1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = READ_SYNC | REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 fio.old_blkaddr = fio.new_blkaddr; 211 f2fs_submit_page_mbio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 f2fs_submit_merged_bio(sbi, META, READ); 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 232 } 233 234 static int f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc) 236 { 237 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 238 239 trace_f2fs_writepage(page, META); 240 241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 242 goto redirty_out; 243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 244 goto redirty_out; 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 248 write_meta_page(sbi, page); 249 dec_page_count(sbi, F2FS_DIRTY_META); 250 251 if (wbc->for_reclaim) 252 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE); 253 254 unlock_page(page); 255 256 if (unlikely(f2fs_cp_error(sbi))) 257 f2fs_submit_merged_bio(sbi, META, WRITE); 258 259 return 0; 260 261 redirty_out: 262 redirty_page_for_writepage(wbc, page); 263 return AOP_WRITEPAGE_ACTIVATE; 264 } 265 266 static int f2fs_write_meta_pages(struct address_space *mapping, 267 struct writeback_control *wbc) 268 { 269 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 270 struct blk_plug plug; 271 long diff, written; 272 273 /* collect a number of dirty meta pages and write together */ 274 if (wbc->for_kupdate || 275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 276 goto skip_write; 277 278 trace_f2fs_writepages(mapping->host, wbc, META); 279 280 /* if mounting is failed, skip writing node pages */ 281 mutex_lock(&sbi->cp_mutex); 282 diff = nr_pages_to_write(sbi, META, wbc); 283 blk_start_plug(&plug); 284 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 285 blk_finish_plug(&plug); 286 mutex_unlock(&sbi->cp_mutex); 287 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 288 return 0; 289 290 skip_write: 291 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 292 trace_f2fs_writepages(mapping->host, wbc, META); 293 return 0; 294 } 295 296 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 297 long nr_to_write) 298 { 299 struct address_space *mapping = META_MAPPING(sbi); 300 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 301 struct pagevec pvec; 302 long nwritten = 0; 303 struct writeback_control wbc = { 304 .for_reclaim = 0, 305 }; 306 struct blk_plug plug; 307 308 pagevec_init(&pvec, 0); 309 310 blk_start_plug(&plug); 311 312 while (index <= end) { 313 int i, nr_pages; 314 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 315 PAGECACHE_TAG_DIRTY, 316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 317 if (unlikely(nr_pages == 0)) 318 break; 319 320 for (i = 0; i < nr_pages; i++) { 321 struct page *page = pvec.pages[i]; 322 323 if (prev == ULONG_MAX) 324 prev = page->index - 1; 325 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 326 pagevec_release(&pvec); 327 goto stop; 328 } 329 330 lock_page(page); 331 332 if (unlikely(page->mapping != mapping)) { 333 continue_unlock: 334 unlock_page(page); 335 continue; 336 } 337 if (!PageDirty(page)) { 338 /* someone wrote it for us */ 339 goto continue_unlock; 340 } 341 342 f2fs_wait_on_page_writeback(page, META, true); 343 344 BUG_ON(PageWriteback(page)); 345 if (!clear_page_dirty_for_io(page)) 346 goto continue_unlock; 347 348 if (mapping->a_ops->writepage(page, &wbc)) { 349 unlock_page(page); 350 break; 351 } 352 nwritten++; 353 prev = page->index; 354 if (unlikely(nwritten >= nr_to_write)) 355 break; 356 } 357 pagevec_release(&pvec); 358 cond_resched(); 359 } 360 stop: 361 if (nwritten) 362 f2fs_submit_merged_bio(sbi, type, WRITE); 363 364 blk_finish_plug(&plug); 365 366 return nwritten; 367 } 368 369 static int f2fs_set_meta_page_dirty(struct page *page) 370 { 371 trace_f2fs_set_page_dirty(page, META); 372 373 if (!PageUptodate(page)) 374 SetPageUptodate(page); 375 if (!PageDirty(page)) { 376 f2fs_set_page_dirty_nobuffers(page); 377 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 378 SetPagePrivate(page); 379 f2fs_trace_pid(page); 380 return 1; 381 } 382 return 0; 383 } 384 385 const struct address_space_operations f2fs_meta_aops = { 386 .writepage = f2fs_write_meta_page, 387 .writepages = f2fs_write_meta_pages, 388 .set_page_dirty = f2fs_set_meta_page_dirty, 389 .invalidatepage = f2fs_invalidate_page, 390 .releasepage = f2fs_release_page, 391 }; 392 393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 394 { 395 struct inode_management *im = &sbi->im[type]; 396 struct ino_entry *e, *tmp; 397 398 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 399 retry: 400 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 401 402 spin_lock(&im->ino_lock); 403 e = radix_tree_lookup(&im->ino_root, ino); 404 if (!e) { 405 e = tmp; 406 if (radix_tree_insert(&im->ino_root, ino, e)) { 407 spin_unlock(&im->ino_lock); 408 radix_tree_preload_end(); 409 goto retry; 410 } 411 memset(e, 0, sizeof(struct ino_entry)); 412 e->ino = ino; 413 414 list_add_tail(&e->list, &im->ino_list); 415 if (type != ORPHAN_INO) 416 im->ino_num++; 417 } 418 spin_unlock(&im->ino_lock); 419 radix_tree_preload_end(); 420 421 if (e != tmp) 422 kmem_cache_free(ino_entry_slab, tmp); 423 } 424 425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 426 { 427 struct inode_management *im = &sbi->im[type]; 428 struct ino_entry *e; 429 430 spin_lock(&im->ino_lock); 431 e = radix_tree_lookup(&im->ino_root, ino); 432 if (e) { 433 list_del(&e->list); 434 radix_tree_delete(&im->ino_root, ino); 435 im->ino_num--; 436 spin_unlock(&im->ino_lock); 437 kmem_cache_free(ino_entry_slab, e); 438 return; 439 } 440 spin_unlock(&im->ino_lock); 441 } 442 443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 444 { 445 /* add new dirty ino entry into list */ 446 __add_ino_entry(sbi, ino, type); 447 } 448 449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 450 { 451 /* remove dirty ino entry from list */ 452 __remove_ino_entry(sbi, ino, type); 453 } 454 455 /* mode should be APPEND_INO or UPDATE_INO */ 456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 457 { 458 struct inode_management *im = &sbi->im[mode]; 459 struct ino_entry *e; 460 461 spin_lock(&im->ino_lock); 462 e = radix_tree_lookup(&im->ino_root, ino); 463 spin_unlock(&im->ino_lock); 464 return e ? true : false; 465 } 466 467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 468 { 469 struct ino_entry *e, *tmp; 470 int i; 471 472 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 473 struct inode_management *im = &sbi->im[i]; 474 475 spin_lock(&im->ino_lock); 476 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 477 list_del(&e->list); 478 radix_tree_delete(&im->ino_root, e->ino); 479 kmem_cache_free(ino_entry_slab, e); 480 im->ino_num--; 481 } 482 spin_unlock(&im->ino_lock); 483 } 484 } 485 486 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 487 { 488 struct inode_management *im = &sbi->im[ORPHAN_INO]; 489 int err = 0; 490 491 spin_lock(&im->ino_lock); 492 493 #ifdef CONFIG_F2FS_FAULT_INJECTION 494 if (time_to_inject(FAULT_ORPHAN)) { 495 spin_unlock(&im->ino_lock); 496 return -ENOSPC; 497 } 498 #endif 499 if (unlikely(im->ino_num >= sbi->max_orphans)) 500 err = -ENOSPC; 501 else 502 im->ino_num++; 503 spin_unlock(&im->ino_lock); 504 505 return err; 506 } 507 508 void release_orphan_inode(struct f2fs_sb_info *sbi) 509 { 510 struct inode_management *im = &sbi->im[ORPHAN_INO]; 511 512 spin_lock(&im->ino_lock); 513 f2fs_bug_on(sbi, im->ino_num == 0); 514 im->ino_num--; 515 spin_unlock(&im->ino_lock); 516 } 517 518 void add_orphan_inode(struct inode *inode) 519 { 520 /* add new orphan ino entry into list */ 521 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 522 update_inode_page(inode); 523 } 524 525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 526 { 527 /* remove orphan entry from orphan list */ 528 __remove_ino_entry(sbi, ino, ORPHAN_INO); 529 } 530 531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 532 { 533 struct inode *inode; 534 struct node_info ni; 535 536 inode = f2fs_iget_retry(sbi->sb, ino); 537 if (IS_ERR(inode)) { 538 /* 539 * there should be a bug that we can't find the entry 540 * to orphan inode. 541 */ 542 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 543 return PTR_ERR(inode); 544 } 545 546 clear_nlink(inode); 547 548 /* truncate all the data during iput */ 549 iput(inode); 550 551 get_node_info(sbi, ino, &ni); 552 553 /* ENOMEM was fully retried in f2fs_evict_inode. */ 554 if (ni.blk_addr != NULL_ADDR) { 555 int err = acquire_orphan_inode(sbi); 556 557 if (err) { 558 set_sbi_flag(sbi, SBI_NEED_FSCK); 559 f2fs_msg(sbi->sb, KERN_WARNING, 560 "%s: orphan failed (ino=%x), run fsck to fix.", 561 __func__, ino); 562 return err; 563 } 564 __add_ino_entry(sbi, ino, ORPHAN_INO); 565 } 566 return 0; 567 } 568 569 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 570 { 571 block_t start_blk, orphan_blocks, i, j; 572 int err; 573 574 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 575 return 0; 576 577 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 578 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 579 580 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 581 582 for (i = 0; i < orphan_blocks; i++) { 583 struct page *page = get_meta_page(sbi, start_blk + i); 584 struct f2fs_orphan_block *orphan_blk; 585 586 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 587 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 588 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 589 err = recover_orphan_inode(sbi, ino); 590 if (err) { 591 f2fs_put_page(page, 1); 592 return err; 593 } 594 } 595 f2fs_put_page(page, 1); 596 } 597 /* clear Orphan Flag */ 598 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 599 return 0; 600 } 601 602 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 603 { 604 struct list_head *head; 605 struct f2fs_orphan_block *orphan_blk = NULL; 606 unsigned int nentries = 0; 607 unsigned short index = 1; 608 unsigned short orphan_blocks; 609 struct page *page = NULL; 610 struct ino_entry *orphan = NULL; 611 struct inode_management *im = &sbi->im[ORPHAN_INO]; 612 613 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 614 615 /* 616 * we don't need to do spin_lock(&im->ino_lock) here, since all the 617 * orphan inode operations are covered under f2fs_lock_op(). 618 * And, spin_lock should be avoided due to page operations below. 619 */ 620 head = &im->ino_list; 621 622 /* loop for each orphan inode entry and write them in Jornal block */ 623 list_for_each_entry(orphan, head, list) { 624 if (!page) { 625 page = grab_meta_page(sbi, start_blk++); 626 orphan_blk = 627 (struct f2fs_orphan_block *)page_address(page); 628 memset(orphan_blk, 0, sizeof(*orphan_blk)); 629 } 630 631 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 632 633 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 634 /* 635 * an orphan block is full of 1020 entries, 636 * then we need to flush current orphan blocks 637 * and bring another one in memory 638 */ 639 orphan_blk->blk_addr = cpu_to_le16(index); 640 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 641 orphan_blk->entry_count = cpu_to_le32(nentries); 642 set_page_dirty(page); 643 f2fs_put_page(page, 1); 644 index++; 645 nentries = 0; 646 page = NULL; 647 } 648 } 649 650 if (page) { 651 orphan_blk->blk_addr = cpu_to_le16(index); 652 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 653 orphan_blk->entry_count = cpu_to_le32(nentries); 654 set_page_dirty(page); 655 f2fs_put_page(page, 1); 656 } 657 } 658 659 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 660 block_t cp_addr, unsigned long long *version) 661 { 662 struct page *cp_page_1, *cp_page_2 = NULL; 663 unsigned long blk_size = sbi->blocksize; 664 struct f2fs_checkpoint *cp_block; 665 unsigned long long cur_version = 0, pre_version = 0; 666 size_t crc_offset; 667 __u32 crc = 0; 668 669 /* Read the 1st cp block in this CP pack */ 670 cp_page_1 = get_meta_page(sbi, cp_addr); 671 672 /* get the version number */ 673 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 674 crc_offset = le32_to_cpu(cp_block->checksum_offset); 675 if (crc_offset >= blk_size) 676 goto invalid_cp1; 677 678 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 679 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 680 goto invalid_cp1; 681 682 pre_version = cur_cp_version(cp_block); 683 684 /* Read the 2nd cp block in this CP pack */ 685 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 686 cp_page_2 = get_meta_page(sbi, cp_addr); 687 688 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 689 crc_offset = le32_to_cpu(cp_block->checksum_offset); 690 if (crc_offset >= blk_size) 691 goto invalid_cp2; 692 693 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 694 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 695 goto invalid_cp2; 696 697 cur_version = cur_cp_version(cp_block); 698 699 if (cur_version == pre_version) { 700 *version = cur_version; 701 f2fs_put_page(cp_page_2, 1); 702 return cp_page_1; 703 } 704 invalid_cp2: 705 f2fs_put_page(cp_page_2, 1); 706 invalid_cp1: 707 f2fs_put_page(cp_page_1, 1); 708 return NULL; 709 } 710 711 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 712 { 713 struct f2fs_checkpoint *cp_block; 714 struct f2fs_super_block *fsb = sbi->raw_super; 715 struct page *cp1, *cp2, *cur_page; 716 unsigned long blk_size = sbi->blocksize; 717 unsigned long long cp1_version = 0, cp2_version = 0; 718 unsigned long long cp_start_blk_no; 719 unsigned int cp_blks = 1 + __cp_payload(sbi); 720 block_t cp_blk_no; 721 int i; 722 723 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 724 if (!sbi->ckpt) 725 return -ENOMEM; 726 /* 727 * Finding out valid cp block involves read both 728 * sets( cp pack1 and cp pack 2) 729 */ 730 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 731 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 732 733 /* The second checkpoint pack should start at the next segment */ 734 cp_start_blk_no += ((unsigned long long)1) << 735 le32_to_cpu(fsb->log_blocks_per_seg); 736 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 737 738 if (cp1 && cp2) { 739 if (ver_after(cp2_version, cp1_version)) 740 cur_page = cp2; 741 else 742 cur_page = cp1; 743 } else if (cp1) { 744 cur_page = cp1; 745 } else if (cp2) { 746 cur_page = cp2; 747 } else { 748 goto fail_no_cp; 749 } 750 751 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 752 memcpy(sbi->ckpt, cp_block, blk_size); 753 754 /* Sanity checking of checkpoint */ 755 if (sanity_check_ckpt(sbi)) 756 goto fail_no_cp; 757 758 if (cp_blks <= 1) 759 goto done; 760 761 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 762 if (cur_page == cp2) 763 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 764 765 for (i = 1; i < cp_blks; i++) { 766 void *sit_bitmap_ptr; 767 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 768 769 cur_page = get_meta_page(sbi, cp_blk_no + i); 770 sit_bitmap_ptr = page_address(cur_page); 771 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 772 f2fs_put_page(cur_page, 1); 773 } 774 done: 775 f2fs_put_page(cp1, 1); 776 f2fs_put_page(cp2, 1); 777 return 0; 778 779 fail_no_cp: 780 kfree(sbi->ckpt); 781 return -EINVAL; 782 } 783 784 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 785 { 786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 787 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 788 789 if (is_inode_flag_set(inode, flag)) 790 return; 791 792 set_inode_flag(inode, flag); 793 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 794 stat_inc_dirty_inode(sbi, type); 795 } 796 797 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 798 { 799 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 800 801 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 802 return; 803 804 list_del_init(&F2FS_I(inode)->dirty_list); 805 clear_inode_flag(inode, flag); 806 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 807 } 808 809 void update_dirty_page(struct inode *inode, struct page *page) 810 { 811 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 812 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 813 814 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 815 !S_ISLNK(inode->i_mode)) 816 return; 817 818 spin_lock(&sbi->inode_lock[type]); 819 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 820 __add_dirty_inode(inode, type); 821 inode_inc_dirty_pages(inode); 822 spin_unlock(&sbi->inode_lock[type]); 823 824 SetPagePrivate(page); 825 f2fs_trace_pid(page); 826 } 827 828 void remove_dirty_inode(struct inode *inode) 829 { 830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 831 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 832 833 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 834 !S_ISLNK(inode->i_mode)) 835 return; 836 837 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 838 return; 839 840 spin_lock(&sbi->inode_lock[type]); 841 __remove_dirty_inode(inode, type); 842 spin_unlock(&sbi->inode_lock[type]); 843 } 844 845 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 846 { 847 struct list_head *head; 848 struct inode *inode; 849 struct f2fs_inode_info *fi; 850 bool is_dir = (type == DIR_INODE); 851 852 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 853 get_pages(sbi, is_dir ? 854 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 855 retry: 856 if (unlikely(f2fs_cp_error(sbi))) 857 return -EIO; 858 859 spin_lock(&sbi->inode_lock[type]); 860 861 head = &sbi->inode_list[type]; 862 if (list_empty(head)) { 863 spin_unlock(&sbi->inode_lock[type]); 864 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 865 get_pages(sbi, is_dir ? 866 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 867 return 0; 868 } 869 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list); 870 inode = igrab(&fi->vfs_inode); 871 spin_unlock(&sbi->inode_lock[type]); 872 if (inode) { 873 filemap_fdatawrite(inode->i_mapping); 874 iput(inode); 875 } else { 876 /* 877 * We should submit bio, since it exists several 878 * wribacking dentry pages in the freeing inode. 879 */ 880 f2fs_submit_merged_bio(sbi, DATA, WRITE); 881 cond_resched(); 882 } 883 goto retry; 884 } 885 886 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 887 { 888 struct list_head *head = &sbi->inode_list[DIRTY_META]; 889 struct inode *inode; 890 struct f2fs_inode_info *fi; 891 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 892 893 while (total--) { 894 if (unlikely(f2fs_cp_error(sbi))) 895 return -EIO; 896 897 spin_lock(&sbi->inode_lock[DIRTY_META]); 898 if (list_empty(head)) { 899 spin_unlock(&sbi->inode_lock[DIRTY_META]); 900 return 0; 901 } 902 fi = list_entry(head->next, struct f2fs_inode_info, 903 gdirty_list); 904 inode = igrab(&fi->vfs_inode); 905 spin_unlock(&sbi->inode_lock[DIRTY_META]); 906 if (inode) { 907 update_inode_page(inode); 908 iput(inode); 909 } 910 }; 911 return 0; 912 } 913 914 /* 915 * Freeze all the FS-operations for checkpoint. 916 */ 917 static int block_operations(struct f2fs_sb_info *sbi) 918 { 919 struct writeback_control wbc = { 920 .sync_mode = WB_SYNC_ALL, 921 .nr_to_write = LONG_MAX, 922 .for_reclaim = 0, 923 }; 924 struct blk_plug plug; 925 int err = 0; 926 927 blk_start_plug(&plug); 928 929 retry_flush_dents: 930 f2fs_lock_all(sbi); 931 /* write all the dirty dentry pages */ 932 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 933 f2fs_unlock_all(sbi); 934 err = sync_dirty_inodes(sbi, DIR_INODE); 935 if (err) 936 goto out; 937 goto retry_flush_dents; 938 } 939 940 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 941 f2fs_unlock_all(sbi); 942 err = f2fs_sync_inode_meta(sbi); 943 if (err) 944 goto out; 945 goto retry_flush_dents; 946 } 947 948 /* 949 * POR: we should ensure that there are no dirty node pages 950 * until finishing nat/sit flush. 951 */ 952 retry_flush_nodes: 953 down_write(&sbi->node_write); 954 955 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 956 up_write(&sbi->node_write); 957 err = sync_node_pages(sbi, &wbc); 958 if (err) { 959 f2fs_unlock_all(sbi); 960 goto out; 961 } 962 goto retry_flush_nodes; 963 } 964 out: 965 blk_finish_plug(&plug); 966 return err; 967 } 968 969 static void unblock_operations(struct f2fs_sb_info *sbi) 970 { 971 up_write(&sbi->node_write); 972 973 build_free_nids(sbi); 974 f2fs_unlock_all(sbi); 975 } 976 977 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 978 { 979 DEFINE_WAIT(wait); 980 981 for (;;) { 982 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 983 984 if (!atomic_read(&sbi->nr_wb_bios)) 985 break; 986 987 io_schedule_timeout(5*HZ); 988 } 989 finish_wait(&sbi->cp_wait, &wait); 990 } 991 992 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 993 { 994 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 995 struct f2fs_nm_info *nm_i = NM_I(sbi); 996 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 997 nid_t last_nid = nm_i->next_scan_nid; 998 block_t start_blk; 999 unsigned int data_sum_blocks, orphan_blocks; 1000 __u32 crc32 = 0; 1001 int i; 1002 int cp_payload_blks = __cp_payload(sbi); 1003 struct super_block *sb = sbi->sb; 1004 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1005 u64 kbytes_written; 1006 1007 /* Flush all the NAT/SIT pages */ 1008 while (get_pages(sbi, F2FS_DIRTY_META)) { 1009 sync_meta_pages(sbi, META, LONG_MAX); 1010 if (unlikely(f2fs_cp_error(sbi))) 1011 return -EIO; 1012 } 1013 1014 next_free_nid(sbi, &last_nid); 1015 1016 /* 1017 * modify checkpoint 1018 * version number is already updated 1019 */ 1020 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1021 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1022 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1023 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1024 ckpt->cur_node_segno[i] = 1025 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1026 ckpt->cur_node_blkoff[i] = 1027 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1028 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1029 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1030 } 1031 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1032 ckpt->cur_data_segno[i] = 1033 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1034 ckpt->cur_data_blkoff[i] = 1035 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1036 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1037 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1038 } 1039 1040 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1041 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1042 ckpt->next_free_nid = cpu_to_le32(last_nid); 1043 1044 /* 2 cp + n data seg summary + orphan inode blocks */ 1045 data_sum_blocks = npages_for_summary_flush(sbi, false); 1046 spin_lock(&sbi->cp_lock); 1047 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1048 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1049 else 1050 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1051 spin_unlock(&sbi->cp_lock); 1052 1053 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1054 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1055 orphan_blocks); 1056 1057 if (__remain_node_summaries(cpc->reason)) 1058 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1059 cp_payload_blks + data_sum_blocks + 1060 orphan_blocks + NR_CURSEG_NODE_TYPE); 1061 else 1062 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1063 cp_payload_blks + data_sum_blocks + 1064 orphan_blocks); 1065 1066 spin_lock(&sbi->cp_lock); 1067 if (cpc->reason == CP_UMOUNT) 1068 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1069 else 1070 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1071 1072 if (cpc->reason == CP_FASTBOOT) 1073 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1074 else 1075 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1076 1077 if (orphan_num) 1078 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1079 else 1080 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1081 1082 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1083 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1084 1085 /* set this flag to activate crc|cp_ver for recovery */ 1086 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1087 1088 spin_unlock(&sbi->cp_lock); 1089 1090 /* update SIT/NAT bitmap */ 1091 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1092 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1093 1094 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1095 *((__le32 *)((unsigned char *)ckpt + 1096 le32_to_cpu(ckpt->checksum_offset))) 1097 = cpu_to_le32(crc32); 1098 1099 start_blk = __start_cp_addr(sbi); 1100 1101 /* need to wait for end_io results */ 1102 wait_on_all_pages_writeback(sbi); 1103 if (unlikely(f2fs_cp_error(sbi))) 1104 return -EIO; 1105 1106 /* write out checkpoint buffer at block 0 */ 1107 update_meta_page(sbi, ckpt, start_blk++); 1108 1109 for (i = 1; i < 1 + cp_payload_blks; i++) 1110 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1111 start_blk++); 1112 1113 if (orphan_num) { 1114 write_orphan_inodes(sbi, start_blk); 1115 start_blk += orphan_blocks; 1116 } 1117 1118 write_data_summaries(sbi, start_blk); 1119 start_blk += data_sum_blocks; 1120 1121 /* Record write statistics in the hot node summary */ 1122 kbytes_written = sbi->kbytes_written; 1123 if (sb->s_bdev->bd_part) 1124 kbytes_written += BD_PART_WRITTEN(sbi); 1125 1126 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1127 1128 if (__remain_node_summaries(cpc->reason)) { 1129 write_node_summaries(sbi, start_blk); 1130 start_blk += NR_CURSEG_NODE_TYPE; 1131 } 1132 1133 /* writeout checkpoint block */ 1134 update_meta_page(sbi, ckpt, start_blk); 1135 1136 /* wait for previous submitted node/meta pages writeback */ 1137 wait_on_all_pages_writeback(sbi); 1138 1139 if (unlikely(f2fs_cp_error(sbi))) 1140 return -EIO; 1141 1142 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1143 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1144 1145 /* update user_block_counts */ 1146 sbi->last_valid_block_count = sbi->total_valid_block_count; 1147 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1148 1149 /* Here, we only have one bio having CP pack */ 1150 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1151 1152 /* wait for previous submitted meta pages writeback */ 1153 wait_on_all_pages_writeback(sbi); 1154 1155 release_ino_entry(sbi, false); 1156 1157 if (unlikely(f2fs_cp_error(sbi))) 1158 return -EIO; 1159 1160 clear_prefree_segments(sbi, cpc); 1161 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1162 clear_sbi_flag(sbi, SBI_NEED_CP); 1163 1164 /* 1165 * redirty superblock if metadata like node page or inode cache is 1166 * updated during writing checkpoint. 1167 */ 1168 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1169 get_pages(sbi, F2FS_DIRTY_IMETA)) 1170 set_sbi_flag(sbi, SBI_IS_DIRTY); 1171 1172 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1173 1174 return 0; 1175 } 1176 1177 /* 1178 * We guarantee that this checkpoint procedure will not fail. 1179 */ 1180 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1181 { 1182 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1183 unsigned long long ckpt_ver; 1184 int err = 0; 1185 1186 mutex_lock(&sbi->cp_mutex); 1187 1188 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1189 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1190 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1191 goto out; 1192 if (unlikely(f2fs_cp_error(sbi))) { 1193 err = -EIO; 1194 goto out; 1195 } 1196 if (f2fs_readonly(sbi->sb)) { 1197 err = -EROFS; 1198 goto out; 1199 } 1200 1201 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1202 1203 err = block_operations(sbi); 1204 if (err) 1205 goto out; 1206 1207 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1208 1209 f2fs_flush_merged_bios(sbi); 1210 1211 /* this is the case of multiple fstrims without any changes */ 1212 if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) { 1213 f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt); 1214 f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries); 1215 f2fs_bug_on(sbi, prefree_segments(sbi)); 1216 flush_sit_entries(sbi, cpc); 1217 clear_prefree_segments(sbi, cpc); 1218 f2fs_wait_all_discard_bio(sbi); 1219 unblock_operations(sbi); 1220 goto out; 1221 } 1222 1223 /* 1224 * update checkpoint pack index 1225 * Increase the version number so that 1226 * SIT entries and seg summaries are written at correct place 1227 */ 1228 ckpt_ver = cur_cp_version(ckpt); 1229 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1230 1231 /* write cached NAT/SIT entries to NAT/SIT area */ 1232 flush_nat_entries(sbi); 1233 flush_sit_entries(sbi, cpc); 1234 1235 /* unlock all the fs_lock[] in do_checkpoint() */ 1236 err = do_checkpoint(sbi, cpc); 1237 1238 f2fs_wait_all_discard_bio(sbi); 1239 1240 unblock_operations(sbi); 1241 stat_inc_cp_count(sbi->stat_info); 1242 1243 if (cpc->reason == CP_RECOVERY) 1244 f2fs_msg(sbi->sb, KERN_NOTICE, 1245 "checkpoint: version = %llx", ckpt_ver); 1246 1247 /* do checkpoint periodically */ 1248 f2fs_update_time(sbi, CP_TIME); 1249 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1250 out: 1251 mutex_unlock(&sbi->cp_mutex); 1252 return err; 1253 } 1254 1255 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1256 { 1257 int i; 1258 1259 for (i = 0; i < MAX_INO_ENTRY; i++) { 1260 struct inode_management *im = &sbi->im[i]; 1261 1262 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1263 spin_lock_init(&im->ino_lock); 1264 INIT_LIST_HEAD(&im->ino_list); 1265 im->ino_num = 0; 1266 } 1267 1268 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1269 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1270 F2FS_ORPHANS_PER_BLOCK; 1271 } 1272 1273 int __init create_checkpoint_caches(void) 1274 { 1275 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1276 sizeof(struct ino_entry)); 1277 if (!ino_entry_slab) 1278 return -ENOMEM; 1279 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1280 sizeof(struct inode_entry)); 1281 if (!inode_entry_slab) { 1282 kmem_cache_destroy(ino_entry_slab); 1283 return -ENOMEM; 1284 } 1285 return 0; 1286 } 1287 1288 void destroy_checkpoint_caches(void) 1289 { 1290 kmem_cache_destroy(ino_entry_slab); 1291 kmem_cache_destroy(inode_entry_slab); 1292 } 1293