xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision cfb271d485d0ec31eb92b51f4fbe54bf6542e8e6)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = sbi->meta_inode->i_mapping;
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page(mapping, index);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 
42 	/* We wait writeback only inside grab_meta_page() */
43 	wait_on_page_writeback(page);
44 	SetPageUptodate(page);
45 	return page;
46 }
47 
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 	struct address_space *mapping = sbi->meta_inode->i_mapping;
54 	struct page *page;
55 repeat:
56 	page = grab_cache_page(mapping, index);
57 	if (!page) {
58 		cond_resched();
59 		goto repeat;
60 	}
61 	if (PageUptodate(page))
62 		goto out;
63 
64 	if (f2fs_submit_page_bio(sbi, page, index,
65 				READ_SYNC | REQ_META | REQ_PRIO))
66 		goto repeat;
67 
68 	lock_page(page);
69 	if (page->mapping != mapping) {
70 		f2fs_put_page(page, 1);
71 		goto repeat;
72 	}
73 out:
74 	mark_page_accessed(page);
75 	return page;
76 }
77 
78 static int f2fs_write_meta_page(struct page *page,
79 				struct writeback_control *wbc)
80 {
81 	struct inode *inode = page->mapping->host;
82 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
83 
84 	/* Should not write any meta pages, if any IO error was occurred */
85 	if (unlikely(sbi->por_doing ||
86 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
87 		goto redirty_out;
88 
89 	if (wbc->for_reclaim)
90 		goto redirty_out;
91 
92 	wait_on_page_writeback(page);
93 
94 	write_meta_page(sbi, page);
95 	dec_page_count(sbi, F2FS_DIRTY_META);
96 	unlock_page(page);
97 	return 0;
98 
99 redirty_out:
100 	dec_page_count(sbi, F2FS_DIRTY_META);
101 	wbc->pages_skipped++;
102 	set_page_dirty(page);
103 	return AOP_WRITEPAGE_ACTIVATE;
104 }
105 
106 static int f2fs_write_meta_pages(struct address_space *mapping,
107 				struct writeback_control *wbc)
108 {
109 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
110 	struct block_device *bdev = sbi->sb->s_bdev;
111 	long written;
112 
113 	if (wbc->for_kupdate)
114 		return 0;
115 
116 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
117 		return 0;
118 
119 	/* if mounting is failed, skip writing node pages */
120 	mutex_lock(&sbi->cp_mutex);
121 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
122 	mutex_unlock(&sbi->cp_mutex);
123 	wbc->nr_to_write -= written;
124 	return 0;
125 }
126 
127 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
128 						long nr_to_write)
129 {
130 	struct address_space *mapping = sbi->meta_inode->i_mapping;
131 	pgoff_t index = 0, end = LONG_MAX;
132 	struct pagevec pvec;
133 	long nwritten = 0;
134 	struct writeback_control wbc = {
135 		.for_reclaim = 0,
136 	};
137 
138 	pagevec_init(&pvec, 0);
139 
140 	while (index <= end) {
141 		int i, nr_pages;
142 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
143 				PAGECACHE_TAG_DIRTY,
144 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
145 		if (unlikely(nr_pages == 0))
146 			break;
147 
148 		for (i = 0; i < nr_pages; i++) {
149 			struct page *page = pvec.pages[i];
150 			lock_page(page);
151 			f2fs_bug_on(page->mapping != mapping);
152 			f2fs_bug_on(!PageDirty(page));
153 			clear_page_dirty_for_io(page);
154 			if (f2fs_write_meta_page(page, &wbc)) {
155 				unlock_page(page);
156 				break;
157 			}
158 			nwritten++;
159 			if (unlikely(nwritten >= nr_to_write))
160 				break;
161 		}
162 		pagevec_release(&pvec);
163 		cond_resched();
164 	}
165 
166 	if (nwritten)
167 		f2fs_submit_merged_bio(sbi, type, nr_to_write == LONG_MAX,
168 								WRITE);
169 
170 	return nwritten;
171 }
172 
173 static int f2fs_set_meta_page_dirty(struct page *page)
174 {
175 	struct address_space *mapping = page->mapping;
176 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
177 
178 	trace_f2fs_set_page_dirty(page, META);
179 
180 	SetPageUptodate(page);
181 	if (!PageDirty(page)) {
182 		__set_page_dirty_nobuffers(page);
183 		inc_page_count(sbi, F2FS_DIRTY_META);
184 		return 1;
185 	}
186 	return 0;
187 }
188 
189 const struct address_space_operations f2fs_meta_aops = {
190 	.writepage	= f2fs_write_meta_page,
191 	.writepages	= f2fs_write_meta_pages,
192 	.set_page_dirty	= f2fs_set_meta_page_dirty,
193 };
194 
195 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
196 {
197 	unsigned int max_orphans;
198 	int err = 0;
199 
200 	/*
201 	 * considering 512 blocks in a segment 8 blocks are needed for cp
202 	 * and log segment summaries. Remaining blocks are used to keep
203 	 * orphan entries with the limitation one reserved segment
204 	 * for cp pack we can have max 1020*504 orphan entries
205 	 */
206 	max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
207 				* F2FS_ORPHANS_PER_BLOCK;
208 	mutex_lock(&sbi->orphan_inode_mutex);
209 	if (unlikely(sbi->n_orphans >= max_orphans))
210 		err = -ENOSPC;
211 	else
212 		sbi->n_orphans++;
213 	mutex_unlock(&sbi->orphan_inode_mutex);
214 	return err;
215 }
216 
217 void release_orphan_inode(struct f2fs_sb_info *sbi)
218 {
219 	mutex_lock(&sbi->orphan_inode_mutex);
220 	f2fs_bug_on(sbi->n_orphans == 0);
221 	sbi->n_orphans--;
222 	mutex_unlock(&sbi->orphan_inode_mutex);
223 }
224 
225 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227 	struct list_head *head, *this;
228 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
229 
230 	mutex_lock(&sbi->orphan_inode_mutex);
231 	head = &sbi->orphan_inode_list;
232 	list_for_each(this, head) {
233 		orphan = list_entry(this, struct orphan_inode_entry, list);
234 		if (orphan->ino == ino)
235 			goto out;
236 		if (orphan->ino > ino)
237 			break;
238 		orphan = NULL;
239 	}
240 
241 	new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
242 	new->ino = ino;
243 
244 	/* add new_oentry into list which is sorted by inode number */
245 	if (orphan)
246 		list_add(&new->list, this->prev);
247 	else
248 		list_add_tail(&new->list, head);
249 out:
250 	mutex_unlock(&sbi->orphan_inode_mutex);
251 }
252 
253 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
254 {
255 	struct list_head *head;
256 	struct orphan_inode_entry *orphan;
257 
258 	mutex_lock(&sbi->orphan_inode_mutex);
259 	head = &sbi->orphan_inode_list;
260 	list_for_each_entry(orphan, head, list) {
261 		if (orphan->ino == ino) {
262 			list_del(&orphan->list);
263 			kmem_cache_free(orphan_entry_slab, orphan);
264 			f2fs_bug_on(sbi->n_orphans == 0);
265 			sbi->n_orphans--;
266 			break;
267 		}
268 	}
269 	mutex_unlock(&sbi->orphan_inode_mutex);
270 }
271 
272 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
273 {
274 	struct inode *inode = f2fs_iget(sbi->sb, ino);
275 	f2fs_bug_on(IS_ERR(inode));
276 	clear_nlink(inode);
277 
278 	/* truncate all the data during iput */
279 	iput(inode);
280 }
281 
282 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
283 {
284 	block_t start_blk, orphan_blkaddr, i, j;
285 
286 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
287 		return;
288 
289 	sbi->por_doing = true;
290 	start_blk = __start_cp_addr(sbi) + 1;
291 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
292 
293 	for (i = 0; i < orphan_blkaddr; i++) {
294 		struct page *page = get_meta_page(sbi, start_blk + i);
295 		struct f2fs_orphan_block *orphan_blk;
296 
297 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
298 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
299 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
300 			recover_orphan_inode(sbi, ino);
301 		}
302 		f2fs_put_page(page, 1);
303 	}
304 	/* clear Orphan Flag */
305 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
306 	sbi->por_doing = false;
307 	return;
308 }
309 
310 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
311 {
312 	struct list_head *head;
313 	struct f2fs_orphan_block *orphan_blk = NULL;
314 	struct page *page = NULL;
315 	unsigned int nentries = 0;
316 	unsigned short index = 1;
317 	unsigned short orphan_blocks;
318 	struct orphan_inode_entry *orphan = NULL;
319 
320 	orphan_blocks = (unsigned short)((sbi->n_orphans +
321 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
322 
323 	mutex_lock(&sbi->orphan_inode_mutex);
324 	head = &sbi->orphan_inode_list;
325 
326 	/* loop for each orphan inode entry and write them in Jornal block */
327 	list_for_each_entry(orphan, head, list) {
328 		if (!page) {
329 			page = grab_meta_page(sbi, start_blk);
330 			orphan_blk =
331 				(struct f2fs_orphan_block *)page_address(page);
332 			memset(orphan_blk, 0, sizeof(*orphan_blk));
333 		}
334 
335 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
336 
337 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
338 			/*
339 			 * an orphan block is full of 1020 entries,
340 			 * then we need to flush current orphan blocks
341 			 * and bring another one in memory
342 			 */
343 			orphan_blk->blk_addr = cpu_to_le16(index);
344 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
345 			orphan_blk->entry_count = cpu_to_le32(nentries);
346 			set_page_dirty(page);
347 			f2fs_put_page(page, 1);
348 			index++;
349 			start_blk++;
350 			nentries = 0;
351 			page = NULL;
352 		}
353 	}
354 
355 	if (page) {
356 		orphan_blk->blk_addr = cpu_to_le16(index);
357 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
358 		orphan_blk->entry_count = cpu_to_le32(nentries);
359 		set_page_dirty(page);
360 		f2fs_put_page(page, 1);
361 	}
362 
363 	mutex_unlock(&sbi->orphan_inode_mutex);
364 }
365 
366 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
367 				block_t cp_addr, unsigned long long *version)
368 {
369 	struct page *cp_page_1, *cp_page_2 = NULL;
370 	unsigned long blk_size = sbi->blocksize;
371 	struct f2fs_checkpoint *cp_block;
372 	unsigned long long cur_version = 0, pre_version = 0;
373 	size_t crc_offset;
374 	__u32 crc = 0;
375 
376 	/* Read the 1st cp block in this CP pack */
377 	cp_page_1 = get_meta_page(sbi, cp_addr);
378 
379 	/* get the version number */
380 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
381 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
382 	if (crc_offset >= blk_size)
383 		goto invalid_cp1;
384 
385 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
386 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
387 		goto invalid_cp1;
388 
389 	pre_version = cur_cp_version(cp_block);
390 
391 	/* Read the 2nd cp block in this CP pack */
392 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
393 	cp_page_2 = get_meta_page(sbi, cp_addr);
394 
395 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
396 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
397 	if (crc_offset >= blk_size)
398 		goto invalid_cp2;
399 
400 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
401 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
402 		goto invalid_cp2;
403 
404 	cur_version = cur_cp_version(cp_block);
405 
406 	if (cur_version == pre_version) {
407 		*version = cur_version;
408 		f2fs_put_page(cp_page_2, 1);
409 		return cp_page_1;
410 	}
411 invalid_cp2:
412 	f2fs_put_page(cp_page_2, 1);
413 invalid_cp1:
414 	f2fs_put_page(cp_page_1, 1);
415 	return NULL;
416 }
417 
418 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
419 {
420 	struct f2fs_checkpoint *cp_block;
421 	struct f2fs_super_block *fsb = sbi->raw_super;
422 	struct page *cp1, *cp2, *cur_page;
423 	unsigned long blk_size = sbi->blocksize;
424 	unsigned long long cp1_version = 0, cp2_version = 0;
425 	unsigned long long cp_start_blk_no;
426 
427 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
428 	if (!sbi->ckpt)
429 		return -ENOMEM;
430 	/*
431 	 * Finding out valid cp block involves read both
432 	 * sets( cp pack1 and cp pack 2)
433 	 */
434 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
435 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
436 
437 	/* The second checkpoint pack should start at the next segment */
438 	cp_start_blk_no += ((unsigned long long)1) <<
439 				le32_to_cpu(fsb->log_blocks_per_seg);
440 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
441 
442 	if (cp1 && cp2) {
443 		if (ver_after(cp2_version, cp1_version))
444 			cur_page = cp2;
445 		else
446 			cur_page = cp1;
447 	} else if (cp1) {
448 		cur_page = cp1;
449 	} else if (cp2) {
450 		cur_page = cp2;
451 	} else {
452 		goto fail_no_cp;
453 	}
454 
455 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
456 	memcpy(sbi->ckpt, cp_block, blk_size);
457 
458 	f2fs_put_page(cp1, 1);
459 	f2fs_put_page(cp2, 1);
460 	return 0;
461 
462 fail_no_cp:
463 	kfree(sbi->ckpt);
464 	return -EINVAL;
465 }
466 
467 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
468 {
469 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
470 	struct list_head *head = &sbi->dir_inode_list;
471 	struct list_head *this;
472 
473 	list_for_each(this, head) {
474 		struct dir_inode_entry *entry;
475 		entry = list_entry(this, struct dir_inode_entry, list);
476 		if (entry->inode == inode)
477 			return -EEXIST;
478 	}
479 	list_add_tail(&new->list, head);
480 	stat_inc_dirty_dir(sbi);
481 	return 0;
482 }
483 
484 void set_dirty_dir_page(struct inode *inode, struct page *page)
485 {
486 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
487 	struct dir_inode_entry *new;
488 
489 	if (!S_ISDIR(inode->i_mode))
490 		return;
491 
492 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
493 	new->inode = inode;
494 	INIT_LIST_HEAD(&new->list);
495 
496 	spin_lock(&sbi->dir_inode_lock);
497 	if (__add_dirty_inode(inode, new))
498 		kmem_cache_free(inode_entry_slab, new);
499 
500 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
501 	inode_inc_dirty_dents(inode);
502 	SetPagePrivate(page);
503 	spin_unlock(&sbi->dir_inode_lock);
504 }
505 
506 void add_dirty_dir_inode(struct inode *inode)
507 {
508 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
509 	struct dir_inode_entry *new =
510 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
511 
512 	new->inode = inode;
513 	INIT_LIST_HEAD(&new->list);
514 
515 	spin_lock(&sbi->dir_inode_lock);
516 	if (__add_dirty_inode(inode, new))
517 		kmem_cache_free(inode_entry_slab, new);
518 	spin_unlock(&sbi->dir_inode_lock);
519 }
520 
521 void remove_dirty_dir_inode(struct inode *inode)
522 {
523 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
524 
525 	struct list_head *this, *head;
526 
527 	if (!S_ISDIR(inode->i_mode))
528 		return;
529 
530 	spin_lock(&sbi->dir_inode_lock);
531 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
532 		spin_unlock(&sbi->dir_inode_lock);
533 		return;
534 	}
535 
536 	head = &sbi->dir_inode_list;
537 	list_for_each(this, head) {
538 		struct dir_inode_entry *entry;
539 		entry = list_entry(this, struct dir_inode_entry, list);
540 		if (entry->inode == inode) {
541 			list_del(&entry->list);
542 			kmem_cache_free(inode_entry_slab, entry);
543 			stat_dec_dirty_dir(sbi);
544 			break;
545 		}
546 	}
547 	spin_unlock(&sbi->dir_inode_lock);
548 
549 	/* Only from the recovery routine */
550 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
551 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
552 		iput(inode);
553 	}
554 }
555 
556 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
557 {
558 
559 	struct list_head *this, *head;
560 	struct inode *inode = NULL;
561 
562 	spin_lock(&sbi->dir_inode_lock);
563 
564 	head = &sbi->dir_inode_list;
565 	list_for_each(this, head) {
566 		struct dir_inode_entry *entry;
567 		entry = list_entry(this, struct dir_inode_entry, list);
568 		if (entry->inode->i_ino == ino) {
569 			inode = entry->inode;
570 			break;
571 		}
572 	}
573 	spin_unlock(&sbi->dir_inode_lock);
574 	return inode;
575 }
576 
577 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
578 {
579 	struct list_head *head;
580 	struct dir_inode_entry *entry;
581 	struct inode *inode;
582 retry:
583 	spin_lock(&sbi->dir_inode_lock);
584 
585 	head = &sbi->dir_inode_list;
586 	if (list_empty(head)) {
587 		spin_unlock(&sbi->dir_inode_lock);
588 		return;
589 	}
590 	entry = list_entry(head->next, struct dir_inode_entry, list);
591 	inode = igrab(entry->inode);
592 	spin_unlock(&sbi->dir_inode_lock);
593 	if (inode) {
594 		filemap_flush(inode->i_mapping);
595 		iput(inode);
596 	} else {
597 		/*
598 		 * We should submit bio, since it exists several
599 		 * wribacking dentry pages in the freeing inode.
600 		 */
601 		f2fs_submit_merged_bio(sbi, DATA, true, WRITE);
602 	}
603 	goto retry;
604 }
605 
606 /*
607  * Freeze all the FS-operations for checkpoint.
608  */
609 static void block_operations(struct f2fs_sb_info *sbi)
610 {
611 	struct writeback_control wbc = {
612 		.sync_mode = WB_SYNC_ALL,
613 		.nr_to_write = LONG_MAX,
614 		.for_reclaim = 0,
615 	};
616 	struct blk_plug plug;
617 
618 	blk_start_plug(&plug);
619 
620 retry_flush_dents:
621 	f2fs_lock_all(sbi);
622 	/* write all the dirty dentry pages */
623 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
624 		f2fs_unlock_all(sbi);
625 		sync_dirty_dir_inodes(sbi);
626 		goto retry_flush_dents;
627 	}
628 
629 	/*
630 	 * POR: we should ensure that there is no dirty node pages
631 	 * until finishing nat/sit flush.
632 	 */
633 retry_flush_nodes:
634 	mutex_lock(&sbi->node_write);
635 
636 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
637 		mutex_unlock(&sbi->node_write);
638 		sync_node_pages(sbi, 0, &wbc);
639 		goto retry_flush_nodes;
640 	}
641 	blk_finish_plug(&plug);
642 }
643 
644 static void unblock_operations(struct f2fs_sb_info *sbi)
645 {
646 	mutex_unlock(&sbi->node_write);
647 	f2fs_unlock_all(sbi);
648 }
649 
650 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
651 {
652 	DEFINE_WAIT(wait);
653 
654 	for (;;) {
655 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
656 
657 		if (!get_pages(sbi, F2FS_WRITEBACK))
658 			break;
659 
660 		io_schedule();
661 	}
662 	finish_wait(&sbi->cp_wait, &wait);
663 }
664 
665 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
666 {
667 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
668 	nid_t last_nid = 0;
669 	block_t start_blk;
670 	struct page *cp_page;
671 	unsigned int data_sum_blocks, orphan_blocks;
672 	__u32 crc32 = 0;
673 	void *kaddr;
674 	int i;
675 
676 	/* Flush all the NAT/SIT pages */
677 	while (get_pages(sbi, F2FS_DIRTY_META))
678 		sync_meta_pages(sbi, META, LONG_MAX);
679 
680 	next_free_nid(sbi, &last_nid);
681 
682 	/*
683 	 * modify checkpoint
684 	 * version number is already updated
685 	 */
686 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
687 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
688 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
689 	for (i = 0; i < 3; i++) {
690 		ckpt->cur_node_segno[i] =
691 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
692 		ckpt->cur_node_blkoff[i] =
693 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
694 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
695 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
696 	}
697 	for (i = 0; i < 3; i++) {
698 		ckpt->cur_data_segno[i] =
699 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
700 		ckpt->cur_data_blkoff[i] =
701 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
702 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
703 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
704 	}
705 
706 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
707 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
708 	ckpt->next_free_nid = cpu_to_le32(last_nid);
709 
710 	/* 2 cp  + n data seg summary + orphan inode blocks */
711 	data_sum_blocks = npages_for_summary_flush(sbi);
712 	if (data_sum_blocks < 3)
713 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
714 	else
715 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
716 
717 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
718 					/ F2FS_ORPHANS_PER_BLOCK;
719 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
720 
721 	if (is_umount) {
722 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
723 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
724 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
725 	} else {
726 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
727 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
728 			data_sum_blocks + orphan_blocks);
729 	}
730 
731 	if (sbi->n_orphans)
732 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
733 	else
734 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
735 
736 	/* update SIT/NAT bitmap */
737 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
738 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
739 
740 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
741 	*((__le32 *)((unsigned char *)ckpt +
742 				le32_to_cpu(ckpt->checksum_offset)))
743 				= cpu_to_le32(crc32);
744 
745 	start_blk = __start_cp_addr(sbi);
746 
747 	/* write out checkpoint buffer at block 0 */
748 	cp_page = grab_meta_page(sbi, start_blk++);
749 	kaddr = page_address(cp_page);
750 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
751 	set_page_dirty(cp_page);
752 	f2fs_put_page(cp_page, 1);
753 
754 	if (sbi->n_orphans) {
755 		write_orphan_inodes(sbi, start_blk);
756 		start_blk += orphan_blocks;
757 	}
758 
759 	write_data_summaries(sbi, start_blk);
760 	start_blk += data_sum_blocks;
761 	if (is_umount) {
762 		write_node_summaries(sbi, start_blk);
763 		start_blk += NR_CURSEG_NODE_TYPE;
764 	}
765 
766 	/* writeout checkpoint block */
767 	cp_page = grab_meta_page(sbi, start_blk);
768 	kaddr = page_address(cp_page);
769 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
770 	set_page_dirty(cp_page);
771 	f2fs_put_page(cp_page, 1);
772 
773 	/* wait for previous submitted node/meta pages writeback */
774 	wait_on_all_pages_writeback(sbi);
775 
776 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
777 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
778 
779 	/* update user_block_counts */
780 	sbi->last_valid_block_count = sbi->total_valid_block_count;
781 	sbi->alloc_valid_block_count = 0;
782 
783 	/* Here, we only have one bio having CP pack */
784 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
785 
786 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
787 		clear_prefree_segments(sbi);
788 		F2FS_RESET_SB_DIRT(sbi);
789 	}
790 }
791 
792 /*
793  * We guarantee that this checkpoint procedure should not fail.
794  */
795 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
796 {
797 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
798 	unsigned long long ckpt_ver;
799 
800 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
801 
802 	mutex_lock(&sbi->cp_mutex);
803 	block_operations(sbi);
804 
805 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
806 
807 	f2fs_submit_merged_bio(sbi, DATA, true, WRITE);
808 	f2fs_submit_merged_bio(sbi, NODE, true, WRITE);
809 	f2fs_submit_merged_bio(sbi, META, true, WRITE);
810 
811 	/*
812 	 * update checkpoint pack index
813 	 * Increase the version number so that
814 	 * SIT entries and seg summaries are written at correct place
815 	 */
816 	ckpt_ver = cur_cp_version(ckpt);
817 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
818 
819 	/* write cached NAT/SIT entries to NAT/SIT area */
820 	flush_nat_entries(sbi);
821 	flush_sit_entries(sbi);
822 
823 	/* unlock all the fs_lock[] in do_checkpoint() */
824 	do_checkpoint(sbi, is_umount);
825 
826 	unblock_operations(sbi);
827 	mutex_unlock(&sbi->cp_mutex);
828 
829 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
830 }
831 
832 void init_orphan_info(struct f2fs_sb_info *sbi)
833 {
834 	mutex_init(&sbi->orphan_inode_mutex);
835 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
836 	sbi->n_orphans = 0;
837 }
838 
839 int __init create_checkpoint_caches(void)
840 {
841 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
842 			sizeof(struct orphan_inode_entry), NULL);
843 	if (unlikely(!orphan_entry_slab))
844 		return -ENOMEM;
845 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
846 			sizeof(struct dir_inode_entry), NULL);
847 	if (unlikely(!inode_entry_slab)) {
848 		kmem_cache_destroy(orphan_entry_slab);
849 		return -ENOMEM;
850 	}
851 	return 0;
852 }
853 
854 void destroy_checkpoint_caches(void)
855 {
856 	kmem_cache_destroy(orphan_entry_slab);
857 	kmem_cache_destroy(inode_entry_slab);
858 }
859