xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision af697c0f5c5b8798832e651baf23460d588393de)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page = NULL;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 		.is_meta = is_meta,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page))) {
104 		memset(page_address(page), 0, PAGE_SIZE);
105 		f2fs_stop_checkpoint(sbi, false);
106 	}
107 out:
108 	return page;
109 }
110 
111 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
112 {
113 	return __get_meta_page(sbi, index, true);
114 }
115 
116 /* for POR only */
117 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
118 {
119 	return __get_meta_page(sbi, index, false);
120 }
121 
122 bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi,
123 					block_t blkaddr, int type)
124 {
125 	switch (type) {
126 	case META_NAT:
127 		break;
128 	case META_SIT:
129 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
130 			return false;
131 		break;
132 	case META_SSA:
133 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
134 			blkaddr < SM_I(sbi)->ssa_blkaddr))
135 			return false;
136 		break;
137 	case META_CP:
138 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
139 			blkaddr < __start_cp_addr(sbi)))
140 			return false;
141 		break;
142 	case META_POR:
143 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
144 			blkaddr < MAIN_BLKADDR(sbi)))
145 			return false;
146 		break;
147 	default:
148 		BUG();
149 	}
150 
151 	return true;
152 }
153 
154 /*
155  * Readahead CP/NAT/SIT/SSA pages
156  */
157 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
158 							int type, bool sync)
159 {
160 	struct page *page;
161 	block_t blkno = start;
162 	struct f2fs_io_info fio = {
163 		.sbi = sbi,
164 		.type = META,
165 		.op = REQ_OP_READ,
166 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
167 		.encrypted_page = NULL,
168 		.in_list = false,
169 		.is_meta = (type != META_POR),
170 	};
171 	struct blk_plug plug;
172 
173 	if (unlikely(type == META_POR))
174 		fio.op_flags &= ~REQ_META;
175 
176 	blk_start_plug(&plug);
177 	for (; nrpages-- > 0; blkno++) {
178 
179 		if (!f2fs_is_valid_meta_blkaddr(sbi, blkno, type))
180 			goto out;
181 
182 		switch (type) {
183 		case META_NAT:
184 			if (unlikely(blkno >=
185 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
186 				blkno = 0;
187 			/* get nat block addr */
188 			fio.new_blkaddr = current_nat_addr(sbi,
189 					blkno * NAT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SIT:
192 			/* get sit block addr */
193 			fio.new_blkaddr = current_sit_addr(sbi,
194 					blkno * SIT_ENTRY_PER_BLOCK);
195 			break;
196 		case META_SSA:
197 		case META_CP:
198 		case META_POR:
199 			fio.new_blkaddr = blkno;
200 			break;
201 		default:
202 			BUG();
203 		}
204 
205 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
206 						fio.new_blkaddr, false);
207 		if (!page)
208 			continue;
209 		if (PageUptodate(page)) {
210 			f2fs_put_page(page, 1);
211 			continue;
212 		}
213 
214 		fio.page = page;
215 		f2fs_submit_page_bio(&fio);
216 		f2fs_put_page(page, 0);
217 	}
218 out:
219 	blk_finish_plug(&plug);
220 	return blkno - start;
221 }
222 
223 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
224 {
225 	struct page *page;
226 	bool readahead = false;
227 
228 	page = find_get_page(META_MAPPING(sbi), index);
229 	if (!page || !PageUptodate(page))
230 		readahead = true;
231 	f2fs_put_page(page, 0);
232 
233 	if (readahead)
234 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
235 }
236 
237 static int __f2fs_write_meta_page(struct page *page,
238 				struct writeback_control *wbc,
239 				enum iostat_type io_type)
240 {
241 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
242 
243 	trace_f2fs_writepage(page, META);
244 
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248 		goto redirty_out;
249 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250 		goto redirty_out;
251 
252 	f2fs_do_write_meta_page(sbi, page, io_type);
253 	dec_page_count(sbi, F2FS_DIRTY_META);
254 
255 	if (wbc->for_reclaim)
256 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
257 						0, page->index, META);
258 
259 	unlock_page(page);
260 
261 	if (unlikely(f2fs_cp_error(sbi)))
262 		f2fs_submit_merged_write(sbi, META);
263 
264 	return 0;
265 
266 redirty_out:
267 	redirty_page_for_writepage(wbc, page);
268 	return AOP_WRITEPAGE_ACTIVATE;
269 }
270 
271 static int f2fs_write_meta_page(struct page *page,
272 				struct writeback_control *wbc)
273 {
274 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275 }
276 
277 static int f2fs_write_meta_pages(struct address_space *mapping,
278 				struct writeback_control *wbc)
279 {
280 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
281 	long diff, written;
282 
283 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
284 		goto skip_write;
285 
286 	/* collect a number of dirty meta pages and write together */
287 	if (wbc->for_kupdate ||
288 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
289 		goto skip_write;
290 
291 	/* if locked failed, cp will flush dirty pages instead */
292 	if (!mutex_trylock(&sbi->cp_mutex))
293 		goto skip_write;
294 
295 	trace_f2fs_writepages(mapping->host, wbc, META);
296 	diff = nr_pages_to_write(sbi, META, wbc);
297 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
298 	mutex_unlock(&sbi->cp_mutex);
299 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
300 	return 0;
301 
302 skip_write:
303 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
304 	trace_f2fs_writepages(mapping->host, wbc, META);
305 	return 0;
306 }
307 
308 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
309 				long nr_to_write, enum iostat_type io_type)
310 {
311 	struct address_space *mapping = META_MAPPING(sbi);
312 	pgoff_t index = 0, prev = ULONG_MAX;
313 	struct pagevec pvec;
314 	long nwritten = 0;
315 	int nr_pages;
316 	struct writeback_control wbc = {
317 		.for_reclaim = 0,
318 	};
319 	struct blk_plug plug;
320 
321 	pagevec_init(&pvec);
322 
323 	blk_start_plug(&plug);
324 
325 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
326 				PAGECACHE_TAG_DIRTY))) {
327 		int i;
328 
329 		for (i = 0; i < nr_pages; i++) {
330 			struct page *page = pvec.pages[i];
331 
332 			if (prev == ULONG_MAX)
333 				prev = page->index - 1;
334 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
335 				pagevec_release(&pvec);
336 				goto stop;
337 			}
338 
339 			lock_page(page);
340 
341 			if (unlikely(page->mapping != mapping)) {
342 continue_unlock:
343 				unlock_page(page);
344 				continue;
345 			}
346 			if (!PageDirty(page)) {
347 				/* someone wrote it for us */
348 				goto continue_unlock;
349 			}
350 
351 			f2fs_wait_on_page_writeback(page, META, true);
352 
353 			BUG_ON(PageWriteback(page));
354 			if (!clear_page_dirty_for_io(page))
355 				goto continue_unlock;
356 
357 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
358 				unlock_page(page);
359 				break;
360 			}
361 			nwritten++;
362 			prev = page->index;
363 			if (unlikely(nwritten >= nr_to_write))
364 				break;
365 		}
366 		pagevec_release(&pvec);
367 		cond_resched();
368 	}
369 stop:
370 	if (nwritten)
371 		f2fs_submit_merged_write(sbi, type);
372 
373 	blk_finish_plug(&plug);
374 
375 	return nwritten;
376 }
377 
378 static int f2fs_set_meta_page_dirty(struct page *page)
379 {
380 	trace_f2fs_set_page_dirty(page, META);
381 
382 	if (!PageUptodate(page))
383 		SetPageUptodate(page);
384 	if (!PageDirty(page)) {
385 		__set_page_dirty_nobuffers(page);
386 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
387 		SetPagePrivate(page);
388 		f2fs_trace_pid(page);
389 		return 1;
390 	}
391 	return 0;
392 }
393 
394 const struct address_space_operations f2fs_meta_aops = {
395 	.writepage	= f2fs_write_meta_page,
396 	.writepages	= f2fs_write_meta_pages,
397 	.set_page_dirty	= f2fs_set_meta_page_dirty,
398 	.invalidatepage = f2fs_invalidate_page,
399 	.releasepage	= f2fs_release_page,
400 #ifdef CONFIG_MIGRATION
401 	.migratepage    = f2fs_migrate_page,
402 #endif
403 };
404 
405 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
406 						unsigned int devidx, int type)
407 {
408 	struct inode_management *im = &sbi->im[type];
409 	struct ino_entry *e, *tmp;
410 
411 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
412 
413 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
414 
415 	spin_lock(&im->ino_lock);
416 	e = radix_tree_lookup(&im->ino_root, ino);
417 	if (!e) {
418 		e = tmp;
419 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
420 			f2fs_bug_on(sbi, 1);
421 
422 		memset(e, 0, sizeof(struct ino_entry));
423 		e->ino = ino;
424 
425 		list_add_tail(&e->list, &im->ino_list);
426 		if (type != ORPHAN_INO)
427 			im->ino_num++;
428 	}
429 
430 	if (type == FLUSH_INO)
431 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
432 
433 	spin_unlock(&im->ino_lock);
434 	radix_tree_preload_end();
435 
436 	if (e != tmp)
437 		kmem_cache_free(ino_entry_slab, tmp);
438 }
439 
440 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
441 {
442 	struct inode_management *im = &sbi->im[type];
443 	struct ino_entry *e;
444 
445 	spin_lock(&im->ino_lock);
446 	e = radix_tree_lookup(&im->ino_root, ino);
447 	if (e) {
448 		list_del(&e->list);
449 		radix_tree_delete(&im->ino_root, ino);
450 		im->ino_num--;
451 		spin_unlock(&im->ino_lock);
452 		kmem_cache_free(ino_entry_slab, e);
453 		return;
454 	}
455 	spin_unlock(&im->ino_lock);
456 }
457 
458 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
459 {
460 	/* add new dirty ino entry into list */
461 	__add_ino_entry(sbi, ino, 0, type);
462 }
463 
464 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
465 {
466 	/* remove dirty ino entry from list */
467 	__remove_ino_entry(sbi, ino, type);
468 }
469 
470 /* mode should be APPEND_INO or UPDATE_INO */
471 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
472 {
473 	struct inode_management *im = &sbi->im[mode];
474 	struct ino_entry *e;
475 
476 	spin_lock(&im->ino_lock);
477 	e = radix_tree_lookup(&im->ino_root, ino);
478 	spin_unlock(&im->ino_lock);
479 	return e ? true : false;
480 }
481 
482 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
483 {
484 	struct ino_entry *e, *tmp;
485 	int i;
486 
487 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
488 		struct inode_management *im = &sbi->im[i];
489 
490 		spin_lock(&im->ino_lock);
491 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
492 			list_del(&e->list);
493 			radix_tree_delete(&im->ino_root, e->ino);
494 			kmem_cache_free(ino_entry_slab, e);
495 			im->ino_num--;
496 		}
497 		spin_unlock(&im->ino_lock);
498 	}
499 }
500 
501 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
502 					unsigned int devidx, int type)
503 {
504 	__add_ino_entry(sbi, ino, devidx, type);
505 }
506 
507 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
508 					unsigned int devidx, int type)
509 {
510 	struct inode_management *im = &sbi->im[type];
511 	struct ino_entry *e;
512 	bool is_dirty = false;
513 
514 	spin_lock(&im->ino_lock);
515 	e = radix_tree_lookup(&im->ino_root, ino);
516 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
517 		is_dirty = true;
518 	spin_unlock(&im->ino_lock);
519 	return is_dirty;
520 }
521 
522 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
523 {
524 	struct inode_management *im = &sbi->im[ORPHAN_INO];
525 	int err = 0;
526 
527 	spin_lock(&im->ino_lock);
528 
529 #ifdef CONFIG_F2FS_FAULT_INJECTION
530 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
531 		spin_unlock(&im->ino_lock);
532 		f2fs_show_injection_info(FAULT_ORPHAN);
533 		return -ENOSPC;
534 	}
535 #endif
536 	if (unlikely(im->ino_num >= sbi->max_orphans))
537 		err = -ENOSPC;
538 	else
539 		im->ino_num++;
540 	spin_unlock(&im->ino_lock);
541 
542 	return err;
543 }
544 
545 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
546 {
547 	struct inode_management *im = &sbi->im[ORPHAN_INO];
548 
549 	spin_lock(&im->ino_lock);
550 	f2fs_bug_on(sbi, im->ino_num == 0);
551 	im->ino_num--;
552 	spin_unlock(&im->ino_lock);
553 }
554 
555 void f2fs_add_orphan_inode(struct inode *inode)
556 {
557 	/* add new orphan ino entry into list */
558 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
559 	f2fs_update_inode_page(inode);
560 }
561 
562 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
563 {
564 	/* remove orphan entry from orphan list */
565 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
566 }
567 
568 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
569 {
570 	struct inode *inode;
571 	struct node_info ni;
572 	int err = f2fs_acquire_orphan_inode(sbi);
573 
574 	if (err)
575 		goto err_out;
576 
577 	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578 
579 	inode = f2fs_iget_retry(sbi->sb, ino);
580 	if (IS_ERR(inode)) {
581 		/*
582 		 * there should be a bug that we can't find the entry
583 		 * to orphan inode.
584 		 */
585 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586 		return PTR_ERR(inode);
587 	}
588 
589 	err = dquot_initialize(inode);
590 	if (err) {
591 		iput(inode);
592 		goto err_out;
593 	}
594 
595 	clear_nlink(inode);
596 
597 	/* truncate all the data during iput */
598 	iput(inode);
599 
600 	f2fs_get_node_info(sbi, ino, &ni);
601 
602 	/* ENOMEM was fully retried in f2fs_evict_inode. */
603 	if (ni.blk_addr != NULL_ADDR) {
604 		err = -EIO;
605 		goto err_out;
606 	}
607 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
608 	return 0;
609 
610 err_out:
611 	set_sbi_flag(sbi, SBI_NEED_FSCK);
612 	f2fs_msg(sbi->sb, KERN_WARNING,
613 			"%s: orphan failed (ino=%x), run fsck to fix.",
614 			__func__, ino);
615 	return err;
616 }
617 
618 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
619 {
620 	block_t start_blk, orphan_blocks, i, j;
621 	unsigned int s_flags = sbi->sb->s_flags;
622 	int err = 0;
623 #ifdef CONFIG_QUOTA
624 	int quota_enabled;
625 #endif
626 
627 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
628 		return 0;
629 
630 	if (s_flags & SB_RDONLY) {
631 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
632 		sbi->sb->s_flags &= ~SB_RDONLY;
633 	}
634 
635 #ifdef CONFIG_QUOTA
636 	/* Needed for iput() to work correctly and not trash data */
637 	sbi->sb->s_flags |= SB_ACTIVE;
638 
639 	/* Turn on quotas so that they are updated correctly */
640 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
641 #endif
642 
643 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
644 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
645 
646 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
647 
648 	for (i = 0; i < orphan_blocks; i++) {
649 		struct page *page = f2fs_get_meta_page(sbi, start_blk + i);
650 		struct f2fs_orphan_block *orphan_blk;
651 
652 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
653 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
654 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
655 			err = recover_orphan_inode(sbi, ino);
656 			if (err) {
657 				f2fs_put_page(page, 1);
658 				goto out;
659 			}
660 		}
661 		f2fs_put_page(page, 1);
662 	}
663 	/* clear Orphan Flag */
664 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
665 out:
666 #ifdef CONFIG_QUOTA
667 	/* Turn quotas off */
668 	if (quota_enabled)
669 		f2fs_quota_off_umount(sbi->sb);
670 #endif
671 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
672 
673 	return err;
674 }
675 
676 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
677 {
678 	struct list_head *head;
679 	struct f2fs_orphan_block *orphan_blk = NULL;
680 	unsigned int nentries = 0;
681 	unsigned short index = 1;
682 	unsigned short orphan_blocks;
683 	struct page *page = NULL;
684 	struct ino_entry *orphan = NULL;
685 	struct inode_management *im = &sbi->im[ORPHAN_INO];
686 
687 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
688 
689 	/*
690 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
691 	 * orphan inode operations are covered under f2fs_lock_op().
692 	 * And, spin_lock should be avoided due to page operations below.
693 	 */
694 	head = &im->ino_list;
695 
696 	/* loop for each orphan inode entry and write them in Jornal block */
697 	list_for_each_entry(orphan, head, list) {
698 		if (!page) {
699 			page = f2fs_grab_meta_page(sbi, start_blk++);
700 			orphan_blk =
701 				(struct f2fs_orphan_block *)page_address(page);
702 			memset(orphan_blk, 0, sizeof(*orphan_blk));
703 		}
704 
705 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
706 
707 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
708 			/*
709 			 * an orphan block is full of 1020 entries,
710 			 * then we need to flush current orphan blocks
711 			 * and bring another one in memory
712 			 */
713 			orphan_blk->blk_addr = cpu_to_le16(index);
714 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
715 			orphan_blk->entry_count = cpu_to_le32(nentries);
716 			set_page_dirty(page);
717 			f2fs_put_page(page, 1);
718 			index++;
719 			nentries = 0;
720 			page = NULL;
721 		}
722 	}
723 
724 	if (page) {
725 		orphan_blk->blk_addr = cpu_to_le16(index);
726 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
727 		orphan_blk->entry_count = cpu_to_le32(nentries);
728 		set_page_dirty(page);
729 		f2fs_put_page(page, 1);
730 	}
731 }
732 
733 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
734 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
735 		unsigned long long *version)
736 {
737 	unsigned long blk_size = sbi->blocksize;
738 	size_t crc_offset = 0;
739 	__u32 crc = 0;
740 
741 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
742 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
743 
744 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
745 	if (crc_offset > (blk_size - sizeof(__le32))) {
746 		f2fs_msg(sbi->sb, KERN_WARNING,
747 			"invalid crc_offset: %zu", crc_offset);
748 		return -EINVAL;
749 	}
750 
751 	crc = cur_cp_crc(*cp_block);
752 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
753 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
754 		return -EINVAL;
755 	}
756 
757 	*version = cur_cp_version(*cp_block);
758 	return 0;
759 }
760 
761 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
762 				block_t cp_addr, unsigned long long *version)
763 {
764 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
765 	struct f2fs_checkpoint *cp_block = NULL;
766 	unsigned long long cur_version = 0, pre_version = 0;
767 	int err;
768 
769 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
770 					&cp_page_1, version);
771 	if (err)
772 		goto invalid_cp1;
773 	pre_version = *version;
774 
775 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
776 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
777 					&cp_page_2, version);
778 	if (err)
779 		goto invalid_cp2;
780 	cur_version = *version;
781 
782 	if (cur_version == pre_version) {
783 		*version = cur_version;
784 		f2fs_put_page(cp_page_2, 1);
785 		return cp_page_1;
786 	}
787 invalid_cp2:
788 	f2fs_put_page(cp_page_2, 1);
789 invalid_cp1:
790 	f2fs_put_page(cp_page_1, 1);
791 	return NULL;
792 }
793 
794 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
795 {
796 	struct f2fs_checkpoint *cp_block;
797 	struct f2fs_super_block *fsb = sbi->raw_super;
798 	struct page *cp1, *cp2, *cur_page;
799 	unsigned long blk_size = sbi->blocksize;
800 	unsigned long long cp1_version = 0, cp2_version = 0;
801 	unsigned long long cp_start_blk_no;
802 	unsigned int cp_blks = 1 + __cp_payload(sbi);
803 	block_t cp_blk_no;
804 	int i;
805 
806 	sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
807 				 GFP_KERNEL);
808 	if (!sbi->ckpt)
809 		return -ENOMEM;
810 	/*
811 	 * Finding out valid cp block involves read both
812 	 * sets( cp pack1 and cp pack 2)
813 	 */
814 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
815 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
816 
817 	/* The second checkpoint pack should start at the next segment */
818 	cp_start_blk_no += ((unsigned long long)1) <<
819 				le32_to_cpu(fsb->log_blocks_per_seg);
820 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
821 
822 	if (cp1 && cp2) {
823 		if (ver_after(cp2_version, cp1_version))
824 			cur_page = cp2;
825 		else
826 			cur_page = cp1;
827 	} else if (cp1) {
828 		cur_page = cp1;
829 	} else if (cp2) {
830 		cur_page = cp2;
831 	} else {
832 		goto fail_no_cp;
833 	}
834 
835 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
836 	memcpy(sbi->ckpt, cp_block, blk_size);
837 
838 	/* Sanity checking of checkpoint */
839 	if (f2fs_sanity_check_ckpt(sbi))
840 		goto free_fail_no_cp;
841 
842 	if (cur_page == cp1)
843 		sbi->cur_cp_pack = 1;
844 	else
845 		sbi->cur_cp_pack = 2;
846 
847 	if (cp_blks <= 1)
848 		goto done;
849 
850 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
851 	if (cur_page == cp2)
852 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
853 
854 	for (i = 1; i < cp_blks; i++) {
855 		void *sit_bitmap_ptr;
856 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
857 
858 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
859 		sit_bitmap_ptr = page_address(cur_page);
860 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
861 		f2fs_put_page(cur_page, 1);
862 	}
863 done:
864 	f2fs_put_page(cp1, 1);
865 	f2fs_put_page(cp2, 1);
866 	return 0;
867 
868 free_fail_no_cp:
869 	f2fs_put_page(cp1, 1);
870 	f2fs_put_page(cp2, 1);
871 fail_no_cp:
872 	kfree(sbi->ckpt);
873 	return -EINVAL;
874 }
875 
876 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
877 {
878 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
879 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
880 
881 	if (is_inode_flag_set(inode, flag))
882 		return;
883 
884 	set_inode_flag(inode, flag);
885 	if (!f2fs_is_volatile_file(inode))
886 		list_add_tail(&F2FS_I(inode)->dirty_list,
887 						&sbi->inode_list[type]);
888 	stat_inc_dirty_inode(sbi, type);
889 }
890 
891 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
892 {
893 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
894 
895 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
896 		return;
897 
898 	list_del_init(&F2FS_I(inode)->dirty_list);
899 	clear_inode_flag(inode, flag);
900 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
901 }
902 
903 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
904 {
905 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
906 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
907 
908 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
909 			!S_ISLNK(inode->i_mode))
910 		return;
911 
912 	spin_lock(&sbi->inode_lock[type]);
913 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
914 		__add_dirty_inode(inode, type);
915 	inode_inc_dirty_pages(inode);
916 	spin_unlock(&sbi->inode_lock[type]);
917 
918 	SetPagePrivate(page);
919 	f2fs_trace_pid(page);
920 }
921 
922 void f2fs_remove_dirty_inode(struct inode *inode)
923 {
924 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
925 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
926 
927 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
928 			!S_ISLNK(inode->i_mode))
929 		return;
930 
931 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
932 		return;
933 
934 	spin_lock(&sbi->inode_lock[type]);
935 	__remove_dirty_inode(inode, type);
936 	spin_unlock(&sbi->inode_lock[type]);
937 }
938 
939 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
940 {
941 	struct list_head *head;
942 	struct inode *inode;
943 	struct f2fs_inode_info *fi;
944 	bool is_dir = (type == DIR_INODE);
945 	unsigned long ino = 0;
946 
947 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
948 				get_pages(sbi, is_dir ?
949 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
950 retry:
951 	if (unlikely(f2fs_cp_error(sbi)))
952 		return -EIO;
953 
954 	spin_lock(&sbi->inode_lock[type]);
955 
956 	head = &sbi->inode_list[type];
957 	if (list_empty(head)) {
958 		spin_unlock(&sbi->inode_lock[type]);
959 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
960 				get_pages(sbi, is_dir ?
961 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
962 		return 0;
963 	}
964 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
965 	inode = igrab(&fi->vfs_inode);
966 	spin_unlock(&sbi->inode_lock[type]);
967 	if (inode) {
968 		unsigned long cur_ino = inode->i_ino;
969 
970 		if (is_dir)
971 			F2FS_I(inode)->cp_task = current;
972 
973 		filemap_fdatawrite(inode->i_mapping);
974 
975 		if (is_dir)
976 			F2FS_I(inode)->cp_task = NULL;
977 
978 		iput(inode);
979 		/* We need to give cpu to another writers. */
980 		if (ino == cur_ino) {
981 			congestion_wait(BLK_RW_ASYNC, HZ/50);
982 			cond_resched();
983 		} else {
984 			ino = cur_ino;
985 		}
986 	} else {
987 		/*
988 		 * We should submit bio, since it exists several
989 		 * wribacking dentry pages in the freeing inode.
990 		 */
991 		f2fs_submit_merged_write(sbi, DATA);
992 		cond_resched();
993 	}
994 	goto retry;
995 }
996 
997 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
998 {
999 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1000 	struct inode *inode;
1001 	struct f2fs_inode_info *fi;
1002 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1003 
1004 	while (total--) {
1005 		if (unlikely(f2fs_cp_error(sbi)))
1006 			return -EIO;
1007 
1008 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1009 		if (list_empty(head)) {
1010 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1011 			return 0;
1012 		}
1013 		fi = list_first_entry(head, struct f2fs_inode_info,
1014 							gdirty_list);
1015 		inode = igrab(&fi->vfs_inode);
1016 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1017 		if (inode) {
1018 			sync_inode_metadata(inode, 0);
1019 
1020 			/* it's on eviction */
1021 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1022 				f2fs_update_inode_page(inode);
1023 			iput(inode);
1024 		}
1025 	}
1026 	return 0;
1027 }
1028 
1029 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1030 {
1031 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1032 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1033 	nid_t last_nid = nm_i->next_scan_nid;
1034 
1035 	next_free_nid(sbi, &last_nid);
1036 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1037 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1038 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1039 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1040 }
1041 
1042 /*
1043  * Freeze all the FS-operations for checkpoint.
1044  */
1045 static int block_operations(struct f2fs_sb_info *sbi)
1046 {
1047 	struct writeback_control wbc = {
1048 		.sync_mode = WB_SYNC_ALL,
1049 		.nr_to_write = LONG_MAX,
1050 		.for_reclaim = 0,
1051 	};
1052 	struct blk_plug plug;
1053 	int err = 0;
1054 
1055 	blk_start_plug(&plug);
1056 
1057 retry_flush_dents:
1058 	f2fs_lock_all(sbi);
1059 	/* write all the dirty dentry pages */
1060 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1061 		f2fs_unlock_all(sbi);
1062 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1063 		if (err)
1064 			goto out;
1065 		cond_resched();
1066 		goto retry_flush_dents;
1067 	}
1068 
1069 	/*
1070 	 * POR: we should ensure that there are no dirty node pages
1071 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1072 	 */
1073 	down_write(&sbi->node_change);
1074 
1075 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1076 		up_write(&sbi->node_change);
1077 		f2fs_unlock_all(sbi);
1078 		err = f2fs_sync_inode_meta(sbi);
1079 		if (err)
1080 			goto out;
1081 		cond_resched();
1082 		goto retry_flush_dents;
1083 	}
1084 
1085 retry_flush_nodes:
1086 	down_write(&sbi->node_write);
1087 
1088 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1089 		up_write(&sbi->node_write);
1090 		atomic_inc(&sbi->wb_sync_req[NODE]);
1091 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1092 		atomic_dec(&sbi->wb_sync_req[NODE]);
1093 		if (err) {
1094 			up_write(&sbi->node_change);
1095 			f2fs_unlock_all(sbi);
1096 			goto out;
1097 		}
1098 		cond_resched();
1099 		goto retry_flush_nodes;
1100 	}
1101 
1102 	/*
1103 	 * sbi->node_change is used only for AIO write_begin path which produces
1104 	 * dirty node blocks and some checkpoint values by block allocation.
1105 	 */
1106 	__prepare_cp_block(sbi);
1107 	up_write(&sbi->node_change);
1108 out:
1109 	blk_finish_plug(&plug);
1110 	return err;
1111 }
1112 
1113 static void unblock_operations(struct f2fs_sb_info *sbi)
1114 {
1115 	up_write(&sbi->node_write);
1116 	f2fs_unlock_all(sbi);
1117 }
1118 
1119 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1120 {
1121 	DEFINE_WAIT(wait);
1122 
1123 	for (;;) {
1124 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1125 
1126 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1127 			break;
1128 
1129 		if (unlikely(f2fs_cp_error(sbi)))
1130 			break;
1131 
1132 		io_schedule_timeout(5*HZ);
1133 	}
1134 	finish_wait(&sbi->cp_wait, &wait);
1135 }
1136 
1137 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1138 {
1139 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1140 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1141 	unsigned long flags;
1142 
1143 	spin_lock_irqsave(&sbi->cp_lock, flags);
1144 
1145 	if ((cpc->reason & CP_UMOUNT) &&
1146 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1147 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1148 		disable_nat_bits(sbi, false);
1149 
1150 	if (cpc->reason & CP_TRIMMED)
1151 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1152 	else
1153 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1154 
1155 	if (cpc->reason & CP_UMOUNT)
1156 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1157 	else
1158 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1159 
1160 	if (cpc->reason & CP_FASTBOOT)
1161 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1162 	else
1163 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1164 
1165 	if (orphan_num)
1166 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1167 	else
1168 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1169 
1170 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1171 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1172 
1173 	/* set this flag to activate crc|cp_ver for recovery */
1174 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1175 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1176 
1177 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1178 }
1179 
1180 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1181 	void *src, block_t blk_addr)
1182 {
1183 	struct writeback_control wbc = {
1184 		.for_reclaim = 0,
1185 	};
1186 
1187 	/*
1188 	 * pagevec_lookup_tag and lock_page again will take
1189 	 * some extra time. Therefore, f2fs_update_meta_pages and
1190 	 * f2fs_sync_meta_pages are combined in this function.
1191 	 */
1192 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1193 	int err;
1194 
1195 	memcpy(page_address(page), src, PAGE_SIZE);
1196 	set_page_dirty(page);
1197 
1198 	f2fs_wait_on_page_writeback(page, META, true);
1199 	f2fs_bug_on(sbi, PageWriteback(page));
1200 	if (unlikely(!clear_page_dirty_for_io(page)))
1201 		f2fs_bug_on(sbi, 1);
1202 
1203 	/* writeout cp pack 2 page */
1204 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1205 	if (unlikely(err && f2fs_cp_error(sbi))) {
1206 		f2fs_put_page(page, 1);
1207 		return;
1208 	}
1209 
1210 	f2fs_bug_on(sbi, err);
1211 	f2fs_put_page(page, 0);
1212 
1213 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1214 	f2fs_submit_merged_write(sbi, META_FLUSH);
1215 }
1216 
1217 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1218 {
1219 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1221 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1222 	block_t start_blk;
1223 	unsigned int data_sum_blocks, orphan_blocks;
1224 	__u32 crc32 = 0;
1225 	int i;
1226 	int cp_payload_blks = __cp_payload(sbi);
1227 	struct super_block *sb = sbi->sb;
1228 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1229 	u64 kbytes_written;
1230 	int err;
1231 
1232 	/* Flush all the NAT/SIT pages */
1233 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1234 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1235 		if (unlikely(f2fs_cp_error(sbi)))
1236 			break;
1237 	}
1238 
1239 	/*
1240 	 * modify checkpoint
1241 	 * version number is already updated
1242 	 */
1243 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1244 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1245 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1246 		ckpt->cur_node_segno[i] =
1247 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1248 		ckpt->cur_node_blkoff[i] =
1249 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1250 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1251 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1252 	}
1253 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1254 		ckpt->cur_data_segno[i] =
1255 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1256 		ckpt->cur_data_blkoff[i] =
1257 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1258 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1259 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1260 	}
1261 
1262 	/* 2 cp  + n data seg summary + orphan inode blocks */
1263 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1264 	spin_lock_irqsave(&sbi->cp_lock, flags);
1265 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1266 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1267 	else
1268 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1269 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1270 
1271 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1272 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1273 			orphan_blocks);
1274 
1275 	if (__remain_node_summaries(cpc->reason))
1276 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1277 				cp_payload_blks + data_sum_blocks +
1278 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1279 	else
1280 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1281 				cp_payload_blks + data_sum_blocks +
1282 				orphan_blocks);
1283 
1284 	/* update ckpt flag for checkpoint */
1285 	update_ckpt_flags(sbi, cpc);
1286 
1287 	/* update SIT/NAT bitmap */
1288 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1289 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1290 
1291 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1292 	*((__le32 *)((unsigned char *)ckpt +
1293 				le32_to_cpu(ckpt->checksum_offset)))
1294 				= cpu_to_le32(crc32);
1295 
1296 	start_blk = __start_cp_next_addr(sbi);
1297 
1298 	/* write nat bits */
1299 	if (enabled_nat_bits(sbi, cpc)) {
1300 		__u64 cp_ver = cur_cp_version(ckpt);
1301 		block_t blk;
1302 
1303 		cp_ver |= ((__u64)crc32 << 32);
1304 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1305 
1306 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1307 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1308 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1309 					(i << F2FS_BLKSIZE_BITS), blk + i);
1310 
1311 		/* Flush all the NAT BITS pages */
1312 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1313 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1314 							FS_CP_META_IO);
1315 			if (unlikely(f2fs_cp_error(sbi)))
1316 				break;
1317 		}
1318 	}
1319 
1320 	/* write out checkpoint buffer at block 0 */
1321 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1322 
1323 	for (i = 1; i < 1 + cp_payload_blks; i++)
1324 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1325 							start_blk++);
1326 
1327 	if (orphan_num) {
1328 		write_orphan_inodes(sbi, start_blk);
1329 		start_blk += orphan_blocks;
1330 	}
1331 
1332 	f2fs_write_data_summaries(sbi, start_blk);
1333 	start_blk += data_sum_blocks;
1334 
1335 	/* Record write statistics in the hot node summary */
1336 	kbytes_written = sbi->kbytes_written;
1337 	if (sb->s_bdev->bd_part)
1338 		kbytes_written += BD_PART_WRITTEN(sbi);
1339 
1340 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1341 
1342 	if (__remain_node_summaries(cpc->reason)) {
1343 		f2fs_write_node_summaries(sbi, start_blk);
1344 		start_blk += NR_CURSEG_NODE_TYPE;
1345 	}
1346 
1347 	/* update user_block_counts */
1348 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1349 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1350 
1351 	/* Here, we have one bio having CP pack except cp pack 2 page */
1352 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1353 
1354 	/* wait for previous submitted meta pages writeback */
1355 	wait_on_all_pages_writeback(sbi);
1356 
1357 	/* flush all device cache */
1358 	err = f2fs_flush_device_cache(sbi);
1359 	if (err)
1360 		return err;
1361 
1362 	/* barrier and flush checkpoint cp pack 2 page if it can */
1363 	commit_checkpoint(sbi, ckpt, start_blk);
1364 	wait_on_all_pages_writeback(sbi);
1365 
1366 	f2fs_release_ino_entry(sbi, false);
1367 
1368 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1369 	clear_sbi_flag(sbi, SBI_NEED_CP);
1370 	__set_cp_next_pack(sbi);
1371 
1372 	/*
1373 	 * redirty superblock if metadata like node page or inode cache is
1374 	 * updated during writing checkpoint.
1375 	 */
1376 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1377 			get_pages(sbi, F2FS_DIRTY_IMETA))
1378 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1379 
1380 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1381 
1382 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1383 }
1384 
1385 /*
1386  * We guarantee that this checkpoint procedure will not fail.
1387  */
1388 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1389 {
1390 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1391 	unsigned long long ckpt_ver;
1392 	int err = 0;
1393 
1394 	mutex_lock(&sbi->cp_mutex);
1395 
1396 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1397 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1398 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1399 		goto out;
1400 	if (unlikely(f2fs_cp_error(sbi))) {
1401 		err = -EIO;
1402 		goto out;
1403 	}
1404 	if (f2fs_readonly(sbi->sb)) {
1405 		err = -EROFS;
1406 		goto out;
1407 	}
1408 
1409 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1410 
1411 	err = block_operations(sbi);
1412 	if (err)
1413 		goto out;
1414 
1415 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1416 
1417 	f2fs_flush_merged_writes(sbi);
1418 
1419 	/* this is the case of multiple fstrims without any changes */
1420 	if (cpc->reason & CP_DISCARD) {
1421 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1422 			unblock_operations(sbi);
1423 			goto out;
1424 		}
1425 
1426 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1427 				SIT_I(sbi)->dirty_sentries == 0 &&
1428 				prefree_segments(sbi) == 0) {
1429 			f2fs_flush_sit_entries(sbi, cpc);
1430 			f2fs_clear_prefree_segments(sbi, cpc);
1431 			unblock_operations(sbi);
1432 			goto out;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * update checkpoint pack index
1438 	 * Increase the version number so that
1439 	 * SIT entries and seg summaries are written at correct place
1440 	 */
1441 	ckpt_ver = cur_cp_version(ckpt);
1442 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1443 
1444 	/* write cached NAT/SIT entries to NAT/SIT area */
1445 	f2fs_flush_nat_entries(sbi, cpc);
1446 	f2fs_flush_sit_entries(sbi, cpc);
1447 
1448 	/* unlock all the fs_lock[] in do_checkpoint() */
1449 	err = do_checkpoint(sbi, cpc);
1450 	if (err)
1451 		f2fs_release_discard_addrs(sbi);
1452 	else
1453 		f2fs_clear_prefree_segments(sbi, cpc);
1454 
1455 	unblock_operations(sbi);
1456 	stat_inc_cp_count(sbi->stat_info);
1457 
1458 	if (cpc->reason & CP_RECOVERY)
1459 		f2fs_msg(sbi->sb, KERN_NOTICE,
1460 			"checkpoint: version = %llx", ckpt_ver);
1461 
1462 	/* do checkpoint periodically */
1463 	f2fs_update_time(sbi, CP_TIME);
1464 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1465 out:
1466 	mutex_unlock(&sbi->cp_mutex);
1467 	return err;
1468 }
1469 
1470 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1471 {
1472 	int i;
1473 
1474 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1475 		struct inode_management *im = &sbi->im[i];
1476 
1477 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1478 		spin_lock_init(&im->ino_lock);
1479 		INIT_LIST_HEAD(&im->ino_list);
1480 		im->ino_num = 0;
1481 	}
1482 
1483 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1484 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1485 				F2FS_ORPHANS_PER_BLOCK;
1486 }
1487 
1488 int __init f2fs_create_checkpoint_caches(void)
1489 {
1490 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1491 			sizeof(struct ino_entry));
1492 	if (!ino_entry_slab)
1493 		return -ENOMEM;
1494 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1495 			sizeof(struct inode_entry));
1496 	if (!f2fs_inode_entry_slab) {
1497 		kmem_cache_destroy(ino_entry_slab);
1498 		return -ENOMEM;
1499 	}
1500 	return 0;
1501 }
1502 
1503 void f2fs_destroy_checkpoint_caches(void)
1504 {
1505 	kmem_cache_destroy(ino_entry_slab);
1506 	kmem_cache_destroy(f2fs_inode_entry_slab);
1507 }
1508