PTR(-ENOMEM); 1636 } 1637 1638 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1639 dic->inode = cc->inode; 1640 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1641 dic->cluster_idx = cc->cluster_idx; 1642 dic->cluster_size = cc->cluster_size; 1643 dic->log_cluster_size = cc->log_cluster_size; 1644 dic->nr_cpages = cc->nr_cpages; 1645 refcount_set(&dic->refcnt, 1); 1646 dic->failed = false; 1647 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1648 1649 for (i = 0; i < dic->cluster_size; i++) 1650 dic->rpages[i] = cc->rpages[i]; 1651 dic->nr_rpages = cc->cluster_size; 1652 1653 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1654 if (!dic->cpages) { 1655 ret = -ENOMEM; 1656 goto out_free; 1657 } 1658 1659 for (i = 0; i < dic->nr_cpages; i++) { 1660 struct page *page; 1661 1662 page = f2fs_compress_alloc_page(); 1663 f2fs_set_compressed_page(page, cc->inode, 1664 start_idx + i + 1, dic); 1665 dic->cpages[i] = page; 1666 } 1667 1668 ret = f2fs_prepare_decomp_mem(dic, true); 1669 if (ret) 1670 goto out_free; 1671 1672 return dic; 1673 1674 out_free: 1675 f2fs_free_dic(dic, true); 1676 return ERR_PTR(ret); 1677 } 1678 1679 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1680 bool bypass_destroy_callback) 1681 { 1682 int i; 1683 1684 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1685 1686 if (dic->tpages) { 1687 for (i = 0; i < dic->cluster_size; i++) { 1688 if (dic->rpages[i]) 1689 continue; 1690 if (!dic->tpages[i]) 1691 continue; 1692 f2fs_compress_free_page(dic->tpages[i]); 1693 } 1694 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1695 } 1696 1697 if (dic->cpages) { 1698 for (i = 0; i < dic->nr_cpages; i++) { 1699 if (!dic->cpages[i]) 1700 continue; 1701 f2fs_compress_free_page(dic->cpages[i]); 1702 } 1703 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1704 } 1705 1706 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1707 kmem_cache_free(dic_entry_slab, dic); 1708 } 1709 1710 static void f2fs_late_free_dic(struct work_struct *work) 1711 { 1712 struct decompress_io_ctx *dic = 1713 container_of(work, struct decompress_io_ctx, free_work); 1714 1715 f2fs_free_dic(dic, false); 1716 } 1717 1718 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1719 { 1720 if (refcount_dec_and_test(&dic->refcnt)) { 1721 if (in_task) { 1722 f2fs_free_dic(dic, false); 1723 } else { 1724 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1725 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1726 &dic->free_work); 1727 } 1728 } 1729 } 1730 1731 static void f2fs_verify_cluster(struct work_struct *work) 1732 { 1733 struct decompress_io_ctx *dic = 1734 container_of(work, struct decompress_io_ctx, verity_work); 1735 int i; 1736 1737 /* Verify, update, and unlock the decompressed pages. */ 1738 for (i = 0; i < dic->cluster_size; i++) { 1739 struct page *rpage = dic->rpages[i]; 1740 1741 if (!rpage) 1742 continue; 1743 1744 if (fsverity_verify_page(rpage)) 1745 SetPageUptodate(rpage); 1746 else 1747 ClearPageUptodate(rpage); 1748 unlock_page(rpage); 1749 } 1750 1751 f2fs_put_dic(dic, true); 1752 } 1753 1754 /* 1755 * This is called when a compressed cluster has been decompressed 1756 * (or failed to be read and/or decompressed). 1757 */ 1758 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1759 bool in_task) 1760 { 1761 int i; 1762 1763 if (!failed && dic->need_verity) { 1764 /* 1765 * Note that to avoid deadlocks, the verity work can't be done 1766 * on the decompression workqueue. This is because verifying 1767 * the data pages can involve reading metadata pages from the 1768 * file, and these metadata pages may be compressed. 1769 */ 1770 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1771 fsverity_enqueue_verify_work(&dic->verity_work); 1772 return; 1773 } 1774 1775 /* Update and unlock the cluster's pagecache pages. */ 1776 for (i = 0; i < dic->cluster_size; i++) { 1777 struct page *rpage = dic->rpages[i]; 1778 1779 if (!rpage) 1780 continue; 1781 1782 if (failed) 1783 ClearPageUptodate(rpage); 1784 else 1785 SetPageUptodate(rpage); 1786 unlock_page(rpage); 1787 } 1788 1789 /* 1790 * Release the reference to the decompress_io_ctx that was being held 1791 * for I/O completion. 1792 */ 1793 f2fs_put_dic(dic, in_task); 1794 } 1795 1796 /* 1797 * Put a reference to a compressed page's decompress_io_ctx. 1798 * 1799 * This is called when the page is no longer needed and can be freed. 1800 */ 1801 void f2fs_put_page_dic(struct page *page, bool in_task) 1802 { 1803 struct decompress_io_ctx *dic = 1804 (struct decompress_io_ctx *)page_private(page); 1805 1806 f2fs_put_dic(dic, in_task); 1807 } 1808 1809 /* 1810 * check whether cluster blocks are contiguous, and add extent cache entry 1811 * only if cluster blocks are logically and physically contiguous. 1812 */ 1813 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 1814 unsigned int ofs_in_node) 1815 { 1816 bool compressed = data_blkaddr(dn->inode, dn->node_page, 1817 ofs_in_node) == COMPRESS_ADDR; 1818 int i = compressed ? 1 : 0; 1819 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1820 ofs_in_node + i); 1821 1822 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1823 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1824 ofs_in_node + i); 1825 1826 if (!__is_valid_data_blkaddr(blkaddr)) 1827 break; 1828 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1829 return 0; 1830 } 1831 1832 return compressed ? i - 1 : i; 1833 } 1834 1835 const struct address_space_operations f2fs_compress_aops = { 1836 .release_folio = f2fs_release_folio, 1837 .invalidate_folio = f2fs_invalidate_folio, 1838 .migrate_folio = filemap_migrate_folio, 1839 }; 1840 1841 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1842 { 1843 return sbi->compress_inode->i_mapping; 1844 } 1845 1846 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1847 { 1848 if (!sbi->compress_inode) 1849 return; 1850 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1851 } 1852 1853 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1854 nid_t ino, block_t blkaddr) 1855 { 1856 struct page *cpage; 1857 int ret; 1858 1859 if (!test_opt(sbi, COMPRESS_CACHE)) 1860 return; 1861 1862 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1863 return; 1864 1865 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1866 return; 1867 1868 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1869 if (cpage) { 1870 f2fs_put_page(cpage, 0); 1871 return; 1872 } 1873 1874 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1875 if (!cpage) 1876 return; 1877 1878 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1879 blkaddr, GFP_NOFS); 1880 if (ret) { 1881 f2fs_put_page(cpage, 0); 1882 return; 1883 } 1884 1885 set_page_private_data(cpage, ino); 1886 1887 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1888 goto out; 1889 1890 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1891 SetPageUptodate(cpage); 1892 out: 1893 f2fs_put_page(cpage, 1); 1894 } 1895 1896 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1897 block_t blkaddr) 1898 { 1899 struct page *cpage; 1900 bool hitted = false; 1901 1902 if (!test_opt(sbi, COMPRESS_CACHE)) 1903 return false; 1904 1905 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1906 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1907 if (cpage) { 1908 if (PageUptodate(cpage)) { 1909 atomic_inc(&sbi->compress_page_hit); 1910 memcpy(page_address(page), 1911 page_address(cpage), PAGE_SIZE); 1912 hitted = true; 1913 } 1914 f2fs_put_page(cpage, 1); 1915 } 1916 1917 return hitted; 1918 } 1919 1920 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1921 { 1922 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1923 struct folio_batch fbatch; 1924 pgoff_t index = 0; 1925 pgoff_t end = MAX_BLKADDR(sbi); 1926 1927 if (!mapping->nrpages) 1928 return; 1929 1930 folio_batch_init(&fbatch); 1931 1932 do { 1933 unsigned int nr, i; 1934 1935 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1936 if (!nr) 1937 break; 1938 1939 for (i = 0; i < nr; i++) { 1940 struct folio *folio = fbatch.folios[i]; 1941 1942 folio_lock(folio); 1943 if (folio->mapping != mapping) { 1944 folio_unlock(folio); 1945 continue; 1946 } 1947 1948 if (ino != get_page_private_data(&folio->page)) { 1949 folio_unlock(folio); 1950 continue; 1951 } 1952 1953 generic_error_remove_page(mapping, &folio->page); 1954 folio_unlock(folio); 1955 } 1956 folio_batch_release(&fbatch); 1957 cond_resched(); 1958 } while (index < end); 1959 } 1960 1961 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1962 { 1963 struct inode *inode; 1964 1965 if (!test_opt(sbi, COMPRESS_CACHE)) 1966 return 0; 1967 1968 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1969 if (IS_ERR(inode)) 1970 return PTR_ERR(inode); 1971 sbi->compress_inode = inode; 1972 1973 sbi->compress_percent = COMPRESS_PERCENT; 1974 sbi->compress_watermark = COMPRESS_WATERMARK; 1975 1976 atomic_set(&sbi->compress_page_hit, 0); 1977 1978 return 0; 1979 } 1980 1981 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1982 { 1983 if (!sbi->compress_inode) 1984 return; 1985 iput(sbi->compress_inode); 1986 sbi->compress_inode = NULL; 1987 } 1988 1989 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1990 { 1991 dev_t dev = sbi->sb->s_bdev->bd_dev; 1992 char slab_name[35]; 1993 1994 if (!f2fs_sb_has_compression(sbi)) 1995 return 0; 1996 1997 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1998 1999 sbi->page_array_slab_size = sizeof(struct page *) << 2000 F2FS_OPTION(sbi).compress_log_size; 2001 2002 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 2003 sbi->page_array_slab_size); 2004 return sbi->page_array_slab ? 0 : -ENOMEM; 2005 } 2006 2007 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2008 { 2009 kmem_cache_destroy(sbi->page_array_slab); 2010 } 2011 2012 int __init f2fs_init_compress_cache(void) 2013 { 2014 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2015 sizeof(struct compress_io_ctx)); 2016 if (!cic_entry_slab) 2017 return -ENOMEM; 2018 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2019 sizeof(struct decompress_io_ctx)); 2020 if (!dic_entry_slab) 2021 goto free_cic; 2022 return 0; 2023 free_cic: 2024 kmem_cache_destroy(cic_entry_slab); 2025 return -ENOMEM; 2026 } 2027 2028 void f2fs_destroy_compress_cache(void) 2029 { 2030 kmem_cache_destroy(dic_entry_slab); 2031 kmem_cache_destroy(cic_entry_slab); 2032 } 2033