1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .sbi = sbi, 56 .type = META, 57 .rw = READ_SYNC | REQ_META | REQ_PRIO, 58 .blk_addr = index, 59 .encrypted_page = NULL, 60 }; 61 repeat: 62 page = grab_cache_page(mapping, index); 63 if (!page) { 64 cond_resched(); 65 goto repeat; 66 } 67 if (PageUptodate(page)) 68 goto out; 69 70 fio.page = page; 71 72 if (f2fs_submit_page_bio(&fio)) { 73 f2fs_put_page(page, 1); 74 goto repeat; 75 } 76 77 lock_page(page); 78 if (unlikely(page->mapping != mapping)) { 79 f2fs_put_page(page, 1); 80 goto repeat; 81 } 82 83 /* 84 * if there is any IO error when accessing device, make our filesystem 85 * readonly and make sure do not write checkpoint with non-uptodate 86 * meta page. 87 */ 88 if (unlikely(!PageUptodate(page))) 89 f2fs_stop_checkpoint(sbi); 90 out: 91 return page; 92 } 93 94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 95 { 96 switch (type) { 97 case META_NAT: 98 break; 99 case META_SIT: 100 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 101 return false; 102 break; 103 case META_SSA: 104 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 105 blkaddr < SM_I(sbi)->ssa_blkaddr)) 106 return false; 107 break; 108 case META_CP: 109 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 110 blkaddr < __start_cp_addr(sbi))) 111 return false; 112 break; 113 case META_POR: 114 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 115 blkaddr < MAIN_BLKADDR(sbi))) 116 return false; 117 break; 118 default: 119 BUG(); 120 } 121 122 return true; 123 } 124 125 /* 126 * Readahead CP/NAT/SIT/SSA pages 127 */ 128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 129 { 130 block_t prev_blk_addr = 0; 131 struct page *page; 132 block_t blkno = start; 133 struct f2fs_io_info fio = { 134 .sbi = sbi, 135 .type = META, 136 .rw = READ_SYNC | REQ_META | REQ_PRIO, 137 .encrypted_page = NULL, 138 }; 139 140 for (; nrpages-- > 0; blkno++) { 141 142 if (!is_valid_blkaddr(sbi, blkno, type)) 143 goto out; 144 145 switch (type) { 146 case META_NAT: 147 if (unlikely(blkno >= 148 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 149 blkno = 0; 150 /* get nat block addr */ 151 fio.blk_addr = current_nat_addr(sbi, 152 blkno * NAT_ENTRY_PER_BLOCK); 153 break; 154 case META_SIT: 155 /* get sit block addr */ 156 fio.blk_addr = current_sit_addr(sbi, 157 blkno * SIT_ENTRY_PER_BLOCK); 158 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 159 goto out; 160 prev_blk_addr = fio.blk_addr; 161 break; 162 case META_SSA: 163 case META_CP: 164 case META_POR: 165 fio.blk_addr = blkno; 166 break; 167 default: 168 BUG(); 169 } 170 171 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 172 if (!page) 173 continue; 174 if (PageUptodate(page)) { 175 f2fs_put_page(page, 1); 176 continue; 177 } 178 179 fio.page = page; 180 f2fs_submit_page_mbio(&fio); 181 f2fs_put_page(page, 0); 182 } 183 out: 184 f2fs_submit_merged_bio(sbi, META, READ); 185 return blkno - start; 186 } 187 188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 189 { 190 struct page *page; 191 bool readahead = false; 192 193 page = find_get_page(META_MAPPING(sbi), index); 194 if (!page || (page && !PageUptodate(page))) 195 readahead = true; 196 f2fs_put_page(page, 0); 197 198 if (readahead) 199 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 200 } 201 202 static int f2fs_write_meta_page(struct page *page, 203 struct writeback_control *wbc) 204 { 205 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 206 207 trace_f2fs_writepage(page, META); 208 209 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 210 goto redirty_out; 211 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 212 goto redirty_out; 213 if (unlikely(f2fs_cp_error(sbi))) 214 goto redirty_out; 215 216 f2fs_wait_on_page_writeback(page, META); 217 write_meta_page(sbi, page); 218 dec_page_count(sbi, F2FS_DIRTY_META); 219 unlock_page(page); 220 221 if (wbc->for_reclaim) 222 f2fs_submit_merged_bio(sbi, META, WRITE); 223 return 0; 224 225 redirty_out: 226 redirty_page_for_writepage(wbc, page); 227 return AOP_WRITEPAGE_ACTIVATE; 228 } 229 230 static int f2fs_write_meta_pages(struct address_space *mapping, 231 struct writeback_control *wbc) 232 { 233 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 234 long diff, written; 235 236 trace_f2fs_writepages(mapping->host, wbc, META); 237 238 /* collect a number of dirty meta pages and write together */ 239 if (wbc->for_kupdate || 240 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 241 goto skip_write; 242 243 /* if mounting is failed, skip writing node pages */ 244 mutex_lock(&sbi->cp_mutex); 245 diff = nr_pages_to_write(sbi, META, wbc); 246 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 247 mutex_unlock(&sbi->cp_mutex); 248 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 249 return 0; 250 251 skip_write: 252 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 253 return 0; 254 } 255 256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 257 long nr_to_write) 258 { 259 struct address_space *mapping = META_MAPPING(sbi); 260 pgoff_t index = 0, end = LONG_MAX; 261 struct pagevec pvec; 262 long nwritten = 0; 263 struct writeback_control wbc = { 264 .for_reclaim = 0, 265 }; 266 267 pagevec_init(&pvec, 0); 268 269 while (index <= end) { 270 int i, nr_pages; 271 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 272 PAGECACHE_TAG_DIRTY, 273 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 274 if (unlikely(nr_pages == 0)) 275 break; 276 277 for (i = 0; i < nr_pages; i++) { 278 struct page *page = pvec.pages[i]; 279 280 lock_page(page); 281 282 if (unlikely(page->mapping != mapping)) { 283 continue_unlock: 284 unlock_page(page); 285 continue; 286 } 287 if (!PageDirty(page)) { 288 /* someone wrote it for us */ 289 goto continue_unlock; 290 } 291 292 if (!clear_page_dirty_for_io(page)) 293 goto continue_unlock; 294 295 if (mapping->a_ops->writepage(page, &wbc)) { 296 unlock_page(page); 297 break; 298 } 299 nwritten++; 300 if (unlikely(nwritten >= nr_to_write)) 301 break; 302 } 303 pagevec_release(&pvec); 304 cond_resched(); 305 } 306 307 if (nwritten) 308 f2fs_submit_merged_bio(sbi, type, WRITE); 309 310 return nwritten; 311 } 312 313 static int f2fs_set_meta_page_dirty(struct page *page) 314 { 315 trace_f2fs_set_page_dirty(page, META); 316 317 SetPageUptodate(page); 318 if (!PageDirty(page)) { 319 __set_page_dirty_nobuffers(page); 320 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 321 SetPagePrivate(page); 322 f2fs_trace_pid(page); 323 return 1; 324 } 325 return 0; 326 } 327 328 const struct address_space_operations f2fs_meta_aops = { 329 .writepage = f2fs_write_meta_page, 330 .writepages = f2fs_write_meta_pages, 331 .set_page_dirty = f2fs_set_meta_page_dirty, 332 .invalidatepage = f2fs_invalidate_page, 333 .releasepage = f2fs_release_page, 334 }; 335 336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 337 { 338 struct inode_management *im = &sbi->im[type]; 339 struct ino_entry *e; 340 retry: 341 if (radix_tree_preload(GFP_NOFS)) { 342 cond_resched(); 343 goto retry; 344 } 345 346 spin_lock(&im->ino_lock); 347 348 e = radix_tree_lookup(&im->ino_root, ino); 349 if (!e) { 350 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 351 if (!e) { 352 spin_unlock(&im->ino_lock); 353 radix_tree_preload_end(); 354 goto retry; 355 } 356 if (radix_tree_insert(&im->ino_root, ino, e)) { 357 spin_unlock(&im->ino_lock); 358 kmem_cache_free(ino_entry_slab, e); 359 radix_tree_preload_end(); 360 goto retry; 361 } 362 memset(e, 0, sizeof(struct ino_entry)); 363 e->ino = ino; 364 365 list_add_tail(&e->list, &im->ino_list); 366 if (type != ORPHAN_INO) 367 im->ino_num++; 368 } 369 spin_unlock(&im->ino_lock); 370 radix_tree_preload_end(); 371 } 372 373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 374 { 375 struct inode_management *im = &sbi->im[type]; 376 struct ino_entry *e; 377 378 spin_lock(&im->ino_lock); 379 e = radix_tree_lookup(&im->ino_root, ino); 380 if (e) { 381 list_del(&e->list); 382 radix_tree_delete(&im->ino_root, ino); 383 im->ino_num--; 384 spin_unlock(&im->ino_lock); 385 kmem_cache_free(ino_entry_slab, e); 386 return; 387 } 388 spin_unlock(&im->ino_lock); 389 } 390 391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 392 { 393 /* add new dirty ino entry into list */ 394 __add_ino_entry(sbi, ino, type); 395 } 396 397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 398 { 399 /* remove dirty ino entry from list */ 400 __remove_ino_entry(sbi, ino, type); 401 } 402 403 /* mode should be APPEND_INO or UPDATE_INO */ 404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 405 { 406 struct inode_management *im = &sbi->im[mode]; 407 struct ino_entry *e; 408 409 spin_lock(&im->ino_lock); 410 e = radix_tree_lookup(&im->ino_root, ino); 411 spin_unlock(&im->ino_lock); 412 return e ? true : false; 413 } 414 415 void release_dirty_inode(struct f2fs_sb_info *sbi) 416 { 417 struct ino_entry *e, *tmp; 418 int i; 419 420 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 421 struct inode_management *im = &sbi->im[i]; 422 423 spin_lock(&im->ino_lock); 424 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 425 list_del(&e->list); 426 radix_tree_delete(&im->ino_root, e->ino); 427 kmem_cache_free(ino_entry_slab, e); 428 im->ino_num--; 429 } 430 spin_unlock(&im->ino_lock); 431 } 432 } 433 434 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 435 { 436 struct inode_management *im = &sbi->im[ORPHAN_INO]; 437 int err = 0; 438 439 spin_lock(&im->ino_lock); 440 if (unlikely(im->ino_num >= sbi->max_orphans)) 441 err = -ENOSPC; 442 else 443 im->ino_num++; 444 spin_unlock(&im->ino_lock); 445 446 return err; 447 } 448 449 void release_orphan_inode(struct f2fs_sb_info *sbi) 450 { 451 struct inode_management *im = &sbi->im[ORPHAN_INO]; 452 453 spin_lock(&im->ino_lock); 454 f2fs_bug_on(sbi, im->ino_num == 0); 455 im->ino_num--; 456 spin_unlock(&im->ino_lock); 457 } 458 459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 460 { 461 /* add new orphan ino entry into list */ 462 __add_ino_entry(sbi, ino, ORPHAN_INO); 463 } 464 465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 466 { 467 /* remove orphan entry from orphan list */ 468 __remove_ino_entry(sbi, ino, ORPHAN_INO); 469 } 470 471 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 472 { 473 struct inode *inode = f2fs_iget(sbi->sb, ino); 474 f2fs_bug_on(sbi, IS_ERR(inode)); 475 clear_nlink(inode); 476 477 /* truncate all the data during iput */ 478 iput(inode); 479 } 480 481 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 482 { 483 block_t start_blk, orphan_blocks, i, j; 484 485 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 486 return; 487 488 set_sbi_flag(sbi, SBI_POR_DOING); 489 490 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 491 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 492 493 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP); 494 495 for (i = 0; i < orphan_blocks; i++) { 496 struct page *page = get_meta_page(sbi, start_blk + i); 497 struct f2fs_orphan_block *orphan_blk; 498 499 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 500 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 501 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 502 recover_orphan_inode(sbi, ino); 503 } 504 f2fs_put_page(page, 1); 505 } 506 /* clear Orphan Flag */ 507 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 508 clear_sbi_flag(sbi, SBI_POR_DOING); 509 return; 510 } 511 512 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 513 { 514 struct list_head *head; 515 struct f2fs_orphan_block *orphan_blk = NULL; 516 unsigned int nentries = 0; 517 unsigned short index = 1; 518 unsigned short orphan_blocks; 519 struct page *page = NULL; 520 struct ino_entry *orphan = NULL; 521 struct inode_management *im = &sbi->im[ORPHAN_INO]; 522 523 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 524 525 /* 526 * we don't need to do spin_lock(&im->ino_lock) here, since all the 527 * orphan inode operations are covered under f2fs_lock_op(). 528 * And, spin_lock should be avoided due to page operations below. 529 */ 530 head = &im->ino_list; 531 532 /* loop for each orphan inode entry and write them in Jornal block */ 533 list_for_each_entry(orphan, head, list) { 534 if (!page) { 535 page = grab_meta_page(sbi, start_blk++); 536 orphan_blk = 537 (struct f2fs_orphan_block *)page_address(page); 538 memset(orphan_blk, 0, sizeof(*orphan_blk)); 539 } 540 541 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 542 543 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 544 /* 545 * an orphan block is full of 1020 entries, 546 * then we need to flush current orphan blocks 547 * and bring another one in memory 548 */ 549 orphan_blk->blk_addr = cpu_to_le16(index); 550 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 551 orphan_blk->entry_count = cpu_to_le32(nentries); 552 set_page_dirty(page); 553 f2fs_put_page(page, 1); 554 index++; 555 nentries = 0; 556 page = NULL; 557 } 558 } 559 560 if (page) { 561 orphan_blk->blk_addr = cpu_to_le16(index); 562 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 563 orphan_blk->entry_count = cpu_to_le32(nentries); 564 set_page_dirty(page); 565 f2fs_put_page(page, 1); 566 } 567 } 568 569 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 570 block_t cp_addr, unsigned long long *version) 571 { 572 struct page *cp_page_1, *cp_page_2 = NULL; 573 unsigned long blk_size = sbi->blocksize; 574 struct f2fs_checkpoint *cp_block; 575 unsigned long long cur_version = 0, pre_version = 0; 576 size_t crc_offset; 577 __u32 crc = 0; 578 579 /* Read the 1st cp block in this CP pack */ 580 cp_page_1 = get_meta_page(sbi, cp_addr); 581 582 /* get the version number */ 583 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 584 crc_offset = le32_to_cpu(cp_block->checksum_offset); 585 if (crc_offset >= blk_size) 586 goto invalid_cp1; 587 588 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 589 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 590 goto invalid_cp1; 591 592 pre_version = cur_cp_version(cp_block); 593 594 /* Read the 2nd cp block in this CP pack */ 595 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 596 cp_page_2 = get_meta_page(sbi, cp_addr); 597 598 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 599 crc_offset = le32_to_cpu(cp_block->checksum_offset); 600 if (crc_offset >= blk_size) 601 goto invalid_cp2; 602 603 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 604 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 605 goto invalid_cp2; 606 607 cur_version = cur_cp_version(cp_block); 608 609 if (cur_version == pre_version) { 610 *version = cur_version; 611 f2fs_put_page(cp_page_2, 1); 612 return cp_page_1; 613 } 614 invalid_cp2: 615 f2fs_put_page(cp_page_2, 1); 616 invalid_cp1: 617 f2fs_put_page(cp_page_1, 1); 618 return NULL; 619 } 620 621 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 622 { 623 struct f2fs_checkpoint *cp_block; 624 struct f2fs_super_block *fsb = sbi->raw_super; 625 struct page *cp1, *cp2, *cur_page; 626 unsigned long blk_size = sbi->blocksize; 627 unsigned long long cp1_version = 0, cp2_version = 0; 628 unsigned long long cp_start_blk_no; 629 unsigned int cp_blks = 1 + __cp_payload(sbi); 630 block_t cp_blk_no; 631 int i; 632 633 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 634 if (!sbi->ckpt) 635 return -ENOMEM; 636 /* 637 * Finding out valid cp block involves read both 638 * sets( cp pack1 and cp pack 2) 639 */ 640 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 641 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 642 643 /* The second checkpoint pack should start at the next segment */ 644 cp_start_blk_no += ((unsigned long long)1) << 645 le32_to_cpu(fsb->log_blocks_per_seg); 646 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 647 648 if (cp1 && cp2) { 649 if (ver_after(cp2_version, cp1_version)) 650 cur_page = cp2; 651 else 652 cur_page = cp1; 653 } else if (cp1) { 654 cur_page = cp1; 655 } else if (cp2) { 656 cur_page = cp2; 657 } else { 658 goto fail_no_cp; 659 } 660 661 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 662 memcpy(sbi->ckpt, cp_block, blk_size); 663 664 if (cp_blks <= 1) 665 goto done; 666 667 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 668 if (cur_page == cp2) 669 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 670 671 for (i = 1; i < cp_blks; i++) { 672 void *sit_bitmap_ptr; 673 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 674 675 cur_page = get_meta_page(sbi, cp_blk_no + i); 676 sit_bitmap_ptr = page_address(cur_page); 677 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 678 f2fs_put_page(cur_page, 1); 679 } 680 done: 681 f2fs_put_page(cp1, 1); 682 f2fs_put_page(cp2, 1); 683 return 0; 684 685 fail_no_cp: 686 kfree(sbi->ckpt); 687 return -EINVAL; 688 } 689 690 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 691 { 692 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 693 694 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 695 return -EEXIST; 696 697 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 698 F2FS_I(inode)->dirty_dir = new; 699 list_add_tail(&new->list, &sbi->dir_inode_list); 700 stat_inc_dirty_dir(sbi); 701 return 0; 702 } 703 704 void update_dirty_page(struct inode *inode, struct page *page) 705 { 706 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 707 struct inode_entry *new; 708 int ret = 0; 709 710 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 711 !S_ISLNK(inode->i_mode)) 712 return; 713 714 if (!S_ISDIR(inode->i_mode)) { 715 inode_inc_dirty_pages(inode); 716 goto out; 717 } 718 719 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 720 new->inode = inode; 721 INIT_LIST_HEAD(&new->list); 722 723 spin_lock(&sbi->dir_inode_lock); 724 ret = __add_dirty_inode(inode, new); 725 inode_inc_dirty_pages(inode); 726 spin_unlock(&sbi->dir_inode_lock); 727 728 if (ret) 729 kmem_cache_free(inode_entry_slab, new); 730 out: 731 SetPagePrivate(page); 732 f2fs_trace_pid(page); 733 } 734 735 void add_dirty_dir_inode(struct inode *inode) 736 { 737 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 738 struct inode_entry *new = 739 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 740 int ret = 0; 741 742 new->inode = inode; 743 INIT_LIST_HEAD(&new->list); 744 745 spin_lock(&sbi->dir_inode_lock); 746 ret = __add_dirty_inode(inode, new); 747 spin_unlock(&sbi->dir_inode_lock); 748 749 if (ret) 750 kmem_cache_free(inode_entry_slab, new); 751 } 752 753 void remove_dirty_dir_inode(struct inode *inode) 754 { 755 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 756 struct inode_entry *entry; 757 758 if (!S_ISDIR(inode->i_mode)) 759 return; 760 761 spin_lock(&sbi->dir_inode_lock); 762 if (get_dirty_pages(inode) || 763 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 764 spin_unlock(&sbi->dir_inode_lock); 765 return; 766 } 767 768 entry = F2FS_I(inode)->dirty_dir; 769 list_del(&entry->list); 770 F2FS_I(inode)->dirty_dir = NULL; 771 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 772 stat_dec_dirty_dir(sbi); 773 spin_unlock(&sbi->dir_inode_lock); 774 kmem_cache_free(inode_entry_slab, entry); 775 776 /* Only from the recovery routine */ 777 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 778 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 779 iput(inode); 780 } 781 } 782 783 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 784 { 785 struct list_head *head; 786 struct inode_entry *entry; 787 struct inode *inode; 788 retry: 789 if (unlikely(f2fs_cp_error(sbi))) 790 return; 791 792 spin_lock(&sbi->dir_inode_lock); 793 794 head = &sbi->dir_inode_list; 795 if (list_empty(head)) { 796 spin_unlock(&sbi->dir_inode_lock); 797 return; 798 } 799 entry = list_entry(head->next, struct inode_entry, list); 800 inode = igrab(entry->inode); 801 spin_unlock(&sbi->dir_inode_lock); 802 if (inode) { 803 filemap_fdatawrite(inode->i_mapping); 804 iput(inode); 805 } else { 806 /* 807 * We should submit bio, since it exists several 808 * wribacking dentry pages in the freeing inode. 809 */ 810 f2fs_submit_merged_bio(sbi, DATA, WRITE); 811 cond_resched(); 812 } 813 goto retry; 814 } 815 816 /* 817 * Freeze all the FS-operations for checkpoint. 818 */ 819 static int block_operations(struct f2fs_sb_info *sbi) 820 { 821 struct writeback_control wbc = { 822 .sync_mode = WB_SYNC_ALL, 823 .nr_to_write = LONG_MAX, 824 .for_reclaim = 0, 825 }; 826 struct blk_plug plug; 827 int err = 0; 828 829 blk_start_plug(&plug); 830 831 retry_flush_dents: 832 f2fs_lock_all(sbi); 833 /* write all the dirty dentry pages */ 834 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 835 f2fs_unlock_all(sbi); 836 sync_dirty_dir_inodes(sbi); 837 if (unlikely(f2fs_cp_error(sbi))) { 838 err = -EIO; 839 goto out; 840 } 841 goto retry_flush_dents; 842 } 843 844 /* 845 * POR: we should ensure that there are no dirty node pages 846 * until finishing nat/sit flush. 847 */ 848 retry_flush_nodes: 849 down_write(&sbi->node_write); 850 851 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 852 up_write(&sbi->node_write); 853 sync_node_pages(sbi, 0, &wbc); 854 if (unlikely(f2fs_cp_error(sbi))) { 855 f2fs_unlock_all(sbi); 856 err = -EIO; 857 goto out; 858 } 859 goto retry_flush_nodes; 860 } 861 out: 862 blk_finish_plug(&plug); 863 return err; 864 } 865 866 static void unblock_operations(struct f2fs_sb_info *sbi) 867 { 868 up_write(&sbi->node_write); 869 f2fs_unlock_all(sbi); 870 } 871 872 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 873 { 874 DEFINE_WAIT(wait); 875 876 for (;;) { 877 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 878 879 if (!get_pages(sbi, F2FS_WRITEBACK)) 880 break; 881 882 io_schedule(); 883 } 884 finish_wait(&sbi->cp_wait, &wait); 885 } 886 887 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 888 { 889 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 890 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 891 struct f2fs_nm_info *nm_i = NM_I(sbi); 892 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 893 nid_t last_nid = nm_i->next_scan_nid; 894 block_t start_blk; 895 unsigned int data_sum_blocks, orphan_blocks; 896 __u32 crc32 = 0; 897 int i; 898 int cp_payload_blks = __cp_payload(sbi); 899 900 /* 901 * This avoids to conduct wrong roll-forward operations and uses 902 * metapages, so should be called prior to sync_meta_pages below. 903 */ 904 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 905 906 /* Flush all the NAT/SIT pages */ 907 while (get_pages(sbi, F2FS_DIRTY_META)) { 908 sync_meta_pages(sbi, META, LONG_MAX); 909 if (unlikely(f2fs_cp_error(sbi))) 910 return; 911 } 912 913 next_free_nid(sbi, &last_nid); 914 915 /* 916 * modify checkpoint 917 * version number is already updated 918 */ 919 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 920 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 921 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 922 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 923 ckpt->cur_node_segno[i] = 924 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 925 ckpt->cur_node_blkoff[i] = 926 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 927 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 928 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 929 } 930 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 931 ckpt->cur_data_segno[i] = 932 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 933 ckpt->cur_data_blkoff[i] = 934 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 935 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 936 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 937 } 938 939 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 940 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 941 ckpt->next_free_nid = cpu_to_le32(last_nid); 942 943 /* 2 cp + n data seg summary + orphan inode blocks */ 944 data_sum_blocks = npages_for_summary_flush(sbi, false); 945 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 946 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 947 else 948 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 949 950 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 951 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 952 orphan_blocks); 953 954 if (__remain_node_summaries(cpc->reason)) 955 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 956 cp_payload_blks + data_sum_blocks + 957 orphan_blocks + NR_CURSEG_NODE_TYPE); 958 else 959 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 960 cp_payload_blks + data_sum_blocks + 961 orphan_blocks); 962 963 if (cpc->reason == CP_UMOUNT) 964 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 965 else 966 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 967 968 if (cpc->reason == CP_FASTBOOT) 969 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 970 else 971 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 972 973 if (orphan_num) 974 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 975 else 976 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 977 978 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 979 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 980 981 /* update SIT/NAT bitmap */ 982 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 983 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 984 985 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 986 *((__le32 *)((unsigned char *)ckpt + 987 le32_to_cpu(ckpt->checksum_offset))) 988 = cpu_to_le32(crc32); 989 990 start_blk = __start_cp_addr(sbi); 991 992 /* write out checkpoint buffer at block 0 */ 993 update_meta_page(sbi, ckpt, start_blk++); 994 995 for (i = 1; i < 1 + cp_payload_blks; i++) 996 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 997 start_blk++); 998 999 if (orphan_num) { 1000 write_orphan_inodes(sbi, start_blk); 1001 start_blk += orphan_blocks; 1002 } 1003 1004 write_data_summaries(sbi, start_blk); 1005 start_blk += data_sum_blocks; 1006 if (__remain_node_summaries(cpc->reason)) { 1007 write_node_summaries(sbi, start_blk); 1008 start_blk += NR_CURSEG_NODE_TYPE; 1009 } 1010 1011 /* writeout checkpoint block */ 1012 update_meta_page(sbi, ckpt, start_blk); 1013 1014 /* wait for previous submitted node/meta pages writeback */ 1015 wait_on_all_pages_writeback(sbi); 1016 1017 if (unlikely(f2fs_cp_error(sbi))) 1018 return; 1019 1020 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1021 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1022 1023 /* update user_block_counts */ 1024 sbi->last_valid_block_count = sbi->total_valid_block_count; 1025 sbi->alloc_valid_block_count = 0; 1026 1027 /* Here, we only have one bio having CP pack */ 1028 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1029 1030 /* wait for previous submitted meta pages writeback */ 1031 wait_on_all_pages_writeback(sbi); 1032 1033 release_dirty_inode(sbi); 1034 1035 if (unlikely(f2fs_cp_error(sbi))) 1036 return; 1037 1038 clear_prefree_segments(sbi, cpc); 1039 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1040 } 1041 1042 /* 1043 * We guarantee that this checkpoint procedure will not fail. 1044 */ 1045 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1046 { 1047 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1048 unsigned long long ckpt_ver; 1049 1050 mutex_lock(&sbi->cp_mutex); 1051 1052 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1053 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1054 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1055 goto out; 1056 if (unlikely(f2fs_cp_error(sbi))) 1057 goto out; 1058 if (f2fs_readonly(sbi->sb)) 1059 goto out; 1060 1061 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1062 1063 if (block_operations(sbi)) 1064 goto out; 1065 1066 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1067 1068 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1069 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1070 f2fs_submit_merged_bio(sbi, META, WRITE); 1071 1072 /* 1073 * update checkpoint pack index 1074 * Increase the version number so that 1075 * SIT entries and seg summaries are written at correct place 1076 */ 1077 ckpt_ver = cur_cp_version(ckpt); 1078 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1079 1080 /* write cached NAT/SIT entries to NAT/SIT area */ 1081 flush_nat_entries(sbi); 1082 flush_sit_entries(sbi, cpc); 1083 1084 /* unlock all the fs_lock[] in do_checkpoint() */ 1085 do_checkpoint(sbi, cpc); 1086 1087 unblock_operations(sbi); 1088 stat_inc_cp_count(sbi->stat_info); 1089 1090 if (cpc->reason == CP_RECOVERY) 1091 f2fs_msg(sbi->sb, KERN_NOTICE, 1092 "checkpoint: version = %llx", ckpt_ver); 1093 out: 1094 mutex_unlock(&sbi->cp_mutex); 1095 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1096 } 1097 1098 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1099 { 1100 int i; 1101 1102 for (i = 0; i < MAX_INO_ENTRY; i++) { 1103 struct inode_management *im = &sbi->im[i]; 1104 1105 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1106 spin_lock_init(&im->ino_lock); 1107 INIT_LIST_HEAD(&im->ino_list); 1108 im->ino_num = 0; 1109 } 1110 1111 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1112 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1113 F2FS_ORPHANS_PER_BLOCK; 1114 } 1115 1116 int __init create_checkpoint_caches(void) 1117 { 1118 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1119 sizeof(struct ino_entry)); 1120 if (!ino_entry_slab) 1121 return -ENOMEM; 1122 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1123 sizeof(struct inode_entry)); 1124 if (!inode_entry_slab) { 1125 kmem_cache_destroy(ino_entry_slab); 1126 return -ENOMEM; 1127 } 1128 return 0; 1129 } 1130 1131 void destroy_checkpoint_caches(void) 1132 { 1133 kmem_cache_destroy(ino_entry_slab); 1134 kmem_cache_destroy(inode_entry_slab); 1135 } 1136