1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .type = META, 56 .rw = READ_SYNC | REQ_META | REQ_PRIO, 57 .blk_addr = index, 58 }; 59 repeat: 60 page = grab_cache_page(mapping, index); 61 if (!page) { 62 cond_resched(); 63 goto repeat; 64 } 65 if (PageUptodate(page)) 66 goto out; 67 68 if (f2fs_submit_page_bio(sbi, page, &fio)) 69 goto repeat; 70 71 lock_page(page); 72 if (unlikely(page->mapping != mapping)) { 73 f2fs_put_page(page, 1); 74 goto repeat; 75 } 76 out: 77 return page; 78 } 79 80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi, 81 block_t blkaddr, int type) 82 { 83 switch (type) { 84 case META_NAT: 85 break; 86 case META_SIT: 87 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 88 return false; 89 break; 90 case META_SSA: 91 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 92 blkaddr < SM_I(sbi)->ssa_blkaddr)) 93 return false; 94 break; 95 case META_CP: 96 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 97 blkaddr < __start_cp_addr(sbi))) 98 return false; 99 break; 100 case META_POR: 101 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 102 blkaddr < MAIN_BLKADDR(sbi))) 103 return false; 104 break; 105 default: 106 BUG(); 107 } 108 109 return true; 110 } 111 112 /* 113 * Readahead CP/NAT/SIT/SSA pages 114 */ 115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 116 { 117 block_t prev_blk_addr = 0; 118 struct page *page; 119 block_t blkno = start; 120 struct f2fs_io_info fio = { 121 .type = META, 122 .rw = READ_SYNC | REQ_META | REQ_PRIO 123 }; 124 125 for (; nrpages-- > 0; blkno++) { 126 127 if (!is_valid_blkaddr(sbi, blkno, type)) 128 goto out; 129 130 switch (type) { 131 case META_NAT: 132 if (unlikely(blkno >= 133 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 134 blkno = 0; 135 /* get nat block addr */ 136 fio.blk_addr = current_nat_addr(sbi, 137 blkno * NAT_ENTRY_PER_BLOCK); 138 break; 139 case META_SIT: 140 /* get sit block addr */ 141 fio.blk_addr = current_sit_addr(sbi, 142 blkno * SIT_ENTRY_PER_BLOCK); 143 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 144 goto out; 145 prev_blk_addr = fio.blk_addr; 146 break; 147 case META_SSA: 148 case META_CP: 149 case META_POR: 150 fio.blk_addr = blkno; 151 break; 152 default: 153 BUG(); 154 } 155 156 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 157 if (!page) 158 continue; 159 if (PageUptodate(page)) { 160 f2fs_put_page(page, 1); 161 continue; 162 } 163 164 f2fs_submit_page_mbio(sbi, page, &fio); 165 f2fs_put_page(page, 0); 166 } 167 out: 168 f2fs_submit_merged_bio(sbi, META, READ); 169 return blkno - start; 170 } 171 172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 173 { 174 struct page *page; 175 bool readahead = false; 176 177 page = find_get_page(META_MAPPING(sbi), index); 178 if (!page || (page && !PageUptodate(page))) 179 readahead = true; 180 f2fs_put_page(page, 0); 181 182 if (readahead) 183 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 184 } 185 186 static int f2fs_write_meta_page(struct page *page, 187 struct writeback_control *wbc) 188 { 189 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 190 191 trace_f2fs_writepage(page, META); 192 193 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 194 goto redirty_out; 195 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 196 goto redirty_out; 197 if (unlikely(f2fs_cp_error(sbi))) 198 goto redirty_out; 199 200 f2fs_wait_on_page_writeback(page, META); 201 write_meta_page(sbi, page); 202 dec_page_count(sbi, F2FS_DIRTY_META); 203 unlock_page(page); 204 205 if (wbc->for_reclaim) 206 f2fs_submit_merged_bio(sbi, META, WRITE); 207 return 0; 208 209 redirty_out: 210 redirty_page_for_writepage(wbc, page); 211 return AOP_WRITEPAGE_ACTIVATE; 212 } 213 214 static int f2fs_write_meta_pages(struct address_space *mapping, 215 struct writeback_control *wbc) 216 { 217 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 218 long diff, written; 219 220 trace_f2fs_writepages(mapping->host, wbc, META); 221 222 /* collect a number of dirty meta pages and write together */ 223 if (wbc->for_kupdate || 224 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 225 goto skip_write; 226 227 /* if mounting is failed, skip writing node pages */ 228 mutex_lock(&sbi->cp_mutex); 229 diff = nr_pages_to_write(sbi, META, wbc); 230 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 231 mutex_unlock(&sbi->cp_mutex); 232 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 233 return 0; 234 235 skip_write: 236 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 237 return 0; 238 } 239 240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 241 long nr_to_write) 242 { 243 struct address_space *mapping = META_MAPPING(sbi); 244 pgoff_t index = 0, end = LONG_MAX; 245 struct pagevec pvec; 246 long nwritten = 0; 247 struct writeback_control wbc = { 248 .for_reclaim = 0, 249 }; 250 251 pagevec_init(&pvec, 0); 252 253 while (index <= end) { 254 int i, nr_pages; 255 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 256 PAGECACHE_TAG_DIRTY, 257 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 258 if (unlikely(nr_pages == 0)) 259 break; 260 261 for (i = 0; i < nr_pages; i++) { 262 struct page *page = pvec.pages[i]; 263 264 lock_page(page); 265 266 if (unlikely(page->mapping != mapping)) { 267 continue_unlock: 268 unlock_page(page); 269 continue; 270 } 271 if (!PageDirty(page)) { 272 /* someone wrote it for us */ 273 goto continue_unlock; 274 } 275 276 if (!clear_page_dirty_for_io(page)) 277 goto continue_unlock; 278 279 if (f2fs_write_meta_page(page, &wbc)) { 280 unlock_page(page); 281 break; 282 } 283 nwritten++; 284 if (unlikely(nwritten >= nr_to_write)) 285 break; 286 } 287 pagevec_release(&pvec); 288 cond_resched(); 289 } 290 291 if (nwritten) 292 f2fs_submit_merged_bio(sbi, type, WRITE); 293 294 return nwritten; 295 } 296 297 static int f2fs_set_meta_page_dirty(struct page *page) 298 { 299 trace_f2fs_set_page_dirty(page, META); 300 301 SetPageUptodate(page); 302 if (!PageDirty(page)) { 303 __set_page_dirty_nobuffers(page); 304 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 305 SetPagePrivate(page); 306 f2fs_trace_pid(page); 307 return 1; 308 } 309 return 0; 310 } 311 312 static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset, 313 unsigned int length) 314 { 315 struct inode *inode = page->mapping->host; 316 317 if (PageDirty(page)) 318 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META); 319 ClearPagePrivate(page); 320 } 321 322 static int f2fs_release_meta_page(struct page *page, gfp_t wait) 323 { 324 ClearPagePrivate(page); 325 return 1; 326 } 327 328 const struct address_space_operations f2fs_meta_aops = { 329 .writepage = f2fs_write_meta_page, 330 .writepages = f2fs_write_meta_pages, 331 .set_page_dirty = f2fs_set_meta_page_dirty, 332 .invalidatepage = f2fs_invalidate_meta_page, 333 .releasepage = f2fs_release_meta_page, 334 }; 335 336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 337 { 338 struct inode_management *im = &sbi->im[type]; 339 struct ino_entry *e; 340 retry: 341 if (radix_tree_preload(GFP_NOFS)) { 342 cond_resched(); 343 goto retry; 344 } 345 346 spin_lock(&im->ino_lock); 347 348 e = radix_tree_lookup(&im->ino_root, ino); 349 if (!e) { 350 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 351 if (!e) { 352 spin_unlock(&im->ino_lock); 353 radix_tree_preload_end(); 354 goto retry; 355 } 356 if (radix_tree_insert(&im->ino_root, ino, e)) { 357 spin_unlock(&im->ino_lock); 358 kmem_cache_free(ino_entry_slab, e); 359 radix_tree_preload_end(); 360 goto retry; 361 } 362 memset(e, 0, sizeof(struct ino_entry)); 363 e->ino = ino; 364 365 list_add_tail(&e->list, &im->ino_list); 366 if (type != ORPHAN_INO) 367 im->ino_num++; 368 } 369 spin_unlock(&im->ino_lock); 370 radix_tree_preload_end(); 371 } 372 373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 374 { 375 struct inode_management *im = &sbi->im[type]; 376 struct ino_entry *e; 377 378 spin_lock(&im->ino_lock); 379 e = radix_tree_lookup(&im->ino_root, ino); 380 if (e) { 381 list_del(&e->list); 382 radix_tree_delete(&im->ino_root, ino); 383 im->ino_num--; 384 spin_unlock(&im->ino_lock); 385 kmem_cache_free(ino_entry_slab, e); 386 return; 387 } 388 spin_unlock(&im->ino_lock); 389 } 390 391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 392 { 393 /* add new dirty ino entry into list */ 394 __add_ino_entry(sbi, ino, type); 395 } 396 397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 398 { 399 /* remove dirty ino entry from list */ 400 __remove_ino_entry(sbi, ino, type); 401 } 402 403 /* mode should be APPEND_INO or UPDATE_INO */ 404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 405 { 406 struct inode_management *im = &sbi->im[mode]; 407 struct ino_entry *e; 408 409 spin_lock(&im->ino_lock); 410 e = radix_tree_lookup(&im->ino_root, ino); 411 spin_unlock(&im->ino_lock); 412 return e ? true : false; 413 } 414 415 void release_dirty_inode(struct f2fs_sb_info *sbi) 416 { 417 struct ino_entry *e, *tmp; 418 int i; 419 420 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 421 struct inode_management *im = &sbi->im[i]; 422 423 spin_lock(&im->ino_lock); 424 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 425 list_del(&e->list); 426 radix_tree_delete(&im->ino_root, e->ino); 427 kmem_cache_free(ino_entry_slab, e); 428 im->ino_num--; 429 } 430 spin_unlock(&im->ino_lock); 431 } 432 } 433 434 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 435 { 436 struct inode_management *im = &sbi->im[ORPHAN_INO]; 437 int err = 0; 438 439 spin_lock(&im->ino_lock); 440 if (unlikely(im->ino_num >= sbi->max_orphans)) 441 err = -ENOSPC; 442 else 443 im->ino_num++; 444 spin_unlock(&im->ino_lock); 445 446 return err; 447 } 448 449 void release_orphan_inode(struct f2fs_sb_info *sbi) 450 { 451 struct inode_management *im = &sbi->im[ORPHAN_INO]; 452 453 spin_lock(&im->ino_lock); 454 f2fs_bug_on(sbi, im->ino_num == 0); 455 im->ino_num--; 456 spin_unlock(&im->ino_lock); 457 } 458 459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 460 { 461 /* add new orphan ino entry into list */ 462 __add_ino_entry(sbi, ino, ORPHAN_INO); 463 } 464 465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 466 { 467 /* remove orphan entry from orphan list */ 468 __remove_ino_entry(sbi, ino, ORPHAN_INO); 469 } 470 471 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 472 { 473 struct inode *inode = f2fs_iget(sbi->sb, ino); 474 f2fs_bug_on(sbi, IS_ERR(inode)); 475 clear_nlink(inode); 476 477 /* truncate all the data during iput */ 478 iput(inode); 479 } 480 481 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 482 { 483 block_t start_blk, orphan_blkaddr, i, j; 484 485 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 486 return; 487 488 set_sbi_flag(sbi, SBI_POR_DOING); 489 490 start_blk = __start_cp_addr(sbi) + 1 + 491 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 492 orphan_blkaddr = __start_sum_addr(sbi) - 1; 493 494 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 495 496 for (i = 0; i < orphan_blkaddr; i++) { 497 struct page *page = get_meta_page(sbi, start_blk + i); 498 struct f2fs_orphan_block *orphan_blk; 499 500 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 501 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 502 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 503 recover_orphan_inode(sbi, ino); 504 } 505 f2fs_put_page(page, 1); 506 } 507 /* clear Orphan Flag */ 508 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 509 clear_sbi_flag(sbi, SBI_POR_DOING); 510 return; 511 } 512 513 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 514 { 515 struct list_head *head; 516 struct f2fs_orphan_block *orphan_blk = NULL; 517 unsigned int nentries = 0; 518 unsigned short index; 519 unsigned short orphan_blocks; 520 struct page *page = NULL; 521 struct ino_entry *orphan = NULL; 522 struct inode_management *im = &sbi->im[ORPHAN_INO]; 523 524 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 525 526 for (index = 0; index < orphan_blocks; index++) 527 grab_meta_page(sbi, start_blk + index); 528 529 index = 1; 530 spin_lock(&im->ino_lock); 531 head = &im->ino_list; 532 533 /* loop for each orphan inode entry and write them in Jornal block */ 534 list_for_each_entry(orphan, head, list) { 535 if (!page) { 536 page = find_get_page(META_MAPPING(sbi), start_blk++); 537 f2fs_bug_on(sbi, !page); 538 orphan_blk = 539 (struct f2fs_orphan_block *)page_address(page); 540 memset(orphan_blk, 0, sizeof(*orphan_blk)); 541 f2fs_put_page(page, 0); 542 } 543 544 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 545 546 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 547 /* 548 * an orphan block is full of 1020 entries, 549 * then we need to flush current orphan blocks 550 * and bring another one in memory 551 */ 552 orphan_blk->blk_addr = cpu_to_le16(index); 553 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 554 orphan_blk->entry_count = cpu_to_le32(nentries); 555 set_page_dirty(page); 556 f2fs_put_page(page, 1); 557 index++; 558 nentries = 0; 559 page = NULL; 560 } 561 } 562 563 if (page) { 564 orphan_blk->blk_addr = cpu_to_le16(index); 565 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 566 orphan_blk->entry_count = cpu_to_le32(nentries); 567 set_page_dirty(page); 568 f2fs_put_page(page, 1); 569 } 570 571 spin_unlock(&im->ino_lock); 572 } 573 574 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 575 block_t cp_addr, unsigned long long *version) 576 { 577 struct page *cp_page_1, *cp_page_2 = NULL; 578 unsigned long blk_size = sbi->blocksize; 579 struct f2fs_checkpoint *cp_block; 580 unsigned long long cur_version = 0, pre_version = 0; 581 size_t crc_offset; 582 __u32 crc = 0; 583 584 /* Read the 1st cp block in this CP pack */ 585 cp_page_1 = get_meta_page(sbi, cp_addr); 586 587 /* get the version number */ 588 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 589 crc_offset = le32_to_cpu(cp_block->checksum_offset); 590 if (crc_offset >= blk_size) 591 goto invalid_cp1; 592 593 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 594 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 595 goto invalid_cp1; 596 597 pre_version = cur_cp_version(cp_block); 598 599 /* Read the 2nd cp block in this CP pack */ 600 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 601 cp_page_2 = get_meta_page(sbi, cp_addr); 602 603 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 604 crc_offset = le32_to_cpu(cp_block->checksum_offset); 605 if (crc_offset >= blk_size) 606 goto invalid_cp2; 607 608 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 609 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 610 goto invalid_cp2; 611 612 cur_version = cur_cp_version(cp_block); 613 614 if (cur_version == pre_version) { 615 *version = cur_version; 616 f2fs_put_page(cp_page_2, 1); 617 return cp_page_1; 618 } 619 invalid_cp2: 620 f2fs_put_page(cp_page_2, 1); 621 invalid_cp1: 622 f2fs_put_page(cp_page_1, 1); 623 return NULL; 624 } 625 626 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 627 { 628 struct f2fs_checkpoint *cp_block; 629 struct f2fs_super_block *fsb = sbi->raw_super; 630 struct page *cp1, *cp2, *cur_page; 631 unsigned long blk_size = sbi->blocksize; 632 unsigned long long cp1_version = 0, cp2_version = 0; 633 unsigned long long cp_start_blk_no; 634 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 635 block_t cp_blk_no; 636 int i; 637 638 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 639 if (!sbi->ckpt) 640 return -ENOMEM; 641 /* 642 * Finding out valid cp block involves read both 643 * sets( cp pack1 and cp pack 2) 644 */ 645 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 646 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 647 648 /* The second checkpoint pack should start at the next segment */ 649 cp_start_blk_no += ((unsigned long long)1) << 650 le32_to_cpu(fsb->log_blocks_per_seg); 651 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 652 653 if (cp1 && cp2) { 654 if (ver_after(cp2_version, cp1_version)) 655 cur_page = cp2; 656 else 657 cur_page = cp1; 658 } else if (cp1) { 659 cur_page = cp1; 660 } else if (cp2) { 661 cur_page = cp2; 662 } else { 663 goto fail_no_cp; 664 } 665 666 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 667 memcpy(sbi->ckpt, cp_block, blk_size); 668 669 if (cp_blks <= 1) 670 goto done; 671 672 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 673 if (cur_page == cp2) 674 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 675 676 for (i = 1; i < cp_blks; i++) { 677 void *sit_bitmap_ptr; 678 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 679 680 cur_page = get_meta_page(sbi, cp_blk_no + i); 681 sit_bitmap_ptr = page_address(cur_page); 682 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 683 f2fs_put_page(cur_page, 1); 684 } 685 done: 686 f2fs_put_page(cp1, 1); 687 f2fs_put_page(cp2, 1); 688 return 0; 689 690 fail_no_cp: 691 kfree(sbi->ckpt); 692 return -EINVAL; 693 } 694 695 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 696 { 697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 698 699 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 700 return -EEXIST; 701 702 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 703 F2FS_I(inode)->dirty_dir = new; 704 list_add_tail(&new->list, &sbi->dir_inode_list); 705 stat_inc_dirty_dir(sbi); 706 return 0; 707 } 708 709 void update_dirty_page(struct inode *inode, struct page *page) 710 { 711 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 712 struct inode_entry *new; 713 int ret = 0; 714 715 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 716 return; 717 718 if (!S_ISDIR(inode->i_mode)) { 719 inode_inc_dirty_pages(inode); 720 goto out; 721 } 722 723 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 724 new->inode = inode; 725 INIT_LIST_HEAD(&new->list); 726 727 spin_lock(&sbi->dir_inode_lock); 728 ret = __add_dirty_inode(inode, new); 729 inode_inc_dirty_pages(inode); 730 spin_unlock(&sbi->dir_inode_lock); 731 732 if (ret) 733 kmem_cache_free(inode_entry_slab, new); 734 out: 735 SetPagePrivate(page); 736 f2fs_trace_pid(page); 737 } 738 739 void add_dirty_dir_inode(struct inode *inode) 740 { 741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 742 struct inode_entry *new = 743 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 744 int ret = 0; 745 746 new->inode = inode; 747 INIT_LIST_HEAD(&new->list); 748 749 spin_lock(&sbi->dir_inode_lock); 750 ret = __add_dirty_inode(inode, new); 751 spin_unlock(&sbi->dir_inode_lock); 752 753 if (ret) 754 kmem_cache_free(inode_entry_slab, new); 755 } 756 757 void remove_dirty_dir_inode(struct inode *inode) 758 { 759 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 760 struct inode_entry *entry; 761 762 if (!S_ISDIR(inode->i_mode)) 763 return; 764 765 spin_lock(&sbi->dir_inode_lock); 766 if (get_dirty_pages(inode) || 767 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 768 spin_unlock(&sbi->dir_inode_lock); 769 return; 770 } 771 772 entry = F2FS_I(inode)->dirty_dir; 773 list_del(&entry->list); 774 F2FS_I(inode)->dirty_dir = NULL; 775 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 776 stat_dec_dirty_dir(sbi); 777 spin_unlock(&sbi->dir_inode_lock); 778 kmem_cache_free(inode_entry_slab, entry); 779 780 /* Only from the recovery routine */ 781 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 782 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 783 iput(inode); 784 } 785 } 786 787 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 788 { 789 struct list_head *head; 790 struct inode_entry *entry; 791 struct inode *inode; 792 retry: 793 if (unlikely(f2fs_cp_error(sbi))) 794 return; 795 796 spin_lock(&sbi->dir_inode_lock); 797 798 head = &sbi->dir_inode_list; 799 if (list_empty(head)) { 800 spin_unlock(&sbi->dir_inode_lock); 801 return; 802 } 803 entry = list_entry(head->next, struct inode_entry, list); 804 inode = igrab(entry->inode); 805 spin_unlock(&sbi->dir_inode_lock); 806 if (inode) { 807 filemap_fdatawrite(inode->i_mapping); 808 iput(inode); 809 } else { 810 /* 811 * We should submit bio, since it exists several 812 * wribacking dentry pages in the freeing inode. 813 */ 814 f2fs_submit_merged_bio(sbi, DATA, WRITE); 815 } 816 goto retry; 817 } 818 819 /* 820 * Freeze all the FS-operations for checkpoint. 821 */ 822 static int block_operations(struct f2fs_sb_info *sbi) 823 { 824 struct writeback_control wbc = { 825 .sync_mode = WB_SYNC_ALL, 826 .nr_to_write = LONG_MAX, 827 .for_reclaim = 0, 828 }; 829 struct blk_plug plug; 830 int err = 0; 831 832 blk_start_plug(&plug); 833 834 retry_flush_dents: 835 f2fs_lock_all(sbi); 836 /* write all the dirty dentry pages */ 837 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 838 f2fs_unlock_all(sbi); 839 sync_dirty_dir_inodes(sbi); 840 if (unlikely(f2fs_cp_error(sbi))) { 841 err = -EIO; 842 goto out; 843 } 844 goto retry_flush_dents; 845 } 846 847 /* 848 * POR: we should ensure that there are no dirty node pages 849 * until finishing nat/sit flush. 850 */ 851 retry_flush_nodes: 852 down_write(&sbi->node_write); 853 854 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 855 up_write(&sbi->node_write); 856 sync_node_pages(sbi, 0, &wbc); 857 if (unlikely(f2fs_cp_error(sbi))) { 858 f2fs_unlock_all(sbi); 859 err = -EIO; 860 goto out; 861 } 862 goto retry_flush_nodes; 863 } 864 out: 865 blk_finish_plug(&plug); 866 return err; 867 } 868 869 static void unblock_operations(struct f2fs_sb_info *sbi) 870 { 871 up_write(&sbi->node_write); 872 f2fs_unlock_all(sbi); 873 } 874 875 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 876 { 877 DEFINE_WAIT(wait); 878 879 for (;;) { 880 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 881 882 if (!get_pages(sbi, F2FS_WRITEBACK)) 883 break; 884 885 io_schedule(); 886 } 887 finish_wait(&sbi->cp_wait, &wait); 888 } 889 890 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 891 { 892 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 893 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 894 struct f2fs_nm_info *nm_i = NM_I(sbi); 895 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 896 nid_t last_nid = nm_i->next_scan_nid; 897 block_t start_blk; 898 struct page *cp_page; 899 unsigned int data_sum_blocks, orphan_blocks; 900 __u32 crc32 = 0; 901 void *kaddr; 902 int i; 903 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 904 905 /* 906 * This avoids to conduct wrong roll-forward operations and uses 907 * metapages, so should be called prior to sync_meta_pages below. 908 */ 909 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 910 911 /* Flush all the NAT/SIT pages */ 912 while (get_pages(sbi, F2FS_DIRTY_META)) { 913 sync_meta_pages(sbi, META, LONG_MAX); 914 if (unlikely(f2fs_cp_error(sbi))) 915 return; 916 } 917 918 next_free_nid(sbi, &last_nid); 919 920 /* 921 * modify checkpoint 922 * version number is already updated 923 */ 924 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 925 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 926 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 927 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 928 ckpt->cur_node_segno[i] = 929 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 930 ckpt->cur_node_blkoff[i] = 931 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 932 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 933 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 934 } 935 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 936 ckpt->cur_data_segno[i] = 937 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 938 ckpt->cur_data_blkoff[i] = 939 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 940 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 941 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 942 } 943 944 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 945 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 946 ckpt->next_free_nid = cpu_to_le32(last_nid); 947 948 /* 2 cp + n data seg summary + orphan inode blocks */ 949 data_sum_blocks = npages_for_summary_flush(sbi, false); 950 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 951 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 952 else 953 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 954 955 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 956 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 957 orphan_blocks); 958 959 if (cpc->reason == CP_UMOUNT) { 960 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 961 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 962 cp_payload_blks + data_sum_blocks + 963 orphan_blocks + NR_CURSEG_NODE_TYPE); 964 } else { 965 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 966 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 967 cp_payload_blks + data_sum_blocks + 968 orphan_blocks); 969 } 970 971 if (orphan_num) 972 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 973 else 974 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 975 976 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 977 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 978 979 /* update SIT/NAT bitmap */ 980 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 981 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 982 983 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 984 *((__le32 *)((unsigned char *)ckpt + 985 le32_to_cpu(ckpt->checksum_offset))) 986 = cpu_to_le32(crc32); 987 988 start_blk = __start_cp_addr(sbi); 989 990 /* write out checkpoint buffer at block 0 */ 991 cp_page = grab_meta_page(sbi, start_blk++); 992 kaddr = page_address(cp_page); 993 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 994 set_page_dirty(cp_page); 995 f2fs_put_page(cp_page, 1); 996 997 for (i = 1; i < 1 + cp_payload_blks; i++) { 998 cp_page = grab_meta_page(sbi, start_blk++); 999 kaddr = page_address(cp_page); 1000 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, 1001 (1 << sbi->log_blocksize)); 1002 set_page_dirty(cp_page); 1003 f2fs_put_page(cp_page, 1); 1004 } 1005 1006 if (orphan_num) { 1007 write_orphan_inodes(sbi, start_blk); 1008 start_blk += orphan_blocks; 1009 } 1010 1011 write_data_summaries(sbi, start_blk); 1012 start_blk += data_sum_blocks; 1013 if (cpc->reason == CP_UMOUNT) { 1014 write_node_summaries(sbi, start_blk); 1015 start_blk += NR_CURSEG_NODE_TYPE; 1016 } 1017 1018 /* writeout checkpoint block */ 1019 cp_page = grab_meta_page(sbi, start_blk); 1020 kaddr = page_address(cp_page); 1021 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 1022 set_page_dirty(cp_page); 1023 f2fs_put_page(cp_page, 1); 1024 1025 /* wait for previous submitted node/meta pages writeback */ 1026 wait_on_all_pages_writeback(sbi); 1027 1028 if (unlikely(f2fs_cp_error(sbi))) 1029 return; 1030 1031 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1032 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1033 1034 /* update user_block_counts */ 1035 sbi->last_valid_block_count = sbi->total_valid_block_count; 1036 sbi->alloc_valid_block_count = 0; 1037 1038 /* Here, we only have one bio having CP pack */ 1039 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1040 1041 /* wait for previous submitted meta pages writeback */ 1042 wait_on_all_pages_writeback(sbi); 1043 1044 release_dirty_inode(sbi); 1045 1046 if (unlikely(f2fs_cp_error(sbi))) 1047 return; 1048 1049 clear_prefree_segments(sbi); 1050 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1051 } 1052 1053 /* 1054 * We guarantee that this checkpoint procedure will not fail. 1055 */ 1056 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1057 { 1058 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1059 unsigned long long ckpt_ver; 1060 1061 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1062 1063 mutex_lock(&sbi->cp_mutex); 1064 1065 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1066 cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT) 1067 goto out; 1068 if (unlikely(f2fs_cp_error(sbi))) 1069 goto out; 1070 if (block_operations(sbi)) 1071 goto out; 1072 1073 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1074 1075 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1076 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1077 f2fs_submit_merged_bio(sbi, META, WRITE); 1078 1079 /* 1080 * update checkpoint pack index 1081 * Increase the version number so that 1082 * SIT entries and seg summaries are written at correct place 1083 */ 1084 ckpt_ver = cur_cp_version(ckpt); 1085 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1086 1087 /* write cached NAT/SIT entries to NAT/SIT area */ 1088 flush_nat_entries(sbi); 1089 flush_sit_entries(sbi, cpc); 1090 1091 /* unlock all the fs_lock[] in do_checkpoint() */ 1092 do_checkpoint(sbi, cpc); 1093 1094 unblock_operations(sbi); 1095 stat_inc_cp_count(sbi->stat_info); 1096 out: 1097 mutex_unlock(&sbi->cp_mutex); 1098 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1099 } 1100 1101 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1102 { 1103 int i; 1104 1105 for (i = 0; i < MAX_INO_ENTRY; i++) { 1106 struct inode_management *im = &sbi->im[i]; 1107 1108 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1109 spin_lock_init(&im->ino_lock); 1110 INIT_LIST_HEAD(&im->ino_list); 1111 im->ino_num = 0; 1112 } 1113 1114 /* 1115 * considering 512 blocks in a segment 8 blocks are needed for cp 1116 * and log segment summaries. Remaining blocks are used to keep 1117 * orphan entries with the limitation one reserved segment 1118 * for cp pack we can have max 1020*504 orphan entries 1119 */ 1120 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1121 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK; 1122 } 1123 1124 int __init create_checkpoint_caches(void) 1125 { 1126 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1127 sizeof(struct ino_entry)); 1128 if (!ino_entry_slab) 1129 return -ENOMEM; 1130 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1131 sizeof(struct inode_entry)); 1132 if (!inode_entry_slab) { 1133 kmem_cache_destroy(ino_entry_slab); 1134 return -ENOMEM; 1135 } 1136 return 0; 1137 } 1138 1139 void destroy_checkpoint_caches(void) 1140 { 1141 kmem_cache_destroy(ino_entry_slab); 1142 kmem_cache_destroy(inode_entry_slab); 1143 } 1144