1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 .is_meta = is_meta, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) { 104 memset(page_address(page), 0, PAGE_SIZE); 105 f2fs_stop_checkpoint(sbi, false); 106 } 107 out: 108 return page; 109 } 110 111 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 112 { 113 return __get_meta_page(sbi, index, true); 114 } 115 116 /* for POR only */ 117 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 118 { 119 return __get_meta_page(sbi, index, false); 120 } 121 122 bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi, 123 block_t blkaddr, int type) 124 { 125 switch (type) { 126 case META_NAT: 127 break; 128 case META_SIT: 129 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 130 return false; 131 break; 132 case META_SSA: 133 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 134 blkaddr < SM_I(sbi)->ssa_blkaddr)) 135 return false; 136 break; 137 case META_CP: 138 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 139 blkaddr < __start_cp_addr(sbi))) 140 return false; 141 break; 142 case META_POR: 143 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 144 blkaddr < MAIN_BLKADDR(sbi))) 145 return false; 146 break; 147 default: 148 BUG(); 149 } 150 151 return true; 152 } 153 154 /* 155 * Readahead CP/NAT/SIT/SSA pages 156 */ 157 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 158 int type, bool sync) 159 { 160 struct page *page; 161 block_t blkno = start; 162 struct f2fs_io_info fio = { 163 .sbi = sbi, 164 .type = META, 165 .op = REQ_OP_READ, 166 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 167 .encrypted_page = NULL, 168 .in_list = false, 169 .is_meta = (type != META_POR), 170 }; 171 struct blk_plug plug; 172 173 if (unlikely(type == META_POR)) 174 fio.op_flags &= ~REQ_META; 175 176 blk_start_plug(&plug); 177 for (; nrpages-- > 0; blkno++) { 178 179 if (!f2fs_is_valid_meta_blkaddr(sbi, blkno, type)) 180 goto out; 181 182 switch (type) { 183 case META_NAT: 184 if (unlikely(blkno >= 185 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 186 blkno = 0; 187 /* get nat block addr */ 188 fio.new_blkaddr = current_nat_addr(sbi, 189 blkno * NAT_ENTRY_PER_BLOCK); 190 break; 191 case META_SIT: 192 /* get sit block addr */ 193 fio.new_blkaddr = current_sit_addr(sbi, 194 blkno * SIT_ENTRY_PER_BLOCK); 195 break; 196 case META_SSA: 197 case META_CP: 198 case META_POR: 199 fio.new_blkaddr = blkno; 200 break; 201 default: 202 BUG(); 203 } 204 205 page = f2fs_grab_cache_page(META_MAPPING(sbi), 206 fio.new_blkaddr, false); 207 if (!page) 208 continue; 209 if (PageUptodate(page)) { 210 f2fs_put_page(page, 1); 211 continue; 212 } 213 214 fio.page = page; 215 f2fs_submit_page_bio(&fio); 216 f2fs_put_page(page, 0); 217 } 218 out: 219 blk_finish_plug(&plug); 220 return blkno - start; 221 } 222 223 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 224 { 225 struct page *page; 226 bool readahead = false; 227 228 page = find_get_page(META_MAPPING(sbi), index); 229 if (!page || !PageUptodate(page)) 230 readahead = true; 231 f2fs_put_page(page, 0); 232 233 if (readahead) 234 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 235 } 236 237 static int __f2fs_write_meta_page(struct page *page, 238 struct writeback_control *wbc, 239 enum iostat_type io_type) 240 { 241 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 242 243 trace_f2fs_writepage(page, META); 244 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 248 goto redirty_out; 249 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 250 goto redirty_out; 251 252 f2fs_do_write_meta_page(sbi, page, io_type); 253 dec_page_count(sbi, F2FS_DIRTY_META); 254 255 if (wbc->for_reclaim) 256 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 257 0, page->index, META); 258 259 unlock_page(page); 260 261 if (unlikely(f2fs_cp_error(sbi))) 262 f2fs_submit_merged_write(sbi, META); 263 264 return 0; 265 266 redirty_out: 267 redirty_page_for_writepage(wbc, page); 268 return AOP_WRITEPAGE_ACTIVATE; 269 } 270 271 static int f2fs_write_meta_page(struct page *page, 272 struct writeback_control *wbc) 273 { 274 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 275 } 276 277 static int f2fs_write_meta_pages(struct address_space *mapping, 278 struct writeback_control *wbc) 279 { 280 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 281 long diff, written; 282 283 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 284 goto skip_write; 285 286 /* collect a number of dirty meta pages and write together */ 287 if (wbc->for_kupdate || 288 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 289 goto skip_write; 290 291 /* if locked failed, cp will flush dirty pages instead */ 292 if (!mutex_trylock(&sbi->cp_mutex)) 293 goto skip_write; 294 295 trace_f2fs_writepages(mapping->host, wbc, META); 296 diff = nr_pages_to_write(sbi, META, wbc); 297 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 298 mutex_unlock(&sbi->cp_mutex); 299 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 300 return 0; 301 302 skip_write: 303 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 304 trace_f2fs_writepages(mapping->host, wbc, META); 305 return 0; 306 } 307 308 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 309 long nr_to_write, enum iostat_type io_type) 310 { 311 struct address_space *mapping = META_MAPPING(sbi); 312 pgoff_t index = 0, prev = ULONG_MAX; 313 struct pagevec pvec; 314 long nwritten = 0; 315 int nr_pages; 316 struct writeback_control wbc = { 317 .for_reclaim = 0, 318 }; 319 struct blk_plug plug; 320 321 pagevec_init(&pvec); 322 323 blk_start_plug(&plug); 324 325 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 326 PAGECACHE_TAG_DIRTY))) { 327 int i; 328 329 for (i = 0; i < nr_pages; i++) { 330 struct page *page = pvec.pages[i]; 331 332 if (prev == ULONG_MAX) 333 prev = page->index - 1; 334 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 335 pagevec_release(&pvec); 336 goto stop; 337 } 338 339 lock_page(page); 340 341 if (unlikely(page->mapping != mapping)) { 342 continue_unlock: 343 unlock_page(page); 344 continue; 345 } 346 if (!PageDirty(page)) { 347 /* someone wrote it for us */ 348 goto continue_unlock; 349 } 350 351 f2fs_wait_on_page_writeback(page, META, true); 352 353 BUG_ON(PageWriteback(page)); 354 if (!clear_page_dirty_for_io(page)) 355 goto continue_unlock; 356 357 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 358 unlock_page(page); 359 break; 360 } 361 nwritten++; 362 prev = page->index; 363 if (unlikely(nwritten >= nr_to_write)) 364 break; 365 } 366 pagevec_release(&pvec); 367 cond_resched(); 368 } 369 stop: 370 if (nwritten) 371 f2fs_submit_merged_write(sbi, type); 372 373 blk_finish_plug(&plug); 374 375 return nwritten; 376 } 377 378 static int f2fs_set_meta_page_dirty(struct page *page) 379 { 380 trace_f2fs_set_page_dirty(page, META); 381 382 if (!PageUptodate(page)) 383 SetPageUptodate(page); 384 if (!PageDirty(page)) { 385 __set_page_dirty_nobuffers(page); 386 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 387 SetPagePrivate(page); 388 f2fs_trace_pid(page); 389 return 1; 390 } 391 return 0; 392 } 393 394 const struct address_space_operations f2fs_meta_aops = { 395 .writepage = f2fs_write_meta_page, 396 .writepages = f2fs_write_meta_pages, 397 .set_page_dirty = f2fs_set_meta_page_dirty, 398 .invalidatepage = f2fs_invalidate_page, 399 .releasepage = f2fs_release_page, 400 #ifdef CONFIG_MIGRATION 401 .migratepage = f2fs_migrate_page, 402 #endif 403 }; 404 405 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 406 unsigned int devidx, int type) 407 { 408 struct inode_management *im = &sbi->im[type]; 409 struct ino_entry *e, *tmp; 410 411 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 412 413 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 414 415 spin_lock(&im->ino_lock); 416 e = radix_tree_lookup(&im->ino_root, ino); 417 if (!e) { 418 e = tmp; 419 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 420 f2fs_bug_on(sbi, 1); 421 422 memset(e, 0, sizeof(struct ino_entry)); 423 e->ino = ino; 424 425 list_add_tail(&e->list, &im->ino_list); 426 if (type != ORPHAN_INO) 427 im->ino_num++; 428 } 429 430 if (type == FLUSH_INO) 431 f2fs_set_bit(devidx, (char *)&e->dirty_device); 432 433 spin_unlock(&im->ino_lock); 434 radix_tree_preload_end(); 435 436 if (e != tmp) 437 kmem_cache_free(ino_entry_slab, tmp); 438 } 439 440 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 441 { 442 struct inode_management *im = &sbi->im[type]; 443 struct ino_entry *e; 444 445 spin_lock(&im->ino_lock); 446 e = radix_tree_lookup(&im->ino_root, ino); 447 if (e) { 448 list_del(&e->list); 449 radix_tree_delete(&im->ino_root, ino); 450 im->ino_num--; 451 spin_unlock(&im->ino_lock); 452 kmem_cache_free(ino_entry_slab, e); 453 return; 454 } 455 spin_unlock(&im->ino_lock); 456 } 457 458 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 459 { 460 /* add new dirty ino entry into list */ 461 __add_ino_entry(sbi, ino, 0, type); 462 } 463 464 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 465 { 466 /* remove dirty ino entry from list */ 467 __remove_ino_entry(sbi, ino, type); 468 } 469 470 /* mode should be APPEND_INO or UPDATE_INO */ 471 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 472 { 473 struct inode_management *im = &sbi->im[mode]; 474 struct ino_entry *e; 475 476 spin_lock(&im->ino_lock); 477 e = radix_tree_lookup(&im->ino_root, ino); 478 spin_unlock(&im->ino_lock); 479 return e ? true : false; 480 } 481 482 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 483 { 484 struct ino_entry *e, *tmp; 485 int i; 486 487 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 488 struct inode_management *im = &sbi->im[i]; 489 490 spin_lock(&im->ino_lock); 491 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 492 list_del(&e->list); 493 radix_tree_delete(&im->ino_root, e->ino); 494 kmem_cache_free(ino_entry_slab, e); 495 im->ino_num--; 496 } 497 spin_unlock(&im->ino_lock); 498 } 499 } 500 501 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 502 unsigned int devidx, int type) 503 { 504 __add_ino_entry(sbi, ino, devidx, type); 505 } 506 507 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 508 unsigned int devidx, int type) 509 { 510 struct inode_management *im = &sbi->im[type]; 511 struct ino_entry *e; 512 bool is_dirty = false; 513 514 spin_lock(&im->ino_lock); 515 e = radix_tree_lookup(&im->ino_root, ino); 516 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 517 is_dirty = true; 518 spin_unlock(&im->ino_lock); 519 return is_dirty; 520 } 521 522 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 523 { 524 struct inode_management *im = &sbi->im[ORPHAN_INO]; 525 int err = 0; 526 527 spin_lock(&im->ino_lock); 528 529 #ifdef CONFIG_F2FS_FAULT_INJECTION 530 if (time_to_inject(sbi, FAULT_ORPHAN)) { 531 spin_unlock(&im->ino_lock); 532 f2fs_show_injection_info(FAULT_ORPHAN); 533 return -ENOSPC; 534 } 535 #endif 536 if (unlikely(im->ino_num >= sbi->max_orphans)) 537 err = -ENOSPC; 538 else 539 im->ino_num++; 540 spin_unlock(&im->ino_lock); 541 542 return err; 543 } 544 545 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 546 { 547 struct inode_management *im = &sbi->im[ORPHAN_INO]; 548 549 spin_lock(&im->ino_lock); 550 f2fs_bug_on(sbi, im->ino_num == 0); 551 im->ino_num--; 552 spin_unlock(&im->ino_lock); 553 } 554 555 void f2fs_add_orphan_inode(struct inode *inode) 556 { 557 /* add new orphan ino entry into list */ 558 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 559 f2fs_update_inode_page(inode); 560 } 561 562 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 563 { 564 /* remove orphan entry from orphan list */ 565 __remove_ino_entry(sbi, ino, ORPHAN_INO); 566 } 567 568 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 569 { 570 struct inode *inode; 571 struct node_info ni; 572 int err = f2fs_acquire_orphan_inode(sbi); 573 574 if (err) 575 goto err_out; 576 577 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 578 579 inode = f2fs_iget_retry(sbi->sb, ino); 580 if (IS_ERR(inode)) { 581 /* 582 * there should be a bug that we can't find the entry 583 * to orphan inode. 584 */ 585 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 586 return PTR_ERR(inode); 587 } 588 589 err = dquot_initialize(inode); 590 if (err) { 591 iput(inode); 592 goto err_out; 593 } 594 595 clear_nlink(inode); 596 597 /* truncate all the data during iput */ 598 iput(inode); 599 600 f2fs_get_node_info(sbi, ino, &ni); 601 602 /* ENOMEM was fully retried in f2fs_evict_inode. */ 603 if (ni.blk_addr != NULL_ADDR) { 604 err = -EIO; 605 goto err_out; 606 } 607 __remove_ino_entry(sbi, ino, ORPHAN_INO); 608 return 0; 609 610 err_out: 611 set_sbi_flag(sbi, SBI_NEED_FSCK); 612 f2fs_msg(sbi->sb, KERN_WARNING, 613 "%s: orphan failed (ino=%x), run fsck to fix.", 614 __func__, ino); 615 return err; 616 } 617 618 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 619 { 620 block_t start_blk, orphan_blocks, i, j; 621 unsigned int s_flags = sbi->sb->s_flags; 622 int err = 0; 623 #ifdef CONFIG_QUOTA 624 int quota_enabled; 625 #endif 626 627 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 628 return 0; 629 630 if (s_flags & SB_RDONLY) { 631 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 632 sbi->sb->s_flags &= ~SB_RDONLY; 633 } 634 635 #ifdef CONFIG_QUOTA 636 /* Needed for iput() to work correctly and not trash data */ 637 sbi->sb->s_flags |= SB_ACTIVE; 638 639 /* Turn on quotas so that they are updated correctly */ 640 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 641 #endif 642 643 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 644 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 645 646 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 647 648 for (i = 0; i < orphan_blocks; i++) { 649 struct page *page = f2fs_get_meta_page(sbi, start_blk + i); 650 struct f2fs_orphan_block *orphan_blk; 651 652 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 653 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 654 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 655 err = recover_orphan_inode(sbi, ino); 656 if (err) { 657 f2fs_put_page(page, 1); 658 goto out; 659 } 660 } 661 f2fs_put_page(page, 1); 662 } 663 /* clear Orphan Flag */ 664 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 665 out: 666 #ifdef CONFIG_QUOTA 667 /* Turn quotas off */ 668 if (quota_enabled) 669 f2fs_quota_off_umount(sbi->sb); 670 #endif 671 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 672 673 return err; 674 } 675 676 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 677 { 678 struct list_head *head; 679 struct f2fs_orphan_block *orphan_blk = NULL; 680 unsigned int nentries = 0; 681 unsigned short index = 1; 682 unsigned short orphan_blocks; 683 struct page *page = NULL; 684 struct ino_entry *orphan = NULL; 685 struct inode_management *im = &sbi->im[ORPHAN_INO]; 686 687 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 688 689 /* 690 * we don't need to do spin_lock(&im->ino_lock) here, since all the 691 * orphan inode operations are covered under f2fs_lock_op(). 692 * And, spin_lock should be avoided due to page operations below. 693 */ 694 head = &im->ino_list; 695 696 /* loop for each orphan inode entry and write them in Jornal block */ 697 list_for_each_entry(orphan, head, list) { 698 if (!page) { 699 page = f2fs_grab_meta_page(sbi, start_blk++); 700 orphan_blk = 701 (struct f2fs_orphan_block *)page_address(page); 702 memset(orphan_blk, 0, sizeof(*orphan_blk)); 703 } 704 705 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 706 707 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 708 /* 709 * an orphan block is full of 1020 entries, 710 * then we need to flush current orphan blocks 711 * and bring another one in memory 712 */ 713 orphan_blk->blk_addr = cpu_to_le16(index); 714 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 715 orphan_blk->entry_count = cpu_to_le32(nentries); 716 set_page_dirty(page); 717 f2fs_put_page(page, 1); 718 index++; 719 nentries = 0; 720 page = NULL; 721 } 722 } 723 724 if (page) { 725 orphan_blk->blk_addr = cpu_to_le16(index); 726 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 727 orphan_blk->entry_count = cpu_to_le32(nentries); 728 set_page_dirty(page); 729 f2fs_put_page(page, 1); 730 } 731 } 732 733 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 734 struct f2fs_checkpoint **cp_block, struct page **cp_page, 735 unsigned long long *version) 736 { 737 unsigned long blk_size = sbi->blocksize; 738 size_t crc_offset = 0; 739 __u32 crc = 0; 740 741 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 742 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 743 744 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 745 if (crc_offset > (blk_size - sizeof(__le32))) { 746 f2fs_msg(sbi->sb, KERN_WARNING, 747 "invalid crc_offset: %zu", crc_offset); 748 return -EINVAL; 749 } 750 751 crc = cur_cp_crc(*cp_block); 752 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 753 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 754 return -EINVAL; 755 } 756 757 *version = cur_cp_version(*cp_block); 758 return 0; 759 } 760 761 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 762 block_t cp_addr, unsigned long long *version) 763 { 764 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 765 struct f2fs_checkpoint *cp_block = NULL; 766 unsigned long long cur_version = 0, pre_version = 0; 767 int err; 768 769 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 770 &cp_page_1, version); 771 if (err) 772 goto invalid_cp1; 773 pre_version = *version; 774 775 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 776 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 777 &cp_page_2, version); 778 if (err) 779 goto invalid_cp2; 780 cur_version = *version; 781 782 if (cur_version == pre_version) { 783 *version = cur_version; 784 f2fs_put_page(cp_page_2, 1); 785 return cp_page_1; 786 } 787 invalid_cp2: 788 f2fs_put_page(cp_page_2, 1); 789 invalid_cp1: 790 f2fs_put_page(cp_page_1, 1); 791 return NULL; 792 } 793 794 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 795 { 796 struct f2fs_checkpoint *cp_block; 797 struct f2fs_super_block *fsb = sbi->raw_super; 798 struct page *cp1, *cp2, *cur_page; 799 unsigned long blk_size = sbi->blocksize; 800 unsigned long long cp1_version = 0, cp2_version = 0; 801 unsigned long long cp_start_blk_no; 802 unsigned int cp_blks = 1 + __cp_payload(sbi); 803 block_t cp_blk_no; 804 int i; 805 806 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 807 GFP_KERNEL); 808 if (!sbi->ckpt) 809 return -ENOMEM; 810 /* 811 * Finding out valid cp block involves read both 812 * sets( cp pack1 and cp pack 2) 813 */ 814 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 815 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 816 817 /* The second checkpoint pack should start at the next segment */ 818 cp_start_blk_no += ((unsigned long long)1) << 819 le32_to_cpu(fsb->log_blocks_per_seg); 820 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 821 822 if (cp1 && cp2) { 823 if (ver_after(cp2_version, cp1_version)) 824 cur_page = cp2; 825 else 826 cur_page = cp1; 827 } else if (cp1) { 828 cur_page = cp1; 829 } else if (cp2) { 830 cur_page = cp2; 831 } else { 832 goto fail_no_cp; 833 } 834 835 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 836 memcpy(sbi->ckpt, cp_block, blk_size); 837 838 /* Sanity checking of checkpoint */ 839 if (f2fs_sanity_check_ckpt(sbi)) 840 goto free_fail_no_cp; 841 842 if (cur_page == cp1) 843 sbi->cur_cp_pack = 1; 844 else 845 sbi->cur_cp_pack = 2; 846 847 if (cp_blks <= 1) 848 goto done; 849 850 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 851 if (cur_page == cp2) 852 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 853 854 for (i = 1; i < cp_blks; i++) { 855 void *sit_bitmap_ptr; 856 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 857 858 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 859 sit_bitmap_ptr = page_address(cur_page); 860 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 861 f2fs_put_page(cur_page, 1); 862 } 863 done: 864 f2fs_put_page(cp1, 1); 865 f2fs_put_page(cp2, 1); 866 return 0; 867 868 free_fail_no_cp: 869 f2fs_put_page(cp1, 1); 870 f2fs_put_page(cp2, 1); 871 fail_no_cp: 872 kfree(sbi->ckpt); 873 return -EINVAL; 874 } 875 876 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 877 { 878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 879 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 880 881 if (is_inode_flag_set(inode, flag)) 882 return; 883 884 set_inode_flag(inode, flag); 885 if (!f2fs_is_volatile_file(inode)) 886 list_add_tail(&F2FS_I(inode)->dirty_list, 887 &sbi->inode_list[type]); 888 stat_inc_dirty_inode(sbi, type); 889 } 890 891 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 892 { 893 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 894 895 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 896 return; 897 898 list_del_init(&F2FS_I(inode)->dirty_list); 899 clear_inode_flag(inode, flag); 900 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 901 } 902 903 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 904 { 905 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 906 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 907 908 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 909 !S_ISLNK(inode->i_mode)) 910 return; 911 912 spin_lock(&sbi->inode_lock[type]); 913 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 914 __add_dirty_inode(inode, type); 915 inode_inc_dirty_pages(inode); 916 spin_unlock(&sbi->inode_lock[type]); 917 918 SetPagePrivate(page); 919 f2fs_trace_pid(page); 920 } 921 922 void f2fs_remove_dirty_inode(struct inode *inode) 923 { 924 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 925 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 926 927 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 928 !S_ISLNK(inode->i_mode)) 929 return; 930 931 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 932 return; 933 934 spin_lock(&sbi->inode_lock[type]); 935 __remove_dirty_inode(inode, type); 936 spin_unlock(&sbi->inode_lock[type]); 937 } 938 939 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 940 { 941 struct list_head *head; 942 struct inode *inode; 943 struct f2fs_inode_info *fi; 944 bool is_dir = (type == DIR_INODE); 945 unsigned long ino = 0; 946 947 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 948 get_pages(sbi, is_dir ? 949 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 950 retry: 951 if (unlikely(f2fs_cp_error(sbi))) 952 return -EIO; 953 954 spin_lock(&sbi->inode_lock[type]); 955 956 head = &sbi->inode_list[type]; 957 if (list_empty(head)) { 958 spin_unlock(&sbi->inode_lock[type]); 959 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 960 get_pages(sbi, is_dir ? 961 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 962 return 0; 963 } 964 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 965 inode = igrab(&fi->vfs_inode); 966 spin_unlock(&sbi->inode_lock[type]); 967 if (inode) { 968 unsigned long cur_ino = inode->i_ino; 969 970 if (is_dir) 971 F2FS_I(inode)->cp_task = current; 972 973 filemap_fdatawrite(inode->i_mapping); 974 975 if (is_dir) 976 F2FS_I(inode)->cp_task = NULL; 977 978 iput(inode); 979 /* We need to give cpu to another writers. */ 980 if (ino == cur_ino) { 981 congestion_wait(BLK_RW_ASYNC, HZ/50); 982 cond_resched(); 983 } else { 984 ino = cur_ino; 985 } 986 } else { 987 /* 988 * We should submit bio, since it exists several 989 * wribacking dentry pages in the freeing inode. 990 */ 991 f2fs_submit_merged_write(sbi, DATA); 992 cond_resched(); 993 } 994 goto retry; 995 } 996 997 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 998 { 999 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1000 struct inode *inode; 1001 struct f2fs_inode_info *fi; 1002 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1003 1004 while (total--) { 1005 if (unlikely(f2fs_cp_error(sbi))) 1006 return -EIO; 1007 1008 spin_lock(&sbi->inode_lock[DIRTY_META]); 1009 if (list_empty(head)) { 1010 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1011 return 0; 1012 } 1013 fi = list_first_entry(head, struct f2fs_inode_info, 1014 gdirty_list); 1015 inode = igrab(&fi->vfs_inode); 1016 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1017 if (inode) { 1018 sync_inode_metadata(inode, 0); 1019 1020 /* it's on eviction */ 1021 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1022 f2fs_update_inode_page(inode); 1023 iput(inode); 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1030 { 1031 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1032 struct f2fs_nm_info *nm_i = NM_I(sbi); 1033 nid_t last_nid = nm_i->next_scan_nid; 1034 1035 next_free_nid(sbi, &last_nid); 1036 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1037 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1038 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1039 ckpt->next_free_nid = cpu_to_le32(last_nid); 1040 } 1041 1042 /* 1043 * Freeze all the FS-operations for checkpoint. 1044 */ 1045 static int block_operations(struct f2fs_sb_info *sbi) 1046 { 1047 struct writeback_control wbc = { 1048 .sync_mode = WB_SYNC_ALL, 1049 .nr_to_write = LONG_MAX, 1050 .for_reclaim = 0, 1051 }; 1052 struct blk_plug plug; 1053 int err = 0; 1054 1055 blk_start_plug(&plug); 1056 1057 retry_flush_dents: 1058 f2fs_lock_all(sbi); 1059 /* write all the dirty dentry pages */ 1060 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1061 f2fs_unlock_all(sbi); 1062 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1063 if (err) 1064 goto out; 1065 cond_resched(); 1066 goto retry_flush_dents; 1067 } 1068 1069 /* 1070 * POR: we should ensure that there are no dirty node pages 1071 * until finishing nat/sit flush. inode->i_blocks can be updated. 1072 */ 1073 down_write(&sbi->node_change); 1074 1075 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1076 up_write(&sbi->node_change); 1077 f2fs_unlock_all(sbi); 1078 err = f2fs_sync_inode_meta(sbi); 1079 if (err) 1080 goto out; 1081 cond_resched(); 1082 goto retry_flush_dents; 1083 } 1084 1085 retry_flush_nodes: 1086 down_write(&sbi->node_write); 1087 1088 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1089 up_write(&sbi->node_write); 1090 atomic_inc(&sbi->wb_sync_req[NODE]); 1091 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1092 atomic_dec(&sbi->wb_sync_req[NODE]); 1093 if (err) { 1094 up_write(&sbi->node_change); 1095 f2fs_unlock_all(sbi); 1096 goto out; 1097 } 1098 cond_resched(); 1099 goto retry_flush_nodes; 1100 } 1101 1102 /* 1103 * sbi->node_change is used only for AIO write_begin path which produces 1104 * dirty node blocks and some checkpoint values by block allocation. 1105 */ 1106 __prepare_cp_block(sbi); 1107 up_write(&sbi->node_change); 1108 out: 1109 blk_finish_plug(&plug); 1110 return err; 1111 } 1112 1113 static void unblock_operations(struct f2fs_sb_info *sbi) 1114 { 1115 up_write(&sbi->node_write); 1116 f2fs_unlock_all(sbi); 1117 } 1118 1119 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1120 { 1121 DEFINE_WAIT(wait); 1122 1123 for (;;) { 1124 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1125 1126 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1127 break; 1128 1129 if (unlikely(f2fs_cp_error(sbi))) 1130 break; 1131 1132 io_schedule_timeout(5*HZ); 1133 } 1134 finish_wait(&sbi->cp_wait, &wait); 1135 } 1136 1137 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1138 { 1139 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1140 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1141 unsigned long flags; 1142 1143 spin_lock_irqsave(&sbi->cp_lock, flags); 1144 1145 if ((cpc->reason & CP_UMOUNT) && 1146 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1147 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1148 disable_nat_bits(sbi, false); 1149 1150 if (cpc->reason & CP_TRIMMED) 1151 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1152 else 1153 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1154 1155 if (cpc->reason & CP_UMOUNT) 1156 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1157 else 1158 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1159 1160 if (cpc->reason & CP_FASTBOOT) 1161 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1162 else 1163 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1164 1165 if (orphan_num) 1166 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1167 else 1168 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1169 1170 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1171 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1172 1173 /* set this flag to activate crc|cp_ver for recovery */ 1174 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1175 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1176 1177 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1178 } 1179 1180 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1181 void *src, block_t blk_addr) 1182 { 1183 struct writeback_control wbc = { 1184 .for_reclaim = 0, 1185 }; 1186 1187 /* 1188 * pagevec_lookup_tag and lock_page again will take 1189 * some extra time. Therefore, f2fs_update_meta_pages and 1190 * f2fs_sync_meta_pages are combined in this function. 1191 */ 1192 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1193 int err; 1194 1195 memcpy(page_address(page), src, PAGE_SIZE); 1196 set_page_dirty(page); 1197 1198 f2fs_wait_on_page_writeback(page, META, true); 1199 f2fs_bug_on(sbi, PageWriteback(page)); 1200 if (unlikely(!clear_page_dirty_for_io(page))) 1201 f2fs_bug_on(sbi, 1); 1202 1203 /* writeout cp pack 2 page */ 1204 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1205 if (unlikely(err && f2fs_cp_error(sbi))) { 1206 f2fs_put_page(page, 1); 1207 return; 1208 } 1209 1210 f2fs_bug_on(sbi, err); 1211 f2fs_put_page(page, 0); 1212 1213 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1214 f2fs_submit_merged_write(sbi, META_FLUSH); 1215 } 1216 1217 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1218 { 1219 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1220 struct f2fs_nm_info *nm_i = NM_I(sbi); 1221 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1222 block_t start_blk; 1223 unsigned int data_sum_blocks, orphan_blocks; 1224 __u32 crc32 = 0; 1225 int i; 1226 int cp_payload_blks = __cp_payload(sbi); 1227 struct super_block *sb = sbi->sb; 1228 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1229 u64 kbytes_written; 1230 int err; 1231 1232 /* Flush all the NAT/SIT pages */ 1233 while (get_pages(sbi, F2FS_DIRTY_META)) { 1234 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1235 if (unlikely(f2fs_cp_error(sbi))) 1236 break; 1237 } 1238 1239 /* 1240 * modify checkpoint 1241 * version number is already updated 1242 */ 1243 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1244 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1245 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1246 ckpt->cur_node_segno[i] = 1247 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1248 ckpt->cur_node_blkoff[i] = 1249 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1250 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1251 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1252 } 1253 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1254 ckpt->cur_data_segno[i] = 1255 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1256 ckpt->cur_data_blkoff[i] = 1257 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1258 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1259 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1260 } 1261 1262 /* 2 cp + n data seg summary + orphan inode blocks */ 1263 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1264 spin_lock_irqsave(&sbi->cp_lock, flags); 1265 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1266 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1267 else 1268 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1269 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1270 1271 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1272 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1273 orphan_blocks); 1274 1275 if (__remain_node_summaries(cpc->reason)) 1276 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1277 cp_payload_blks + data_sum_blocks + 1278 orphan_blocks + NR_CURSEG_NODE_TYPE); 1279 else 1280 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1281 cp_payload_blks + data_sum_blocks + 1282 orphan_blocks); 1283 1284 /* update ckpt flag for checkpoint */ 1285 update_ckpt_flags(sbi, cpc); 1286 1287 /* update SIT/NAT bitmap */ 1288 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1289 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1290 1291 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1292 *((__le32 *)((unsigned char *)ckpt + 1293 le32_to_cpu(ckpt->checksum_offset))) 1294 = cpu_to_le32(crc32); 1295 1296 start_blk = __start_cp_next_addr(sbi); 1297 1298 /* write nat bits */ 1299 if (enabled_nat_bits(sbi, cpc)) { 1300 __u64 cp_ver = cur_cp_version(ckpt); 1301 block_t blk; 1302 1303 cp_ver |= ((__u64)crc32 << 32); 1304 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1305 1306 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1307 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1308 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1309 (i << F2FS_BLKSIZE_BITS), blk + i); 1310 1311 /* Flush all the NAT BITS pages */ 1312 while (get_pages(sbi, F2FS_DIRTY_META)) { 1313 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1314 FS_CP_META_IO); 1315 if (unlikely(f2fs_cp_error(sbi))) 1316 break; 1317 } 1318 } 1319 1320 /* write out checkpoint buffer at block 0 */ 1321 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1322 1323 for (i = 1; i < 1 + cp_payload_blks; i++) 1324 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1325 start_blk++); 1326 1327 if (orphan_num) { 1328 write_orphan_inodes(sbi, start_blk); 1329 start_blk += orphan_blocks; 1330 } 1331 1332 f2fs_write_data_summaries(sbi, start_blk); 1333 start_blk += data_sum_blocks; 1334 1335 /* Record write statistics in the hot node summary */ 1336 kbytes_written = sbi->kbytes_written; 1337 if (sb->s_bdev->bd_part) 1338 kbytes_written += BD_PART_WRITTEN(sbi); 1339 1340 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1341 1342 if (__remain_node_summaries(cpc->reason)) { 1343 f2fs_write_node_summaries(sbi, start_blk); 1344 start_blk += NR_CURSEG_NODE_TYPE; 1345 } 1346 1347 /* update user_block_counts */ 1348 sbi->last_valid_block_count = sbi->total_valid_block_count; 1349 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1350 1351 /* Here, we have one bio having CP pack except cp pack 2 page */ 1352 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1353 1354 /* wait for previous submitted meta pages writeback */ 1355 wait_on_all_pages_writeback(sbi); 1356 1357 /* flush all device cache */ 1358 err = f2fs_flush_device_cache(sbi); 1359 if (err) 1360 return err; 1361 1362 /* barrier and flush checkpoint cp pack 2 page if it can */ 1363 commit_checkpoint(sbi, ckpt, start_blk); 1364 wait_on_all_pages_writeback(sbi); 1365 1366 f2fs_release_ino_entry(sbi, false); 1367 1368 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1369 clear_sbi_flag(sbi, SBI_NEED_CP); 1370 __set_cp_next_pack(sbi); 1371 1372 /* 1373 * redirty superblock if metadata like node page or inode cache is 1374 * updated during writing checkpoint. 1375 */ 1376 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1377 get_pages(sbi, F2FS_DIRTY_IMETA)) 1378 set_sbi_flag(sbi, SBI_IS_DIRTY); 1379 1380 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1381 1382 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1383 } 1384 1385 /* 1386 * We guarantee that this checkpoint procedure will not fail. 1387 */ 1388 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1389 { 1390 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1391 unsigned long long ckpt_ver; 1392 int err = 0; 1393 1394 mutex_lock(&sbi->cp_mutex); 1395 1396 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1397 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1398 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1399 goto out; 1400 if (unlikely(f2fs_cp_error(sbi))) { 1401 err = -EIO; 1402 goto out; 1403 } 1404 if (f2fs_readonly(sbi->sb)) { 1405 err = -EROFS; 1406 goto out; 1407 } 1408 1409 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1410 1411 err = block_operations(sbi); 1412 if (err) 1413 goto out; 1414 1415 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1416 1417 f2fs_flush_merged_writes(sbi); 1418 1419 /* this is the case of multiple fstrims without any changes */ 1420 if (cpc->reason & CP_DISCARD) { 1421 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1422 unblock_operations(sbi); 1423 goto out; 1424 } 1425 1426 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1427 SIT_I(sbi)->dirty_sentries == 0 && 1428 prefree_segments(sbi) == 0) { 1429 f2fs_flush_sit_entries(sbi, cpc); 1430 f2fs_clear_prefree_segments(sbi, cpc); 1431 unblock_operations(sbi); 1432 goto out; 1433 } 1434 } 1435 1436 /* 1437 * update checkpoint pack index 1438 * Increase the version number so that 1439 * SIT entries and seg summaries are written at correct place 1440 */ 1441 ckpt_ver = cur_cp_version(ckpt); 1442 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1443 1444 /* write cached NAT/SIT entries to NAT/SIT area */ 1445 f2fs_flush_nat_entries(sbi, cpc); 1446 f2fs_flush_sit_entries(sbi, cpc); 1447 1448 /* unlock all the fs_lock[] in do_checkpoint() */ 1449 err = do_checkpoint(sbi, cpc); 1450 if (err) 1451 f2fs_release_discard_addrs(sbi); 1452 else 1453 f2fs_clear_prefree_segments(sbi, cpc); 1454 1455 unblock_operations(sbi); 1456 stat_inc_cp_count(sbi->stat_info); 1457 1458 if (cpc->reason & CP_RECOVERY) 1459 f2fs_msg(sbi->sb, KERN_NOTICE, 1460 "checkpoint: version = %llx", ckpt_ver); 1461 1462 /* do checkpoint periodically */ 1463 f2fs_update_time(sbi, CP_TIME); 1464 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1465 out: 1466 mutex_unlock(&sbi->cp_mutex); 1467 return err; 1468 } 1469 1470 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1471 { 1472 int i; 1473 1474 for (i = 0; i < MAX_INO_ENTRY; i++) { 1475 struct inode_management *im = &sbi->im[i]; 1476 1477 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1478 spin_lock_init(&im->ino_lock); 1479 INIT_LIST_HEAD(&im->ino_list); 1480 im->ino_num = 0; 1481 } 1482 1483 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1484 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1485 F2FS_ORPHANS_PER_BLOCK; 1486 } 1487 1488 int __init f2fs_create_checkpoint_caches(void) 1489 { 1490 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1491 sizeof(struct ino_entry)); 1492 if (!ino_entry_slab) 1493 return -ENOMEM; 1494 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1495 sizeof(struct inode_entry)); 1496 if (!f2fs_inode_entry_slab) { 1497 kmem_cache_destroy(ino_entry_slab); 1498 return -ENOMEM; 1499 } 1500 return 0; 1501 } 1502 1503 void f2fs_destroy_checkpoint_caches(void) 1504 { 1505 kmem_cache_destroy(ino_entry_slab); 1506 kmem_cache_destroy(f2fs_inode_entry_slab); 1507 } 1508